Not to be cited without the permission of the authors ${ }^{1}$

Canadian Atlantic Fisheries Scientific Advisory Committee

CAFSAC Research Document 86/95

Ne pas citer sans autorisation des auteurs ${ }^{1}$

Comité scientifique consultatif des pêches canadiennes dans l'Atlantique

CSCPCA Document de recherche 86/95

Status of the Atlantic Cod Stock on Georges Bank, NAFO.Division $5 Z$ and Subarea 6, in 1985

by

J.J. Hunt and S. Gavaris Marine Fish Division Biological Station Fisheries and Oceans
St. Andrews, New Brunswick EOG 2XO

1 This series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research Documents are produced in the official language in which they are provided to the Secretariat by the author.

1 Cette série documente les bases scientifiques des conseils de gestion des pêches sur la côte atlantique du Canada. Comme telle, elle couvre les problèmes actuels selon les échéanciers voulus et les Documents de recherche qu'elle contient ne doivent pas être considérés comme des énoncés finals sur les sujets traités mais plutôt comme des rapports d'étape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée par les auteurs daṇs le manuscrit envoyé au secrétariat.

```
Abstract
```

```
Status of the Atlantic cod stock in NAFO Division 5i and Subarea b is
reviewed incerporating !985 data. Total catch in 1985 was 37259 t of
which Canada landed 10441 t. Catch rates, derived from Canadian OTE
landings, have shown a general decline since !977 with the enception
of 1981-82 and 1985, when above average year-c!asses recruited to the
fishery. Research survey indices of abundance indicate above average
numbers at age for the 1983 and 1985 year-classes while the 1982 and
!984 year-classes are below average. Fesults of sequential population
analysis indicate a fully recruited fishing mortality in !985 of 0.45
and partial recruitment of 3% at age one and 80% at age two. Estimated
3+ biomass has followed a steady decline from 95000 t in 1978 to a
level of 62000 t in 1985. The F0.l yield for this stock is lass than
15000 t, which is exceeded by the current USA catch, and improvement
in steck status wi:l reguire bilateral management by the U5A and Canaca.
```


Résumé

La population de morues de la division $5 Z$ et de la sous-zone 6 de 1'OPANO est évaluée en fonction des données recueillies en 1985. La capture totale en 1985 a été de 37269 t dont. 10441 t ont été débarquées au Canada. Le taux de capture, calculé à partir des prises par chalut (OTB) débarquées au Canada, a subi une diminution générale depuis 1977 sauf en 1981 et 1982 et en 1985 qui ont été marqués par un recrutement de classes d'age supérieures à la moyenne. Les indices d'abondance établis à partir des relevés de recherche sont supérieures à la moyenne pour les classes d'âge de 1983 et de 1985 mais inférieures a la moyenne pour les classes d'âge de 1982 et de 1984. Les résultats de l'analyse séquentielle de population indiquent que 1a mortalité par pêche pour un recrutement total a été de 0,45 en 1985 et que le recrutement partiel a été de 3% pour l'âge d'un an et de 80% pour l'age de deux ans. La biomasse de la classe des $3+$ a subi une diminution constante, passant de 95000 t en 1978 à 62000 t en 1985. Le niveau $F_{0,1}$ de cette population est inférieur à 15000 t ce qui est également inférieur aux captures américaines actuelles; pour améliorer la situation des populations de morues, les Etats-Unis et le Canada devront entreprendre une gestion bilatérale.

Introduction

The size of the cod population in NAFO Division 52 (Figure 1) and Subarea 6 was evaluated by $B r o w n$ and Heyerdahl in 1972 through the examination of research survey data and commercial catch rates. Serchut et al (1977, 1978) conducted virtual population analysis of the catch data but considered results to be suspect because of uncertainties in the reliability of reported catch statisitics.

Catch statistics since 1977, when foreign fleets were excluded from the 200 mile economic zones of Canada and the USA, are thought to be more reliable. There have been no peported landings by foreign fleets since 1978.

The fishery has been managed independently by Canada and the USA since 1978. Canada recommended TAC's for 1978-84, while the USA has followed their Groundfish Management Plan since 19g1. Canada has set Canadian TAC's for 1985 and 1986.

Hunt and Waiwood (1984), in a review of stock status, suggested a fully recruited fishing mortality of 0.4 in 1983. However, their report was not based on a formal assessment due to an inadequate time series for catch at age in the fishery.

Hunt and waiwood (1985) used the 1979-84 catch-at-age to estimate population status and their results indicated a fully recruited fishing mortality of atout 0.6 in 1984, an F of 0.65 to take $40000 t$ in 1985 and an F0.1 catch in 1986 of about 11000 t .

The present report considers the catch data from 1978-85 and subjects these data to sequential population analysis (SPA). Research survey data were also used to examine stock structure. Cod in Division $5 Z$ are taken by both Canada and the USA and all data relating to USA catches, CPUE and research vessel surveys were provided by the National Marine Fisheries Service (NMFS) through Dr. Fred Serchuk at the Woods Hole, Mass., Laboratory.

Trends in Reported Landings

Annual Landings
The USA has been the main harvester of cod in Division $5 Z$ and Subarea b, with high foreign landings in the mid-19b0 period Table 1, Fig. 2). Catch by Canada was also high in this period and peaked at 15601 t in 1966. Total landings declined to about 20000 tin 1976 but then increased to a maximum recorded value of $57195 t$ in 1982.

Total landings in 1983 were $48928 t$, a decline of over $8000 t$ from 1982 , and fell by an additional 10000 t to 38676 t in 1984 . This is about 68% of the 1982 level and reflects a sharp reduction in landings by Canada in both 1993 and 1984. Reported landings remained constant between 1984 and 1985
(37269t) with a decline of b000 t in USA landings being offset by an increase of $5900 t$ by Canada.

Fishery by Country and Gear
The USA cod fishery is dominated by otter trawlers (Table 2) that operate throughout Division SZ. Catches by other gears such as gill nets, Danish seines and longlines have accounted for 10-15\% of the total USA catch. A substantial "recreational" fishery also exists for this stock but there are presently no estimates of the amount caught, although it may exceed loado t in some years (pers. comm. Dr. Fred Serchuk).

Canadian catches of cod, since 1978, were taken on the "northeast peak" of Georges gank (unit areas $5 Z E j$ and $5 Z E m$ primarily between April and November, Landings have been dominated by otter trawlers, except for 1784 (Table $3, ~ F i g . ~ 3) . ~ T h i s ~ g e a r ~ t o o k ~ 70 \% ~ o f ~ t h e ~ t o t a l ~ c a t c h ~ i n ~ 1982, ~ w a s ~$ 57% in 1983 and only 13% (745 t) in 1984. Catches of longliners were about 5000 t between 1981 and 1984. Catches in 1985 indicate an increase to 7600 t by otter trawlers and a decrease to 2800 t by longliners. A trend for the smaller TC 2 and 3 vessels to take an increasing proportion of the total catch has also been noted in recent years.

The Fishery in 1986
Preliminary Canadian 1986 quota reports indicate a catch of $5812 t$ by otter trawl and 1004 t by longline at the end of August for a total of 6816 t. Catches by 5 mall $T C 2$ and 3 otter trawlers account for $5065 t$ or about 74% of the total. No estimates of the USA catch are available at the present time.

A total of 18 samples were collected by Port Technicians, 15 from otter trawl catches and 2 from longliners. Ageing for these samples has been completed and indicates a catch composition of 0.1, 9.1, 54.0, 13.7, 23.1% for ages $1,2,3,4,5+$, respectively. Fish between 45-65 cm accounted for the bulk of the total catch of 1878 thousand fish with a dominant 1983 year-clase.

Anecdotal information from Port Technicians indicated catch rates for the $T C 2$ and 3 vessels, based on commercial catch samples, of about 10.6 t per three day trip. This compares to an average of $25 t$ for similar observations in the 1985 fishery.

Personal observation of one trip lasting three days in July showed variable catch rates between vessels. The observed vessel landed about 3000 kg of cod and 2500 kg of haddock with catch rates of $0.091 \mathrm{t} / \mathrm{hr}$ cod and 0.071 t/hr haddock based on 36.5 hours fishing. Catch rates for other vessels fishing in close proximity were higher. Vessels tended to be closely aggregated and able to selectively fish for either cod or haddock by varying depth. Very few diseards of small fish were noted and close to 100% of the catch was landed. The captain of the vessel also noted that
under-reporting of landings was common within the fleet and could amount to 25% of the reported landings. No direct evidence of this practice is available but it could be a significant factor influencing analysis.

```
Age Composition of the Commercial Catch
```


Sampling Intensity

Sampling coverage of the Canadian fishery averaged about one sample per $1000 t$ landed, since 1980 , and is biased towards otter trawl catches with fair coverage in 1978, 1984 and 1985 but poor coverage in 1979, 80 and 83. Only 7 samples, all from longline gear, were taken in 1984 from a total catch of less than b000 t. From 400-1000 cod are aged each year.

USA sampling has increased substantially since 1980, when 70 samples were collected, and is now at a level of over 150 samples per year. Sufficient samples are collected to estimate catch at age by gear, quarter and market category for USA landings.

Age Composition
Estimated removals at age prior to 1979 given by Serchuk et al(1977) are probably under-estimated and are not considered reliable because of suspected under-reporting of catches by foreign fleets.

Catch composition of USA landings for 1978-85 was provided by the Dr. F. Shercuk, NMFS, Woods Hole, Mass. and also included an estimate of total removals at age derived by prorating the USA numbers with the Canadian catch. Only the US catch at age was used in this study.

Canadian samples were used to obtain statistics by age according to the method described by Gavaris and Gavaris (1983). The bias introduced by applying otter trawl length frequencies to partition longline catches, in years lacking samples for this gear, may be significant. A summary of catches and samples used to estimate removals at age is given in Table 4 and percent age composition in Table 5.

Different values for a and b, in the length weight relationship, were used by Canada and the USA. Canadian values, derived from commercial sampling data, were $a=0.0000163$ and $b=2.9048$ for round weight in kilograms and length in centimeters. These compare to values of $a=0.000008104$ and $b=3.0521$ for USA survey data (Serchuk et al, 1982). Comparison of calculated weight at length using the two values for a and bindicate that, in the central part of the commercial length range, the USA parameters estimate a higher round weight at length (Hunt and Waiwood, 1985).

Mean weight and length-at-age for Eanadian and USA commercial catches are given in Tables 7 and $日$, with the " + " group set to 115 cm and 15.0 kg . Means for the total catch were derived by weighting individual values with the catch in numbers for each country.

Age groups 2-5 account for most of the yield but a difference in the age composition between Canada and USA is apparent (Fig 4). USA catches show a higher proportion at age 2 in some years and in $1982-84$ this age group accounted for more than twice the percentage taken by Canada at age two. The 1984 catch at age is influenced by the small otter trawl catch.

An exchange of ageing material and discussion between USA and Canadian age readers was completed in 1986 at a workshop in Woods Hole. Canadian samples were prepared following the method described by Strong et al (1985) and consisted of thin cross sections mounted on clear acrylic. USA samples were burned to enhance zones and then broken to obtain a cross section and cleared with alcohol at the time they were examined. joint ageing of over 100 otoliths indicated a good level of overall agreement $\because 85 \%$) between readers with no apparent bias. The differing preparation techniques were not considered a factor which might influence interpretation. Some enhancement of zones after burning was noted and Canadian readers have adopted this method for preparation of cod otoliths. Comparison of the length distribution and percent age composition for Canadian landings (Fig 5) suggests historical consistency in ageing.

Age-specific spatial distribution may be a factor influencing availability with higher potential catches of younger fish in the western part of the area. A further contributing factor to the apparent difference in age composition may be the proportion of longline catches in the Canadian fishery. This gear is selective for larger and older fish and between 1981 and 1984 accounted for a substantial proportion of the total Canadian catch. It was therefore concluded that the best estimate of total catch at age would be derived by summing the catch at age for each country. Total removals by age group, in thousands, for Canada and the USA are given in Table 6.

Stock Abundance Trends

Research Surveys

Random, depth-stratified bottom trawl surveys have been conducted by the USA in the autumn since 1963 and a spring was survey added in 1968 . A summer survey was conducted from 1977 to 1981. Surveys in Subdivision $5 Z e$ were completed by Canada in March, 1984, 8b. Mean catch per tow in numbers by age group for each of the USA surveys is given in Table 9 and the mean catch per tow in numbers and weight in Table 10, Fig. b. No adjustment for different gears or vessels used during the time series has been made. The spring survey used the larger "Yankee 41" trawl from 1973-81 and considerable differences in catch per tow could be anticipated. Total net opening of the "4!" trawl is about 1.7 times the opening of the "Yankee 36 ".

The spring survey has shown a steady decline in 0t numbers since 1981 and was at the lowest observed level in 1984 but increased in the 1985 survey. The autumn survey has also shown a steady decline since 1981 but has leveled off in the 1985 survey. Serchuk (pers. comm.) notes that catches of all species were anomolously low in the 1982 autumn survey
which may indicate a change in availability and this may also be a factor in the 1983 survey.

Stratified mean catch per tow within US strata in recent years were calculated using Canadian computer software (STRAP) and tow by tow data provided by the USA and are summarized in Figure 7 . Years for which the USA and Canadian results, derived from different analysis programs, did not agree were excluded (1978, 1981). Distribution of catch by age group did not indicate apparent segregation by age and younger age groups were taken on both sides of the international boundary. However, this survey is made after the peak fishing season and may not be representative of distribution and availability to the commercial fishery.

Commercial Catch Rates

Catch and effort statistics by month, for the Canadian fishery, were derived from Table 5 of the NAFO/ICNAF Statistical Bulletins for 1967-83. Data for 1994-85 were obtained from the Canadian Department of Fisheries and oceans. Due to previous observations regarding systematic bias caused by truncation of this type of data (Gavaris and Sinclair, 1985), all observations where either the catch was less than 10 or the effort was less than 10 hours were excluded from analysis. A multiplicative model (Gavaris, 1980) was used.

Examination of the residuals from the preliminary unweighted analysis resulted in the enclusion of three observations: OTB2-4, April 1967: OTB2-2 December 1968; 0TE2-2, October"1982. There did not appear to be any annual trends in either month or gear residuals but these residuals showed that observations with lower catch and effort were more variable. Therefore a weighted analysis was applied. An iterative procedure described by Judge et al (1980) was used to estimate the weights based on the partitioning of residuals along a logarithmic (catch x effort) scale. The analysis of variance from the weighted regression (Table ll) indicates that months do not account for much of the systematic variation. The coefficients for gears follow an intuitive pattern with larger vessels associated with greater fishing power.

The results of the analysis are shown in Table il in both the 10 and re-transformed linear scale. Trends in the linear scale (Figures 8 and 9) indicate fairly low levels in the mid-1970's with an abrupt increase in 1977 probably due to the recruitment of the 1975 year-class. This is followed by a general decline, although catch rates increased somewhat in 1981-82 and 1985, probably due to recruitment of the 1980 and 1983 yearclasses, respectively.

USA catch rates were provided by Serchuk and are reproduced in Table 12, Fig. 10. Landings by TC 2, 3 and 4 otter trawlers for all trips and $>50 \%$ cod trips are given. Catch rates in all categories show a general decline between 1978 and 1983 and, without exception, the catch rates in 1984 were the lowest since 1978. Catch rates for trips landing cod showed an increase in 1985, but trips landing $>50 \%$ cod were down from 1984.

Survey Index of Recruitment

Indices of recruitment were obtained from the autumn survey catch per tow at ages 0,1 and 2 for the $1962-84$ yoar-classes. The catch per tow at age was normalized to the mean of the $1962-85$ catch per tow and the average at ages $0+!$ and $1+2$ eelected as an survey index of relative abundance. The calculated indices are given in Table 13. The $1+2$ index is probably influenced by the effect of fishing mortality on age two fish. The 196b, 1771 and 1975 are dominant, with the 1980 year-class above average, 1081 and 1982 below average, and the 1983 year-class the highest since the 1975 year-clas5. The 1984 year-class appears to be below average while the 1985 year-class catch at age 0 suggests above averago abundance.

Comparison of catch per tow in successive years for the same year-class indicates poor correlation for the spring surveys but a higher level for the autumn surveys. It also appears that the ogroup catch in the autumn survey is indicative of year-class size. Catch of g-group fish in the spring survey appears to be inconsistent and may sample only results of occasional early spawning (December) rather than the main spawning in March. Correlation coefficients for ages 0 to 3 , for the $1975-84$ year-classes, are shown in Table 14

Total Mortality Estimates

Calculated values of total mortality (Z) and derived estimates of F based on USA spring and autumn survey catch per tow are given in Table 15. The ratio of numbers at $4+$ to numbers at $5+$ from. spring surveys and the ratio of numbers at $3+$ to numbers at $4+$ from autumn survey in the same five time intervals were used to estimate mortality. goth surveys show an increase between 1977-80 and 1981-83 and the autumn survey is the higher of the two estimates. The 1981-83 spring survey indicates a 2 of 0.74 and the autumn survey 0.98. However, availability in the 1982 autumn survey may overestimate Z in the last time period and, as noted above, the spring survey results have not been adjusted for a change in gear. Using the limited time series for $1982-84$ in spring surveys avoids the change in gear used and estimates a Z of 0.73 and an F of 0.53. The 1981-85 autumn surveys indicate a 2 of 0.89 and 0.69 fishing mortality over the last four years of the fishery.

Sequential Population Analysis (SPA)

Estimates of total mortality (I) derived from USA autumn survey results indicated a fishing mortality of above 0. 5 for recent years. Full recruitment at age three was assumed based on the historical pattern in the F matrix and the relationship between $S P A$ and survey numbers. Trial runs of SPA with the 1978-85 catch at age and terminal fishing mortality (ft) between 0.4 - 0.6 were made to estimate population numbers and fishing mortality. Results of SPA were regressed on the corresponding inder from the
autumn research survey, the weighted $3+F$ on directed effort, and exploitable biomass on CPUE.

SPA age $4+$ numbers and survey age $3+$ numbers, lagged by one year, were well correlated $\{R=0.79-8.82$) and indicated an Ft between 0. 4 and D.5. based on minimization of sum of squares for residuals. SPA age jt numbers and survey age $2+$ numbers were not correlated, probably due to some negative 2 values within cohorts in the survey catch per tow data. SPA age $2+$ numbers and survey age $1+$ numbers (lagged) for 1978-84 were also well correlated $(R=0.73-0.81)$ and the relationship was optimized at an $F t$ of 0.b, although little discrimination between input ft values was evident for intercept, r-squared or residual parameters. SPA age 3 and $R V$ age 2 numbers showed significant correlation $(P\rangle 0.8)$ with Ft tetween 0.4 and 0.6 and the relation was optimized at an ft D.b, based on maximization of r-squared values.

Canadian trawlable biomass, assuming full recruitment at age three, was calculated with partial F's for the Canadian ote catch. Derived values of biomass were regressed on the Canadian $O T B$ CPUE but the relationship was found to have a negative slope and unsuitable for calibration of SPA.
 regressed on standardized effort derived from the Canadian OTE CPUE. Best correlation and minimization of residuals occurred with an ft between 0. 4 and 0.5 (R >0.8).

Results of regression analysis suggest that the fully recruited fishing mortality in 1985 is above 0.4 and may exceed 0.5 , although the relationships between mean $3+F$ and effort were inconsistent with those derived from population numbers. Further resolution of Ft did not seem warranted and a value of 0.45 was selected for fully recruited fishing mortality in 1985. A summary of regression analysis is given in Table 16 and in Figures 11-15.

Regesssion of SPA age 2 on RV age 1 (lagged) indicated good correlation (R > \quad. 9) and residuals for the last three years were minimized with a fishing mortality of 0.358 at age two in 1985. This implies a partial recruitment of 0.796 at age two in 1985 which compares to values ranging from 0.3 to 0.7 derived from the F matrix in 1978-84. The high 1985 value is derived from the apparent average size of the 1983 year-class and the substantial catch at age two in 1985.

The relationship between SPA numbers at age $!$ and USA autumn survey number at age 0, lagged by one year, did not indicate significant correlation. This may be the result of low catchability of age 0 fish by the survey. The regression of SPA age 1 on RV age 1 , without lag, indicated good correlation ($\cap \geqslant .9$) and residuals for the last three years were minimized at a fishing mortality of 0.012 on age one, with an implied PR of 0.027 in 1985. Regression of beginning of year numbers from the SPA on RV numbers in the autumn of the same year (no lag) was justified on the basis of low fishing mortality on age one fish.

A summary of the results of regression analysis used to estimate partial recruitment in 1985 is given in Table 17 and Figures 16 and 17.

Final SPA Run
Population number, biomass and fishing mortality were calculated from SPA using a fully recruited F in 1985 of 0.45 and a partial recruitment vector of 0.027, 0.796, and 1 for ages 1,2 and $3+$ in 1985. Results are given in Table 18.

Fishing mortality ($3+$) increased from a mean of 0.384 to a high of 0. 513 in 1982 and averaged to 0.487 for $1982-85$. Cumulative fishing mortality was above 2.0 for most age groups by 1981.

Estimated $1+$ population numbers ranged from $70-90$ million for 1978-82 but fell to about 65 million in 1983 and 1984 , reflecting the 5 mall size of the 1982 year-class at age 1 and 2. Numbers at age $3+$ were 20 million in 1985, the lowest in the series, but the size of the 1982 year-class is a dominant factor. Similar results are apparent in the estimate of population biomass and the $3+$ biomass was below 80000 t in 1984. This is primarily the effect of high catches of the 1980 year-class at ages 2 , 3 and 4 as well as low recruitment of the 1982 year-class. Trends in recruitment at age 1 and estimated $3+$ biomass are given in Figures 18 and 17.

Management Considerations

Fishing mortality on this stock has exceeded both the $F 0.1$ and the Fmax levels in recent years. However, unilateral imposition of reduced Canadian quotas by Canada based on an Fo. 1 management strategy may not result in national benefit. The current USA catch exceeds the estimated F Q. 1 catch and without a bilateral management strategy by the USA and Canada it is unlikely that reductions in Canadian catches would result in stock rebuilding.

References

Brown, E.E., and E.G. Heyerdah1. 1972. An assessment of the Georges Bank cod stock (Div. 5Z). ICNAF Res. Doc. 72/117

Gavaris, S. 1980. Use of a multiplicative model to estimate catch rate and effort from comercial data. Can. J. Fish. Aquat. Sci. 37:2272-2275.

Gavaris, S and C. Gavaris. 1983. Estimation of catch at age and its variance for groundfish stocks in the Newfoundland region, p. 178-182. In W. G. Doubleday and D. Fivard (ed). Sampling of commercial catches of marine fish and invertebrates. Can. Spec. Putl. Fish. Aquat. Sci. 66.

Gavarjs, S. and A. Sinclair, 1985. Abundance indices of qVEW cod. CAFSAC Fes. Doc. 85/39.

Judge, G.G., W.E Griffiths, R.C. Hill and T. C. Lee. 1980. The theroy and practice of econometrics. John Wiley and Sons, New York, 795 p.

Hunt, J.J. and K.G. Waiwood. 1984. Status of the Atlantic Cod Stock on Georges Bank, NAFO Division 52 and Statistical Area b, in 1983. CAFSAC Res. DOC. 84/65.

Hunt, J.J. and K.G. Waiwood. 1985. Status of the Atlantic cod stock on Georges Bank, NAFO Division 52 and Statistical Area b, in 1784. CAFSAC Res. DOC. 85/87.

Serchuk, F.M., P. Wood, S.H. Clark and B.E. Brown, 1977. Assessment of the Georges Gank and Gulf of Maine cod stocks. Natl. Mar. Fish. Serv., Northeast Fish. Center, Lab. Ref. Doc. 77/24: 42p.

Serchuk, F.M., P.W. Wood and B.E. Brown. 1978. Atlantic cod assessment and status of the Georges Bank and Gulf of Maine stocks. Natl. Mar. Fish. Serv., Northeast Fish. Center, Lab. Ref. Doc. 78/0.3.

Serchuk, F.M., R.S. Rak and J. Pentilla. 1982. Status of the Georges Gank and Gulf of Maine Atlantic cod stocks -1982. Natl. Mar. Fish. Serv., Northeast Fish. Centre, Lab. Ref. Doc. 82/33: 46p.

Strong, M.B., J.J. Hunt and R.k. Robicheau. 1985. A new method of preparing gadoid otoliths. CAFSAC Res. Doc. 85/70.

Table L. Nominal catches (t, round) of Atlantic cod from Georges Bank and southmard (NAFO Division 52 and Subarea b), 1960-85.

Year	USA (a)	Canada	USSR	Other (b)	Total
1968	10834	17	-	-	10853
1961	14453	223	55	-	14731
1962	156.37	2404	5302	143	23486
1963	14139	7832	5217	1	27189
1964	12325	7108	5428	304	25165
1965	11410	10598	14415	1910	38333
1966	11990	15601	16830	8713	53134
1967	13157	8232	511	14852	36752
1968	15279	9127	1459	17271	43136
1969	16782	5997	646	14514	37939
1970	14899	2583	364	7806	25652
1971	16178	2979	1270	7752	28179
1972	13406	2545	1878	7230	25059
1973	16202	3220	2977	6524	28923
1974	18377	1374	476	7104	27331
1975	16017	1847	2403	4741	25008
1976	14906	2328	933	1759	19926
1977	21138	6173	54	2	27367
1978	26579	8904	-	-	35483
1979	32645	6011	-	-	38656
1980	40053	8094	-	-	48147
1981	33849	8508	-	-	42357
1982	39333	17862	-	-	57195
1983	36756	12172	-	-	48928
1984	32915	5761	-	-	38676
1985 (5)	26828	10441	-	-	37269

a. includes catches from all gear components
b. Primarily Spain
c. Preliminary

Table 2. Distribution of USA commercial landings (t, round) of Atlantic cod from Georges Eank (5ze), by gear type, 1965-1984. Data only reflect landings which could be identified by gear type. (from Serchuk et al, 1982 and pers. comm.)

Landings (t, live)						
Year	Otter Trawl	Line Trawl	Handline	Gillnet	Other Gear	Total
1765	10251	582	505	0	9	11347
1966	10206	787	757	0	19	11769
1967	10915	894	704	0	9	12522
1968	12084	936	524	0	-	13544
1969	13194	1371	387	0	-	14952
1970	11270	1676	404	0	-	13350
1971	12436	2334	230	0	2	15002
1972	10179	2071	217	0	10	12477
1973	12431	2185	206	3	21	14846
1974	14078	2548	11	3	9	16649
1975	12069	2435	84	0	4	14592
1976	12257	1519	153	4	5	13938
1977	18529	912	83	30	22	19576
1978	20862	1569	1180	81	59	23751
1979	26562	2707	860	520	159	30908
1980	32479	1102	-	4491	273	38345
1981	27694	120	584	3515	197	32110
1982	33371	385	624	2935	210	37525
1983	30981	831	441	1812	81	34146
1984	26161	366	753	2573	197	32913
1985	21444	436	284	2482	163	24809

Table 3 . Nominal landings of cod by gear and month for Canada in NAFO Division 5le, 1978-85. \{0t - otter trawl; LL - longline; misc - miscellaneous)

Table 4. Samples collected from the Canadian commercial cod fishery in NAFO Division $5 Z$ during 1978-85 were used to obtain statistics by age. Length frequencies were applied to the weight indicated. The braces represent the manner in which statistics were pooled. The number in brackets shows the number of age interpretations available for the age length key which was applied at that stage.
a. 1978

Gear	Month	Number measured	Weight (t)
OT	Jan.	-	1677
	Feb.	1470	$763-9307$
	Mar.	618	241 - 1171(387)]
	Apr.	-	267
	May	512	305-331]
	June	1397	$1943-2274(340)$
	July	2300	11397]
	Aug.		22 (388)
	Sept.		220-1381(338)
	0ct.	1371	$1733]$
	Nov.	359	$1625-3358(351) \quad-8184]$
	Dec.		- J
LL			720
Misc.	-		$2-8906$

b. 1979

Table 4. (Cont'd.)
c. 1980

Table 4. (Cont'd.)
e. 1982

Gear	Month	Number measured	Weight (t)	
OT	Jan.	-	897	
	Feb.	-	74	
	May	-	12	
	June	243	882-1057]	
	July	577	4283	
	Aug.	785	2112	
	Sept.	1159	$1509-8961(485)$	
	Oct.	876	$2361]$]	
	Nov.	554	$932]$ -	
	Dec.		119 - 1051-3412(270)	
LL	Feb.	-	117	
	Mar.	-	26	
	Apr.	-	195	
	May	218	773]-1005	
	June	293	10367	
	July	-	1386	
	Aug.	-	1083	
	Sept.	-	634	
	Oct.	-	307	
	Nov.	-	34 [17862	
	Dec.	-	4 - 4484-5489(103) - 17862	-

f. 1983
Misc.

Number measured	Weight (t)
179	1797
-	80
-	95 268(47)
-	67
-	35
745	2215-22567
725	1094
1681	2115
317	957
	173
	11-1216
-	1717
-	147
-	439
175	1441
-	699
-	576
-	1304
-	309 -
-	89-5175-11856(557)
	$49-12173$

Table 4. (Cont'd.)
g. 1984

Gear	Month	Number measured	Weight (t)		
OT			745		
LL	Mar.	-	$\left.\begin{array}{l}167 \\ 152 \\ 111 \\ 1192 \\ 1210 \\ 1183\end{array}\right]_{-1622}$		
	Apr.	-			
	May	227			
	June	227			
	July	596			
	Aug.	596		- 40157	
	Sept.	461			
	Oct.	605	$\left.\begin{array}{r}286 \\ 49\end{array}\right]$	-4955(385)	
	Nov.		49-335	-4955(385)	
Misc.				61	- 5761

h. 1985

Gear	Month	Number measured	Weight (t)	
OT	Feb.	-	$\left.\left.\begin{array}{l} {\left[\begin{array}{r} 2 \\ 1336 \end{array}\right]-1338(308)} \\ 2563 \\ 2432 \\ 691 \\ 435 \\ 5 \\ 80 \end{array}\right]-1211\right]-\left(\begin{array}{l} \\ 6206(406) \end{array}\right.$	
	June	1920		
	July	2332		
	Aug.	826		
	Sept.	1037		
	Oct.			
	Nov.			
	Dec.			
LL	Feb.	-		
	Mar.	O		
	Apr.	240		
	May	233		
	June	298		
	July	116		
	Aug.	379		
	Sept.	263		
	Oct.	-		
		-		
	Dec.	-		
Misc.			92	10441

Table b. Removals at age (000's) by Canada and the USA for 1978-85

					Age	Group					
	1	2	3	4	5	6	7	8	9	$10+$	Total
1978 Cdn	2	65	2162	671	200	73	55	12	10	6	3256
USA	-	331	5731	1636	625	53	288	35	28	8	8735
Total	2	396	7893	2307	825	126	343	47	38	14	11991
1979 Cdn	-	499	493	714	249	49	17	10	2	2	2025
USA	34	1618	572	4107	910	403	59	244	-	45	7992
Total	34	2117	1055	4821	1159	4.52	76	254	2	47	10017
1980 Con	1	704	1043	201	427	138	34	14	19	14	2595
USA	88	3002	4707	286	1888	951	413	76	15.3	-	11564
Total	89	3706	5750	487	2315	1089	447	90	172	14	14159
1981 Con	2	195	715	531	131	360	79	48	19	14	2094
USA	25	3060	3613	1960	101	1026	330	72	109	46	10342
Total	27	3255	4328	2491	232	1386	409	120	128	60	12436
1982 cdn	7	2047	1394	906	678	150	234	91	24	45	5576
USA	325	7955	2466	1682	1258	117	452	116	50	57	14378
Total	332	9902	3860	2588	1936	267	686	207	74	92	19954
1983 Cdn	15	345	1306	841	280	199	81	118	60	30	3275
USA	81	3542	5557	1244	854	722	85	218	88	62	12453
Total	96	3887	6863	2885	1434	921	166	336	148	92	15728
1984 Cdn	-	21	98	317	328	151	83	22	23	33	1076
USA	81	1281	3305	2961	500	393	386	25	153	39	9167
Total	81	1302	3403	3278	828	544	469	47	176	115	10243
1985 cdn	4	2144	893	373	496	143	45	39	10	10	4157
USA	130	4280	1539	985	1388	273	173	165	12	86	9031
Total	134	6424	2432	1358	1884	416	218	204	22	96	13188

Table Year	Mean length-at-age of cod derived from Canadian and USA samples 1978-95. Total weighted by catch in numbers for each country.									
	1	2	3	4	5	6	7	8	7	$10+$
1978 C	36.4	44.3	53.7	57.9	63.6	74.6	76.0	89.9	88.0	115.0
	-	50.2	61.5	69.8	73.7	79.3	89.3	91.3	107.1	115.0
	36.4	49.2	59.4	66.3	71.3	76.6	87.2	90.9	101.5	115.0
1979	50.7	55.3	69.1	75.3	80.4	95.7	104.4	99.6	± 15.0	115.0
	44.7	52.9	61.0	73.9	77.5	89.2	75.3	99.4	-	115.0
	44.7	53.0	64.7	74.1	78.1	89.0	97.3	99.4	115.0	115.0
1980	24.7	33.0	40.1	44.6	51.9	57.0	58.4	71.1	70.2	115.0
	43.9	52.6	61.6	72.4	81.9	86.3	92.7	92.2	91.2	115.8
	43.7	48.9	57.7	60.9	76.4	82.6	90.3	88.9	88.7	115.0
1981	42.2	49.2	58.8	67.8	77.4	85.7	94.5	96.0	97.4	115.0
	44.6	52.3	60.4	68.5	78.4	88.7	93.1	98.2	112.8	115.0
	44.4	52.1	60.1	68.4	77.8	87.9	93.4	97.3	110.5	115.0
1982	36.8	49.8	57.1	69.8	78.6	84.9	95.0	95.8	107.2	115.0
	42.3	51.4	64.4	70.8	79.9	84.1	96.5	99.2	105.5	115.0
	42.2	51.1	61.8	70.4	79.4	84.5	96.0	97.7	106.1	115.0
1983	42.6	50.4	58.4	67.1	77.8	84.8	93.0	99.3	104.4	115.0
	46.3	52.7	61.5	68.1	75.9	84.5	90.7	99.1	101.5	115.0
	45.7	52.5	60.9	67.7	76.4	84.6	71.8	99.2	102.7	115.0
1984	-	50.2	60.4	70.2	76.9	83.5	92.2	99.7	101.4	115.0
	47.2	54.1	61.5	69.8	79.3	86.5	94.8	97.5	102.5	115.0
	47.2	54.0	61.5	69.8	78.3	85.7	94.3	78.5	102.4	115.0
1985	38.7	49.3	55.3	67.9	74.8	83.2	90.1	95.6	98.8	115.8
	45.1	51.8	58.6	72.4	79.0	84.5	91.4	99.4	104.7	115.0
	44.9	51.0	57.4	71.2	77.9	84.1	91.1	98.7	102.0	115.0

a) A length of 115 cm was assumed for age $10+$

Tatele 8. Mean weight-at-age for cod derived from Canadian and USA samples. Total weighted by catch in numbers for each country.

a) a weight of 15.0 kg was assumed for $10+$

Table 9．Stratified nean catch per tow at age（numbers）of Atlantic cod in USA offshore spring，sumer and autumn boton traml surveys on Georges Bank a，1963－1985．b（per 5．conn．，Dr．F，Serchuk，NiFs，Woods＇Hole，USA）

Spring c

1968	． 329	． 897	1.835	． 529	． 426	． 247	． 158	． 898	． 853	． 836	． 037	3.827	2.698	2.611		7	． 621
1969		． 879	． 358	1.141	． 569	． 289	． 289	． 138	． 082	． 846	． 072	2.975	2.975	2.896	2.546	495	
1978	． 888	． 244	． 522	388	． 838	． 184	． 428	． 176	． 839	．887	． 853	2.783	2.785	2.539	2.817	1.789	
1971	． 808	． 133	． 525	． 322	.143	． 375	． 891	． 225	． 195	． 851	． 112	2.172	2.172	2.839	1.514	1.192	． 8
1972	． 836	1.868	1.175	1.695	． 327	． 876	． 288	． 1778	.141	． 874	－888	5.748	5.712	3.852	2.677	． 984	57
1973 e	． 836	． 334	7.464	1.403	1.628	． 273	.201	． 227	． 832	.138	． 249	11.977	11.941	11.687	4.143	2.740	1.112
1974	． 888	． 286	2.921	3． 828	． 488	1.284	． 282	． 865	.165	． 822	． 112	9.453	9.453	9.167	6.246	2.418	1.938
1975	． 888	． 841	． 242	1.319	1.982	． 167	． 440	． 883	． 668	． 669	． 125	4.418	4.418	4.377	4.135	2.826	84
1976	． 871	． 834	1.232	． 685	． 443	1．8188	． 185	． 168	． 023	．888	． 835	4.524	4.453	3.619	2.387	1.782	． 33
1977	． 888	． 918	2.261	． 692	． 335	． 179	． 466	． 033	． 842	． 888	.013	4.839	4.039	4.821	1.768	1.868	.733
1979	2.123	． 241	． 128	3.545	． 621	． 499	． 892	． 457	．833	． 899	． 878	7.892	5.769	5.528	5.6	1.863	． 242
1979	． 678	． 279	． 871	． 191	1.226	． 347	． 158	． 856	． 893	． 888	.814	3．305	3． 254	2.956	2.884	． 897	． 668
1989	． 867	． 025	1.452	1.723	． 134	． 958	． 383	． 123	． 828	.819	． 871	4.967	4．898	4.865	3.413	． 699	． 556
1981	． 244	1.869	1.555	2.255	1.353	．881	． 786	． 218	． 117	． 818	． 869	8.467	8.223	6.354	4.799	2.544	． 19
19827	． 122	． 396	2.755	1.141	1.651	． 843	． 813	． 242	． 852	． 813	． 128	6.654	6.534	6.138	5．880	2.242	
1983	． 855	． 211	1.261	1.954	． 491	． 447	． 276	． 035	.123	． 818	． 887	4.937	4.885	4.674	2.728	1.459	．988
1984	． 888	． 258	． 296	． 515	． 744	． 296	． 272	． 143	． 818	． 118	． 895	2.615	2.615	2.357	2.861	＋ 1.558	
1985	（244	（．698）	2.633	． 757	1.858	1.328	． 278	． 293	． 172	． 025	． 158	6.938 5.948					2.14

Sumar d

197	． 131	． 195	5.121	1.111	． 668	． 164	． 326	． 851	． 881	－	． 826	7.866	2735	7.548	2.419	． 3	． 648
1978	755	，	． 266	1.542	． 369	． 149	． 857	.189	． 188	． 828		3.625	2.878	2.528	2.254	． 712	3
1979	236	1.459	1.767	． 375	． 943	． 234	． 858	． 853	． 115	． 888	． 831	5.261	5，825	3．566	1.799	1.426	． 483
1989	2.646	． 648	4.135	2.371	． 864	． 415	． 892	．888	． 031	． 880	． 880	10．394	7.749	7.188	2.973	． 682	． 538
1981	． 824	347	1.657	1.224	． 568	． 035	． 898	． 848	．888	． 880	． 80	7.8	6.977	3.630	1.973	49	． 181

Altuann

1963			． 499			． 2	． 299	． 112	． 866					2.331	32	42	． 667
196	．886	． 416	． 448	． 377	． 345	． 993	． 887	．048	． 032	． 199	． 853	1	1.904	1.494	1.846	． 669	24
196		,833	． 648	$.453$	． 318	． 187	． 115	． 872	． 852	． 815	． 815	2,723	2.612	1．779		． 686	． 376
966	． 65	1．885	． 64	． 338	． 169	． 064	． 801	． 048	． 825	． 81	． 11	3．884	2.427	1.342	． 781	37	． 282
96	． 46		${ }^{8} 8$	． 5	－ 268	－${ }^{1}$	． 885	． 835	． 835		． 845	6.656	6.618	． 741	886	55	． 291
196	． 88	． 228	． 399	． 481	． 212	． 86	． 239	．012	． 915	． 014	． 838	1.418	1.418	19	991	39	175
197	265	1.882	． 867	． 336	． 445	． 898	． 88	． 821	． 235	． 835	． 863	3.247	2.982	9日8		97	25
1971	． 256	． 386	． 485	． 258	． 193	． 305	． 117	． 027	． 057	．888	． 048	2.844	1.78	1.482	． 997	747	． 554
1972	． 687	4.771	．838	1.135	．256	． 156	． 366	． 878	． 131	． 814	． 853	8.389	7.788	3.811	2.181	． 846	79
1973	.138	1.121	3.891	． 758	1.298	． 135	． 145	.112	． 848	． 889	.161	7.872	7.742	6．	2.738	． 97	明
1974	． 296	． 262	． 419	． 975	． 185	． 073	． 166	．888	． 044	． 818	． 280	2.248	1.944	1.682	1.263	． 288	183
1975	1.524	． 637	． 278	． 488	1．888	． 072	.188	．明8	． 898	． 888	． 824	4.107	2.583	1.946	1.676	． 276	
1976	． 128	3.941	1.328	．	． 178	． 474	． 035	． 873	． 825	． 834	． 113	6.698	6.698	2.749	1.421	． 932	754
1977	． 123	． 192	2.778		． 284	． 141	． 321	． 8176	． 822		． 063	4.428	4.297	4，185	1.935	． 757	553
19	． 321	1.585	． 2197	3.392	． 782	． 272	.134	． 27	． 841	． 824	． 011	6．968	6.647	5.142	4.935	1.543	761
$\begin{array}{r}197 \\ 198 \\ \hline\end{array}$	． 297	$\begin{array}{r}1.314 \\ \hline 164\end{array}$	1.3		1.389 .862	． 248	． 146	． 829	． 22	988		2.368	4．738	16	2.823	1.881	． 532
	． 212	2.868	1.826	1.265	． 478	． 844	． 478	． 846	． 05	． 015	． 8667	7.335	7.123	4.263	2.437	1.172	4
	． 285	． 56	1.342	． 141	． 844	． 862	－	． 018	． 208	．888	． 014	2.379	2.174	1.613	． 271	． 138	986
1983	． 6	． 415	． 655	． 518	． 835	． 838	． 862	．888	． 888	．888	． 015	2.331	1.678	1.255	． 680	． 898	． 255
1984	19	1.688	． 665	． 568	． 558	． 011	． 848	． 025	． 884	． 825	． 828	3.843	2.924	1.324	1.259	． 691	.133
1985	1.884	． 228	．883	． 143	． 115	． 181	． 88	． 8 80	． 884	．888	．888	2.438	1.346	1．126	． 323	． 226	185

a．Spring and autuan：strata 13－25；sumaer：strata 13，16，19－25
b．Catch per tow at age for 1963－69 obtained by applying 1978－81 age－length keys to stratified aean catch per tow at length distributions from each survey．
c．Spring surveys during 1973 －81 mere accomplished with a＂Yankee 41 ＂traml．In all other years，spring surveys were accouplished with a＂Yankee 36^{2} trawl．No adjustments have been made for these gear differences．
d．Sumaer survey in 1978 only sampled strata 13，16，19－28，23－25．Sunaer survey in 1981 sanpled strata 13，16，19－21， 23 and 25.
e．Excludes unusually high catch of $1994 \operatorname{cod}(2558 \mathrm{~kg})$ at Station 238 （Strata tom 20－4）
f．Excludes unusually high catch of $1032 \operatorname{cod}(4896 \mathrm{~kg}$ ）at Station 323 （Strata tow $16-7$ ）

Table 10. Stratified mean catch per tow in numbers and weight ikg:
for Atlantic cod from USA offshore spring, summer and autumn bottom trawl surveys (Strata 13-25) 1963-86.

		Spring a		Summer b		Autumn	
		Nos	Wgt (kg)	Nos	Wgt (kg)	Nos	Wgt (kg)
Year							
1963		-	-	-	-	2.80	11.0
1964		-	-	-	-	1.91	7.1
1965		-	-	-	-	2.72	7.2
1966		-	-	-	-	3.09	5.0
1967		-	-	-	-	6.66	日. 3
1968		3.83	7.8	-	-	2.12	5.3
1969		2.97	11.0	-	-	1.41	4.9
1978		2.78	9.7	-	-	3.25	7.8
1971		2.17	8.8	-	-	2.84	6.1
1972		5.74	11.7	-	-	8.39	14.2
1973		11.98e	24.5 e	-	-	7.87	19.1
1974		9.45	22.5	-	-	2.24	5.1
1975		4.42	16.1	-	-	4.11	8.7
1976		4.52	11.5	-	-	6.68	10.9
1977		4.04	9.5	7.87	17.6	4.42	11.5
1978	6	7.89	19.3	3.62	10.7	6.97	21.5
1979		3.30	10.4	5.25	12.3	4.82	15.2
1980	d	4.96	15.3	10.39	15.0	2.36	6.2
1981		8.47	24.0	.7.00	10.2	7.33	17.5
1982		6.65 e	14.2 e	-	-	2.38	4.3
1983		4.94	14.8	-	-	2.33	4.0
1984		2.61	9.5	-	-	3.04	6.3
1984	codn	5.83	24.4	-	-	-	-
1985		6.94	21.5			2.43	3.5
1986		5.04	16.7				

3. Spring surveys, 1973-80, were accomplished with "41 Yankee" trawl and with "3t Yankee" trawl in other years. No adjustment in catch per tow has been made for these gear differences.
b. Summer surveys only include Strata 13, 16, 19-25
c. Summer survey in 1978 only sampled Strata 13, 16, 19-20, 23-25
d. Summer survey in 1981 only sampled Strata 13, 16, 19-21, 23, 25
e. Excludes one unusually high catch of cod.

Cdn. Preliminary results of Canadian survey in March 1984, Strata 16-22 using a "Western IIA" bottom trawl.

Tatle 11. Catch rate index for cod in NAFO Division $5 Z$, standardized to Can-M 0Tg2-5 and June. The standardized effort index was calculated using the mean catch rate and catch.

Year	crue	Catch	Effort	Ln cpue	Gear In	power	Month	n power
67	0.492	36752	74769	-0.78510	OTB1-4	. 000	Nov	-0.736
68	0.547	43136	78844	-0.67690	OTB2-2	. 093	Sep	-0.533
69	0.469	37939	80928	-0.83250	OTB2-4	. 152	Det	-0.506
70	0.335	25652	76463	-1.16430	0T82-3	. 260	Aug	-0.481
71	0.322	28179	87513	-1.20690	0TB2-5	. 410	Dec	-0.433
72	0.351	25059	71356	-1.11390			May	-0.394
73	0.377	28923	76721	-1.04760			Fet	-0.378
74	0.282	27331	96963	-1.29850			Jul	-2.363
75	0.393	25008	63700	-0.09983			Jun	-0.341
76	0.288	19926	69292	-1.31450			Apr	-0.023
77	0.882	27367	31020	-0.19640			Jan	-0.000
78	0.870	35483	40768	-0.21350			Mar	0.243
79	0.709	38656	54520	-0.41810				
80	0.557	48147	86443	-0.65900				
81	0.734	42357	57736	-0.38100				
82	0.796	57195	71891	-0.30370				
83	0.498	48928	98293	-0.77220				
84	0.452	37676	85553	-0.85720				
85	0.635	37269	58687	-0. 0.52630				

Regression of Multiplicative model
Multiple r-squared.... .0 .498

Analysis of Variance				
Source	DF	Sum Squares	Mean Squares	f-value
intercept	1	$2.875 \mathrm{E2}$	2.875 E2	
Regression	33	4.426 El	1.341 ED	8.431
Gear	4	5.572 E0	1.893 ED	11.901
Month	11	2.668 ED	5.152 E-1	3.239
Year	18	2.788 El	1.549 Ed	9.737
Residuals	281	4.470 E1	$1.591 \mathrm{E}-1$	
Total	315	3.764 E2		

Table 12. USA commercial landings and landings per day fished for otter trawl trips catching cod from Eeorges Bank (52e), 1965-85. Ifrom unpublished data provided by Dr. F. Serchuk, NMFS, Woods Hole, Mass.)

All Trips
Year
Landings t/day Fished
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
$10039 t$
$0.74 *$
9871
10248
12985
13194
11270
12430
10180
12431
14073
12065
12251
18523
20847
26449
32446
27613 $33314 \quad 2.18$
30958 $26157 \quad 1.42$ $21437 \quad 2.15$
$50 \% \operatorname{Trips}$
Landings t/day Fished
$1190 \quad 4.79 *$
$1368 \quad 4.74$
$2371 \quad 4.22$
$3123 \quad 3.97$
$4160 \quad 3.72$
$3598 \quad 3.96$
45123.84
$4168 \quad 3.53$
$6304 \quad 5.01$
$7865 \quad 4.39$
60524.29
$6488 \quad 4.32$
99965.70
$9827 \quad 4.81$
$14596 \quad 4.17$
$17987 \quad 4.39$
$14492 \quad 3.97$
$23561 \quad 4.45$
$21245 \quad 4.25$
$15916 \quad 2.98$
$14962 \quad 2.26$

* mean of the weighted, on catch, values for TC 2,3 and 4

```
Table 13. Recruitment indices for Atlantic cod calculated from USA
        offshore autumn bottom trawl survey from Georges Bank during
        1963-85.
        Year-class Age Group
            0+1
        1+2
        1962
        -
        0.412
        1963
        0.177
        0.333
        0.604
        2.972
        0.154
        0.159
    0.420
                            0.586
                            2.275
                            1.434
                            0.316
                            0.734
                            4.0.38
        0.075
        0.797
        1.038
        0.416
    1.484
    1.810
    1980
    1981
    1982
    1983
    1984
    0.559
    0.567
    0.195
    0.498
    1.709
    0.281
0.493
        1964
        1965
        1966
        1967
        1 9 6 8
    1969
    0.657
    0.867
    2.430
    0.287
    0.537
        1970
        1971
        1972
        1973
        1 9 7 4
        1975
        1976
        1977
        1978
        1979
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Year-class} & \multicolumn{2}{|c|}{Age Group} \\
\hline & \(0+1\) & \(1+2\) \\
\hline 1962 & - & 0.412 \\
\hline 1963 & 0.179 & 0.493 \\
\hline 1964 & 0.333 & 0.657 \\
\hline 1965 & 0.684 & 0.867 \\
\hline 1766 & 2.972 & 2.430 \\
\hline 1967 & 0.154 & 0.287 \\
\hline 1768 & 0.159 & 0.537 \\
\hline 1969 & 0.420 & 0.631 \\
\hline 1970 & 0.586 & 0.582 \\
\hline 1971 & 2.275 & 3.880 \\
\hline 1972 & 1.434 & 0.654 \\
\hline 1973 & 0.316 & 0.242 \\
\hline 1974 & 0.734 & 0.939 \\
\hline 1975 & 4.038 & 2.979 \\
\hline 1976 & 0.075 & 0.182 \\
\hline 1977 & 0.787 & 1.310 \\
\hline 1978 & 1.038 & 0.749 \\
\hline 1979 & 0.416 & 1.206 \\
\hline 1980 & 1.484 & 1.810 \\
\hline 1981 & 0.567 & 0.559 \\
\hline 1982 & 0.498 & 0.195 \\
\hline 1983 & 1.709 & 1.040 \\
\hline 1984 & 0.281 & - \\
\hline
\end{tabular}
```



```
Table l5. Estimates of instantaneous total mortality (Z) and fiehing
    mortality (F) with instantaneous mortality (M) assumed to be
    0.20 for five time periods, derived from USA offshome Epring
    and autumn tottom trawl survey data.
```


Table lb. Results of regression analysis of SFA on survey numbers and mean $3+F$ on directed effort for trial values of fully recruited F in 1785 .

$$
\text { Ft } \quad 0.4 \quad 0.45 \quad 0.5 \quad 0.6
$$

a) SPA 4+V5RV 3t 1978-86

Intercept	13023	12143	11441	$10395 *$
R -squared	0.628	0.665	$0.671 *$	0.657
55 residuals	$2918 *$	3179	3704	5007

b) SPA $2+V E R V 1+$ 1978-84

Intercept	38926	37198	35820	$33766 *$
$R-s q u a r e d$	0.536	0.589	0.621	$0.650 *$
SSresiduals	1757	1615	$1561 *$	1579

c) SPA 3 Vs RV 2 1978-86

Intercept	$6663 *$	6668	6754	6885
$R-s q u a r e d$	0.655	0.672	0.685	$0.703 *$
$5 S$ residuals	1366	1295	1249	$1193 *$

d) $3+F$ vs effort

1978-85

Intercept	0.319	$0.316 *$	0.316	0.321
8 -squared	624	$0.656 *$	0.550	0.338
$5 S$ residuals	$4.577 *$	5.376.	10.350	32.730

Table 17. Results of regression analysis of SPA numbers and survey catch per tow at ages one and two and derived estimate of partial recruitment ($P R$) with a fully recruited F of 0.45 in 19日E.
a) Age 2
PR 1.0
0.796
0.6
0.4
Intercept 6616 672068897233
R-squared $0.919 \quad 0.947 \quad 0.911 \quad 0.702$
55 residuals $4907 \quad 3362 \quad 6452 \quad 3404$
b) Age 1
PR 0.020
0.027
0.040
0.080
Intercept $16021 \quad 10365 \quad 11215 \quad 9614$
R-squared $0.660 \quad 0.977 \quad 0.974 \quad 0.970$ 55 residuals 2082 1731 184! 2446

Table 18. Results of SPA with a fully recruited fishing mortality of 0.45 and a partial recruitment vector of $0.027,0.796,1 . .$. in 1985.

Fishing Mortality

$\begin{array}{llllllllll}\text { Age } & 1978 & 1979 & 1980 & 1981 & 1982 & 1983 & 1984 & 1985\end{array}$

1	0.000	0.002	0.005	0.001	0.020	0.008	0.003	0.012
2	0.097	0.103	0.226	D. 242	0.363	0.337	0.149	0.358
3	0.405	0.403	Ø. 448	0.450	0.506	0.462	0.560	0.450
4	0.364	0.466	0.329	0. 356	0.536	0.571	0.419	0.450
5	0.370	0.314	0.428	0.257	0.520	0.654	0.467	0.450
6	0.130	0.356	0.550	0.494	0.529	Ø. 504	0.558	0.450
7	0.291	0.108	0.725	0.410	0.489	0.755	0.524	0.450
8	2.813	0. 365	0.180	0.430	0.377	0.473	0.494	0.450
9	0.384	0.407	0.448	0.416	0.511	0.503	0.484	Ø. 450
10	0.384	0.407	0.448	0.416	0.511	0.503	0.484	0.450

Figure 1. NAFD statistical areas for Georges Bank

Figure 2. Nominal catches of cod in NAFO Division $5 Z$ and Statistical Area 6 for 1960-85 by x - total, *- USA, .- Canada, $0-$ USSR and +- other.

Figure 3. Nominal Canadian catch of cod from Georges Bank for 1968-85 by $0-$ longline, +- otter trawl and x--total (includes misc.)

Figure 4. Percent age composition of Canadian and USA catci.

Figure 5. Length frequency distributions of cod in Subdivision 5Ze and corresponding percent age composition for Canadian landings.

Figure 6. Stratified mean number per tow and stratified mean weight (kilograms) per tow of Atlantic cod in NEFC spring and autumn offshore bottom trawl surveys on Georges Bank (Strata 13-25), 1963-1985.

Figure 7. Stratified mean catch per tow in numbers for USA autumn survey, ages 0-4+.

Figure 7. Con'd. USA catch per tow.

. Figure 8. Calculated CPUE ($t /$ hour) derived from Canadian OTB landings for 1967-85.

Figure 9. Calculated total directed effort derived from Canadian OTB landings fror 1967-85.

Figure 10. Commercial catch rates (t/day fished) of Atlantic cod from USA tonnage class 3 and 4 otter trawlers fishing on Georges Bank (NAFO Subdivision 5Ze), 1965-1986, compared with NMFS spring and autumn offshore bottom trawl survey harvestable biomass (age $2+$) catch per tow indices, 1963-1985. Commercial USA catch rates are presented for all otter trawl trips landing cod and for trips in which cod comprised 50% or more of the trip catch, by weight. (from Serchuk, unpublished)
SPA $4+$
$24000+$

SPA $4+=12143+1930 \mathrm{RV} 3+$
$R-s q=66.5 \% \quad R-s q(a d j)=61.7 \%$
Analysis of Variance

SOURCE	DF	SS	MS
Regression	1	63096048	63096048
Error	7	31793588	4541941
Total	8	94889632	

Obs.	RV 3+	SPA 4+	Fit Stdev.Fit	Residual	St.Resid	
78	1.33	14187	14704	722	-517	-0.26
79	4.93	22633	21669	1879	964	0.96
80	2.02	14245	16048	747	-1803	-0.90
81	1.01	16589	14094	768	2495	1.26
82	2.44	16034	16847	839	-813	-0.41
83	0.27	13165	12666	981	499	0.26
84	0.60	16668	13301	872	3367	1.73
85	1.26	12687	14573	729	-1886	-0.94
86	0.32	10460	12766	962	-2306	-1.21

Figure 11. Regression of SPA $4+$ numbers on US fall survey $3+$ numbers, lagged by one year, with Ft set to 0.45 for NAFO Division $5 Z \mathrm{E}$ cod.

Figure 12. Regression of SPA $3+$ numbers on $4 S$ fall survey $2+$ numbers, lagged by one year, with Ft set to 0.45 for NAFO Division 5Ze cod.

SPA $2+$
$64000+$

Obs.	RV 1+	SPA 2t	Fit Stdev.Fit	Residual	St.Resid	
1	4.38	45118	49008	1879	-3890	-0.80
2	6.65	49975	55742	3148	-5767	-1.38
3	4.73	52060	50249	1989	1811	0.37
4	2.13	46502	42807	2533	3695	0.81
5	7.12	62757	57106	3513	5651	1.45
6	2.17	48681	42925	2586	5756	1.25
7	1.67	35858	41481	2849	-5623	-1.28
8	2.92	43440	45874	2096	-1634	-0.34
9	1.35	$*$	48552	3088	$*$	$*$

Figure 13. Regression of SPA $2+$ numbers on $U S$ fall survey ! + numbers, lagged by one year, with ft set to 0.45 for NAFO Division 5 le cod.

Figure 14. Regression of SPA 3 numbers on $u S$ fall survey 2 numbers, lagged by one year, with Ft set to 0.45 for NAFO Division 5Ze cod.

Figure 15. Regression of mean $3+F$ on standardized total effort for NAFO Division 5le cod with Ft set to 0.45


```
SPA 2 = 6933 + 10482 RV 1
R-5q = 95.1% R-sq{adj) = 94.4%
Analysis of Variance
```

SOURCE	DF	SS	MS
Regression	1	666924800	666924800
Error	7	34177032	4882433
Total	8	701101824	

Obs.	RV 1	SPA 2	Fit Stdev.Fit	Residual	St.Resid	
1	0.19	4729	8946	1057	-4217	$-2.17 R$
2	1.50	23828	22789	848	1119	0.55
3	1.31	28221	28787	777	-486	-0.23
4	0.66	16711	13893	809	2818	1.37
5	2.86	35987	36912	1793	-925	-0.72
6	0.56	15012	12814	851	2198	1.08
7	0.41	10416	11283	924	-867	-8.43
8	1.68	23403	23704	893	-301	-8.15
9	0.22	9900	9239	1039	661	0.34

Figure 16. Regression of SPA 2 numbers on US fall survey 1 numbers, lagged by one year, with Ft set to 0.45 for NAFO Division 5le cod.

SPA $1=10365+11802$ RV 1
$R-s q=97.7 \% \quad R-s q(a d j)=97.3 \%$
Analysis of Variance

SQURCE	DF	SS	MS
Regression	1	733669584	733669504
Error	6	17320308	2986718
Total	7	750989824	

Obs.	RV 1	SPA 1	Fit Stdev.Fit	Residual	St.Resid	
1	1.50	29106	28127	658	979	0.62
2	1.31	24736	25873	614	-1137	-0.72
3	0.66	20509	19202	697	2307	1.49
4	2.86	43984	44119	1406	-135	-0.14
5	0.56	19703	16986	739	1717	1.12
6	0.41	12828	15263	807	-2435	-1.63
7	1.60	29674	29248	690	-574	-0.37
9	0.22	12240	12962	909	-722	-0.50
9	$*$	$*$	$*$	$*$	$*$	$*$

Figure 17. Regression of SPA 1 numbers on $U S$ fall survey 1 numbers, without lag, with Ft set to 0.45 for NAFD Division SZe cod.

Figure 18. Estimated recruitment at age 1 for the $1977-84$ year-classes with a fully recruited fishing mortality of 0.45 in 1985

Figure 19. Estimated $3+$ biomass (t) for $1978-85$ with a fully recruited fishing mortality of 0.45 in 1985.

