Not to be cited without permission of the authors ${ }^{1}$

Canadian Atlantic Fisheries
Scientific Advisory Committee
CAFSAC Research Document 86/43

Ne pas citer sans autorisation des auteurs ${ }^{1}$

Comité scientifique consultatif des pêches canadiennes dans l'Atlantique

CSCPCA Document de recherche $86 / 43$

Assessment of the 1985 4WX herring fishery
by
R. L. Stephenson, M. J. Power and T. D. Iles

Marine Fish Division
Fisheries Research Branch
Department of Fisheries and Oceans
Biological Station
St. Andrews, New Brunswick EOG 2X0
${ }^{1}$ This series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.
${ }^{1}$ Cette série documente les bases scientifiques des conseils de gestion des pêches sur la côte atlantique du Canada. Comme telle, elle couvre les problèmes actuels selon les échéanciers voulus et les Documents de recherche qu'elle contient ne doivent pas être considérés comme des énoncés finals sur les sujets traités mais plutôt comme des rapports d'étape sur les études en cours.

Research Documents are produced in the official language in which they are provided to the Secretariat by the author.

Les Documents de recherche sont publiés dans la langue officielle utilisée par les auteurs dans le manuscrit envoyé au secrétariat.

ABSTRACT

The 1985 herring fishery in NAFO Div. 4WX was similar to that in previous years. The major portion of the fishery took place off southwest Nova Scotia (June-October; purse seine and gillnet) with smaller concentrations of effort off southern New Brunswick (June-January; weir and purse seine) and off Cape Breton (November-February; purse seine). Total landings for the fishery were $141,860 \mathrm{t}$, of which $112,385 \mathrm{t}$ were attributed to the $4 W X$ stock.

The fishery continued to be influenced strongly by markets and the year was marked by an even larger roe market ($>50 \%$ of stock catch) than in 1984.

A revised purse seine log format increased monitoring, and better reporting contributed to a significant improvement in the amount and quality of fishery information on which to base the assessment. In contrast to 1984, it was considered unnecessary to adjust catch statistics for 1985.

Cohort analysis was calibrated, as in previous years, with larval abundance from the autumn Bay of Fundy larval herring survey. Analysis indicated an increase in stock biomass over recent years.

RÉSUMÉ

En 1985, dans la Division $4 W X$ des zones de pêche de 1^{\prime} OPANO, les pêches du hareng ont donné des résultats semblables à ceux des années précédentes. La majeure partie des activités de pêche se sont déroulées au large du littoral sud-ouest de la Nouvelle-Ecosse (juin-octobre; senne coulissante et filet maillant) avec une concentration plus réduite des efforts au large des côtes sud du Nouveau-Brunswick (juin-janvier; pêche à fascines et à la senne coulissante) et au large des côtes du Cap-Breton (novembre-février; senne coulissante). Le total des débarquements de poisson s'est élevé à 141860 t , dont 112385 ont été attribuêes au stock existant dans 4WX.

Les pêches ont continué à être fortement influencées par les marchés, et 1'année a été caractérisée par un marché encore plus vaste de la rogue (> 50% des prises prélevées dans le stock) qu'en 1984.

En revisant le format des journaux de bord de pêche à la senne coulissante, et en améliorant la façon de rédiger les rapports, on a nettement amelioré la quantité et la qualité de l'information sur les pêches, en fonction de laquelle on doit établir les évaluations. Contrairement a 1984, on n'a pas considéré comme nécessaire d'ajuster les statistiques relatives aux prises de 1985.

On a étalonné l'analyse des cohortes, comme les années précédentes, en tenant compte de l'abondance larvaire telle qu'établie dans le relevé d'autome des larves de hareng dans la baie de Fundy. L'analyse a indiqué une augmentation de la biomasse des stocks depuis quelques années.

INTRODUCTION

The 1985 herring fishery in NAFO Div. 4WX was similar to that in previous years. Purse seine was the major gear type, followed in importance by weirs, gillnet, traps, shutoffs and midwater trawl (Table 1). The major portion of the fishery took place off southwest Nova Scotia (4Xa; June-October) with smaller concentrations of effort off southern New Brunswick (4Xb; June-January) and off Cape Breton (4W Chedabucto Bay; November-February) (Fig. 1, 2).

The fishery continued to be influenced strongly by markets (Table 2) and the year was marked by an even larger roe market ($>50 \%$ of stock catch) than in 1984 (35-50\%).

1985 Management Plan
The Scotia-Fundy Region 1985 Herring Management Plan (Appendix 1) established a quota of $100,000 \mathrm{t}$ for the purse seine fleet, allocated among temporal components of the fishery in the traditional manner (Chedabucto Bay (4W, 4X) summer and winter). Inshore gear components of the summer fishery (gillnets, NS weirs and traps) were allocated $25,000 \mathrm{t}$ for an overall TAC of 125,000 t. The TAC exceeded biological advice but was linked to a system of increased monitoring and reporting of catch in the purse seine segment in order to curb, or at least to monitor, misreporting (see previous assessment, Stephenson et al. 1985). The inshore gear allocation was recognized as being well above the market capacity for that segment, and was set to conform to the traditional 80% purse seine 20% inshore gear breakdown. As in previous years, the N.B. weir and shutoff fishery and a portion (50\%) of the fall 4 X purse seine fishery (around Grand Manan) were considered to be on non-stock fish (i.e. from the Gulf of Maine stock), and therefore not included in the quota.

Description of the Fishery

4Wa (Chedabucto Bay, Winter) Purse Seine Fishery

In accordance with the 1985 Management Plan, this fishery was open from November 15, 1984 to March 1, 1985, with a quota of $16,000 \mathrm{t}$. The reported catch of 8751 t was considerably lower than the quota, probably as a result of limited markets, individuals saving quota for the summer fishery, distribution of fish (inside the Chedabucto Bay closure line) and weather. An acoustic survey of the area (Buerkle 1986) showed a large and persistent group of fish in the general area.

4Xb (Bay of Fundy) Fall and Winter Purse Seine Fishery

The Bay of Fundy "fall" and "brit" fisheries were open from October 16, 1984 to March 31, 1985. A total of 9000 t was assigned in two segments: 8000 t before December 31 and 1000 t for the traditional "brit" fishery after January 1. Only 50% of the landings in the October-December segment was applied to the quota. The amount recorded was 5419 t , approximately the same as in 1984, but lower than the landings (10,000-40,000 t) between 1965 and 1975 (Fig. 3).

4Xa (Southwest Nova Scotia) Summer Fishery
a) Purse seine

The 1985 Management Plan limited this fishery to the period June 1 to October 14, 1985 with a quota of $100,000 \mathrm{t}$, minus what had been taken in the $4 W$ and $4 X$ fall and winter fisheries. Nominal landings of 87,167 t were recorded, the highest since 1968.
b) Gillnet

The gillnet segment of this fishery took 5584 t , an increase of almost 25% over 1984. Once again, the fishery was hampered by a lack of shore-based market and relied on a foreign over-the-side sale program.
c) Weirs

Nova Scotia weirs recorded 4062 t, a substantial increase (-50%) in catch over 1984. Some of the increase may have been due to favorable market conditions, especially early in the season.

4Xb (New Brunswick) Weir and Shutoff Fishery
The New Brunswick weir and shutoff fishery recorded 27,863 t. This is about three times the 1984 catch, and ends a string of record-setting poor years (1979-84).

Catch Statistics
Reported landings for the 1984 fishery (DFO, Scotia-Fundy Region, Statistics Branch records) are listed by month and gear segment in Table 3 . Long-term trends in landings by the major gear segments are shown in Table 4 and Fig. 3. Recorded landings for the stock were $112,385 \mathrm{t}$, the highest since 1977.

Trends in reported stock (attributable to $4 W X$) and total (nominal) landings and in TAC are as follows ('000 t):

| 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Reported
stock

Reported
total
catch (t) $142.6170 .3174 .7143 .9150 .7134 .7196 .2 \quad 93.1 \quad 106.8110 .7194 .1 \quad 88.7141 .9$
${ }^{1} \mathrm{~F}_{0.1}$ yield estimated at 60.0 t .
${ }^{2} \mathrm{TAC}$ raised from 60.0 t to 65.0 t in mid-season.

Logbook Information

A new logbook design combined with better reporting and monitoring resulted in an improvement in logbook information. Coverage was 96% of catch (Table 5) as logbook submission was a condition of the fragmented license scheme, and logs were generally complete. The new log format and results of the first season of use are dealt with in detail by Power and Stephenson (1986) and summarized below.

The average trip was 12.2 h , involved 4.3 h of searching and resulted in 1.4 sets. Ninety-six percent of the sets were attributed to 10^{\prime} squares, most from comments describing location of a Loran C bearing. The average total catch was 40.1 mt , and kept catch 39.5 mt per set. The summary of market codes showed the dominance of the roe fishery; 27% of all logs specified the roe market and an additional 35% indicated "adult shore" which would include roe processing. Release comments were associated with 21% of sets with size of fish (usually too small) given as the primary reason.

Plots of the distribution of catch and effort by 10^{\prime} square show the focus of fishing activity on major spawning grounds, especially Trinity Ledge, German Bank and the Seal Island area. Two 10' squares covering the Trinity grounds alone account for 41% of all searching and 45% of all sets.

The logs allowed calculation of a number of CPUE measures (including catch per night, catch per hour searching, catch per set and sets per hour searching) with summaries weighted by month, fishing grounds and 10^{\prime} square number. The variability of these data suggest the need for appropriate stratification to best obtain a fishery CPUE time series which could be developed for the 4 Xa purse seine fleet.

Research Surveys

(i) Acoustic survey

An acoustic survey of overwintering herring in Chedabucto Bay, N.S. was undertaken by Buerkle (1986) during Jan. 24-Feb. 2. The survey followed the same search strategy as in 1983 and 1984 and showed a large aggregation in a similar position to previous years. The biomass of the aggregation is estimated to be $214,000 \mathrm{t}$, about 68% of that estimated from the 1984 survey.

(ii) Experimental offshore (Scotian Shelf) fishery

A limited experimental fishery for herring was undertaken between April 18-26, 1985 on offshore Scotian Shelf banks. The objective was to find and tag herring reported to be of much larger size than fish in the commercial fishery and possibly of a different stock. Three commercial purse seine vessels searched Emerald, Western, Sable Island, Middle and Banquereau Banks but found little evidence of herring. A few sets were made on Middle Bank but no fish were landed or tagged.

(iii) Larval herring survey

The 1985 larval survey was undertaken between Oct. 21 and Nov. 15. The standard survey of 115 stations was completed successfully.

ASSESSMENT INPUT DATA

Stock Components

As in previous assessments (e.g. Sinclair and Iles 1981), the 4WX fishery is divided into "stock" and "non-stock" components (Table 3). "Stock" fish are considered to belong primarily to the major SW Nova Scotia spawning groups, but this unit also encompases smaller local stocks (e.g. Grand Manan, Scotts Bay). The "non-stock" component is comprised of:

4Xb (N.B.) weirs

- considered to be migrants from the 5Y stocks

4Xb (N.B.) shutoffs
4Xa miscellaneous - small localized Nova Scotia South Shore stocks caught in 4 Xm gill, 4 Xm trap and bycatches in handline and longline fisheries

4W miscellaneous - 4W fish taken in gear other than purse seine, on the assumption that the fish are from local stocks.

Also, as in previous assessments, those segments of the fishery which span the winter months (4Wa and 4Xb purse seine) are considered on a quota year basis (October 15, 1983-October 14, 1984). All other segments are considered for the calendar year 1984.

Biological Sampling

As in previous years, sampling of commercial catches was stratified by area, gear segment and month following the guidelines of:

1) obtaining as many length frequencies from individual catches as possible; and
2) stratified "detail" samples (two fish per half om size-class above 24 cm ; one per half cm size-class below 24 cm) to a level of at least 200 fish per area, gear and month.

Sample coverage was high and resulted in 712 length frequencies and 13,102 fish analyzed in detail (including ages); however, some cells (area and gear by month) were undersampled according to the previous criteria (Table 6).

Biological samples were matched to landings by gear component on a monthly basis as in previous assessments. Numbers at age from commercial catches were generated on the St. Andrews HP 3000 in the traditional manner, using programs HERNLWO2 and HERNAGO9. For all gear components except 4Xa purse seine, length-frequency samples were applied on a monthly basis.

A correction of 2% was applied to length measurements to account for shrinkage due to freezing. This is between values of 3% (after 7 mo for Gulf herring, J. Hunt, pers. comm.) and 1% (after 3 days for 4 X herring, unpubl. data) observed in two studies in St. Andrews.

Since the summer purse seine fishery involves several distinct fishing grounds and markets, including directed effort for ripe (roe) fish, a smaller spatial scale was considered necessary. As in the previous assessment, length frequencies were matched by individual 10° square and month. Catches were partitioned by square on the basis of logbook information and where samples and catches did not coincide, length-frequency information from adjacent squares was used.

Age Composition

The age composition of the nominal catch in major gear segments of the fishery is presented in Table 7 and Fig. 4. Age 3 (1982 year-class) dominated the 4WX stock by number and age 4 (1981 year-class) dominated by weight. Age 2 fish dominated the $4 W X$ non-stock (primarily 4 Xb) fishery both in number and weight.

Misreporting

The previous assessment dealt at length with the high degree of misreporting, particularly in the purse seine segment of this fishery, and employed an "adjusted" catch biomass about 1.7 times that reported. Drastic measures were taken in 1985 to curb misreporting (see Management Plan; Appendix 1), including:

- an increase in the TAC (to reduce the need or incentive to misreport)
- increased monitoring including nightly verbal hails before landing, as well as collection of delivery slips, purchase slips and log records.
- fragmented (weekly) license scheme.

The result was a significant improvement in the amount and quality of statistical information on which to base the assessment, and it was considered unnecessary to adjust the 1985 catch figures.

Abundance Indices
a) CPUE

Catch rates calculated as in previous assessments (Table 8) are not appropriate for use as independent checks on population estimates. Purse seine indices are complicated by a number of factors including historical misreporting and changing markets, New Brunswick weirs take non-stock fish, gillnet and Nova Scotia weirs were strongly influenced by markets. A new series of purse seine catch rates has been started - based upon intensive monitoring of the purse seine fleet (Mace 1985 and pers. comm.) and catch/effort information from the recently redesigned logbook. Initial values for this CPUE index are presented in Power and Stephenson (1986).
b) Larval abundance

The larval abundance index was again calculated as the mean number of larvae per m^{2} to bottom (see Iles et al. 1985 for details of survey design and history of the index). The values for 1981-84 included additional stations in areas of high abundance. The index (Table 9) was recalculated on the basis of the original 115 standard stations, which resulted in a change in the values for 1981-84. The 1985 survey indicated the highest larval abundance since 1974.

ASSESSMENT PARAMETERS

A) Weights at Age

Table 10 shows the mean weights at age presented in previous assessment documents. In several cases, it is not clear how these were derived, or if they were used in projections. Table 11 presents mean weight at age calculated by month and weighted by gear for the stock components of the 1985 4WX fishery. As in the previous assessment, we have used July weight at age for the $4 W X$ stock. We have extended the series using average July weights at age for the years 1979-83 (Sinclair et al. 1980) and our calculated values for 1984 and 1985 (Table 12). The 1985 weight at age (mean July, for stock fish weighted by gear) are:

Age	1985 weights at age (kg)								
	2	3	4	5	6	7	8	9	10
	. 053	. 118	. 204	. 249	. 278	.315	. 334	.344	. 440

B) Catch Matrix

The catch matrix (Table 13) is an extension of the "adjusted" matrix (1973-84 adjustment to account for misreporting, omissions and previous errors: Mace (1985)) used in the previous assessment (Stephenson et al. 1985).
C) Partial Recruitment

A new partial recruitment vector was chosen after consideration of the pattern of the historical F matrix. This indicated a dome-shaped partial recruitment pattern with full recruitment at age 4 . The $P R$ vector chosen, and that used for 1984 are as follows:

| Age | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PR 1984 .003 .4 .75 1 1 .5 .5 .5 .5 .5
 PR 1985 .002 .5 1 1 1 1 1 1 1 1 | .5 | | | | | | | | | | |

D) Natural Mortality

Natural mortality was assumed to be 0.2.

ASSESSMENT RESULTS

SPA

Sequential population analysis (SPA) was calculated with larval abundance as in previous years. Regression of larval abundance on mature and $5+$ biomass indicated a terminal F value of .25 , based upon the best combination of high correlation coefficient, low intercept and minimum residuals (1973-81) (Table 14; Fig. 5). Cohort analysis ("COHORT" of Rivard 1982) indicates an increase in stock biomass over recent years (Table 15).

Trends in population biomass (age 2+ are as follows ('000 t):

| 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | 1985 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$2+$ biomass $458.7 \quad 373.6 \quad 278.8 \quad 242.6 \quad 376.1 \quad 403.4 \quad 372.8 \quad 380.5 \quad 426.5 \quad 504.8 \quad 590.1$

Catch Projections

A catch projections was made using the following input:

Age	PR	Mean wt (kg)	Number	
1	.003	.0	1846300^{*}	16706
2	.4	.053	1103025^{*}	49199
3	.75	.118	1386999	135690
4	1.0	.204	960517	157726
5	1.0	.249	468454	94062
6	.5	.278	253757	60291
7	.5	.315	84230	22662
8	.5	.334	108780	31034
9	.5	.344	47854	14059
10	.5	.440	3810	1350

*Age 1 - population numbers set to long-term geometric mean (as in last assessment.
Age 2 - population numbers set to geometric mean 1973-83.

Assuming a 1986 catch of $110,600 t$ (1986 management plan) and $F=.3$ thereafter, the following catch biomass is predicted (see also fäble 16):

Quota/F Projected catch biomass (七)

86	87	88	89		86	87	88
110,600	.3	.3	.3	110,600	126,500	122,000	126,000

MANAGEMENT CONSIDERATIONS
a) Assessment

The terminal F value indicated by tuning with the larval abundance index is lower than that used in the past. Traditional catch rates from the fishery indicated a higher F, but these catch rates were not used because they were considered to be unreliable. It is noted that approximately 75% of the catch projected for 1987 is from ages only partially recruited to the 1985 fishery, and these are the ages for which there is the least confidence in prediction.
b) Misreporting

The steps taken in 1985 to reduce the level of misreporting resulted in a significant increase in the quality of information on which this assessment is based. The members of industry and of DFO Operations are to be commended on the improvement and encouraged to continue this effort.
c) Protection of the Trinity spawning component

The 1985 CAFSAC Advisory Document $85 / 16$ expressed concern over the concentration of the fishery on the Trinity Ledge spawning unit and the situation appears to be getting worse. In $1985,40 \%$ or more of the total stock catch was taken from the Trinity area, directly (during the spawning season), and, in addition, an unknown amount of this spawning group was taken by fisheries on mixed groups in other areas. The exact contribution of this spawning group to the whole stock is unknown, but it is almost certainly experiencing fishing pressure in excess of its relative contribution to the stock complex.

Several types of control are possible, including catch limits, time restriction, area limits (closures) and effort limits in the specific area. Closures would have the added benefit of reducing disturbance of spawning and of spawn on the bottom. If closures were imposed, it would also be appropriate to exclude towed gear from the area to prevent destruction of egg beds.
d) Recommendations for improvement of the assessment

The larval abundance index is an inherent part of the calibration of this assessment and continued investigation of its reliability is warranted. The larval abundance index does not provide information on incoming year-classes and investigation of potential indices of recruitment to the fishery and of the pattern of partial recruitment should be undertaken.

Knowledge of the importance of individual spawning units to the stock is becoming increasingly important as the roe fishery focusses effort on the Trinity Ledge area. Quantification of the relative size and integrity of individual spawning units must be addressed in light of continued pressure on these units.

LITERATURE CITED

Buerkle, U. 1986. Results of the 1985 winter acoustic survey of the NAFO Div. 4WX herring stock. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 86/47: 15 p.

Iles, T. D., M. J. Power, P. M. Mace, G. N. White, and F. G. Peacock. 1984. Assessment of the 1983 4WX herring fishery. Can. At1. Fish. Sci. Advis. Comm. Res. Doc. 84/72: 42 p.

Iles, T. D., M. J. Power, and R. L. Stephenson. 1985. Evaluation of the use of larval survey data to tune herring stock assessments in the Bay of Fundy/Gulf of Maine. Northwest At1. Fish. Organ. Sci. Counc. Res. Doc. 85/107: 16 p.

Mace, P. M. 1985. Catch rates and total removals in the 4WX herring purse seine fisheries. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 85/74: 31 p.

Power, M. J., and R. L. Stephenson. 1986. An analysis of logs from the 1985 4Xa summer herring purse seine fishery. Can. At1. Fish. Sci. Advis. Comm. Res. Doc. 86/44: 35p.

Rivard, D. 1982. APL programs for stock assessment (revised). Can. Tech. Rep. Fish. Aquat. Sci. 1091: 146 p.

Sinclair, A., M. Sincliar, and T. D. Iles. 1980. An analysis of growth and maturation of the 4 WX herring management unit. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 80/21: 32 p.

Sinclair, M., and T. D. Iles. 1981. Assessment of the 1980 4WX herring fishery. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 81/10: 42 p.

Stephenson, R. L., M. J. Power, T. D. Iles, and P. M. Mace. 1985. Assessment of the 1984 4WX herring fishery. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. No. 85/78: 58 p.

Table 1. Gear types involved in the 1985 4WX herring fishery.

Table 2. Approximate distribution of 1985 4WX herring landings among major markets (source R. Philpott, Marketing Directorate, DFO, Ottawa, pers. comm.)

Market	by weight of catch	Notes
Roe	54	Ripe fish (based upon 6% recovery in processing)
Canned (sardine, etc.)	19	
Over side sales	11	>9.5"; <30\% with feed
Bloater	4	(based upon 95\% recovery in processing)
Others (frozen and cured)	13	

Table 3. Catch (t) by gear component and month for the 1985 4WX herring fishery (data from DFO, Scotia-Fundy Region, Statistics Branch; MFD Tape EMF701).

Gear segment	1984			1985												Total
	0ct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	
4WX stock																
4Wa purse seine	-	2379	2517	3452	403	-	-	-	-	-	-	-	-	$1738{ }^{\text {e }}$	$2523{ }^{\text {e }}$	8751
4 Xa purse seine	-	-	-	-	-	-	-	-	290	12393	30646	37133	6705	-	-	87167
(domestic)									0	7986	26638	37133	6705			(78462)
(over side)									290	4407	4008	0	0			(8705)
4 Xb purse seine	2431	1892	-	1096	-	-	-	-	-	-	-	-	$1993{ }^{\text {e }}$	$637{ }^{\text {e }}$	-	5419
4Xa gillnet ${ }^{\text {a }}$	-	-	-	-	-	-	-	88	86	60	1944	3406	-	-	-	5584
(domestic)								88	86	60	845	1524				(2603)
(over side)								0	0	0	1099	1882				(2981)
4Xa (NS) weirs	-	-	-	-	-	-	-	378	1803	1381	489	-	-	11	-	4062
4 Xa (NS) traps ${ }^{\text {b }}$	-	-	-	-	-	-	-	190	446	406	201	47	13	1	-	1304
4Xb midwater trawl	-	-	-	-	52	6	40	-	-	-	-	-	-	-	-	98
Stock total	2431	4271	2517	4548	455	6	40	656	2625	14240	33280	40586	6718	12	-	112385
4WX non-stock																
4 Xb (NB) weirs	-	-	-	-	-	-	-	23	84	4214	8451	6910	4825	2079	138	26724
4 Xb (NB) shutoffs	-	-	-	-	-	-	36	-	-	73	184	208	288	306	44	1139
4 Xab misc. ${ }^{\text {c }}$	-	-	-	-	12	-	-	2	19	292	146	20	2	-	-	493
4W misc. ${ }^{\text {d }}$	-	-	-	-	-	-	25	275	191	579	46	1	2	-	-	1119
Non-stock total	-	-	-	-	12	-	61	300	294	5158	8827	7139	5117	2385	182	29475
Total 4WX	2431	4271	2517	4548	467	6	101	956	2919	19398	42107	47725	11835	2397	182	141860

a 4 Xa gillnet includes 4 XOQR (4 Xm combined with 4 Xa misc.).
b 4 X traps includes Liverpool but not 4 Xm .
c4Xa misc. includes 4 Xm gillnet, 4 Xm traps, handine + longline bycatches.
d 4 W misc. includes all gear other than purse seine.
$e_{\text {Not }}$ included in totals for 1985 quota year.

Table 4. Historical series of annual landings (t) by major components of the 4WX herring fishery (1963-84 from Stephenson et al. 1985).

Year	4Wa	4 Xa			4 Xb		Stock total
	Purse seine	Purse seine	Gillnet	Weir	Purse seine	shutoff \& weirs	
1963		15093	2955	5345	6871	29366	
64		24894	4053	12458	15991	29432	
65		54527	4091	12021	15755	33346	86394
66		112457	4413	7711	25645	35805	150226
67		117382	5398	12475	20888	30032	156741
68		133267	5884	12571	42223	33145	196362
69	25112	84525	3474	10744	13202	26539	150462
70	27107	74849	5019	11706	14749	15840	190382
71	52535	35071	4607	8081	4868	12660	129101
72	25656	61158	3789	6766	32174	32699	153449
73	8348	36618	5205	12492	27322	19935	122687
74	27044	76859	4285	6436	10563	20602	149670
75	27030	79605	4995	7404	1152	30819	143897
76	37196	58395	8322	5959	746	29206	115178
77	23251	68538	18523	5213	1236	23487	117171
78	17274	57973	6059	8057	6519	38842	95882
79	14073	25265	4363	9307	3839	37828	59021
80	8958	44986	19804	2383	1443	13525	79584
81	18588	53799	11985	1966	1368	19080	87706
82	12275	64344	6799	1212	103	25963	84733
83	8226	63379	8762	918	2157	11383	84385
84	6336	58354	4490	2684	5683	8698	78083
85	8751	87167	5584	4062	5419	27863	112385

Table 5. Summary of purse seine logbook coverage for the 1985 4WX herring fishery and traditional CPUE.

Table 6. Distribution of biological samples from the $19854 W \mathrm{Commercial}$ herring fishery; detail fish $=$ number of fish take for detail analysis including ageing, LF samples = number of length-frequency samples, LF fish = number of fish measured.

Gear component	oct	Nov	Dec	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec
4Wa purse seine - detail fish - LF fish - LF samples - eatch (t)		$\begin{array}{r} 737 \\ 4445 \\ 22 \\ 2379 \end{array}$	$\begin{array}{r} 366 \\ 2765 \\ 14 \\ 2517 \end{array}$	$\begin{array}{r} 701 \\ 7381 \\ 37 \\ 3452 \end{array}$	403										
$\begin{aligned} \text { 4Xa purse seine } & - \text { detail fish } \\ & -L F \text { fish } \\ & -L F \text { samples } \\ & - \text { cateh }(t) \end{aligned}$									$\begin{array}{r} 86 * \\ 1708 \\ 8 \\ 290 \end{array}$	$\begin{array}{r} 1080 \\ 22990 \\ 110 \\ 12393 \end{array}$	$\begin{array}{r} 1467 \\ 21841 \\ 110 \\ 30646 \end{array}$	$\begin{array}{r} 1085 \\ 6824 \\ 42 \\ 37133 \end{array}$	$\begin{gathered} 467^{\circ} \\ 2986 \\ 19 \\ 6705 \end{gathered}$		
4Xb purse seine - detail fish - LF fish - LF samples - catch (t)	$\begin{gathered} 698^{\circ} \\ 3286 \\ 28 \\ 2431 \end{gathered}$	$\begin{array}{r} 230 \\ 1728 \\ 11 \\ 1892 \end{array}$		$\begin{array}{r} 100^{*} \\ 705 \\ 4 \\ 1096 \end{array}$											
4Xa gillnet - detail fish (4XOQR) - LF fish - LF samples - catch (t)								88	$\begin{array}{r} * \\ 180 \\ 1 \\ 86 \end{array}$	$*$ 60	$\begin{array}{r} 265 \\ 4302 \\ 22 \\ 1944 \end{array}$	$\begin{array}{r} 217 \\ 6111 \\ 28 \\ 3406 \end{array}$			
$4 \times \mathrm{Xa}$ NS weir $(4 \times R)$ - detail fish - LF fish - LF samples - eatch (t)								$\begin{gathered} 134 * \\ 995 \\ 5 \\ 378 \end{gathered}$	$\begin{array}{r} 455 \\ 3770 \\ 20 \\ 1803 \end{array}$	$\begin{array}{r} 936 \\ 5696 \\ 34 \\ 1381 \end{array}$	$\begin{array}{r} 285 \\ 1383 \\ 8 \\ 489 \end{array}$	-		11	
4Xa NS trap - detail fish $(4 \mathrm{XMOQ})$ - LF fish - LF samples - catch (t)								$\begin{gathered} 139^{*} \\ 714 \\ 3 \\ 190 \end{gathered}$	$\begin{gathered} 102^{*} \\ 290 \\ 2 \\ 446 \end{gathered}$	406	201	47	13	1	
$\begin{aligned} 4 \mathrm{Xb} \text { mid trawl } & - \text { detail fish } \\ & - \text { LF fish } \\ & - \text { LF samples } \\ & - \text { catch }(t) \end{aligned}$				$\begin{array}{r} 18^{*} \\ 142 \\ 1 \\ 52 \end{array}$		$\begin{array}{r} 166 \\ 2066 \\ 10 \\ 6 \end{array}$	$\begin{array}{r} 40 \\ 374 \\ 2 \\ 40 \end{array}$								
4 Xb weirs \quad - detail fish - LF fish - LF samples - catch (t)								$\begin{array}{r} 94 \\ 1054 \\ 6 \\ 23 \end{array}$	$\begin{gathered} 45^{*} \\ 476 \\ 3 \\ 84 \end{gathered}$	$\begin{array}{r} 1082 \\ 9796 \\ 64 \\ 4214 \end{array}$	$\begin{array}{r} 1129 \\ 9085 \\ 60 \\ 8451 \end{array}$	$\begin{array}{r} 761 \\ 4898 \\ 30 \\ 6910 \end{array}$	$\begin{array}{r} 706 \\ 4351 \\ 28 \\ 4825 \end{array}$	$\begin{gathered} 134^{*} \\ 929 \\ 6 \\ 2079 \end{gathered}$	138
4 Xb shutoff - detail fish - LF fish - LF samples $-\operatorname{catch}(t)$							36			$*$ 73	$\begin{gathered} 14^{*} \\ 132 \\ 1 \\ 184 \end{gathered}$	$\begin{gathered} 70^{*} \\ 285 \\ 2 \\ 208 \end{gathered}$	$\begin{gathered} 122^{*} \\ 1245 \\ 8 \\ 288 \end{gathered}$	306	44
4WX misc. \quad - detail fish $-L F$ fish - LF samples - catch (t)					12		25	$\begin{array}{r} 139 \mathrm{a} \\ 861 \\ 4 \\ 277 \end{array}$	$\begin{array}{r} 102^{a} \\ 470 \\ 3 \\ 210 \end{array}$	$\begin{array}{r} 87^{a} \\ 924 \\ 9 \\ 871 \end{array}$	$\begin{gathered} 299 \mathrm{a} \\ 4520 \\ 24 \\ 192 \end{gathered}$	$\begin{gathered} 217^{a} \\ 5764 \\ 26 \\ 21 \end{gathered}$	4		

*Cells undersampled according to criteria of 200 detail fish per gear type per month with $>50 \mathrm{t}$ catch.
aCombined monthly detail and LF information used (4X gillnet, 4X trap +4 W gillnet);
boct. 1-14; coct. 15-31.

Table 7. Catch at age in numbers (thousands) and weight (t) by gear component for the $19854 W X$ herring fishery.

		1	2	3	4	5	6	7	8	9	10	$11+$	Total
4WX "stock"													
4Wa purse seine	No.	0	11453	20489	12931	9403	3854	2027	1818	717	71	53	62816
	Wt.	0	835	2070	2048	1754	815	500	484	204	23	19	8751
4 Xb purse seine	No.	5660	27227	17490	6760	3602	391	222	40	0	0	0	61392
	Wt.	68	1565	1875	1035	715	91	59	11	0	0	0	5418
4 Xa purse seine	No.	0	43844	156606	156088	71307	20325	5964	8794	4066	586	94	467674
	Wt.	0	2752	21701	32400	17937	5604	1939	3088	1473	234	37	87167
4Xa gillnet	No.	0	0	4536	11402	6613	1501	254	519	185	20	19	25049
	Wt.	0	0	762	2401	1675	412	81	174	64	9	8	5584
4 Xa (NS) weirs	No.	102	46704	12791	3851	1511	506	274	263	92	90	132	66316
	Wt.	5	1619	993	706	330	131	76	78	29	37	57	4062
4Xa(NS) traps	No.	0	77	3146	2337	1872	504	248	175	47	0	2	8408
	Wt.	0	3	301	365	390	118	62	51	14	0	1	1304
$4 \mathrm{Xb}(\mathrm{NB})$ midwater trawl	No.	0	9114	541	0	0	0	0	0	0	0	0	9655
	Wt.	0	80	18	0	0	0	0	0	0	0	0	98
4WX "stock" total	No.	5762	138419	215599	193369	94308	27081	8989	11609	5107	767	300	701310
	Wt.	73	6854	27721	38955	22800	7171	2717	3885	1784	303	121	112385
4WX "non-stock"													
$4 \mathrm{Xb}(\mathrm{NB})$ weirs	No.	15105	356632	44840	17702	7357	3488	304	71	73	0	0	445572
	Wt.	162	14443	5696	3536	1807	952	84	22	23	0	0	26725
4 Xb (NB) shutoff	No.	5190	28749	1039	234	54	19	0	0	0	0	0	35285
	Wt.	65	876	136	44	13	5	0	0	0	0	0	1139
4WX misc.	No.	0	67	1550	1537	1952	1118	626	804	158	0	70	7882
	Wt.	0	2	135	269	439	271	172	247	55	0	20	1611
4WX "non-stock" total	No.	20295	385448	47429	19473	9363	4625	930	875	231	0	70	488739
	Wt.	226	15321	5967	3850	2260	1227	256	269	78	0	20	29475
4WX GRAND TOTAL	No.	26057	523867	263028	212842	103671	31706	9919	12484	5338	767	370	1190049
	Wt.	299	22175	33688	42805	25060	8399	2974	4154	1862	303	141	141860

Table 8. Traditional CPUE trends for components of the 4WX herring fishery. Data for 1965-84 as in Stephenson et al. (1985).

Year	Purse seine		4Xa gillnets ${ }^{\text {b }}$	Fixed gear	
	$4 \mathrm{Xa}^{\text {a }}$	$4 \mathrm{Wa}^{\text {a }}$		4Xa NS weirs ${ }^{\text {c,d }}$	4Xb NB weirs ${ }^{\text {c,e }}$
1965	-	-		481	162
1966	-	-		308	183
1967	55.5	-		499	153
1968	52.8	-		503	165
1969	41.7	-		430	132
1970	39.0	-		468	77
1971	32.6	109.7		323	62
1972	45.0	62.6		271	164
1973	49.1	69.7		500	98
1974	53.4	143.1		257	98
1975	57.4	142.7		296	158
1976	44.6	125.4		238	150
1977	37.4	97.9	4.2	209	106
1978	39.5	85.7	1.6	269	172
1979	31.7	70.1	2.1	372	167
1980	28.5	63.4	3.0	95	57
1981	42.0	76.8	4.4	79	80
1982	40.6	68.7	3.44	48	114
1983	34.8	51.0	2.29	37	54
1984	52.0	27.8	2.12	107	43
1985	46.2	48.8	2.29*	172	137

acatch (t) per successful night (= trip).
$b_{t / p u r c h a s e ~ s l i p ~(a r e a s ~ 32-37) . ~}^{\text {l }}$
$c_{t / w e i r}$.
${ }^{\text {d}}$ No. of weirs $=25$.
$e_{\text {No. }}$ of weirs $=195$.
*Preliminary.

Table 9. Traditional 4WX larval herring abundance indices; from number of larvae per m^{2} (to bottom) of standard stations sampled ($\mathrm{n}=115$) for each year. Values for 1981-84 have been revised; unrevised values are in brackets.

Year	Geometric mean
1972	2.64
1973	2.30
1974	7.60
1976	4.44
1977	1.83
1978	1.24
1979	2.18
1980	4.61
1981	$1.40(1.50)$
1982	$3.79(3.73)$
1983	$3.32(4.29)$
1984	$4.31(5.13)$
1985	6.63

Table 10. Mean weight at age for $4 W X$ herring as presented in annual assessment documents for $1973-84$.

Age	```1 9 7 3 ICNAF Res. Doc. 74/13```	1975 ICNAF Res. Doc. 76/VI/45	$\begin{gathered} 1976 \\ \text { CAFSAC } \\ \text { Res. Doc. } \\ 77 / 11 \end{gathered}$	1977 CAFSAC Res. Doc. 78/25	1978 CAFSAC Res. Doc. 79/19	1979 CAFSAC Res. Doc. 80/47 Option 1	1980 CAFSAC Res. Doc. $81 / 10^{\mathrm{a}}$	1981 CAFSAC Res. Doc. $82 / 36^{b}$	1982 CAFSAC Res. Doc. $83 / 89^{c}$	1983 CAFSAC Res. Doc. $84 / 72^{\mathrm{d}}$	1984 CAFSAC Res. Doc. 85/78
1	-			-	9	10.64	9.5	-	8.54	10	-
2	31			29.6	30	24.37	35.5	19	51.79	41	37.5
3	114			97.7	93	93.93	86.9	35	137.42	112	132.1
4	159	"as per	"mean wts	165.8	159	164.75	173.4	172	176.26	172	191.4
5	227	assessment	from 4 XWb	207.1	205	226.00	220.7	216	229.67	218	228.7
6	270	presented	were used"	261.5	250	253.13	258.3	202	256.34	254	259.1
7	299	in Jan.		280.7	285	285.86	305.3	262	287.47	286	279.8
8	334	1976"		300.2	315	314.75	333.0	325	319.62	323	296.2
9	360			328.6	341	343.85	359.2	362	362.61	354	309.0
10	386			349.0	382	369.52	369.7	385	377.64	389	364.0

[^0]Table 11. Mean weights at age calculated by month and weighted gear for the stock portion (Gear 01 to Gear 07) of the 1985 4WX herring fishery.

			1984													
		10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
	1	14	11	0	0	0	0	0	0	52	0	0	0	0	0	0
	2	61	59	72	133	0	9	0	23	37	53	61	62	81	0	0
	3.	131	133	126	\| 72	0	33	0	58	82	118	147	146	130	0	0
	4	179	173	179	\| 127	0	0	0	129	167	204	214	206	185	0	0
	5	208	207	201	\| 176	0	0	0	175	209	249	258	252	221	0	0
	6	255	233	239	1207	0	0	0	188	243	278	282	276	247	0	0
$\underset{\sim}{\mathbf{0}}$	7	269	245	247	1247	0	0	0	221	255	315	330	331	274	0	0
4	8	286	264	271	1265	0	0	0	272	293	334	351	352	327	0	0
	9	0	289	293	1283	0	0	0	0	301	344	366	367	321	0	0
	10	0	336	330	318	0	0	0	0	394	440	399	396	0	0	0
	11	0	359	0	1354	0	0	0	258	394	446	404	417	0	0	0

Table 12. July weights at age for the $4 W X$ herring fishery (stock portion); 1968-85. Values for 1968-78 from Sinclair et al. (1980, CAFSAC Res. Doc. 80/21); values for 1979-83 are averages for the period 1968-78 (as in Iles et al. 1984, CAFSAC Res. Doc. 84/72); 1984 and 1985 values calculated from the respective fishery (Stephenson et al. 1985).
$\begin{array}{llllllllllllllllllllll}\mid & 1968 & 1969 & 1970 & 1971 & 1972 & 1973 & 1974 & 1975 & 1976 & 1977 & 1978 & 1979 & 1980 & 1981 & 1982 & 1983 & 1984 & 1985\end{array}$

1	0	0	0	0	0	0	0	0	0	0	0	10	10	10	10	10	0	0
2	33	37	32	66	44	29	48	21	33	65	28	41	41	41	41	41	38	53
3	33	106	119	143	138	106	110	94	114	113	112	112	112	112	112	112	132	118
4	148	162	169	199	192	143.	175	179	159	174	181	172	172	172	172	172	191	204
5	185	207	211	230	225	225	206	216	233	214	229	218	218	218	218	218	229	249
6	244	242	257	254	262	251	240	240	249	274	259	254	254	254	254	254	259	278
7	276	282	292	293	292	279	277	268	277	293	302	286	286	286	286	286	280	315
8	399	306	332	329	322	331	322	333	317	325	330	323	323	323	323	323	296	334
9	338	334	369	362	345	360	342	358	382	328	351	354	354	354	354	354	309	344
10	409	390	389	388	380	389	352	379	404	416	397	389	389	389	389	389	364	44

Table 13. Catch matrix (no. x 1000) for the stock portion of the $4 W \mathrm{X}$ herring fishery (includes adjusted 1973-84 portion used in last assessment; Stephenson et al. 1985).

	1965	1966	1967	1968	1969	- 1970	1971	1972	21973	31974	1975
1	270378	154323	722208	164703	3108875	5699720	- 87570		01018	818411	3199
2	1084719	914093	613970	23.89061	1290329	9576896	404224	4649254	4167454	4766064	31.7640
3	34835	448940	153626	224956	6531812	276532	183896	671984	4781061	193606	239827
4	234383	73382	266454	83109	9132319	9286278	106630	0148516	6130851	1803651	124599
5	49925	321857	110051	290285	5162439	9201215	5113566	677207	740128	868276	514605
6	10592	45916	159203	73087	7112631	1120280	-75593	375384	430334	419093	66302
7	1693	13970	57948	90617	762506	6111937	793620	0.49065	522046	-10232	12298
8	561	7722	4497	31977	722595	5 - 41257	750022	248700	$0 \quad 20249$	96565	4409
9	54	1690	409	15441	16345	521271	136618	826055	523871	112785	4778
10	37	215	296	5668	8 .. 2693	$3 \quad 7039$	$9 \quad 7536$	$6 \quad 13792$	211630	07102	3847
	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	
1	240	1170	35381	342	2339	0	3589	5488	0	5762	
2	55596	153921	383611	183982	125031	1030511	1021331	191682	8843313	138419	
3	206535	31572	40887	250393	80518	508831	1507641	15032824	24354221	215599	
4	153782	218478	12906	546204	4740911	102743	226402	24400722	22435419	193369	
5	68804	119234	122108	5430	279294	451482	98206	2448314	146096	94308	
6	268839	51173	68410	23142	4373	329782	211043	60678	22716	27081	
7	21460	177247	31088	18255	4692	2418	14627	89982	21654	8989	
8	5571	13977	108975	11836	6560	2766	2080	10352	28299	11609	
9	3951	3170	11082	41389	2985	1917	1354	1728	9515	5107	
10	2059	1415	2425	4527	10641	538	1250	642	2183	767	

Table 14. Results of initial tuning runs - 4WX herring: Intercepts and r of the regression of SPA derived biomass vs larval abundance.

Terminal F	SPA mature biomass r Intercept		SPA 5+ biomass r Intercept	
. 2	. 79	123358	. 86	41100
. 25	. 81	129384	. 87	46320
. 3	. 78	133325	. 84	49785

Table 15. 4WX herring: a) population numbers (thousands), b) population biomass (t) and c) table of F values from sequential population analysis.

a)			POPULATION HUMBERS				1971
1	1965	1966	1967	1968	1969	1970	
1 \|	3562193	2773236	6160139	1295598	1773851	2357424	7574118
2	3927355	2671828	2130896	4390015	911716	1353792	1296962
31	1002620	2233952	1360403	1189087	1432528	483750	586394
4	1328174	789356	1422788	974797	769994	691652	326812
51	344501	875339	579871	923782	722896	510690	307241
61	97053	236880	425438	375180	493668	444876	236051
7	58313	69877	152394	204267	241039	302269	255400
81	4848	46210	44570	72336	85246	140789	146192
9	1195	3462	30847	32421	30290	49349	77937
10	227	929	1305	24885	12573	19058	21156
$1+1$	10326479	9701069	12308651	9482368	6473802	6353648	10828265
$2+1$	6764287	6927833	6148511	8186771	4699951	3996224	3254146
$3+1$	2836931	4256004	4017615	3796756	3788234	2642432	1957184
$4+1$	1834312	2022052	2657212	2607669	2355706	2158682	1370790
1	1972	1973	1974	1975	1976	1977	1978
1 \|	1147833	2372431	1550228	259459	728405	4325141	1571513
2	6121927	939766	1941461	1334434	209532	$5961: 51$	3540068
31	696106	4424741	617896	896371	805129	121246	348814
41	313703	504790	2915937	421193	516882	472303	70700
51	171088	122456	294888	1660194	232101	284039	189002
61	148789	70215	63949	179655	893618	127772	124664
7 .	124863	53608	30040	35081	87096	488377	58308
8 1	124393	57833	23942	15336	17594	51891	239470
9	74430	57779	29027	13662	8567	9364	29838
10 \|	30676	37363	25706	12197	6862	3438	4797
$1+1$	8953808	8640981	7593075	4827581	3505787	6479721	6177174
$2+1$	7805975	6268549	5942847	4568122	2777381	2154580	4605661
$3+1$	1684048	5328784	4001386	3233689	2567849	1558429	1065593
$4+1$	987942	904043	3383490	2337318	1762720	1437183	716779
1	1979	1980	1981	1982	1983	1984	1985
11	554852	1930747	1880069	2414420	2194598	1956912	8479598
21	1254632	453965	1578645	1539271	1973512	1791819	1602184
3	2551257	860732	360361	1199241	1167835	1442334	1386999
41	248588	1862228	631852	248998	845439	820120	960517
51	46206	154104	1095688	424351	183377	471400	468454
61	44254	32918	100898	488556	258569	127983	253757
71	40166	15292	22994	52769	209036	156795	84230
8 \|	19609	16367	8275	16638	29968	89725	108780
91	97456	5345	7465	4271	11740	15169	47854
10 \|	14401	42340	1675	4377	2272	8048	3810
$1+1$	4871422	5374039	5687923	6392892	6876345	6880305	13396183
$2+1$	4316570	3443292	3807854	3978472	4681747	4923393	4916584
$3+1$	3061939	2989327	2229209	2439202	2708235	3131574	3314400
$4+1$	510681	2128596	1868847	1239950	1540400	1689241	1927400

Table 15. (cont'd)
b) MEAN POPULATION BIOMASS (t)

	1965	1966	1967	1968	1969	1970	1971	1972
1	30957	24380	52252	10924	15544	17747	68223	10403
2	123060	79659	66193	86356	25120	29075	63825	231578
3	99875	201373	129574	31826	107349	47700	62163	81918
4	186804	116829	198725	124702	102491	79919	47905	39095
5	62640	135938	102487	126712	118660	74949	50282	25427
6	21011	48652	76568	74097	94344	87677	44277	24429
7	14880	16095	30728	37550	52577	62783	53304	25387
8	1330	12278	12330	19272	20082	35286	34953	27946
9	374	783	9827	7078	8090	12269	18349	18556
10	73	285	402	8064	3919	5294	5915	7779
$1+1$	541003	636273	679086	526581	548177	452699	449195	492518
$2+1$	510046	611893	626834	515656	532633	434952	380972	482114
$3+1$	386986	532234	560641	429300	507513	405877	317147	250536
$4+1$	287111	330860	431067	397474	400164	358177	254984	168619
1	1973	1974	1975	1976	1977	1978	1979	1980
1	21498	14867	2336	6601	39195	14071	5027	17488
2	22107	64503	21790	5277	30089	85430	42859	16620
3	382429	56563	65001	71197	10618	33168	245134	82925
4	55956	391043	56799	61876	53885	10412	33986	248580
5	20227	47809	266824	40793	41359	22792	8543	27387
6	11901	11534	30630	167277	24279	19293	6923	7026
7	10272	6063	6778	18844	102335	10728	7582	3268
8	13840	5902	3873	4140	12964	52160	3545	3663
9	14252	6646	3533	2148	2240	7438	23404	1120
10	10843	6925	3439	2087	985	1205	4171	12827
$1+1$	563324	611856	461004	380241	317948	256696	381174	420904
$2+1$	541827	596988	458668	373640	278753	242625	376146	403416
$3+1$	519719	532485	436878	368363	248664	157195	333287	386796
$4+1$	137291	475922	371877	297166	238046	124027	88153	303871
1	1981	1982	1983	1984	1985			
1	17040	21866	19864	17736	76827			
2	56591	55146	69457	59323	73126			
3	33741	113350	110181	156516	135690			
41	89653	36897	110134	120193	157726			
5	163869	72952	33577	80358	94063			
6	18860	83631	51678	27100	60291			
7	5618	11526	40346	36750	22662			
8	1955	4537	7021	19729	31034			
9	2048	1121	3461	2540	14059			
10	483	1295	673	2250	1431			
$1+1$	389858	402320	446392	522496	666908			
$2+1$	372818	380454	426528	504759	590081			
$3+1$	316227	325309	357071	445437	516955			
$4+1$	282486	211959	246891	288921	381265			

```
Table 15. (cont'd)
```

c)

FISHING MORTALITY

	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
1	0.088	0.063	0.139	0.1510	0.070	0.3980	. 013	0.000	0.000	0.012	0.014
2	0.364	0.475	0.383	0.9200	0.4340	0.6370	. 422	0.125	0.219	0.573	0.305
3	0.039	0.251	0.133	0.2350	0.5280	0.1920	. 426	0.121	0.217	0.183	0.351
4	0.217	0.108	0.232	0.0990	0.2110	0.6110	. 447	0.741	0.338	0.363	0.396
5	0.175	0.521	0.235	0.4270	0.2850	0.5720	. 525	0.691	0.450	0.296	0.419
6	0.129	0.241	0.534	0.2420	0.2910	0.3550	. 437	0.821	0.649	0.400	0.524
7	0.033	0.250	0.545	0.6740	0.3380	0.5260	. 519	0.570	0.606	0.472	0.490
8	0.137	0.204	0.118	0.6710	0.3470	0.3910	. 475	0.567	0.489	0.361	0.382
9	0.051	0.776	0.015	0.7470	0.2630	0.6470	. 732	0.489	0.610	0.667	0.489
10	0.197	0.293	0.286	0.2880	0.2680	0.5180	. 494	0.674	0.417	0.361	0.424
$4+$	0.198	0.311	0.295	0.3060	0.2690	0.5230	. 496	0.680	0.423	0.362	0.424
	1976	1977	1978	1979	9. 1980	01981.	- 1982	1983		984	85
1	0.000	. 0.000	0.025	0.001	10.001	10.000	0.002	0.003		000	01
2	0.347	0.336	0.128	0.177	$7 \quad 0.031$	10.075	0.076	0.114		0560	100
3	0.333	0.339	0.139	0.115	50.109	90.170	0.150	0.153		2070	188
4	0.399	0.716	0.225	0.278	80.330	00.198	0.106	0.384		3600	250
5	0.397	0.623	1. 252	0.139	90.224	40.608	0.295	0.160		4190.	250
6	0.404	0.585	0.933	0.863	30.159	90.448	0.649	0.300		2180.	125
7	0.318	0.513	0.890	0.698	80.414	40.124	0.366	0.646		1660.	125
8	0.431	0.353	0.699	1.100	00.585	50.461	0.149	0.481		4290.	125
9	0.713	0.469	0.528	0.634	40.960	$0 \quad 0.334$	0.431	0.178		1820.	125
10	0.399	0.597	0.799	0.422	20.323	30.434	0.375	0.371		3530.	125
$4+1$	0.399	0.602	0.848	0.453	30.324	40.453	0.398	0.379	0.	3590.	218

Table 16. Catch projection (population numbers (thousands), catch biomass (t) and F matrix) for $4 W X$ herring assuming a 1986 catch of 110,600 and $1987+$ catch at $F_{0.1}=.3$.

CATCH BIOMASS $\quad 86 / 07 / 28$

\|	1985	1986	1987	1988	1989	1990	1991	1992
11	58	12	15	15	15	15	15	15
2	7313	6767	8195	8194	8194	8194	8194	8194
3	25442	14062	24179	23725	23721	23721	23721	23721
4	39432	38083	25512	35182	34522	34516	34516	34516
5	23516	30295	35483	18921	26093	25603	25599	25599
6	7536	8733	13811	12877	6867	9469	9291	9290
7	2833	6070	8625	11021	10275	5479	7556	7414
8	3879	2137	5614	6445	8235	7678	4094	5646
9	1757	2841	1919	4074	4677	5976	5572	2971
101	337	1598	3169	1729	3671	4214	5384	5020
$1+1$	112102	110600	126522	122183	126269	124866	123943	122387
$2+1$	112045	110588	126507	122768	126254	124851	123928	122372
$3+1$	104732	103820	118312	113974	118061	116657	115734	114178
$4+1$	79290	89758	94133	90249	94339	92936	92013	90457

EISHING MORTALITY
$86 / 07 / 28$

	1985	1986	1987	1988	1989	1990	1991	1992
1	0.003	0.001	0.001	0.001	0.001	0.001	0.001	0.001
2	0.149	0.098	0.120	0.120	0.120	0.120	0.120	0.120
3	0.187	0.184	0.225	0.225	0.225	0.225	0.225	0.225
4	0.250	0.246	0.300	0.300	0.300	0.300	0.300	0.300
5	0.250	0.246	0.300	0.300	0.300	0.300	0.300	0.300
6	0.125	0.123	0.150	0.150	0.150	0.150	0.150	0.150
7	0.125	0.123	0.150	0.150	0.150	0.150	0.150	0.150
8	0.125	0.123	0.150	0.150	0.150	0.150	0.150	0.150
9	0.125	0.123	0.150	0.150	0.150	0.150	0.150	0.150
10	0.250	0.123	0.150	0.150	0.150	0.150	0.150	0.150
	0.136	0.119	0.140	0.137	0.140	0.140	0.140	0.140

Fig. 1. Seasonal distribution of activity by gear component of the 1985 4WX herring fishery. Dots (\longrightarrow) represent recorded limits of fishing activity; bars (m) represent limits of seasons.

Fig. 2. Geographical distribution of gear components of the $19854 W X$ (and $4 V n$ purse seine) herring fishery (resolution $=10^{\prime}$ square).

Fig. 3. Long-term (1963-present) landings by gear component of the $4 W X$ herring fishery.

Fig. 4. Relative frequency (\%) of numbers and weights by age in gear segments of the 1985 4WX herring fishery.

4HA PURSE SEDE \times MMBERS
X Rolative Freatancy

4XB PURSE SEDEE X MRHEERS
x Rolative Frequancy

4XA PURSE SEINE x mumbers

4HA PURSE SEIFE $\%$ CATCH HEIGHT

4XB PURSE SEDE X CATCH WELOKT

4XA PURSE SEINE X CATCH WEIGHT

Fig. 4 Continued.

4XA GILLNET \% MMABERS

4XA WEIR X MUMBERS

1XA GTLLNET : CATCH WETGHT

AXA WEIR X CATCH WEIGHT

* Relative Firequency

4XA TRAP X NUMBERS

AXA TRAP X CATCH WEIGHT

Fig. 4 Continued.

4XB MLDWATER TRAKL X NUKBERS

$4 \times B$ MEIR : NMABERS

$4 \times B$ SHMTOFF x MRYERS

4XB MIDWATER TRANL X CATCH WEIENT

4XB WEIR X CATCH WEIEHT

4xB Shutoff x Catch height

Fig. 4 Continued.

Fig. 4 Continued.

```
Y=129348.2847+43563.97979 X
    ETUDENT I: 4.623822846 K SQUAKED: 0.6602813742
```

 K: 0.8125769958
 PLCI OF "SPA" ESTIMAT'ES (o) AND PREDICTED VALUES (+)
AGATNSTHHE CALIBRATION VARIABLE':

Fig. 5a. "Tuning" plot of $4 W X$ herring SPA derived mature vs larval abundance; 1972-1985.

```
Y = 46320.17187 + 47170.83419X
    STUDEW'P T: 5.708696704 K
                                    K: 0.8646641061
```

PLOT OF "SPA" ESTIMATES (O) AND PREDICTED VALUES (+

Fig. 5b. "Tuning" plot of 4WX herring SPA derived 5+ biomass vs larval abundance; 1972-1985.

1985 HERRING MANAGEMENT PLAN

SCOTIA-FUNDY REGION

($4 V n-4 W X$)

1

BASIC PRINCIPLES

1. Conservation and restoration of the fisheries resource.
2. Quotas for purse seine vessels are to be issued by stock area and by fleet segment.

-

3. Utilization of the fishery resources over the calendar year to the degree possible and among competing end product users so as to maximize the overall value of the resource.
4. Industry/government co-management of quotas to occur.

PART I
HERRING PURSE SEINE FLEET
I. GENERAL

THE TOTAL FLEET QUOTA FOR ALL SCOTIA-FUNDY PURSE SEINE VESSELS IN 4WX HERRING FISHERIES WILL BE 100,000 T FOR 1985 (OCTOBER 15, 1984 TO OCTOBER 14, 1985).

1. Vessel Quota

All purse seine vessels shall operate on an anriüal vessel quota as defined below:

Class $A \quad-\quad 1.6 \%$ of purse seine quota, 1,600 tonnes
Class B - 2.7% of purse seine quota, 2,700 tonnes
These figures do not account for quota purchases. For those vessels with quota purchases, the 1985 vessel quotas are as follows:

LADY MELISSA	-	4,000
TOMMIE \& ARNIE	-	3,200
LISA ANNE	-	3,200
SEAFOAM I	-	4,000
LEROY \& BARRY I	-	4,000
MARGARET ELIZABETH	-	4,000
CANADA 100	-	4,000
CPRD	-	1,900
MATTUNA MARINER	-	4,000
MARIE LYNN ANITA	-	4,000

All vessels which have purchased quota shares must have circulating chilling systems prior to obtaining the 1985 purchased quota amount.
2. All vessel quotas will occur as a condition of licensing.
3. Participation

Any Scotia-Fundy purse seine vessel may participate in any or all of the following herring fisheries: 4W, 4X (fall), 4X (winter), 4X (summer). Restrictions will be limited to area quota and overall vessel quotas.

PART I (CONT 'D)

I cont'd

4. Monitoring

Government/industry coordinated monitoring of the purse seine quota will occur through continual monitoring of all catches. The following procedures will be followed:
a) Industry/government monitoring of all nightly catches via verbal hail from each purse seine vessel captain identifying:
i) amount caught;
ii) port of unloading; and
iii) estimated time of unjoading.
b) Written copy (DFO Landing Slip or Industry Delivery Note) of all verbal catch reports to be completed and forwarded to the industry/government. central monitoring unit.
c) Accurate \log records to be completed for each fishing trip and forwarded to DFO.
d) Purchase slip information to be completed by each purchaser and forwarded to DFO.
e) Fragmented (i.e., valid for specified periods) Condition of Licence Forms to be utilized in all purse seine fisheries within the Scotia-Fundy Region.
f) The fishery will be closed in the event of misreporting.
II. PURSE SEINE FISHERIES
(A) Sydney Bight ($4 V n$)
(1) The season for purse seine vessels shall run from November 7, 1984 to March 1, 1985.
(2) The quota will be 3,500 tonnes, to be taken by Gulf based purse seine vessels .
(3) The area of activity shall be north and west of a line drawn from Pt. Aconi in Cape Breton to the 3Pn Division intersect with the $4 V \mathrm{n}$ line.
(4) The area east of the Pt. Aconi line in $4 V n$ shall not be fished by purse seine vessels.

PART I (CONT'D)

II cont'd

(B) Chedabucto Bay (4W)
(1) The season for purse seine vessels shall run from November 15, 1984 to March 1, 1985.
(2) The quota shall not exceed 16,000 tonnes; to be taken by Scotia-Fundy vessels.
(3) The following closure line will be in effect until January 1, 1985, after which 40% of the overall quota may be harvested inside this line. Waters of Chedabucto Bay in $4 W$ lying west of straight line extending from Cape Canso at $45^{\circ} 18^{\prime}$ north latitude, $60^{\circ} 56^{\prime}$ west longitude to Green Island at $45^{\circ} 29^{\prime}$ north latitude, $60^{\circ} 54^{\prime}$ west longitude.
(C) Bay of Fundy - Fall and Winter "Brit" Fishery
(1) The fall and winter Bay of Fundy purse seine fisheries will be combined into one fishery with the following provisions:
(a) The season.will be October 16 to March 31 of the next year.
(b) A total of $9,000 \mathrm{t}$ will be assigned in the following manner:
(i) up to $8,000 \mathrm{t}$ to be caught in the October 15 - December 31 portion of the fishery.
(ii) of the amount captured in (i) above, 50% will be counted against the T.A.C. up to a maximum of $4,000 \mathrm{t}$;
(iii) the "brit" fishery will comprise the second portion of the fall and winter Bay of Fundy purse seine fishery with a January 1 - March 31 season;
(iv) the quota for the 1985 "brit" fishery will be $1,000 \mathrm{t}$;
(v) all catches will be deducted from individual vessel quotas for the 1985 season (50% of fall catch $+100 \%$ of the "brit" catch).
PART I CONT'D
(2) The fishery will be closed when:

- quotas are reached;
- seasonal closures are reached; or
- irregularities in quality, size or end-product use
(D) Bay of Fundy - Summer Fishery
(1) The season for purse seine vessels shall run from June 1, 1985 to October 14, 1985.
(2) The quota will be $(100,000 t-(X+Y+Z))$, to be taken by Scotia-Fundy vessels.

$$
\begin{aligned}
& X=4 W \text { catch } \\
& Y=\text { fall } 4 X \text { catch }(50 \%) \\
& Z=4 X \text { winter "brit" catch }
\end{aligned}
$$

(3) No separate bait allotment will be authorized in 1985.
(4) No purse seine fishery in Area 21 (June 1 - October 14) for 1985.
(5) The Trinity Ledge spawning Area (Schedule III, Item 5-Atlantic Coast Herring Regulations) will be closed to purse seine activities August 25 to September 7 for 1985.
(6) A Georges Bank purse seine fishery is authorized under the following conditions:
(a) fishing to occur in the Canadian zone of 5Ze;
(b) a DFO observer must be present on all trips;
',(c) 24 hours' notice must be given to DFO prior to departure; and
(d) failure to comply with parts, (a), (b) and (c) will result in any catch being assigned to that vessel's $4 X$ quota.
(7) An 8,000t Over-the-Side Sales Program is to occur.

PART II
SCOTIA-FUNDY (4X) INSHORE HERRING GEAR TYPES
A. GENERAL

1. All catch information shall be provided to the Department for each catch.
2. All purchase slip information shall be provided for each purchase and shall include identification of amount purchased, fisherman and date of purchase.
3. All Nova Scotia inshore gear (weirs, traps and gill nets) previously under quota control will be assigned an allowance of anticipated catch for 1985.
4. No effort increases will occur in any inshore fishery.
5. All herring sold for bait will be recorded.
B. WEIR FISHERY
6. A 1,000t Over-the-Side Sales Program will occur.
C. HERRING SET NET FISHERY
7. After the season, all moorings must be removed from the water.
D. HERRING DRIFT NET FISHERY.
8. Licences for drift nets are limited to those holding same for 1983.
9. An Over-the-Side Sales Program for $2,500 \mathrm{t}$ is to occur.
E. TRAP FISHERY
10. All mackerel traps in the $4 X$ Area are limited to a 10% by-catch of herring up to a maximum of 100 t .

* Quota represents 50% of T.A.C.

[^0]: $a_{A l s o} f i r s t ~ u s e ~ o f ~ ' M e a n ~ J u l y ~ 1969 ~ t o ~ 1978 ' ~ a s ~ u s e d ~ i n ~ ' W 83 ' . ~ U s e d ~ b o t h ~ ' F i s h e r y ' ~ a n d ~ ' M e a n ' ~ i n ~ c o h o r t ~ m e a n ~ f o r ~ p r o j e c t i o n s . ~$
 $b_{\text {As }}$ for a), i.e. fishery and mean for cohort and YPR but mean for projections.
 CUsed 'mean July 1969 to 1978 ' only. No fishery weights calculated.
 $\mathrm{d}_{\text {Also }}$ used mean July 1969 to 1978 weights which are different from a).
 e Mean July weights at age (stock fish weighted by gear).

