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The BASIC Program to Analyse the Polymodal Frequency Distribution

into Normal Distributions with Marqualdt's Method -

by

Tatsuro AKAMINE

Abstract
The algorithm of this program is Mar-
qualdt’s method. Gauss’ elimination method
is used to solve the simultaneous linear equa-
tions. Each parameter is scaled during cal-
culation for faster convergence. User inputs

the data and initial values of the parameters.

It is adequate for convergence to set 1=10000
or larger.

The method analysing the polymodal frequency distribution into normal
distribution enables by plotting the frequencies in the medium values of the
classes to perform a resolution to the regression curve method based on the
least square. Akamine (1982) prepared the program of the Gauss-Seidel
method. As the memory was reduced to the minimum for a small-size computer,
there was a drawback of slow convergence.

The performance of small computers has risen remarkably in recent
times and it became possible to prepare programs with more rapid conver-

gence. The present program based on the Marqualdt method is rapid
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in convergence and good in stability. The machine used is the PC 8801 (NEC),

but if the memory is satisfactory, less advanced machines may be used.

Calculation Method

We will call F the given frequency distribution, m the number of
classes, h the width of the classes, a the smallest class value and b the
greatest value. If we call n the number of normal distributions to be

analysed, then the sought formula £, the residual function d2 are:

f= .gKi'N(#f’ Giy ) eeeeeeeeennneeinns @
) )2
N(Pi: G x>:1/2171-a,'eXp {_ (xza-‘l:Z’) }
&= éd#:E(F—f)" ............... ®
b=a+(m—1)h ) (Fig. 1).

From @ we have:
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do; [

1. The Gauss-Seidel and the Gauss-Newton methods

With a primary approximation of @ , we have:

s 3 a_f . 9f of
ars ?{aKi AKit g dpit =, 4o}

If rearranging here the parameters Ki’ ui‘, 0; We express by

a; = (i = 1-3n), we obtain:

A 3n af
Af—r?————au._ da;

If we substitute this in @, then:
d2= ?{F—vgqu)]z
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If we use here the least square method, then:

2 - ?
gy =2 PPt 3

=0

From this we obtain the following simultaneous equation:

(345 35) ()~(pa-af) ~©

X

This we call a normal equation and abbreviate as
AAaoa=05>»

This is solved by the Gauss-Newton method which seeks Aa In fact,

i

however, the methods not using directly the normal equation are more precise
and adopted by apparatus such as the large computers (Nakagawa-Koyanagi 1982).
We used here theemethod solving the normal equation by the elimination method
of Gauss. However, as the coefficient queue consists of symmetric positive
fixed values, the computation is performed in an upper triangular queue
(Togawa 1971).

As the parameters are moved one at a time in the Gauss-Seidel method,

because of Adj =0 ( 4 1), (:) becomes:

(G i3 (o
and the solution is easy. When eiplained in the case of 2 variables; Fig., 2
is obtained and we see that the convergence is slow.

In this regard, with linear patterns a solution is obtained at once
in the Gauss-Newton method as with regression straight lines. With non-linear
patterns, repetition is necessary because of the error due to linear pattern
approximation, However, convergence is extremely rapid in the vicinity of
the solution. Farther away from the solution there is occurrence of
vibration and dispersion.

In order to compare both methods, we analysed the data of porgy

body length composition by Tanaka (1956). With the Gauss-Seidel method it
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takes 500 iterations to reach a perfect convergence. With the Gauss-Newton
method, a perfect convergence is reached after 5 or less iterations. How-
ever in the latter method, there is vibration and dispersion with ordinary
early values, and so for the early values we used values calculated 5 times

by the Gauss-Seidel method.

Steepest descent method p. 55

Calling the parameter Qs @ yields:

od2 _
= wzy_‘,d,_a_. ........................ @

If we assume:

o=(~3
then the vector g is the normal of the egual-height surface of d2 and faces
the direction of the valley bottom (Fig. 4). We call g the steepest descent

vector. Thus we put

da= (};‘,d,—aa% A

and by taking a suitable k we repeat the calculation until the solution is
reached. Generally one provides a suitable early value ko and when

Ad2 < 0, there is acceleration by kn+1 = kn*l.z. When Ad2 » 0, there is

acceleration by k = kn/2 and one proceeds anew (Ruckdeschel 1982).

n+1

If we take a method similar to the Gauss-Seidel method, then from p. 36
Af_,)}f da= {)35[{ 'g,dx-aaail_ }k

=8k

#=T{F-r+4D} =D i b
3 des
W o k is found through * =3z

However, no convergence takes place by this alone. The reason is

that because of 74«45, 2L, K, does mot change at all. So we performed

scaling with o=t . We obtain at this time

o _of da . 0f
" Ba; 8? i Ba

daij=a;de
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We chose here oy and used the value of a, at this time. Consequently
all parameters of every scale become 1 (Fig. 5). With this scaling there is
a fair improvement of convergence. In simple cases, this will do but in this
case the convergence is slow and not practical (Table 1). The reason is that
although the steepest descent direction is locally the optimum direction, it
is not necessarily a good general direction (Nakagawa, Koyanagi 1982). Thus

the steepest descent method is stable but its characteristic is a slow

convergence,

The Marqualdt method
The Marqualdt method combines the mutally opposite Gauss-Newton
method and the steepest descent method. When comparing (:) and (:) we have
b=g. ‘Thus:
(A+arda=p
We pose I: unit sequence., When A is large, A I A a = Db is
approximated and as A& = (1/A)b, we have the steepest descent method. When
A is small AAa = b is approximated and we have the Gauss-Newton method.
Consequently, we take a large A early value and as it grows smaller, the
solution is reached. When in the Marqualdt method Ad2 < 0, X is decreased
by A = A/v. When Ad> » 0, A is increased by A = A-v and ‘the procedure is
repeated. Generally v = 2 (Shimazu 1979). There is a method to obtain Ad2
through primary approximation by
ap —2 5 (0L de)
but vibration and dispersion occurred. The reason seems to be that the non-
rectilinear pattern characteristic is strong and the error large with

- d and

a primary approximation. Here we find Ad2 directly by Ad2 = d2n+l 0

use this for the determination.



Example of application

Using a PC 8801, we analysed the data of Tanaka. The results are
shown in Table 1. When A is taken above 1,000, the conwvergence is extremely
good. When A is taken at 100 or lower, A + « after the 2nd time and a stop p. 57
is reached. The reason seems to be that because A is too small, the con-
tribution of A is small and with the first computation, there is a change
due to the Gauss-Newton method and a stoppage point is entered.

In the Marqualdt method one must take a large A and start in a con-
dition close to the steepest descent method. 1In this case A decreases
regularly and one converges on the solution. When to the contrary A increases
regularly, the solution is neared or A becomes too small and a stop point or
another very small point is entered so that one has to stop. In this pro-
gram, A is continuous and one stops when a 10-fold increase takes place.

As for the value of A, a number around 10,000 is appropriate. With

PC 8801, when things went well, one iteration took about 3 min 25 s.

Discussion

Generally d2 converges relatively fast but the convergence of the
various parameters is slow. The reason seems to be that in the vicinity of
the solution, the value of the deviation-inducing functions of the various
parameters came close to 0 and this is a common characteristic seen in the
various kinds of optimization methods. Consequently it is preferable not to
put excessive faith in the calculated values of the parameters (Ruckdeschel
1982),

The method seeking the regression curve by the least square method
is eiplained in detail by Nakagawa and Koyanagi (1982), For this, complex
large programs must be prepared for use by large computers, as in the pre-

sented SALS, However, as program to be used with small computers, this




level of program seems to be appropriate. With regard to data not p. 60
suited to this program, it is preferable to proceed with large computers.
It also appears that the method determining by integrals the residual
functions as proposed by Shimazu (1979) takes too much time with small
computers.

This program may be applied to most regression curves. It is
also possible to find the partial differences by difference approximation
and to make the program universally usable. When,however;one considers
things such as the fact that the convergence becomes less stable because of
the errors, it seems preferable to make a new preparation each time.

At the close of this article T want to thank Kiyohide ISHIOKA,
chief researcher at the marine resources department of the Southwest Sea
Regional Fisheries Laboratory as well as Fumihiko KATO, chief researcher at
the resources department at the Sea of Japan Regional Fisheries Laboratory

for their encouragement and advice.

ax  h b
BIR REOHM

Fig. 1. Ilustration of variables.
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Fig. 2. Convergence of Gauss-Seide! method in
the case of 2 parameters.
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Fig. 3. Convergence of d%
GS: Gauss-Seidel method. GN:Gauss-Newton method, Data: the example
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Fig. 5. Scaling of parameters.
g+ sleepest descent vector.
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Table 1, Convergence of d?

parameter.

Number of iteratians Margualdt's method Gmg:;}s‘:ggdel sme‘;ﬁ:{ﬁ;‘:e"t
A=1000 A=10¢

0 798925 798925 798925 798925
1 30880 21717 95838 638443
2 6784 9405 25020 579662
3 6282 7646 11443 520681
4 6251 6810 8309 492315
5 6250 6530 7364 465906
6 6250 6453 6987 440723
7 6401 6802 417380
8 6359 6695 395116
9 6329 6626 374430
10 6300 6577 354749
11 6273 6539 336417
12 6257 6508 319014
13 6251 6481 302771
1« 6250 6458 287377
w15 % R . 6250 . 6439 . 272987
16 6421 259367
17 6406 246620
18 6392 234566
19 6380 223274
20 6370 212604




TaySLaYAL (¥ 54 DF—FDAIH)
Program list (DATA: the example of porgy)

REM
REM POLYMODAL 3
REM

REM Z19Ys2

READ NND,MCM, NCL., CWD,NIT,LAMBDA,NU
PRINT “&4$7°57° / D2“=";NND

PRINT ‘%4339 /7 D4#19%="3MCM

PRINT ‘ne%19 /J n2* ="3NCL
PRINT ‘nf#19 7 AA" =" 3CuD
PRINT * Ns7°929 =':NIT
PRINT °* LAMBDA =" jLAMBDA
PRINT * NU ="1NY
PRINT

STOP

N3=3%¥NND

DIM F(NCL),X(NCL),DX(NCL),BIBUNCN3),NDCNNO,NCL)
DIM HENSUCN3),KEISUCNS,N3), TEISU(N3) , Z0BUNINS) \HENSUZ(N3)
FOR K=1 TO NCL
X(K)=MCM+(K~1 )*CWD
READ F(K)
PRINT *F('$X(K);")="§F(K)
NEXT K . ) o
PRINT | - Do MRS
STOP :
FOR I=1'TO NND
§3=1152=83+NND151=52+NND
READ HENSU(S1),HENSU(S2),HENSU(S3)
PRINT *I="3

i
PRINT ﬂ;h$=':HFNqU(Q1), Afty=" JHENSU(S2), " 7" =" HENSU(S3)

P9=,398942:1P8=-.5
FOR I=1 TO N3
. HENSU2(I)Y=HENSU(I)
NEXT 1
GOsUs xCLD2
D2=03
PRINT *D2="3;D2
PRINT
FOR KK1=1 TO NIT+1
REM Ss4n
FOR I=1 TO N3
TEISU(I)=0
FOR J=1 TO N3
KEISU(T,J)=0
NEXT JINEXT 1
REM Y99
FOR K=1 TO NCL
FOR I=1 TO NND
$§3=1152=53+NND151=52+NND
P1=HENSU(S1) tP2=X(K)~HENSU(S2) tP3=HENSU(S3)
P6=ND(1,K)
BIBUN(S1)=P6/P1®HENSU(S1)
BIBUN(S2)=P6%P2/P3/P3%HENSU(S2)
BIBUN(S3)=P6%(P2xP2-P3%P3)/P3/P3/P3*¥HENSU(S3)
NEXT I
D1=DX(K) -

10

770 REM %129

780 FOR I=1 TO N3

790 TEISUCII=TEISUCI)+D1%BIBUNC( 1)

ggg FOR J=1 TO N3

KEISUCT, )=KEISU(I, J)+8B *

820 NEXT JINEXT TsNEXT K TBUNCEIBIBUNGS)
830 LAMBDA2=0

840 K2=0

850 *REP

860 K2=K2+1

870 IF K2>11 GOTO XOWARI

880 PRINT

890 PRINT °"LAMBDA=";LAMBDA

900 PRINT

210 FOR I=1 T0 N3

920 KEISU(I, I)=KEISUCT, I )+LAMBDA-LAMBDAZ
230 NEXT 1

940 REM £*U3Y 5394y

950 FOR I=1 TO N3-1

. 960 FOR K=I+1 TO N3

970 Q1=KEISU(I,K)/KEISUCTI, 1)

280 TEISUCK)=TEISU(K)~QI*TEISU(I)

990 FOR J=K TO N3

1000 KEISUCK, J)=KEISU(K, J)-Q1¥KEISU(I,J)

1010 NEXT JsNEXT KiNEXT 1

1020 REM 1994 §°4Z19

1030 ZUBUN(N3)=TEISU(N3)/KEISU(N3 N3)
1040 .. FOR I1=N3-1 TO 1 STEP -

1050 T1=TEISU( ) - .

1060 FOR J=I+1 TO N3 .
1070 TI—TI—ZOBUN(J)!KEISU(I D)

1080 NEXT J

10%0 ZOBUNCIN=T1/KEISU(I,1)

1100 NEXT 1

1110 FOR I=1 TO N3

1120 ZOBUNC 1 )=Z0OBUNC I )®HENSU(I)
1130 HENSU2( 1)=HENSU( I)+ZOBUNC )
1140 NEXT 1

1150 GOSUB *CLD2

1160 IF D3»>=D2 THEN LAMBDA2=LAMBDA:LAMBDA=LAMBDAXNU:GOTO *REP

1170 REM Za9td(
1180 LAMBDA=LAMBDA/NU

11%0 D2=D3
1200 FOR I=1 TD N3
1210 HENSU( 1)=HENSU2( 1)

1220 NEXT 1

1230 GOSUB *SHUTU
1240 NEXT KK1

1250 *OWARI

1260 END

1500 =CLD2

1510 D3=0

1520 FOR K=1 TO NCL

1530 Fi=0

1540 FOR I=1 TO NND

1550 53=1:52=53+NND:51=52+NNO

1560 P1=HENSU2(S1) :P2=X(K)-HENSU2(§2) : P3=HENSU2(S3)
1570 NDC I, K)=Po¥P1/P3xEXP (P8XP2%P2/P3/P3)
1580 F1=F1+NOCT,K)

1590 NEXT I

1600 D1=F(K)-F1

1610 DX(K)=D1

1620 D3=D3+D1*D1

1630 NEXT K
1640 RETURN
2000 *SHUTU,



2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
3000
3010
3020
3030

REM 31%YYa?
PRINT °*D2=";D2
PRINT

PRINT *AY7°229=";

FOR I=1 TO NND
PRINT "I="31

§3=1382= S3+NND381‘82+NND
* $HENSU(S1), "Af$y=" ’HENSU(SZ). 7" »%u="{HENSU(S3)

PRINT ‘Xut#=
NEXT 1
RETURN

DATA 5,7.5,29,1,20,10000,2

DATA 7,79, 509 2240 2341, 623 476,1230, 1439 921,448,512,719,673
DATA 445 341 310, 228 168 140,114,644, 22 o, 2 2, 0 0, 1

DATA 5000,11,1.4000.15.5.1.3000.20,1

EROBH

Correspondence of variables

NND : number of normal distributions
MCM: minimum class mark
NCL : number of classes
CWD : class width
NIT : number of iterations
FK): F
X(K): x
DX(K) : dx
D2 a2
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