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The BASIC Program to Analyse the Polymodal Frequency Distribution 

into Normal Distributions with Marqualdt's Method 

by 

Tatsuro ARAMINE 

Abstract 

The algorithm of this program is Mar-
qualdt's method. Gauss' elimination method 
is used to solve the simultaneous linear equa-
tions. Each parameter is scaled during cal-
culation for faster convergence. User inputs 
the data and initial values of the parameters. 
It is adequate for convergence to set À=10000 
or larger. 

The method analysing the polymodal frequency distribution into normal 

distribution enables by plotting the frequencies in the medium values of the 

classes to perform a resolution to the regression curve method based on the 

least square. Akamine (1982) prepared the program of the Gauss-Seidel 

method. As the memory was reduced to the minimum for a small-size computer, 

there was a drawback of slow convergence. 

The performance of small computers has risen remarkably in recent 

times and it became possible to prepare programs with more rapid conver-

gence. The present program based on the Marqualdt method is rapid 

1) Japan Sea Regional Fisheries ReseardiLaboratory, Suido-cho, Niigata 951, 
Japan. 
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in convergence and good in stability. The machine used is the PC 8801 (NEC), 

but if the memory is satisfactory, less advanced machines may be used. 

Calculation Method 

We will call F the given frequency distribution, m the number of 

classes, h the width of the classes, a the smallest class value and b the 

greatest value. If we call n the number of normal distributions to be 

analysed, then the sought formulai, the residual function d2 are: 

f= t iCi•I■T(pi,  cl, x) 	 0 

	

N(tt i, ai, x)—  1   exp{—  (x—ei)2 	
VgZ" Oi 	2(1 12  

d2 =  E dx2=E(F—D 2 	 0 
'x=a 	x 

(Fig. 1). 

From 0 we have: 

af 
a , x) 

?Ki 

al 
=Ki•N(p• 

 

u, 	•  x— api 	 17 	 ci2 

—K N() (x-i• 	Pie aii X • 
Cie 

1. The Gauss-Seidel and the Gauss-Newton  methods 

With a primary approximation of 0 , we have: 

a f 	af A ci  n  af AK1-1- 41e 	f=e 	
aPi 

If rearranging here the parameters K p a. we express by 

a
i 
= (i = 1-3n), we obtain: 

i ad; 

If we substitute this in (2), then: 

d2={F--(f-I-4f)) 2  
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If we use here the least square method, then: 

adz 	n  Pf 
cuTi- e 

From this we obtain the following simultaneous equation: 

of af ) (4a)—(Ed. 4
ai
—f ) ...e 

- 

This we call a normal equation and abbreviate as 

A a = b 

This is solved by the Gauss-Newton method which seeks Aa
i 

In fact e  

however, the methods not using directly the normal equation are more precise 

and adopted byapparatus such as the large computers (Nakagawa-Koyanagi 1982). 

We used herethemethod solving the normal equation by the elimination method 

of Gauss. However, as the coefficient queue consists of symmetric positive 

fixed values, the computation is performed in an upper triangular queue 

(Togawa 1971). 

As the parameters are moved one at a time in the Gauss-Seidel method, 

because of La = 0 (j 	i), ® becomes: 

and the solution is easy. When explained in the case of 2 variables, Fig. 2 

is obtained and we see that the convergence is slow. 

In this regard, with linear patterns a solution is obtained at once 

in the Gauss-Newton method as with regression straight lines. With non-linear 

patterns, repetition is necessary because of the error due to linear pattern 

approximation. However, convergence is extremely rapid in the vicinity of 

the solution. Farther away from the solution there is occurrence of 

vibration and dispersion. 

In order to compare both methods, we analysed the data of porgy 

body length composition by Tanaka (1956). With the Gauss-Seidel method it 



scaling with . We obtain at this  time  a; 
CI; 
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takes 500 iterations to reach a perfect convergence. With the Gauss-Newton 

method, a perfect convergence is reached after 5 or less iterations. How-

ever in the latter method, there is vibration and dispersion with ordinary 

early values, and so for the early values we used values calculated 5 times 

by the Gauss-Seidel method. 

2. Steepest descent method 	 p. 55 

Calling the parameter ot i, 0 yields: 

d 
vai 	 cai 

If we assume: 

(4) 

= 	
ad2 • 

g (--0 

then the vector g is the normal of the equal-height surface of d2 and faces 

the direction of the valley bottom (Fig. 4). We call g the steepest descent 

vector. Thus we put 
?f cii= 	)k uct i  

and by taking a suitable k. we repeat the calculation until the solution is 

reached. Generally one provides a suitable early value ko  and when 

Ad
2 < 0, there is acceleration by kn+1 = kn*1.2. 

When M2  0, there is 

acceleration by kn+1 = kn/2 and one 
proceeds anew (Ruckdeschel 1982). 

If we take a method similar to the Gauss-Seidel method, then from 

e-me à «.-pkm#4f k 
tx; 	„ct i  

=Pxk 

(12= 	(f tif )12 	px 12)2 

ae-0 k is found through k —  11,m 

However, no convergence:takes place by this alone. The reason is 

that because of ece-, e, Ki  does not change at all. So we performed 

p. 56 

ai 	af a«, 	a f 
TacTi 

	—a 
i 
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We chose here a i 
and used the value of ai 

at this time. Consequently 

all parameters of every scale become 1 (Fig. 5). With this scaling there is 

a fair improvement of convergence. In simple cases, this will do but in this 

case the convergence is slow and not practical (Table 1). The reason is that 

although the steepest descent directionis locally the optimum direction, it 

is not necessarily a good general direction (Nakagawa, Koyanagi 1982). Thus 

the steepest descent method is stable but its characteristic is a slow 

convergence. 

3. The Marqualdt method 

The Marqualdt method combines the mutally opposite Gauss-Newton 

method and the steepest descent method. When comparing 0 and 0 we have 

b = g. Thus: 

b 

We pose I: unit sequence. WhenXis large,XIAa=b is 

approximated and as Act = (1/X)b, we have the steepest descent method. When 

X is small Ma = b is approximated and we have the Gauss-Newton method. 

Consequently, we take a large X early value and as it grows smaller, the 

solution is reached. When in the Marqualdt method Ad
2 < 0, X is decreased 

by X = X/y. When Ad
2 0, X is increased by X = X • y and the procedure is 

repeated. Generally y = 2 (Shimazu 1979). There is a method to obtain Ad
2 

through primary approximation by 

at  4e4-2Edx(E--acgi) 

but vibration and dispersion occurred. The reason seems to be that the non-

rectilinear pattern characteristic is strong and the error large with 

2 
a primary approximation. Here we find Ad di 	

2 	2 	2 
rectly by Ad =. d n+1 - d n and 

use this for the determination. 
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Example of application 

Using a PC 8801, we analysed the data of Tanaka. The results are 

shown in Table 1. When X is taken above 1,000, the convergence is extremely 

good. When X is taken at 100 or lower, X co after the 2nd time and a stop 	p. 57 

is reached. The reason seems to be that because X is too small, the con- 

tribution of X is small and with the first computation, there is a change 

due to the Gauss-Newton method and a stoppage point is entered. 

In the Marqualdt method one must take a large X and start in a con-

dition close to the steepest descent method. In this case X decreases 

regularly and one converges on the solution. When to the contrary X increases 

regularly, the solution is neared or X becomes too small and a stop point or 

another very small point Is entered so that one has to stop. In this pro-

gram, X is continuous and one stops when a 10-fold increase takes place. 

As for the value of X, a number around 10,000 is appropriate. With 

PC 8801, when things went well, one iteration took about 3 min 25 s. 

Discussion 

Generally d
2 
converges relatively fast but the convergence of the 

various parameters is slow. The reason seems to be that in the vicinity of 

the solution, the value of the deviation-inducing functions of the various 

parameters came close to 0 and this is a common characteristic seen in the 

various kinds of optimization methods. Consequently it is preferable not to 

put excessive faith in the calculated values of the parameters (Ruckdeschel 

1982). 

The method seeking the regression curve by the least square method 

is explained in detail by Nakagawa and Koyanagi (1982). For this, complex 

large programs must be prepared for use by large computers, as in the pre-

sented SALS. However, as program to be used with small computers, this 

5 
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level of program seems to be appropriate. With regard to data not 	 p. 60 

suited to this program, it is preferable to proceed with large computers. 

It also appears that the method determining by integrals the residual 

functions as proposed by Shimazu (1979) takes too much time with small 

computers. 

This program may be applied to most regression curves. It is 

also possible to find the partial differences by difference approximation 

and to make the program universally usable. Whene however,one considers 

things such as the fact that the convergence becomes less stable because of 

the errors, it seems preferable to make a new preparation each time. 

At the close of this article I want to thank Kiyohide ISHIOKA, 

chief researcher at the narine resources department of the Southwest Sea 

Regional Fisheries Laboratory as well as Fumihiko KATO, chief researcher at 

the resources department at the Sea of Japan Regional Fisheries Laboratory 

for their encouragement and advice. 
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Fig. 1. Illustration of variables. 
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Fig. 2. Convergence of Gauss-Seidel method in 
the case of 2 parameters. 
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Number of iterations 
*30 .  OtiReide 

GS : Gatiss-Seidel 	GN Gauss-Newton e 	cnivij 	• 
exim Gauss-Seidel e•e 5 anmatv. 

Fig. 3. Convergence of cp. 
GS: Gauss-Seidel method. GN:Gauss-Nevnon method. Data: the example 
of porgy. Initial values: after 5 interations of Gauss-Seidel method. 
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Fig. 9. Convergence of steepest descent method 
in the case of 2 parameters. 
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Fig. 5. Scaling of parameters. 

az steepest descent vector. 
g' steepest descent vector of scaled 

parameter. 

Table 1. Convergence of cP. 

Marqualdt's method 
Number of iterations  	

Gauss-Seidel 	Steepest descent 

	

method 	 method 
.1=1000  

0 	 798925 	 798925 	 798925 	 798925 

1 	 30880 	 21717 	 95838 	 638443 

2 	 6784 	 9405 	 25020 	 579662 

3 	 6282 	 7646 	 11443 	 520681 

4 	 6251 	 6810 	 8309 	 992315 

5 	 6250 	 6530 	 7364 	 465906 

6 	 6250 	 6453 	 6987 	 440723 

7 	 6401 	 6802 	 417380 

8 	 6359 	 6695 	 395116 

9 	 6329 	 6626 	 374430 

10 	 6300 	 6577 	 354749 

11 	 6273 	 6539 	 336417 

12 	 6257 	 6508 	 319014 

13 	 6251 	 6481 	 302771 

14 	 6250 	 6458 	 287377 

15 	. 	 6250 	 6439 	 272987• 

16 . 	 6421 	 259367 

17 	 6406 	 246620 

18 	 • 	 6392 	 234566 

19 	 6380 	 223274 

20 	 6370 	 212604 

9 
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d 

1ng,4 1.11.• ( 5(4 	e0)03e» 
Program list (DATA: the example of porgy) 

:0 	REM 
1 0 REM POLYMODAL 3 
30 	REM 
10 REM :19919 
50 	READ NNO,MCM,NCL,CWO.NIT,LAMBDA,NU 
$O 	PRINT "t4+7'.)7 I De= • ; NND 
20 PRINT . Yi50 I petos='smcm 
30 	PRINT . 114#29  i 32" 	= . : NCL 
PO 	PRINT . /1441 	AA' 	= . :CWEI 
100 PRINT • 	W,7921 	= • ; NIT 
110 PRINT • 	LAMBDA 	= • ;LAMBOA 
120 PRINT • 	NU 	= • illU 
130 PRINT 
140 STOP 
150 N3=3*NNO 
160 DIM F(NCL),X(NCL),DX(NCL),BIBUN(N3),ND(NNO,NCL) 
170 DIM HENSU(N3),KEISU(N3,N3),TEISU(N3).ZOBUN(N3),HENSU 2 (N3 ) 
180 FOR K=1 TO NCL 
190 	X(K)=MCM+(K-1)*CWO 
200 	READ F(K) 
210 	PRINT • F( . 1X(K); • )=';F(K) 
?20 NEXT K 
230 PRINT 
240 STOP 
250 FOR 1=110 NND 
260 	S3=1:S2S3+NNDS1S2+NND 
270 	READ HENSU(S1),HENSU(S2),HENSU(S3) 
280 	PRINT . 1.0 
290 	PRINT . e..h*=HENSU(S1), HFNSU(S2), • 7':,e>= • : HENSU(S3) 
300 NEXT 
310 STOP 
500 REM 74,› 
510 P9=.398942P8=-.5 
520 FOR I=1 TO N3 
530 	HENSU2(I)=HENSU(I) 
540 NEXT 
550 GOSUB *CLD2 
560 02=03 
570 PRINT • D2= . 102 
580 PRINT 
590 FOR KK1=1 TO NIT+1 
600 	REM bs#A 
610 	FOR 1=1 TO N3 
620 	TEISU(I)=0 
630 	 FOR J=I TO N3 
640 	 KEISU(1,J)=0 
650 	NEXT JINEXT 
660 	REM V99 
670 	FOR K=1 TO NCL 
680 	FOR 1=1 TO NND 
690 	 03=I:S2=S3+NN0iS1=52+NNO 
700 	 P1=HENSU(S1):P2=X(K)43ENSU(S2):P3=HENSU(S3) 
710 	 P6=b10(1,K) 
720 	 BIBUN(S1)=P6/P1*HENSU(S1) 
730 	 B1BUN(S2)=P6*P2/P3/P3*HENSU(S2) 
740 	 BIBUN(S3)=P6*(P2*P2-P3*P3)/P3/P3/P3*HENSU(S3) 
750 	NEXT 
760 	01=DX(K) 

770 	REM 7429 
780 	FOR 1=1 TO N3 
790 	 TEISU(I)=TEISU(I)+Dl*BIBUN(I) 
800 	 FOR J=I TO NO 
810 	 KEISU(I,J)=KEISU(I,J)+BIBUN(I)*BIBUN(J) 
820 	NEXT J:NEXT IiNEXT K 
830 	LAMBDA2=0 
840 	K2=0 	' 
850 	*REP 
860 	K2=K2+1 
870 	IF K2)11 GOTO *OWARI 
880 	PRINT 
890 	PRINT • LAMBIDA= • ;LAMBDA 
900 	PRINT 
910 	FOR 1=1 TO N3 
920 	KEISU(I,I)=KEISU(I,I)+LAMBDA-LAMBDA2 
930 	NEXT I 
940 	REM 	ba943 
950 	FOR 1=1 TO N3-1 
960 	FOR K=I+1 TO N3 
970 	 Q1=KEISU(I,K)/KEISU(I,I) 
980 	 TEISU(K)=TE1SU(K)-Q1*TEISU(I) 
990 	 FOR J=K TO N3 
1000 	 KEISU(K.J)=KEISU(K,J)-Q1*XE1SU(I.J) 
1010 	NEXT JINEXT K:NEXT 
1020 	REM 7994 
1030 	ZOBUN(N3)=TEISU(N3)/KEISU(N3,N3) 
1040 	FOR I=N3-1 TO 1 STEP -1 
1050 	T1=TEISU(I) 
1060 	FOR J=I+1 TO N3 
1070 	 T1=T1-20BUN(J*KEISU(I,J) 
1080 	NEXT J 
1090 	ZOBUN(I)=T1/KEISU(1,I) 
1100 	NEXT I 
1110 	FOR 1=1 TO N3 
1120 	ZOBUN(I)=20BUN(I)*HENSU(I) 
1130 	HENSU2(I)=HENSU(I)+ZOBUN(I) 
1140 	NEXT 1 
1150 	GOSUB *CLD2 
1160 	IF D3>=D2 THEN LAMBOA2=LAMBDA:LAMBDA=LAMBDA*NU:6OT0 *REP 
1170 	REM ba9t4 
1180 	LAMBDA=LAMBDA/NU 
1190 	D2=03 
1200 	FOR I=1 TO N3 
1210 	HENSU(I)=HENSU2(I) 
1220 	NEXT I 
1230 	GOSUB *SHUTU 
1240 NEXT KK1 
1250 *OWARI 
1260 END 
1500 *CLD2 
1510 03=0 
1520 FOR K=1 TO NCL 
1530 	F1=0 
1540 	FOR 1=1 TO NND 
1550 	S3=I:S2=S3+NNO:S1=02+NNO 
1560 	P1=HENSU2(S1):P2=X(K)-HENSU2(82):P3=HENSU2(S3) 
1.570 	ND(I,K)=P9*Pl/P3*EXP(P8*P2*P2/P3/P3) 
1580 	F1=F1+NO(I,K) 
1590 	NEXT I 
1600 	D1=F(K)-F1 
1610 	DX(K)=D1 
1620 	03=03+1311011 
1630 NEXT K 
1640 RETURN 
2000 *SHUTU 



2010 REM D2'9939 
2020 PRINT . 02=';D2 
2030 PRINT 
2040 PRINT 'Ai7°9=';KK1 
2050 FOR I=1 TO NND 
2060 	PRINT . I= . 0 
2070 	S3=I:S2=33+NNO:S1=32+NND 
2080 	PRINT  
2090 NEXT I 
2100 RETURN 
3000 DATA 5,7.5,29,1,20,10000,2 
3010 DATA 7,79,509,2240,2341,623,476,1230,1439,921,448,512,719,673 
3020 DATA 445,341,310,228,168,140,114,64,22,0,2,2,0,0,1 
3030 DATA 5000,11,1,4000,15.5,1,3000,20,1.5,1000,24,1.5,500,27,1.5 

ere:moil 
Correspondence of variables 

NND : number of normal distributions 

MCM : minimum class mark 

NCL : number of classes 

CWD : class width 

NIT : number of iterations 

F(K) : F 

X (K) : x 

DX(K) : 

D2 	: cg, 

D3 	: 

HENSU( I 
HENSU 2 ( I ) 	: cgi n+i 
BIBUN ( I ) 

' 	ace, 

KEISU (I, J) 	 a! 	f  
aai a«;  

TEISU ( I ) 	: Edxe  

ZOBUN ( I ) 	: 

ND (J, K) 	: Kc•N(14,cri,x) 
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