Not to be cited without permission of the authors Canadian Atlantic Fisheries Scientific Advisory Committee CAFSAC Research Document 85/78 Ne pas citer sans autorisation des auteurs l Comité scientifique consultatif des pêches canadiennes dans l'Atlantique CSCPCA Document de recherche 85/78 Assessment of the 1984 4WX herring fishery by R. L. Stephenson, M. J. Power, T. D. Iles Marine Fish Division Fisheries Research Branch Department of Fisheries and Oceans Biological Station St. Andrews, New Brunswick EOG 2X0 and P. M. Mace Marine Fish Division Fisheries Research Branch Department of Fisheries and Oceans Bedford Institute of Oceanography P. O. Box 1006, Dartmouth, Nova Scotia B2Y 4A2 This series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations. Research Documents are produced in the official language in which they are provided to the Secretariat by the author. Cette série documente les bases scientifiques des conseils de gestion des pêches sur la côte atlantique du Canada. Comme telle, elle couvre les problèmes actuels selon les échéanciers voulus et les Documents de recherche qu'elle contient ne doivent pas être considérés comme des énoncés finals sur les sujets traités mais plutôt comme des rapports d'étape sur les études en cours. Les Documents de recherche sont publiés dans la langue officielle utilisée par les auteurs dans le manuscrit envoyé au secrétariat. #### ABSTRACT The gear composition and timing of the 1984 herring fishery in NAFO Division 4WX was similar to that in previous years. The major portion of the fishery took place off southwest Nova Scotia (June-October; purse seine and gillnet) with smaller concentrations of effort off southern New Brunswick (June-February; weir and purse seine) and off Cape Breton (November-February; purse seine). The 1984 fishery continued to be influenced strongly by markets and was marked by an exceptionally large roe market utilizing spawning fish and some directed effort for young fish by the southwest Nova Scotia purse seine segment. Reported landings declined slightly in 1984; mostly as a result of continued poor catches in the New Brunswick weir fishery. The incidence of misreporting of landings is known to have been high, particularly in the purse seine segment of this fishery and corrections were made to the nominal catch matrix for the years 1973-1984 to give an "adjusted" matrix. The 1984 catch adjusted for misreporting (136,000 t) is higher than the comparable figure for 1983. Cohort analysis was undertaken for both the nominal and adjusted catch matrices, calibrated (as in previous years) with larval abundance from the annual autumn larval herring survey. Analysis indicated an increase in stock biomass over recent years. ## RÉSUMÉ L'équipement et les périodes de pêche au hareng en 1984 dans la Division 4WX de l'OPANO ont été semblables à ceux des années précédentes. La pêche a été surtout pratiquée au large de la côte sud-ouest de la Nouvelle-Ecosse (juin-octobre : senne coulissante et filet maillant) avec une moindre concentration d'efforts au large de la côte sud du Nouveau-Brunswick (juin-février : bordigue et senne coulissante) et au large du Cap-Breton (novembre-février : senne coulissante). La pêche de 1984 a continué à être très influencée par les marchés; elle a été marquée par un marché exceptionnellement important de la rogue de poissons en frai et par un effort particulier de pêche de jeunes poissons à la senne coulissante au sud-ouest de la Nouvelle-Ecosse. Les débarquements déclarés ont décliné légèrement en 1984, principalement à cause des faibles prises à la bordigue au Nouveau-Brunswick. On sait que le nombre des débarquements non déclarés a été élevé, particulièrement pour la pêche à la senne coulissante, et la matrice des prises nominales pour les années 1973-1984 a été "ajustée". Les prises ajustées en 1984 (136 000 t), pour tenir compte des non déclarées, sont supérieures à celles de 1983. Les matrices des prises nominales et des prises ajustées ont été soumises à une analyse de cohortes, avec étalonnage (comme les années précédentes) en fonction de l'abondance larvaire, telle qu'établie dans le relevé annuel d'automne des larves de hareng. D'après l'analyse, la biomasse globale a augmenté par rapport aux années précédentes. Description of the Fishery The 1984 herring fishery in NAFO Div. 4WX was similar to that in previous years. Purse seine was the major gear type, followed in relative importance by weirs, gillnet, traps, shutoffs and midwater trawl (Table 1). The major portion of the fishery took place off southwest Nova Scotia (4Xa; June-October) with smaller concentrations of effort off southern New Brunswick (4Xb; June-February) and off Cape Breton (4W Chedabucto Bay; November-February) (Fig. 1, 2). The fishery continued to be influenced strongly by markets (Table 2) and the year was marked by an exceptionally large roe market utilizing spawning fish and some directed effort for young fish by the 4Xa purse seine segment. ## 1984 Management Plan The Scotia-Fundy Region 1984 Herring Management Plan (Appendix 1) established a TAC for the 4WX stock of 80,000 t. This was allocated in the traditional manner between purse seine (80%) and inshore gear (20%), and among temporal components of the fishery (winter 4W, summer 4X, etc.). As in previous years, the N.B. weir and shutoff fishery and a portion (50%) of the fall 4X purse seine fishery (around Grand Manan) were considered to be on non-stock fish (i.e. from the Gulf of Maine stock), and therefore not included in the quota. #### Catch Statistics Reported landings for the 1984 fishery (DFO, Scotia-Fundy Region, Statistics Branch records) are listed by month and gear segment in Table 3. Long-term trends in landings by the major gear segments are shown in Table 4 and Fig. 3. Misreporting is known to have been high in the purse seine sections of the fishery and those values must be questioned (see section on misreporting; p. 6). Recorded landings for the stock totalled 78,083 t, a slight decrease from the previous 3 years. Trends in reported stock (attributable to 4WX) and total (nominal) landings and in TAC are as follows: # 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 Reported stock catch (t) 122.7 149.7 143.9 115.2 117.1 95.9 59.0 79.6 87.7 84.7 84.4 78.1 Reported total catch (t) 142.6 170.3 174.7 143.9 150.7 134.7 96.2 93.1 106.8 110.7 94.1 88.7 TAC - - $- 109.0 \ 110.0 \ 99.0^{1} \ 65.0^{2}100.0 \ 80.2 \ 82.0 \ 80.0$ $^{^{1}\}mathrm{F}_{0.1}$ yield estimated at 60.0 t $^{2}\mathrm{TAC}$ raised from 60.0 t to 65.0 t in mid-season. 4Wa (Chedabucto Bay, Winter) Purse Seine Fishery According to the 1984 Management Plan, this fishery was open from November 7, 1983 to March 16, 1984, with a quota of 16,000 t. The reported catch of 6336 t was considerably lower than the quota and extends a trend of declining catch apparent since 1981. Several factors contributed to the decline in landings, including: - limited markets - individuals saving quota for the summer fishery - distribution of fish (inside the Chedabucto Bay closure line) - misreporting The decline was apparently not the result of lack of fish; an acoustic survey of the area (Buerkle 1985) showed a very large and persistent group of fish in the area. 4Xb (Bay of Fundy) Fall and Winter Purse Seine Fishery The Bay of Fundy "fall" and "brit" fishery was open from October 16, 1983 to April 15, 1984. A total of 6000 t was assigned in two segments: 4000 t before December 31 and 2000 t for the traditional "brit" fishery after January 1. Only 50% of the landings were applied to the quota. The amount recorded was 5683 t, a substantial increase over 1983 (2157 t) but still much lower than the annual landings (10,000-40,000 t) between 1965 and 1975 (Fig. 3). 4Xa (Southwest Nova Scotia) Summer Fishery The major segment of the fishery was hampered early in the season by a lack of market for large fish and low prices, but was assisted by an "over-the-side sales" program (vessels from the USSR) and by an exceptional roe market. ## a) Purse seine The 1984 Management Plan limited this fishery to the period June 1 to October 15, 1984 with a quota of 64,000 t minus what had been taken in the 4W and 4X fall and winter fisheries. Nominal landings of 58,343 t were recorded, a slight decrease from reported landings of the previous 2 years. # b) Gillnet The gillnet segment of this fishery took only 4490 t, lower than recent years (since 1980) but at a level consistent with catches between 1964 and 1974. The major reason for the decrease over recent years was a lack of market. #### c) Weirs Nova Scotia weirs recorded 2684 t, a substantial increase in catch over 1983. Some of the increase may have been due to favorable market conditions caused by the decline in N.B. weir catches. # 4Xb (New Brunswick) Weir and Shutoff Fishery The New Brunswick weir and shutoff fishery suffered its lowest catch on record (8698 t). This represents the second consecutive year of record low landings and indicates a serious resource problem in this portion of the fishery. # Logbook Information Purse seine log records were received from 26 vessels (60% of the fleet). These accounted for 36% of the recorded successful nights (= trips) and 43% of the recorded catch in the 4Xa fishery, and for 22% and 49% of the landings in 4Xb and 4Wa, respectively (Table 5). #### ASSESSMENT INPUT DATA ## Stock Components As in previous assessments (e.g. Sinclair and Iles 1981), the 4WX fishery is divided into "stock" and "non-stock" components (Table 3). "Stock" fish are considered to belong primarily to the major SW Nova Scotia spawning groups, but this unit also encompasses smaller local stocks (e.g. Grand Manan,
Scotts Bay). The "non-stock" component is comprised of: - 4Xa miscellaneous small localized Nova Scotia South Shore stocks caught in 4Xm gill, 4Xm trap and bycatches in handline and longline fisheries - 4W miscellaneous 4W fish taken in gear other than purse seine, on the assumption that the fish are from local stocks. Also, as in previous assessments, those segments of the fishery which span the winter months (4Wa and 4Xb purse seine) are considered on a quota year basis (October 16, 1983-October 15, 1984). All other segments are considered for the calendar year 1984. ## Biological Sampling As in previous years, sampling of commercial catches was stratified by area, gear segment and month following the guidelines of: - 1) obtaining as many length frequencies from individual catches as possible; and - 2) stratified "detail" samples (two fish per half cm size-class above 24 cm; one per half cm size-class below 24 cm) to a level of at least 200 fish per area, gear and month. Although sample coverage was high and resulted in 1181 length frequencies and 10,331 fish analyzed in detail (including ages), some cells (area and gear by month) were undersampled (Table 6). Biological samples were matched to landings by gear component on a monthly basis as in previous assessments. Numbers at age from commercial catches were generated using programs HERNLWO2 and HERNAGO9 on the St. Andrews HP3000 in the traditional manner. For all gear components except 4Xa purse seine, length-frequency samples were applied on a monthly basis. Since the summer purse seine fishery involves several distinct fishing grounds and markets, including directed effort for small (sardine) and large (roe) fish, a smaller spatial scale was considered necessary. As in the previous assessment, length frequencies were matched by individual 10' square and month. Catches were partitioned by square on the basis of logbook information and where samples and catches did not coincide, length-frequency information from adjacent squares was used. The difference that can occur between nearby areas is demonstrated in adjacent squares in the Trinity Ledge/McDormand Patch area (Table 7). This area was the focus for directed effort on both large spawning herring for the roe market (Trinity Ledge spawning grounds) and for small herring suitable for the sardine market (McDormand Patch). Estimates of numbers at age were obtained using the same age composition and assuming a standard catch, but using length frequencies from each square, and demonstrate the significant difference, especially in young and old fish (Table 7). The effect of calculating catch at age for an entire area as opposed to the sum of calculations for individual squares of the 4Xa purse seine fishery is shown in Table 8. While the overall total monthly numbers work out to be similar, there is considerable discrepancy in numbers of younger and older age-classes. ## Age Composition The age composition of the nominal catch in major gear segments of the fishery is presented in Table 9 and Fig. 4. Age 3 (1981 year-class) dominated the 4WX stock by number and age 4 (1980 year-class) dominated by weight. Age 2 fish dominated the 4WX non-stock (primarily 4Xb) fishery both in number and weight. # Misreporting Misreporting by the 4WX purse seine fleet was significant. The situation is summarized in the following excerpt from the report of the Scotia-Fundy Herring Advisory Committee Working Group (Oct. 16, 1984): ## "The working group found: a) The present T.A.C. and resultant boat quotas are so low as to make it difficult if not impossible for all seiners to survive in the fishery. This is recognized in the efforts being made by DFO to reduce the size of the fleet. b) The present system of monitoring and enforcing the herring management plan has been inadequate and it is generally recognized by all parties that the quotas are being exceeded on a regular basis. The result of a) and b) above is that fishermen have every incentive to misreport, processors have good reason to take part in this process in order to maintain good relations with fishermen and ensure they get a fair share of the stocks, and there are no penalties of any significance to either of these groups to act as a deterrant to this misreporting. Scientific advice on the fisheries is jeopardized because of the consistently unrepresentative catch figures being provided." That working group contained representatives of most segments of the fishery (including purse seine groups), and stated formally what has now become a well known fact in this fishery: that nominal catch statistics for the 4WX purse seine fisheries are low compared to actual removals. At the previous assessment meeting (CAFSAC Res. Doc. 84/72, Iles et al. 1984) two catch matrices were prepared, the first containing the "nominal" landings (i.e. those provided by Statistics Branch), and the second the "adjusted catch," which attempted to account for misreporting by purse seine fisheries over the period 1980-83. Estimates of the degree of underreporting in the previous assessment were as follows: | 1980 | <u>1981</u> | <u>1982</u> | 1983 | |------|-------------|-------------|------| | 40% | 30% | 20% | 30% | Estimates for 1985, derived from a variety of sources, indicate a purse seine catch of approximately 120,000 t, 1.7 times the reported purse seine landings of 70,373 t. On the basis of extensive interviews with members of the fishing industry, as well as comparison between observer information and recorded landing statistics for 1983 and 1984, Mace (1985) estimated total removals by the purse seine fishery during the period 1973-1984. These estimates of purse seine landings (weight) are higher than recorded annual landings by the following factors: | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | |------|------|------|------|------|------|------|------|------|------|------|------| | 1.35 | 1.30 | 1.35 | 1.20 | 1.15 | 1.15 | 1.20 | 1.45 | 1.55 | 1.55 | 1.63 | 1.77 | #### Abundance Indices ## a) CPUE Catch-per-unit effort (calculated as in previous assessments - Table 10) decreased in 4Wa purse seine, 4X gillnet and 4Xb (N.B.) weir fisheries but increased considerably in the 4Xa purse seine and 4Xa (NS) weir fisheries. None of these abundance indices is sufficiently reliable nor appropriate for use as independent checks on population estimates; purse seine indices are known to be inaccurate, N.B. weirs take non-stock fish, gillnet and N.S. weir landings were strongly influenced by market. ## b) Larval abundance indices The 1984 November larval survey was completed successfully (202 sets). Larval abundance (Table 11), as represented by the geometric mean, was higher than it has been since 1975. Herring are demersal spawners and estimates of total egg deposition are impracticable. Larvae, on the other hand, tend to be persistent in their distribution, occupying "retention areas" (Iles and Sinclair 1982) that can be relatively easily covered by a survey grid. Larval abundance estimates are of two kinds, the first designed to cover the whole spawning area and spawning period by a series of surveys designed to integrate total larval production to a relatively early stage, usually up to a larval length of 10 mm (e.g. ICES Herring Working Group). The second is designed to cover the whole area of distribution of larvae at a time subsequent to the end of hatching but close enough to the mean time of spawning to minimize the variability in survival rate after hatching. Both methods assume constant hatching rates from deposited spawn. The Bay of Fundy larval survey is of the second type for both historical and logistical reasons, and it is carried out as far as practical over the same time period (early November) each year. The survey generates an estimate of total larval abundance derived from counts of herring larvae of all lengths and from all stations. The implied assumptions are that mean spawning time is the same each year and that mortality rates are constant after hatching and until the mean time of the survey. Three aspects of the precision and reliability of the larval abundance index have been considered: - 1. Station redundancy. The larval abundance index has been estimated for a subset of stations from a completed survey, selected at levels of 40%, 60% and 80% to be compared with that for all stations (100% coverage) (R. N. O'Boyle and T. D. Iles, unpubl. data). The survey was found to be very robust and there was a significant increase in the coefficient of variation of the VPA/larval estimate ratio for the 1970's only when sampling density was reduced by a factor of 4 or so. This is to be expected as the station density of the Bay of Fundy survey (1 station/50 km²) is about four times as great as the station density for larval surveys carried out in the Georges Bank area, the North Sea and the Pacific, to generate abundance indices for herring and other clupeid species. - 2. Comparison of right and left Bongo net catches at the same station and using the same (505) mesh size. This tests the reproducibility of results under identical survey conditions and tests the consistency of methodological factors such as net washing and transfer to specimen jars, sorting in the laboratory and identification and separation of herring larvae. Three cruises were examined and the results for two of these (P217, P268) were subjected to formal analysis (Table 12). Differences in numbers of larvae/m³ for the whole survey area were about 2% for cruise 268 and 4% for P.217, both well within the precision of counting as laid down in the sorting guidelines. The third cruise (P298) was used to compare the counts from right and left sides of the Bongo net on an individual station basis and over a wide range of larval numbers. The variation at individual stations was about 20% for low larval counts but declined to below 10% for higher counts and to 5% or less for the
stations at which the highest concentrations occurred. 3. Station repetition. A station with high abundance was sampled six times over a 10-h period (Table 13). The variation associated with the mean of 2323 was relatively small (SD = 500; SE = 224). The survey sampling procedures appear to give final results well within the limits of current survey technology and of theoretical constraints of larval survey methods. ## c) Acoustic estimate Buerkle (1985) undertook an acoustic survey of a large overwintering aggregation of herring in Chedabucto Bay, N.S., during February 1984. The herring formed three coherent aggregations, the largest about 6 mi \times 2 mi in area and between 15 and 50 m depth. The biomass of the largest aggregation was calculated to lie within the range 170,000-490,000 t (depending upon the target strength used) and the total biomass of herring in the bay was estimated to be about 545,000 t (Buerkle 1985). #### ASSESSMENT PARAMETERS ## A) Weights at Age In recent 4WX assessments, long-term (1969-78) mean July weights at age have been used. In the last assessment these mean values were used for every year of the matrix: | | | | '68 - | - '78 | average | weights | at age | (kg) | | · | |-----|------|------|-------|-------|---------|---------|--------|------|-------------|------| | Age | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | .010 | .041 | .112 | .172 | .218 | . 254 | . 286 | .323 | .354 | .389 | Table 14 shows the mean weights at age presented in annual assessment documents. In several cases, it is not clear how these were derived, or if they were used in projections. This year, weight at age was calculated in several ways for comparison. Table 15 contains mean (+ SD) weight at age by month of herring (n=7857) from biological samples collected from the 4X fishery (sample distribution as shown in Table 6). Table 16 presents mean weight at age calculated by month and weighted by gear for the stock components of the 1984 4WX fishery. Table 17 compares several weights at age. Sinclair et al. (1980) -(CAFSAC Res. Doc. 80/21) presents mean July weight at age for the 4WX stock (weighted by gear) for the years 1968-78. We have extended that series, using average July weights at age for the years 1979-83 and our calculated series for 1984 (Table 18). The 1984 July weights at age (mean for stock fish weighted by gear) are as follows: | _ | | | 198 | 84 weigh | hts at | age | | | | |-----|-------------|------|------|----------|--------|------|------|------|-------| | Age | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | 038 | .132 | .191 | . 229 | .259 | .280 | .296 | .309 | . 364 | #### B) Catch Matrix The "nominal" catch matrix (using DFO Statistics Branch data) is reproduced at Table 19. Minor changes have been made to the historical matrix (1968-83) as a result of previous transcription errors. A new "adjusted" catch matrix (from Mace 1985) which incorporates misreporting from 1973 to 1984 is presented in Table 20. The adjusted matrix differs from the nominal matrix by the following factors: # (adjusted/nominal): Year 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 Adjustment - - - - 1.28 1.29 1.30 1.16 1.12 1.11 1.11 1.32 1.46 1.33 1.46 1.64 (These factors differ from the previous text table (p. 7) in being for numbers (ages 1 to 10) rather than for total weight landed). ## C) Partial recruitment The partial recruitment pattern was changed from previous years after consideration of the population structure of the overwintering aggregation of herring in Chedabucto Bay, the pattern of the fishing mortality matrix and the increase in directed effort for small fish (as a result of low 4Xb weir landings in 1983 and 1984). The partial recruitment vector chosen and that of 1983 are presented below: | Age | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |--------------------|---|---|---|---|---|---|---|---|---|----| | PR 1984
PR 1983 | | | | | | | | | | | # D) Sequential population analysis Sequential population analysis (SPA) was undertaken for both the nominal and adjusted catch matrices, calibrated with larval abundance indices as in previous years. Regression of larval abundance on population biomass (mature and 5+ biomass) indicated terminal F values of .3 for the adjusted matrix and .225 for the nominal matrix, based upon the highest correlation coefficient (Table 21; Fig. 5). Regression of larval abundance on estimated egg production confirmed these values. Cohort analysis (Tables 22-24) indicated an increase in stock biomass over recent years. The 1979, 80, and 81 year-classes appear to be reasonably strong; the 1976 year-class dominates older age groups. Trends in population biomass (age 2+) using both adjusted and nominal catch matrices are presented below: 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 2+ popn biomass ('000 t) Adjusted matrix 454.8 370.7 282.2 251.3 386.5 407.5 380.5 403.8 445.4 464.0 Nominal matrix 383.1 320.9 239.0 197.6 286.0 294.4 278.2 299.3 332.6 368.7 A new calculation of the geometric mean recruitment (at age 1) was made using each catch at age matrix for 1965-81 with appropriate terminal F values. The values were 1,575,210 and 1,846,300 t for the nominal and adjusted matrices, respectively. #### E) Yield per recruit Because of the significant change in partial recruitment pattern over previous years, a Thompson and Bell Y/R analysis was made using long term average weights at age. The resulting $F_{0.1}$ value of 0.254 gives a yield per recruit of 63 gm. #### CATCH PROJECTIONS A range of catch projections are presented in Appendix 2. # MANAGEMENT CONSIDERATIONS # 1) Misreporting Misreporting in the 4WX herring fishery is not new; since 1980 all CAFSAC assessment documents for this stock have contained comments about misreporting and the potential effect this has on scientific advice. During 1984, however, the issue came to a head. There was agreement by all sectors of the industry that the degree of misreporting was high and there was a realization that it could seriously jeopardize the assessment process. DFO was unable to document landings in excess of the quota in 1984, but did make a request of CAFSAC in December 1984 for additional projections based upon 1985 landings of 107,600 t (derived from Fishery Officer hails). A number of meetings have been held and proposals made concerning the misreporting issue. These culminated at a meeting of DFO and Industry (chaired by the Director-General of Scotia-Fundy Region, Yarmouth, April 1-3, 1985) at which a draft management plan for 1986 was prepared. The main points of that proposed management plan are listed in Appendix 3. The quota (of 100,000 t for the purse seine segment and an allowance for other gear) exceeds scientific advice by a considerable amount. However, the proposal also contained steps to improve monitoring and to enforce the quota. At the 1985 CAFSAC meetings, the Pelagic Subcommittee accepted the use of the adjusted matrix as the basis for assessment of this stock, recognizing that it assumes accurate catch information and actual landings. The TAC set for 1985 is above the $F_{0.1}$ level even for the adjusted matrix. Recent events in this fishery are cause for concern. The concentration of effort on spawning fish as a result of the roe market increases the possibility of depletion of localized spawning units. Increased directed effort on small fish of the 4WX stock, as a result of continued low catches in the New Brunswick weir fishery decreases yield per recruit and changes the assumptions on which projections have been based. # LITERATURE CITED - Buerkle, U. 1985. Acoustic estimation of fish abundance in a large aggregation of herring. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 85/62. - Iles, T. D., M. J. Power, P. M. Mace, G. N. White, and F. G. Peacock. 1984. Assessment of the 1983 4WX herring fishery. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 84/72: 42 p. - Iles, T. D., and M. Sinclair. 1982. Atlantic herring: Stock discreteness and abundance. Science (Wash., D.C.) 215: 627-633. - Mace, P. M. 1985. Catch rates and total removals in the 4WX herring purse seine fisheries. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 85/74. - Sinclair, A., M. Sinclair, and T. D. Iles. 1980. An analysis of growth and maturation of the 4WX herring management unit. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 80/21: 32 p. - Sinclair, M., and T. D. Iles. 1981. Assessment of the 1980 4WX herring fishery. Can. Atl. Fish. Sci. Advis. Comm. Res. Doc. 81/10: 42 p. Table 1. Gear types involved in the $1984\ 4WX$ herring fishery. | | | | Landi | | | |-------------|-----------------|------------------|-------------|------------|--| | Gea | ar | Number | Nominal (t) | % of total | Comments | | Purse seine | | 43 vessels | 70,373 | 79 | Three fisheries: 4Xa summer 4Wa winter 4Xb fall and winter | | Gillnet | NB=77
NS=277 | licensed vessels | 4,490 | 5 | 223 vessels were active | | Weirs | 253 | licensed | 11,058 | 12 | N.B. = 232
N.S. = 21 | | Traps | | One major trap | 470 | 1 | Liverpool, N.S. | | Shutoffs | | 47 licensed | 324 | 0.4 | 4хъ | | Midwater | trawl | 1 license | 66 | 0.07 | 4хъ | Table 2. Major markets for the 1984 4WX herring fishery. | Market | % by weight of nominal catch | Notes | |-----------------|------------------------------|-----------------------| | Over side sales | 21 | >9.5"; <30% with feed | | Roe | 35-51 | Ripe fish | | Sardine | 15-25 | Small fish | | Bloater |) | | | Frozen round | | | | Fillets | | | | Fresh | | | | Cured & pickled | } | | | Smoked | 15-30 | | | Meal | | | | 011 | | | | Bait | } | | Table 3. Catch (t) by gear component and month for the 1984 4WX herring fishery (data from DFO, Scotia-Fundy Region, Statistics Branch; MFD Tape EMF778). | | | 1983 | | | | | | | 198 | 4 | | | | | | | |--------------------------|------|----------------|------|-------|------|-----|-----|------|------|-------------
-------|-------|------|-----|-----|-------| | Gear segment | 0ct | Nov | Dec | Jan | Feb | Mar | Apr | May | June | July | Aug | Sept | 0ct | Nov | Dec | Total | | WX stock | | | | | | | | | | | | | | | | | | 4Wa purse seine | 0 | 2790 | 1309 | 1317 | 720 | 200 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | _ | - | 6336 | | 4Xa purse seine | - | - | - | 0 | 0 | 0 | 0 | 75 | 822 | 10407 | 22412 | 22513 | 2125 | 0 | 0 | 58354 | | 4Xb purse seine | 3064 | 577 | 0 | 1755 | 287 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | _ | - | 5683 | | 4Xa gillnet ^a | _ | - | - | 0 | 0 | 0 | 0 | 26 | 98 | 193 | 1189 | 2980 | 4 | 0 | 0 | 4490 | | 4Xa (NS) weirs | - | _ | - | 0 | 0 | 0 | 0 | 113 | 1032 | 736 | 583 | 220 | 0 | 0 | 0 | 2684 | | 4Xa (NS) traps | - | - | - | 0 | 0 | 0 | 18 | 21 | 128 | 221 | 24 | 58 | 0 | 0 | 0 | 470 | | 4Xb midwater traw | 1 - | - | - | 5 | 61 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 66 | | Stock total | 3064 | 3367 | 1309 | 3077 | 1068 | 200 | 18 | 235 | 2080 | 11557 | 24208 | 25771 | 2129 | 0 | 0 | 78083 | | WX non-stock | | | | | | | | | | | | | | | | | | 4Xb (NB) weirs | - | - | _ | 0 | 0 | 0 | 0 | 5 | 3 | 230 | 2363 | 2581 | | 146 | 0 | 8374 | | 4Xb (NB) shutoffs | _ | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 100 | 126 | 98 | 0 | 0 | 324 | | 4Xa misc _a c | · | . - | | · · O | 0 | . 0 | 0 | - 27 | 153 | 143 | 24 | 60 | 35 | 3 | 0 | 445 | | 4W misc. | - | - | - | 4 | 7 | 17 | 174 | 52 | 214 | 82 9 | 130 | 22 | 5 | 0 | 0 | 1454 | | Non-stock total | | | | 4 | 7 | 17 | 174 | 84 | 370 | 1202 | 2617 | 2789 | 3184 | 149 | 0 | 10597 | | Total 4WX | 3064 | 3367 | 1309 | 3081 | 1075 | 217 | 192 | 319 | 2450 | 12759 | 26825 | 28560 | 5313 | 149 | 0 | 88680 | a4Xa gillnet includes all except 4Xm (combined with 4Xa misc.). b4X traps includes Liverpool but not 4Xm. C4Xa misc. includes 4Xm gillnet, 4Xm traps, handline + longline bycatches. d4W misc. includes all gear other than purse seine. Table 4. Annual landings by major components of the 4WX herring fishery (1963-84 from Iles et al. MS 1984; CAFSAC Res. Doc. 84/72, except as noted). | | 4Wa | 4 | Xa | | 4ХЪ | | | |------|-------------|--------------------|---------|-------|-------------|---------|---------------------| | | | | | | | Weir & | Stock | | Year | Purse seine | Purse seine | Gillnet | Weir | Purse seine | shutoff | total | | 1963 | | 15093 | 2955 | 5345 | 6871 | 29366 | | | 64 | | 24894 | 4053 | 12458 | 15991 | 29432 | | | 65 | | 54527 | 4091 | 12021 | 15755 | 33346 | 86394 | | 66 | | 112457 | 4413 | 7711 | 25645 | 35805 | 150226 | | 67 | | 117382 | 5398 | 12475 | 20888 | 30032 | 156741 | | 68 | | 133267 | 5884 | 12571 | 42223 | 33145 | 196362 | | 69 | 25112 | 84525 | 3474 | 10744 | 13202 | 26539 | 150462 | | 70 | 27107 | 74849 | 5019 | 11706 | 14749 | 15840 | 190382 | | 71 | 52535 | 35071 | 4607 | 8081 | 4868 | 12660 | 129101 | | 72 | 25656 | 61158 | 3789 | 6766 | 32174 | 32699 | 153449 | | 73 | 8348 | 36618 | 5205 | 12492 | 27322 | 19935 | 122687 | | 74 | 27044 | 76859 | 4285 | 6436 | 10563 | 20602 | 149670 | | 75 | 27030 | 79605 | 4995 | 7404 | 1152 | 30819 | 143897 | | 76 | 37196 | 58395 ^a | 8322 | 5959 | 746 | 29206 | 115178 ^a | | 77 | 23251 | 68538 | 18523 | 5213 | 1236 | 23487 | 117171 | | 78 | 17274 | 57973 | 6059 | 8057 | 6519 | 38842 | 95882 | | 79 | 14073 | 25265 | 4363 | 9307 | 3839 | 37828 | 59021 | | 80 | 8958 | 44986 | 19804 | 2383 | 1443 | 13525 | 79584 | | 81 | 18588 | 53799 | 11985 | 1966 | 1368 | 19080 | 87706 | | 82 | 12275 | 64344 | 6799 | 1212 | 103 | 25963 | 84733 | | 83 | 8226 | 63379 | 8762 | 918 | 2157 | 11383 | 84385 | | 84 | 6336 | 58354 | 4490 | 2684 | 5683 | 8698 | 78083 | ^aCorrection of previous transcription error. Table 5. 4WX herring purse seine logbook coverage for the 4Xa and 4Xb portions of the 1984 fishery. | | | 4Xa | Area
4Xb | 4W | |---|--------|-------------|-------------|------------| | Number of vessels repres | ented | 26 of | 43 = 60% | 8 | | Days (records) covered b | y logs | 486 | 44 | 111 | | Stats Div. total successful nights (= t | rips) | | 1483 | - | | Portion of total success | ful | | 36% | - | | Catch accounted for in logs | t
% | 25308
43 | 1252
22 | 3088
49 | | CPUE (t/successful night | .) | 52.07 | 28.45 | 27.82 | Table 6. Distribution of biological samples from the 1984 4WX commercial herring fishery; detail fish = number of fish taken for detail analysis including ageing, LF samples = number of length-frequency samples, catch/detail = ratio of monthly catch (t) to the number of biological detail samples taken for that segment. | Gear component | 0ct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | 0c t | Nov | Dec | |--|-----|------------------|------------------|-------------------|------------------|-----|-----|----------|-----------------|--------------------|--------------------|---------------------|------------------|-----------------|-----| | - detail fisi
Wa purse seine - LF samples
- catch/deta | _ | 411
15
310 | 210
14
262 | 643
14
94 | 283
7—
153 | * | *** | | *** | - | - | - | | | | | - detail fis
Xa purse seine - LF samples
- catch/deta | - | | | | - | - | - | - | | 615
-184
578 | 661
376
1067 | 937
195
804 | 222
15
304 | - | - | | - detail fis
Xb purse seine - LF samples
- catch/deta | 20 | 403
3
30 | - | 72*
3
681 | * | - | - | - | - | *** | - | - | | | | | - detail fis
Xa gillnet - LF samples
- catch/deta | | | | - | - | - | *** | • | 7- | 8 * - | 192*
23
198 | 139*
20 -
746 | | | - | | - detail fis
Xa (NS) weirs - LF samples
- catch/deta | | | | - | - | - | - | <u> </u> | 319
15
69 | 385
19
92 | 179
10
146 | 189
5-
55 | | - | - | | - detail fis
Xa (NS) traps - LF samples
- catch/deta | | | | | | | 4 | 1 | 211
6
10 | * | | | - | - | - | | - detail fis
Xb midwater trawl - LF samp
- catch/deta | les | | | 155ª
[1 →
1 | <u> </u> | | - | - | - | ••• | - | - | - | - | - | | - detail fis
Xb (NB) weirs - LF samples
- catch/deta | | | | - | - | - | - | *** | 46
2 | 368
18
18 | 849
51
74 | 932
57
70 | 625
37
117 | 135*
7
21 | | | - detail fis
4Xb (NB) shutoffs - LF sampl
- catch/deta | es | | | - | - | - | - | - | - | - | 231
[2- | 257
 | 19
b | | | | - detail fig
4WX misc LF samples
- catch/deta | 3 | | | | | | | c | | | | | | • | | ⁻ cells with no landings. ^{*} cells undersampled according to criteria outlined in text. a includes 4Xb purse seine detail sample. b combined with weir detail samples. c combined monthly detail and LF information used. Table 7. Number at age for two adjacent 10' squares of the 4Xa purse seine fishery, calculated using individual length frequencies but the same age composition and catch weight (assumed to be 100 t). Trinity = square 440-661 and 435661; McDormand Patch square = 440662. | Diff | (%) | calculated | as | [(Trinity | _ | McDormands)/(Trinit | $\frac{y - McDormands}{2}$) | x | 100 | • | |------|-----|------------|----|-----------|---|---------------------|------------------------------|---|-----|---| |------|-----|------------|----|-----------|---|---------------------|------------------------------|---|-----|---| | | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11+ | Total | |-------|------------|-----|-----|-----|-----|----|-----|-----|-----|-----|-----|-------| | Aug. | Trinity | 9 | 58 | 214 | 112 | 22 | 17 | 23 | 5 | 1 | 2 | 461 | | • | McDormands | 123 | 256 | 202 | 61 | 11 | 5 | 6 | 1 | 0 | 0 | 664 | | | % diff. | 173 | 126 | 6 | 59 | 67 | 109 | 117 | 133 | 200 | 200 | 36 | | Sept. | Trinity | 2 | 74 | 222 | 120 | 6 | 10 | 22 | 9 | 2 | 3 | 471 | | • | McDormands | 491 | 144 | 129 | 58 | 3 | 6 | 16 | 6 | 1 | 4 | 860 | | | % diff. | 198 | 64 | 53 | 70 | 67 | 50 | 32 | 40 | 67 | 29 | 58 | Table 8. 4Xa purse seine a) number at age by month calculated for entire area combined (area) and as the sum of calculations by individual squares (square); b) percent difference = [(area - square) ÷ (\frac{\text{area} + \text{square}}{2})] x 100. | | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11+ | Total | |-----------|----------|-------|-------|-------------|-----------|------|-------|------|------|-----------|-----|----------------| | a) | <u> </u> | | | | | | | | | | · | | | May-June | area | 0 | 80 | 1335 | 1670 | 306 | 247 | 180 | 43 | 12 | 12 | 3886 | | | square | 0 | 100 | 1404 | 1664 | 301 | 232 | 168 | . 38 | 9 | 9 | 3926 | | July | area | 3691 | 16374 | 17236 | 12762 | 2200 | 1638 | 1802 | 357 | 194 | 202 | 564 56 | | | square | 2136 | 16594 | 18227 | 12646 | 2052 | 1514 | 1651 | 326 | 50 | 339 | 55534 | | August | area | 6867 | 27081 | 43615 | 23538 | 4325 | 3148 | 3989 | 575 | 225 | 156 | 1134 19 | | | square | 6049 | 31097 | 43991 | 22362 | 4049 | 2922 | 3739 | 536 | 212 | 170 | 115128 | | September | area | 13743 | 21295 | 38438 | 30546 | 3335 | 2990 | 5041 | 2182 | 390 | 171 | 118132 | | - | square | 8225 | 21432 | 39293 | 31027 | 3362 | .2978 | 5073 | 2172 | 387 | 194 | 114144 | | October | area | 6109 | 5211 | 2379 | 1693 | 305 | 332 | 210 | 30 | 14 | 0 | 16283 | | | square | 3153 | 6010 | 2671 | 1816 | 323 | 310 | 186 | 24 | 15 | 0 | 14507 | | b) | | | | | | | | · | | | , | | | May-June | | 0 | -22 | -5 | .4 | •2 | 6 | 7 | 12 | 29 | 29 | -1.02 | | July | | 53 | -1 | - 6 | 1 | 7 | 8 | 9 | 9 | 118 | -51 | 1.65 | | August | | . 13 | -14 | -1 | 5 | 7 | 7 | 6 | 7 | 6 | -9 | -1.44 | | September | | 50 | -1 | -2 | -2 | -1 | .4 | 6 | •5 | .8 | -13 | 3.43 | | October | | 64 | -14 | -12 | -7 | -6 | 7 | 12 | 22 | -7 | 0 | 11.54 | | | | | | | | | | | | | | | Table 9. Nominal catch at age in numbers (thousands) and weight (t) by gear component for the 1984 4WX herring fishery. | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11+ | Total | _ |
--------------------|------------|-------|---------------|--------|--------|-------|-------|-------|-------|------|------|------|---------|-----| | 4WX "stock" | | | | | | | | | | | | | | | | 4Wa purse seine | No. | 0 | 8 | 1642 | 6916 | 8042 | 1145 | 2228 | 4115 | 2225 | 522 | 3547 | 30390 | | | • | Wt. | 0 | 0 | 133 | 920 | 1349 | 233 | 505 | 1077 | 664 | 161 | 1294 | 6336 | | | 4Xa purse seine | No. | 0 | 19563 | 75233 | 105586 | 69515 | 10087 | 7956 | 10817 | 3096 | 673 | 712 | 303238 | | | • | Wt. | 0 | 1266 | 10389 | 20599 | 16140 | 2573 | 2372 | 3447 | 1039 | 248 | 281 | 58355 | | | 4Xb purse seine | No. | . 0 | 1380 | 56210 | 8411 | 1892 | 564 | 12 | 653 | 0 | 0 | 60 | 69182 | | | , | Wt. | 0 | 33 | 4091 | 905 | 351 | 134 | 2 | 160 | 0 | 0 | 7 | 5683 | | | 4Xa gillnet | No. | 0 | 0 | 900 | 7799 | 3826 | 1351 | 2695 | 236 | 61 | 0 | 725 | 17593 | | | ····a 9 | Wt. | 0 | 0 | 158 | 1681 | . 949 | 423 | 864 | 76 | 22 | 0 | 316 | 4491 | | | 4Xa (NS) weirs | No. | 0 | 49333 | 5910 | 1668 | 1144 | 280 | 700 | 444 | 36 | 68 | 87 | 59670 | | | The (ND) WC220 | Wt. | 0 | 1115 | 573 | 282 | 242 | 69 | 192 | 133 | 13 | 26 | 40 | 2685 | | | 4Xa (NS) traps | No. | 0 | 24 | 51.4 | 870 | 501 | 206 | 212 | 34 | 0 | 0 | 76 | 2437 | | | 4Ma (NO) Claps | Wt. | 0 | 1 | 56 | 163 | 115 | 55 | 68 | 12 | 0 | 0 | . 0 | 469 | | | 4Xb midwater trawl | No. | 0 | 1993 | 658 | 1 | 0 | 0 | | 0 | 0 | 0 | Ô | 2652 | | | 4AD MIGHAECT CLAMA | Wt. | 0 | 30 | 36 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 66 | | | Stock total | No. | 0 | 72301 | 141067 | 131251 | 84920 | 13633 | 13803 | 16299 | 5418 | 1263 | 5207 | 485 162 | | | Stock total | Wt. | 0 | 2445 | 15436 | 24550 | 19146 | 3488 | 4004 | 4904 | 1738 | 435 | 1939 | 78084 | | | 4WX "non-stock" | | | | | | | | | | | | | | | | 4Xb (NB) weirs | No. | 9199 | 785 99 | 16920 | 5525 | 4279 | 603 | 249 | 15 | 85 | 0 | 0 | 115474 | | | 4110 (110) 110210 | Wt. | 107 | 3935 | 2078 | 1009 | 981 | 158 | 71 | 5 | 30 | 0 | 0 | 8374 | | | 4Xb (NB) shutoffs | No. | 5154 | 4321 | 372 | 133 | 53 | 8 | 2 | 0 | 0 | 0 | 0 | 10043 | | | (112) (112) | Wt. | 72 | 168 | 45 | 24 | 12 | 2 | 1 | 0 | 0 | 0 | 0 | 324 | | | 4WX misc. | No. | 0 | 3666 | 2696 | 2557 | 2143 | 524 | 936 | 354 | 63 | 76 | 43 | 13058 | | | ANY MISC. | Wt. | 0 | 91 | 310 | 468 | 461 | 135 | 261 | 108 | 20 | 26 | 18 | 1899 | | | Non-stock total | No. | 14353 | 86586 | 19988 | 8215 | 6475 | 1135 | 1187 | 369 | 148 | 76 | 43 | 138575 | | | Holl-Stock Local | Wt. | 179 | 4194 | 2433 | 1502 | 1453 | 295 | 333 | 113 | 50 | 26 | 18 | 10597 | 21. | | ODANIO TOTAL | No. | 14353 | 158887 | 161055 | 139466 | 91395 | 14768 | 14990 | 16668 | 5566 | 1339 | 5250 | 623737 | • | | GRAND TOTAL | No.
Wt. | 14333 | 6639 | 17869 | 26052 | 20599 | 3783 | 4336 | 5017 | 1788 | 462 | 1956 | 88680 | | Table 10. CPUE trends for components of the 4WX herring fishery. Data for 1965-83 as in Iles et al. (1984 - CAFSAC Res. Doc. 84/72). | | Purse | e seine | | | gear | |------|------------------|------------------|----------------|------------------|------------------| | Year | 4Xa ^a | 4Wa ^a | 4Xa Gillnets b | 4Xa NS weirs c,d | 4Xb NB weirs c,e | | 1965 | - . | _ | | 481 | 162 | | 1966 | _ | - | | 308 | 183 | | 1967 | 55.5 | _ | | 499 | 153 | | 1968 | 52.8 | _ | | 503 | 165 | | 1969 | 41.7 | - | | 430 | 132 | | 1970 | 39.0 | - | | 468 | 77 | | 1971 | 32.6 | 109.7 | | 323 | 62 | | 1972 | 45.0 | 62.6 | | 271 | 164 | | 1973 | 49.1 | 69.7 | | 500 | 98 | | 1974 | 53.4 | 143.1 | | 257 | 98 | | 1975 | 57.4 | 142.7 | | 296 | 158 | | 1976 | 44.6 | 125.4 | | 238 | 150 | | 1977 | 37.4 | 97.9 | 4.2 | 209 | · 106 | | 1978 | 39.5 | 85.7 | 1.6 | 269 | 172 | | 1979 | 31.7 | 70.1 | 2.1 | 372 | 167 | | 1980 | 28.5 | 63.4 | 3.0 | 95 | 57 | | 1981 | 42.0 | 76.8 | 4.4 | 79 | 80 | | 1982 | 40.6 | 68.7 | 3.44 | 48 | 114 | | 1983 | 34.8 | 51.0 | 2.29 | 37 | 54 | | 1984 | 52.0 | 27.8 | 2.12 | 107 | 43 | aCatch (t) per successful night (= trip). bt/purchase slip (areas 32-37). ct/weir. $d_{No.}$ of weirs = 25. $e_{\text{No.}}$ of weirs = 195. Table 11. 4WX larval herring abundance indices; from number of larvae per m^2 (to bottom) of all stations sampled (n = 116-150) for each year. | Year | Arithmetic mean | Geometric mean | |------|--------------------|-------------------| | 1972 | 7.24 | 2.64 | | 1973 | 5.27 | 2.30 | | 1974 | 37.49 | 7.60 | | 1975 | 24.56 ^a | 6.02 ^a | | 1976 | 11.62 | 4.44 | | 1977 | 4.57 | 1.83 | | 1978 | 3.51 | 1.24 | | 1979 | 6.32 | 2.18 | | 1980 | 19.48 | 4.61 | | 1981 | 2.59 | 1.50 | | 1982 | 9.10 | 3.73 | | 1983 | 11.33 | 4.29 | | 1984 | 13.48 | 5.13 | aInterpolated. Table 12. Comparison of estimates of larval herring abundance from duplicate (port and starboard) bongo net pairs in two cruises. | | No. of stations | Larv
mean
Port | no. | t | Prob. | Larv
per
Port | 2 | t | Prob. | |-------------|-----------------|----------------------|-------------|------------|-------|---------------------|-------|------------|-------| | P268 | | | | | | | | | | | All fish | 118 | 2.82 | 2.96 | 57 | • 572 | .702 | .736 | 56 | • 577 | | Herring | 118 | 1.42 | 1.48 | 37 | .710 | . 344 | .360 | 39 | .699 | | <u>P217</u> | | | | | | | | | | | All fish | 107 | 5.88 | 6.85 | 94 | . 350 | 1.495 | 1.729 | 89 | . 377 | | Herring | 107 | 1.13 | 1.22 | 24 | .813 | • 28 | • 30 | 24 | .811 | Table 13. Larval herring numbers in repetitive bongo net tows at a single station over a period of 10 h; E.E. PRINCE Cruise #158. | Port | Starboard | Mean # | Difference | % difference | |------|-----------|--------|------------|--------------| | 3167 | 3138 | 3153 | 15 | 1 | | 1984 | _ | | | | | 2464 | 2382 | 2423 | 41 | 2 | | 2470 | 2609 | 2540 | 69 | 3 | | 1744 | - | | | | | 2110 | - | | | | Table 14. Mean weight at age for 4WX herring as presented in annual assessment documents for 1973-83. | Age | 1973
ICNAF
Res. Doc.
74/13 | 1975
ICNAF
Res. Doc.
76/VI/45 | 1976
CAFSAC
Res. Doc.
77/11 | 1977
CAFSAC
Res. Doc.
78/25 | 1978
CAFSAC
Res. Doc.
79/19 | 1979
CAFSAC
Res. Doc.
80/47
Option 1 | 1980
CAFSAC
Res. Doc.
81/10 ^a | 1981
CAFSAC
Res. Doc.
82/36 | 1982
CAFSAC
Res. Doc.
83/89 | 1983
CAFSAC
Res. Doc.
84/72 | |-----|-------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--|---|--------------------------------------|--------------------------------------|--------------------------------------| | 1 | - | | | _ | 9 | 10.64 | 9.5 | - | 8.54 | 10 | | 2 | 31 | | | 29.6 | 30 | 24.37 | 35.5 | 19 | 51.79 | 41 | | 3 | 114 | | | 97.7 | 93 | 93.93 | 86.9 | 35 | 137.42 | 112 | | 4 | 159 | "as per | "mean wts | 165.8 | 159 | 164.75 | 173.4 | 172 | 176.26 | 172 | | 5 | 227 | assessment | from 4XWb | 207.1 | 205 | 226.00 | 220.7 | 216 | 229.67 | 218 | | 6 | 270 | presented | were used" | 261.5 | 250 | 253.13 | 258.3 | 202 | 256.34 | 254 | | 7 | 299 | in Jan. | | 280.7 | 285 | 285.86 | 305.3 | 262 | 287.47 | 286 | | 8 | 334 | 1976" | | 300.2 | 315 | 314.75 | 333.0 | 325 | 319.62 | 323 | | 9 | 360 | | | 328.6 | 341 | 343.85 | 359.2 | 362 | 362.61 | 354 | | 10 | 386 | | | 349.0 | 382 | 369.52 | 369.7 | 385 | 377.64 | 389 | aAlso first use of 'Mean July 1969 to 1978' as used in 'W83'. Used both 'Fishery' and 'Mean' in cohort mean for projections. bAs for a), i.e. fishery and mean for cohort and YPR but mean for projections. cused 'mean July 1969 to 1978' only. No fishery weights calculated. dAlso used mean July 1969 to 1978 weights which are different from a). Table 15. Mean and standard deviation of weight at age by month calculated from fish (n=7857) collected in the 1984 4X herring fisheries (all gears). | | | | | | | | | | Mont | hs | | | | | | | | | |-----|-------|------|------|------|-------|------|-------|------|-------|----------|-------|------|-------|------|-------|------|-------|------| | | Ja | n. | Fe | b. | Ma | у | Jun | е | Jul | <u> </u> | Aug | • | Sep | t. | 0ct | • | Nov | • | | Age | Wt | SD | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18.4 | _ | 7.4 | 1.9 | 8.8 | 3.8 | 14.3 | 6.5 | 14.2 | 7. | | 2 | 25.1 | 5.7 | 17.5 | 10.8 | 20.3 | 13.2 | 24.0 | 12.3 | 39.6 | 19.4 | 49.8 | 20.3 | 54.3 | 21.7 | 58.3 | 22.2 | 59.8 | 23.4 | | 3 | 74.3 | 23.5 | 62.3 | 18.3 | 60.3 | 21.1 | 93.4 | 41.2 | 119.1 | 32.2 | 130.8 | 31.1 | 134.4 | 26.6 | 134.6 | 24.5 | 131.6 | 22. | | 4 | 137.7 | 28.7 | 0 | 0 | 123.9 | 27.2 | 191.7 | 41.0 | 196.0 | 32.8 | 198.2 | 29.3 | 192.3 | 32.7 | 185.9 | 25.7 | 176.3 | 21. | | 5 | 197.5 | 3.6 | Ō | 0 | 178.3 | 26.7 | 247.1 | 41.2 | 243.0 | 34.5 | 251.3 | 33.1 | 240.9 | 40.2 | 222.1 | 33.6 | 225.3 | 22. | | 6 | 0 | 0 | Õ | Ō | 233.3 | _ | 292.6 | 43.4 | 270.5 | 32.2 | 276.3 | 34.4 | 277.3 | 42.7 | 250.3 | 23.8 | 257.3 | 38. | | 7 | 288.9 | - | Ō | 0 | 237.1 | 35.5 | 323.3 | 44.8 | 295.0 | 36.8 | 312.9 | 38.9 | 311.3 | 55.3 | 299.0 | 41.1 | 257.7 | 12. | | 8 | 291.2 | - | Ö | 0 | 0 | 0 | 330.5 | 34.3 | 315.5 | 40.7 | 344.1 | 42.6 | 339.4 | 47.8 | 331.2 | 38.1 | 276.0 | - | | 9 | 0 | 0 | Ö | Ō | 0 | 0 | 0 | 0 | 370.3 | 56.6 | 356.9 | 46.7 | 361.3 | 44.7 | 369.2 | 51.3 | 0 | 0 | | 10 | Ŏ | Ö | Ö | Ō | Ó | 0 | 0 | 0 | 391.6 | 37.4 | 406.3 | 50.7 | 377.4 | 20.3 | 386.0 | - | 0 | 0 | Table 16. Mean weights at age calculated by month and weighted gear for the stock portion of the $1984\ 4WX\ herring\ fishery.$ | | | 19 | 84 4WX | stock m | ean wei | ght a | t age | (GMS) | by month | n weigh | ted by | GEAR01 | to GEAR | .07 | | |-----|-------|-------|--------|---------|---------|-------|-------|-------|----------|---------|--------|--------|---------|-----|-----| | Age | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | 1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0
 0.0 | 0.0 | 0.0 | 0.0 | | 2 | 0.0 | 0.0 | 0.0 | 23.9 | 15.1 | 0.0 | 0.0 | 15.1 | 22.8 | 37.5 | 64.1 | 64.3 | 71.5 | 0.0 | 0.0 | | 3 | 75.9 | 70.2 | 81.8 | 71.1 | 63.2 | 0.0 | 0.0 | 74.5 | 77.5 | 132.1 | 139.1 | 139.8 | 134.6 | 0.0 | 0.0 | | 4 | 107.4 | 115.5 | 116.9 | 136.2 | 133.2 | 0.0 | 0.0 | 164.7 | 201.0 | 191.4 | 200.7 | 194.3 | 173.2 | 0.0 | 0.0 | | 5 | 188.7 | 170.1 | 159.0 | 172.6 | 167.8 | 0.0 | 0.0 | 199.7 | 232.7 | 228.7 | 238.0 | 231.3 | 217.6 | 0.0 | 0.0 | | 6 | 237.8 | 198.2 | 209.0 | 201.5 | 207.5 | 0.0 | 0.0 | 251.1 | 266.0 | 259.1 | 257.2 | 270.0 | 229.5 | 0.0 | 0.0 | | 7 | 205.9 | 219.2 | 222.7 | 230.7 | 226.4 | 0.0 | 0.0 | 268.3 | 302.2 | 279.8 | 307.9 | 310.1 | 292.0 | 0.0 | 0.0 | | 8 | 239.9 | 259.2 | 270.6 | 253.4 | 251.9 | 0.0 | 0.0 | 0.0 | 289.7 | 296.2 | 332.7 | 317.2 | 305.9 | 0.0 | 0.0 | | 9 | 0.0 | 308.4 | 279.8 | 281.1 | 308.6 | 0.0 | 0.0 | 0.0 | 306.1 | 309.0 | 338.0 | 341.1 | 341.7 | 0.0 | 0.0 | | 10 | 0.0 | 323.5 | 296.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 339.6 | 364.0 | 379.9 | 366.8 | 381.1 | 0.0 | 0.0 | Table 17. Weight at age (kg) calculated for different components and samples of the 4WX herring fishery. | | 1 | 2 | 3 | 4 | Age
5 | 6 | 7 | 8 | 9 | 10 | |--|--------------|------|------|-------|----------|-------|--------------|-------|-------|------| | 1) 1969-78 4Xa stock fishery, July (mean) | •010 | .041 | .112 | .172 | . 218 | . 254 | . 286 | .323 | • 354 | .389 | | 2) 1984 4Xa purse seine fishery, for all months | .000 | .064 | .138 | . 195 | . 232 | . 255 | . 298 | .318 | .335 | .368 | | 3) 1984 4Xa purse seine fishery, July
4) 1984 4Xa purse seine fishery, August | .000 | | | | | | .374
.311 | | | | | 5) 1984 4WX stock fisheries, for all months | .000 | .034 | .109 | . 187 | . 225 | . 256 | . 290 | . 301 | .321 | .345 | | 6) 1984 4WX entire fishery, July | .004 | .035 | .130 | .191 | . 228 | . 259 | . 280 | • 297 | .310 | .366 | | 7) 1984 4WX stock fishery, July | •000 | .038 | .132 | . 191 | . 229 | . 259 | . 280 | . 296 | .309 | .364 | | 8) 1984 4X detail sample, mean July
9) 1984 4X detail sample, mean August | .018
.007 | | | | | | .295
.313 | | | | Table 18. July weights at age for the 4WX herring fishery (stock portion); 1968-84. Values for 1968-78 from Sinclair et al. (1980, CAFSAC Res. Doc. 80/21); values for 1979-83 are averages for the period 1968-78 (as in Iles et al. 1984, CAFSAC Res. Doc. 84/72); 1984 values have been calculated from the 1984 fishery. | | | | | <u></u> | Ju | ly mean | weights | at age | (GMS) | for the | 4WX | herring | fishery | 1968 | to 1984 | | | |-----|-------|-------|-------|---------|-------|---------|---------|--------|-------|---------|-------|---------|---------|-------|---------|-------|-------| | Age | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | | .1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 0.0 | | 2 | 32.7 | 37.2 | 31.7 | 66.1 | 44.3 | 28.8 | 47.7 | 20.8 | 32.7 | 65.2 | 28.3 | 41.0 | 41.0 | 41.0 | 41.0 | 41.0 | 37.5 | | 3 | 33.0 | 105.5 | 119.2 | 142.6 | 137.6 | 105.7 | 110.2 | 94.3 | 114.1 | 113.3 | 112.1 | 112.0 | 112.0 | 112.0 | 112.0 | 112.0 | 132.1 | | 4 | 148.0 | 162.3 | 168.7 | 199.1 | 192.3 | 143.3 | 175.4 | 179.0 | 159.1 | 174.2 | 180.8 | 172.0 | 172.0 | 172.0 | 172.0 | 172.0 | 191.4 | | 5 | 184.6 | 207.2 | 210.6 | 230.1 | 224.5 | 224.6 | 205.6 | 215.6 | 233.4 | 213.7 | 228.6 | 218.0 | 218.0 | 218.0 | 218.0 | 218.0 | 228.7 | | 6 | 244.4 | 241.8 | 256.8 | 253.6 | 262.0 | 251.5 | 239.9 | 239.6 | 249.4 | 274.2 | 258.6 | 254.0 | 254.0 | 254.0 | 254.0 | 254.0 | 259.1 | | 7 | 275.7 | 282.0 | 292.2 | 292.7 | 291.5 | 291.5 | 279.1 | 277.2 | 267.5 | 277.2 | 293.0 | 302.1 | 286.0 | 286.0 | 286.0 | 286.0 | 279.8 | | 8 | 399.0 | 305.8 | 332.0 | 328.8 | 321.7 | 331.2 | 233.1 | 333.2 | 317.3 | 325.3 | 330.2 | 323.0 | 323.0 | 323.0 | 323.0 | 323.0 | 296.2 | | 9 | 337.8 | 333.7 | 368.6 | 362.0 | 345.0 | 359.9 | 342.4 | 357.8 | 382.4 | 328.1 | 351.0 | 354.0 | 354.0 | 354.0 | 354.0 | 354.0 | 309.0 | | 10 | 409.5 | 390.4 | 389.3 | 387.7 | 380.4 | 388.9 | 352.0 | 379.0 | 404.2 | 415.7 | 397.1 | 389.0 | 389.0 | 389.0 | 389.0 | 389.0 | 364.0 | Table 19. Nominal catch matrix for the 4WX herring fishery, 1973-84. Values for 1973-83 are as in the previous assessment (Iles et al. CAFSAC Res. Doc. 84/72) except as noted. | | | 4WX | herring i | nominal i | numbers | at age i | n thousa | nds for | stock co | mponents | only | | |-----|--------|--------------------|-------------------|------------------|-------------------|--------------------|----------|---------|----------|----------|--------|-------------| | Age | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | | 1 | 754 | 14151 | 2870 ^a | 240 ^a | 1164 ^a | 35381 ^a | 311 | 1623 | 0 | | | | | 2 | 126421 | 596153 | 264491 | 48470 | 140494 | 346719 | 170523 | 9566 | 75713 | 72591 | 128378 | 72301 | | 3 | 595992 | 72381 | 180898 | 176226 | 28659 | 36177 | 226442 | 60559 | 33174 | 122380 | 101017 | 141067 | | 4 | 109530 | 616622 | 92487 | 130598 | 192958 | 11338 | 47200 | 359484 | 68816 | 17756 | 168379 | 131251 | | 5 | 34422 | 53199 ^a | 384646 | 72334 | 106061 | 107627 | 4639 | 21958 | 306716 | 73025 | 16946 | 84920 | | 6 | 25562 | 15254 | 5059 9 | 219788 | 55066 | 60431 | 19695 | 3583 | 21728 | 154542 | 41607 | 13633 | | 7 | 19361 | 8120 | 9357 | 18960 | 150588 | 27286 | 15521 | 3507 | 1631 | 10910 | 63468 | 13803 | | 8 | 17604 | 5313 | 3238 | 4967 | 12466 | 96741 | 9981 | 4951 | 1914 | 1535 | 7334 | 16299 | | 9 | 19836 | 10964 | 3481 | 3556 | 2873 | 9838 | 35386 | 2009 | 1366 | 977 | 1351 | 5418 | | 10 | 9661 | 5787 | 2842 | 1835 | 1253 | 2169 | 3834 | 8179 | 361 | 886 | 434 | 1263 | ^aTranscription error/revisions from previous assessments. Table 20. Catch matrix for the 4WX herring fishery adjusted to account for apparent underreporting. (from Mace, 1985). | | | 4WX h | erring a | djusted | numbers | at age i | n thousa | nds for | stock co | mponents | only | | |-----|--------|--------|----------|---------|---------|----------|----------|---------|----------|----------|--------|--------| | Age | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | | : 1 | 1018 | 18411 | 3199 | 240 | 1170 | 35381 | 342 | 2339 | 0 | 3589 | 5488 | | | 2 | 167454 | 766064 | 317640 | 55596 | 153921 | 383611 | 183982 | 12503 | 103051 | 102133 | 191682 | 88433 | | 3 | 781061 | 93606 | 239827 | 206535 | 31572 | 40887 | 250393 | 80518 | 50883 | 150764 | 150328 | 243542 | | 4 | 130851 | 803651 | 124599 | 153782 | 218478 | 12906 | 54620 | 474091 | 102743 | 22640 | 244007 | 224354 | | 5 | 40128 | 68276 | 514605 | 68804 | 119234 | 122108 | 5430 | 27929 | 451482 | 98206 | 24483 | 146096 | | 6 | 30334 | 19093 | 66302 | 268839 | 51173 | 68410 | 23142 | 4373 | 32978 | 211043 | 60678 | 22716 | | 7 | 22046 | 10232 | 12298 | 21460 | 177247 | 31088 | 18255 | 4692 | 2418 | 14627 | 89982 | 21654 | | 8 | 20249 | 6565 | 4409 | 5571 | 13977 | 108975 | 11836 | 6560 | 2766 | 2080 | 10352 | 28299 | | 9 | 23871 | 12785 | 4778 | 3951 | 3170 | 11082 | 41389 | 2985 | 1917 | 1354 | 1728 | 9515 | | 10 | 11630 | 7102 | 3847 | 2059 | 1415 | 2425 | 4527 | 10641 | 538 | 1250 | 642 | 2183 | Table 21. Intercepts and r of the regression of SPA derived biomass vs larval abundance for a range of terminal F values; A = Nominal Matrix, B = Adjusted Matrix. | | Matu | re Biomass | 5+ | 5+ Biomass | | | |-----------------|--------------|------------|------|------------|--|--| | Terminal F | r | intercept | r | intercept | | | | A) NOMINAL MATR | IX | | | | | | | •15 | .766 | 86677 | .814 | 34421 | | | | • 20 | . 845 | 81008 | .860 | 30303 | | | | . 225 | .850 | 79120 | .860 | 28930 | | | | • 25 | .838 | 77612 . | .852 | 27833 | | | | . 30 | .789 | 75350 | .823 | 26186 | | | | . 35 | .734 | 73736 | .791 | 25012 | | | | B) ADJUSTED MAT | RIX | | | | | | | • 20 | .742 | 116481 | .798 | 47687 | | | | . 25 | .817 | 110713 | .842 | 43545 | | | | • 30· | .841 | 106870 | .851 | 40780 | | | | . 35 | .825 | 104130 | .839 | 38809 | | | | • 40 | .790 | 102078 | .818 | 37334 | | | Table 22. 4WX herring population numbers at age estimated from SPA using nominal and adjusted catch matrixes. | • | Nominal POPULATION NUMBERS 15/ 5/85 | | | | | | | | | | | | | |------|---|---|--|--|--|--|---|---|--|--|---|---|---| | | | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | | | 1 1 | 1910734 | 1410949 | 222800 | 683194 | 3378703 | 1062330 | 347563 | 1675907 | 1569267 |
1325372 | 917715 | 1576036 | | | 2 1 | 807510 | | 1142383 | 179816 | 559135 | 2765195 | 837749 | 284279 | 1370648 | 1284807 | 1081875 | 748315 | | | 3 1 | 3482326 | 546743 | 740823 | 695983 | 103364 | 330657 | 1950226 | 531595 | 224092 | 1053684 | 986228 | 769603 | | 1 | 4 1 | 399278 | 2311812 | 382142 | 442852 | 410367 | 58695 | 237984 | 1391817 | 380437 | 153454 | 751949 | 716051 | | | 5 1 | 102315 | 227795 | 1334809 | 229186 | 244406 | 161384 | 37797 | 152137 | 814248 | 249208 | 109571 | 463288 | | | 6 1 | 58944 | 52622 | 138366 | 744807 | 122191 | 104135 | 34745 | 26748 | 104691 | 389122 | 137959 | 74376 | | | 7 1 | 45516 | 25130 | 29281 | 67501 | 410924 | 50216 | 30578 | 10626 | 18657 | 66053 | 178751 | 75303 | | | 8 1 | 46362 | 19747 | 13227 | 15507 | 38109 | 200178 | 16424 | 10991 | 5527 | 13799 | 44208 | 88921 | | | 9 1 | 43034 | 22029 | 11360 | 7900 | 8202 | 19921 | 76357 | 4415 | 4519 | 2793 | 9909 | 29558 | | | 0 1 | 22466 | 17285 | 8115 | 6151 | 3250 | 4115 | 7408 | 30497 | 1797 | 2464 | 1403 | 6890 | | | +-
1+l | | 6197806 | 4023307 | 3072895 | 5278650 | 4756827 | 3576831 | 4119012 | 4493883 | 4540756 | 4219568 | 4548343 | | | 2+1 | | 4786857 | | 2389701 | | 3694496 | 3229268 | 2443105 | 2924617 | 3215385 | 3301853 | 2972307 | | | 3+1 | 4200242 | 3223162 | | | 1340812 | 929302 | 2391520 | 2158826 | 1553969 | 1930578 | 2219978 | | | | 4+1 | 717916 | | | 1513902 | | 598645 | | 1627232 | | 876894 | | 1454388 | | | | | | | • | | | | | | | | | | | | | | | _Ad ju | sted pop | ULATION N | UMBERS | | | | | 15/ 5/85 | | _ | | 1973 | 1974 | 1975 | | sted pop | | UMBERS
1979 | 1980 | 1981 | 1982 | | | | |
 +-
 1 | | 1974

1648280 | 1975

266715 | | 1977 | | | 1980

2258871 | 1981

2117316 | | | | | | 1 l
2 l | 2367059
943761 | 1648280
1937063 | 266715
1332839 | 1976
852901
215474 | 1977

4447392
698079 | 1978
1
1355463
3640158 | 1979

468512
1077745 | 2258871
383276 | 2117316
1847291 | 1801681
1733512 | 1983

859500
1471844 | 1984
1847768
698733 | | | 1
2
3 | 2367059 | 1648280 | 266715 | 1976
852901 | 1977
4447392 | 1978
1355463 | 1979
468512 | 2258871 | 2117316 | 1801681 | 1983
 | 1984

1847768 | | | 1
2
3
4 | 2367059
943761 | 1648280
1937063 | 266715
1332839 | 1976
852901
215474 | 1977

4447392
698079 | 1978
1
1355463
3640158 | 1979
468512
1077745
2633204
316913 | 2258871
383276 | 2117316
1847291 | 1801681
1733512 | 1983

859500
1471844 | 1984
1847768
698733
1031603
950324 | | | 1
2
3
4
5 | 2367059
943761
4418005
488044
122524 | 1648280
1937063
621167
2910423
281177 | 266715
1332839
892770
423871
1655679 | 1976
852901
215474
803823
513933
234294 | 1977
4447392
698079
126110
471234
281626 | 1978
1355463
3640158
432266
74683
188127 | 1979
468512
1077745
2633204
316913
49467 | 2258871
383276
715909
1929321
210044 | 2117316
1847291
302486
513281
1150619 | 1801681
1733512
1419189
201614
327274 | 1983
859500
1471844
1326866
1025517
144582 | 1984
1847768
698733
1031603
950324
618836 | | | 1
2
3
4
5
6 | 2367059
943761
4418005
488044
122524
71051 | 1648280
1937063
621167
2910423
281177
64005 | 266715
1332839
892770
423871
1655679
168430 | 1976
852901
215474
803823
513933
234294
889921 | 1977
4447392
698079
126110
471234
281626
129567 | 1978
1355463
3640158
432266
74683
188127
122688 | 1979
468512
1077745
2633204
316913
49467
43537 | 2258871
383276
715909
1929321
210044
35587 | 2117316
1847291
302486
513281
1150619
146698 | 1801681
1733512
1419189
201614
327274
533529 | 1983
859500
1471844
1326866
1025517
144582
179089 | 1984

1847768
698733
1031603
950324
618836
96221 | | | 1 2 3 4 5 6 7 | 2367059
943761
4418005
488044
122524
71051
53443 | 1648280
1937063
621167
2910423
281177
64005
30724 | 266715
1332839
892770
423871
1655679
168430
35127 | 1976
852901
215474
803823
513933
234294
889921
77906 | 1977
4447392
698079
126110
471234
281626
129567
485350 | 1978
1355463
3640158
432266
74683
188127
122688
59777 | 1979
468512
1077745
2633204
316913
49467
43537
38548 | 2258871
383276
715909
1929321
210044
35587
14706 | 2117316
1847291
302486
513281
1150619
146698
25180 | 1801681
1733512
1419189
201614
327274
533529
90267 | 1983
859500
1471844
1326866
1025517
144582
179089
245857 | 1984

1847768
698733
1031603
950324
618836
96221
91722 | | | 1 2 3 4 5 6 7 8 | 2367059
943761
4418005
488044
122524
71051
53443
54710 | 1648280
1937063
621167
2910423
281177
64005
30724
23807 | 266715
1332839
892770
423871
1655679
168430
35127
15896 | 1976
852901
215474
803823
513933
234294
889921
77906
17631 | 1977
4447392
698079
126110
471234
281626
129567
485350
44366 | 1978
 | 1979
468512
1077745
2633204
316913
49467
43537
38548
20812 | 2258871
383276
715909
1929321
210044
35587
14706
15043 | 2117316
1847291
302486
513281
1150619
146698
25180
7794 | 1801681
1733512
1419189
201614
327274
533529
90267
18427 | 1983
859500
1471844
1326866
1025517
144582
179089
245857
60669 | 1984

1847768
698733
1031603
950324
618836
96221
91722
119871 | | | 1 2 3 4 5 6 7 | 2367059
943761
4418005
488044
122524
71051
53443
54710
51989 | 1648280
1937063
621167
2910423
281177
64005
30724
23807
26471 | 266715
1332839
892770
423871
1655679
168430
35127
15896
13551 | 1976
852901
215474
803823
513933
234294
889921
77906
17631
9025 | 1977
4447392
698079
126110
471234
281626
129567
485350
44366
9394 | 1978
1355463
3640158
432266
74683
188127
122688
59777
236992
23677 | 1979
468512
1077745
2633204
316913
49467
43537
38548
20812
95428 | 2258871
383276
715909
1929321
210044
35587
14706
15043
6330 | 2117316
1847291
302486
513281
1150619
146698
25180
7794
6380 | 1801681
1733512
1419189
201614
327274
533529
90267
18427
3878 | 1983
859500
1471844
1326866
1025517
144582
179089
245857
60669
13205 | 1984
 | | 1 | 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 | 2367059
943761
4418005
488044
122524
71051
53443
54710
51989
27546 | 1648280
1937063
621167
2910423
281177
64005
30724
23807 | 266715
1332839
892770
423871
1655679
168430
35127
15896 | 1976
852901
215474
803823
513933
234294
889921
77906
17631 | 1977
4447392
698079
126110
471234
281626
129567
485350
44366 | 1978
 | 1979
468512
1077745
2633204
316913
49467
43537
38548
20812 | 2258871
383276
715909
1929321
210044
35587
14706
15043 | 2117316
1847291
302486
513281
1150619
146698
25180
7794 | 1801681
1733512
1419189
201614
327274
533529
90267
18427 | 1983
859500
1471844
1326866
1025517
144582
179089
245857
60669 | 1984

1847768
698733
1031603
950324
618836
96221
91722
119871 | | 1 | 1 2 3 4 5 6 7 8 9 1 10 1 | 2367059
943761
4418005
488044
122524
71051
53443
54710
51989
27546 | 1648280
1937063
621167
2910423
281177
64005
30724
23807
26471 | 266715
1332839
892770
423871
1655679
168430
35127
15896
13551
10104 | 1976
852901
215474
803823
513933
234294
889921
77906
17631
9025
6771 | 1977
4447392
698079
126110
471234
281626
129567
485350
44366
9394 | 1978
1355463
3640158
432266
74683
188127
122688
59777
236992
23677
4823 | 1979
468512
1077745
2633204
316913
49467
43537
38548
20812
95428 | 2258871
383276
715909
1929321
210044
35587
14706
15043
6330
40680 | 2117316
1847291
302486
513281
1150619
146698
25180
7794
6380 | 1801681
1733512
1419189
201614
327274
533529
90267
18427
3878
3489 | 1983
859500
1471844
1326866
1025517
144582
179089
245857
60669
13205
1950 | 1984
1847768
498733
1031603
950324
618836
96221
91722
119871
40305
9247 | | 11 - | 1 2 3 4 5 6 7 8 9 1 10 1 | 2367059
943761
4418005
488044
122524
71051
53443
54710
51989
27546 | 1648280
1937063
621167
2910423
281177
64005
30724
23807
26471
20965 | 266715
1332839
892770
423871
1655679
168430
35127
15896
13551
10104 | 1976
852901
215474
803823
513933
234294
889921
77906
17631
9025
6771 | 1977
4447392
698079
126110
471234
281626
129567
485350
44366
9394
3814 | 1978
1355463
3640158
432266
74683
188127
122688
59777
236992
23677
4823 | 1979
468512
1077745
2633204
316913
49467
43537
38548
20812
95428
9358 |
2258871
383276
715909
1929321
210044
35587
14706
15043
6330
40680 | 2117316
1847291
302486
513281
1150619
146698
25180
7794
6380
2482 | 1801681
1733512
1419189
201614
327274
533529
90267
18427
3878
3489 | 1983
859500
1471844
1326866
1025517
144582
179089
245857
60669
13205
1950 | 1984
1847768
498733
1031603
950324
618836
96221
91722
119871
40305
9247 | | 11 - | 1 2 3 4 5 6 7 8 9 1 1 + | 2367059
943761
4418005
488044
122524
71051
53443
54710
51989
27546 | 1648280
1937063
621167
2910423
281177
64005
30724
23807
26471
20965 | 266715
1332839
892770
423871
1655679
168430
35127
15896
13551
10104 | 1976
852901
215474
803823
513933
234294
889921
77906
17631
9025
6771
3621681
2768779 | 1977
4447392
698079
126110
471234
281626
129567
485350
44366
9394
3814 | 1978
1355463
3640158
432266
74683
188127
122688
59777
236992
23677
4823
6138654
4783191 | 1979
468512
1077745
2633204
316913
49467
43537
38548
20812
95428
9358 | 2258871
383276
715909
1929321
210044
35587
14706
15043
6330
40680 | 2117316
1847291
302486
513281
1150619
146698
25180
7794
6380
2482 | 1801681
1733512
1419189
201614
327274
533529
90267
18427
3878
3489 | 1983
859500
1471844
1326866
1025517
144582
179089
245857
60669
13205
1950 | 1984
1847768
498733
1031603
950324
618836
96221
91722
119871
40305
9247 | Table 23. 4WX herring biomass from SPA using nominal and adjusted catch matrices. | | 15/ 5/85 | | | | | | | | | | | | |--|--|---|--|--|---|--|---|---|--|--|--|---| | 1 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | 1984 | | 1 1 | 17314 | 12719 | 2005 | 6191 | 30617 | 9456 | 3149 | 15182 | 14223 | 11995 | 8301 | 14257 | | 2 1 | 19258 | 52542 | 18737 | 4515 | 28358 | 66053 | 27597 | 10373 | 49414 | 46287 | 37593 | 24118 | | 3 1 | 302008 | 50641 | 54611 | 61689 | 8943 | 31588 | 185400 | 50603 | 20894 | 100167 | 94522 | 82800 | | 4 1 | 43786 | 312004 | 53552 | 53117 | 46474 | 8585 | 33002 | 185305 | 53356 | 22409 | 102514 | 111652 | | 5 1 | 16786 | 36881 | 218033 | 39705 | 35136 | 18851 | 6966 | 27673 | 125516 | 41013 | 19803 | 86304 | | 6 1 | 9975 | 9552 | 23656 | 140017 | 22193 | 15523 | 5171 | 5705 | 21309 | 68690 | 26286 | 15700 | | 7 1 | 8613 | 5141 | 5797 | 14251 | 85857 | 9134 | 5475 | 2231 | 4606 | 15559 | 36794 | 17167 | | 8 1 | 10830 | 4886 | 3444 | 3639 | 9121 | 42422 | 2953 | 2352 | 1294 | 3794 | 11755 | 21456 | | 9 1 | 10160 | 4771 | 3038 | 2002 | 1944 | 4440 | 17689 | 1031 | 1199 | 715 | 2941 | 7440 | | 10 1 | 5926 | 4461 | 2228 | 1873 | 952
 | 1011 | 1800 | 9132 | 563 | 689 | 408 | 2043 | | 1+1 | 444656 | 493598 | 385101 | 327000 | 269596 | 207063 | 289201 | 309585 | 292375 | 311318 | 340918 | 382938 | | 2+1 | 427342 | 480878 | 383096 | 320809 | 238979 | 197607 | 286052 | 294404 | 278152 | 299323 | 332616 | 368681 | | 3+1 | 408084 | 428337 | 364359 | 316294 | 210621 | 131554 | 258455 | 284031 | 228738 | 253036 | 295024 | 344563 | | 4+1 | 106076 | 377695 | 309748 | 254604 | 201678 | 99966 | 73055 | 233428 | 207844 | 152869 | 200502 | 261763 | | | | | | • | | | | | | | | | | | | | Adj | usted M | ЕАН РОРИ | LATION B | IOHASS (| KG) | | | 1 | 5/ 5/85 | | | 1973 | 1974 | Adj: | usted M | 1977 | 1978 | 1979 | kG)
1980 | 1981 | 1982 | | 5/ 5/85
1984 | | +
1 i | 21449 | 14850 | 1975
2402 | 1976
7729 | 1977
40303 | 1978
12113 | 1979
4245 | 1980
20462 | 1981
19190 | 16312 | 1983
7763 | 1984
16733 | | 1 1 2 1 | 21449
22212 | 14850
64308 | 1975
2402
21760 | 1976
7729
5455 | 1977
40303
36160 | 1978
12113
88000 | 1979
4245
36266 | 1980

20462
13993 | 1981

19190
66578 | 16312
62367 | 1983

7763
50787 | 1984
16733
22125 | | 1
2
3 | 21449
22212
381781 | 14850
64308
56891 | 1975
2402
21760
64690 | 1976
7729
5455
71061 | 1977
40303
36160
11122 | 1978
12113
88000
41658 | 1979
4245
36266
253461 | 1980
20462
13993
68207 | 1981
19190
66578
27849 | 16312
62367
135712 | 1983

7763
50787
126352 | 1984

16733
22125
107211 | | 1 i
2 i
3 i
4 i | 21449
22212
381781
53759 | 14850
64308
56891
390156 | 1975
2402
21760
64690
57239 | 1976
7729
5455
71061
61445 | 1977
40303
36160
11122
53709 | 1978
12113
88000
41658
11067 | 1979
4245
36266
253461
44690 | 1980
20462
13993
68207
259131 | 1981
19190
66578
27849
71092 | 16312
62367
135712
29501 | 1983

7763
50787
126352
138482 | 1984

16733
22125
107211
143139 | | 1
2
3
4
5 | 21449
22212
381781
53759
20241 | 14850
64308
56891
390156
45234 | 1975
2402
21760
64690
57239
265929 | 1976
7729
5455
71061
61445
41263 | 1977
40303
36160
11122
53709
40876 | 1978
12113
88000
41658
11067
22585 | 1979
4245
36266
253461
44690
9188 | 1980
20462
13993
68207
259131
38473 | 1981
19190
66578
27849
71092
175040 | 16312
62367
135712
29501
53580 | 1983
7763
50787
126352
138482
25891 | 1984

16733
22125
107211
143139
111358 | | 1 2 3 4 5 6 | 21449
22212
381781
53759
20241
12098 | 14850
64308
56891
390156
45234
11547 | 1975
2402
21760
64690
57239
265929
28131 | 1976
7729
5455
71061
61445
41263
166430 | 1977
40303
36160
11122
53709
40876
24738 | 1978
12113
88000
41658
11067
22585
18794 | 1979
4245
36266
253461
44690
9188
6747 | 1980
20462
13993
68207
259131
38473
7641 | 1981
19190
66578
27849
71092
175040
29517 | 16312
62367
135712
29501
53580
94311 | 7763
50787
126352
138482
25891
33165 | 1984

16733
22125
107211
143139
111358
19621 | | 1 2 3 4 5 6 7 | 21449
22212
381781
53759
20241
12098
10229 | 14850
64308
56891
390156
45234
11547
6237 | 1975
2402
21760
64690
57239
265929
28131
6790 | 1976
7729
5455
71061
61445
41263
166430
16513 | 1977
40303
36160
11122
53709
40876
24738
101513 | 1978
12113
88000
41658
11067
22585
18794
11157 | 1979
4245
36266
253461
44690
9188
6747
7144 | 1980
20462
13993
68207
259131
38473
7641
3114 | 1981
19190
66578
27849
71092
175040
29517
6186 | 16312
62367
135712
29501
53580
94311
21304 | 7763
50787
126352
138482
25891
33165
50161 | 1984

16733
22125
107211
143139
111358
19621
20199 | | 1 2 3 4 5 6 7 8 | 21449
22212
381781
53759
20241
12098
10229
12883 | 14850
64308
56891
390156
45234
11547
6237
5862 | 1975
2402
21760
64690
57239
265929
28131
6790
4044 | 1976
7729
5455
71061
61445
41263
166430
16513
4151 | 1977 40303 36160 11122 53709 40876 24738 101513 10717 | 1978
12113
88000
41658
11067
22585
18794
11157
51387 | 1979
4245
36266
253461
44690
9188
6747
7144
3930 | 1980
20462
13993
68207
259131
38473
7641
3114
3262 | 1981
19190
66578
27849
71092
175040
29517
6186
1812 | 16312
62367
135712
29501
53580
94311
21304
5062 | 1783
7763
50787
126352
138482
25891
33165
50161
16084 | 1984

16733
22125
107211
143139
111358
19621
20199
27940 | | +
1 2 3 4 1 5 1 6 1 7 1 8 1 9 1 | 21449
22212
381781
53759
20241
12098
10229
12883
12295 | 14850
64308
56891
390156
45234
11547
6237
5862
5819 | 1975
2402
21760
64690
57239
265929
28131
6790
4044
3496 | 7729
5455
71061
61445
41263
166430
16513
4151
2313 | 1977 40303 36160 11122 53709 40876 24738 101513 10717 2250 |
1978
12113
88000
41658
11067
22585
18794
11157
51387
5414 | 1979
4245
36266
253461
44690
9188
6747
7144
3930
22730 | 1980
20462
13993
68207
259131
38473
7641
3114
3262
1455 | 1981
19190
66578
27849
71092
175040
29517
6186
1812
1696 | 16312
62367
135712
29501
53580
94311
21304
5062
993 | 1983
7763
50787
126352
138482
25891
33165
50161
16084
3933 | 1984

16733
22125
107211
143139
111358
19621
20199
27940
9800 | | 1 2 3 4 5 6 7 8 | 21449
22212
381781
53759
20241
12098
10229
12883 | 14850
64308
56891
390156
45234
11547
6237
5862
5819
5394 | 1975
2402
21760
64690
57239
265929
28131
6790
4044 | 1976
7729
5455
71061
61445
41263
166430
16513
4151 | 1977 40303 36160 11122 53709 40876 24738 101513 10717 | 1978
12113
88000
41658
11067
22585
18794
11157
51387 | 1979
4245
36266
253461
44690
9188
6747
7144
3930 | 1980
20462
13993
68207
259131
38473
7641
3114
3262 | 1981
19190
66578
27849
71092
175040
29517
6186
1812 | 16312
62367
135712
29501
53580
94311
21304
5062 | 1783
7763
50787
126352
138482
25891
33165
50161
16084 | 1984

16733
22125
107211
143139
111358
19621
20199
27940 | | 1 i i 2 i 3 i 4 i 5 i 6 i 7 i 8 i 9 i 10 i 1 + 1 + i | 21449
22212
381781
53759
20241
12098
10229
12883
12295
7316 | 14850
64308
56891
390156
45234
11547
6237
5862
5819
5394 | 1975
2402
21760
64690
57239
265929
28131
6790
4044
3496
2708 | 1976
7729
5455
71061
61445
41263
166430
16513
4151
2313
2053 | 1977
40303
36160
11122
53709
40876
24738
101513
10717
2250
1130 | 1978
12113
88000
41658
11067
22585
18794
11157
51387
5414
1214 | 1979
4245
36266
253461
44690
9188
6747
7144
3930
22730
2351 | 1980
20462
13993
68207
259131
38473
7641
3114
3262
1455
12237 | 1981
19190
66578
27849
71092
175040
29517
6186
1812
1696
770 | 16312
62367
135712
29501
53580
94311
21304
5062
993
977 | 1783
7763
50787
126352
138482
25891
33165
50161
16084
3933
558 | 1984
 | | 1 i i 2 i 3 i 4 i 5 i 6 i 7 i 8 i 9 i 10 i 1 + 1 + i 2 + i | 21449
22212
381781
53759
20241
12098
10229
12883
12295
7316 | 14850
64308
56891
390156
45234
11547
6237
5862
5819
5394 | 1975
2402
21760
64690
57239
265929
28131
6790
4044
3496
2708
457189
454787 | 1976
7729
5455
71061
61445
41263
166430
16513
4151
2313
2053
378414
370685 | 1977 40303 36160 11122 53709 40876 24738 101513 10717 2250 1130 322516 282213 | 1978
12113
88000
41658
11067
22585
18794
11157
51387
5414
1214
263389
251276 | 1979
4245
36266
253461
44690
9188
6747
7144
3930
22730
2351
390752
386507 | 1980
20462
13993
68207
259131
38473
7641
3114
3262
1455
12237
427974
407513 | 1981
19190
66578
27849
71092
175040
29517
6186
1812
1696
770
399728
380538 | 16312
62367
135712
29501
53580
94311
21304
5062
993
977
420119
403807 | 1783
7763
50787
126352
138482
25891
33165
50161
16084
3933
558
453176
445412 | 1984
 | | 1 i i 2 i 3 i 4 i 5 i 6 i 7 i 8 i 9 i 10 i 1 + 1 + i | 21449
22212
381781
53759
20241
12098
10229
12883
12295
7316 | 14850
64308
56891
390156
45234
11547
6237
5862
5819
5394 | 1975
2402
21760
64690
57239
265929
28131
6790
4044
3496
2708 | 1976
7729
5455
71061
61445
41263
166430
16513
4151
2313
2053 | 1977
40303
36160
11122
53709
40876
24738
101513
10717
2250
1130 | 1978
12113
88000
41658
11067
22585
18794
11157
51387
5414
1214 | 1979
4245
36266
253461
44690
9188
6747
7144
3930
22730
2351 | 1980
20462
13993
68207
259131
38473
7641
3114
3262
1455
12237 | 1981
19190
66578
27849
71092
175040
29517
6186
1812
1696
770 | 16312
62367
135712
29501
53580
94311
21304
5062
993
977 | 1783
7763
50787
126352
138482
25891
33165
50161
16084
3933
558 | 1984
 | Table 24. 4WX herring fishery mortalities at age estimated from nominal and adjusted catch matrices. | | Fishing mortality (nominal catch at age) | | | | | | | | | | | / 5/85 | |--|---|--|--|--|---|---|---|---|---|---|--|--| |
+ | 1973 | 1974 | 1975 | 1976 | | 1978 | | | | 1982 | 1983 | 1984 | | 2
3
4
5
6
7
8
9 | 0.000
0.190
0.210
0.361
0.465
0.653
0.635
0.544
0.712 | 0.547
0.158
0.349
0.299
0.386
0.442
0.353
0.799 | 0.296
0.315
0.311
0.383
0.518
0.436
0.315
0.413 | 0.354
0.328
0.394
0.429
0.395
0.372
0.437
0.688 | 0.000
0.325
0.366
0.733
0.653
0.689
0.519
0.449
0.490 | 0.038
0.149
0.129
0.240
1.336
1.025
0.918
0.764
0.789 | 0.001
0.255
0.137
0.247
0.146
0.985
0.823
1.114
0.718 | 0.001
0.038
0.135
0.336
0.174
0.160
0.454
0.689
0.699 | 0.000
0.063
0.179
0.223
0.538
0.261
0.102
0.482
0.407 | 0.003
0.064
0.137
0.137
0.391
0.578
0.202
0.131
0.489 | 0.141
0.120
0.284
0.187
0.405
0.498
0.203
0.163 | 0.112
0.225
0.225
0.225
0.225
0.225
0.225
0.225 | | + | 0.634
0.459 | | | | | 0.852

0.926 | 0.828

0.460 | | | 0.500
0.412 | | | | | Fishing mortality (adjusted catch at age) | | | | | | | | | | | / 5/85 | |------------|---|----------------|----------------|----------------|----------------|-------------------------|-------------------------|----------------|-------------------------|-------------------------|----------------|----------------| | | | | | | | 1978 | | 1980 | 1981 | 1982 | 1983 | 1984 | | 1
2 | 0.000
0.218 | 0.012
0.575 | 0.013
0.306 | 0.000
0.336 | 0.000
0.279 | 0.029
0.124 | 0.001
0.209 | 0.001
0.037 | 0.000
0.064 | 0.002
0.067 | 0.007
0.155 | 0.002
0.150 | | 4 1 | 0.217
0.351
0.449 | 0.364 | 0.393 | 0.402 | 0.718 | 0.212 | 0.111
0.211
0.129 | 0.317 | 0.250 | 0.125
0.133
0.403 | 0.305 | 0.300 | | 6 I
7 I | 0.638
0.609 | 0.400
0.459 | 0.571
0.489 | 0.406
0.363 | 0.574
0.517 | 0.958
0.855 | 0.885
0.741 | 0.146
0.435 | 0.286 | 0.575
0.197 | 0.469 | 0.300 | | 9 1 | 0.526
0.708
0.618 | 0.763 | 0.494 | 0.661 | 0.467 | 0.710
0.728
0.793 | 0.653 | 0.736 | 0.498
0.404
0.272 | | 0.156 | 0.300 | | | 0.445 | | 0.428 | 0.403 | 0.608 | 0.860 | 0.401 | 0.304 | | | | | Fig. 1. Seasonal distributions of activity by gear component of the 4WX herring fishery. Dots (•) represent recorded limits of fishing activity, bars (—) represent limits of seasons. Fig. 2. Geographical distribution of gear components of the 1984 4WX (and 4Vn purse seine) herring fishery (resolution = 10' square). Fig. 3. Long-term (1963-present) landings by gear component of the 4WX herring fishery. Fig. 4. Relative frequency (%) of numbers and weights by age in gear segments of the 1984 4WX herring fishery. #### 4WA PURSE SEINE NOS. BY AGE ### 44A PURSE SEINE CATCH VEIGHTS BY AGE ### 4XA PURSE SEINE NOS. BY AGE ## 4XA PURSE SEINE CATCH VEIGHTS BY AGE #### 4XB PURSE SEINE NOS. BY AGE #### 408 PURSE SEINE CATCH WEIGHTS BY AGE Fig. 4. Continued. ### 4XA GILLNET CATCH WEIGHTS BY AGE ### 4XA (NS) WEIR NOS. BY AGE # 4XA (NS) WEIR CATCH WEIGHTS BY AGE ### 4XA TRAP NOS. BY AGE # 4XA TRAP CATCH WEIGHTS BY ASE Fig. 4. Continued. Fig. 4. Continued. #### 4WX MISC. GEAR CATCH WEIGHTS BY AGE Fig. 4. Continued. PLOT OF "SPA" ESTIMATES (O) AND PHEDICTED VALUES FROM "LEAST SQUARE" (+) AND "RESISTANT LINE" (1) REGRESSIONS AGAINST THE CALIBRATION VARIABLE. Fig. 5. 4WX herring "nominal" SPA estimated mature biomass vs. larval abundance; 1972-84. #### APPENDIX 1 ## 1984 HERRING MANAGEMENT PLAN ## SCOTIA-FUNDY REGION ## BASIC PRINCIPLES - 1. Conservation and restoration of the fisheries resource. - 2. Quotas to imply stock area and fleet segment. - 3. Allocation of fishery resources will be on the basis of: - (a) adjacency; - (b) dependency on the fleet sector; - (c) economic
efficiency; and - (d) fleet mobility. - 4. Utilization of the fishery resources over the calendar year to the degree possible and among competing end product users so as to maximize the overall value of the resource. - 5. All gear may be subject to quota management. - 6. Access to herring stocks will be regulated by quotas and seasons. ### HERRING PURSE SEINE #### 1. GENERAL ALL PURSE SEINE VESSELS SHALL OPERATE ON AN ANNUAL VESSEL QUOTA AS DEFINED BELOW: ## 1. <u>VESSEL QUOTA</u> Class A - 1.6% of purse seine quota, 1024 tonnes Class B - 2.7% of purse seine quota, 1728 tonnes These figures do not account for quota purchases. For those vessels with quota purchases the 1984 vessel quotas are as follows: | TOMMIE & ARNIE | • | 2048 | |--------------------|-----|------| | LISA ANNE | - | 2048 | | SEAFOAM I | - | 2560 | | LEROY & BARRY I | - | 2560 | | MARGARET ELIZABETH | - | 2560 | | JENNIFER JEAN I | *** | 2560 | | LADY MELISSA | *** | 2560 | | CPRD | - | 1216 | 2. ALL Vessels which have purchased quotas must have demonstrated circulating chilling systems active prior to obtaining the 1984 purchased quota amount. ALL VESSELS QUOTA: WILL OCCUR THROUGH LICENSING #### 3. PARTICIPATION Any Scotia-Fundy purse seine vessel may participate in any or all of the following herring fisheries: i.e., 4W, 4X (fall), 4X (brit), 4X (summer). The only restrictions will be area quota and overall vessel quota. ## 4. MONITORING Government control of the TAC will occur through continual monitoring of all catches. This will include: - accurate log records to be provided upon landing; - all purchase slips, or copies, to be provided to DFO upon delivery; - weighing of purse seine catches with associated weigh slips; #### PART I CONT'D. special force. ## II. PURSE SEINE FISHERIES ## (A) Sydney Bight (4Vn) - (1) The season for purse seine vessels shall run from November 6, 1983, to March 16, 1984. - (2) The quota will be 5,000 tonnes, to be taken by Gulf-based purse seine vessels. - (3) The area of activity shall be north of a line drawn from Point Aconi in Cape Breton to the 3Pn Division intersect with the 4Vn line. - (4) The area east and south of the Point Aconi line in 4Vn shall not be fished by purse seine vessels. # (B) Chedabucto Bay (4W) - (1) The season for purse seine vessels shall run from November 7, 1983, to March 16, 1984. - (2) The quota will be 16,000 tonnes, to be taken by Scotia-Fundy vessels. Provision is made to increase this quota should vessels wish to continue operations provided that: - (a) markets are identified; - (b) the vessel has annual quota remaining; and - (c) the March 16 closure has not been reached. - (3) The following closure line will be in effect: Waters of Chedabucto Bay in 4W lying west of a straight line extending from Cape Canso at 45° 18' north latitude, 60° 56' west longitude to Green Island at 45° 29' north latitude, 60° 54' west longitude. # (C) Bay of Fundy - Fall and "Brit" Fishery - (1) The fall and winter Bay of Fundy purse seine fisheries will be combined into one fishery with the following provisions: - (a) The season will be October 16, to April 15 of the next year. - (b) A total of 6,000 t will be assigned in the following manner: - (i) up to 4,000 t to be caught in the October 16 December 31 portion of the fishery; ## PART I CONT'D. - (ii) of the amount captured in (i) above, 50 percent will be assigned to the TAC up to a maximum of 2,000 to; - (iii) the "brit" fishery will comprise the second portion of the fall and winter Bay of Fundy purse seine fishery with January 1 April 15 season; - (iv) the quota for the 1984 "brit" fishery will be 2,000 t for 1984; - (v) all catches will be deducted from individual vessel quotas for the 1984 season (50 percent of fall catch + 100 percent of the "brit" catch). - (2) The fishery will be closed when: - quotas are reached; - seasonal closures are reached; or - irregularities in quality, size, end-product use or misreporting occurs. # (D) Bay of Fundy - Summer Fishery - (1) The season for purse seine vessels shall run from June 1, 1984 to October 15, 1984. - (2) The quota will be (64,000 (X+Y+Z)), to be taken by Scotia-Fundy vessels. X = 4W catch Y = Fall 4X catch (50 percent) Z = 4X Brit catch - (3) A 3,000 t quota will be assigned to the Scotts Bay area for purse seine vessels as part of the summer domestic (4X) purse seine quota. - (4) A Georges Bank purse seine fishery is authorized under the following conditions: - (a) fishing to occur in the Canadian Zone of 5Ze; - (b) a DFO observer must be present on all trips to facilitate this activity; - (c) 24 hour's notice must be given to DFO prior to departure; and - (d) failure to comply with parts, (a), (b) and (c) will result in any catch being assigned to that vessel's 4X quota. ## SCOTIA-FUNDY INSHORE HERRING MANAGEMENT PLAN - 1. All catch information shall be provided to the department for each catch. - 2. All purchase slip information shall be provided for each purchase and shall include identification of amount purchase, fishermen and date of purchase. - 3. Inshore effort in southern New Brunswick and in Nova Scotia east of Baccaro will not be under quota management. - 4. Sourthern New Brunswick weirs will be assigned an allocation of anticipated catch. - 5. No effort increases will occur in any inshore fishery. - 6. All herring sold for bait will be recorded and applied against quotas. ## WEIR FISHERY The Nova Scotia weir fishery will have a 3,200 t quota. ## HERRING SET NET FISHERY - 1. A quota of 2,400 t for all set gill nets, excluding catches east of Baccaro and the sourthern New Brunswick shore. - 2. After the season, all moorings must be removed from the water. - 3. No increase in effort will be permitted. # HERRING DRIFT NET FISHERY - 1. The herring drift net quota will be 9,500 t, exclusive of Grand Manan catches. - 2. Licences for drift nets are limited to those holding same for 1983. #### TRAP FISHERY - 1. A 1,000 t quota is assigned to the Liverpool trap net fishery with a season of February 15 May 15 for 1984. Catches after this date will not be under quota control. - 2. All mackerel traps in the 4X area are limited to a 10% by-catch of herring up to a maximum of 100 t. - 3. Herring traps located in areas outside of 4X west of Baccaro will not be controlled by assigned quota. #### APPENDIX 2 - CATCH PROJECTIONS FOR 4WX HERRING | Three catch projections | for | 1985-90 | were | generated | for | each | matrix | |-------------------------------|-----|---------|------|-----------|-----|------|--------| | using the following input dat | :a: | | | | | | | | | Mean | Adjusted 1984 population | | Nominal 198 | 34 population | |-----|------------|--------------------------|-----------|-------------|---------------| | Age | wt
(kg) | Number | Weight(t) | Number | Weight(t) | | 1 | •010 | 1847768 | 16733 | 1576036 | 14257 | | 2 | .041 | 698733 | 22125 | 748315 | 24118 | | 3 | .112 | 1031603 | 107211 | 769603 | 82800 | | 4 | .172 | 950324 | 143139 | 716051 | 111652 | | 5 | .218 | 618836 | 111358 | 463288 | 86304 | | 6 | • 254 | 96211 | 19621 | 74376 | 15700 | | 7 | • 286 | 91722 | 20199 | 75303 | 17167 | | 8 | •323 | 119871 | 27940 | 88921 | 21456 | | 9 | .354 | 40305 | 9800 | 29558 | 7440 | | 10 | .389 | 9247 | 2649 | 6890 | 2043 | - a) Assumed the 1984 PR (age 1 = .002, 2 = .5, 3+ = 1), a 1985 catch of 107710 (100,000 t quota for purse seine plus the 1984 level of catch for other gear) and $F_{0.1}$ = .254 thereafter. - b) Assumed the 1984 PR (age 1 = .002, 2 = .5, 3+ = 1) and an $F_{0.1}$ level of fishing (= .254) in 1985 and subsequent years. - c) Assumed the previous (1983) PR pattern (age 1 = .02, 3 = .2, 3 = .53, 4+ = 1), a 1985 catch of 107710 quota and $F_{0.1} = .3$ thereafter. Results of these projections are listed in Tables A2-1 to A2-6 and summarized below: | | Quota/F | | | Proj | ected cat | ch biomas | s (t) | | |--------------|---------|-------|-------|-------|-----------|-----------|---------|---------| | Matrix Proj. | 85 | 86 | 87 | 88 | 85 | 86 | 87 | 88 | | Adj. A | 107,710 | . 254 | .254 | . 254 | 107,710 | 100,000 | 103,000 | 108,000 | | Adj. B | •254 | . 254 | .254 | . 254 | 99,000 | 102,000 | 105,000 | 109,000 | | Adj. C | 107,710 | . 3 | .3 | . 3 | 107,710 | 100,000 | 106,000 | 114,000 | | Nom. A | 107,710 | .254 | . 254 | . 254 | 107,710 | 82,000 | 86,000 | 91,000 | | Nom. B | .254 | .254 | . 254 | . 254 | 84,000 | 87,000 | 90,000 | 94,000 | | Nom. C | 107,710 | .3 | . 3 | . 3 | 107,710 | 81,000 | 88,000 | 95,000 | Based upon the assessment parameters listed and the expected catch of 107,710 t in 1985, the catch resulting from fishing at $F_{0.1}=.254$ in 1986 is 100,000 t (adjusted) or 82,000 t (nominal). The $F_{0.1}$ catch for 1985 is calculated as 99,000 t for the adjusted matrix and 84,000 t for the nominal matrix. The expected catch in 1985 (107,710 t) will result in a fully recruited F of .28 in the adjusted case and .34 in the nominal case. Table A2-1. 4WX herring catch projection Adjusted Matrix "A". Assumptions: PR for age 1 = .002, 2 = .5, 3+ = 1 1985 catch = 107 710 t 1986+ catch at $F_{0.1}$ = .254 | | | • | | | | |---|---|-------------------------------|--|--|---| | | | POPULATION | 4 NUMBE | RS | 25/ 9/85 | | | .1984 | 1985 | 1986 | 1987 | 1988 | | 1 2 3 4 5 6 1 7 1 1 1 1 1 1 1 1 | 1847768
698733
1031603
950324
618836
96221
91722
119871
40305
9247 | 1512824 | 1846300
1510781
1077651
305174
387796
357242
232630
36171
34480
45062 |
1510855
1089400
684398
193810
246283
226878
147740 | 1846300
1510855
1089453
691859
434649
123086
156410
144087
93827
14589 | | 1+
2+
3+
4+ | 5504630
3656862
2958129
1926526 | 3793800
2280976
1788587 | 5833287
3986987
2476206
1398555 | 22.2 | 6105114
4258814
2747959
1658506 | | | | CAICH BIO | MASS | 25/ 9 | /85 | | | 1984 | 1985 1 | 986
 | 1987 1 | 988 | | | | CATCH | BIOMASS | . 2 | 5/ 9/85 | |--------------------------|---|--|--|---|---| | + | 1984 | 1985 | 1986 | 1987 | 1988 | | 1234567890 | 0
3626
27277
38589
31849
5770
6193
9141
3368
849 | 7322
12202
23812
27803
21094
3693
3976
5695
2104 | 8
6710
24642
10716
17260
18525
13583
2385
2492
3579 | 8
6710
24910
24033
8626
12771
13247
9743
1660
1739 | 6710
24911
24295
19345
6383
9133
9502
6781
1159 | | 1+1
2+1
3+1
4+1 | 126661
126661
123036
95759 | 107710
107701
100379
88177 | 99901
99892
93182
68541 | 103449
103440
96730
71820 | 108227
108219
101508
76597 | | 1 | 1984 | 1985 | 1986 | 1987 | 1988 | |--|---|---|---|---|--| | 1 2 3 4 5 6 7 8 9 10 | 0.000
0.150
0.300
0.300
0.300
0.300
0.300
0.300
0.300 | 0.001
0.139
0.278
0.278
0.278
0.278
0.278
0.278
0.278 | 0.001
0.127
0.254
0.254
0.254
0.254
0.254
0.254
0.254 | 0.001
0.127
0.254
0.254
0.254
0.254
0.254
0.254
0.254 | 0.001
0.127
0.254
0.254
0.254
0.254
0.254
0.254 | | 1+1 | 0.180 | 0.150 | 0.141 | 0.144 | 0.146 | | | | POPULATI | ON NUMBER | s | 25/ 9/85 | |--|---------|----------|-----------|----------|----------| | . ! | 1984 | 1985 | 1986 | 1987 | 1988 | | 1 2 3 4 5 6 7 8 9 10 | 1847768 | 1846300 | 1846300 | 1846300 | 1846300 | | | 698733 | 1512824 | 1510855 | 15108955 | 15108953 | | | 1031603 | 492389 | 1090873 | 1089453 | 1089453 | | | 950324 | 625699 | 312708 | 692795 | 691893 | | | 618836 | 576401 | 397370 | 198595 | 439982 | | | 96221 | 375343 | 366062 | 252363 | 126124 | | | 91722 | 58361 | 238374 | 232480 | 160271 | | | 119871 | 55632 | 37064 | 151387 | 147644 | | | 40305 | 72706 | 35331 | 23539 | 96143 | | | 9247 | 24446 | 46174 | 22438 | 14949 | | 1+1 | 5504630 | 5640100 | 5881111 | 6020204 | 6123614 | | 2+1 | 3656862 | 3793800 | 4034811 | 4173904 | 4277314 | | 3+1 | 2958129 | 2280976 | 2523956 | 2663050 | 2766460 | | 4+1 | 1926526 | 1788587 | 1433083 | 1573597 | 1677007 | | | | CATCH | BIOMASS | 2 | 5/ 9/85 | |--|---|---|--|---|--| | 1 | 1984 | 1985 | 1986 | 1987 | 1988 | | 1
2
3
4
5
6
7
8
10 | 0
3626
27277
38589
31849
5770
6193
9141
3368
849 | 8
6719
11259
21972
25654
19464
3408
3669
5255
1941 | 8
6710
24944
10981
17686
18983
13919
2444
2553
3667 | 8
6710
24911
24328
8839
13087
13574
9983
1701
1782 | 8
6710
24911
24296
19582
6540
9358
9736
6949
1187 | | 1+1
2+1
3+1
4+1 | 126661
126661
123036
95759 | 99349
99340
92621
81362 | 101896
101887
95177
70233 | 104924
104916
98206
73294 | 109279
109271
102561
77649 | | ļ | 1984 | 1985 | 1986 | 1987 | 1988 | |---------------------------------|---|--|---|-------------------------|--| | 1 2 1 2 3 4 1 5 6 7 8 9 1 1 0 1 | 0.300
0.300
0.300
0.300
0.300 | 0.001
0.127
0.254
0.254
0.254
0.254
0.254
0.254 | 0.127
0.254
0.254
0.254
0.254
0.254
0.254 | 0.254
0.254
0.254 | 0.001
0.127
0.254
0.254
0.254
0.254
0.254
0.254 | | 1+1 | 0.180 | 0.137 | 0.142 | 0.144 | 0.146 | Table A2-3. 4WX herring catch projections Adjusted Matrix "C". Assumptions: PR for age 1 = .01, 2 = .22, 3 = .53, 4+ = 1 1985 catch = 107 710 1986+ catch at $F_{0.1}$ = .3 | • | | POPULATI | ON NUMBER | S | 25/ 9/85 | |---|---|--|--|---|---| | I | 1984 | 1985 | 1986 | 1987 | 1988 | | 1
2
3
4
5
6
7
8
9 | 1847768
698733
1031603
950324
618836
96221
91722
119871
40305
9247 | 1846300
1512824
492389
625699
576401
375343
58361
55632
72706
24446 | 1846300
1506965
1157294
342307
376253
346608
225706
35094
33453
43720 | 1846300
1507095
1154997
808224
207620
228209
210229
136897
21286
20291 | 1846300
1507095
115507096
806620
490213
125928
138416
127510
83032
12910 | | 1+1
2+1
3+1
4+1 | 5504630
3656862
2958129
1926526 | 5640100
3793800
2280976
1788587 | 5913700
4067400
2560435
1403141 | 6141146
4294846
2787752
1632755 | 6293120
4446820
2939725
1784629 | | | | CATCH | BIOMASS | 2 | 5/ 9/85 | |------------|--------|--------|---------|--------|---------| | | 1984 | 1985 | 1986 | 1987 | 1988 | | 1234567890 | 0 | 52 | 50 | 50 | 50 | | | 3626 | 3594 | 3581 | 3581 | 3581 | | | 27277 | 7562 | 17315 | 17281 | 17283 | | | 38589 | 26033 | 13900 | 32819 | 32754 | | | 31849 | 30396 | 19364 | 10685 | 25229 | | | 5770 | 23062 | 20784 | 13684 | 7551 | | | 6193 | 4038 | 15240 | 14194 | 9346 | | | 9141 | 4347 | 2676 | 10439 | 9723 | | | 3368 | 6226 | 2796 | 1779 | 6939 | | | 849 | 2300 | 4015 | 1863 | 1186 | | 1+1 | 126661 | 107710 | 99721 | 106376 | 113641 | | 2+1 | 126661 | 107658 | 99671 | 106326 | 113591 | | 3+1 | 123036 | 103964 | 96090 | 102745 | 110010 | | 4+1 | 95759 | 96402 | 78775 | 85464 | 92728 | | | 1984 | 1985 | 1986 | 1987 | 1988 | |---|--|---|---|---|--| | 1
23
4
5
6
7
8
9
10 | 0.000
0.150
0.300
0.300
0.300
0.300
0.300
0.300 | 0.068
0.164
0.309
0.309
0.309 | 0.066
0.159
0.300
0.300
0.300
0.300
0.300 | 0.159
0.300
0.300
0.300
0.300 | 0.066
0.159
0.300
0.300
0.300
0.300
0.300
0.300 | | 1+1 | 0.180 | 0.131 | 0.120 | 0.127 | 0.131 | Table A2-4. 4WX herring catch projection Nominal Matrix "A". Assumptions: PR for age 1 = .002, 2 = .5, 3+ = 1 1985 catch = 107 710 t 1986+ catch at $F_{0.1}$ = .254 | | | POPULATI | ON NUMBER | s | 25/ 9/85 | |---|---|--|--|--|--| | | 1984 | 1985 | 1986 | 1987 | 1988 | | 1
2
3
4
5
6
7
8
9 | 1576036
748315
769603
716051
463288
74376
75303
88921
29558
6890 | 1575210
1290349
547479
503143
468133
302884
48625
49231
58134
19324 | 1575210
1288805
892757
3200757
294173
273703
177087
28429
28784
33989 | 1575210
1289018
929336
566975
203287
186824
173824
112465
18055
18280 | 1575210
1289018
929490
590205
360076
129104
118649
110393
71425
11466 | | 1+1
2+1
3+1
4+1 | 4548343
2972307
2223992
1454388 | 4862512
3287302
1996953
1449474 | 4913033
3337823
2049018
1156261 |
5073274
3498064
2209046
1279710 | 5185036
3609826
2320808
1391318 | | | | | ** | | | |--|--|--|--|---|--| | | | CATCH B | IOMASS | 25 | / 9/85 | | 1 | 1984 | 1985 | 1986 | 1987 | 1988 | | 1 2 3 4 5 6 7 8 9 10 | 2964
15800
22575
18513
3463
3948
5265
1918
491 | 10
7450
15977
22549
26591
20046
3624
4143
5362
1959 | 7
5724
20414
11240
13093
14193
10340
1875
2080
2699 | 5725
21250
19910
9048
9688
10150
7416
1305
1452 | 5725
21254
20725
16026
6695
6928
7280
5162
911 | | 1+1
2+1
3+1
4+1 | 74936
74936
71972
56172 | 107710
107700
100250
84273 | 81666
81659
75935
55521 | 85951
85943
80218
58968 | 90713
90705
84980
63727 | | | 1984 | 1985 | 1986 | 1987 | 1988 | |------------|---|---|---|---|---| | 1234567890 | 0.000
0.1155
0.2255
0.2255
0.2255
0.2255
0.2255 | 0.001
0.168
0.337
0.337
0.337
0.337
0.337
0.337
0.337 | 0.001
0.127
0.254
0.254
0.254
0.254
0.254
0.254
0.254 | 0.001
0.127
0.254
0.254
0.254
0.254
0.254
0.254
0.254 | 0.001
0.127
0.254
0.254
0.254
0.254
0.254
0.254
0.254 | | 1+1 | Λ.129 | 0.183 | 0.139 | 0.143 | 0.145 | Table A2-5. 4WX herring catch projection Nominal matrix "B". Assumptions: PR for age 1 = .002, 2 = .5, 3+ = 1 1985+ catch $F_{0.1}$ = .254 | | | POPULATI | ON NUMBER | s | 25/ | 9/85 | • | |--|---|--|---|--|---|---|---| | 1 | 1984 | 1985 | 1986 | 1987 | | 1988 | | | 1 2 3 4 5 6 7 8 9 10 | 1576036
748315
769603
716051
463288
74376
75303
88921
29558
6890 | 1575210
1290349
547479
547479
503143
468133
302884
48625
49231
58134
19324 | 1575210
1289018
930450
347695
319538
297303
192356
30881
31266
36920 | 1575210
1287018
929490
590912
220815
202933
188812
122162
19612
19856 | 128
92
59
37
14
12
11 | 75210
89018
29490
90303
75278
40236
28879
27583
77583 | | | 1+1
2+1
3+1
4+1 | 4548343
2972307
2223992
1454388 | 4862512
3287302
1996953
1449474 | 5050635
3475425
2186407
1255958 | 5158820
3583610
2294592
1365103 | 366
237 | 8363
3153
4135
4646 | | | | | CATCH | BIOMASS | 25 | / 9/85 | |---------------------------|--|---|--|---|---| | ļ | 1984 | 1985 | 1986 | 1987 | 1988 | | 1 2 3 4 5 6 7 8 9 9 1 1 0 | 2964
15800
22575
18513
3463
3948
5265
1918
491 | 7
5731
12519
17668
20835
15707
2839
3246
4201
1535 | 7
5725
21276
12210
14222
15417
11232
2036
2260
2932 | 7
5725
21254
20750
9828
10523
11025
8056
1417
1577 | 7
5725
21254
20729
16703
7272
7525
7907
5607
989 | | 1+1
2+1
3+1
4+1 | 74936
74936
71972
56172 | 84289
84281
78551
66032 | 87316
87309
81584
60308 | 90162
90155
84430
63176 | 93719
93711
87986
66733 | | 1 | 1984 | 1985 | 1986 | 1987 | 1988 | |------------|--|---|---|---|--| | 1234117891 | 0.000
0.11555
0.22255
0.22255
0.22255
0.22255 | 0.001
0.127
0.254
0.254
0.254
0.254
0.254
0.254
0.254 | 0.001
0.127
0.254
0.254
0.254
0.254
0.254
0.254
0.254 | 0.001
0.127
0.254
0.254
0.254
0.254
0.254
0.254
0.254 | 0.001
0.127
0.254
0.254
0.254
0.254
0.254
0.254 | | 1+1 | 0.129 | 0.138 | 0.143 | 0.145 | 0.147 | Table A2-6. 4WX herring catch projection Nominal Matrix "C". Assumptions: PR for age 1 = .01, 2 = .22, 3 = .53, 4+ = 1 1985 catch = 107 710 1986+ catch at $F_{0.1}$ = .3 | | | POPULATI | :S | 25/ 9/85 | | |---|---|--|---|--|---| | | 1984 | 1985 | 1986 | 1987 | 1988 | | 1
2
3
4
5
6
7
8
9 | 1576036
748315
769603
716051
463288
74376
75303
88921
29558
6890 | 1575210
1290349
547479
503143
468133
302884
48625
49231
58134
19324 | 1575210
1284761
971383
366166
281265
261693
169317
27182
27521
32498 | 1575210
1285810
984691
678389
222091
170596
158725
102696
16487
16692 | 1575210
1285810
985495
687683
411464
134705
103472
96272
62288
10000 | | 1+1
2+1
3+1
4+1 | 4548343
2972307
2223992
1454388 | 4862512
3287302
1996953
1449474 | 4996996
3421786
2137025
1165642 | 5211387
3636177
2350367
1365676 | 5352397
3777187
2491378
1505883 | | | | CATCH E | IOMASS | 25 | / 9/85 | |--|--|---|---|---|--| | | 1984 | 1985 | 1986 | 1987 | 1988 | | 1 2 3 4 5 6 7 8 9 10 | 2964
15800
22575
18513
3463
3948
5265
1918
491 | 54-
3866
10210
25039
29527
22259
4024
4601
5954
2175 | 43
3053
14534
14869
14476
15692
11432
2073
2300
2984 | 43
3055
14733
27547
11430
10230
10717
7831
1378
1533 | 43
3055
14745
27924
21176
8078
6986
7341
5206
918 | | 1+1
2+1
3+1
4+1 | 74936
74936
71972
56172 | 107710
107656
103789
93579 | 81455
81412
78360
63826 | 88496
88453
85398
70665 | 95472
95429
92374
77629 | | i | 1984 | 1985 | 1986 | 1987 | 1988 | |---|---|---|---|---|---| | 1
2
3
4
5
6
7
8
9 | 0.113
0.225
0.225
0.225
0.225
0.225
0.225 | 0.004
0.084
0.202
0.382
0.382
0.382
0.382
0.382
0.382 | 0.066
0.159
0.300
0.300
0.300
0.300
0.300 | 0.066
0.159
0.300
0.300
0.300
0.300
0.300 | 0.066
0.159
0.300
0.300
0.300
0.300
0.300 | | 1+! | 0.129 | 0.160 | 0.119 | 0.126 | 0.130 | ## PROPOSAL As a result of the consultation conducted to date, April 1 - 2, 1985, the following package was developed. - 1. A purse seine quota for 1985 of 100,000 tonnes. For other gear types, there will be an allowance. It should be noted that the biological advice for 1985 is a total of 85,000 tonnes. - Over-the-side sales recommendations: - a. for the purse seine component an 8,000 t OSS linked with an overthe-wharf sale of 8,000 t round weight equivalent. This program is to be managed by Fundy Coordinators; - b. for the gillnet component a 2,500 t OSS linked with an over-thewharf sale of 1,500 t round weight equivalent. This program will be managed by the MFU; - c. a cooperation arrangement will occur between the two
management groups (MFU & Fundy Coordinators) to ensure daily OSS capacity is filled; and - d. for the weir component a 1,000 t OSS program. This is to be managed by Fundy Coordinators. - 3. There will be a closure to purse seiners on Trinity Ledge covering period last week in August first week in September. ## 4. Carcasses Every encouragement will be made in 1985 to move carcasses to meal plants; attempts will be made to develop food use for carcasses and every level of local government will be contacted to discourage dumping on land. No dumping, at sea, will be permitted. ## 5. Roe Fishery No special efforts will be made to segregate the roe and food fisheries. - 6. For future trade missions on herring, representatives of the Scotia-Fundy herring processing and fishing industries should be chosen by the 4WX Herring Management Committee. - 7. Monitoring There are several components: - One central marketing office (presumably Fundy Coordinators) to which all landings will be reported, by the captain, on a daily basis; - One DFO employee will work with the industry coordinator on a continuing basis; - c. A verbal hail including port of landing must be provided to DFO via the central marketing office nightly: - d. Each skipper/owner authorizes the central marketing agency to notify: fellow members of his cumulative seasonal landings. - d. Each skipper/owner agrees to provide, in writing, a release to processors to provide accurate sales slip information to DFO; and - f. Fragmented licensing will continue for 1985. In the interim, we will be pursuing regulation amendments providing for compulsory reporting prior to landing and authority to designate ports of landings.