Not to be cited without permission of the authors	Ne pas citer sans autorisation des auteurs ${ }^{1}$
Canadian At Tantic Fisheries	Comité scientifique consultatif des
SCientific Advisory Committee	pēches canadiennes dans l'Atlantique
CAFSAC Research Document $85 / 74$	CSCPCA Document de recherche $85 / 74$

Catch rates and total removals in the 4WX herring purse seine fisheries.

by
P.M. Mace

Marine Fish Division Fisheries Research Branch
Bedford Institute of Oceanography P.O. Box 1006

Dartmouth, N.S. B2Y 4A2

1 This series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the timeframes required and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research Documents are produced in the official language in which they are provided to the Secretariat by the author.
${ }^{1}$ Cette sėrie documente les bases scientifiques des conseils de gestion des pēches sur la cōte atlantique du Canada. Comme telle, elle couvre les problèmes actuels selon les échēanciers voulus et les Documents de recherche qu'elle contient ne doivent pas être considērēs comme des ènoncés finals sur les sujets traitēs mais plutōt comme des rapports d'ētape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée par les auteurs dans le manuscrit envoyé du secrētariat.

Abstract

Results of a two-year observer program on herring purse seiners are summarized. In 1983 and 1984 the purse seine fishery has been characterized by an increase in directed effort on juveniles, a substantial increase in markets for herring roe, and a limited demand for other types of adult herring products. This has resulted in changes in the temporal and spatial distribution of fishing activity, forcing it later into the season and onto the spawning grounds and juvenile feeding areas. Catch rate indices were therefore computed for market/fishing-ground categories that were comparable between years. All such indices indicate an increase in stock biomass between 1983 and 1984.

Estimates of the discrepancies between recorded purse seine landings and total removals were derived for the period 1973-84. They were based on extensive interviews with members of the fishing industry, as well as comparison between observer information and recorded landing statistics. Purse seine catches were corrected for the estimated discrepancies and recombined with the catches by other gears to generate an adjusted catch matrix. A cohort analysis based on the adjusted matrix results in a substantial increase in the estimate of current population biomass.

Rēsumē

On résume les résultats d'un programme d'observation de deux ans portant sur la pēche du hareng à la senne coulissante. En 1983 et en 1984, la pêche à la senne coulissante a êté caractêrisée par un effort accru à l'égard des juvéniles, par un élargissement substantiel du marché de la rogue de hareng et par une demande limitée en ce qui concerne les autres produits de hareng adulte. Cette situation a entraīnē une redistribution temporelle et spatiale de la pêche qui s'est poursuivie plus tard dans la saison et qui s'est êtendue aux frayères et aux endroits oü se nourrissent les juvéniles. On a donc calculé les indices du taux de capture pour les catégories marché/lieux de pèche qui étaient comparables d'une année à l'autre. Ces indices dénotent tous une augmentation de la biomasse des stocks entre 1983 et 1984.

On a estimé les écarts entre les dēbarquements de pêche à la senne coulissante et les prises totales enregistrées pour la période 1973-1984. Ces estimations ont êté basées sur des entretiens exhaustifs avec des membres de l'industrie de la pêche ainsi que sur une comparaison entre l'information fournie par des observateurs et les statistiques des dëbarquements. Les valeurs obtenues pour les prises à la senne coulissante ont été corrigēes en foncton des écarts calculés, puis recombinees aux quantitēs pēchëes au moyen d'autres engins pour donner une matrice ajustēe des prises. Une analyse par cohorte, basée sur la matrice ajustēe, met en évidence une augmentation substantielle du chiffre de la biomasse actuelle de la population.

Introduction

In terms of landed catch, purse seiners are the most important gear component of the 4WX herring fisheries. They usually account for more than 80% of the quota-regulated landings. Knowledge of factors affecting their overall fishing success, their ability to concentrate fishing mortality on selected age groups, and the size and age distributions of fish removals is therefore essential to proper assessment of the fishery and predictions of potential changes in stock structure.

A project to gather detailed information pertaining to the interaction between purse seine fishermen and the herring resource has been conducted during the last two years, concentrating on the main summer 4 Xa component. It has involved deployment of observers on the seiners to record search paths, distribution of fishing effort, factors affecting fleet movements, school sightings, estimates of school sizes, area searched, amounts of time spent searching and setting, proportions of sets abandoned, reasons for abandonment, catch composition, and other related variables. A summary of the extent of sampling during 1983 and 1984 is given in Table 1. The primary purpose of the study is to obtain a better understanding of the purse seine fishing mortality-fishing effort relationship, the factors that affect it, and its consequences in terms of stock assessments.

In this paper I summarize the major factors affecting fishing effort, fishing success, and catch composition, with particular emphasis on the changes that have occurred between 1983 and 1984. I then derive a series of estimates of total removals based partly on observer information, construct an adjusted catch matrix for 4WX herring and show how the new matrix can affect estimates of stock size.

Description of the Fishery

The main driving variables that affect fishing patterns are the markets for the various herring products and changes in the density, distribution, and size composition of herring schools over the course of the season. Weather may also have an effect but is not a major factor in the summer fishery. Its effects on the percentage of unsuccessful nights appear to have been quite similar over the two years (Figure 1).

Market effects are much more significant. There are many different types of herring products each requiring a somewhat different size or age composition of fish (Table 2). Markets for these can vary dramatically from year to year. This affects the relative desirability and selectivity of particular age classes so that landings reflect not only relative year class size but also relative market demand. It also affects the temporal and spatial distribution of fishing activity. In

1983, there was a moderate amount of fishing for each of the product categories in Table 2, with the possible exception of barrel product. Fillets, frozen round, and over-the-side sales were the dominant categories for the period late May - mid August. The roe fisheries predominated from mid-August to late September. Juveniles were fished throughout August and September and herring were sold for lobster bait at the end of September and beginning of October. The pattern was similar in 1984 but the relative importance of each category changed markedly due to the occurrence of substantial markets for herring roe coupled with a limited demand for other types of adult herring products. There was also a continuation in the demand for seine-caught juveniles, to compensate for low catches in New Brunswick weirs. This meant that much of the fishing effort was concentrated in juvenile feeding areas and on the spawning grounds, and focused on the latter part of the season.

There was therefore less effort on the mixed aggregations of herring that are present at the beginning of the summer season, and much of this catch was sold to foreign over-the-side sales where the acceptable size range of fish is less restrictive. Boats fishing for domestic processors often had limited nightly markets and so spent less time searching and made fewer sets (Tables $3 \mathrm{a}-\mathrm{d}$). One result was a decrease in the proportion of sets abandoned, particularly in July (Figure 2). A total of 3.0% of all 1984 sets were rejected because fish were too small, compared to 11.1% in 1983. The proportion of sets rejected for other reasons was comparable between years (Table 4a). Overall, 13.6% of the catch was rejected in 1983 and 10.5% was rejected in 1984 (Table 4b).

Catch Rates

The overall average catch per fishing night increased slightly in 1984 (Table 5a). There was a somewhat greater increase (12%) in kept catch per successful night (Table 5b) reflecting the lower rate of set rejection. The increase in nightly catches is at least partly due to market effects, particularly in September when much of the effort was concentrated on the spawning grounds. Catchability is obviously higher in spawning areas where fish are densely concentrated, but in 1983 this often meant short fishing nights whereas in 1984 it meant that fishing activity was frequently limited only by holding capacity or the availability of carriers, and the number of hours of darkness.

Catch per set also increased, again particularly in September (Tables 6a and 6b). One reason for the increase may have been greater use of large seines (approximately 340×40 cf 250×25 fathoms) in conjunction with a change in the relative distribution of effort between the Trinity and German Bank spawning grounds. In 1984, Trinity Ledge was closed to purse seiners for a two-week period in the middle
of the spawning season. The closure, gear conflicts with gill netters, and problems associated with setting in shoal waters led many fishermen to redirect their effort to the deeper, less-congested waters of German Bank. The fish tended to be further down in the water column on German Bank and so a deeper net was necessary to reach the schools.

Jackknife estimates (Smith, 1980) of mean catch per hour of searching suggest an even greater increase in CPUE than the other two measures (Tables 7a and 7b). Searching time was defined as the period spent actively looking for fish and excluded the time it took to steam to the fishing grounds, set times, and other non-search activities. Indices based on this measure should not be confounded by the amount of nightly market as much as catch per night but will certainly be affected by net size and catchability.

Fishing Ground - Time of Season Comparisons

In an attempt to control for net size and catchability effects, catch per hour of searching was computed separately for the three fishing ground - time of season strata with the largest sample sizes (Table 8). These were: (i) the area south of Yarmouth to Seal Island during July and early August prior to the formation of spawning aggregations, (ii) the Trinity and Lurcher spawning grounds during the spawning season, and (iii) the German Bank spawning ground also during the spawning season. The time periods were defined slightly differently in each year because of an earlier and longer spawning period in 1984. Significant numbers of mature fish were not detected until mid-August in 1983 but were found as early as the last few days of July in 1984. In both years spawning activity continued through to the end of September.

Two vessel size categories: small (31 boats of 50-60') and large (15 boats in 1983 and 12 in 1984 of $74-111^{\prime}$, but only two boats less than 90^{\prime}) were defined for each stratum. Small sample sizes (Table 8) are a reflection of differences in the distribution of effort by the two sizes of boats. During the spawning season in 1983 small boats fished mainly in Trinity while large boats went to German Bank. In 1984, a number of small boats left Trinity and joined the large-vessel fleet on German Bank. This invalidates several of the possible comparisons, but the rest all indicate an increase in catch rates in 1984 over 1983 that is substantial in some cases. It seems that the most reasonable inter-year comparisons are those involving small boats on Trinity Ledge and large boats on German Bank. These both suggest a moderate increase in the size of the Trinity stock and a substantial increase for the German Bank stock.

The importance of the German Bank spawning stock has generally been overlooked in the past. If the catch rates in Table 8 are truly a reflection of abundance, they suggest that it may be at
least as large as the Trinity component. Preliminary analysis of the observer data on numbers and sizes of schools indicates a substantial resource on German Bank with a higher average school size than the Trinity area, although somewhat less densely packed.

Estimation of Herring Removals

When one is interested in improving estimates of fishing mortality, it is impossible to ignore the discrepancy between herring removals and recorded landings. A number of related phenomena contribute to this loss of information about total fishing mortality: a portion of the fish released from unsuccessful sets may subsequently die, fish may be dumped after being loaded onboard due to equipment malfunction or realization that the port market is oversupplied, they may be rejected at dockside because of poor quality, processing plants may only pay for a certain percentage of the catch, fishermen and processors may agree to record an even smaller amount on the purchase slip and, finally, purchase slips may be withheld resulting in the alternative use of fishery officer hails which are sometimes imprecise and do not cover all landings.

In the 1984 fishery the difference between removals and recorded landings was widely believed to have been substantial. This was partly the result of a runaway roe fishery, the establishment of a number of small processing operations set up exclusively to extract roe, an increase in the number of intermediate buyers, insufficient monitoring, and refusal by many plants to provide purchase slips to DFO. In fact, more than 90% of the recorded landings are based on fishery officer hails unsubstantied by purchase slips. This means that landings not observed by fishery officers most likely never entered the Statistics and it is probably more appropriate to talk of missingreporting rather than misreporting.

Because of the potential significance of the removals/recorded landings ratio, its magnitude, reportedly large year-to-year variation, and consequent effects on estimates of stock size, I have put a considerable amount of effort into attempting to derive reasonable estimates of the discrepancies for each year from 1973 to 1984. These estimates are based on many hours of conversation with participants in the fishery as well as my own direct involvement over the last two years. They are intended to apply to total removals, not just the misreporting element, and to apply to all purse seine fisheries ($4 \mathrm{Xa}, 4 \mathrm{Xb}$, and 4 W). For 1983 and 1984, the final estimates are based on direct comparisons of observer trip reports from the summer $4 \times a$ fishery with landings recorded over the same period by Statistics Branch. These estimates were assumed to apply to all purse seine fisheries because the summer component accounts for at least 80% of the total purse seine catch and there was no reason to believe that the situation was any different in the 4 Xb and 4 W fisheries.

The observer records were collected under an agreement with the seiner captains of confidentiality of information, and the observer database would have been severely compromised had this agreement not been in effect. In keeping with the confidentiality pledge, estimates of removals: recorded landings have not been calculated for individual boats (nor, in fact, are there sufficient records for any one boat to make this possible), but rather for the fleet as a whole. Further, I agreed not to use the information in any way that might lead to a reduction in projected quota levels, unless supporting evidence for a downward trend in stock size could be found. The fishermen were after all one of the main sources of data for the computations that follow and the most likely to be affected by it.

1984 Estimate
Five estimates of the ratio removals/recorded landings were calculated by comparing observer records with Statistics Branch records under somewhat different assumptions for each case (Table 9). Observer nights of zero landings were excluded from the analysis, leaving 195 successful nights for the comparisons. The number of Statistics Branch records over the same period was 1,483. Observer records accounted for a total of $12,558 \mathrm{t}$ compared to Statistics Branch records of $58,354 \mathrm{t}$ (Table 1).

The first estimate in Table 9 was thought to be too low as it assumes that all landings were recorded by DFO. Estimates 2 and 3 are more reasonable because they include an adjustment for unrecorded landings. Estimate 4 is probably too high because it is based on the assumption that catch rates in the domestic and over-the-side-sales (0.S.S.) fisheries are identical. It is more likely that overall domestic catch rates were higher as the O.S.S. fishery was concentrated over the period prior to the roe fishery. Further analysis was not attempted because of the complexity of pooling arrangements for O.S.S. and lack of availability of the required information.

Estimate 5 was the most elaborate index derived. It involved night-by-night comparisons of observer reports and recorded landings. Cases where there was uncertainty about how much of the catch should be credited to a particular boat were excluded from the analysis. In total, 135 observer records were used. The final estimate of 1.77 was calculated as the average of estimates 2, 3, and 5. It indicates that true removals by purse seiners were $124,560 t$, rather than the recorded 70,373 t.

All estimates assume representative coverage by observers. However there are many different aspects to cover "representatively". As the primary purpose of my study is an investigation of the fishing mortality-fishing effort relationship I was mainly concerned with obtaining adequate coverage of the various categories of boat size,
fishing skill, fishing ground-time of season interactions, and market categories. Had I wanted to focus on misreporting I would have added port of landing to the list. Estimates calculated by omitting some of the highliners from the analysis indicated that the observer coverage may have been slightly biased towards skippers with superior fishing skills. Such estimates are not recorded in Table 9 because observer coverage was strongly biased towards the most accessible ports, concentrating almost exclusively in the Yarmouth-Pubnico area where the resources for monitoring the fishery exceed those in outlying areas. The latter bias was thought to more than compensate for the former.

1983 Estimate

It was not possible to conduct such a detailed analysis for the 1983 observer data because: (i) there were fewer records and (ii) the observer data format made it difficult to determine whether catches should be credited only to the boat that caught them or whether some portion was given away or pooled with another vessel. An estimate equivalent to No. 2 in Table 9 was the only one derived. Based on 125 observer records from successful nights, 8.80% of the landings were unrecorded. The product of the observed catch and the ratio of the number of Statistics records adjusted for missing records to the observed number of successful nights was 1.63 of the total recorded summer purse seine landings. The similarity between estimate 2 and the more accurate estimate 5 in Table 9, as well as information from other sources (see below), suggests that this estimate is reasonable.

1973-82 Estimates

The 1983 and 1984 computations indicate that the discrepancy between removals and recorded landings may sometimes be substantial. But it would be unreasonable to combine these with an unadjusted 1973-82 catch series unless the estimates were similar from year to year.

As I had no sources of "hard data" to derive estimates prior to 1982, I relied upon personal communications with people involved in the industry and scattered pieces of literature that allude to the subject. My information comes from more than 30 sources including fishermen, fish buyers, plant employees, government personnel, and others closely associated with the fishery. Estimates differed in magnitude between sources but the pattern of change was almost invariably the same. The final estimates were computed as a "weighted average" of the sources. The weighting was subjective, based on my personal opinions about the credibility and scope of knowledge of each source. Although the "weighted averages" were sometimes biased towards the higher estimates, they were always less than the highest. The same is true for the 1983 and 1984 estimates calculated from the observer
data: they are lower than some of the estimates obtained from other sources.

Summary 1973-1984
The factors by which recorded purse seine landings should be multiplied to obtain total removals is summarized in the following text table:

1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984
1.35	1.30	1.35	1.20	1.15	1.15	1.20	1.45	1.55	1.55	1.63	1.77

Although it seems likely that the discrepancies vary between age classes there was insufficient information to make this distinction, even at the simple level of juveniles vs adults. The overall pattern of discrepancies is "average" during the last years of the meal fishery (1973-75), low during the initial years following the formation of the Atlantic Herring Fishermen's Marketing Cooperative (1976-79), and high and increasing steadily from 1980 to the present.

The only other attempts to estimate true purse seine removals in CAFSAC assessments are those by Sinclair and Iles (1981) and Iles et al. (1984). In the former case, Sinclair and Iles (1981) adjusted the 1980 4Xa purse seine catch to account for 40% underreporting based on a study conducted by Kearney (1983). This translates to a multiplying factor of 1.67 which, although higher than the number in the text table, leads to a similar estimate of total purse seine landings (respectively, $85,377 \mathrm{t}$ and $80,311 \mathrm{t}$) because the text table numbers are intended to apply to the entire domestic purse seine fishery. The multiplying factor of 1.35 for the 1975 fishery is also similar to an estimate utilized by Kearney (1.43 or 30% underreporting).

In the two assessments following Sinclair and Iles (1981), the adjusted 1980 numbers were retained but the recorded 1981 and 1982 landings were not modified. In last year's assessment, Iles et al. (1984) prepared two separate catch matrices: one based on nominal landings and one that included adjustments for underreporting during the years 1980-83. Their purpose was to reflect the growing concern over the widely-acknowledged discrepancy between removals and recorded landings and highlight the resultant limitations on the feasibility of producing accurate stock assessments. The estimates for 1981-83
(respectively 30% or $1.43,20 \%$ or 1.25 , and 30% or 1.43) were preliminary and the higher estimates of the present paper are the result of more intensive investigation of the problem.

Incorporation of Removals in the Catch-at-age Matrix

To incorporate total removals into the catch-at-age matrix, the first task was to subdivide the matrix into catches by purse seiners and catches by other gears. For the years 1973-76 inclusive, the main source of information was a series of data files resulting from a major revision of catch-at-age undertaken in 1976-78 (see Miller and Stobo (1976) and Stobo et al. (1978). Unfortunately, it proved impossible to reconcile the purse seine and other gear totals derived from the data files with the catch matrix totals used in recent CAFSAC Res. Docs. (see for example Iles et al. (1984)). The data file information was preferred because it appeared to be the most logical and consistent: there has reportedly been no additional revision of the pre-1977 statistics since 1978, the pre-1975 records correspond closely to estimates in Miller and Iles (1975) (on which the revisions were based), rounding errors in age-length-weight keys were generally minor, the revised catch at age by gear was not presented in any Res. Doc., and there was no other source of information to indicate that the numbers in the data files needed to be adjusted.

Discrepancies were also noted for 1977 onwards but in these cases it was assumed that additional information obtained after running age-length keys had been incorporated into the appropriate Research Document tables but not used to update the original data files. Therefore for these years the catch at age by gears was taken directly from Stobo et al. (1978), Sinclair et al. (1979), Sinclair and Iles (1980), (1981), Sinclair et al. (1982), Iles and Simon (1983), Iles et al. (1984), and Stephenson et al. (1985). For 1973-76, the catch at age in Table 8a of Iles et al. (1984) was disregarded and replaced with catch estimates from the data files with minor alterations to adjust for rounding errors or to match totals to those in Table 2 of Iles et al. (1984). The revised catch at age for purse seiners and other gears is shown in Tables 10a and 10b.,

Differences between the revised total catch (Table 11) and Table 8a of Iles et al. (1984) (Table 12a) were usually less than $5-6 \%$ (Table 12b), except in some cases where adjustments to the 1970 and 1971 year classes were made due to an ageing problem (see Miller and Stobo (1977)). Reassignment between the two year classes for the 1976 catch at age, when the problem first occurred, was based on identical assumptions to those used by Miller and Stobo (1977). For subsequent years the assumptions also correspond to those in the appropriate Res. Docs. but the numbers differ because the 1976 catches and partial recruitment estimates formed the basis for each year's reassignment.

Herring Removals vs Recorded Landings

The final estimates for total removals (Table 13) were obtained by multiplying the purse seine catches (Table 10a) by the
appropriate factors (text table) and adding them to the catches for other gears (Table 10b). They are compared with the revised nominal landings of Table 11 in Figure 3a. To demonstrate the potential effect of basing an assessment on total removals rather than recorded landings, an SPA was run for each of Tables 11 and 13 using a terminal F of 0.3 (Tables 14-16 and Figure 3b). The catch-at-age series from 1965-72 (Iles and Simon (1983)) was added to each matrix, with no adjustments for underreporting in either case. Weights at age and the partial recruitment vector ($P R=1$ for ages $3+$) were identical to those used by Stephenson et al. (1985). Geometric mean recruitment-at-age 1 from 1965-81 was recalculated as $1,518,440$ thousand for the nominal matrix and $1,846,300$ thousand for the adjusted matrix. These values were used to fix total mortality for one- and two-year-olds in the final year. The estimated $19843+$ biomasses differ by a factor of 1.71 between the two runs (Tables $15 a$ and b). (When the SPAs are fine-tuned using the larval abundance index, this difference reduces to 1.33 - see Stephenson et al. (1985).) The 3+ biomass estimate based on the adjusted matrix (Table 15b) is about 20% lower than the acoustic estimate of $545,000 \mathrm{t}$ derived by Buerkle (1985) for overwintering (beginning-of-year) herring in the Chedabucto Bay region.

A Caútionary Note

It must be emphasized that Table 13 is intended to represent total removals from the 4WX herring stock complex. Any catch projections based on estimates of population biomass such as those in Table 15b cannot be taken at face value unless dumping, the buyer practice of discounting a portion of the landings, and misrepresentation of the amount purchased are all reduced to low levels. Dumping is probably not a significant problem in most years although it may be more prevalent when the dominant size range or maturity stage of fish is unsuitable for the current market, or when "red feed" is abundant and results in spoilage of fish before they can be processed. Discounting practices are believed to be common and may be substantial for certain plants or for certain types of herring products. Misreporting of sales to processing plants is widespread and appears to be highly variable from year to year.

Acknowledgement

I would like to express my sincere gratitude to those fishermen and other participants in the industry who accepted and encouraged this project, willingly provided their time and hospitality and trusted me with confidential information.

References

Buerkle, U. 1985. The estimation of acoustic abundance in a large aggregation of herring. CAFSAC Res. Doc. 85/62.

Iles, T.D., M.J. Power, P.M. Mace, G.N. White, and F.G. Peacock. 1984. Assessment of the 1983 4WX herring fishery. CAFSAC Res. Doc. 84/72.

Iles, T.D. and J. Simon. 1983. Assessment of the 1982 4WX herring fishery. CAFSAC Res. Doc. 83/89.

Kearney, J.F. 1983. Common Tragedies: A study of resource access in the Bay of Fundy herring fisheries. M.Sc. Thesis, Dalhousie University, Nova Scotia.

Miller, D.S. and T.D. Iles. 1975. Catch statistics for the Bay of Fundy herring fisheries 1963-74. Fisheries and Marine Service Technical Report, No. 594.

Miller, D.S. and W.T. Stobo. 1976. Div. 4WX herring stock assessment. ICNAF Res. Doc. 76/VI/45.

Miller, D.S. and W.T. Stobo. 1977. Herring assessment in ICNAF Div. 4WX. CAFSAC Res. Doc. 77/11.

Sinclair, M. and T.D. Iles. 1980. 1979 4WX herring assessment. CAFSAC Res. Doc. 80/47.

Sinclair, M. and T.D. Iles. 1981. Assessment of the 1980 4WX herring fishery. CAFSAC Res. Doc. 81/10.

Sinclair, M., K. Metuzals, and W. Stobo. 1979. 1978 4WX herring assessment. CAFSAC Res. Doc. 79/19.

Sinclair, M., J. Simon, W. Stobo, and T.D. Iles. 1982. Assessment of the 1981 4WX herring fishery. CAFSAC Res. Doc. 82/36.

Smith, S.J. 1980. Comparison of two methods of estimating the variance of the estimate of catch per unit effort. Can. J. Fish. Aquat. Sci. 37: 2346-2351.

Stephenson, R.L., M.J. Power, T.D. Iles, and P.M. Mace. 1985. Assessment of the 1984 4WX herring fishery. CAFSAC Res. Doc. 85/78.

Stobo, W.T., D.F. Gray, and K. Metuzals. 1978. Herring assessment in Div. 4WX. CAFSAC Res. Doc. 78/25.

Table 1. Observer sampling of the 4 Xa summer purse seine fishery.

	June	July	Aug.	Sept.	Oct.	Total
1983						
Number of trips	2	51	54	46	5	158
Number of sets	3	61	87	77	6	234
Total catch (t)	250	2179	2966	2692	194	8281
Kept catch (t)	250	1611	2611	2588	98	7158
Total Landings Recorded by Statistics Branch 63379 t						

1984

Number of trips	-	81	93	69	8	251
Number of sets	-	91	173	94	6	364
Total catch (t)	-	3401	5795	4630	209	14035
Kept catch (t$)$	-	2860	5024	4465	209	12558
	Total Landings Recorded by Statistics	Branch 58354 t				

Table 2. Types of herring products and approximate age and condition of fish considered ideal for each market category.

Market Category	Type of Herring Sought
Brit	Age 1, empty stomachs
Sardines	Age 2, empty stomachs
Other canned products	Ages 2-3, empty stomachs
Lobster bait	Age 3
Bloaters (smoked whole)	Ages $5+$, empty stomachs
Fillet	Ages $4+$
Frozen round	Ages $4+$, empty stomachs
Barrel product	Ages $3-4$
Roe	Ages $3-4+$, mature females
Foreign over-the-side sales	Ages $3+$, some feed tolerated

Table 3. Average numbers of sets and time spent searching (hours). Searching time is defined as trip time minus travel, set, and waiting times.
a. Average sets per night (all nights).

| | July | Aug. | Sept. | All |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1983 | 1.20 | 1.61 | 1.67 | 1.48 |
| 1984 | 1.12 | 1.86 | 1.36 | 1.45 |

b. Successful sets per successful night.

| | July | Aug. | Sept. | All |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | 1.24 | 1.56 | 1.50 | 1.46 |
| 1984 | 1.38 | 1.82 | 1.46 | 1.58 |

c. Average time searching (all nights).

1983
1984

July	Aug.	Sept.	All
5.32	4.45		
3.62	4.68	3.28	4.43
			4.00

d. Average time searching on successful nights.

July	Aug.	Sept.	All
4.59	3.96	3.36	3.95
3.33	4.29	3.01	3.65

Table 4a. Percentage of sets rejected for particular reasons.

	1983	1984
Too small	11.1%	3.0%
Too large	0.4%	-
Red feed	1.3%	1.9%
Not ripe	-	1.1%
Skunk	7.4%	8.8%
Gear problems and misc.	2.5%	1.9%
TOTALS	22.7%	16.7%

Table 4b. Percentage of catch rejected.

	July	Aug.	Sept.	Al1
1983	26.05	11.98	3.87	13.55
1984	15.90	13.30	3.55	10.52

Table 5a. Mean and (s.e.) of total catch per night (tonnes) including all fishing nights.

	July	Aug.	Sept.	All
1983	42.72 (6.23)	54.93 (5.27)	58.52 (6.26)	52.41 (3.46)
1984	41.99 (4.04)	62.31 (4.89)	67.10 (6.01)	55.91 (2.91)
Ratio 84/83	0.98	1.13	1.15	1.07
	.	1983		1984
	Small vessels Large vessels	44.6 60.0	(3.57) (5.78)	$53.18(3.00)$ $65.22(7.70)$

Table 5b. Mean and (s.e.) of kept catch per successful night (tonnes).

	July	Aug.	Sept.	All
1983	48.82 (6.82)	59.33 (5.06)	58.82 (6.33)	57.27 (3.58)
1984	51.07 (3.68)	63.59 (4.68)	78.34 (5.92)	64.40 (2.89)
Ratio 84/83	1.05	1.07	1.33	1.12
		1983		1984
	Small vessels Large vessels	$\begin{aligned} & 51.04 \quad(3.33) \\ & 63.60(6.31) \end{aligned}$		$59.22(2.86)$ $85.10(8.17)$

Table 6a. Mean and (s.e.) of total catch per set (tonnes) including all sets.

	July	Aug.	Sept.	All
1983	35.72 (4.27)	34.09 (2.50)	34.96 (3.75)	35.39 (2.04)
1984	37.37 (2.41)	33.49 (2.13)	49.26 (4.09)	38.56 (1.63)
Ratio 84/83	1.05	0.98	1.41	1.09
		1983		1984
	Small vessels Large vessels	29.73	(1.83) (3.58)	$36.33(1.61)$ $46.47(4.61)$

Table 6b. Mean and (s.e.) of kept catch per successful set (tonnes).

	July	Aug.	Sept.	All
1983	39.30 (5.66)	37.84 (2.83)	39.21 (4.07)	39.12 (2.40)
1984	37.14 (2.16)	34.89 (1.99)	53.80 (4.13)	40.64 (1.62)
Ratio 84/83	0.95	0.92	1.37	1.04
		1983		1984
	Small vessels Large vessels	$46.94(4.57)$		$\begin{array}{ll} 38.50 & (1.52 .) \\ 48.10 & (4.86) \end{array}$

Table 7a. Mean and (s.e.) of total catch per hour of searching (tonnes) including all fishing nights (jackknife estimates).

	July	Aug.	Sept.	All
1983	7.96 (1.45)	12.26 (1.62)	17.61 (2.72)	11.79 (1.05)
1984	11.54 (1.51)	13.27 (1.42)	18.93 (3.15)	13.96 (1.05)
Ratio 84/83	1.45	1.08	1.07	1.18
		$\underline{1983}$		1984
	Small vessels Large vessels	$\begin{array}{r} 9.50(1.03) \\ 14.21(1.91) \end{array}$		$13.93(1.11)$ $13.87(2.54)$

Table 7b. Mean and (s.e.) of total catch per hour of searching (tonnes) including only successful nights (jackknife estimates).

	July	Aug.	Sept.	All
1983	$10.83(2.03)$	$16.22(1.86)$	$17.99(2.79)$	$15.33(1.31)$
1984	$17.59(1.92)$	$16.87(1.58)$	$25.82(4.10)$	$19.25(1.32)$
Ratio $84 / 83$	1.62	1.04	1.44	1.26
			1983	1984
			$12.42(1.13)$	$17.98(1.30)$
			$18.87(2.64)$	$23.64(4.21)$

Table 8. Mean + s.e. (sample size) of catch per hour of searching (tonnes) for different areas and times of season (jackknife estimates).

Area/Time	Year	Small Boats	Large Boats	All Boats
Feeding aggregations,	1983	$7.33+1.59(9)$	$12.93+3.64(15)$	$9.97+1.82(24)$
Seal Island/Gannet,	1984	$14.50+3.68(19)$	$13.07+4.10(8)$	$14.38+2.78(27)$
July-early Aug.	84/83	-	-	1.44
Prespawning and spawning,	1983	$13.52+1.96(33)$	$27.83+14.14(6)$	$15.43+2.29(39)$
Trinity/Lurcher,	1984	$16.71+1.86(72)$	$9.48+13.20(4)$	$16.56+1.84(76)$
Aug.-Sept.	84/83	1.24	-	1.07
Prespawning and spawning,	1983	$4.91+1.96(2)$	$18.85+6.11(15)$	$16.37+4.93(17)$
German Bank/Seal Island,	1984	$21.14+3.76(32)$	$33.77+9.77(17)$	$26.25+4.09(49)$
Aug.-Sept.	84/83	-	1.79	1.60

Table 9. Estimates of the ratio of herring removals: landings recorded in official Statistics for the 1984 summer purse seine fishery.

	Assumptions	Ratio Estimate/ Statistics Records
ESTIMATE NO. 1	One Stats. record for each landing. Ignore O.S.S. pooling. Representative coverage by observers. Simple proportional adjustment based on observed successful nights: \# Stats. records.	1.637
* ESTIMATE NO. 2	Some landings not recorded (8.72\% of observer records). Ignore O.S.S. pooling. Representative coverage by observers. Simple proportional adjustment based on observed successful nights: adjusted \# Stats. records.	1.793
* estimate no. 3	Some landings not recorded as for 2. Adjust for O.S.S. pooling by including observer records where boats fishing for O.S.S. caught nothing but were credited by the pool. Simple proportional adjustment based on adjusted observed successful nights: adjusted \# Stats. records.	1.723
ESTIMATE NO. 4	O.S.S. landings excluded from analysis. Some domestic landings not recorded (13.08\% of observer records). Representative coverage by observers. Catch rates for O.S.S. and domestic identical. Simple proportional adjustment based on observed successful domestic nights: adjusted \# Stats. records.	2.019
* ESTIMATE NO. 5	Representative coverage by observers. Direct night-by-night comparisons between (kept) catches recorded by observers and Stats. landings. Ratio observed catches: Stats. landings.	1.798
* FINAL ESTImATE	Average of estimates 2, 3, and 5.	1.77

Table 10a. Revised recorded landings by purse seiners, 1973-84.

REVISED HOMIMAL LAMDIHGS EY FURSE SEINERS (HOS $\times 10^{-3}$)

	1973	1974	1975	1976	1977	1978	1979	1990	1981	1992	1993	1984
1	754	14162	939	0	37		157	1592	070	- ${ }^{0}$	3357	0
2	115375	535000	108950	34443	99512	245944	67295	6527	49705	53712	100483	20951
3	456597	53956	142215	120517	19419	31402	119753	44353	32199	51608	78271	133085
4	48892	498394	75535	112553	170131	10456	37101	254693	61685	8980	120044	120913
5	13171	41949	312249	50707	87323	95539	3953	13270	263211	45783	11953	79449
6	11017	10496	37518	203771	36424	53194	17235	1755	20454	102729	30271	11796
7	5694	6147	5981	16186	115338	23479	13671	2634	1431	6759	42086	10196
8	5547	3804	2921	4067	10071	83429	8763	3575	1550	991	4790	15595
9	9239	5145	3191	3002	1993	8296	30523	1659	1002	686	599	5321
10	4544	4073	2531	1509	1080	1705	3467	6277	249	861	330	1195
Q fonnes lammed;												
	72289	114456	107797	95337	93025	91755	43177	55387	73755	50031*	59522*	70373
										(75722)	(73762	

Table 10b. Revised recorded landings by other gears, 1973-84.

FEVISED MOMIHAL LAHDIHGS BY OTHER GEARS (MOS x 10³)

	1973	1974	1975	1975	1977	1978	1979	1980	1981	1992	1983	1984
1	0	0	1931	240	1127	35381	154	31	0	3509	0	0
2	11698	70564	170559	14264	50982	100775	103228	3039	26008	18979	27895	51350
3	154659	10450	47837	61915	9241	4775	106689	16205	875	70772	22743	7982
4	64847	155752	21277	19586	22827	892	10099	104801	7131	8876	49335	10339
5	22347	13742	93059	7956	18238	11088	686	8688	43505	27242	4983	5471
6	15451	5448	15518	24314	9285	7237	2460	1828	1274	51913	11335	1837
7	14373	2241	2374	2037	44608	4097	1850	873	200	4151	21382	3607
8	12525	1620	465	691	2395	13033	1320	1376	364	544	2544	714
9	11412	5097	470	349	890	1542	4751	555	364	291	752	97
101	5496	1807	295	249	173	464	367	1539	152	225	104	89
GTOMHES LAMDED:												
50399		35204	35921	18941	24146	14116	15844	24197	13951	$\begin{aligned} & 34702 * 24853: \\ & (8011)(10523) \end{aligned}$		7710

Q IMCLURES AGES 11T

Table 11. Revised recorded landings by all gears, 1973-84.

Table 12a. Nominal catch matrix used in the 1984 assessment.

	1	1773	1774	1775	1976	1777	1776	1979	1700	1731	1782	1783
1	1	754	14151	0	0	0	0	311	1623	0	3537	3367
2	1	126421	596153	264471	48470	140494	346719	170523	9566	75713	72571	128376
3		595972	72381	160896	176226	28657	36177	2264,2	60557	33174	122330	101017
4	1	109530	616622	92437	130598	172553	11338	47200	359434	65316	17756	165379
5		34422	53177	333650	72334	106061	107627	4637	21753	306716°	73025	16946
6		25562	15254	50599	219786	55066	60431	19695	3583	21726	154542	41607
7		17361	2120	7357	18960	150528	27236	15521	3507	1631	10710	43468
8	1	17604	5313	3238	4967	$1246{ }^{\text {a }}$	95741	9981	4951	1914	1535	7334
7		17336	10764	3481	3556	2373	9833	35385	2007	13 ¢́6	777	1351
10	1	9óó	5787	2842	1835	1253	2169	3834	8179	361	836	434

Table 12b. Difference between revised catch matrix (Table 11) and nominal catch matrix used in previous assessments (Table 12a), as a percentage of the latter. Blanks represent no difference.

Age	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983
1		0.1	∞	∞	∞	∞					
2	0.5	1.6	5.7	0.5							
3	4.2	2.8	5.1	3.5							
4	3.8	6.1	5.8	0.5							
5	3.2	4.7	5.6	-18.9							
6	3.6	4.5	5.0	3.8	-17.0						
7	3.6	3.3	5.3	-3.9	6.2	1.0					
8	3.8	2.1	4.6	-4.2		-0.3	1.0				
9	4.1	2.5	5.2	-5.8			-0.3	11.2			
10	3.9	1.6	3.0	-4.3				-4.4	11.1		

Table 13. Adjusted total removals by all gears, 1973-84.

	1	1973	1974	1775	1776	1977	1978	1977	1980	1781	1722	1783	1784
1	1	1018	18411	3199	240	1170	35381	342	2339	0	3587	5488	$\hat{6}$
2	1	167454	766064	317640	55576	153721	353611	163982	12503	103051	102133	151682	68433
3	1	781061	73606	239827	206535	31572	40887	250393	80518	50883	150764	150326	243542
4	1	130851	803651	124597	153782	213476	12706	54620	474071	102743	22640	244007	224354
5	1	40128	68276	514605	68604	119234	122100	5430	27929	451482	93206	24483	146096
$\dot{6}$	1	30334	17073	66302	268537	51173	68410	23142	4373	32976	211043	60676	22716
7	1	22046	10232	12278	21460	177247	31086	18255	4692	2418	14627	89982	21654
e	;	20249	6565	4409	5571	13777	103975	11836	6500	2766	2080	10352	28297
9	1	23871	12785	4778	3951	3170	11082	41389	2965	1.917	1354	1728	7515
10	-	11630	7102	3847	2059	$1+15$	2425	4527	10641	538	1250	642	2183
gtotal tommes menoven;													
		147988	184010	181433	134445	131125	108147	67556	104508	128271	112250	121884	132270
etomme menoven dr nomestic furse seiners:													
		97589	148806	145512	115604	103777	74031	51812	80311	114320	104237*	111281*	124500

v Inclunce ages $11+$

* thelume rish lamded for $0,5,5$, that were oricthally mbluded in the iother gear' catecory (see TADLE 10 FOOTHOTE:

Table 14a. Population numbers at age estimated from nominal catch matrix (Table 11) with $F_{t}=0.3$.

ron																				
	1765	1966	1967	1768	1969	1970	1971	1772	1973	1774	1975	1976	1977	1970	1979	1966	17\%	$9{ }^{9} 2$	1763	1984
$\frac{1}{2}$	${ }_{3655652} 3$	${ }_{26314896}$	615154 205689	${ }^{12678959}$	${ }^{17897511}$	${ }_{1218311}^{21371}$	${ }^{6369688}$	${ }_{5}{ }^{9} 1293853$	1838497 71273	140199 158625	${ }_{1}^{2163800}$		3298088	${ }_{2699188}^{1064}$	${ }^{3023969}$	2145380	${ }^{1751599}$	${ }^{10686976}$	1516538	${ }_{12452785}$
3	${ }^{1937323} 5$	${ }^{2158563}$	$\underset{\substack{1313766 \\ 137777}}{ }$	${ }_{\substack{16436 \\ \hline 83614}}$	145780	${ }^{46524} 3$		59261	3217385	515645		${ }^{7} 701983$	-9716	${ }^{308535}$	18966184	494125	${ }^{175792}$	89		597535
5			57364			4			10465					1651	33609	1				
9	92997 4787	240	120614	370	${ }^{401459}$	41	22032	139598				\$71	112	103	34880		920		117395	5774
8	416	3599	41716	72496	${ }_{8} 8146$	13770	${ }_{12401}^{234}$	${ }^{107253}$	${ }^{467289}$	${ }_{15951}^{2595}$	130	${ }^{66158}$	${ }^{13} 719$	19381	${ }^{30779}$	106	5	${ }^{31504}$	边	689
10	${ }_{4}^{135}$	2969	${ }^{22435}$	${ }^{300898}$	3440	${ }^{26818}$	${ }^{231589}$	58833	${ }^{47738}$	72788	$1{ }^{11724}$	${ }^{7685}$	$\frac{8164}{329}$	${ }^{19662}$	77179	26529	${ }_{1}^{1248}$	${ }_{2538}$	1194	${ }^{22850}$
	10156860	951944																3798462		
$\stackrel{3+1}{3+1}$	${ }_{26888869}{ }^{6686}$	4888369	${ }_{5}^{57994} 5$	$\frac{8044446}{3658988}$	${ }^{46566515}$	${ }^{1353521939}$	${ }^{299935169}$	${ }^{6098989} 14$	${ }^{51224929} 4$	${ }^{\text {c }}$		${ }_{2159359}$		${ }_{89593182}$	3151594	230172	${ }^{2623299}$	${ }^{276939363}$	${ }^{2696312}$	296677
+1	1815063	1998532	256779	251466	2251731	206555	128125	884609	733840	276923	1229387	1477316	1288781	556467	413418	156037	1247508	764676	1031914	1122215

Table 14b. Population numbers at age estimated from adjusted catch matrix (Table 13) with $F_{t}=0.3$.

1	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1976	1979	1960	1981	1762	1983	1984
11	3533515	276057	6159590	1277608	1774003	2326311	7564070	1152712	2367059	1648290	460	852901	447372	135343	468512	2258871	2117316	1801631	13.36392	1847760
2	3878732	2648350	2120528	4389565	913575	1353917	1271981	8113700	943761	1937063	1332839	21547	698079	3640158	1077745	383276	1847291	1733512	141614	1505732
,	1002958	2194142	1341160	1189599	1372260	485272	585496	670653	448005	621107	882770	803823	126110		2633204	715909	302486	1417189		1031603
	351		1380194	959059	763044	691350	328058	313787	488044	2910423	423871	51333	47234	74683	316913	1929321	513281	201614	1025517	550324
5	351120	87255	580031	897077	710018	505000	306994	172108	122824	281177	1655679	23224	261626	188127	49467	210044	1150619	32727	14456	618836
6	932	242	422995	37511	471820	434327	231392	146587	71051	64005	168430	889921	1295	122688	43537	35597	146698	53329	17908	96221
7				202266	241147	284381	246763	121049	3343	30724	35127	779	4853	59777	385	14706	25180	90267	24585	81722
8	1172	36271	42051	75970	83608	140876	31547	117321	54710	23807	15896	17831	4366	236397	20812	15043	7794	124	6466	19871
9	1374	2908	22709	30359	33265	48003	72009	62440	51969	26471	13551	9025	9394	23677	75426	6330	6330	35	13 x	40305
101	415	1076	652	18223	10864	21494	20059	30735	27546	20965	10104	6771	3614	4823	9358	40504	2462	340	175	9247
1+1	10236186	9614325	12236962	\$420315	6433517	6291535	10765368	8508091	6558131	7584082	4314981	3621681	8696932	6138654	4753525	5609706	$6: 17527$	6132cti	63:5771	33125:1
$2+1$	6702670	6853753	6077372	0126448	4659514	3964624	3201299	7753379	6231072	5915802	4548266	2768779	2249540	4783191	4285012	3350675	4002211	43119	4489512	4464881
$3+1$	2923939	4205403	3956843	3738883	3745938	2610707	1929318	1641679	5267311	3978739	3215427	2553306	1551460	1143032	3207267	2967619	2154920	25976	2797734	2758129
$4+1$	1521081	2011261	2615604	2550264	2313778	2125436	1342222	968026	869300	3357572	232265	1749463	1425351	710767	${ }_{5} 54063$	2251710	1852434	1173473	1673803	17.3523

Table 15a. Mean population biomass estimated from nominal catch matrix (Table 11) with $\mathrm{F}_{\mathrm{t}}=0.3$.

1	1765	1966	1967	1968	1969	1970	1971	1972	1973	1774	1975	1776	1977	1778	1579	1960	1762 L	1982	1983	964
1	30326	23792	52025	10674	15185	16144	57306	$8{ }^{65} 38$	1756	12984	1324	4270		${ }^{8949} 6$	${ }^{27898}$	${ }^{13092}$	11579 42398	3669 37408	13747 27767	13749 4685 189
21	120366	77501	${ }^{64876}$	107450	26833	36358	34193	177626	18299	53284	19024			${ }^{64357}$	17998	48793	1780	8445	27464	6200
3	${ }^{988332}$	175363 11542	124632	105991	112222	42934	46086 36981	54799 31403	313603	${ }^{472489}$	48564	61736 5056	46360	7742	270186	178337	4855	165	82626	83
5	63595	134797	101250	141737	110624	73676	45366	22129	17131	37403	223049	3578	35015	18714	6137	24759	115172	35977	1577	64726
6	20030	49558	75478	75828	91633	3.762	40663	21431	10097	9665	23572	141660	21340	15396	5055	4914	1351	61647	2147	11775
7	11526	15127	31577	37332	52230	54435	46513	21463	. 8642	5120	57	1403	3494	97299	${ }_{3} 534$	2130	36	12976		
7	129	9256			20294	10338	27807	13208	102	4			1717	${ }_{4}^{4} 835$	16644	1051		51	23	550
10	138	335	23	52	3227	5722	5186	7116	5793	4351	2156	1758	936	98	1703	775	343	607	333	1533
1+1	532287	62241	660100	5925	554467	433758	359162	380575	457278	502406	325454	323959	254455	179607	276066	290121	637	55040	280419	3130
2+1	501961	598249	608075	635251	53929	417614	301856	372037	439712	489421	383540	313064	234569	170558	273327	277027	252182	25.812	236	
$3+1$	381596	520748	543179	527792	512450	381256	267657	174411	421413	43613	304517		201809		24,44	$2{ }^{2}$	-1717\%	173512	162243	1765
+1	282664	325334	418367	422701	400228	338322	221577	137613	107810	368637	307504	251243	177315	96945	6/305	22123	1777/6	13.12		17032

Table 15b. Mean population biomass estimated from adjusted catch matrix (Table 13) with $\mathrm{F}_{\mathrm{t}}=0.3$.

	1965	1966	1967	1968	1967	1970	1971	1972	1773	1974	1775	1776	1977	1976	1977	1780	1901	1762	1983	173
1	30697	27770	5502	10945	15545	17467	68132	10448	21447	-	217	515		18010						
$\frac{2}{3}$	121232	78770			27757	37610	38646	214021	22212	64308	21760		36160		${ }^{36266}$			62367		
4	${ }_{186233}$	117559	193621	142468	107529	44773 81434	41486	6445989	3817759	$3{ }^{3}$	57239	71061 61445	51120	416	2 444690	25913	71072	27501	$1364{ }^{\text {a }}$	143
5	62951	135335	102518	144281	122281	76426	47583	24701	20241	45234	265529	41263	40276	22535	915	36473	175040	53560	25691	111358
6	20145	49905	75992	77038	74037	84266	43257	23633	12098	11547	26131	166430	24738	16794	6747	7641	2751	94311	33165	17621
7	11733	15274	31706	33414	53351	56697	47771	23671	1022	6237	6770	16513	101513	11157	7144	3114	618	2130	50161	201
8	1131	9355	11592	16703	20727	34356	29955	25928	12883	5862	4044	4151	10717	51367	3930	326	1812	5062	16004	27540
31			16		41	11337	17767	15074	12275	5817	3496	2313	2250	5414	22730	145	157	93	3974	訨
10	139	337	241	5290	06	6164	5540	7976	7316	5334	2706	2065	1130	1214	2351	12237	776	7		64
1+1	535593	628024	668755	657266	568000	450729	391293	445472	554261	608297	457189	378414	322516	263389	320752	427974	39972 ¢	420119	422120	50376
$2+1$	504876	6037	616508	546		433263	323161	435025	532813	511447	454707	370		251276	386507	407513		403607	445412	47545
+ ${ }_{4}^{+1}$	283364	327678	423055	43073	54	3550679	2845681	${ }_{1}^{221004}$	128820	470249	468337	324167	234731	12148	396780	32531	286	205729	${ }^{366273}$	334

Table 16a. Fishing mortalities estimated from nominal catch matrix (Table 11)
with $F_{t}=0.3$.

FISHIMG MORTALITY

1965	1766	1967	1968	1967	1970	1971	1972	1773	1974	1975	1776	1777	1976	1979	1730	1931	1582	1783	1984
110.069	0.0	0.137	0.155			0.01	0,000	0.000	0.011	0.015	0.000	0.000	0.040	0.001	1	0.		2	0.002
2 0.372	0.688	0.39	0.827	0.448	0.659	0.48	0.15	0.20	0.548	0.3	0.374	0.345	0.153	0.27	. 044	0.07		0	0.060
310.040	0.259	0.138	0.241	0.536	0.201	0.451	0.148	0.210	0.173	0.329	0.339	0.375	0.137	0.142	0.146	0.210	0.163	0.152	0.300
${ }^{4} 10.218$	0.110	0.241	0.103	0.218	0.629	0.475	0.720	0.367	0.359	0.302	0.377	0.735	0.206	0.271	0.349	0.245	0.16	0.353	0.300
510.172	0.526	0.238	0.451	0,301	0.602	0.557	0.772	0.470	0.303	0.3	0.386	0.655	1.346	0.166	0.194	0.572	0.447	0.235	0.300
610.135	0.237	0.541	0.246	0.314	0.381	0.477	0.906	0.668	0.399	0.546	0.405	0.574	1.034	1.008	0.186	0.300	0.645	0.477	0.300
710.042	0.255	0.530	0.692	0.345	0.575	0.582	0.662	0.650	0.458	0.462	0.363	0.558	0.710	0.84	0.475	0.121	0.242	0.605	0.300
610.161	0.271	0.127	0.038	0.362	0.403	0.586	0.697	0.557	0.365	0.338	$0.42{ }^{\circ}$	0.455	0.799	1.090	0.720	0.520	0.160	0.254	0. 300
910.045	1.032	0.020	0.832	0.244	0.692	0.773	0.708	0.737	0.821	0.452	0.665	0.496	0.307	0.770	0.753	0.437	0.554	0.206	0.300
10 \| 0.104	0.250	0.483	0.423	0.325	0.462	0.565	. 754	0.652	0.471	0.512	0.404	0.557	0.876	0,876	0.390	0.287	0.566	507	0.300
0.200	0.31	. 303	0.320	0.282	0.553	. 542	0,783	0,468	. 3	0.4	0.400	0.63 á	0.952	. 49	38	0. 453		793	0.300

Table 16b. Fishing mortalities estimated from adjusted catch matrix (Table 13) with $F_{t}=0.3$.
fishing mortality

FIGURE 1. Percentages of fishing nights that were unsuccessful. (no loaded catch). Shaded areas represent nights when no sets were made.

1983

FIGURE 2. Percentages of sets that were abandoned. Shaded areas represent sets abandoned because fish were : too small.

Figure 3a. Nominal and adjusted 1+ catch biomass, 1965-84.

Figure 3b. Nominal and adjusted 1+ population biomass, 1965-84 (from Tables 15a,b).

