Assessment of the Eastern Scotian Shelf
(4VW) Haddock Stock
by
D.E. Waldron

Marine Fish Division
Department of Fisheries \& Oceans
Bedford Institute of Oceanography
P.O. Box 1006

Dartmouth, Nova Scotia
Canada
B2Y 4A2

INTRODUCTION

The Scotian Shelf haddock stocks are divided into two groups: the ICNAF Divison 4VW and 4X stocks (McCracken 1963). Between 1960 and 1975, the eastern Scotian Shelf haddock stock (4VW), was exploited primarily by the Canadian, Spanish, and Soviet fleets. Prior to 1965, this stock was fished at levels from 13,000 tons to 34,000 tons averaging 27,000 tons. In 1965 the total fleet reported a large haddock catch of 55,000 tons which was twice that of the pre 1965 average of 27,000 tons (Fig. 1). Canadian catches accounted for 8,700 t of this total, while the USSR caught $43,000 \mathrm{t}$. After this, the fishery decreased to yearly levels from one-half to one-eighth of those prior to 1965. This decrease continued until 1977 when the catches began an upswing under stringently low TACs.

The Canadian domestic fishery for 4 VW haddock was exploited by large trawlers (TC 4 and 5), long-lines, traps, and hand-lines. Those fisheries conducted by the USA, USSR, and Spain, used trawlers ranging in size from TC 4 to 7. Spain used primarily pair trawlers while the USA and USSR employed both side and stern trawlers.

Peak catches by Canada occurred in $4 W$ during late winter and early spring (Figure 2). Both the USSR and Spanish fleets fished during the summer and early fall in 4 W and 4 VW respectively.

Most foreign catches of haddock were a by-catch to some other species. The USSR haddock catch was almost exclusively a by-catch of the small mesh silver hake fishery with the possible exception of the 1964 to 1966 fisheries. Spanish vessels caught haddock as a by-catch in their cod fishery. The Spanish cod fishery persisted until 1975, while the USSR continues to fish for silver hake today, although within a rather restricted area.

For the years 1963 - 1966, the USSR concentrated its fishery on Middle Ground and the southern tips of Banquereau and Sable Island Banks (Clay 1979). Both Scott (1979) and Hare (1977) indicate that the latter area is one which has a high concentration of haddock.

POSSIBLE IMPACT OF SMALL MESH FISHERIES ON 4VW HADDOCK
Halliday (1971) suggests that the selectivity of the 40 mm nets used in the Soviet silver hake fishery would be similar to that used on Canadian research vessels (32 mm). Data reported to ICNAF suggest that 67% of the 1965 USSR haddock catch was obtained in a directed silver hake fishery. Also, the catch of haddock for the directed silver hake fishery was reported to be 41% of the silver hake catch by weight. Such data suggests that these two fisheries were being conducted simultaneously.

The USSR fishing patterns reported by Clay (1979) indicate that the USSR fished the same areas from 1963-1965, yet the by-catch in 1963 and 1964 was well below the 1965 level (3-7\% compared to 41\%). Therefore, it is highly unlikely that the USSR would have equipped its vessels with 114 mm nets in order to direct a fishery toward haddock for only one year. The most plausible scenario would be that the USSR small meshed fishery was capitalizing on the large 1962 and 1963 year-classes of haddock (Table 1).

Further adjustment to reported catches for the USSR were calculated from data collected during the 1977 and 1978 Observer Programs. Comparison of reported by-catch of haddock in the 1977 USSR silver hake fishery (0.1%) to that actually observed (1.0\%) demonstrates that the USSR could have under reported its catch by 111 tons (Waldron 1978). Similar results were observed in 1978 where it was estimated that the USSR may have under reported its haddock catch by at least 246 tons (Table 2) (Waldron 1979). These quantities, although small in relation to the total 4VW haddock catch, are nonetheless important since they represent predominantly 1 and 2 year-old haddock (Table 3).

These adjustments are likely to be underestimates of the actual events since the current silver hake fishery has been restricted to an area south of Sable Island. Experiments to evaluate the placement of this line were conducted in both 1977 and 1978. Both the USSR and Cuba suggested the studies would benefit directly by not only removing restriction on where the vessels could fish but also elminating the 1% by-catch regulation for cod and haddock. The results may have been biased with fleet commanders attempting to minimize the amount of by-catch, yet they do demonstrate that by-catches of haddock in a directed silver hake fishery on the Shelf, ranging from between 1.1 and 3.7%, were higher than those observed in areas near the slopes which ranged from. 5 to 2% (Waldron 1979). These observations would increase again the total haddock catch in small-meshed fisheries from those estimated.

RESEARCH VESSEL SURVEYS

Random stratified surveys of the Scotian Shelf have been conducted since 1970 during July and August. The estimated 4 VW haddock biomass has varied from a low of 9,000 tons to a high of 69,500 tons. Generally there has been an increasing trend since 1974, with 1978 and 1979 estimates being 69,500 tons and 69,400 tons respectively (Fig. 3). The decrease in numbers reported for 1979 is primarily due to the conspicuous absence of the 1978 year-class (Table 4).

The 1979 survey also suggests that the 1979 year-class is the largest in the history of these surveys. Although there are subsequent cruises in 1979, the data are not yet available to corroborate these observations.

EFFORT STANDARDIZATION

The most consistent effort series was that of Maritime-based TC 4 vessels. Directed CPUE and total catch of 0 TB 1 and 2 from February to June were obtained from ICNAF statistics. Catch per unit of effort for tonnage classes 3 to 5 were standardized to 1966 (Table 5). These indices were weighted to the total OTB catches for that year. The final effort index was obtained by dividing the total catch of all fisheries by the weighted CPUE index.

In some years the Maritimes-based vessels caught less than 30% of the reported catch, both Spain and the USSR reported most catches of haddock as by-catches of either a directed cod or silver hake fishery. In recent years, the offshore catch of haddock has decreased by all gears. The percentage removed by OTB and long-lines has remained fairly consistent, except during the period 1974-1977 when long-lines increased their take. The effort series is affected both by the low percentage of total removals and the fact that the CPUE index is based on only part of the population supporting the fishery i.e. older age groups (see below). Thus it is not likely that this effort series will reflect total effective effort in the fishery.

REMOVALS AT AGE

Historically, there have been three major fishing fleets operating in the 4VW haddock fishery. The Spanish and Canadian fisheries were required by regulations to utilize 114 mm gear until 1974 and 130 mm through to present, while it is speculated that the USSR utilized 40 mm gear (Halliday, 1971). Removals at age for all countries except the USSR were calculated from Canadian commercial age length keys (Table $6)$.

The high catches of haddock by the USSR in 1965 were unsampled. The only USSR samples reported to ICNAF were from 1966 and consisted of three age, and 14 length frequency, samples. USSR removals for 1960, 1965, 1967, 1969, and 1970-76 were calculated from Canadian research
vessel cruises which used mesh sizes of approximately 35 mm . The years 1961-64 were extrapolated from the 1960 Canadian research vessel cruise, while 1968 used the average of the 1967 and 1969 research cruises. Removals at age for 1977 and 1978 were obtained from Canadian sampling onboard USSR vessels.

Comparison of 1977 Canadian research and observed estimates of Soviet removals at age showed similar results, estimates of both indicating full recruitment at age 2 (Table 7). Age 0 fish caught by the Canadian research vessel were not observed in USSR vessel catches. This should not necessarily be interpreted as implying that the USSR did not catch 0 group fish but, rather, it could represent sampling variation. In order to avoid bias in population estimates, age 0 fish are not included in the cohort analysis. The removals at age matrix used in the cohort analysis (Table 8) is the summation of USSR removals (Table 3) and other countries' removals (Table 6).

STOCK ASSESSMENT

Partial recruitment - An initial partial recruitment vector was derived from a relationship between commercial fishery removals-at-age and research vessel estimates of population numbers-at-age in 1979. Research vessel numbers at ages 1, 2 and 3 for 1979 were adjusted to compensate for partial recruitment to the survey gear relative to age 4 (Tables 9a to 9b). The resultant numbers-at-age were divided into the commercial numbers-at-age and plotted against age in order to obtain the initial partial recruitment (Table 10). Full recruitment occurred at age 6 and partial recruitments for earlier ages were read from the curve. These were used during the initial runs of the cohorts. A partial recruitment of $0.040 \quad .050 \quad .178 \quad .550$. $673 \quad 1.0 \quad 1.0 \quad 1.0$ $1.0 \quad 1.0 \quad 1.0$ for ages $1-11$ was finally utilized as this gives a high correlation ($r=0.97$) between numbers at age 1 from the cohort and numbers at age $1+2$ in research vessel surveys.

Fishing Mortalities - Starting F's were calculated for each year from average Z values after full recruitment. The cohort began with a terminal F of 0.2 derived from an earlier assessment and M of 0.2 . Effort calculated from the weighting of commercial CPUE did not give any statistically signifcant relationships with F. With the above partial recruitment and terminal $\mathrm{F}^{\prime} \mathrm{s}$, cohort runs were made to find the final F which gave the greatest GM correlation between estimates of age $3+$ numbers from the cohort and research vessel surveys (Fig. 4). The best $r(0.95)$ was obtained with an F of 0.1 (Table 11).

Recruitment - The geometric relationship between age 1, as calculated from the cohort analysis, and age $1+2$ from research surveys gave an $r=0.97$ (Fig. 5). The 1962-64 year-classes were the largest in the time period studied (Table 11). However, the assumptions involved in determining removals at age will have resulted in some smoothing over adjacent year-classes. From analogy with haddock stocks to the southwest of 4 VW , it is likely that it was the 1963 year-class which was extraordinarily large. The 1962 year-class
was probably also above average strength, but neither it nor the 1964 year-class are likely to have been quite as strong in relation to the 1963 year-class as shown here. The 1965 to 1973 year-classes were extremely poor. However, the 1974-77 year-classes, which are responsible for the recent increase in population abundance are comparable in size to those of 1959-61.

For projection purposes the 1979 year-class size at age 1 was assumed to be equal in size to the geometric mean of age 1 numbers over the years $1970-78$ i.e. 13.7 million fish.

YIELD PER RECRUIT

Using mean weights at length obtained from research vessel cruises, with length at age in commercial catch sampling data, and using partial recruitments as derived for 1979, a Thompson-Bell yield analysis was run. This gave a maximum yield per recruit at age 1 of 0.630 kg at a fishing mortality of 0.60 . $F_{0} .1$ was 0.31 and gave a yield per recruit of 0.585 kg . (Table 12).

PROJECTION

The projected catch in 1980 at $F_{0.1}$ is 15,000 tons.

Year	Population Age 1+			
Numbers $\left(\times 10^{-6}\right)$	Biomass (tons)	Numbers $\left(\times 10^{-6}\right)$	Weight (tons)	
1979	99.8	93,000	2.3	3,000
1980	93.2	103,000	9.9	15,000

The marked improvement in the status of this stock is a result of the improved recruitment from the 1974 to 1977 year-classes. The sizes of these year-classes are comparable to the average year-class size in the late 1950's and early 1960's when the catch averaged about 27,000 tons.

It is clear from research vessel surveys that the 1978 year-class is poor. The 1979 year-class may be strong but a further year's data is required to establish this with any degree of confidence. The overall situation encourages the view that the stock is recovering and, within a few years, could be providing annual yields comparable to those produced in the 1950 's.

References

Clay, D. 1979. A preliminary review of silver hake (Mercluccius bilinearis) stock distribution and differentiation on the Scotian She1f. ICNAF Res. Doc. No. 5341, 79/11/15.

Halliday, R. G. 1971. Recent Events in the Haddock Fishery on the Eastern Scotian Shelf. ICNAF Research Bull. No. 8; 49-58.

Hare, G. M. 1977. Atlas of the Major Atlantic Coast Fish and invertebrate Resource Adjacent to the Canada-United States Boundary areas. DFO Tech. Rept. 681.

McCracken, F. D. 1963. Migrations of haddock between the Gulf of St. Lawrence and offshore Nova Scotian Banks. J. Fish. Res. Bd. Canada. 20: 855-857.

Scott, J. S. 1976. Summer Distribution of groundfish on the Scotian She1f 1970-74. Env. Canada Tech. Rept.

Waldron, D. E. 1978. Catch compositions during the 1977 Scotian Shelf International fishery with emphasis on the Silver hake and squid (IZIex) fisheries. ICNAF Res. Doc. No. 5161, 78/11/9.
1979. Preliminary results of a joint International Observer Prog. to evaluate the Silver hake small mesh gear line in ICNAF Division 4VWX. ICNAF Res. Doc. No. 5343, 79/11/17.

Figure 1. Plot of nominal catches of biv AW fadkeck (toms). Nominal catches for 1978 and 1979 are preliminary.

Fig: 2 Average Monthly Catch of 4VW Haddock (1969-78) by Canada.

Figure 3. Research vessel estimate numbers and biomass (t) for 4 VW Haddock.

Figure 4. Calculated 3+ numbers ('000) against Research vessel 3+ numbers ('000) for the 4VW Haddock Stock. ($r=0.95$)

Figure 5. Calculated age 1 numbers ('000) against Research $1+2$ numbers ('000) for the 4VW Haddock stock. ($r=0.97$)

TAELE 1 USSH OLPECTEO S. HAKE FISHER: (4VW) ANO ASSOCIAIEO GICATCIES (mt)

YEAR		1360			1961			1962			963			1904			1965	
MOHTH	S. Hake	Haddock	Cod	S. Hake	Haddock	cod	S. Hake	HadJock	Cod	S. Make	diock	Cod	S. Haxe	Hadecock	Cod.	S.Hake	Hacdack	Cos
January										7804	9		160	10	103			
February										4101		4	100	7	255			
March				-						5860		1530	1207	177	706	18		
April						-	837	102	256	6763		1182	3	-	3	-		
May										38839	294	1256	29009	89	479	15577	148	507
June							1		1	23946	434	1292	678	10	293	511	74	20
July										2			13235	42\%	1317	14227	10997	593
Auzust										13040	246	619	19531	3112	3009	2843	2550	103
septenter	.									12564	493	891						
1) ctober										1750	1655	1021	1			27		
Hoverber							4595	306	*	2403	602	850	67		3			
lecermber							4678	232	-	2764	-	165	23			650	165	
Kotal Rpt Dir (other)					\cdots	.	9273	640	257	119935	3733	9601	64094	4255	6968	33858	13342	2107
Motal Reported					151	113	8825	2567	2383	116388	3301	9505	62905	4391	7:33	49644	22816	7558
Yearly Ratio							1.000	0.073	0.029	1.000	. 032	. 082	1.000	0.068	0.111	1.000	0.412	0.662

12. Clay, 1979

YEAR	1966			1967			1968			1969			1970			1971		
MOith	S.Hake	Haddock	Cod	S.Hake	Haddock	cod	S.Hake	Haddock	Cod	S.Hake	Haddock	Cod	S. Hake	Haccock	\cos	S.inje	Hactock	Co.
January	.									453	26	33		.		3		
February										850	5	43	41		,	3246	26	51
March										1363	76	44	4326	38	155	39297		
April							,			9079	7	108	16546		605	1934	66	299
May				58	12		626	67	222	5035	5	55	17820	52	496	6746	68	423
June		.		1746	13	917							17473	122	160	3126	64	1095
July				20						5235	51.	399	34601	171	673	22118	18	435
August				10						12299	15	221	43165	99	58	21101	\square	261
Septerber										6992	45	1254	18737	131	115	3174	21	174
Octoter							972		389	1631	-	401	6129	45	142	0.057	5	52.
Wovember									-	1747	5	61	4115		43	581	2	8
Sucerber													1010		110			
Total Rpt Dir.				1834	25	917	1598	67	611	44700	235	2619	164013	$6 i 9$	2513	122413	279	2903
USSR Total frported	$39(1)$	10501	6016	1834	554	1077	3385	254	4865	44769	235	2703	1643:3	60	2521	125045	475	46
Patio				1.00	. 014	. 500	1.000	. 042	0.38	1.000	. 005	. 050	1.000	. 001	. 015	1.000	. 002	. 02.8

year	1972			1973			1974			1975			1975			1977		
Bath	S. Hake	Haddock	Cod	S.Hake	Haddock	cod	S.Hake	Madjock	cod	S.Hake	Haddock.	Cod	S.Hake	Hadte:x	Cod	S.Haka	Maddock	cod
Jancary							1039	-	-	2381	-	108	982	11	75			
February				104	-	-	.			83	-	-	1146	-	88			
March	7166	28	247	11254	37	42	6963	.-	40	2565	1	63	14644	1	177	37		
Aprll	11445	-	39	69254	-	52	8562	3	249	12501	4	245	9579	-	137	4800	6	16
May	19675	-	494	71540	20	290	11967	22	1128	12120	9	517	4752	-	360	3721	2	12
June	16336	-	796	40103	17	1079	12617	15.	470	5973	3	445				1820	2	
July	24043	35	971	38789	-	464.	10114	6	311	23789	27	156	12719	-	62	8723		17
August	14610	38	339	13116	2	321	9883	29	347	18250	8	146	6338	δ	-	14		
Septeriber	11481	1	136	8314	-	126	2072	-	\bullet	17621	-	113	5052	-	19	695		
Detober	3213	-	156	5394	-	171	3628	1	47				6533	-	4	112		
Hovember	-			1060	-	4	4599	-	140				3480		12	18.3	1	
December				7945		15	9637		- 97				4373		- 38			
Tota:	197969	102	3178	266383	76	2564	81181	91	2829	95293	52	1833	70054	16	972	20145	10	$3)$
USSR Total Reported	108557	106	4656	268511	76	2918	87437	132	3099	06253	52	3042	74823	24	1018	27351	16	97
Patio	1.000	. 001	. 029	1.000	. 0003	. 010	1.000	. 002	. 035	1.000	. 601	. 031	$1 . \mathrm{Cco}$. 0003	. 014	1.000	. 0005	. 0.957

Table 2. Adjusted USSR haddock catches (t) in ICNAF division 4 VW based upon observed data in 1977 and 1978.

Year	Directed Catch of S.Hake by USSR (4VW)	Reported Catch of Haddock in Directed S.Hake Fishery by USSR	Reported Total Catch of Haddock by USSR	Estimated USSR Haddock Catch in Directed S. Hake Fishery	Difference Between Reported and Estimated	$\begin{aligned} & \text { Adjusted } \\ & \text { Haddock Catch } \\ & \text { for USSR } \end{aligned}$
					(4-2)	(3+5)
1971	122413	279	475	918	639	1114
1972	107969	102	106	810	708	814
1973	268511	76	76	2014	1938	2014
1974	81181	91	132	609	518	650
1975	95298	52	52	715	663	715
1976	70054	18	24	525	507	531
1977	20145	10	14	121	111	125 ¢
1978	$41915{ }^{2}$	-	131	377	-	377
1979	44444.3^{3}	-	148	400	-	400

1 Adjusted Haddock Catch = [Total Reported Haddock - Haddock Catch in S. Hake] + Estimated Haddock Catch.
2 Report of directed fisheries not available from ICNAF to date. Estimated from Observer Programme.
${ }^{3}$ Reported to Canada and entered into the FLASH system.

											.									
Age	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
1	0	67	1133	1456	1937	45318	1869	123	42	47	231	179	453	290	26	318	348	36	105	1
2	0	16	271	348	463	40548	2089	80	41	63	84	409	95	1016	216	36	238	60	178	154
3	0	190	3229	4151	5522	31075	9735	172	72	95	155	133	271	272	293	132	40	51	150	167
4	0	136	2308	2967	3947	8527	4102	234	69	63	119	177	169	252	51	118	98	24	69	174
5	0	34	580	745	991	2076	1597	227	55	35	54	68	159	105	54	29	103	7	21	49
6	0	10	175	225	298	2562	548	68	35	54	39	36	86	209	27	52	22	11	34	6
7	0	3	49	63	83	854	120	20	18	34	51	16	46	35	19	14	25	2	6	5
8	0	5	80	103	137	105	0	45	11	7	14	26	26	53	6	6	5	1	2	2
9	0	1	12	15	20	210	0	12	6	10	7	1	15	17	5	3	2	1	3	1
10	0	1	10	13	17	39	0	15	4	2	0	0	7	19	2	3	2	0	0	0
11	0	5	93	119	159	53	0	10	2	1	2	0	0	0	3	0	2	1	3	0

Table 4. Haddock numbers-at-age ('000) from research vessel surveys in 4VW.

Age	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
0	273	161	40	0	594	192	780	645	0	3874
1	7100	4489	3435	1508	944	12025	8547	15666	25779	229
2	2640	9451	2321	4978	5587	1700	9400	29656	28842	23780
3	4788	3117	3378	1490	7556	4991	1322	23396	38613	25874
4	5325	4104	1524	1401	1369	4463	2569	3176	21592	26879
5	2548	1633	1271	514	1409	1170	2465	950	1372	7538
6	1632	925	955	1023	702	2135	542	1879	1234	969
7	1817	426	392	214	523	557	592	531	323	752
8	924	663	186	251	208	226	151	306	39	256
9	388	30	111	81	118	117	41	0	0	0
10	86	0	49	119	86	134	40	179	29	98
11	98	0	0	0	101	0	41	23	36	47

Table 5. Adjusted CPUE index for OTB TC $3 \rightarrow 5$ for the $4 V W$ haddock stock (CPUE directed) adjusted to 1966 .

YEAR	TC3		TC4		TC5		$\begin{aligned} & \text { TOTAL } \\ & \text { OTB } \\ & \text { CATCH } \end{aligned}$	WTD CPUE INDEX	GRAND TOTAL CATCH	EFFORT INDEX (HRS)	
	CPUE	MT	CPUE	MT	CPUE	MT					
1960	0.6051	767	1.2213	10259			11301	1.1497	27795	24175	
1961	2.220	1704	1.4773	14017			16108	1.5204	27196	17887	
1962	1.2864	737	0.9398	10003			10792	0.9589	24822	25885	
1963	1.4687	598	1.1358	6245			7070	1.1275	25507	22622	
1964	0.6300	246	0.9925	5826			6094	0.9743	22778	23378	
1965	1.000	299	1.5821	3710		251	4274	1.3733	55070	40100	
1966	1.000	357	1.000	7283	1.000	358	8000	0.9997	23421	23428	
1967	1.2330	42	1.3174	4649	1.2607	779	5475	1.3075	10747	8219	セ-
1968		8	0.8685	4584	0.6365	1666	6261	0.8052	13377	16613	
1969			0.7633	3431	0.6289	3367	6798	0.6967	11169	16031	
1970	1.2424	120	0.4823	2083	0.4820	1398	3601	0.5075	9820	19350	
1971	0.4372	97	0.6541	3592	0.5696	690	4379	0.6360	13672	21497	
1972	0.3957	25	0.4688	678	0.3301	978	1681	0.3870	4821	12457	
1973			0.4264	1253	0.3502	981	2235	0.3928	6373	16225	
1974	1.8456	60	0.1841	153	0.2531	68	281	0.5583	2913	5218	
1975	0.3293	19	0.4225	176	0.3987	161	354	0.4091	2583	6314	
1976	0.2214	4	0.6135	139	0.1793	92	235	0.4368	2034	4657	
1977	0.5202	3	0.4245	166	0.3586	297	438	0.4076	3380	8292	
1978	1.9037	28	1.5705	827	0.8090	1343	2198	1.1095	6222	5608	

Age	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	16	2	168	102	0	0	1	21	5	32	0	0	246	67	4	18
3	125	43	213	30	185	343	899	578	253	289	288	453	176	167	331	167	84	781	415	295
4	2848	2939	977	1483	485	1227	4097	1532	1255	1020	950	1313	336	798	107	454	97	339	1363	879
5	5106	6289	5004	1327	2894	1100	2342	1943	1965	1525	832	1822	461	533	215	189	150	423	278	465
6	2556	3492	4159	3443	1091	1753	678	853	1730	1434	849	799	343	351	173	88	118	190	465	92
7	1986	1103	1257	1712	1718	539	1168	335	549	699	717	631	179	205	52	35	97	64	137	73
8	1754	868	572	448	939	633	306	463	267	208	224	792	98	74	21	17	22	37	40	4
9	411	701	227	111	237	287	212	162	294	97	46	193	86	31	2	3	4	11	16	2
10	172	179	146	30	50	55	68	131	86	86	22	26	4	56	6	0	6	7	6	1
11	178	57	35	11	31	37	9	42	53	28	8	14	11	1	5	1	5	5	2	1

Table 7. Removals at age ('000) for USSR catches in 1977 estimated by using observed samples and Canadian research.

Age	Canadian Research		USSR Samp1ed	
	No.	$\%$	No.	\%
0	1	0.51	0	-
1	36	18.46	34	19.54
2	60	30.77	68	39.08
3	51	26.15	54	31.03
4	24	12.31	6	3.45
5	7	3.59	8	4.60
6	11	5.64	3	1.72
7	2	1.03	1	0.57
8	1.	0.51		
9	1	0.51		
10	0	-		
11	1	0.51		
$11+$	-	-		
TOTALS	195	100.00	174	100.00

Table 8. Removals at age ('000) for the 4 VW Haddock Stock.

AGE	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969.	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
1	0	67	1133	1456	1937	45318	1869	123	42	47	231	179	453	290	26	318	348	36	105	1
2	0	16	271	348	479	40550	2257	182	41	63	85	430	100	1048	216	318	484	127	182	172
3	125	233	3442	4181	5707	31418	10634	750	325	384	443	586	447	439	624	319	124	832	565	462
4	2848	3075	3285	4450	4432	9754	8199	1766	1324	1083	1069	1490	505	1050	158	572	195	363	1432	1053
5	5106	6323	5584	2072	3885	3176	3939	2170	2020	1560	886	1890	619	638	269	218	25.3	430	299	514
6	2556	3502	4334.	3668	1390	4315	1226	921	1765	1488	888	835	429	560	200	140	140	201	499	98
7	1986	1106	1306	1775	1801	1393	1288	355	567	733	768	647	225	240	71	49	122	66	143	78
8	1754	873	652	551	1076	738	306	508	278	215	238	818	124	127	27	23	27	38	42	6
9	411	702	239	126	257	497	212	174	300	107	53	194	101	48	7	6	6	12	19	3
10	172	180	156	43	67	94	68	146	90	88	22	26	11	75	8	3	8	7	6	1
11	178	82	128	130	190	90	9	52	55	29	10	14	11	1	8	1	7	6	5	1

Table 9a. Adjustment of survey estimates numbers at age ('000) at $M=0.2$ for ages 1 to 3 to compensate for partial recruitment relative to age 4 .

		Y E A R	C L A S S
Survey Year	1978	1977	1976
1979	407	33364	23912

Table 9b. 1979 research survey numbers at age ('000) prior and after adjustment to compensate for partial recruitment at age 4.

AGE	1	2	3	4
Original \#'s	229	23780	25874	26879
Adjusted \#'s	407	39599	30744	26879

Table 10. Initial and Final Partial recruitments and mean weights at age.

| AGE | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Initial Par. Rec. | .040 | .069 | .178 | .386 | .673 | 1 | 1 | 1 | 1 | 1 | 1 |
| Final Par. Rec. | .040 | .050 | .178 | .550 | .673 | 1 | 1 | 1 | 1 | 1 | 1 |
| Mean wt. at age (kg) | .103 | .590 | .820 | 1.220 | 1.690 | 2.150 | 2.660 | 3.020 | 3.630 | 3.900 | 3.61 |

Table 11. Population numbers ($\mathbf{\prime} 000$) and fishing mortalities at $M=0.2$

	1	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
1		46602	31190	46904	86108	95065	66807	11285	10104	7582	4812	5561	2934	6128	7085	4832	24630	41010	43375
2		20329	38155	25476	37376	69182	76080	13692	7548	8161	6170	3897	4344	2240	4608	5538	3932	19878	33261
3	1	29501	16644	31224	20612	30286	56208	25598	9167	6015	6645	4994	3114	3168	1744	2824	4339	3187	15837
4		27313	24040	13416	22450	13093	19632	17591	11336	6827	4631	5093	3688	2019	2189	1030	1748	3264	2497
5	1	14615	19785	16900	8012	14354	6709	7248	6983	7683	4391	2811	3202	1671	1196	842	701	913	2496
6		6265	7346	10477	8784	4684	8237	2619	2370	3754	4463	2184	1500	912	808	402	446	376	519
7		4876	2817	2845	4656	3873	2578	2839	1035	1107	1477	2307	985	473	358	155	148	239	181
8		3733	2195	1306	1148	2206	1541	850	1159	526	393	546	1194	221	183	76	63	77	85
9		1151	1469	1007	479	441	833	594	419	489	179	127	231	238	68	35	38	31	39
10		358	570	568	608	278	129	232	294	186	129	50	56	14	103	13	22	26	20
11	1	418	138	304	323	459	167	20	128	103	71	26	21	23	1	17	3	16	14
		155161	144348	150426	190557	233922	238921	82568	50545	42440	33350	27597	21270	17106	18344	15764	35070	69015	98323

	1978	1979
1	46586	276
2	35480	38046
3	27117	28884
4	12213	21690
5	1716	8704
6	1654	1134
7	243	903
8	89	69
9		35
10	35	
11	10	12
	125164	99765

 \(10.0000 .0020 .0270 .0190 .0231 .3850 .2020 .0140 .0060 .0110 .0470 .070 \quad 0.085 \quad 0.046 \quad 0.006 \quad 0.0140 .009 \quad 0.001 \quad 0.002\)

$\begin{array}{lllllllllllllllllll}0.122 & 0.152 & 0.316 & 0.247 & 0.469 & 0.796 & 0.724 & 0.189 & 0.241 & 0.299 & 0.264 & 0.591 & 0.324 & 0.755 & 0.185 & 0.449 & 0.058 & 0.175 & 0.139 \\ 0.488 & 0.436 & 0.454 & 0.337 & 0.355 & 0.741 & 0.918 & 0.421 & 0.343 & 0.499 & 0.428 & 1.056 & 0.526 & 0.890 & 0.435 & 0.421 & 0.366 & 0.211 & 0.214\end{array}$
$\begin{array}{llllllllllllllllll} \\ 0.599 & 0.748 & 0.611 & 0.619 & 0.397 & 0.865 & 0.728 & 0.551 & 0.733 & 0.460 & 0.597 & 0.955 & 0.734 & 1.451 & 0.798 & 0.426 & 0.530 & 0.559\end{array} 0.406$
$\begin{array}{llllllllllllllllllll}0.598 & 0.569 & 0.708 & 0.547 & 0.721 & 0.909 & 0.696 & 0.476 & 0.835 & 0.795 & 0.459 & 1.296 & 0.747 & 1.348 & 0.705 & 0.455 & 0.833 & 0.514 & 1.052\end{array}$
$\begin{array}{lllllllllllllllllllll}0.733 & 0.579 & 0.803 & 0.756 & 0.774 & 0.753 & 0.507 & 0.662 & 0.876 & 0.927 & 0.658 & 1.415 & 0.970 .1 .451 & 0.497 & 0.519 & 0.490 & 0.682 & 0.739\end{array}$
$0.5020 .7510 .3040 .3441 .0321 .0780 .5020 .6141 .1321 .0760 .615 \quad 2.61110 .6351 .492 \quad 0.2490 .1920 .2450 .42110 .910$
$0.7560 .4290 .3620 .0810 .3101 .5450 .3910 .7940 .7681 .3990 .6650 .712 \quad 2.0701 .6301 .2080 .1600 .4230 .5020 .385$
$\begin{array}{lllllllllllllllllllllllllll}0.626 & 0.675 & 0.616 & 0.578 & 0.601 & 0.882 & 0.659 & 0.584 & 0.797 & 0.597 & 0.543 & 1.266 & 0.754 & 1.388 & 0.749 & 0.439 & 0.669 & 0.647 & 0.823\end{array}$

I 1979
10.004
10.005
0.018
0.055
0.067
10.100
710.100
- 0.100
| 0.100

| 1 |
| :--- | :--- | 0.100

 10.100
 Table 12. Yield per recruit for the $\mathbb{I V W}$ Haddock $(M=0.20$, partial recruitment and wt. at age as in Table 10).

		$\begin{gathered} \text { caton } \\ (n+m e r s) \end{gathered}$	$\begin{aligned} & Y I P T D \\ & (Y G) \end{aligned}$	AVC tratrrer	$\begin{gathered} \text { YTET ERT } \\ \text { VTG POORT } \end{gathered}$
	0.057	0.03353	-0.193	2.240	1.000
	0.100	0.15550	0.337	2.154	0.849
	0.150	0.20990	0.434	2.065	$0.72 ?$
	0.200	0.25240	0.501	1.934	0.631
	0.250	0.23579	0.547	1.907	0.551
	0.300	0.31505	-0.578	1.836	0.495
Po.1--	0.313	0.32169	0.585	1.010	ก.4.71
	-0.350	0.33369	0.600	'1.770	0.432
	0.400	0.35374	0.613	1.710	0.395
	0.450	0.37501	0.622	1.654	0.048
	0.500	0.39107	0.627	1.603	0.316
	0.550	0.40438	0.629	1.555	$\bigcirc .239$
T以为--	0.505	0.41525	0.530	1.517	0.250
	0.500	3.41625	0.630	1.513	?.25!
	0.650	0.42693	0.629	1.479	0.244
	0.700	0.43672	0.527	1.435	7.226
	0.750	0.44565	0.625	1.103	0.210
	0.300	0.45388	0.622	1.371	0.105
	0.850	0.46152	0.619	1.342	0.184
	0.900	0.46854	0.616	1.315	$\bigcirc .173$
	0.350	ก.475.1	2.613	1.230	0.163
	1.000	0.49153	0.610	1.250	0.154

