ICNAF Division 4X Haddock January 1980 Status Report

by

Robert N. O'Boyle
Marine Fish Division
Department of Fisheries \& Oceans
P.O. Box 1006
Dartmouth, Nova Scotia B2Y 4A2

INTRODUCTION

From the early 1930's to the early 1960's, reported landings of the ICNAF Division 4X haddock stock fluctuated between 10-20,000 metric tons (t) annually (Figure 1).. These landings were split equaliy between Canada and the U.S. During this period, the major part of Canada's catches was landed by longliners while the U.S. landings were almost wholly reported by otter trawlers. In 1963, the USSR first entered the fishery, reporting a catch of 400 t (Table l). Their involvement in the fishery increased until 1966, when they reported catches of $10,065 \mathrm{t}$. However, subsequent to this, they did not undertake directed fishing on 4 X haddock. During the same period, the Canadian otter trawl fleet expanded rapidly, with a particularly large increase in the number of vessels in the tonnage class 4 category. As well tonnage class 5 vessels entered the Canadian fishery (Table III, Figure 3) for the first time in 1966.

The increased effort in the fishery resulted in peak reported total landings from the stock of 37116 t in 1966. Catches remained close to or above $30,000 \mathrm{t}$ until 1969. The high exploitation rates generated during the late 1960's provoked dramatic declines in stock abundance which in turn resulted in the establishment of a TAC and restricted fishing area regulations in 1970:

In both 1970 and 1971, the TAC was set at $18,000 \mathrm{t}$. No bot toun trawling was allowed on Brown's Bank during March-May. In the following two years; the TAC was reduced to $9,000 \mathrm{t}$ with similar area restrictions. In 1974, 4 X was closed to directed fishing on haddock altogether and managed through by-catch regulations. Limitations on total haddock landed per fishing trip were continued in 1975 in an attempt to control exploitation rates. These have continued in varying forme to the present. Since 1976 the offshore fleet allocation has been divided into sub-annual quotas in an effort to regulate fishing pressure throughout the year. By 1975 and 1976, discards were becoming an increasingly important problem. In 1977 and 1978, the TACs were overrun by considerable margins (Table 1) despite all the regulatinns.

Belzile (1978) estimated that in the springs of 1977 and 1978 , the offshore fleet encountered large by-catches of haddock, particularly while fishing for pollock, and discarded approximately 10% of the total catch. No reports on discard patterns in 1979 are as yet available.

Since 1975, misreporting of haddock by species (particularly by the inshore fleet) and by area (particularly by the offshore fleet) has become increasingly evident. No data exists which can provide estimates on the level of these catches.

The trends in the fishery since 1975 suggest that the fisherman have had a difficult time staying within the established TACs, particularly in 1977 and 1978. Consequently the catches shown in Table I, II, and III are most likely conservative, although by how much is impossible to determine.

Commercial catch age composition
Previous analysis (Halliday and McCracken, 1970; McCracken; 1956, 1960) has indicated that catches reported from Unit Area 4 Xs are 1ikely from the ICNAF Division $5 Y$ haddock stock. These landings were therefore excluded from the present assessment.

The age composition of landings from the ICNAF Division 4 X haddock stock were constructed for the 1962-79 period. It has been observed (Hennemuth et al., 1964) that Unit Area 4Xr haddock landings have a substantially different size and age composition from those reported from 4Xmnopq. Consequently, sampling data from these two areas were applied separately to the respective catches in construction of the removals at age table.

Canadian commercial samples were applied to Canadian landings whenever possible. Generally, otter trawl samples were applied to landings reported by otter trawlers, danish seiners and shrimp trawlers. Longline samples were applied to combined longline and gillnet landings.

USA landings compositions for 1962-64 were taken from Schultz and Halliday (MS 1969) while from 1965 to the present, Canadian samples were applied to USA landings. This should not introduce major errors since landings from both countries have been similar in age composition (Hennemuth et al., 1964) and USA landings have been only a small proportion of total reported catch during the $1965-79$ period.

No commercial samples for the $1962-76$ period are available for the USSR and Spanish landings. The age composition of these catches was assumed to be the same as that of Canada.

The 1979 removals at age were based on samples taken during January-October as the November-December samples were not available at the time of the assessment.

The generated removals at age are given in Table IV and the percent age composition, by numbers and weight, are given in Table V. These numbers do not include any correction for discarding as the age structure of the discarded and misreported catches is not well known. During the early 1960^{\prime} s, the 1959 and 1960 year-classes supported the fishery. In the subsequent years of high exploitation rates, the 1962 and very large 1963 year-classes supported the fishery. The latter remained an important component of the landings until 1972. During the mid $1970^{\prime} s$, when the stock appeared to be recovering, the 1969 and 1971 year-classes contributed significantly to the landings. Since 1977, the 1974 and 1975 year-classes have become increasingly important to the fishery. In 1979, they contributed 27 and 33% by weight respectively to the landings.

The weights at age derived from the commercial samples are given in Table VI. For 1979, weights for ages 10-13+ appear anamolous and may have been due to bad sampling. For these ages, the means of the weights for the equivalent ages in 1977 and 1978 were used in all subsequent analyses.

Stock abundance trends

Four independent sets of data were analysed to discern patterns in abundance from the early 1960's to the present. These consisted of both research (Canada and U.S.) and commercial (Canada and U.S.) data sets.

Canadian summer bottom trawl survey

Since 1970, Canada has been carrying out a standardized groundfish survey on the Scotian Shelf during July-August. The stratified mean catch (in numbers) per standard tow for haddock caught in $4 X$ (strata 70-91 and 95, (Figure 4b)) during this survey are given in Table VII. There is a considerable amount of variation in these data which has yet to be explained. In 1974 and 1977, for instance haddock appeared particularly available to the research gear.

The breakdown and ranking of catch rates by strata is given in Tables VIII + IX respectively. It is evident from this that during July, haddock concentrate primarily on Brown's Bark and secondarily in the Roseway Bank areas. Concentrations are sometimes, as in 1979, observed just in the mouth of the Bay of Fundy.

To facilitate elucidation of trends in abundance, a 3 year running average was applied to the total $\mathrm{kg} /$ tow (Table VII)
information. The 1970 and 1979 estimates were the straight average figures of the first and last two years of the series. These data are given in Table XIII and illustrated in 5a. The survey indicates that the stock has undergone a continuous increase in abundance since 1971-1972. A sharp decline was observed in 1979 although this could be an artifact caused by the variability in the data.

U.S. fall bottom trawl survey

The NMFS, Wood's Hole has been running a standardized bottom trawl survey on the east coast since 1963. The strata sampled in Division $4 X$ (strata $31-34,41,42$) are given in Figure $4 a$. The catch in numbers at age per tow for these strata (Table X) exhibits considerably less variation than those of the Canadian survey. As observed during the Canadian survey, haddock appear to have been exceptionally available in 1977, although it is not quite so obvious in this series. The difference in the two data bases warrants further investigation.

The breakdown of catch rates by strata (Table XII) show that significant amounts of haddock were caught in strata 41 and 42 , during the $1965,1968,1969,1973,1974$ and 1975 surveys. This agrees with the Canadian survey data. In 1963, 1964, 1976, 1978 and 1979, these two strata were not sampled. The catch in numbers at age per tow were calculated with these strata removed to generate a consistent series of abundance indices (Table XI). Examination of $\mathrm{kg} /$ tow data smoothed over three years (Table XIII and Figure 5a) shows that removal of strata 41 and 42 considerably raises the catch rates in 1965-1969 and 1977-1979. Therefore catch rates with sirata 41 and 42 removed were used in all subsequent analyses.

During the 1970-79 period, the U.S. and Canadian smoothed series agree quite well although the former exhibits a much faster rate of stock increase during 1975-1979.

Canadian commercial catch per unit effort

Catches by otter trawlers of tonnage class 4 have consistently contributed significantly to the total reported landings (Tables II and III).

Brown's Bank has been closed to directed fishing on haddock during March-May since 1970. Thus only catch-effort statistics for the July-October period were analysed.

The averaged monthly otter trawler (T.C.4) catch rates where haddock represented more than 50% of the total reported catch are given in Table XIII and illustrated in Figure 5b.

As observed in the research data, the series reflects a rapid increase in stock size since 1973. No data as yet are available for 1979.

U.S. Commercial catch per unit effort

This series, provided by NMFS, Wood's Hole (Table XIII) ends in 1977 due to trip limitations on U.S. vessels. It agreeds very well. with the trends observed in the U.S. survey data during 1963-1.973 (Figure 5b).

Comparison of abundance indices
Agreement among the various indices for the $1970-1978$ period is very good (Table XIV), the lowest correiation coefifient being 0.SO. All indices show that the stock was at its highest level of abundance during the early 1960's and subsequently underwent gradual decline to reach a minimum in 1971-1973. Since then the abundance has rapidly increased reaching a present stock level approximately equivaleni to that observed daring the early 1960's.

In an effort to use all available information, combined abundance estimates for the Canadian and U.S. research data were developed for ages $2+$ and $5+$ for use in cohort analysis. First, the catch (in numbers) at age per tow for each survey (Tables VII and XI) was swoothed to reduce the variation due to availability. This was done by applying the observed age composition to the 3 year smoothed average total catch pe: tow. Next, the age $2+$ and $j+$ numbers per tow were calculated for each data base and normalized to the 1970 estimate (Table XV). The correlation of age $2+$ numbers per tow is low while that for ages $5+$ is much higher (Figure 6). In both cases, a straight average of the two surveys normalized indices would be the best overall indicator of abundance trends. Consequently for 1963-1969, the normalized U.S. estimates were taken as representative of population trends while subsequent to that, the mean of the Canadian and U.S. normalized indices was used.

A year-class strength index was developed fron the research surveys for use in adjustment of cohort analysis. Each serles was examined to discern the earliest age that could be used as an indicator of year-class strength. For the Canadian survey, this proved to be age 2 (Figure 7) while for the U.S. survey, it was age 1 (Figure 8). Correlation between the two indices was very high (Figure 9) with only the 1972 year-class being underestimated in the U.S. survey relative to the Canadian survey. The 1971 year-class appeared to be the strongest in recent years, followed by those (in order of size) of 1975 , 1977, 1976, 1969, 1974, 1968, 1973 and finally 1970. Both survey indices
were then normalized to the size of the 1968 year-class and a combined index taken as the average of the two (Table XVI).

COHORT ANALYSIS

Calculation of the fishing mortality on the oldest age groups

The spring 1978 assessment (0'Boyle, 1978) provided an initial estimate of the partial recruitment pattern in the fishery. It showed that haddock entered the fishery in significant amounts at age 2 , were fully recruited by age 6 and then gradually became less available to the fishery as they grew older. This reduction in partial recruitment In ages 7 to 12 can be partly explained by the presence of longliners in the fishery. In contrast to otter trawlers, their fishing power drops off with age of the fish. In this assessment, the partial. recruitment for age 12 was estimated to be 0.60 . The first cohort analysis was run using the age 12 fishing mortalities from the spring 1978 assessment. The weighted (on population numbers) F for ages 6-8 (i.e. fully recruited ages) was calculated for each year and multiplied by 0.60 to obtain a new estimate of F at age 12 for that year. This new estimate was entered as the Terminal F and another cohort analysis executed. After 5 iterations, the terminal F values stablized. The iterated stable estimates were taken as final.

Calculation of fully recruited fishing mortaiity (E_{r}) in 1979

Optimization of the relationship between the cohort analysis age 6+ numbers in year $t+1$ and the age $5+$ combined research survey index in year t (Table XV) was used to calibrate age $6+$ population sizes the final years of the cohort analysis.

The relationship between cohort analysis $3+$ biomass and Canadian otter trawl catch per unit effort (adjusted to beginning of the year) as well as between cohort analysis weighted fishing mortality (on 3+ numbers) and effective effort derived from the Canadian commercial CPUE index, provided supportive evidence for the reliability of the derived trends.

The results are illustrated in Figure 10. An F_{r} of 0.33 in 1979 and F^{\prime} s at age 12 of 0.33 and 0.19 in 1977 and 1978 respectively provided the best correlations for the lines. The fact that all three relationships show the latest years of the cohort analysis in line with the long-term trends, is evidence that the fully recruited population sizes for 1976-1979 are being accurately estimated.

CalcuZation of 1974-1978 year-class strength

Optimization of the relationship between cohort analysis numbers at age 1 and the normalized combined research survey year-class strength index (Table XVI) was used to evaluate age 1 recruitment in
the 1974-1978 period. This was done through adjustment to the partial recruitments for ages 1 to 5 .

The relationship between cohort analysis age $3+$ numbers in year $t+1$ and normalized research survey age $2+$ catches per tow (Table XV) in year t concirmed the cohort analysis estimates.

The results are shom in Fisure 11. The estimated size of the 1973 year-class was fairly clocc to the line, suggesting the partial recrujtuznt of age 6 in 1979 ves correct. The 1974 year-class size was being overestimated while that of 1975 was right on the line. In order to bring the size of the 1974 yor-class orto the line, the F at age 5 in 1979 would have to be almos doubled, wich sems improbable. It may be here that the research cinta are in error. For this asseschent the 1973 and 1974 year-class rare taken as fully recruited in 1979.

The sizes of the 1976 and 1977 year-classes at age i were predicted fron the relationship given in Figure 11 a and projected to 1979 to provide terninal F^{\prime} s an subsequently partial recruitments.

The size of the 1978 yerr-class at age 1 was determined through examination of the Canadian research survey data. This year-class was virtually absent fron four cruises (fall 1978, spring, sumer and fall 1979). As well, the smoothed cetch rate of age 1 in 1979 is only 22% of the mean of those for the $1974-1977$ year-classes. This percentege was applied to the $1975-77$ age 1 recruitment estimates to arrive at a size of 12.17×10^{-6} for the 1978 year-class at age 1 . This is the weakest year-class since 1970 and is more typical of recruitment observed in the mid to late 1.950 s.

The final cohort analysis results are provided in Table XVII. They shon that the recent rapid increase in stock size was due to consistently strong recruitment to the fishery since 1972 . Compared to the historical average, the sizes of the $1971-1977$ year-classes are quite high.

Catch Projections

The partial recruftment pattern for 1979 (Table XVIII, Figure 12) differs from the spring 1978 assessment estimate in that haddock now appear to be fully recruited to the fishery one year earlier. A yiald per recruit calculated with the 1979 partial recruitment, the mean weights at age for 1977 to 1979 and a natural nortality of 0.2 provided an $F_{0.1}$ of 0.33 and an $F_{\text {max }}$ of 0.64 . This indicates that the stock is presently being fished at $\mathrm{F}_{0.1}$.

A catch projection was carried out to the end of 1980 using the input values provided in Table XVIII. The fishing mortality was set at $\mathrm{F}_{0.1}$ and the 1980 recruitment at age 1 was taken as the geometric mean of the cohort analysis estimates for the $1972-78$ period (48.88×10 0^{6}).

The projection results are given below:

| | 1979 | 1980 |
| :--- | :--- | ---: | ---: |
| Age $1+$ Numbers $\left(x 10^{-6}\right)$ | 146.6 | 154.9 |
| Age $1+$ Biomass $\left(x 10^{-3} t\right)$ | 155.3 | 159.4 |
| Catch Numbers $\left(x 10^{-6}\right)$ | 15.8 | 16.3 |
| Catch Biomass $\left(x 10^{-3} t\right)$ | 25.3 | 27.9 |

These results imply an $\mathrm{F}_{0.1}$ catch of 28000 t in 1980 which is not significantly different from the $F_{0}: 1$ catch level determined during the last assessment ($26,000 \mathrm{t}$). These catch levels are comparable to the long-term estimated potential yield from this stock. However, if the 1978 year-class is as weak as the research surveys tend to indicate, then yields in $1982-83$ will be expected to fall below the long-term estimates although it is too early to predict the degree of decline.

A complicating factor is the presence of high discard and misreporting rates in this fishery. The exact effects of these on the cohort analysis are hard to determine. However, in general, the addition of more catch to the end years of Table IV will result in higher population sizes being estimated for the same inputted terminal F values. These may or may not cause dranatic changes in the relationships between the cohort analysis estimates and the research survey abundance indices. If they do, higher terminal F's will be required to bring the relationships back in line. Thus the population size remains the same, but is being exploited in excess of $\mathrm{F}_{0.1}$. Just how nuch of a change results from addition of discards to the present analysis depends on its absolute anount and size composition, both of which are unknown.

In conclusion, the catch projection given here is representative of what is known about the fishery but must be interpreted with caution due to the recent high discarding and misreporting practices.

References

Belzile, I, 1973. Report on the discarding of fish in the Canadian offshore fishery in TCMA. Sobareas 4 and 5 ICNAF Res. Doc. 78/V]/83.

Halliday, $\mathrm{H} . \& \mathrm{~F}$. Niccracken. (1970). Movement of haddock tagged off Dig'y, Nova Scotia. TChat les. Bull. 7: 8-14.
 age composition of landing and totil rortaljty of hadiock cnuchit Gff suthorn Nova Scotia, 1956-1961. JCNAF Res. Bull. 1: 43.73.

O'Boyle, Rox. 1978. ICNAF Division $4 \times$ haddock-spring 1978 status report CAFSAC Eesearch bocwent 78/19.

MoCracken, F . (1956). Cod ard daddock tegging off Lockeport, Moya Scotia. Fish. Res. Bd. Carada, Atlantic Prog. Rept. 64: 10.15.

McCracken, F. (1960). Studies on haddock in the Passamaquoddy region. J. Fish. Res. Ed. Can. 17: 175-180.

Schultz, R.L. \& R.G. Haliiday, NS (1969). Abundance, age conposition and curvival of haddock from southern Nova Scotia grounds 1962-68. ICNAP Res. Doc. 69/86, Serial No. 2252.

Table I. ICNAF Division 4 Xm -r Haddock Nominal Catches (metric tons round) by Country

* - Provisional (May, 1979) ** - Projected (December, 1979)

YEAR	CANADA (Ma)	$\begin{aligned} & \text { CANADA } \\ & \text { (Nfld) } \end{aligned}$	USA	USSR	SPAIN	JAPAN	OTHER	TOTAL	QUOTA
1962	10118		5761					15879	
1963	14385		6397	400			28	21210	
1964	24468	12	7612	1108			40	33240	
1965	20562		2455	2582				25599	
1966	25492	23	1393	10065	143			37116	
1967	29098	46	2937	199	78			32358	
1968	27277		2858	335	116		36	30622	
1969	27419		1707		478		19	29623	
1970	15561		1639	2	370	12		17584	18000
1971	16064		656	97	347	1		17165	18000
1972	12394		411	10	470		1	13286	9000
1973	12580		268	14	134	6		13002	9000
1974	12434		662	35	97			13228	0
1975	16509		2109	39	7		2	18666	15000
1976	16338		972		95		5	17410	15000
1977	19537		1649	2			12	21200	15000
*1978	25270	114	1175	2		8	11	26580	21500
**1979	25000	278	50	8		10		25346	26000

Table II. Catch of 4 X Haddock in Metric Tons by Fishing Gear for Canadian (Maritimes \& Quebec) Fishery 1962-1979

YEAR	OTTER TRAVL SIDE \& STERN	LONGLIME	Miscellaneous GEARS	TOTAL
1962	7813	3724	. -	11537
1963	12063	4700	-	16763
1964	$2053 ?$	5799	-	26331
1965	18048	4692	-	22740
1966	25800	3720	-	29520
1967	28696	3108	162	31966
1968	25515	2997	325	28837
1969	24333	3302	439	28074
1970	17750	3907	355	16012
1971	12152	3940	312	16404
1972	7639	4048	883	12570
1973	6123	5853	704	12680
1974	5688	6211	535	12434
1975	10567	4944	548	16059
1976	10505	4642	1191	16338
1977	14464	4032	1097	19593
1978	16924	6084	2356	25364
1979	18785	4696	1519	25000

Table III. Catch of $4 X$ Haddock in Metric Tons by Vessel Size for Canadian (Maritimes \& Quebec) Side and Stern Otter Trawlers 1962-1979

YEAR	$V E S S E L S I Z E \quad(T O N S)$					TOTAL
	0-50	51-150	151-500	$500+$	NK	
1962	5224	1973	432	-	184	7813
1963	5926	3230	2863	-	44	12063
1964	3118	3964	13450	-	-	20532
1965	4605	4182	9261	-	-	18048
1966	8872	9094	7648	186		25800
1967	7479	7983	11085	2149	-	28696
1968	4753	6938	10552	3272	-	25515
1969	2619	4144	9791	7779	-	24333
1970	2050	3165	3703	2832	-	11750
1971	1715	2714	4773	2950	-	12152
1972	1196	1688	2811	1944	-	7639
1973	919	971	2569	1664	-	6123
1974	2165	1895	1072	556	-	5688
1975	2742	3419	2413	1993	-	10567
1976	1778	2598	3029.	3100	-	10505
1977	2672	3543.	3627	4622	-	14464
1978	4410	4930	3583	4001	-	16924
1979	---	-----	not avai	ble		----

Table IV. Exich at Age (Mumbers $\times 10^{-3}$) of Haddock from $4 x_{n}-r$ (excludes discards)

AGE	1962	1963	1964	1965	1966	1967	1968	1369	1970	1971	1972	1973	1374	1975	1976	1977	1978	1979
1	-	-	-	-	-	-	-	-	-	-	$4:$	150	$!$	37	18	2	0	0
2	139	713	155	70	219	22	665	ic	1055	788	22	3077	$6 \Omega 4$	2175	1296	1285	72	97
3	4524	2013	1272	3038	18341	515	297	2015	724	1617	3434	113	4553	4568	1644	3125	3367	1729
4	1415	7185	4286	1981	9795	20380	1164	1958	1502	788	1241	2247	305	5164	4261	2019	7410	6723
5	1778	3087	9337	3153	3167	9148	17448	1621	379	1422	569	1067	1775	485	3682	3193	2103	3897
6	1708	1649	3018	5409	2149	1039	4684	11243	524	404	54.5	527	509	1103	434	$288 i$	2624	1308
7	1648	1415	1492	1973	3747	735	713	32? 0	4536	69	30	000	133	247	307	360	955	1487
8	973	593	1370	1000	840	1052	518	455	1853	$33 i 6$	57	322	259	172	154	359	125	377
9	645	478	612	745	409	187	672	249	133	1020	1165	259	185	62	71	137	86	73
10	232	152	416	288	124	102	190	194	96	153	$5: 2$	614	269	32	95	72	25	59
11	205	113	297	203	88	90	131	172	175	181	26	55	552	165	39	23	5	14
12	64	59	168	114	62	23	55	94	27	146	193	13	24	229	103	8	6	0
$13+$	100	43	36	113	84	81	89	69	37	105	92	6	4	11	157	87	35	13
Total	13431	17500	22459	18087	39326	33374	26636	21311	11051	10019	8628	9059	9438	14450	12761	13552	16813	15777
Estimated Landings	18949	22806	32172	25910	39116	33¢¢4	31903	2ビ35	16414	16235	13554	: 2095	$i=000$	17318	18¢51	20557	25200	25377
Reported Landings	15879	21210	33240	25599	37116	32358	30522	2 2623	17584	17:85	13205	13003	:3228	13566	17410	21200	26580	25346

Table V. Composition of Commercial Catch for 4 X Haddock Fishery

AGE	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978.	1979
A. PER CENT BY NUMBER:																		
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.48	1.65	0.01	0.26	0.14	0.01	0.00	0.00
2	1.03	4.07	0.69	0.39	0.56	0.07	2.50	0.05	9.55	7.78	0.25	34.00	7.35	15.05	10.16	9.48	0.43	0.60
3	33.68	11.50	5.66	16.80	46.64	1.54	1.12	9.46	6.55	16.14	39.80	1.25	49.30	31.61	12.88	23.07	20.03	10.96
4	10.54	41.06	19.08	10.95	24.91	61.07	4.37	9.23	13.59	7.87	21.34	24.83	3.27	35.74	33.39	14.90	44.07	42.61
5	13.24	17.64	41.57	17.43	8.05	27.41	65.51	7.61	3.43	14.20	5.90	11.79	18.85	3.36	28.85	23.56	12.51	24.70
6	12.72	9.42	13.44	29.91	5.46	3.11	17.59	52.76	4.74	4.03	7.48	5.82	5.39	7.63	3.40	21.26	15.61	8.29
7	12.27	8.09	6.64	10.91	9.53	2.20	2.68	15.11	41.05	0.69	1.04	6.63	2.00	1.71	6.32	2.66	5.68	9.43
8	7.24	3.39	6.10	5.53	2.14	3.15	1.94	2.14	16.86	33.10	0.66	3.56	2.85	1.19	1.21	2.87	0.74	2.39
9	4.80	2.73	2.72	4.12	1.04	0.56	2.52	1.17	1.20	10.18	13.51	2.86	1.97	0.43	0.56	0.79	0.51	0.46
10	1.73	0.87	1.85	1.59	1.08	0.31	0.71	0.91	0.87	1.63	5.93	6.78	2.85	0.22	0.74	0.53	0.15	0.37
11	1.53	0.65	1.32	1.12	0.22	0.27	0.49	0.81	1.58	1.81	0.30	0.61	5.85	1.14	0.31	0.17	0.03	0.09
12	0.48	0.34	0.75	0.63	0.16	0.07	0.24	0.44	0.24	1.46	2.24	0.14	0.25	1.58	0.81	0.06	0.04	0.00
$13+$	0.74	0.25	0.16	0.62	0.21	0.24	0.33	0.32	0.33	1.05	1.07	0.07	0.04	0.08	1.23	0.64	0.21	0.08
B. PER CENT BY WEIGHT																		
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.18	0.33	0.00	0.05	0.02	0.00	0.00	0.00
2	0.41	1.56	0.24	0.10	0.17	0.02	0.77	0.02	3.66	2.43	0.08	12.97	2.45	6.53	3.61	2.88	0.13	0.24
3	17.91	6.89	2.97	7.62	31.42	0.95	0.58	5.32	3.97	9.56	23.68	0.70	29.28	21.63	7.14	10.80	11.89	5.59
4	8.59	33.08	13.32	7.65	- 21.29	51.72	3.28	6.09	9.61	6.07	19.04	23.22	2.61	35.78	27.19	11.98	37.35	32.59
5	13.14	19.63	37.73	14.60	9.96	28.68	60.16	6.56	2.68	12.26	6.24	15.88	23.21	'4.34	31.59	26.72	14.27	26.72
6	14.42	12.29	15.95	32.57	8.24	4.50	19.09	53.38	4.57	3.73	8.65	8.71	8.99	14.33	4.89	30.83	22.39	11.70
7	19.13	11.48	9.04	14.85	17.24	3.95	3.80	18.12	45.60	0.74	1.31	10.91	3.63	4.06	12.76	5.15	10.04	15.94
8	10.89	6.11	8.69	8.49	4.68	6.44	3.33	3.20	22.13	39.83	0.92	6.12	5.37	2.98	2.89	6.24	1.62	4.61
9	6.47	4.72	4.76	6.61	2.61	1.32	4.84	2.15	1.86	14.45	20.54	5.35	4.00	1.15	1.37	1.86	1.23	1.10
10	2.94	1.47	3.10	2.92	2.71	0.82	1.50	1.71	1.65	2.66	10.98	13.71	6.09	0.64	1.94	1.32	0.37	0.97
11	3.09	1.34	2.23	1.96	0.62	0.73	1.23	1.63	2.99	3.62	0.60	1.50	13.56	3.33	0.86	0.41	0.08	0.27
12	0.91	0.83	1.57	1.19	0.41	0.20	0.59	1.09	0.47	2.70	5.47	0.37	0.70	4.89	2.21	0.15	0.09	0.00
13+	2.11	0.61	0.40	1.44	0.64	0.68	0.82	0.74	0.81	1.94	2.33	0.21	0.12	0.28	3.54	1.65	0.54	0.28

Table VI. Mean bieights at Age (kg) for 4 XH Hedock Stock Derived from Comerciai Statistics

AGE	1962	1963	1964	1965	1965	1967	1053	1959	1970	1971	1272	1073	1974	1975	1975	1977	1978	1979
1	(0.29)	(0.29)	(0.29)	(0.29)	(0.29)	(0.25)	0.29)	(0.29)	(0.20)	(0.20)	. 5	. 27	. 18	.23	. 23	.28	. 28	(0.29)
2	. 56	. 50	. 50	. 36	. 31	. 32	. 37	. 56	. 57	. 50	. 45	. 51	. 45	. 52	. 52	. 46	. 44	0.62
3	. 75	. 78	. 75	. 65	. 67	. 62	. 62	. 75	. 50	. 95	. 90	. 75	. 23	. 62	. 81	. 71	. 89	0.82
4	1.15	1.05	1.00	1.00	. 85	. 85	. 9	. 80	1.05	1.25	1.35	1.25	7.10	1.20	1.79	$i .22$	1.27	1.23
5	1.40	1.45	1.30	1.20	1.23	1.05	1.10	1.15	1.16	1.40	1.60	1.80	1.70	1.55	1.60	1.72	1.71	1.74
6	1.60	1.70	1.70	1.56	1.50	1.45	1.30	1.35	1.43	7.50	i. 75	2.00	2.20	2.25	2.10	2.20	2.15	2.27
7	2.20	1.85	1.95	1.95	1.80	1.80	1.70	1.50	1.65	1.75	1.90	2.20	2.50	2.85	2.95	2.94	2.65	2.72
8	2.12	2.35	2.04	2.20	2.18	2.05	2.05	2.00	1.95	1.95	2.10	2.30	2.60	3.00	3.50	3.30	3.27	3.10
9	1.90	2.25	2.50	2.30	2.50	2.36	2.30	2.45	2.20	2.30	2.30	2.50	2.80	3.20	3.60	3.57	3.61	3.83
10	2.40	2.20	2.40	2.63	2.50	2.70	2.52	2.50	2.82	2.65	2.80	2.70	2.95	3.80	3.80	3.77	3.77	4.16
11	2.86	2.70	2.42	2.50	2.75	2.70	3.00	2.70	2.80	3.25	3.00	3.30	3.20	3.50	4.10	3.69	3.79	4.97
12	2.70	3.20	3.00	2.70	2.60	2.89	2.90	3.30	2.85	3.00	3.70	3.40	3.80	3.70	4.00	3.94	3.76	5.23
13+	3.99	3.25	3.61	3.30	3.00	2.80	2.95	3.06	3.60	3.00	3.20	4.20	3.90	4.40	4.20	3.91	3.91	5.48

Weights in parenthesis are estimates, based on 1972-7978 teta.

Table VII.Stratified Mean Catch (in numbers) per standard tow of Haddock Caught during Canadian Summer Bottom Trawl Survey (strata 70-91, 95)

| Age | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | - | - | - | - | - | - | 0.007 | 0.352 | | |
| 1 | 4.872 | 0.099 | 4.404 | 4.976 | 8.153 | 5.518 | 4.617 | 5.278 | 5.391 | 1.636 |
| 2 | 3.921 | 9.263 | 0.195 | 19.053 | 17.942 | 3.466 | 5.272 | 20.246 | 4.660 | 11.528 |
| 3 | 1.148 | 3.933 | 2.732 | 0.479 | 21.220 | 4.383 | 3.394 | 13.077 | 9.544 | 6.605 |
| 4 | 2.167 | 1.729 | 1.160 | 2.466 | 0.768 | 6.013 | 3.405 | 3.868 | 2.870 | 7.919 |
| 5 | 0.881 | 2.489 | 0.761 | 1.131 | 3.578 | 0.394 | 6.175 | 5.557 | 1.400 | 4.009 |
| 6 | 1.982 | 1.131 | 0.825 | 0.423 | 0.775 | 1.417 | 0.467 | 3.456 | 2.615 | 1.605 |
| 7 | 5.073 | 1.746 | 0.543 | 0.569 | 0.438 | 0.510 | 0.553 | 0.466 | 0.988 | 2.524 |
| 8 | 0.704 | 4.424 | 0.808 | 0.429 | 0.505 | 0.287 | 0.101 | 0.558 | 0.025 | 0.949 |
| 9 | 0.293 | 0.504 | 1.106 | 0.287 | 0.268 | 0.136 | 0.026 | 0.121 | 0 | 0.208 |
| 10 | 0.258 | 0.078 | 0.037 | 0.371 | 0.202 | 0.043 | 0.033 | 0.095 | 0 | 0.026 |
| 11 | 0.069 | 0.035 | 0.005 | 0.018 | 0.287 | 0.246 | 0.008 | 0.008 | 0.035 | 0 |
| 12 | 0.017 | 0.053 | 0.004 | 0.008 | - | 0.153 | 0.284 | 0.216 | 0.130 | 0.099 |

```
Table Strata Breakdom of Man Catch (Numors ard kg) oor Stancind Tow
VIII of bajock caught during Cmed=an Sumer sobom Tram? Sumyy
```

STRATA		1970	1971	1972	1973	1974	1975	7076	1977	is73	1979
70-81	Num/Tow	27.69	39.71	20.77	45.17	97.92	35.32	37.85	145.24	40.00	38.92
	Kg/Tow	22.66	39.37	19.41	22.22	53.22	30.65	26.23	195.13	32.81	38.62
82-84	Num/Tow	0.82	1.01	0.47	0.14	1.71	1.13	8.57	3.56	2.39	13.23
	Kg/Tow	1.37	1.77	1.42	0.00	2.81	2.45	14.94	8.71	4.57	35.00
85, 90-92	Num/Tow	22.12	15.93	4.29	21.27	51.62	12.37	22.90	20.87	15.08	61.46
	$\mathrm{Kg} / \mathrm{TON}$	35.68	30.07	3.61	22.68	40.22	13.00	19.25	55.63	26.08	70.76
93-95	Num/Tow	6.03	4.89	4.71	4.22	10.28	3.70	3.67	16.41	19.39	4.43
	Kg/Tow	18.81	7.37	11.88	$(11.80)^{1}$	11.72	5.04	4.52	20.02	24.93	8.78

[^0]Table Strata Ranking of Haddock Catches (Numbers per Tow) from Canadian Summer Bottom Trawl Survey IX. $\quad 1$ - highest catch rate; 2 - second highest catch rate......5-fifth highest catch rate, etc.

STRATA	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
70								2		
71										
72						4			,	
73	2		2	4			2	3		5
74	5		4		4	2	4		2	2
75	3	4		5	3		1		4	
76		2			5	3				
77		5	5				5			
78										
79										
80	1	1	1	2	2	1		1	1	3
81	4		3	1	1			-	3	4
82										
83										
84										
85										
90		3		3		5	3	5	5	1
91								4		
92										
93										
94										
95										

$\underset{X}{\text { Table Stratffed Mean Catch (in numbers) per Standard Tow of Haddock caucht during U. S. Fall 3ottom Travil Survey (Strata 3l-42) }}$

AGE	1953*	1954*	1965	1505	1967	1968	1563	1370	1971	1972	973	1974	38	1976*	1977	1978*	1979*
0	79.39	0.21	0.44	0.70	0.08	2.05	10.22	0.10	12.59	8.19	1.82	4.10	0.58	11.71	12.05	6.08	
1	48.68	14.21	6.07	1.18	3.37	0.91	4.13	4.31	0.02	20.59	8.89	1.79	6.33	13.66	8.93 .	9.85	
2	15.67	10.96	26.10	1.51	1.25	2.64	0.77	2.14	5.76	0.18	12.31	5.25	3.42	4.43	18.13	11.93	
3	14.03	3.58	9.87	-22.31	2.44	1.09	2.16	0.57	1.50	4.31	0.15	5.39	4.51	1.82	0.63	14.45	
4	19.62	4.62	3.55	7.42	22.99	0.37	0.37	1.27	0.57	. 1.25	3.43	0.14	5.33	2.38	2.44	5.51	
5	7.64	7.37	3.18	2.23	4.04	8.47	0.03	0.20	0.08	0.32	0.83	1.54	0	3.65	3.49	2.43	
6	3.29	2.18	4.13	1.57	0.92	2.97	2.91	0.71	0.19	0.54	0.11	0.47	0.78	0	3.82	3.14	
7	1.52	0.63	1.25	2.28	0.63	0.33	1.22	2.43	0.11	0.34	-0.05	0.05	0.28	0.68	0.19	0.43	
8	1.21	0.75	0.30	0.84	0.20	0.42	0.13	0.8 ?	$2.5 i$	0.07	0.12	0.23	2.13	0.02	0.12	0	
3	0.33	0.34	0.40	0.55	0.14	0.5?	c. 33	0.25	0.03	1.17	0.24	0.03	0.07	0	0.14	0.12	
10	0.42	0	0	0	0	0	0.19	0.15	0.19	0.22	0.33	0.04	0.0 ?	0.02	0	0.07	
11	0.05	0	0	0	0	0	0.05	0.14	0.23	0.04	0.03	1.09	0.05	0	0.05	0	
12	0.08	0	0	0	0	0	0	c.c4	0	0.08	0	0.18	0.03	0.25	0.02	0	
13	0	0	0	0	0	0	0	0.02	0	0.09	0	0	0.07	0,03	0.02	0	
14	0	0	0	0	0	0	0	0	0	0	0	0.12	0.01	0	0.04	0.05	
TOTAL	191.92	44.39	55.29	40.61	35.53	19.75	27.57	13.26	25.63	37.12	29.24	20.47	31.28	38.69	53.14	54.18	83.16
Ages $2+$	53.95	30.43	48.78	38.71	32.11	15.75	2.5	8.83	13.07	8.24	12.5?	14.59	34.77	33.23	38.09	38.23	-
Ages $5+$	14.54	11.27	9.26	7.47	6.33	12.65	4.91	4.75	5.04	2.59	2.55	3.80	1.10	5.56	7.09	6.24	-
Total $\mathrm{Kg} /$ tow	67.91	31.43	30.59	33.49	27.11	19.10	12.79	14.53	17.05	17.10	18.94	17.21	18.29	27.84	48.73	53.59	53.43

* Strata 41 and 42 not sampled.

Table Stratified Mean Catch (In numbers) per Standard Tow of Haddock Caught During U. S. Fall Bottom Trawl Survey (Strata 31-34) XI.

AGE	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979
0	79.39	0.21	1.53	1.12	0.13	3.55	10.27	0.13	20.46	7.74	1.12	3.70	7.10	11.71	12.55	6.08	
1	48.68	14.21	2.46	1.83	6.29	1.72	4.66	4.88	0.06	34.03	3.85	2.77	4.42	13.66	16.16	9.85	
2	15.67	10.96	24.99	2.88	2.44	4.60	0.52	2.51	8.61	0.12	16.12	6.72	2.91	4.43	29.46	11.93	
3	14.03	3.58	10.67	39.85	3.89	1.62	2.17	0.41	2.30	5.32	0.16	7.54	1.96	1.92	13.33	14.45	
4	19.62	4.62	3.67	12.82	31.64	0.49	0.32	1.16	0.31	1.54	1.95	-	5.07	2.38	3.99	5.61	
5	7.64	7.37	2.95	4.08	4.57	12.83	0.04	0.25	1.07	0.18	0.35	0.87	-	3.66	4.27	2.43	
6	3.29	2.18	3.99	2.30	0.98	4.13	3.09	0.81	0.16	0.60	0.16	0.36	0.35	-	6.02	3.14	
7	1.52	0.63	1.24	3.80	1.07	0.53	1.42	3.09	0.11	0.17	0.16	0.13	0.23	0.58	0.14	0.43	
8	1.21	0.75	0.19	1.55	0.47	0.73	0.17	1.29	3.70	0.14	0.08	0.14	0.14	0.02	0.09	-	
9	0.33	0.34	0.37	0.90	0.17	0.71	0.62	0.34	1.54	1.83	0.30	0.07	0.12	-	0.10	0.12	
10	0.42	-	-	-	-	-	0.36	0.34	0.28	0.36	1.07	0.07	-	0.02	-	0.07	
11	0.05	-	-	-	-	-	0.10	0.16	0.41	-	0.12	2.02	0.03	-	0.09	-	
12	0.08	-	-	- -	-	-	-	0.06	-	0.20	-	0.27	0.05	0.25	-	-	
13	-	-	-	-	-	-	-	0.05	-	-	-	-	0.04	0.03	-	-	
14	-	-	-	-	-	-	-	-	-	-	-	0.12	-	-	0.10	0.05	
TOTAL	191.92	44.89	52.07	71.15	51.63	30.92	23.74	15.48	39.01	52.22	25.48	24.78	22.42	38.69	86.30	54.18	83.16
AGES 2+	63.86	30.43	48.07	68.18	45.23	25.64	8.81	10.47	18.49	10.46	20.47	18.31	10.90	13.29	57.59	38.23	-
AGES $5+$	14.54	11.27	8.74	12.63	7.26	18.93	5.80	6.39	7.27	3.48	2.24	4.05	0.96	4.56	10.81	6.24	-
TOTAL kg/ tow	67.91	31.43	31.82	58.65	34.91	28.53	14.59	17.66	24.10	24.45	17.27	20.74	13.86	21.94	75.29	53.59	53.43

Table Strata Breakdown of Moan Catch (Rumbars) par Standard Tow of Hadock Cadght During U. S. Fa: Gotton irawi Survay XII

Strata	1853	1964	1955	1966	1367	1968	1909	9070	1971	1072	1973	1976	10%	1975	1077	1978
31	210.8	25.5	23.8	23.5	57.8	23.2	19.0	10.3	27.7	46.6	18.0	27.5	$2 ? .3$	41.4	50.3	53.3
32	204.2	29.0	30.4	118.4	45.0	83.4	20.0	20.2	63.8	02.2	28.2	33.5	54.8	117.0	232.2	62.8
33	182.0	95.3	156.5	203.3	95.0	47.5	27.7	24.8	34.5	100.3	31.3	33.5	25.5	45.0	31.7	101.5
34	172.2	46.3	30.2	39.8	25.4	11.6	6.0	5.2	19.7	13.8	5.2	13.2	5.3	3.2	24.3	28.8
41	-	-	58.3	6.0	15.0	2.7	19.0	10.1	9.1	17.3	31.5	11.8	35.4	-	28.7	-
42	-	-	64.0	1.0	31.5	34.8	36.0	15.0	18.7	32.2	47.2	40.0	75.3	-	21.5	-

1. Not avaflable
2. Strata 41 and 42 not sampled.
3. Not calculated due to 10% trip limitation on U. S. vessels.

Table XIV. Correlation Matrix of Abundance Estimates of 4 X Haddock Stock for the 1970-78 Period

	Canadian Summer Research Survey	U.S. FALL	CH SURVEYS	Canadian O.T.
		Strata 31-34	Strata 31-42	CPUE
Canadian Summer Research Survey	1	0.95	0.94	0.95
U.S. Fall Research Surveys Strata 31-34	-	1	0.99	0.92
U.S. Fall Research Surveys Strata 31-42	-	-	1	0.90
Canadian O.T. CPUE	-	-	-	1

Table XV Abundance estimates from Canadian summer and U. S. fall bottom trawl surveys

YEAR	AGE 2+ NUMBERS PER TOW					AGE 5+ NUMBERS PER TOW				
	Smoothed Numbers/Tow		Normalized to 1970		Combined Survey Index	Smoothed Numbers/Tow		Normalized to 1970		Combined Survey Index
	U.S.	Canada	U.S.	Canada		U.S.	Canada	U.S.	Canada	
1963	47.15	-	3.75	-	3.75	12.91	-	1.99	-	1.99
1964	47.45	-	3.77	-	3.77	11.52	-	1.78	-	1.78
1965	48.89	-	3.88	-	3.88	10.88	-	1.68	-	1.68
1966	53.83	-	4.28	-	4.28	9.54	-	1.47	-	1.47
1967	46.35.	-	3.68	-	3.68	12.94	-	1.99	-	1.99
1968	26.56	-	2.11	-	2.11	10.66	-	1.64	-	1.64 N
1969	14.97	-	1.19	-	1.19	10.37	-	1.60	-	1.60
1970	12.59	20.95	1.00	1.00	1.00	6.49	9.87	1.00	1.00	1.00
1971	13.14	16.74	1.04	0.80	0.92	5.71	7.99	0.88	0.81	0.85
1972	16.47	19.64	1.31	0.94	1.13	4.33	5.97	0.67	0.61	0.64
1973	16.41	26.51	1.30	1.27	1.29	3.26	4.50	0.50	0.46	0.48
1974	16.56	29.42	1.32	1.40	1.36	2.42	4.16	0.37	0.42	0.40
1975	14.17	27.63	1.13	1.32	1.23	3.19	5.68	0.49	0.58	0.54
1976	27.26	28.20	2.17	1.35	1.76	5.44	7.16	0.84	0.73	0.79
1977	36.37	30.00	2.89	1.43	2.16	7.20	7.89	1.11	0.80	0.96
1978	47.91	35.24	3.81	1.68	2.75	8.53	8.47	1.31	0.86	1.09

Table XVI. Year-class strencth indices from Canadian sumeer and U. S. fall bottom traw surveys

Year-Class	U.S. Fall Surveys Smoothed Age 1 Number/Tow	Canadian Summer Surveys Smoothed Age 2 Number/Tow	U.S. Fall Survey Normalized to 1970	Canadian Summer Survey Normalized to 1970	Combined Index
1962	30.03	-	6.54	-	6.54
1963	30.50	-	6.65	-	6.65
1964	2.65	-	0.58	-	0.58
1965	1.50	-	0.33	-	0.33
1066	6.24	-	1.36	-	1.36
1967	1.97	-	0.43	-	0.43
1968	4.59	4.30	1.00	1.00	1.00
1969	8.22	7.22	1.79	1.68	1.74
1970	0.05	0.35	0.01	0.08	0.05
1971	25.34	20.40	5.52	4.75	5.14
1972	5.17	11.81	1.13	2.75	1.94
1973	2.71	5.18	0.59	1.20	0.90
1974	5.64	7.18	1.23	1.67	1.45
1975	17.36	13.41	3.78	3.12	3.45
1976	11.18	6.61	2.44	1.54	1.99
1977	13.56	10.03	2.95	2.33	2.64

Table XVII Population numbers $\left(x 10^{-3}\right)$ and. instantaneous fishing mortalities of cohort analysis.

FISHING MOFTALITY

9/1/80

110.0000 .0000 .0000 .000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.000 0.001 0.000 0.000 0.000 0.000 210.0030 .0390 .0020 .0000 .0160 .0030 .0520 .0020 .1000 .0410 .0040 .0860 .0180 .1070 .0320 .0240 .0020 .003 $310.0830 .0630 .0910 .0560 .1590 .0470 .0490 .2220 .1600 .2200 .2520 .0260 .1920 .1560 .1100 .100 \quad 0.0810 .071$ 410.0830 .1840 .1840 .2000 .2570 .2660 .1410 .5240 .2570 .2630 .4200 .2610 .0940 .3160 .2130 .1920 .3610 .227 $5: 0.1740 .2640 .3850 .2000 .5650 .4070 .3850 .2980 .1770 .4130 .2710 .461 \quad 0.3400 .2090 .390 \quad 0.2450 .3130 .325$ $6,0.2030 .2460 .4470 .4040 .2040 .3630 .3780 .461 \quad 0.1470 .2900 .3330 .5000 .4180 .3660 .2930 .609 \quad 0.3270 .325$ $710.4520 .2590 .3690 .5970 .5490 .0990 .4560 .4970 .3400 .0260 .0960 .595 \quad 0.335 \quad 0.368 \quad 0.502 \quad 0.422 .0 .415 \quad 0.309$ $810.3580 .2890 .4300 .4550 .5530 .2990 .0940 .5990 .5850 .4490 .0270 .581 \quad 0.590 \quad 0.5830 .4130 .4850 .2520 .283$ 910.3560 .2980 .5490 .4420 .3390 .2240 .3010 .0600 .3470 .7540 .2790 .1630 .8110 .2560 .5100 .5690 .1850 .227
1010.1700 .1310 .4610 .5450 .4980 .1310 .3730 .1320 .0290 .9691 .1930 .2320 .2550 .3050 .7921 .7320 .2470 .185
$\begin{array}{lllllllllllllllllllllllllllll}1 & 0.343 & 0.117 & 0.408 & 0.430 & 0.316 & 0.178 & 0.249 & 0.693 & 0.169 & 0.071 & 0.383 & 0.359 & 0.338 & 0.246 & 0.756 & 0.142 & 0.502 & 0.211\end{array}$
$10.1790 .15410 .2530 .268 \quad 0.2220 .1260 .1870 .2820 .2120 .2070 .101 \quad 0.3330 .260 \quad 0.226 \quad 0.2370 .330 \quad 0.1940 .173$ 0.0860 .0910 .0770 .0750 .2000 .231 0.270 $0.3010 .1660 .1960 .1170 .0930 .0970 .1220 .088 \quad 0.0970 .1170 .146$
\qquad

Table Parameters used in yield per recruit calculation and catch projections XVIII

Age	Partial Recruitment	$\begin{aligned} & \text { Weight } \mathrm{kg} . \\ & (\bar{x} \text { of 1977-79) } \end{aligned}$	Population Numbers $\left(\times 10^{-3}\right)$ in 1979	Catch Numbers $\begin{aligned} & (x 10-3) \\ & \text { in } 1979 \end{aligned}$
1	0.0001	0.283	12170	0
2	0.008	0.507	41214	97
3	0.220	0.807	27613	1729
4	0.700	1.240	36317	6723
5	1.000	1.723	15413	3897
6	1.000	2.207	5173	1308
7	0.950	2.770	6145	1487
8	0.870	$3.223{ }^{\circ}$	1681	377
9	0.700	3.590	394	73
10	0.570	3.770	384	59
11	0.650	3.740	81	14
12	0.540	3.850	7	1

Fig. I. ICNAF Division $4 \times$ Haddock--reported nominal catches (t $\times 10^{-3}$) 1931-1979.

Fig.2. Reported Catch $\left(t \times 10^{-3}\right)$ of $4 \times$ Haddock by Canadian fishery.

Fig. 3. Catch (t $\times 10^{-3}$) of $4 \times$ Haddock by canadian Otter Trawl Floet.

Figure 4 - 30 -
Figure 4. Stratification schemes used for Canadian summer and U.S.A. fall bottom trawl surveys.

Figure 5 Catch per unit effort indices for $4 x$ lladdock stock.

B

Figure 6. Relationship between abundance estimates from Canadian sunmer and U.S. fall Bottom trawl surveys.

Figure 7. Relationships among numbers per tow (smoothed) of ages 1,2,3,and 4 for Canadian summer bottom trawl survey.

Figure 8. Relationship among numbers per tow (smoothed) of age $0,1,2$, and 3 for U.S. fall bottom trawl survey.

Figure 9. Relationship between chosen yeareclass strength indices from Canadian and U.S. research surveys.

Figure 10. Relationships used to adjust recruited population in cohort analysis.

A Relationship between cohort analysis age 1 numbers $\left(\times 10^{-3}\right)$ and combined research survey year-class strengtih inder. Hinbers indicate vear-ciass.

B. Relationship between cohort analysis age $3+$ numbers ($\times 10^{-3}$) in year $t+1$ and conbined research survey index for ages $2+$ in year t.

Figure 11. Relationships used to adjust partiaily recruited population in cohort analysis.

Figure 12. Final partial recruitment pattern used in yield per recruit calculations and catch projections.

Figure 13. Yield per recruit curve for presently derived partial recruitment pattern.

[^0]: 1 Interpolated between 1972 and 1974.

