Stock Assessment of American Plaice
(Hippoglossoides platessoides F.) in ICNAF Division 4T
by
Kaija Metuzals
Marine Fish Division
Resource Branch
Fisheries Management
Bedford Institute of Oceanography Dartmouth, Nova Scotia

INTRODUCTION

Catch Statistics

The American plaice fishery in the Gulf of St. Lawrence has maintained an almost constant level of landings since the early 1960's (Table 1). Historically, landings were minimal, but with the introduction of the otter-trawl in 1947 and the Danish seine in 1958 (Powles 1969) landings increased markedly and have fluctuated around 9,000 t annually (Figure 1).

The fishing season ranges from April through until December with peak landings during the summer months (Table 2). Of the small vessels in the Gulf fishing groundfish, Otter trawls and Danish (or Scottish) seiners are most important in catching plaice (Table 3).

The fishery concentrates on two groups in the Magdalen Shallows, one near the Miscou Islands and the other near Cape Breton (Powles 1964,1965). For management purposes, the groups are combined and will be assessed as a unit stock in this paper.

Unspecified flounder catch for 1978 is not included in the total provisional catch for plaice.

Catch Composition

Two age-length keys were obtained from the twelve commercial samples. No noticeable difference was observed in the numbers-at-age taken in 1978 by the two major gears, OTB1 (Side 0tter Trawl) and SDN (Danish Seine) and thus the females were combined for one age-length key and the males for another. It is evident from the commercial samples that 90% of the landings are composed of female plaice, an increase of 10% over last year. A high percentage of females is quite common in plaice landings (Pitt, pers. comm.). This percentage was then used to apportion the total landings by sex, and numbers-at-age of males and females landed were obtained.

Discards estimates in the Gulf were first made by Powles (1960) and Jean (1963) who calculated discards of plaice as high as 60% by weight. In a study by McLaren Atlantic Limited in 1976, total discards were estimated to be as high as 40% by weight. The discard estimates per age obtained by McLaren were used in 1977 by Schweigert (1978), Gray, 1978 (pers. comm.) and will again be used in this paper.

Approximate \% Discards in Number for 1976

Age	3	4	5	6	7	8	9	10	11	12	13	14
Males	100	100	97	91	81	67	31	17	9	4	1	0
Females	100	100	95	86	69	27	9	2	0	0	0	0

The total number of fish caught (including discards) at each age in 1978 was estimated the following way.

If 95% of the number of female plaice were discarded at age 5 , then the landings only represent 5% of the actual catch. Therefore, in order to obtain the total estimated catch in numbers of age 5 , catch $=$ landings $\times 100 \% \div 5 \%$.

Discards were estimated for age 6-10 for females, and for 6-13 for males. The adjusted numbers-at-age were combined to give a total numbers-at-age for 1978. Numbers for 1964-1977 were taken from Schweigert (1978) and Gray (1978).

Effort

There are numerous small boats fishing for plaice in the Gulf. Most of the time, the effort is not at all directed for plaice, but cod. Otter trawlers usually direct their effort on cod; a large by-catch of plaice is unavoidable.

Smaller Danish and Scottish seiners usually fish for flounders, but do not direct their effort on any one species. It is therefore difficult to calculate effort specifically directed for plaice. Another difficulty in estimating directed effort on plaice, is the fact that around 1973, the great increase in the snow crab traps has forced the Danish seiners from fishing in the usual areas. The Danish seiners from Cheticamp, for instance, must now fish near the Magdalen Islands in the early summer in order to avoid the many crab traps, but by the end of November they are back on the 'traditional' grounds.

Effort indices were examined in detail for 1972-1978 for various gears (Table 4). Previous effort data is only available for combined flatfish landings in the ICNAF Statistical Bulletins.

The effort in hours fished was calculated separately for the most important gears, OTB1-2 (Tonnage class 25-49.9) and 3 (Tonnage class 50-149.9), as well as SDN-2 and 3 (Figure 2). These gears collectively
represent at most 65% and at least 40% of the total plaice catch (Figure 3) for the years 1972-1978.

Since plaice is mostly a by-catch in the cod fishery, the Chikuni estimates of effort (Chikuni 1976) were also generated for each gear (Figure 4). Total plaice catch was also divided by the (CPUE) in hours fished for cod, to obtain an estimate of total effective effort, since cod is the preferred species for otter trawls, and effort is almost solely directed towards cod. An index combining OTB1-2 and 3 was well as SDN 2 and 3 (CPUE) was also calculated to represent the greatest percentage of plaice caught (Table 5).

Most of the commercial CPUE indices indicate a constant CPUE, with a slight increase in 1977 and 1978.

METHODS

Cohort Analysis

A number of different estimates for the natural mortality of plaice are presently available. Beverton and Holt (1957) arrived at a combined (male and female) estimate of 0.1 for North Sea Plaice (Pleuronectes platessa). This was obtained from the loss rates, of the European trans-wartime year-classes. Beverton (1964) in a later analysis suggested that the estimates should be .08 for male and 0.12 for female. For ages $5-15$ it can be shown that the instantaneous mortality rate calculated by the curve is .097 per year (Cushing 1975). Powles (1969) estimated 0.13 for male and 0.17 for female plaice in the Gulf of St. Lawrence. Pitt (1973) calculated natural mortality using the method employed by Halliday (1971) and arrived at higher mortalities for plaice on the Grand Bank. Until further analyses are made on the Gulf plaice, the natural mortality data obtained by Powles (1969) have been averaged and 0.15 is used in this paper. No reasonable estimates of total mortality were obtained when Paloheimo's linear formula was used (Paloheimo 1961).

Cohort analysis (Pope 1972) was utilized to determine the numbers-at-age (Table 7); these were obtained by combining the catch-at-age (Table 8) for male and female plaice combined, and using the value of 0.15 for natural mortality. The resultant fishing mortalities are on Table 9 showing very low values.

In order to estimate fishing mortalities, a number of regressions of effort (DSN-2 and 3, OTB 1-2 and 3, and combined CPUE index) versus the predicted weighted F's of the cohort were made. Only the effort index, combining effort of DSN-2 and 3, and OTB 1-2 and 3 showed a linear relationship and thus the terminal F^{\prime} s were adjusted to give a better predictive fit (Figure 5).

The relationship between the 6+ biomass of the VPA and CPUE index of the combined efforts resulted in an R^{2} of 91.58 (Figure 6).

The regression of recruits (6 and 7 year olds) of the VPA versus the 6 and 7 year olds of the research CPUE (Table 6) gave a good correlation of $R^{2}=81.99$ (Figure 7).

Yield Per Recruit and Projections

The final F values generated by the VPA are very low. The partial recruitment pattern from the resultant analysis is the following:
Partial Recruitment at Age for Males and Females Combined
Partial recruitment . 15
Age

Using this partial recruitment and the following weights-at-age, yield per recruit was calculated (Table 10). The F0.1 was
0.175 . The 1978 fishing mortality was lower than the $\mathrm{F}_{0.1}$.

At an $F_{0.1}$ of 0.175 the yield was 0.173 kg per recruit.
The weights-at-age were obtained from different sources. Weights for ages 1-5 were estimated from values of the research cruise (1978) on the Scotian Shelf and weights for ages 6-16+ were obtained from commercial samples in the Gulf.

Females

Age	1	2	3	4	5	6	7	8	9	10
Wt(kg)	-	.03	.06	.10	.21	.25	.27	.31	.40	.47
Age	11	12	13	14	15	16	17	18	19	20
Wt(kg)	.52	.61	.67	.88	.95	.95	.88	1.25	1.97	1.45
Age	21	22	23	24	25	26	$27+$			
Wt(kg)	1.67	-	1.89	1.72	-	2.94	-			

Males

Age	1	2	3	4	5	6	7	8	9	10
Wt (kg)	-	0.03	0.6	.11	.13	.21	.24	.23	.31	.27

Age	11	12	13	14	$15+$
Wt (kg)	.33	.35	.40	.46	.66

The partial recruitment and weights-at-age of 1978 were used to project to 1980 with a catch of 10,000 tonnes and recruitment of the geometric mean of the recruits at ages 6 from 1964 to 1978 inclusive from the VPA.

	Projection			Fully Recruited Yop.	
Year	Numbers	Biomass	Numbers	Biomass	F
1978	304565	93943	29606	9646.02	0.1960
1979	293333	95565	26226	10000.08	0.1962
1980	286788	95675	25675	10000.08	0.1857

SUMMARY

From the analysis presented it appears that the fishing mortalities are very low and the stock seems to be slightly increasing. The cohort analysis is based on a catch matrix derived from very limited sampling and only one year's estimate of discards. Detailed CPUE indices are only available from 1972-1978 which is a very short range to look at the stock from a historical point of view. Fishing effort may have been greater than $F_{0.1}$ for past years since effort is mainly directed for cod; and no discards are recorded.

The yield per recruit and projected biomass from this analysis indicate, that at the present level of fishing, the stock can continue to support at least $10,000 \mathrm{t}$ per year.

ACKNOWLEDGEMENTS

My thanks to Robert O'Boyle, Dave Gray, Lynn Cleary and Tom Pitt whose constructive criticisms greatly improved my approach. Ms. Gerry Young assisted in the preparation of the many effort indices. Her help is gratefully acknowledged.

References

Beverton, R.J. and S.J. Holt 1957. On the dynamics of exploited fish populations. Fishery Invest., London Ser. 2, 19:533 pp.

Beverton, R.J. MS 1964. Differential catchability of male and female plaice in the North Sea and its effect on estimates of stock abundance Rapp. ICES 155:103-12

Chikuni, S. 1975. Problems in monitoring abundance in the multispecies and multi-gear groundfish fisheries in the Bering Sea. (FAO) Fish Tech. Pap., (155): 23-56.

Cushing, D. 1975. The natural mortality of the plaice. Int. Cons. Expl. Mer. $36(2): 150-157$.

Halliday, R.G. 1971. Recent events in the haddock fishery of the Eastern Scotian Shelf. ICNAF Res. Bull. (8):49-58.

Jean, Y. 1963. Discards of fish at sea by northern New Brunswick draggers. J. Fish. Res. Bd. Canada $20(2): 497-524$.

MacLaren Atlantic Ltd. MS 1977. Analysis of discards in the Gulf of St. Lawrence plaice fishery.

Paloheimo, J.E. 1961. Studies on estimation of mortalities. I. Comparison of a method described by Beverton and Holt and a new linear formula. J. Fish. Res. Board Can. 18:645-662.

Pitt, T. 1973. Assessment of American Plaice stocks on the Grand Bank, ICNAF Divisions 3L and 3N. ICNAF Res. Bull. (10):63-77.

Pope, J. 1972. An investigation of the accuracy of virtual population analysis. ICNAF Res. Bull. 9:65-74.

Powles, P.M. MS 1960. Plaice studies Fish. Res. Bd. Canada Biol. Sta. St. Andrews, N.B.

Powles, P.M. MS 1964. Some factors affecting stocks and landings of American plaice (Hippoglossoides platessoides F.) in the southwestern Gulf of St. Lawrence. McGill University.

Powles, P.M. 1965. Life history and ecology of American plaice (Hippoglossoides platessoides F_{C}) in the Magdalen Shallows. J. Fish. Res. Bd. Canada 22:565-598.

Powles, P.M. 1969. Size changes, mortality and equilibrium yields in an exploited stock of American plaice (Hippoglossoides platessoides.) J. Fish. Res. Bd. Canada $26(5)$ 1205-1227.

Schweigert, J. MS 1978. Simulation and assessment of the dynamics of American plaice stocks in the Gulf of St. Lawrence (4T). CAFSAC Res. Doc. 78/14.

Table 1. Updated statistics for 4T Plaice stocks.

Year	Landings (t)	Estimated Discards (t)	Total Catch (t)	Proportion of Discards to Catch
1964	$6916^{\text {1) }}$	923	7836	. 134
1965	8778	1623	10385	. 185
1966	9362	2405	11780	. 257
1967	7534	1813	9351	. 241
1968	6921	2622	9568	. 379
1969	6584	1614	8192	. 245
1970	7582	1598	9201	. 211
1971	7627	1876	9513	. 246
1972	8294	884	9178	. 107
1973	6905	899	7804	. 130
1974	8485	454	8939	. 054
1975	8443	1813	10256	. 215
1976	11193	472	11665	. 042
1977	9230^{2}	1598	10828	. 173
1978	7414 ${ }^{3)}$	1444 ${ }^{4}$	8858	(.195)
		Ave: 1471 Mean: 1444	Ave. . 187	

1) 1964-76

Schweigert, J. CAFSAC Res. Doc. 1978 incorporating data from MacLaren Atlantic Discard Study (MS 1976).
2) ICNAF Statistical Bulletin 1977.
3) Provisional Catch ICNAF
4) Estimated number using weighted mean of discards 1964-1978.

Table 2. $4 T$ Plaice Seasonal Landings in Metric tonnes.

	Jan	Feb	Nar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	NK	TOTAL
1972														
Can-MQ	18	8	-	207	1630	1783	1379	780	625	451	739	251	-	7871
Can-N	36	1	-	192	166	1	-	-	-	-	2	21	-	419
FRA-SP	-	-	-	4	-	-	-	-	-	-	-	-	-	4
TOTAL	54	9	-	403	1796	1784	1379	780	625	451	741	272	-	8294

Table 3. Landings by Gear 4T Plaice in metric tonnes.

	GEAR	OTB1				OTB2					SUN SSC					GILL- NETS 1			Others ${ }^{2}$					
YEAR	TONNAGE CLASS	1	2	3	4	1	2	3	4	5	1	2	3	2	3	1	2	3	1	2	3	4	5	TOTN. LANDINGS
1972		451	662	2461	701	-	-	59	149	652	-	1358	440	85	432	-	10	7	501	42	15	-	-	8025
1973		901	485	1.097	604	203	-	26	79	163	-	970	951	275	547	233	3	5	306	4	30	18	-	6900
1974		766	1099	1213	478	-	111	115	149	200	341	874	1495	141	810	170	60	20	363	1	69	-	-	8475
1975		831	818	1399	164	-	72	189	43	491	232	836	1616	23	1171.	273	18	26	227	9	101	-	-	. 8559
1976		866	651	954	1627	91	13	156	75	2524	238	881	1670	17	570	223	2	-	424	-	48	-	140	11175
1977		1330	1129	1758	44	16	26	311	7	13	325	1029	2240	-	410	237	-	5	294	3	49	-	-	9226
1978		992	26	1236	58	42	69	642	1	-	445	1079	1691	23	160	289	-	51	579	-	33	-	-	7414^{3}

${ }^{1}$ GILLL-NETS includes: set and drift nets.
${ }^{2}$ OHIERS includes: Midwater Otter trawls, Botteil Otier trawls, longliners, shrimp trawls, pair-seines, boat dredges, and finct gear.
3 Provisional statistics ICNAF

Table 4. 4T Plaice total commercial catch (t) and total l) effort for all months ${ }^{2}$)

Year	Catch (t)	CPUE	Effective Effort (total hrs. fished)
OTB 1-2			
1972	270	. 008	33,750
1973	485	. 011	44,091
1974	1097	. 029	37,828
1975	818	. 020	40,900
1976	652	. 025	26,080
1977	1115	. 039	28,590
1978	344	. 040	8,600
0TB1-3			
1972	2459	. 038	64,711
1973	1066	. 030	35,533
1974	1213	. 056	21,661
1975	1399	. 044	34,975
1976	937	. 063	14,873
1977	1688	. 094	17,957
1978	1100	. 170	6,471
DSN-2			
1972	1327	. 144	9,215
1973	862	. 151	5,709
1974	874	. 176	4,966
1975	836	. 217	3,853
1976	881	. 243	3,626
1977	1029	. 192	5,359
1978	1079	. 230	4,691
DSN-3			
1972	440	. 140	3,143
1973	951	. 135	7,044
1974	1495	. 155	9,645
1975	1616	. 168	9,619
1976	1670	. 177	9,435
1977	2240	. 211	10,616
1978	1628	. 163	9,988

1 Total effort here is calculated as actual number of hours fished, that is, total hours fished for a plaice catch whether directed or not.

2 ICNAF Statistical Bulletins 1972-1977 and ICNAF provisional statistics for 1978.

Table 5. Derivation of effort index.

	0TB1-2		OTB1-3		SDN-2		SDN-3			Total Catch all gears	Index*	Effort**
	Catch t	CPUE	Total Catch (t) 0TB1-2 0TB1-3 SDN-2 SDN-3									
1972	270	. 008	2459	. 038	1327	. 144	440	. 140	4496	8294	0.620	13,381
1973	485	. 011	1066	. 030	862	. 151	951	. 135	3364	6905	0.633	10,918
1974	1097	. 029	1213	. 056	874	. 176	1495	. 155	4679	8485	0.952	8,916
1975	818	. 020	1399	. 044	836	. 217	1616	. 168	4669	8443	0.867	9,547
1976	652	. 025	937	. 063	881	. 243	1670	. 177	4140	11193	1.066	10,518
1977	1152	. 039	1688	. 094	1029	. 192	2240	. 211	6109	9230	1.305	7,075
1978	344	. 040	1100	. 170	1079	. 230	1628	. 163	4151	7414	1.476	5,024
	E. CPUE	. 025		. 070		. 193		. 164				

$*_{\text {Index }}=((\text { CPUE/AVE }) \times \text { CATCH })_{\text {OTB1-2 }}+((\text { CPUE/AVE }) \times \text { CATCH })_{0 T B 1-3}+((\text { CPUE/AVE }) \times \text { CATCH })_{\text {SDN }-2}+((\text { CPUE/AVE }) \times \text { CATCH })_{\text {SDN }} 3$ Catch (0TB1-2 + OTB1-3 + SDN-2 + SDN-3)
** Effort $=$ Total Catch all gears

Table 6. Numbers of Plaice per tow* in research cruises (1968-1978)

| | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | .00 | .00 | 0.13 | 0.19 | .22 | .14 | .07 | .03 | 0.0 | 0.05 | 0.0 |
| 2 | 2.35 | 1.02 | 3.46 | 3.82 | 2.84 | 2.90 | 5.51 | 1.20 | 0.34 | 1.41 | 0.18 |
| 3 | 12.99 | 7.03 | 9.22 | 11.67 | 7.37 | 13.22 | 20.12 | 9.25 | 14.09 | 30.04 | 2.75 |
| 4 | 36.20 | 26.46 | 15.52 | 19.10 | 15.64 | 18.15 | 42.92 | 37.32 | 74.80 | 99.42 | 28.90 |
| 5 | 40.57 | 37.78 | 24.73 | 19.83 | 14.01 | 19.75 | 34.96 | 70.14 | 141.61 | 157.33 | 39.53 |
| 6 | 34.41 | 34.56 | 28.14 | 21.42 | 14.31 | 15.10 | 26.73 | 33.97 | 115.89 | 107.46 | 44.29 |
| 7 | 29.12 | 30.93 | 27.82 | 22.38 | 15.93 | 12.50 | 16.86 | 25.87 | 54.68 | 78.99 | 45.54 |
| 8 | 17.50 | 18.97 | 17.43 | 13.80 | 10.91 | 14.71 | 12.73 | 15.98 | 24.39 | 35.15 | 29.19 |
| 9 | 6.14 | 6.78 | 4.94 | 4.11 | 4.92 | 11.75 | 14.81 | 12.38 | 22.04 | 13.14 | 11.21 |
| 10 | 4.34 | 5.02 | 3.65 | 2.70 | 2.96 | 5.32 | 7.88 | 8.10 | 14.82 | 7.77 | 8.01 |
| 11 | 4.05 | 4.76 | 3.89 | 2.41 | 1.44 | 2.56 | 3.65 | 6.31 | 10.90 | 4.73 | 4.61 |
| 12 | 2.81 | 3.52 | 3.3 | 1.59 | 1.57 | 1.86 | 1.51 | 1.92 | 6.92 | 3.10 | 2.64 |
| 13 | 1.35 | 1.63 | 1.6 | 0.99 | .74 | 1.36 | 1.15 | 1.11 | 4.47 | 1.9 | 2.98 |
| 14 | .99 | 1.52 | 1.23 | .88 | .59 | 1.59 | 1.78 | 1.14 | 2.16 | 1.09 | 1.36 |
| 15 | .59 | .95 | .96 | .46 | .32 | .71 | .96 | .83 | 1.18 | 0.6 | 0.87 |
| $16+$ | 1.35 | 2.31 | 1.61 | 1.24 | .51 | 2.40 | 1.40 | 3.08 | 2.41 | .92 | 1.59 |

Total
$\begin{array}{llllllllllll}194.76 & 183.24 & 147.63 & 126.59 & 94.28 & 124.02 & 193.04 & 228.63 & 490.70 & 543.11 & 223.64\end{array}$

Table 7.

Table 8. Catch at age 4T plaice.

| Year 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Age 6 | 6219 | 8243 | 9350 | 7422 | 7594 | 6502 | 2011 | 2189 | 1974 | 1813 | 2004 | 2205 | 5557 | 7026 | 8392 |
| 7 | 7010 | 9291 | 10539 | 8366 | 8560 | 7329 | 4371 | 4757 | 4291 | 3940 | 4355 | 4791 | 6716 | 10036 | 5586 |
| 8 | 4431 | 5872 | 6661 | 5287 | 5410 | 4632 | 3425 | 3727 | 3362 | 3087 | 3412 | 3754 | 4783 | 5000 | 5678 |
| 9 | 2798 | 3708 | 4206 | 3339 | 3416 | 2925 | 2994 | 3258 | 2939 | 2698 | 2983 | 3282 | 2750 | 2796 | 2676 |
| 10 | 2338 | 3099 | 3515 | 2790 | 2855 | 2444 | 3952 | 4301 | 3879 | 3562 | 3937 | 4332 | 2713 | 2212 | 2182 |
| 11 | 1644 | 2179 | 2472 | 1962 | 2007 | 1719 | 2629 | 2861 | 2581 | 2370 | 2619 | 2882 | 2117 | 1587 | 1740 |
| 12 | 1793 | 2376 | 2695 | 2139 | 2189 | 1874 | 1508 | 1642 | 1481 | 1360 | 1503 | 1653 | 2636 | 1782 | 1024 |
| 13 | 956 | 1267 | 1438 | 1141 | 1168 | 1000 | 975 | 1061 | 957 | 879 | 972 | 1069 | 1403 | 869 | 1053 |
| 14 | 528 | 700 | 794 | 630 | 645 | 552 | 749 | 815 | 735 | 675 | 746 | 821 | 781 | 435 | 385 |
| 15 | 305 | 404 | 458 | 363 | 372 | 318 | 618 | 673 | 607 | 557 | 616 | 678 | 420 | 210 | 374 |
| 16 | 304 | 402 | 456 | 362 | 371 | 317 | 479 | 522 | 471 | 432 | 478 | 525 | 431 | 117 | 113 |
| 17 | 165 | 218 | 248 | 197 | 201 | 172 | 726 | 790 | 712 | 654 | 723 | 795 | 374 | 73 | 77 |
| 18 | 115 | 152 | 173 | 137 | 140 | 120 | 57 | 62 | 56 | 51 | 57 | 62 | 233 | 101 | 83 |
| 19 | 113 | 150 | 170 | 135 | 138 | 118 | 7 | 7 | 7 | 6 | 7 | 7 | 274 | 53 | 44 |
| 20 | 90 | 119 | 135 | 107 | 110 | 94 | 5 | 5 | 5 | 5 | 5 | 6 | 187 | 62 | 27 |
| $21+$ | 42 | 55 | 63 | 50 | 51 | 44 | 12 | 13 | 12 | 11 | 12 | 13 | 111 | 11 | 171 |

Table 9.

						Fi. I	0								679
	1964	196	1966	1967	1968	1969	1.970	$19 \% 1$	19%	1973	1.974	19%	19%	1.97	78
\cdots	10.100	$0+144$	0.16%	0.146	0.161	0.125	0.041	0.03%	0.04%	0.03%	0.038	0.0.1.	0.063	0.103	0
\%	10.15%	0.290	0.261	0.210	0.235	0.218	0.110	0.123	0.094	0.118	0.106	0.114	0.159	0.147	0.10%
¢	10.143	0.183	0.299	0.191	$0 \cdot 1.93$	O. 182	0.141	0.122	0.114	0.086	0.135	$0 \cdot 118$	0.151	0.161	0.110
9	10.127	0.169	0.183	0.162	0.172	0.144	0.162	0.184	0.127	0.119	0.106	0.176	0.113	0.111%	0.116
10	10.160	0.192	0.227	0.1.69	0.193	0.170	0.27%	0.348	0.328	0.211	0.242	0.210	0.206	0.119	0.119
11	10.163	$0 \cdot 204$	0.218	$0 \cdot 100$	0.166	0.161	0.263	0.313	0.343	0, 322	0.224	0.265	0.142	0.168	0.12
12	10.352	0.362	0, 394	0.282	0.296	0.219	0.196	0.247	0.20	0.280	0.328	0.204	0.390	0.162	0.14%
4%	10.390	0.39	0.36	$0 \cdot 2 \%$	0.231	O.202	0.160	O. 1%	0.210	0.218	$0 . उ 2 \mathrm{~F}$	0.387	0.2w?	0. 202	\%
14	10.29	0.337	O. 4 9\%	0.243	0.29\%	0.1 ± 4	0.21%	0.186	0.190	0.213	0.27%	$0 \cdot 4 \%$	0, F F	0.10%	0.120
1.5	10.176	0.25	0.368	0.356	O.208	0.160	$0 \cdot 24$	0.291	0.193	0.204	0.290	0.407	0.445	0.236	$0.12 \times$
$1 . \%$	$10.2 \bigcirc \%$	0.349	O.491	0.616	0.640	0.261	0.362	0.317	0.321	0.194	0.25	0.406	0.464	0.200	$0 \cdot 180$
$1:$	10.166	$0 \cdot 23$	0.364	0.392	0.672	0.66%	1.670	1. 76	0.894	0.946	0.636	0.626	0.5184	0.123	0.18 F
1.6	10.15	0.216	0, \%\%	0.318	O.49\%	0.762	0.446	0.484	0.63	0.131	0.173	0.074	0.574	0,260	0.190
i.	10.224	0.29%	0.8%	0. 348	0. 5%	0.760	O.081	0.097	0.084	0.108	0.022	0.031	0.494	0.29%	$0 \cdot 1 w$
0	10.276	0, 36	0.446	0.40%	O. 49%	0.974	0.099	0.087	$0.0 \% 7$	0.076	0.120	0.02?	1.99\%	0.184	0.16 T
$\therefore 1$	10.193	0.	0.314	O.2\%	0.320	0.5%	0.279	0.803	0.237	O. 2 .	0.24%	0.306	0.66%	0.601	. 019
WF	10.14%	0.196	0.29\%	0.1.98	O.200	0.171	0.14%	0.15	0.139	0.123	0.131	0.142	0.141	0.134	0.111

WF is the weighted average of the fishing mortalities :here the weighing is on the basis of population numbers.
17.

Table 10:
YELA FER REORUT

	$\begin{aligned} & \text { FTSHTNG } \\ & \text { MORTALITY } \end{aligned}$	CATCH (NUMBER)	$\begin{array}{r} \text { YELZ } \\ (\mathrm{KQ}) \end{array}$	AVG: WETGHT (kO)	YELX FER UNTT EFFORT
\%o.1....	0.17%	0.39109	0.178	0.442	1.000
	0.600	0.56927	0.194	0.329	0.392
	1.000	0.69721	0.198	0.285	0.201
	1. 800	0.75175	0.201	0.267	0.136
	2.000	0.78644	0.203	0.258	0.103
	2.500	0.81091	0.204	0.252	0.088
	3,000	0.82929	0.205	0.248	0.06%
	3.500	0.843%	0.207	0.245	0.060
	4.000	0.85543	0.208	0.243	0.053
	4.500	0.86518	0.209	0.241	0.047
	5.000	0.87347	0.210	0.240	0.042
	5.800	0.88064	0.210	0.239	0.059
	6.000	0.88693	0.211	0.238	0.036
	6.500	0.89250	0.212	0.237	0.033
	7.000	0.89750	0.213	0.237	0.031
	7.500	0.90201	0.213	0.236	0.029
	8.000	0.90611	0.214	0.236	0.027
	8.500	0.90987	0.214	0.235	0.025
	9.000	0.91333	0.214	0.256	0.024
	9.500	0.71652	0.215	0.234	0.028
	10.000	0.91749	0.215	0.234	0.022

Figure 1. American Plaice landings in the Gulf of St. Lawrence 1935-1978.

Figure 2. CPUE of the major gears, DSN 2 and 3, OTB1-2 and OTB1-3 where total effort was determined in hours fished during 1972-1978.

Figure 3. Cumulative catch distribution by gear

Figure 4. CPUE for various gears fishing American Plaice during 1972-78. CPUE Index combines OTB1-2 and 3 and SON-2 and 3.

Fig. 5. Relationship between weighted F (by population) of the VPA the Effort Index ($R^{2}=84.71$), combining DSN-2-3 OTB1-2, 3 CPUE.
23.

Fig. 6. Relationship between mature biomass of the VPA and CPUE index ($\mathrm{R}^{2}=91.58$).
24.

Fig. 7. Regression of population numbers ($6+7 \mathrm{yr}$ olds) of VPA and research CPUE ($6+7 \mathrm{yr}$ olds) $\mathrm{R}^{2}=81.99$.

