Canadian Atlantic Fisheries
Scientific Advisory Committee

CAFSAC Res. Doc. 79/47

Finfish by-catch in the Scotian Shelf shrimp fishery

bу

Serge S. M. Labonté
Invertebrates and Marine Plants Division
Department of Fisheries and Oceans
Biological Station
St. Andrews, N.B. EOG 2XO

SUMMARY

The shrimp fishery in the Scotian Shelf occurs mainly southeast of Cape Breton, and did not start until 1977. Few data are available concerning finfish by-catch from this shrimp fishery. However, a shrimp survey was carried out on board a commercial side trawler, the MICHEL PIERRE, southeast of Cape Breton from September 21 to October 3, 1978. Information presented in this paper was obtained from this survey and from the commercial

activities during 1977. The abundance and distribution of shrimp and finfish by-catch are presented. The proportion of by-catch to the total catch and associated CPUE are discussed.

METHODS

1978 survey

Areas southeast of Cape Breton greater than 180 m were arbitrarily divided into 20 strata based on depth intervals of approximately 40 m and on geographical features of the bottom (Fig. 1).

A total of 59 station positions were generated for all the strata, using a random number table. The number of stations per stratum was made proportional to the area of the stratum. Station positions are illustrated in Fig. 1, with details given in Table 1. Thirty-nine stations were sampled; strata AO4 and MO1 through MO5 were not sampled due to lack of time and bad weather conditions.

The gear used was a "Yankee 36" shrimp bottom trawl with 38-mm mesh size (stretched). At each station, one 30-min tow was made at a speed of 2.5-3.0 knots. We trawled only during daylight hours to avoid bias introduced by the diurnal migration of shrimp (Barr 1970; Carlsson et al. 1978) in estimating the shrimp biomass. For each station, the weights of shrimp and of each by-catch species were recorded.

Biomass estimates for shrimp and main finfish were calculated for all strata by the "swept area" method. The total biomass (B) for the area surveyed is given by $B = \angle B_i$ and:

$$B_{i} = A_{i} \frac{\underline{\xi}(Y_{ij}/b_{ij})}{n_{i}}$$

where: B_i = biomass (kg) in stratum i,

A_i = surface area (square nautical mile) in stratum i,

 $Y_{i,j}$ = catch (kg) per tow j in stratum i,

b_{ii} = area swept (square nautical mile) per tow j in stratum i,

 $n_i = no.$ of tow in stratum i.

Standard errors were calculated in using Mackett's method (1973).

1977 commercial fishery

Catch and effort data used for different calculations came from the 1977 log books.

RESULTS

1978 survey

Distribution and abundance of shrimp

Shrimp were taken at all stations (in the depth range of 190-335 m) except for station 15 of stratum LO1 (Table 2). Shrimp represent 59.6% of total catches. The largest catches were obtained in strata LO2, LO4, AO1 and CO1, CO2, CO3, in each of which 50% or more of the tows yielded a catch of over 90 kg of shrimp. However, the catch distribution pattern was different in the two areas. In the Louisbourg area (LO2, LO4, AO1) the largest concentrations of shrimp were found between 260 and 295 m, while in the Canso area (CO1, CO2, CO3) the best concentrations were in the depth range of 200-225 m. Table 3 gives the mean biomass per square nautical mile per stratum, with the standard error and the total biomass per stratum. From these results, an estimate of the total shrimp biomass in the strata surveyed (845 nm²) is 8,212 m.t.

Distribution and abundance of by-catch

Redfish and cod were the two main by-catch species. On a weight basis, commercial redfish represent 10.2% of the catches, non-commercial redfish (£14.5 cm) 11.1% and cod 8.9%. No pattern seems to appear for the distribution and abundance of cod. The largest catches were obtained in strata L01, A01 and C05 (Table 2). In contrast, redfish of commercial and non-commercial size seem to be aggregated on the east edge of the Scotian Shelf. The largest concentrations were found at a depth of 255 m. An extremely high concentration of non-commercial redfish (141 kg/30-min tow) was obtained from one tow in the stratum A03. Table 4 gives the mean biomass per square nautical mile per stratum with the standard error and the total biomass per stratum for the by-catch of redfish and cod in the SE Cape Breton area. Other by-catches (10.2%) were mainly represented by squid and plaice in the Louisbourg area and by silver hake and plaice in the Canso area.

1977 commercial fishery

The commercial fishery in 1977 took place mainly in the Louisbourg area. Two part-time fishing units landed 144 m.t. of shrimp during the season. Corresponding by-catches of finfish were low (22.7 m.t.). Table 5 shows landings, their relative proportion to the total catch, and associated CPUE corresponding to each of them.

DISCUSSION

Results from the shrimp survey in 1978 show that the by-catch accounts for about 40% of the total catch in weight, consisting mainly of redfish, cod and flatfishes. The major point of interest seems to be the small

redfishes, these being discarded.

For 1979 the shrimp quota for the area southeast of Cape Breton is 2,000 m.t. (Canadian Atlantic Quota Report). At the by-catch rates observed during the survey, an annual catch of 2,000 m.t. should produce a by-catch of 322 m.t. of non-commercial redfish. However, commercial activities in 1977 show less by-catch than obtained during the survey in 1978 (Tables 5 and 6). This difference can be explained by the fact that by-catch is often underestimated by commercial vessels and that fishermen generally tend to fish in areas where the ratio of shrimp to by-catch is highest.

Furthermore, investigations with a Yankee 36 shrimp trawl in the area north of Anticosti (Tobey and Rycroft, 1977) revealed that small redfish account for approximately 20% of the total catch, which is twice as high as the SE Cape Breton area.

At present, interactions between shrimp and small redfish seem a minor problem and there is probably no need to introduce a sorting trawl. Few data being available concerning the non-commercial by-catch discarded, it is desirable to improve reporting of by-catch in log books.

REFERENCES

- Barr, L., 1970. Diel vertical distribution and vertical migration of

 <u>Pandalus borealis</u> in Kachemak Bay, Alaska. J. Fish. Res. Board Can.

 27: 669-676.
- Carlsson, D. M., S. A. Horsted, and P. Kanneronff, 1978. Danish trawl surveys on the offshore west Greenland shrimp ground in 1977 and previous years. Intern. Comm. Northw. Atl. Fish., Selected Papers, No. 4: 67-74.
- Mackett, D. J., 1973. Manual of methods for fisheries resource survey and appraisal. FAO Fish. Tech. Pap. No. 124, 29 p.

Tobey, A., and J. Rycroft, 1977. Shrimp midwater trawl development 1977 Gulf of St. Lawrence. Fish. Res. Board Can. Indust. Rep. 101: 1-39.

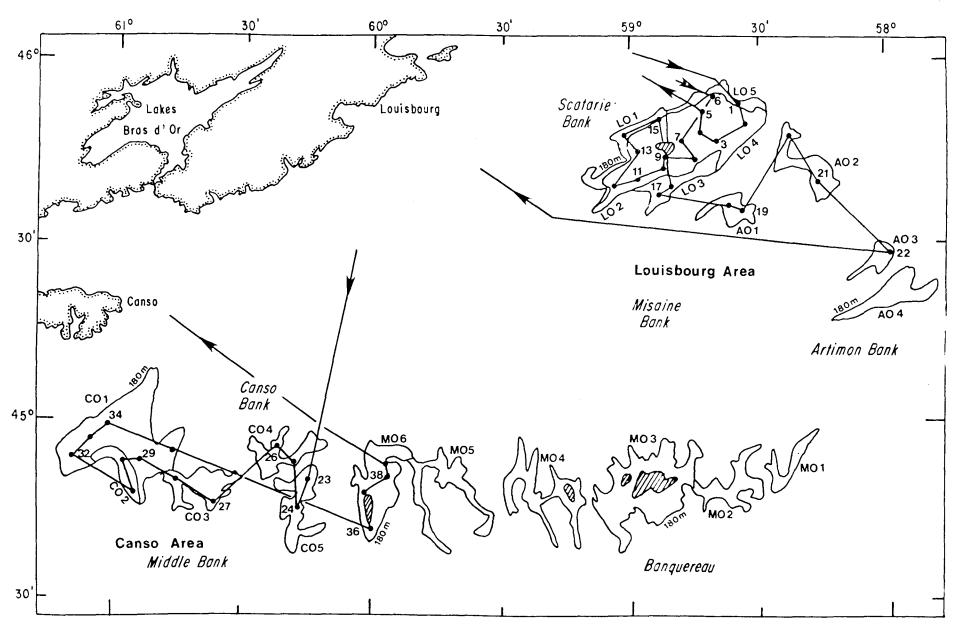


Fig. 1. Stratification scheme and stations occupied during the survey.

	Breton	Sept	Oct. 19/8.			_		a 1	
Stratum	Surface of stratum (mm ²)	Station #	Starting position lat - long	Date	Starting time	Duration (min)	Depth (m)	Cloud coverage 0-1.0	Sea B e aufort 0-9
L01	50.5	12 14 15	45°38'-59°04' 45 46 -59 00 45 50 -58 56	26/09 26/09 27/09	11:17 15:06 08:07	31 31 29	285-276 216 201-210	1.0 0 0	3 4 2
L02	84.2	9 10 11 13	45 42 -58 50 45 41 -58 52 45 40 -58 57 45 44 -58 58	25/09 26/09 26/09 26/09	15:43 08:10 09:32 13:23	32 30 32 31	247 249-245 260-271 254-242	0.7 0.2 1.0 0.1	3 3 3 3
L03	45.7	16 17	45 42 -58 52 45 38 -58 53	27/09 27/09	10:18 11:37	30 32	245-231 229-207	0	2 2
L04	137.2	2 3 4 5 7 8	45 49 -58 34 45 47 -58 36 45 48 -58 40 45 51 -58 41 45 47 -58 17 45 45 -58 43	23/09 22/09 22/09 22/09 25/09 25/09	09:30 11:04 13:43 15:32 10:32 13:08	31 31 37 35 30 31	296-300 300-286 282-275 275 278 280-262	1.0 1.0 0.3 0.2 0.5	4 4 4 3 3
L05	28.9	1 6	45 53 -58 36 45 54 -58 39	22/09 25/09	07:55 08:00	30 29	240-256 245-275	1.0 0.3	4 3
A01	24.1	18 19	45 35 -58 35 45 34 -58 33	27/09 27/09	15:03 16:24	31 30	245-280 275-271	0 0	2 2
A02	38.5	20 21	45 46 -58 22 45 41 -58 14	28/09 28/09	08:01 10:00	31 30	335-245 260-174	1.0 1.0	3 4
A03	21.7	22	45 28 -57 59	28/09	13:38	30	231-282	1.0	5
C01	154.4	29 32 33 34 35	44 53 -60 53 44 57 -61 05 44 58 -61 02 44 59 -60 58 44 57 -60 46	01/10 02/10 02/10 02/10 02/10	10:10 08:39 10:04 11:19 13:23	32 31 32 31 32	190-194 198 198 198 223	0.1 1.0 1.0 1.0	3 4 4 4
C02	19.7	30 31	44 56 -60 59 44 50 -60 56	01/10 01/10	13:07 15:10	31 30	198-209 249-269	0 0.1	4 4
C03	49.3	27 28	44 48 -60 36 44 51 -60 46	30/09 01/10	16:36 08:15	31 30	275-260 296-264	0.1 0.1	2 3
C04	42.7	25 26	44 54 -60 18 44 55 -60 22	30/09 30/09	13:01 14:21	30 30	271-201 220-207	0	2
C05	49.3	23 24	44 51 -60 15 44 45 -60 18	30/09 30/09	08:56 10:41	30 31	227-307 333-307	0	3 3
M06	98.7	36 37 38 39	44 45 -60 00 44 45 -59 59 44 50 -59 56 44 53 -59 56	03/10 03/10 03/10 03/10	07:43 08:47 11:40 14:56	35 30 31 31	243-249 231-238 216-231 238-253	1.0 1.0 1.0 1.0	5 5 5 5

Stratum	Station #	Shrimp (kg)	Small red (kg)	Redfish (kg)	Cod (kg)	Other (kg)	Total (kg)	
L01	12 14 15	150 21 1	16 21 36	- 102 -	- 91 30	- 9 46	166 244 113	
L02	9 10 11 13	70 52 150 34	3 5 11 11	31 - - 114	- - - 68	- - 7	104 57 161 234	
L03	16 17	46 10	3 14	-	-	12 34	61 58	
L04	2 3 4 5 7 8	70 115 138 72 112 108	4 4 9 4 2 7	- - - - 2	- - - -	- - - -	74 119 147 76 114 117	
L05	1 6	32 21	28 60	- 52	- -	8	68 133	
A01	18 19	115 93	21 54	-	- -	6 3	141 150	
A02	20 21	4 6 58	19 10	4 27	- -	- 16	69 111	
A03	22	50	141	12	46	53	302	
C01	29 32 33 34 35	74 82 79 98 112	- - - -	16 5 - -	- - 32 -	16 18 25 30 21	106 105 104 160 133	
C02	30 31	119 46	-	5 -	- -	39 52	163 98	
C03	27 28	120 66	-	_2 _	- 23	7 50	129 139	
C04	25 26	85 41	<u>-</u> -	2 9	- -	20 2	107 52	
C05	23 24	48 43	21 -	83 -	115	2 -	269 43	
M06	36 37 38 39	21 30 62 27	- - -	- - -	- - -	- - -	21 30 62 27	

Table 3. Mean biomass estimate for shrimp SE Cape Breton, Sept.-Oct. 1978.

Stratum	Mean biomass square naut		
no.	<u>x</u>	S _x	Total biomass (m.t.)
L01	8.47	6.58	427.9
L02	10.83	3.04	911.6
L03	3.68	2.32	168.1
L04	15.28	1.46	2096.1
L05	3.54	1.25	102.3
A01	12.65	0.64	304.8
A02	7.21	1.37	277.5
A03	*8.08	-	*175.2
C01	11.52	0.88	1778.5
C02	11.28	4.93	223.3
C03	12.28	3.89	605.6
C04	8.59	2.85	366.9
C05	7.11	0.95	350.4
M06	4.31	0.86	425.0
	9.72 ¹	0.68 ¹	8212.2 ¹
Total <	9.642	0.87 ²	8143 . 9 ²

^{*}One point estimate $^{1}\mathrm{Based}$ on stratified random $^{2}\mathrm{Based}$ on simple random

Table 4. Mean biomass estimate for by-catch SE Cape Breton area, Sept.-Oct. 1978.

Stratum no.	Re Mean bioma per sq. na X	ut. mile	Total biomass (m.t.)	Smal Mean biomas per sq. nau X	ut. mile	_	Mean biom per sq. na x		Total biomass (m.t.)
		S _₹	(111.0.0.)	^	s _x	(111 - C -)	^	SX	(311 • C •)
L01	5.76	5.13	291.1	3.55	0.74	179.2	6.23	4.21	314.6
L02	5.30	3.87	446.6	1.08	0.28	90.6	2.50	2.44	210.8
L03	-	_	-	1.11	0.70	50.8	_ _	_	-
L04	0.05	0.05	6.7	0.73	0.13	100.3	-	-	_
L05	2.78	2.69	80.4	5.32	1.06	153.9	-	-	_
A01	-	-	-	4.69	2.16	113.1	-	-	_
A02	2.26	1.71	86.9	1.94	0.44	74.7	_	_	-
A03	*1.94	_	*42.1	*22.77	_	*494.2	*7.43	-	*161.2
C01	0.51	0.36	79.1	-	_	-	0.84	0.83	130.0
C02	0.35	0.33	6.8	-	-	_	-	_	-
C03	0.14	0.13	6.7	-	-	-	1.45	1.42	71.5
C04	0.76	0.48	32.4	-	-	-	-	-	-
C05	5.31	5.20	261.6	1.34	1.31	66.2	7.35	7.20	362.5
M06	0.06	0.06	6.2	-	-	-	-	-	-
Total	/ 1.59 ¹	-	1346.6 ¹	1.571	-	1323.0 ¹	1.481	-	1250.51
Total	\sim 1.71 ²	0.632	1445.4 ²	1.822	0.612	1536.5 ²	1.49 ²	0.59 ²	1255 . 3 ²

^{*}One point estimate 1Based on stratified random 2Based on simple random

Table 5. Shrimp catches and finfish by-catches in the Scotian Shelf shrimp fishery in 1977.

	Shrimp	Cod	Redfish	Plaice	Turbot	Other	Total
Catches (MT)	144.0	5.5	5.4	4.8	4.7	2.3	166.7
Catches (%)	86.4	3.3	3.2	2.9	2.8	1.4	100.0
C.p.u.e. (kg/h)	147.5	5.6	5.5	4.9	4.8	2.3	170.8

Table 6. Shrimp catches and finfish by-catches during a shrimp survey southeast of Cape Breton in September 1978.

	Shrimp	Cod	Commercial redfish	Non-comm. redfish	Other	Total
Catches (kg)	2,717	405	466	504	468	4,560
Catches (%)	59.6	8.9	10.2	11.1	10.2	100
C.p.u.e. (kg/h)	134.5	20.0	23.1	25.0	23.2	225.8