## CAFSAC

Herring assessment in Div. 4WX

W.T. Stobo, D.F. Gray and K. Metuzals<br>Marine Fish Division<br>Resource Branch, Maritimes<br>Bedford Institute of Oceanogrphy

The herring fishery off southwest Nova Scotia has been in existence since the 1800's. The fishery first began as a gillnet fishery; the weir fishery developed around 1820, and the purse seine fishery about 1940. In 1964, a large fish meal industry developed in the Maritimes region and soon afterwards the size of the Bay of Fundy purse seine fishery increased greatly to meet the demand for herring for reduction.

Currently, three gear types (purse seines, weirs and gillnets) account for about $98 \%$ of the catch in the Bay of Fundy and surrounding area. Traditionally, each gear exploits a particular component of the herring population in a particular area and the geographical area of overlap between gears varies considerably (Fig. 1).

The gillnet fishery occurs only on the Nova Scotia side of the Bay and exploits primarily adult fish in pre-spawning and spawning aggregations. Historically catches remained relatively constant, in the order of 2,000-6,000 tons. In 1977, however, a substantial increase in effort occurred and a catch in excess of 18,000 tons was taken.

The weir fishery occurs on both sides of the Bay of Fundy although the majority of weirs are located on the New Brunswick side. Catches on the New Brunswick side have ranged up to 50,000 tons historically, but since the early 1960's have ranged between 16,000 and 39,000 tons. This
fishery exploits primarily 2 and 3 -year old fish. The Nova Scotia weir fishery is considerably smaller, with catches in the order of 2;000 to 12,000 tons per year, and exploits primarily fish of ages 2-5.

The purse seine fishery has occurred throughout the year and on both sides of the Bay. A winter "brit" fishery in the 1960's exploited very small fish on the New Brunswick side for fish meal production and catches as high as 42,000 tons were made. This fishery was essentially ended in 1970 by Canadian legislation which prevented landingsherring less than 11.5 cm long and utilization of herring between $11.5-18.0 \mathrm{~cm}$ for fish meal. Since that time, catches of "brit" herring have been substantially reduced. A summer-fall purse seine fishery exploiting both juveniles and adults occurs on the Nova Scotia side. Catches in this fishery have ranged between 35,000 and 130,000 tons.

Historical catch statistics for the various Bay of Fundy herring fisheries have been confounded by the habit of reporting by area of landing rather than area of catch and by the lack of catch locations for the considerable quantities exported to the United States. A report by Miller and Iles (1975) has attempted to designate catch by location and is probably more reliable than any other statistics on this fishery.

Stock interrelationships are not yet well defined for this southwest Nova Scotia stock and this lack of knowledge has hampered management objectives. Tagging experiments in the Bay of Fundy in 1973 and 1974 (Stobo et al., 1975) indicated that the herring fisheries in the Bay of Fundy exploit a stock complex, part of which migrates to the Chedabucto Bay area during winter while another portion moves westward as far as Cape Cod. As a result of these experiments the winter purse seine fishery occurring in the Chedabucto Bay area has been combined with southwest Nova Scotia for management purposes. This Chedabucto Bay area fishery began in 1969 and catches have ranged from 7,000-52,000 tons (see Stobo, 1974, 1975). Insufficient information has been collected, however, to determine the proportionate dependence of the New Brunswick weir and "brit" fishery on the southwest Nova Scotia and other stocks. Consequently, these two New Brunswick juvenile fisheries are not as yet included with any designated spawning stock for management purposes. Further, along the southern coast of Nova Scotia, between Cape Sable Island and Canso, there are a number of small, local gillnet fisheries presumably exploiting local stocks; the catches from these localized gillnet fisheries are not included in the present analyses.

## Catch statistics

The 1977 catch (actually the 1976-77 fishing season catch) from the Div. 4WX stock was 117,980 tons. A detailed breakdown of the catch in Div. 4WX is given in Table 1. In the case of gears or areas which exploit more than the southwest Nova Scotia stock, the stock and total catch are presented separately. The fishing season is based on

## 3.

November 1 to October 31 season rather than calendar year because the fishery off Chedabucto Bay usually commences in November and that off southwest Nova Scotia terminates in October. Due to a lack of sampling coverage and the provisional nature of the catch statistics, the small catches by Nova Scotia gill nets and weirs in November and December have been included in the 1977 fishing season.

## Current catch composition

The level of sampling of the Div. 4WX commercial herring catch is very intensive throughout most of the fishery. As a result, monthly age-length keys and length-weight relationships by gear can be derived. In some months however, the catch by some gears are only a few hundred tons and in such cases samples for adjacent months are combined to obtain a representative age-length key. To the extent possible however, monthly length-weight relationships are retained.

The Bay of Fundy purse seine fishery has historically shown substantial differences in the monthly length frequency of the catch between different geographical areas in the Bay. In order to reduce the effects of these differences in the final length frequency distribution, the Bay was sub-divided into 20 areas. For the period 1973-76 the monthly purse seine catch was partitioned into these areas using log record information, then weighted against the length frequencies from each area. The same procedure was used in 1977, however a new statistical system was initiated in the Bay of Fundy in 1977 which allowed direct allocation of almost the total catch into the individual areas. In the Chedabucto Bay area the sampling coverage has been sufficiently intense since 1972 to weight the length frequencies against, in many cases, individual boat catches. Generally it has not been necessary to combine catches over more than one week periods in order to weight the length frequency samples.

The age composition for the 1977 Div. 4WX stock catch is given in Table 2. The fishery in 1977 in both the southwest Nova Scotia and Chedabucto Bay areas was dependent on the 1970-73 year classes. The younger year classes (1974-76) did not contribute substantially to the overall catch in either area. Although the catch of the 1975 year class in Nova Scotia weirs was $48 \times 106$, this catch is not large compared to other years (see Fig. 4).

In 1976 and 1977 an ageing problem has been noted in distinguishing between the 1970 and 1971 year classes, similar to that existing for the Subarea 5 herring stocks. Apparently the 1976 annulus is poorly defined in the 1970 year class resulting in large numbers of fish being aged as 1971 year class fish. The size of these two year classes are now well defined in cohort analyses with the 1970 year class being
about six times the size of the 1971. Therefore the relative contribution of each in the 1977 fishery was adjusted on the basis of their relative proportions in the 1975 catch, after adjusting for partial recruitment. These adjusted values were then used in subsequent analyses.

## Assessment Parameters

a) Effort calculations

In order to get some method for examining the appropriateness of terminal F in cohort analyses, weighted effort figures for the period 1967-77 were derived for the Nova Scotia purse seine and weir fishieries (Table 3). The annual catch-per-unit-effort (CPUE) values for purse seines were obtained from log records, then standardized against the 11-year average CPUE. The number of weirs on the Nova Scotia side of the Bay of Fundy have remained constant during this period and an annual catch-per-unit-effort was derived by dividing the 1l-year average into annual catch. A CPUE index was then calculated as:

## CPUE INDEX $=\frac{\text { (Purse seine catch } \times \text { CPUE/Ave }+ \text { Weir catch/Ave) }}{\text { Purse seine catch }+ \text { Weir catch }}$

and expanded to total effort exerted on the Div. 4WX stock:

## EFFORT UNITS = Tota] 4WX stock catch <br> CPUE INDEX

b) Cohort analysis

Cohort analysis was first run using the same terminal $F$ and partial recruitments as used for the 1977 catch projection. The F's placed on older year classes were the same as used in deriving the population matrix for the 1977 projection. The resultant fishing mortalities on age groups 5-8 were averaged and the analysis re-run. Age 5 fish are only $90 \%$ recruited and the fishing mortality on this age group was adjusted to account for this partial recruitment. Two iterations were conducted using this method.

The resultant weighted F's were then plotted against the derived effort (Fig. 2) and further adjustments were made in the terminal F and the $\mathrm{F}^{\prime}$ s on older age groups to improve the regression.

The partial recruitment factors were not adjusted because the F's on those year classes had very little affect on the weighted F. The best relationship obtained between effort and weighted $F$ gave an $r^{2}$ of 0.632 but did not go through the origin. There are several possible reasons for the intercept being on the X-axis. The purse seine fishery in 4Wa has a much higher CPUE than in southwest Nova Scotia especially in recent years. Incorporation of these data into the calculation of total effort units would probably reduce the total effort in all years and swing the intercept closer to the origin. The catch-per-unit-effort in the purse seine fishery in southwest Nova Scotia declined in 1976 and again in 1977 resulting in an increase in calculated effort. Even though the catch-per-unit-effort in Nova Scotia weirs (see Table 3) showed similar declines, the management system in southwest Nova Scotia during 1976 and moreso 1977 limited nightly boat catches to market demand. The increase in effort in these two years is thus partly an artifact of this management system. Corrections for these limitations would probably move the intercept closer to the origin but would not have much other effect on the regression. The result of such corrections as discussed above would probably not affect the relationship and thus the weighted F's in recent years any appreciable amount.

The population size and fishing mortalities associated with the final cohort analyses are given in Table 4.
c) Recruitment estimates

There are no research surveys associated with pelagic fish thus no independent estimates of abundance or year class size can be made. Due to this lack of information, a conventional year class size of $750 \times 106$ fish at age 2 for Div. 4WX herring was adopted at the ICNAF scientific deliberations. This conventional year class size was in the lower end of the range of the observed year class sizes, but it was felt that a conservative estimate should be initially made until additional data allowed for adjustments.

The cohort analysis (Table 4) suggests that the 1974 and 1975 year classes are smaller than the conventional size, using current partial recruitment factors. The 1974 year class, in fact, is calculated to be the smallest year class observed since 1965.

The relationship of the catch of 2-year old fish to total catch and year class size calculated from cohort analysis was then examined for the southwest Nova Scotia purse seine and weir fishery. The relationship between the catch of 2-year olds as a ratio of total catch numbers in the southwest N.S. purse seine fishery to year class size at age 2 (Fig. 3) gave an $r^{2}=0.835$ and indicates that the 1974 and 1975 year classes are quite small. The relationships between the catch of 2 year olds in N.S. purse seines (Fig. 4) and N.S. weirs (Fig. 5), and year class sizie at age 2 were also examined. Although the relaționships were not predictive, they both suggest that the 1974 and 1975 year classes are small.

## d) Yield-per-recruit

The nature of the purse seine fishery in southwest Nova Scotia changed in 1976 and 1977 in that the season was extended from May-mid-August to May-October. This extension of the season changes the mean weight-at-age and thus possibly the yield-per-recruit. Weight-at-age of calculated removals by gear, month, and area were accumulated for the fishing season to derive mean annual weights at age as given below:

Annual mean weight-at-age ( kg )

| AGE | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | $11+$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

WEIGHT
0.0296
0.0977
$0.1658 \quad 0.2071$
0.2615
0.2807
0.3002
0.3286
$0.3490 \quad 0.3732$

A new yield-per-recruit, using Beverton-Holt equations, was calculated
(Fig. 6) with a resultant $\mathrm{F}_{0.1}=0.308$ and an $\mathrm{F}_{\max }=0.517$.

## Partial Recruitment

Partial recruitment factors were not changed from those used in 1976 and 1977.

| AGE | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PR | 0.30 | 0.41 | 0.76 | 0.90 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |

## Results of Assessment

Several options were considered in determining the catch level for 1979. The 1978 TAC was established in April 1977 with provisional catch statistics and using the conventional year class size for the 1974 and 1975 year classes. The final catch statistics indicate that the 1976-77 stock catch from 4Wa was 23,251 tons, 3,600 tons greater than that used in the 1977 assessment and the 1977 stock catch from 4X was 94,319 tons, considerably more than the 1977 TAC of 84,000 tons, which was also used in the 1977 projections to determine the 1978 catch.

The 1978 TAC was set at 98,000 tons with a sub-allocation of 20,000 tons for $4 W a$ and 78,000 tons for $4 X$. The catch in 4Wa was only 16,783 tons thus the 1978 catch of the whole stock could be limited to 95,200 tons if the under-run in $4 W a$ is not transferred to 4 X .

## 7.

In order to determine the difference between taking 92,500 tons in 1978 and managing catch closer to $\mathrm{F}_{0.1}$ catch and population biomasses were projected to 1986 with a trial $F=0.319\left(F_{0.1}=0.308\right)$ with 2 options for management and two recruitment levels (Fig. 7). The management options were:

1. 1978 catch $=92,500$ tons; $F=0.319$ thereafter; and
2. $F=0.319$ for all years $1978-86$.

The recruitment options were:

1. constant recruitment from 1976-86 of $750 \times 10^{6}$ fish at age 2 ; and
2. for the period 1975-77, constant recruitment of $750 \times 10^{6}$ and for the period 1978-86, recruitment was selected from a log normal distribution based on past recruitment levels excluding the 1970, 1974 and 1975 year classes. The projection shown in the average of 20 runs.

If the 1978 catch is 95,200 tons, under either recruitment option the 1979 catch is only slightly lower than if managed close to $\mathrm{F}_{0.1}$. The population biomass is also depressed initially but there is little difference by 1981. Subsequently, there is no discernible difference if managed at the same $F$ level. There is a considerable difference however using either management option in long term catch and population biomass under the different recruitment assumptions. With recruitment at the conventional level, the catch stabilizes just below 60,000 tons and the population at about 300,000 tons. With average recruitment, by 1986 catches between $90,000-100,000$ tons would occur with a population biomass ineexcess of 460,000 tons.

On the basis that there is no long-term advantage to adjusting the 1978 TAC, projections for 1979 were made assuming a 1978 catch of 95,200 tons and projecting at $F_{0.1}=0.308$ for fully mature fish. The population structure in 1977 as generated by cohort analysis (Table 4) was used for the projections except that the 1975 year class was set at the conventional level of $750 \times 10^{6}$ fish. The sizes of the 1976 and 1977 year classes were also set at the conventional level. The relationship between 1979 catch and 1980 population biomasses is given in Fig. 8. At $\mathrm{F}_{0.1}$ the 1979 catch and the 1980 population biomass would be 65,300 tons and 330,000 tons respectively.

Projections to 1986 using $F_{0.1}$ were also run using two recruitment options for the 1978 to 1984 year classes. The recruitment for year classes prior to 1978 were as in the 1979 projection. The
recruitment options were:

1. conventional year class size $=750 \times 10^{6}$ at age 2 ,
2. average year class size $=1.237 \times 10^{9}$ at age 2 , where the average is based on the 1963-73 year classes excepting the 1970 year class.

The results (Table 5) are similar to those in Fig. 7. Setting recruitment at the conventional year class size results in catch and population biomass stabilizing at about 58,000 tons and 300,000 tons respectively by 1981. Setting recruitment at the second option results in a catch of almost 93,000 tons in 1986 with an associated populated biomass of almost 490,000 tons. Although both are still increasing the rate has dropped considerably.

## $-9-$

## REFERENCES

Miller, D.S. and T.D. Iles. MS 1975. Catch statistics for the Bay of Fundy herring fisheries 1963-1974. MFS Technical Report No. 594.

Stobo, W.T. MS 1974. The Canadian 4VWà herring fishery: analyses of the 1973-74 catch, and the distribution of fishing activity and catch per unit effort from 197l-74. ICNAF Res. Doc. 74/95.

Stobo, W.T. MS 1975. The 1974-75 Canadian Cape Breton (4VWa) herring : fishery. ICNAF Res. Doc. 75/39.

Stobo, W.T., J.S. Scott and J.J. Hunt. MS 1975. Movements of Bay of Fundy herring. ICNAF Res. Doc. 75/38.

Table 1. Provisional catch (mt) during the 1977 Div. $4 W X$ herring fishery. Catches in parentheses indicate catches associated with Oiv. 4WX stock. Total catch for 4WX stock refers to 1976-77 fishing season only.

|  | Nov. | Dec. | $\begin{gathered} 1977 \\ \text { Jan. } \end{gathered}$ | Feb. | March | April | May | June | July | August | Sept. | Oct. | Nov. | Dec. | Jan. | Total 4WX Stock |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4Wa Chedabucto Bay |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Total catch Purse seine (stock) | $\begin{gathered} 1025 \\ (1025) \end{gathered}$ | $\begin{gathered} 5783 \\ (5783) \end{gathered}$ | $\begin{gathered} 10945 \\ (10945) \end{gathered}$ | $\begin{gathered} 361 \\ (361) \end{gathered}$ | - | $\begin{gathered} 1704 \\ (1700) \end{gathered}$ | $\begin{gathered} 3457 \\ (3437) \end{gathered}$ | 143 | 327 | 508 | 133 | 3 | $\begin{gathered} 217 \\ (274) \end{gathered}$ | $(6 \overline{6})$ | $(16934)$ | 23251 |
| $\frac{4 \times \mathrm{a} \text { Southwest N.S }}{\text { Purse seine }}$ | - | - | - | - | - | - | 711 | 15526 | 18687 | 18494 | 13704 | 1416 | - | - | - | 68538 |
| Gill Net (Total) <br> Gill Net (Stock) | - | - | - | - | - | (1) | $\begin{gathered} 382 \\ (347) \end{gathered}$ | $\begin{gathered} 2321 \\ (2171) \end{gathered}$ | $\begin{gathered} 3728 \\ (3353) \end{gathered}$ | $\begin{gathered} 7031 \\ (6969) \end{gathered}$ | $\begin{gathered} 5674 \\ (5668) \end{gathered}$ | (6) | - | $\stackrel{13}{7}$ | - | 18523 * |
| Weir <br> Misc. | - | - | - | - | - | 2 | $\begin{aligned} & 366 \\ & 163 \end{aligned}$ | 1526 635 | 2042 848 | 1145 278 | 99 100 | 15 | 8 | 20 | $\stackrel{-}{-}$ | 5213 2045 |
| 4hix Foreign | 23 | 23 | - | - | 102 | 101 | 1 | 160 | - | - | - | - | - | - | - | 410 |
| 4 mix Stock Total | 23 | 23 | 10945 | 361 | 102 | 1804 | 5025 | 20018 | 24930 | 26886 | 19571 | 1448 | 282 | 93 |  | 117,980 |
| 4Xb New Brunswick |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Total |
| Weir | - | - | $\cdots$ | - | - | 28 | 16 | 977 | 4224 | 6360 | 2815 | 2701 | 3325 | 752 | - | 20,697 |
| Purse Seine | - | - | 27 | 746 | 463 | - | - | - | - | - | - | - | - | - | - | 1,237 |
| Misc. | - | - | - | - | - | - | - | 10 | 77 | 1777 | 489 | 300 | 137 | - | - | 2,790 |
| Total | - | - | 27 | 746 | 463 | 28 | 16 | 987 | 4301 | 8137 | 2804 | 3001 | 3462 | 752 | - | 24,724 |

* Approximately $2,500 \mathrm{mt}$ of this catch may have been taken by purse seine.

Table 2. Herring catch at age $\left(\times 10^{-3}\right)$ in 1977 from the Div. $4 W x$ stock.

|  | Age |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | total |
| Southwest N.S. |  |  |  |  |  |  |  |  |  |  |  |  |
| Purse Seine | 37 | 4610 | 5916 | 118428 | 62004 | 56472 | 54460 | 4282 | 559 | 186 | 763 | 307717 |
| Weir | 1110 | 48005 | 8653 | 9281 | 4127 | 1866 | 1554 | 141 |  |  |  | 74737. |
| Gillnet |  |  | 14 | 9428 | 11728 | 13498 | 29086 | 2086 | 842 | 145 | 258 | 67085 |
| Miscellaneous | 17 | 2970 | 479 | 3554 | 2011 | 1994 | 1794 | 146 | 30 | 11 | 32 | 13038 |
| Chedabucto Area |  |  |  |  |  |  |  |  |  |  |  |  |
| Purse seine |  | 42 | 4311 | 51568 | 25819 | 14036 | 30034 | 5789 | 1424 | 894 | 2362 | 136279 |
| Foreign bycatch |  | 7 | $95^{\circ}$ | 564 | 372 | 616 | 245 | 22 | 18 | 17 | 33 | 1989 |
| TOTAL | 2164 | 55634 | 19468 | 192823 | 106061 | $\begin{gathered} 88482 \\ (55066)^{*} \end{gathered}$ | $\begin{gathered} 117173 \\ (150588)^{\star} \end{gathered}$ | 12466 | 2873 | 1253 | 3448 | 600845 |

* Adjustments in proportional catch of 1970 and 1971 year classes based
on 1975 removals.

Table 3. Derivation of standardized effort and catch-per-unit effort using Nova Scotia purse seine and weir catch and effort.

| YEAR | NOVA SCOTIA PURSE SEINE |  |  | NOVA SCOTIA WEIR |  | $\begin{aligned} & \text { CPUE }^{2} \\ & \text { INDEX } \end{aligned}$ | TOTAL CATCH | $\begin{aligned} & \text { EFFORT }^{3} \\ & \text { UNITS } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CATCH | CPUE ${ }^{1}$ | CPUE/ AVE. | CATCH | CATCH/ AVE. |  |  |  |
| 1967 | 117,382 | 55.5 | 1.253 | 12,475 | 1.374 | 1.2646 | 135,250 |  |
| 68 | 133,267 | 52.8 | 1.192 | 12,571 | 1.385 | 1.2086 | 151,714 | $125,528$ |
| 69 | 84,525 |  |  | 10,744 |  | 0.9684 | 139,047 |  |
| 1970 | 70,849 | 39.0 | 0.880 | 11,706 | 1.290 | 0.9381 | 176,941 | 188,617 |
| 71 | 35,071 | 32.6 | 0.736 | 8,081 | 0.890 | 0.7648 | 124,814 | 163,189 |
| 72 | 61,158 | 45.0 | 1.016 | 6,766 | 0.745 | 0.9890 | 148,868 | 150,523 |
| 73 | 36,618 | 49.1 | 1.108 | 12,492 | 1.376 | 1.1762 | 121,091 | 102,953 |
| 74 | 76,859 | 45.2 | 1.020 | 6,436 | 0.709 | 0.9960 | 143,942 | 144,525 |
| 1975 |  | 50.9 | 1.149 |  | 0.816 | 1.1207 |  |  |
| 76 | 58,396 | 41.8 | 0.943 | 5,959 | 0.656 | 0.9164 | 114,486 | $124,927$ |
| . 77 | 68,538 | 33.8 | 0.763 | 5,213 | 0.574 | 0.7496 | 111,562 | 148,820 |
| AVE. |  | 44.3 |  | 9,077 |  |  |  |  |

${ }^{1}$ Catch/effort from $\log$ records.
2 CPUE INDEX $=$ (Purse Seine Catch $x$ CPUE/Ave, + Weir Catch/Ave Catch)
Purse Seine Catch + Weir Catch
${ }^{3}$ EFFORT UNITS $=$ Total $4 W X$ Stock Catch CPUE Index

Table 4. Results of Cohort Analyses.


|  | 1 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1.971 | 197\% | 1975 | 1974 | 1975 | 1976 | 1977 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1 | 2573983 | 1520603 | 1256924 | 2361176 | 629708 | 789346 | 663222 | 5168989 | 799690 | 12611696 | 1633197 | 184992 | 541745 |
| 3 | 1 | 961247 | 1916381 | 1205487 | 985697 | 1262997 | 4.46006 | 549520 | 576299 | 3644541 | 627897 | 925947 | 1164915 | $1.416 \% 0$ |
| 4 | 1 | 1301419 | 763071 | 1324796 | 925051 | 731694 | 677987 | 312928 | 292773 | 406700 | 2474822 | 472818 | 614285 | 807496 |
| 5 | 1 | 343998 | 85\%456 | 571734 | 868943 | 698456 | 493877 | 296834 | 159810 | 105319 | 233971 | 1.468646 | 303643 | 384765 |
| 6 | 1 | 91895 | 236624 | 420997 | 368733 | 463037 | 426419 | 22239\% | 140313 | 60982 | \%082 | 143341 | 854384 | 183070 |
| 7 | 1 | 40626 | 65645 | 152581 | $20063 \%$ | 236976 | 278799 | 240340 | 113680 | 46669 | 26798 | 31295 | 71574 | 500638 |
| 8 | 1 | 4460 | 31730 | 41105 | 72489 | 82269 | 136659 | 127000 | 112063 | 43678 | 20691 | 1.4593 | 17156 | 41.444 |
| 9 | 1 | 1.033 | 3144 | 18991 | 29685 | 30415 | 46911 | . 7456 | 59717 | 47684 | 23925 | 12133 | 9018 | 7551 |
| 10 | 1 | 327 | 797 | 1045 | 15179 | 1025. | 19160 | 19161 | 27909 | 24498 | 21092 | 9660 | 6784 | 4166 |
| T | 1 | 5318880 | 5393652 | 4993660 | 5827435 | 4130322 | 3315166 | 2705605 | 6650553 | 5184760 | 4745874 | 4761637 | 3236650 | 2614495 |

axV. 4WK HEHETRG CATGH-AT-AGE

|  | 1 | 1965 | 1966 | 1967 | 1968 | 1869 | 1.970 | 1.971 | 1.972 | 1973 | 1.974 | 1975 | 1.976 | 4977 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1 | 210796 | 43630 | 47948 | 751706 | 70536 | 10691.6 | 144167 | 649254 | 29650 | 118301 | 235590 | 19922 | 55634 |
| 3 | 1 | 26450 | 270063 | 68430 | 7993 | 334467 | \%8166 | 173662 | 71984 | 56 E 16 | 45600 | 158941 | 161637 | 19468 |
| 4 | 1 | 232147 | 58591. | 238394 | 65107 | 118960 | 289361 | 106170 | 148516 | 109530 | 616206 | 9236 | 130597 | 192823 |
| 5 | 1 | 49762 | 308775 | 109814 | 274518 | 160723 | 201097 | 113661 | 77207 | 34422 | 53197 | 384646 | 72334 | 106061 |
| 6 | 1 | 1.0592 | 45479 | 159203 | 72027 | 110852 | 120223 | 75593 | 75384 | 25562 | 15254 | 50599 | 219789 | 56066 |
| 7 | 1 | 1693 | 13970 | 57918 | 90617 | 62506 | 111911 | 93620 | 49065 | 19361 | 8120 | 9357 | 18960 | 150589 |
| 8 | 1 | 561 | 7722 | 4497 | 31577 | 22595 | 41257 | 50032 | 48900 | 17604 | 5313 | 3238 | 4967 | 12466 |
| 9 | 1 | 54 | 1690 | 409 | 15441 | 6345 | 21271 | 36610 | 26056 | 19636 | 1.0964 | 3481 | 3566 | 2873 |
| 10 | 1 | 37 | 215 | 296 | 5668 | 2693 | 7039 | 75.56 | 13792 | 9661 | 5787 | 9842 | 1835 | 1253 |
| 11 | 1 | 1. | 1 | 148 | 1.175 | 722 | 2674 | 569 | 11.679 | 11120 | 7359 | 4599 | 3071 | 3A4B |
| T | 1 | 532083 | 750141 | 687087 | 1388967 | 940397 | 955915 | 806644 | 1171636 | 839363 | 286103 | 945649 | 636667 | 599680 |


$\begin{array}{llllllllllll}1965 & 1966 & 19671968 & 1969 & 1970 & 1971 & 1972 & 1976 & 1974 & 1975 & 1976 & 1977\end{array}$

| 2 | 1 | . 095 | . 032 | . 043 | . 434 | . 134 | +162 | . 204 | +149 | +04\% | . 1.09 | . 168 | $+120$ | + |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1 | . 031 | -1.69 | . 065 | . 094 | . 4124 | + 156 | +430 | . 149 | +187 | . 004 | . 210 | - 1.66 | 164 |
| 4 |  | $+220$ | . 089 | - 222 | .081 | . 197 | . 626 | +471 | . 822 | . 353 | - 32 | +243 | +263 | 304 |
| 5 | 1 | +174 | +609 | . 239 | . 429 | . 283 | . 598 | . 549 | . 763 | . 448 | . 290 | +342 | . 306 | +360 |
| 6 | I | . 136 | . 239 | +541 | . 246 | . 307 | +373 | + 471 | . $90 \%$ | -622 | . 365 | . 494 | . 334 | 400 |
| 7 | , | +047 | +268 | +544 | . 691 | . 346 | .586 | -6\% | . 648 | . 613 | . 408 | - 101 | $+346$ | 400 |
| 8 |  | . 100 | . 313 | . 129 | . 669 | . 352 | +406 | +67. | -654 | +510 | + 334 | . 281 | +38 | . 400 |
| 9 |  | . 060 | . 902 | . 024 | . 860 | . 262 | . 695 | +783 | . 674 | . 616 | . 706 | . 381 | - 572 | 400 |
| 10 |  | . 133 | . 351 | +372 | . 525 | . 340 | .514 | . 562 | . 773 | +564 | +358 | . 389 | + 542 | 400 |
| WF |  | +119 | . 179 | . 176 | . 322 | . 295 | + 403 | . 408 | . 234 | . 201 | . 235 | . 250 | 247 | . 294 |

Table 5. Projections of catch and population biomass to 1980 for $4 W X$ herring at $\mathrm{F}_{0.1}$.
A. Recruitment set at conventional leyel $750 \times 10^{6}$ fish at age 2 .

| TEAM: | FOF <br>  | Fow <br>  | AATCH <br> dumentif: | caren <br> 未x.0mass | MATUFE F |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1977 | 2822750 | 45036 | 59623 | 1192\%0,88 | -4000 |
| 1978 | 259085 | 372109 | 901101 | 96200.39 | . 4011 |
| 1979 | 2362484 | 329614 | $35 \% 1 \%$ | 65299.97 | . 3080 |
| 1.980 | 2370w\% | 31528 | 347687 | 60829.02 | - 3080 |
| 1981 | 2312394 | 29546 | 336394 | 59904.78 | . 3080 |
| 1982 | 2328470 | 299072 | 340042 | 56724.95 | . 3080 |
| 1.983 | 2334627 | 299721 | 341504 | 56881.63 | . 3080 |
| 1984 | 2332010 | 298112 | 340896 | 56493.07 | . 3080 |
| 1985 | 2349542 | 304150 | 345130 | $579 \% 1.19$ | +3080 |
| 1986 | 2350581 | 304492 | 345381 | 58033.93 | +.3080 |

B. Recruitment set at an average leve? $1.237 \times 10^{9}$ fisn at age 2.

| TE:Am: | FoF- <br>  | FOF <br>  | atch <br> MUMEEEF:* | $\begin{gathered} \text { carch } \\ \text { womass } \end{gathered}$ | MATUF: F: |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $197 \%$ | 2822760 | 459036 | 99632 | 119270.88 | . 4000 |
| 1978 | 292308\% | 372109 | 501101 | 95200.39 | - 4011 |
| 1979 | 2362484 | 329614 | 36215 | 65289.97 | - 3080 |
| 1980 | 2843779 | $3299 \%$ | 386682 | 61984.66 | - 3080 |
| 1.981 | 3162373 | 346460 | 414437 | 60884.42 | . 3080 |
| 1.989 | $344069 \%$ | 392454 | 467969 | 69958.72 | - 3080 |
| 1.983 | 3616606 | 428281 | 506874 | 77869.90 | - 3080 |
| 1984 | 3719486 | $4 \% 4299$ | W1719 | 84136.26 | - 3080 |
| $1.98 \%$ | 3800435 | 478066 | W51267 | 89892, 57 | - 3080 |
| 1.986 | 3839632 | 489865 | 560733 | 92741.91 | . 3080 |



Fig. 1. Canadian herring fisherjes in the Bay of Fundy area (modified from Miller and Iles, 1975). Area designations are as follows:
Fishery $\frac{\text { Fishery }}{1}$

$$
\begin{array}{ll}
\frac{\text { Area-Gear }}{\text { NB - Weir }} & \text { Season } \\
\text { NB - PS } & \text { Summer } \\
\text { NS - Weir } & \text { Fall-Winter } \\
\text { NS - PS } & \text { Spring-Summer } \\
\text { NS - Gill Net } & \text { Summer-Fall } \\
& \text { Summer-Fall }
\end{array}
$$



Fig. 2. Relationship between weighted $F$ and effort


Fig. 3. Ratio of the $2-y r$ olds to total numbers in southwest Nova Scotia purse seine fishery as an indication of year class size at age 2. Fishing year indicated.

Fig. 4. Relationship between year class size at age 2 and catch of 2-yr olds in Nova Scotia weirs. The fishing season, not year class, is indicated in the figure.



Fig. 5. Number of 2-yr olds taken in southwest Nova Scotia purse seine fishery as an indication of the year class size at age 2 . Fishing year indicated.

Fig. 6. Yield-per-recruit from Div. 4WX herring using 1977 weight at age.


Fig. 7. Catch and biomass projections under varying



Fig. 8. Relationship between 1979 catch and 1980 population biomass

