ICNAF Div 4X - Haddock
Spring 1978 Status Report
by

Robert N. O'Boyle
Department of Fisheries and Environment
Marine Fish Division Bedford Institute of Oceanography Dartmouth, N.S.

Introduction

The history of annual haddock catches is illustrated in Figure l. From the earliest years to about l960, catches have fluctuated between 10-20000 mt with about an equal split between Canada and the U.S.A. During this period the major part of Canada's catch was landed by longliners while the U.S. landings are almost wholely from otter trawlers. In the 1960's, Canadian otter trawl particpation increased dramatically while u.S. catches markedly declined. Between 1963-68, the U.S.S.R. became involved and reported catches of over 10000 mt in 1966. Total catches during this period reached levels as high as 37000 mt (1966). The high exploitation produced dramatic declines in the catch rates and resulted in setting of quotas and closure of the spawning season (March-April) in 1970 and all subsequent years.

A breakdown of catches by country, year and area is given in Table I. Catches from statistical 4×5 are believed to be from the Div. 5Y stock (Halliday and McCracken, 1970; McCracken, 1956, 1960) and are not used in the assessment. In 1975, 1976 and 1977 , a quota of 15000 mt was set. In all years, particularly the last, the quota was overrun by a considerable margin. Reported catches in 1977 were 21304 mt with almost all of the overrun taken by canada (quota of $13,4000 \mathrm{mt}$). Since the by-catch regulation was imposed in 1975, unreported discarding has become a serious problem in this fishery. Estimates of 2000 mt in both 1975 and 1976 and 400 mt in 1977 have been made (Art Longard, pers. comm.), and initial estimates show that discarding in 1978 could top 2000 mt . These estimates are probably on the low side. However, even with these, catches in 1975-77 have fluctuated around 20000 mt .

Fisheries System and Data Processing Group Contribution No. 28

Catch Composition

Composition of landings has been analysed for the period 1962-1977 inclusive. No commercial samples are available from the USSR and Spanish landings. Thus, their landings are adjusted on the basis of Canadian and USA samples. It has been observed (Hennemuth et al., 1964) that Div. $4 \mathrm{X}-\mathrm{R}$ haddock landings have a substantially different size and age composition from those of Div. $4 X-M N O P Q$. Consequently, the age composition is weighted separately for these areas. Otter trawl and line landings are also weighted separately when samples are available. Small Canadian Danish seine and shrimp trawl landings are combined with Canadian Otter trawl landings, and gillnet with line landings, as landings of there minor years have not been sampled. The USA commercial sampling data has only recently been provided. Therefore, for the purposes of this report, USA landing compositions for 1962-64 were taken from Schultz and Halliday (MS 1969) while from l965, USA landings were prorated on Canadian sampling data. This should not introduce major errors as Canadian and USA landings have been similar in composition (Hennemuth et al., 1964) and since 1965, USA landings have been small in proportion to those of Canada.

Removals at age are given In Table II. The 1963 year-class dominated the fishery during 1966-71, forming over 50% of the landings by weight. Even in 1973 , the 1963 year-class contributed significantly to the fishery. At the present, the 1971, l972, and 1974 year-classes are providing major support to the fishery.

As stated in the introduction, a serious discard problem has occurred in recent years. There is virtually no sampling information available for these discards. However, Louis Belzile at BIO has provided length-frequency distributions for samples from regular and discarded catches. These show no difference in catch composition. This may be due to such a large quota overrun. Assuming the same catch at age composition as in the 1975, 76 and 77 landings, the discard estimates of 2000,2000 and 400 mt for these years were split out by age (Table III) and added to the original catch matrix. This table was used for all subsequent analysis.

Commercial Catch Rates
To provide an index of changes in stock abundance, a complete analysis of the reported Canadian catch statistics during 19621977 was undertaken. Catches by gear type are given in Table IV.

As stated earlier, otter trawlers have provided the largest catches and thus largest samples of the population. Table V provides a breakdown of otter trawl catches by tonnage class. In the early years, the $0-50$ Ton class has been prominent but has declined since 1970. Much of the increased landings in the 1960^{\prime} s are due to the $151-500$ and to a lesser extent the 500-900 Ton class. Consequently, the l5l-500 Ton otter trawler class was taken as the index gear.

Catches for this class were plotted (Figure 2) by month to decide what time of the year would provide the most stable catchability. Examination of these graphs led to the choice of the July-October period.

Chikuni (1976) has provided a method for compensating for variation in effort due to catchability changes in mixed fisheries. The catch of the desired species per unit of total reported effort for the month is plotted as a function of the percent that the desired species is of the total monthly landings. This provides linear regressions from which one percentage catch can be defined and thus the corresponding catch per unit effort calculated. Multiple R-wquares in the present analysis generally exceeded 85%. The catch per unit efforts at the 50% point are given in Table VI.

Commercial catch rates for the U.S. otter trawlers (lfl500 Tons) are given for l963-1977 in Table VI along with research survey estimates for Canada (spring Table VII, and summer Table VIII) and U.S.A. (Fall). All these estimates are plotted as a function of time in Figure 3.

Both the Canadian research survey indices show an increase in abundance since about 1973. What is especially striking is the marked variability in the Canadian summer cruise index. In previous years it has always been difficult touse this data in haddock assessments. It appears that there may be large availability effects in the summer cruise but not the spring cruise. The U.S. fall survey index shows that the population has remained at virtually the same level since l969. This agrees with neither of the other two research indices nor the two commercial indices, which show steady population increases since l973. In previous years, the U.S. fall cruise has been used as the main index of abundance. Perhaps this is why previous assessments have been relatively conservative in predicting population biomasses.

Of all the indices, the Canadian commercial rate for 151-500 ton otter trawls provides the best estimate of abundance trends in the fishery and was thus used to calculate effort.

Mortality Rates

Using the catch at age matrix and the derived commercial effort, total mortalities were calculated for the 1963-77 period. Although a general pattern was evident the correlation of $\frac{Z}{Z}$ with \bar{E} was too weak to be statistically significant. A running average of age 5-11 over the $74-77$ period produced a z of 0.50 .

Running averages from the Canadian summer cruises for the 65-69 year-classes in the 1972-77 period produced a mean Z value of 0.571 . A summary of the individual Z values for this cruise is provided in Table IX. As can be seen, an availability change between 1976-77 has produced all negative total mortalities for this period.

As the data, were too variable to calculate natural mortality, an M of 0.2 was taken for all subsequent analysis.

Partial Recruitment

Prior to 1973, the minimum allowed mesh size was 114 mm (4 $1 / 2$ " - manila wet). Since that period, the minimum has been $130 \mathrm{~mm}\left(5 \mathrm{l} / 8^{\prime \prime}\right.$ - manila wet). Clark et al. (1974) provide selectivity ogives for various mesh sizes in this fishery (Table X). Fishing mortalities for the 1962-72 period were averaged from the fall 19774 X haddock assessment and the partial recruitment pattern for this period calculated. From Table X and mean lengths at age for this period, the selection due to 4 l/2" otter trawl fishery was calculated and extracted from the 1962-72 recruitment. The new 5 l/8" mesh selection was then multiplied by the remainder to give the partial recruitment pattern for the 1973-77 period. This calculation assumes that only the selection due to the otter trawl fishery has changed over the 1962-77 period. Although it may be wrong, it is a good starting point for the cohort analysis.

The final recruitment pattern is given in Figure 4. Haddock first enter the fishery at age l-2, are 50\% recruited by age 4 and fully recruited by age 6 . The drop in recruitment at higher age may be due to the longliner involvement in the fishery.

Cohort Analysis

The catch at age used was the summation of Tables II and III. Terminal completed F s were obtained from last fall's assessment while incomplete Fs were taken as 0.3 times the partial recruitment pattern. Natural mortality was taken as 0.2.

After 2-3 iterations, the relationship between the fishable biomass and the Canadian commercial catch per unit effort (adjusted to beginning of year) became fairly linear, having on R^{2} of 0.81 and an intercept not significantly different from 0 (Figure 5). However the top right hand side of the table remained unadjusted. To verify this part of the table, numbers for ages $1+2$ of the $1969-1975$ year-classes were plotted against the comparable estimates from the canadian summer cruise. Adjustments to the selectivity and mature F produced an R^{2} of 0.89 for this relationship (Figure 6). For projection purposes this is the most important part of the table.

The cohort results are summarized in Table XI. They reflect the changes in the fishery as described by the abundance indices gives in Figure 3. Population numbers were highest in 1964 following recruitment of the 1963 year-class. Numbers steadily declined to reach a minimum of 82532 x 10^{3} in 1971 after which the population underwent a dramatic increase in numbers. The 1977 population level is similar to that found in 1966-67.

As in previous assessments, the 1970 year-class is shown to be the second lowest in the recorded history of the stock. The 1971 and 72 year-classes are both very strong, followed closely by l973-74. However the biggest year-class in recent years is that of 1975. It is only slightly lower than the 1962 year-class. In general, recruitment in recent years is very strong and points towards high yields in the near future.

The fishing mortalities (weighted on fishable population) are low in 1962-63, increase to a maximum of .39 in 1969 and drop to a minimum of 0.155 in 1975. Recently it has increased to just over 0.20 .

Yield Projections

To see how catch levels have fluctuated in relation to some presently undefined equilibrium state, catch was plotted as a function of the fishing mortality, weighted on the fishable population, (Figure 7). There is a very clear pattern of initial owerexploitation followed by underexploitation. Presently, the stock appears to be approaching as MSY of $23-25000 \mathrm{mt}$. Certainly the recent high production rates in the stock indicate that this may be the case.

A yield per recruit model using 1977 weights at age (Table XII), partial recruitment as in Figure 4 and an M of 0.2 produced a fully recruited F_{0}. of 0.45 (Figure 8). This is considerably in excess of the 1977 F of 0.30 . The yield per recruit relationship is particularly sensitive to density dependent growth. Although it has to be investigated further, there does appear to be density dependent growth in this stock (Figure 9). Thus the yield per recruit model can only provide us with an index of how efficiently the stock is being fished under the present recruitment and growth condition. Thus it can be stated that the stock is at present being dramatically underexploited.

Catch projections were run at various F and quota levels to determine immediate sustainable yields from the stock. Recruitment estimates were sampled off a log normal distribution for the 1973-77 period while all other initial conditions were as given in the final year of the cohort analysis. A complete summary of the runs is given in Table XIII.

Under present catch levels, the fishable biomass will increase to 147000 mt by 1980 . An increase to 25000 mt will cause only a slight decrease in the rate of stock increase. Raising the quota to 30000 mt will result in plateauing of the fishable biomass at 130000 mt . The stock will experience F values of 0.4 at these higher levels. However, historically, the stock has not been able to sustain such high exploitation rates and it is most probable that the stock would undergo serious declines at a quota of 30000 mt .

Keeping the fishing mortality at its present level of 0.3 would result in a gradual increase in mature numbers as well as higher catches. By 1980 , the catch should approach 28000 mt . At higher fishing mortalities, the fishable biomass undergoes declines, which is in agreement with the quota results.

It appears evident that setting the TAC at 25000 mt would not result in overexploitation of the stock while allowing it to increase to perhaps an equilibrium state.

Summary

Available research and commercial data indicates that the 4 X haddock stock is undergoing dramatic increases in abundance. Present catch levels are around 20000 mt annually. The MSY appears to lie between $22-25000$ mt. Maintaining an F of 0.3 will result in a slow increase in stock size until equilibrium is reached while permitting increased catch rates. A TAC of 25000 mt for 1979 would not result in overexploitation and should produce a fishing mortality of just under 0.3 , the desired level.

REFERENCES :

1) McCracken, F., (1956). Cod and Haddock tagging off Lockeport, N.S. Fish. Res. Bd. Canada, Atlantic Prog. Rept. 64: 10-15.
2) McCracken, F., (1960). Studies of Haddock in the Passamaquoddy region. J. Fish Res. Bd. Can. 17: 175-180.
3) Chikuni, S., (1976). Problems in monitoring abundance in the multispecies and multi-gear groundfish fisheries in the Bering Sea. FAO Tech. Paper No. 155: 23-36.
4) Clark, McCracken \& Templeman, (1958). Cited in ICNAF, Annual Proceedings sup1. (1961), Vol. II, Serial No. 932.
5) Halliday, R. \& F. McCracken, (1970). Movement of Haddock tagged off Digby, Nova Scotia. ICNAF Res. Bull. 7: 8-14.
6) Hennemuth, R.C., M.D. Grosslein \& F.D. McCracken, (1964). Abundance, age composition of landings and total mortality of haddock caught of southern Nova Scotia, 1956-1961. ICNAF Res. Bull. 1: 43-73.
7) O'Boyle, R.N., (1977). ICNAF Div. 4X haddock, Fall 1977 status report. CAFSAC Working Paper 77/40.
8) Schultz, R.L. \& R.G. Halliday, MS (1969). Abundance, age composition and survival of haddock from Southern Nova Scotian grounds 1962-68. ICNAF Res. Doc 69/86, Serial No. 2252.

Table I. ICNAF Div. $4 \times$ Haddock nominal catches (metric tons round) by Statistical areas.

* includes unreported discarás

Table II. Removals at age $\left(\times 10^{-3}\right.$) from $4 \times-\mathbb{N O} O-P Q R$

	1975	1976	1977
1	7	4	0
2	381	246	35
3	799	311	129
4	903	806	109
5	85	697	162
6	193	83	175
7	44	153	24
8	31	30	26
9	11	14	5
10	6	18	8
11	29	8	1
12	41	20	0
13+	2	30	5
TOTAL	2532	2420	679
Discard WT (mt)	2000	2000	400

TABLE IV

Catch of Haddock in Metric Tons
By Fishing Gear for Canadian (Maritimes and Quebec) 4x Fishery 1962-1977

YEAR	OTTER TRAWL SIDE AND STERN	LONGLINE	DANISH SEINE	GILLNET	OTHERS
1962	7813	3724	-	-	-
1963	12063	4700	-	-	-
1964	20532	5811	-	-	-
1965	18048	4692	-	-	-
1966	25800	3743	-	-	-
1967	28696	3108	208	-	-
1968	25515	2997	99	226	-
1969	24333	3302	195	242	2
1970	11750	3907	211	86	58
1971	12152	3940	198	72	42
1972	7586	4841	55	58	30
1973	6097	6402	38	143	-
1974	6033	6464	-	166	87
1975	10488	5223	-	176	93
1976	10843	5347	-	389	86
1977	13101	1802	4	13	143

TABLE_V

Catch of Haddock in Metric Tons
By Vessel Size for Canadian (Maritime \& Ọuebec 4x) Side and Stern Otter Trawlers 1962-1977

Year	Vessel Size (Tons)				
	$0-50$	$51-150$	$151-500$	$500-900$	Other
1962	5224	1973	403	-	184
1963	5926	3230	3053	-	44
1964	3118	3964	1128	-	
1965	4605	4182	9284	-	
1966	8872	9094	7141	186	
1967	7479	7983	10422	2149	
1968	4753	6938	10620	3272	
1969	2619	4144	9646	7779	
1970	2050	3165	3622	2832	
1971	1715	2714	4741	2950	
1972	1182	1662	2758	1944	
1973	916	967	2569	1666	
1974	2533	1898	1146	556	
1975	2742	3427	2426	1893	
1976	2080	2619	3044	3100	
1977	2218	3356	3626	3901	

Table VI . Catch per unit effort indices of 4 X Haddock stock.


```
estimated
adjusted for unreported discards
```

Table VII. Mean catch per tow at age (number) calculated for Haddock in Canadian spring bottom trawl surveys in 4 X .

Year	1970	1972	1972	1974	2975	1976	1977
Age							
1	26.80	-	5.03	2.65	3.47	10.04	7.87
2	16.26	2.00	. 50	23.17	8.17	26.31	32.09
3	3.71	. 50	54.24	34.06	22.16	17.39	35.54
4	13.13	.50	22.81	2.00	70.44	64.48	26.22
5	6.39	8.01	8.18	22.24	5.27	78.88	48.46
6	16.66	6.02	12.66	15.20	28.01	15.02	46.10
7	68.70	14.31	5.64	3.77	9.20	18.98	5.16
8	6.08	43.46	6.43	5.98	2.83	3.10	5.03
9	1.63	6.70	5.83	4.05	1.64	3.25	3.24
10	.25	1.00	. 00	4.59	1.34	. 84	1.85
11	. 20	. 25	. 00	13.11	1.98	. 41	. 24
12	. 00	. 25	. 00	. 69	3.66	1.16	. 06
13	. 00	.00	. 00	.00	.00	1.07	. 18
14	. 00	. 00	. 00	. 00	. 00	. 15	. 23
15	. 00	. 00	. 00	. 00	.00	. 00	. 07
TOTAL	159.00	83.00	121.33	131.49	158.19	241.07	212. 32
No. of Sets	5.0	4.0	6.0	8.7	37.0	28.0	34.0

No cruise in 4 X in 2973

Table VIII. Stratified mean catch per tow at age (number) calculated for haddock in Canadian summer bottom trawl surveys in Div. 4X-MNOPQR.

Age	1970	1971	1972	1973	1974	1975	1976	1977
0								0.007
1	4.872	0.099	4.404	4.976	9.622	5.518	4.617	5.249
2	3.921	9.263	0.195	19.053	19.726	3.466	5.272	27.747
3	1.148	3.933	2.732	0.479	27.258	4.383	3.394	32.292
4	2.167	1.729	1.160	2.464	0.807	6.013	3.405	9.284
5	0.881	2.489	0.761	1.131	3.635	0.394	6.175	9.432
6	1.982	1.131	0.825	0.423	0.812	1.417	0.467	5.453
7	5.073	1. 746	0.543	0.569	0.448	0.510	0.553	0.640
8	0.704	4.424	0.808	0.429	0.517	0.287	0.101	0.854
9	0.293	0.504	1.106	0.287	0.286	0.136	0.026	0.116
10	0.258	0.078	0.037	0.371	0.211	0.0428	0.033	0.093
11	0.069	0.035	0.005	0.018	0.299	0.246	0.008	0.008
12+	0.017	0.053	0.004	0.008	-	0.153	0.284	0.284
NK	-	-	0.066	-	-	-	0.074	0.007
Total	21.385	25.484	12.646	30.207	63.621	22.564	24.411	91.367

Age	1970-71	1971-72	1972-73	1973-74	1974-75	1975-76	1976-77
	Sex Combined						
1-2	-	-	-	-	-		-
2-3	-0.643	$\cdots 0.681$	1.465	-1.377	1.021	0.046	-1.793
3-4	-0.003	1.221	-0.9	-0.358	1. 504	0.021	-1.609
4-5	-0.409	1.231	0.10.3	-0.521	1.511	0.252	-1.006
5-6	-0.13日	0.82	0.026	$\cdots 0.389$	0.718	-0.027	-1.019
6-7	-0.25	1.105	0.598	0.331	0.942	$\cdots 0.17$	0.124
7-8	0.127	0.735	0.372	-0.056	0.464 .	0.941	-0.3.15
8-9	0.137	0.771	0.235	0.09\%	0.445	1.616	-0.4.34
9-10	0.333	1.387	1.0.36	0.405	1.338	2,302	\cdots
10-11	1.321	$2+612$	1. 1.093	0.30 F	1.9	1.398	-1.267
11-12	2.011	2.713	0.727	0.216	"0.15	1. 6.97	1.44岕

TABLE X. Selection ogives used in the assessments for haddock

Length 2 cm groups	Haddock: percentage retention ${ }^{(a)}$ (mesh size in inches)					
	Subareas 3,4, and 5					
	3 "	$4^{\text {H1 }}$	41/211	$5^{\prime \prime}$	51/23	-6"
10-11	2					
12-13	5					
14-15	10					
16-17	18					
18-19	28	1				
20-21	40	3				
22-23	54	6	1			
24-25	66	10	3			
26-27	77.	18	5	01		
28-29	86	28	11	42		
30-31	92	41	18	. 4	1	
32-33	96	54	28	. 88	2	
34-35	98	67	40	. 14	3	1
36-37	99	78	54	22	6	2
38-39	100	87	68°	. 34	11	3
40-41		93	79	. 47 ,	18	6
+2-43		96	81	60	28	11
44-45		98	93	73	40	18
-16-47		99	97	. 83	54	28
48-49		100	98	. 90	67	41
50-51			99	. 95	78	$54^{\text {t }}$
52-53			100	. 97	87	67
54-55				. 98	92	78
56-57				100	96	87
58-59					98	93
60-61					99	96
62-63					100	98
64-65						99
66-67						100
Selection	3.1	3.1	3.2	3.2	3.3	3.3
factor						
Quartile sel.span				4 cm.		

(a) Prepared from data given by Clark, McCracken and Templeman (1958). The ogives are for the otter trawl, double manila codend. ©-
Table XI . Cohort analysis estimates of population numbers $\left(\times 10^{-3}\right.$) and fishing mortality for 4 K Haddock stock during 1962-1977.

FIGHING MORTALITY

11	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	. 000	+000	. 001	. 003	. 000	. 001	. 000
21	. 005	. 039	. 002	. 000	. 013	. 003	. 050	. 001	. 089	. 033	. 003	. 057	. 017	. 105	. 049
31	.073	. 093	. 090	. 055	. 156	. 039	. 049	. 212	. 086	. 192	1195	. 017	. 115	. 175	-109
51	.162	,214	. 319	. 366	. 55.7	. 401	. 372	. 239	. 174	. 300	+134	. 349	. 224	. 152	. 238
61	. 202	. 223	. 345	. 310	+ 459	. 355	. 369	. 439	. 113	. 284	. 295	. 164	. 279	. 252	. 201
71	. 373	. 257	. 323	. 399	+367	. 279	. 442	. 471	. 317	. 019	. 093	. 495	. 081	+254	. 301
81	. 294	. 221	. 426	. 374	. 294	. 165	. 324	. 560	. 553	. 404	. 020	. 589	. 432	. 119	. 253
91	. 349	. 229	. 374	. 436	. 237	. 098	-151	. 255	, 319	. 680	.241	. 118	. 751	. 197	. 066
101	. 156	. 120	. 320	. 302	. 417	. 093	.136	. 059	+147	. 826	. 908	. 193	. 174	, 327	.531
111	. 463	. 106	. 394	. 255	. 141	. 173	. 167	. 176	. 069	. 453	. 288	. 216	. 266	. 183	. 877
121	+166	.230	. 226	. 255	.114	. 050	. 191	. 172	. 037	. 076	1.309	. 226	. 137	. 199	. 168
F_{N}	. 085	. 090	. 075	. 072	. 194	. 224	. 249	. 269	-140	. 157	. 083	. 070	. 073	. 127	. 092
${ }_{8}$	$1 \begin{aligned} & 147 \\ & 1977 \end{aligned}$. 180	. 296	. 222	. 253	. 276	. 328	. 390	.260	. 280	. 217	. 201	. 155	. 199	. 217
11	. 000														
21	. 011														
31	. 105														
41	+165														
5 !	. 240														
61	. 292														
71	.27														
81	. 255														
91	. 204														
101	. 165														
151	.141														
121	. 150														
$\mathrm{F}_{\mathrm{n}} \mathrm{l}$. 090														
$F_{\text {R }}$	-2.08														

Table XII, Adjusted mean weights (kg) for 4 X Haddock stock derived from commercial statistics.

Age	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
1	-	-	-	-	-	-	-	-	-	-	. 56	.27	.18	.23	. 23	. 27
2	. 56	. 5	. 5	. 36	.31	. 32	.37	. 56	. 57	. 5	. 45	. 51	. 46	. 52	. 52	.41
3	.75	. 78	. 75	.65	.67	.62	.62	. 75	. 9	. 96	. 9	.75	. 82	. 82	. 81	. 77
4	1.15	1.05	1.0	1.0	. 85	. 85	. 9	. 88	1.05	1.25	1.35	1.25	1.1	1.2	1.19	1.18
5	1.4	1.45	1.3	1.2	1.23	1.05	1.1	1.15	1.16	1.4	1.6	1.8	1.7	1.55	1.6	1.67
6	1.6	1.7	1.7	1.56	1.5	1.45	1.3	1.35	1.43	1.5	1.75	2.0	2.3	2.25	2.1	2.29
7	2.2	2.85	1.95	1.95	1.8	1.8	1.7	1.6	1.65	1.75	1.9	2.2	2.5	2.85	2.95	3.00
8	2.12	2.35	2.04	2.2	2.18	2.05	2.05	2.0	1.95	1.95	2.1	2.3	2.6	3.0	3.5	3.19
9	1.9	2.25	2.5	2.3	2.5	2.36	2.3	2.45	2.3	2.3	2.3	2.5	2.8	3.2	3.6	3.53
10	2.4	2.2	2.4	2.63	2.5	2.7	2.52	2.5	2.82	2.65	2.8	2.7	2.95	3.8	3.8	3.58
11	2.86	2.7	2.42	2.5	2.75	2.7	3.0	2.7	2.8	3.25	3.0	3.3	3.2	3.5	4.1	3.49
12	2.7	3.2	3.0	2.7	2.6	2.89	2.9	3.3	2.85	3.0	3.7	3.4	3.8	3.7	4.0	3.34
$13+$	3.99	3.25	3.61	3.3	3.0	2.8	2.95	3.06	3.6	3.0	3.2	4.2	3.9	4.4	4.2	3.73

Table XIII. Catch projections for $4 \times$ haddock stock.
$-14-$

A. Quola Basis

B. F Basis

Fig. 1. Total Annual Catoh. 1931-77

Figure 2. $4 \times$ haddock nominal catches for stern and side otter tranlers combined ($150-500 \mathrm{mT}$)

Figure 4 . Partial recruitment pattern as used in cohort analysis, yichd per recruit relationship and catch projections.

Figure 5 Relationship between fishable biomass from Vph and Canadian commercial catch per unit effort
$(151-500$ ton otter trawlers). (151-500 ton otter trawlers).

GM regression

Figure 6 Relationship between observed strength of ages 1 and 2 and estimated (VPA)

Figure 7 Relationship between catch (MT) and Fully Recruited F from VPA

Ficure 8
Yicld per recruit ralationshin for 4. hadcock in 1977.

Figure 9
Derisity der sdent growth in s\% hade ik stock.

F Basis

Figure 10. Catch Projections for $4 \times$ Haddock

