Not to be cited without permission of the authors¹

Canadian Atlantic Fisheries Scientific Advisory Committee

CAFSAC Research Document 84/80

Ne pas citer sans autorisation des auteurs¹

Comité scientifique consultatif des pêches canadiennes dans l'Atlantique

CSCPCA Document de recherche 84/80

The 1983 stock status and 1984-85 yield projections for Division 4RST Redfish

by

P.J. Rubec, J. Wright and A. Boudreau

Fisheries Research Branch Department of Fisheries and Oceans Gulf Region P.O. Box 5030 Moncton, N.B. E1C 9B6

¹This series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research Documents are produced in the official language in which they are provided to the Secretariat by the author. ¹Cette série documente les bases scientifiques des conseils de gestion des pêches sur la côte atlantique du Canada. Comme telle, elle couvre les oroblèmes actuels selon les échéanciers voulus et les Documents de recherche qu'elle contient ne doivent pas être considérés comme des énoncés finals sur les sujets traités mais plutôt comme des rapports d'étape sur les études en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée par les auteurs dans le manuscrit envoyé au secrétariat.

Abstract

Nominal catches of 4RST redfish have declined from a high of 130,000 t in 1973 to 15,000 t in 1980, followed by an increase to about 25,000 t in 1982-83. The commercial catch rates were standardized to Maritimes and Quebec tonnage class 4 otter trawlers fishing in Division 4R. The catch rate standardized by the multiplicative model shows an increase from 0.65 t/h in 1977 to 1.74 t/h in 1983. The catch rate increased in recent years as the result of the entry to the fishery of the abundant year classes of the early 1970's. The fishing pattern of the Magdalen Islands otter trawlers in 1983 shows a concentration of fishing effort in Divisions 4R and 4S between Anticosti Island and the Port au Port Peninsula similar to the 1982 pattern, but more dispersed than in 1981.

The age reading of commercial redfish samples was noted to be inconsistent with that of the previous year. CAFSAC could not accept the present analytical assessment incorporating the 1983 catch at age and recommended that projections be made from the 1982 data presented in the 1983 redfish assessment. The 1983 catch in weight and a 1984 catch set equal to the announced TAC of 50,600 t were used for final projections of catches and mortality rates to 1990. These data were compared to projections at $F_{0.1}$ for all years and to the announced TAC's from 1984 to 1988 with $F_{0.1}$ thereafter. If 50,600t is taken in 1984, projections at $F_{0.1} = 0.15$ for 1985 and 1986 result in catches of 71,000 t and 63,000 t respectively. The announced TAC for 1985 is 50,000 t and 55,000 t in 1986. By fishing below $F_{0.1}$ until 1987, more redfish will be available for exploitation in the late 1980's.

Résumé

Les prises totales de sébaste dans les divisions 4R, 4S et 4T ont diminué pendant une bonne période, passant de 130,000 T en 1973 à 15,000 T en 1980, puis ont connu une hausse, pour atteindre environ 25,000 T en 1982-1983. Les taux de prises commerciales ont été standardisés au tonnage des bateaux de pêche au chalut à panneaux de classe 4 des Maritimes et du Québec qui pêchent dans la division 4R. Le taux de prises standardisé par le modèle multiplicatif fait état d'une augmentation de 0,65 T/h en 1977 à 1,74 T/h en 1983. Le taux de prise a augmenté, au cours des dernières années, en raison du recrutement dans cette pêche des classes d'âge abondantes du début des années 1970. Le modèle de pêche des bateaux de pêche au chalut à panneaux des îles de la Madeleine en 1983 indique une concentration de 1'effort dans les divisions 4R et 4S, entre l'île d'Anticosti et la presqu'île de Port au Port, un peu comme ce qui s'est fait en 1982, mais sur un territoire plus grand qu'en 1981.

On a noté que le relevé de l'âge des échantillons commerciaux de sébaste ne correspondait pas à celui des années précédentes. Le CSCPCA n'a pu accepter l'évaluation analytique actuelle comprenant la répartition par âge des prises de 1983, et a recommandé que des projections soient faites avec les données de 1982 qui ont été présentées dans l'évaluation sur le sébaste de 1983. Les prises de 1983, en poids, et les prises pour 1984 fixées au TPA annoncé de 50,600 T on été utilisées pour faire les projections finales des prises et des taux de mortalité jusqu'en 1990. On a comparé ces données aux projections à un taux d'exploitation F0.1 pour toutes les années, puis avec les TPA annoncés, de 1984 à 1988, et avec le taux d'exploitation F0.1 par la suite. Si l'on prend le chiffre de 50,600 T en 1984, les projections à F0.1 = 0,15 pour 1985 et 1986 donnent des prises de 71,000 et de 63,000 T respectivement. Le TPA annoncé est de 50,000 T pour 1985 et de 55,000 T pour 1986. Si l'on fait la pêche en-dessous du taux d'exploitation F0.1 jusqu'en 1987, il restera plus de sébaste à pêcher pour la fin des années 1980.

Introduction

The redfish fishery in the Gulf of St. Lawrence dates back to 1952. The historical landings and fishing pattern have been summarized previously (Maguire, Lussiaà-Berdou and Rubec 1983). The peak fishing months are from June to September, but redfish are taken year around, ice conditions permitting. Gulf-based fishermen land redfish in Souris PEI, Caraquet NB, Cap-aux-Meules on the Magdalen Islands, Que., and to less extent at Matane and Rivière-au-Renard, Que. Non-Gulf based vessels come from Lunenburg and Petit de Grat, NS and Port aux Basques, Nfld. The fishery is primarily situated in the northern Gulf of St. Lawrence in the Esquiman Channel at depths from 240-300 meters. Historical landings are summarized in Figure 1.

Nominal Catches

Provisional catch statistics indicate that 23,434 t of redfish were taken from the Gulf of St. Lawrence in 1983 (Table 1). NAFO Division 4S had the largest share of the redfish catch with 11,614 t being reported. Division 4R followed with 9,213 t, while 2,607 t were caught in Division 4T. More redfish were taken by Maritimes vessels (5,047 t in 4R and 6,961 t in 4S) than by Quebec vessels (3,527 t in 4R and 4,617 in 4S). Quebec vessels based on the Magdalen Islands commenced fishing in 4R later than Maritimes vessels due to licensing problems (Table 2). In Division 4T, Quebec vessels landed 1,928 t in comparison to 656 t by Maritimes vessels. Newfoundland vessels fished primarily in 4R (639 t) with smaller catches reported from 4S (36 t) and 4T (23 t). The highest catches were taken in August and September for all divisions combined (Table 2). In Division 4R, the highest catches were taken in August. Division 4S had the highest catches in September and October. Catches peaked in July and August in 4T. This may reflect the seasonal migration of redfish into the Gulf (Atkinson 1984).

The redfish fishery in Divisions 4RST is predominantly an otter trawl fishery (Table 3). Tonnage class 4 otter trawlers caught 75.3% of the total catch (17,653 t) and fished in all three divisions. Tonnage class 5 otter trawlers from Maritimes and Newfoundland took 2,987 t. Shrimp trawlers operated mainly in 4S where they landed 715 t.

Catch Composition

Table 4 shows the number of commercial length measurements (25,016) used to calculate the numbers at age for males (11,902) and females (13,114). Length measurements from redfish were supplied by Gulf Region (6,823 from PEI and NB and 4,032 from Que.), Scotia Fundy Region (935) and Newfoundland Region (7,561) port samplers. In addition the Quebec Observer Program supplied 2,398 measurements and the Quebec Provincial Government 8,977 length measurements. Measurements from redfish landed by otter trawlers (6,353) and shrimp trawlers (5,232) in Division 4S provided the most samples. A total of 8,268 measurements were obtained from otter trawlers in 4R and 5,163 samples from otter trawlers in 4S. Sampling was adequate in all divisions for most months (Table 4). High catches of redfish in 4S and 4R in December are reflected by large samples taken when the fish were landed at ports in 4T and 4R.

.../5

Monthly length frequencies were combined for each sex separately using computer software described by Gavaris and Gavaris (1983). This software allows weighting each monthly length frequency by the appropriate catch weight to obtain composite length frequencies for a chosen time period. Length frequencies were first combined within each division for otter trawlers (and also for shrimp trawler samples in Div. 4S). A flow chart describing how the samples were combined is given (Figure 2). The combinations were made separately for males and for females to obtain yearly length frequencies for each division. The frequencies were further combined and weighted by the total catch weights to obtain frequencies for Divisions 4RST combined for each sex of redfish (Figure 3). An overall frequency for the sexes combined for 1983 was also obtained.

Other combinations of length frequencies weighted by catch weights between divisions were also calculated. The time periods Jan.-Feb., March-June and July-Dec. were combined between Divisions 4R, 4S and 4T. The overall length frequencies for each sex and for sexes combined are very similar to those obtained within divisions. This reflects the fact that the fishery is very homogeneous and has been concentrated on redfish from the early 1970's year classes in the area between the east end of Anticosti Island and the Port aux Port Peninsula (Lussiaà-Berdou and Maguire 1983). A similar fishing pattern for Quebec vessels was exhibited during 1983 (Figure 4). The convergence of Divisions 4R, 4S and 4T in this area means that the same cohorts of redfish are being taken in all divisions.

Recent advice to CAFSAC indicates that the species of redfish being taken by the commercial fishery is the Deepwater Redfish (<u>Sebastes mentella</u>). This species appears to have produced the strong year classes which are presently sustaining the commercial fishery (CAFSAC 1984). The Acadian Redfish (<u>Sebastes fasciatus</u>) predominates only in depths less than 200 m where there is little fishing due to low catch rates and rough bottom.

The combined frequencies for Divisions 4RST were merged with age-length keys for each sex and for the sexes combined to obtain catches at age. The sum of the total variances from ages 8-30 within divisions is 4,182,726 compared to 4,182,584 between divisions. The closeness of the values reflects the homogeneous nature of the catches within and between divisions concentrated on the early 1970's year classes. Within divisions catches at age were used in subsequent calculations to maintain methods comparable to the previous assessment (Maguire, Lussiaà-Berdou and Rubec 1983).

Weights at Age

Weights at age for 1983 were calculated from average lengths at age and the following weight-length relationships (McKone, Atkinson and Legge 1980).

> $Male_{wt} = 0.01659 FL 2.9548$ Female_{wt} = 0.01372 FL 3.0210

Where FL signifies fork length in centimeters and weights are in grams.

The 1972 to 1980 catch at age and the 1972 to 1981 weights at age were taken from Gavaris and Atkinson (1982). The 1972 to 1982 catch at age matrix is shown in Table 5.

When 1983 weights at age were compared with 1982 weights at age (Table 6), it was noted that the 1983 data were higher on the average than those calculated for 1982. Investigation of this indicated that the bias was due to too much spread of the numbers for each age in the age-length keys. Since weights are approximately proportional to the cube of the length, higher lengths for each age contribute disproportionately to the mean weights at age. The CAFSAC subcommittee noted that the calculated 1983 weights at age were biased and recommended that the mean weights at age for 1981 and 1982 be used to estimate 1983 weights at age. These values are given for 1983 in the weights at age matrix in Table 7.

Commercial Catch Rates

Commercial catch rates have been used as an abundance index because research vessel indices have too short a time series (Maguire, Lussiaà-Berdou and Rubec 1983). Commercial catch rates from 1959 to 1982 for the directed redfish fishery (50% or more redfish catches) for vessels tonnage class 4 and larger were standardized to Maritimes and Quebec otter trawlers fishing in Division 4R during January using a multiplicative model (Gavaris 1980). Catch and effort data for 1982 and 1983 were updated.

An unweighted regression was first calculated. The resulting regression coefficients showed the following variables had similar power. They were then combined to increase the explanatory power of the model:

Midwater trawlers TC5 Maritimes and Quebec _____ Midwater trawlers TC5 Newfoundland _____ February _____ March _____ June _____ July ____ August _____ September ____

Regressions were conducted using the following weighing factors, unweighted, EGLS, Effort, and the fourth root of Catch X Effort. The data set used was the same up to 1981 as that used last year (Maguire, Lussiaà-Berdou and Rubec 1983).

All regressions showed essentially the same pattern, although the estimated coefficients for the last year (1983) covered a wider range. The fourth root of catch times effort gave the smoothest pattern, and the highest correlation coefficient r and multiple R^2 values, of the various regressions tried. The fourth root regression was thus chosen and the resulting Analysis of Variance is shown in Table 8. The catch rates are shown in Table 9 and Figure 5. Catch rates increased from 1962 to 1967 (1.73 t/h) and then declined until 1977 (0.65 t/h). The catch rates have increased since then to reach 1.75 t/h in 1982 and 1.74 t/h in 1983.

.../7

Concerns have been expressed that the catch rate in recent years may be somewhat overestimated due to the concentration of fishing effort (Lussiaà-Berdou and Maguire 1983; Maguire, Lussiaà-Berdou and Rubec 1983). There was a shift to the use of Engel 145 high lift trawls by Tonnage Class 4 and 5 vessels commencing in 1981. Several processors have noted that this caused about a 20% increase in the catch rates. Further data are needed before any adjustment can be made in the standardized catch rates derived from the multiplicative model.

Partial Recruitment

Various methods exist for the calculation of partial recruitment (PR) vectors (O'Boyle 1981). Last year's assessment derived a PR vector for 1982 by taking the percent commercial catch at age divided by the percent research vessel catch at age (Maguire, Lussiaà-Berdou and Rubec 1983). Calculations by this method for the present assessment resulted in an unrealistic fully recruited age of nine. Historical averaging was another method tried. By inputting the 1982 PR vector (Table 10), the catch at age matrix fom 1972 to 1983 and last year's terminal fishing mortality ($F_T=0.05$), a cohort run was made to derive a mortality matrix including data for 1983. Mortality values (F) were averaged over a range of fully recruited ages (14-18) for the years 1972 to 1983, after these F values had been weighted by the population numbers for ages 14-18. For each year, the mean F values were divided into the F values of the mortality matrix for ages 5-29. This derived a partial recruitment matrix. By averaging across the PR matrix a new PR vector was derived. Several PR vectors were calculated (Table 10). The first was unsmoothed and has the age of full recruitment at age 14. The second was smoothed and has the age of full recruitment at age 17.

The PR vectors calculated from the 1983 data were not satisfactory to CAFSAC. The PR vector at age 17 was different from previous assessments which placed the age of full recruitment near age 14. The PR vector at age 14 for 1983 was thought to increase too abruptly. It was decided that the PR vector of 1982 (Table 10) should be used in the present assessment calculations.

Sequential Population Analysis

Cohort (SPA) runs were conducted with various terminal fishing mortalities (F_T). The 1982 PR vector was used for the runs and the natural mortality rate was assumed to be M = 0.10 for all years and all ages. The results of these analyses incorporating 1983 data were not accepted by CAFSAC due to concerns about the 1983 catch at age. CAFSAC decided that it would be best to project from the catch at age matrix from 1972 to 1982 (Maguire, Lussiaà-Berdou and Rubec 1983).

Catch Projections

The abundance of the youngest age classes could not be adequately estimated from the research vessel survey because the survey in 1983 used a Western IIA trawl with 40 mm mesh in the cod-end. Previous research vessel estimates of juvenile abundance were obtained with a Yankee 36 trawl with 19 mm mesh in the cod-end. Consequently, juvenile recruitment was set at 287 million for age 5, which is equal to the geometric mean for the period from 1972 to 1979.

For projections from the catch at age matrix (Table 5), $F_{0.1} = 0.15$ was used as an appropriate average value for redfish (Gavaris and Atkinson 1982). Projections were based on the 1982 assessment (Maguire, Lussiaà-Berdou and Rubec 1983). In Table 11, the first projection at $F_{0.1}$ for all years from 1984 to 1990 assumes that 75,000 t was taken in 1983, when only 23,434 t was estimated to have been taken (Table 2). The second projection assumes that 50,600 t will be taken in 1984 with catches at $F_{0.1}$ thereafter. If 50,600 t is taken in 1984, the projection indicates a TAC of 71,000 t in 1985 and a decline to about 44,300 t by 1990. The third projection incorporates announced TAC's from 1983 to 1988 with catches at $F_{0.1}$ in 1989 and 1990. There is a less precipitous decline in the stock with the exploitable biomass estimated to be 48,100 t by 1990. Catch projections at age for 1984 and 1985 are calculated at $F_{0.1}$ for both years (Table 12), at 50,600 t in 1984 and $F_{0.1}$ in 1985 (Table 13), and at the announced quotas of 50,600 t in 1984 and 50,000 t in 1985 (Table 14).

Acknowledgements

We would like to thank Jim Murphy and Ted Currie for technical assistance. Jean-Paul Lussiaà-Berdou, Gouvernement du Québec, Ministère de l'Agriculture des Pêcheries et de l'Alimentation, kindly provided length frequencies and the data used in Figure 4. We thank Jean-Jacques Maguire with DFO, Quebec Region for his advice and assistance with final projections.

References Cited

- Atkinson, D.B. 1984. Distribution of beaked redfish in the Gulf of St. Lawrence. J. Northw. Atl. Fish. Sci. 5(2): 189-197.
- CAFSAC 1984. Advice on the management of Gulf of St. Lawrence redfish -NGBV allocation. CAFSAC Advisory Document 84/1.
- Gavaris, C.A. and D.B. Atkinson, 1982. Assessment of redfish in Divisions 4RST. CAFSAC Res. Doc. 82/30: 1-24.
- Gavaris, S. 1980. Use of a multiplicative model to estimate catch rate and effort from commercial catch data. Can. J. Fish. Aquat. Sci. 37(12): 2272-2275.
- Gavaris, S. and C.A. Gavaris, 1983. Estimation of catch at age and its variance for groundfish stocks in the Newfoundland region. Can. Spec. Publ. Fish. Aquat. Sci. 66: 178-182.
- Lussiaà-Berdou, J.-P. and J.J. Maguire, 1983. Distribution géographique entre 1975-1982 québécois de l'effort de pêche des chalutiers de plus de 100' pêchant le Sébaste. CSCPCA Doc. de recherche 83/82: 1-23. (CAFSAC Res. Doc. 83/82: 1-23)
- Maguire, J.J., J.-P. Lussiaà-Berdou, and P. Rubec, 1983. The 1982 stock status and 1983-84 yield projections for 4RST redfish. CAFSAC Res. Doc. 83/50: 1-39.
- McKone, W.D., D.B. Atkinson and W. Legge, 1980. Gulf of St. Lawrence redfish assessment. CAFSAC Res. Doc. 80/60: 1-43.
- O'Boyle, R.N. 1981. The generation of input parameters for sequential population analysis. CAFSAC Res. Doc. 81/78: 1-37 (revised).

Table 1Nominal catches of redfish by division, country, region and year in the Gulf of St. Lawrence in
metric tons.

			4R					4S					4T			4RST	
YEAR	CAN-N	CAN-M	CAN-Q	FRAN	TOTAL	CAN-N	CAN-M	CAN-Q	FRAN	TOTAL	CAN-N	CAN-M	CAN-Q	FRAN	TOTAL	TOTAL	TAC
==== 1979	717	1722	1197	127	37 63	32	2408	5189	 0	7629	74	17 73	1795	0	 3642	15 03 4	16 0 0 0
1980	709	2476	1567	57	4809	184	2444	5497	0	81 25	O	668	1230	0	1898	14832	16000
1981	1207	3802	26 60	16	7685	411	3618	6144	0	10173	270	1100	1321	0	2691	2054 9	20000
1982	1880	4028	3492	10	9410	358	6792	6647	0	13797	1 17	49 8	26 07	0	3222	26 429	31000
1983	639	5047	3527	0	9213	36	6961	4617	0	11614	23	656	1928	0	26 07	23434	33000

MONTH			4R				45				4T		- 4RS
	CAN-N	CAN-M	CAN-Q	TOTAL	CAN-N	CANM	CAN-Q	TOTAL	CAN-N	CAN-M	CAN-Q	TOTAL	TOTAL
Jan	66	===== == 27	 0	93	6	 0	 0	6	0	 0	 0	0	99
Feb	3	10	0	13	0	6	0	6	0	0	0	0	19
Mar	56	0	0	56	0	1	0	1	0	0	0	0	57
Apr	38	1	0	39	0	0	2	2	0	1	0	1	42
May	33	135	0	168	1	14	135	15 0	0	1	4	5	323
Jun	9	1277	0	1286	0	1047	252	1299	0	17	344	361	2946
Jul	105	606	307	1018	0	802	412	1214	0	224	756	980	3212
Aug	181	784	912	1877	0	1 190	603	1793	21	316	617	954	462 4
Sep	105	501	10 02	16 08	29	1837	965	2831	0	65	196	261	4700
Oct	7	390	854	1251	0	1139	927	2066	0	9	11	20	3337
Nov	0	2 <i>3</i> 7	117	354	0	366	846	1212	2	21	0	23	1589
Dec	36	1079	335	1450	0	559	475	1034	0	2	0	2	2486
TOTAL	639	5047	3527	92 13	36	6961 6 961	4617	1 16 1 4	23	656	1928	26 07	2343

 Table 2
 4 RST redfish nominal catches by division, region and month in 1983.

. 3

				4R				4S				4T		– TOTAL
			CAN-M		TOTAL		CAN-M		TOTAL		CAN-M	•	TOTAL	- IUIAL
ОТВ	0					}				}				
	1	Í									1		1	1
OTB OTB	2 3	277	5		282	1	662	89 162	89 824	2	496	14 123	16 62.4	105 1730
OTB	4	36	3160	3526	672.2	29	51 31	3845			476	17 70	1926	17653
ОТВ	5	152	1867	<i>>>20</i>	2019	7	959	5045			2		2	2987
=====	=====	=====	=======							======	2222222	========		======
ST	2							169	169	}		2	2	171
ST	3		15	1	16	{	207	337	544	1	1	15	16	576
ST	4	{					2		2	1				2
=====	= = = = = =	=====	======			=====								======
SDN	2	8			8	}								8
SDN	3	127			127	í								127
SDN	4									{				{
=====		=====	222222			= = = = = = = = =				= = = = = = = = =				=====
GNS	0	35			35	}				}				35
GNS	2	4			4									4
GNS	3									16			16	16
		=====	******	=======				.2222222				========		
LLS	2							15	15			4	4	19
=======	******	222222 	******						========		2222222	=========		
OTAL		639	5047	3527	92 14	36	6961	4617	11614	23	656	1928	26 07	23434

 Table 3
 4 RST Redfish Nominal Catches by year, tonnage class and division in 1983.

Month	4	4R			4S			4T	
MUNIT	OTB	ST	OTHER	OTB	ST	OTHER	ОТВ	ST	OTHER
22222	±=====================================		********	17422222222222 {			:2222222222222 {		
Jan	481-737/93		-	151-147/6					
Feb	0-0/13			0-0/6					
Mar	152-259/56			0-0/1					
Apr	495-203/39				0-0/2			0-0/1	
May	497-389/158	0-0/5	0-0/5	0-0/117	107-69/32	0-0/1	0-0/5		
Jun	341-288/1279	0-0/1	0-0/6	230-179/1209	753-246/89	0-0/1	232-170/352	0-0/1	0-0/8
Jul	2 <i>3</i> 9-206/1005	0-0/1	0-0/12	622-483/1044	542-551/158	0-0/12	97-77/970	0-0/10	
Aug	400-485/1730	0-0/8	0-0/139	628-731/1646	614-815/146	0-0/1	113-69/932	0-0/4	0-0/18
Sep	603-1017/1598		0-0/10	800-1075/2637	463-883/193	0-0/1	0-0/241	0-0/3	0-0/17
Oct	306-402/1249		0-0/2	486-571/1984	68-121/82		0-0/19	0-0/1	
Nov	0-0/354			87-163/1200	0-0/12		681-743/23		
Dec	322-446/1450			0-0/1034			1 <i>3</i> 92–1589/2		
				<u> </u>			<u> </u>		

 Table 4
 Redfish 4RST commercial sampling & nominal catches for 1983. Number of fish measured (male-female)/

 nominal catches.

Age	1972	1973	1974	1975	1976	1977	1978	1979	19 80	1981	19 82
=======			======	======	=======	1222222					******
5	142	273	170	355	7359	3801	3368	2266	125	1	1
6	1272	639	698	620	1482	2119	26 56	2378	285	4	1
7	784	3112	292	290	1073	824	51 1	2233	2728	308	72
8	944	2 <i>3</i> 80	444	401	372	669	280	2899	7800	2586	767
9	1887	803	510	448	188	620	800	2373	7928	10810	3642
10	4297	3434	210	286	44	416	708	27 53	5723	1 19 74	4395
11	2938	80 4 3	403	161	146	409	491	1902	2141	7276	9634
12	6366	2497	463	329	125	236	372	1838	1516	52 22	9421
13	2588	12850	2240	974	383	171	131	931	853	3419	8467
14	14034	7060	5381	16 54	716	17 7	131	510	532	2085	6701
15	7971	76633	6364	2956	1836	79	153	326	531	1219	5098
16	66593	8222	28 739	4572	3913	123	86	346	26 5	940	2 25 4
17	5102	88382	7953	25149	4025	509	247	887	306	328	1727
18	7659	5583	37269	5771	15842	379	10 03	1131	300	401	668
19	4299	9916	2989	41020	3380	2959	1399	2 <i>3</i> 92	500	973	906
20	3697	7166	3 3 87	4156	16 51 9	1273	3621	1943	16 01	858	995
21	2471	4548	1371	3453	1533	5259	1294	3376	92 1	1133	792
22	2598	4333	1233	3489	2131	2519	3468	1542	2446	1 192	997
23	2366	4934	471	2634	1431	2314	4425	3048	1348	2120	1344
24	1 16 8	1306	1 16 8	1632	1317	1814	1027	1013	2219	1235	2020
25	5840	2277	825	1356	543	1 16 0	725	869	82 2	15 5 5	1001
26	1	7963	1815	1 18 6	430	1027	222	905	505	826	1336
27	1	1	5844	2080	408	229	222	506	298	458	673
28	1	1	1	72 59	659	515	315	52 2	234	262	539
29	1	1	1	1	2370	196	103	102	78	136	245
	ŀ										

Table 54RST redfish catch at age for 1972 to 1982.

1

Age	Mean Weig	ht (kg) ⁻	Mean Fork I	_ength (cm)
nge	1982	1983	19 82	1983
				*====****
7	0.118	0.085	20.4	18.0
8	0.197	0.209	23.1	24.3
9	0.245	0.271	24.4	26.3
10	0.287	0.337	26.0	28.3
11	0.317	0.355	27.3	28.9
12	0.345	0.388	28.2	29.7
13	0.377	0.395	29.8	29.9
14 `	0.387	0.412	30,5	30.4
15	0.420	0.432	31.1	30.9
16	0.483	0.517	32.3	32.7
17	0.478	0.551	32.2	33.4
18	0.529	0.602	33.9	34.5
19	0.479	0.601	33.2	34.4
20	0.492	0.711	33.5	36.3
21	0.510	0.693	34.1	35.9
22	0,527	0.830	34.3	38.2
23	0.567	0.836	35.1	38.2
24	0.602	0.884	35.1	39.0
25	0.652	0.912	36.0	39.3
26	0.666	0.809	36.3	37.8
27	0.753	1.020	38.2	40.9
28	0.771	0.923	38.4	39.4
29	0.835	0.812	39.0	38.0
30	0.970	1,144	40.5	39.2

Table 6Comparison of mean weights and mean lengths of Division 4RST redfish between 1982 and 1983 for
sexes combined (commercial data), which shows error in 1983 values due to ageing problem.

.../16

Table 7 4RST redfish average weights at age for 1972 to 1983.

Age	1972	19 <i>7</i> 3	1974	1975	1976	1977	1978 I	1979	1980	1981 1	1982 1	1983
=======) 828222222	 	 =========	=========	 2222222	 ========) ===========	 ===========		 	 ============) :2222222===
	ł											
5	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090
6	0.103	0.103	0.103	0.103	0.103	0.103	0,103	0.103	0.103	0.085	0.085	0.085
7	0.135	0.135	0.135	0.135	0 <u>.</u> 135	0.135	0,135	0.135	0.135	0.165	0,118	0.142
8	0.169	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0.165	0,219	0.197	0.208
9	0.205	0.205	0.205	0.205	0.205	0.205	0.205	0.205	0.205	0,263	0.245	0.254
10	0.243	0.243	0.243	0.243	0.243	0.243	0.243	0.243	0.243	0.293	0,287	0.290
11	0.282	0.282	0.282	0.282	0.282	0.282	0.282	0.282	0.282	0.320	0.317	0,319
12	0.322	0.322	0.322	0.322	0.322	0.322	0.322	0.322	0.322	0.346	0.345	0,346
13	0.362	0,362	0.362	0.362	0,362	0.362	0.362	0.362	0.362	0.388	0.377	0,383
14	0.403	0.403	0.403	0.403	0.403	0.403	0.403	0.403	0.403	0.406	0.387	0.397
15	0.443	0.443	0.443	0.443	0.443	0.443	0.443	0.443	0.443	0.454	0.420	0.437
16	0.482	0.482	0.482	0.482	0.482	0.482	0.482	0.482	0.482	0.465	0.483	0.474
17	0.521	0.521	0.521	0.521	0.521	0.521	0.521	0.521	0.521	0.502	0.478	0.490
18	0.559	0.559	0.559	0.559	0.559	0,559	0.559	0.559	0.559	0.535	0.529	0.532
19	0.596	0.596	0.596	0.596	0,596	0.596	0.596	0.596	0.596	0.522	0.479	0.501
20	0.631	0.631	0.631	0.631	0.631	0.631	0.631	0.631	0.631	0.569	0.492	0.531
21	0.665	0.665	0.665	0.665	0.665	0,665	0.665	0.665	0.665	0,552	0.518	0.535
22	0.698	0.698	0.698	0.698	0.698	0.698	0,698	0,698	0.698	0.621	0.527	0.574
23	0.730	0.730	0.730	0.730	0.730	0.730	0.730	0,730	0.730	0.613	0.567	0.590
24	0.759	0.759	0.759	0.759	0.759	0.759	0.759	0.759	0.759	0.626	0.602	0.614
25	0.788	0.788	0.788	0.788	0.788	0.788	0.788	0,788	0.788	0.682	0.652	0.667
26	0.815	0.815	0.815	0.815	0.815	0.815	0.815	0.815	0.815	0.757	0.666	0.712
27	0.841	0.841	0.841	0.841	0.841	0.841	0.841	0.841	0.841	0.782	0.753	0.768
28	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.866	0.869	0.771	0.820
29	0.889	0.889	0.889	0.889	0.889	0.889	0.889	0.889	0.889	0.879	0.835	0.857
	•											

Table 8: 4RST redfish ANOVA table from standardization model.

Multiple r = 0.736Multiple $R^2 = 0.541$

SOURCE OF VARIATION	DEGREES OF FREEDOM	SUM OF SQUARES	MEAN SQUARES	f value

Intercept	1	17.11	17.11	
Regression	3	277.90	7.13	44.48
Gear type-tonnage class	s 5	61.88	12.38	77.25
Months	8	162.20	20.27	126.52
Divisions	2	4.48	2.24	13.97
Years	24	123,50	5.14	32.11
Residuals	1470	235.50	0.16	
TOTAL	1510	530,50		

		PROPORTION OF TOTAL CATCH	CAT	CH RATE	
YEAR	TOTAL CATCH	ACCOUNTED FOR IN STANDARD CPUE	MEAN	STANDARD Error	EF FOR T
		*======		=======================================	*********
1959	16,978	0,392	0.798	0.083	21,282
1960	12,218	0,389	0.790	0,082	15,462
1961	10,391	0,393	0.730	0.086	14,241
1962	6,585	0.208	0.575	0.079	11,448
1963	19,794	0.361	1.091	0.110	18,146
1964	29,700	0.162	1.220	0.135	24,341
1965	48,827	0.242	1.271	0,126	38,420
1966	65,215	0,331	1.402	0.118	46,511
1967	70,036	0,260	1.725	0.150	40,589
1968	90,963	0.395	1.646	0.129	55,248
1969	88,875	0.494	1.139	0.084	78,006
1970	87,588	0.555	0.944	0.066	92,790
1971	79,406	0.531	0.928	0.066	85,592
1972	80,329	0.741	1.128	0.082	71,187
1973	130,164	0.833	0.888	0.064	146,567
1974	63,489	0,792	0.637	0.045	99,655
1975	65,401	0.818	0.645	0.046	101,437
1976	37,983	0.704	0.730	0.055	52,044
1977	15,840	0.494	0.645	0.059	24,558
1978	13,591	0.578	0.832	0.080	16,340
1979	15,034	0.495	0.875	0.095	17,182
1980	14,832	0.688	1.263	0.128	1 1, 747
1981	20,549	0.557	1.421	0.141	14,458
1982	26,429	0.784	1.746	0.140	15,139
1983	23,434	0.837	1.735	0.140	13,504

Table 9: 4RST redfish catch rate standardized to Maritimes and Quebec tonnage class 4 otter trawlers inDivision 4R during the month of January.

٨==	1982 Full recruitment	1983 Full recruitment	1983 Full recruitment
Age	at 14	at 14	at 17
	al 14	al 14	al 1/
			وی و
5	0.003	0.018	0.013
6	0.003	0.026	0.019
7	0.060	0.050	0.036
8	0.170	0.074	0.053
9	0.300	0.100	0.071
10	0.450	0.198	0.107
11	0.600	0.303	0.161
12	0.750	0.227	0.207
13	0.900	0.409	0,268
14	1.000	1.000	0,386
15	1.000	1.000	0.571
16	1.000	1.000	0,821
17	1.000	1.000	1.000
18	1.000	1.000	1.000
19	1.000	1.000	1.000
20	1.000	1.000	1.000
21	1.000	1.000	1.000
22	1.000	1.000	1.000
23	1.000	1.000	1.000
24	1.000	1.000	1.000
25	1.000	1.000	1.000
26	1.000	1.000	1.000
27	1.000	1.000	1.000
28	1.000	1.000	1.000
29	1.000	1.000	1.000

Table 10: 4RST redfish partial recruitment vectors used in tuning of cohort.

set at 287 million.

		1984	1985	1986	1987	1988	1989	1990
4	Destation	5 40.07						
1.	Projection	TEOM 1983	assessment	with all yea	rs at FO•1			
		69,200	62,800	56,100	50,900	46,200	43,600	41,600
2	Projection	f 40.07						
2.	L LOJECT DU	ICOM 1985	assessment	with 1984 be	1ng 50,600	t and FO.1	thereafter.	
		50 , 600	71,500	63 , 200	56 , 700	50 , 600	47,100	44,300
3.	Projection	from 1983	assessment	with approve	d TAC's to	1988 and F ₍)•1 thereaft	er.

50 , 600	50,000	55,000	55 , 000	60,000	51 , 300	48,100
-----------------	--------	--------	-----------------	--------	-----------------	--------

.../21

Age ===	Population Numbers in thousands		Population Biomass (mean) in metric tonnes		Catch Biomass		Fishing Mortality	
	_							
5	287,000	287,000	24,575	24,575	11	11	0.000	0.000
6	259,572	259,572	20,992	20,992	9	9	0.000	0.000
7	234,869	234,764	26,258	26,246	236	236	0.009	0.009
8	210,962	210,614	39,057	38,993	996	994	0.026	0.026
9	20,098	186,080	4,584	42,439	206	1,910	0.045	0.045
10	73,898	17,385	19,528	4,594	1,318	310	0.068	0,068
11	193,773	62,501	55,943	18,044	5,035	1,624	0.090	0.090
12	151,841	160,243	47,193	49,805	5,309	5,603	0.113	0.113
13	243,144	122,773	81,691	41,249	11,028	5,569	0.135	0.135
14	185,271	192,222	63,440	65,820	9,516	9,875	0.150	0.150
15	136,168	144,289	50,602	53,620	7,590	8,043	0.150	0,150
16	96 , 743	106,048	41,344	45,320	6,202	6 , 798	0.150	0.150
17	73,600	75,343	31,128	31,865	4,669	4,780	0.150	0.150
18	32,541	57,320	15,231	26,829	2,285	4,024	0.150	0.150
19	24,933	25,343	10,567	10,741	1,585	1,611	0.150	0.150
20	9,644	19,417	4,198	8,453	630	1,268	0.150	0.150
21	13,080	7,511	5,902	3,389	885	508	0.150	0.150
22	14,365	10,187	6,698	4,750	1,005	71 2	0.150	0.150
23	11,434	11,187	5,433	5,316	815	797	0.150	0.150
24	14,394	8,905	7,667	4,743	1,150	71 1	0.150	0.150
25	19,403	11,210	11,193	6,467	1,679	970	0.150	0.150
26	29,163	15,111	17,185	8,905	2,578	1,336	0.150	0.150
27	14,451	22,712	9,629	15,132	1,444	2,270	0.150	0.150
28	19,288	11,255	13,158	7,678	1,974	1,152	0.150	0.150
29	9,716	15,021	7,178	11,098	1,077	1,665	0.150	0.150
- 22	22222222222		1222222222222				*********	
5+	2,379,348	2,274,012	620,372	577,061	69,232	62,785		
14+	704,194	733,081	300,553	310,126	45,084	46,520		

Table 12:4RST redfish projections from 1983 assessment at F_{0.1} for 1984 and 1985.(Assumes 75,000t taken in 1983).G.M. recruitment = 287 million, partialrecruitment as used in 1983 assessment

ļ	Population Numbers in thousands		Population Biomass (mean) in metric tonnes		Catch Biomass		Fishing Mortality	
\ge	1984	1985	1984	1985	1984	1985	1984	1985
:2223		 252525253333		*****************		 	¦ 2222222222222	22222222222
5	287,000	287,000	24,577	24,575	7	11	0.000	0.000
6	259,654	259,612	21,000	20,995	6	9	0.000	0.000
7	234,943	234,875	26,306	26,258	155	236	0.006	0.009
8	212,300	211,339	39,476	39,127	658	998	0.017	0.026
9	20,461	188,922	4,702	43,087	1 <i>3</i> 8	1,939	0.029	0.045
10	76,271	17,977	20,386	4,751	899	321	0.044	0.068
11	203 , 184	66,035	59,555	19,065	3,503	1,716	0.059	0.090
12	161 , 752	173,348	51,231	53,876	3,766	6,061	0.074	0.113
13	263,141	135,985	90,427	45,688	7,978	6,168	0.088	0.135
14	203,703	217,995	71,518	74,645	7,010	11,197	0.098	0.150
15	151,302	167,108	57,650	62 , 100	5,651	9,315	0.098	0.150
16	107,494	124,121	47,102	53,044	4,617	7,957	0.098	0.150
17	81,779	88,183	35,464	37,296	3,476	5,594	0.098	0.150
18	36,157	67,088	17,352	31,401	1,701	4,710	0.098	0.150
19	27,703	29,662	12,039	12,571	1,180	1,886	0.098	0.150
20	10,716	22,727	4,783	9,893	469	1,484	0.098	0.150
21	14,534	8,791	6,724	3,967	6 59	595	0.098	0.150
22	15,961	11,923	7,631	5,559	748	834	0.098	0.150
23	12,705	13,094	6,190	6,221	607	933	0.098	0.150
24	15,993	10,423	8,735	5,552	856	833	0.098	0.150
25	21,559	13,120	12,753	7,569	1,250	1,135	0.098	0.150
26	32,404	17,686	19,579	10,422	1,919	1,563	0.098	0.150
27	16,058	26,583	10,969	17,711	1,075	2,657	0.098	0.150
28	21,431	13,173	14,990	8,986	1,469	1,348	0.098	0.150
29	10,796	17,581	8,178	12,989	802	1,948	0.098	0.150
			·	·		·		
===== 5+	2,449,003	2,424,350	679 , 318	637 , 349	50,600	71,448	898888888888888888888888888888888888888	8282828288
14+	780,295	849,258	341,657	359,927	33,489	53,989		

Table 13:	4RST redfish projections from 1983 assessment taking 50,600t in 1984 and $F_{0.1}$ in 1985.
	G.M. recruitment = 287 million, partial recruitment as used in 1983 assessment.

- 22 -

- 23 -

Table 14:4RSI projections from 1983 assessment with approved TAC's for 1984 and 1985.G.M. recruitment set at 287 million, partial recruitment as used in 1983 assessment.

	Population Numbers in thousands		Population Biomass (mean)		Catch Biomass		Fishing Mortality	
Age	1984	1985	1984	1985	1984	1985	1984	1985
					· • • • • • • • • • • • • • • • • •			
5	287,000	287,000	24,577	24,577	7	7	0.000	0.000
6	259,654	259,614	21,000	20,997	6	6	0.000	0.000
7	234,944	234,878	31,547	31,535	181	189	0.006	0,006
8	212,313	211,372	41,691	41,491	677	704	0.016	0.017
9	20,467	189,016	4,878	45,021	140	1,349	0.029	0.030
10	76,321	17,996	20,624	4,858	886	2 18	0.043	0.045
11	203,401	66,154	59,946	19,472	3,434	1,167	0.057	0.060
12	162,000	173,800	51,432	55 , 090	3,682	4,126	0.072	0.070
13	263,668	136,456	92,033	47,538	7,907	4,273	0,086	0.090
14	204,206	218,935	73,546	78,683	7,021	7,858	0.095	0.100
15	151,739	167,950	60 , 232	66,525	5,750	6,644	0.095	0.100
16	107,829	124,799	46,426	53 , 618	4,432	5,355	0.095	0.100
17	82,034	88,684	36,512	39,388	3,486	3,934	0.095	0.100
18	36,270	67,469	17,527	32,534	1,673	3,249	0.095	0.100
19	27,790	29,830	12,634	13,532	1,206	1,352	0.095	0.100
20	10,749	22,856	5,180	10,990	494	1,098	0.095	0.100
21	14,579	8,841	7,032	4,255	671	425	0.095	0.100
22	16,011	11,990	8,348	6 , 2 <i>3</i> 8	797	62 3	0.095	0.100
23	12,745	13,168	6,656	6,863	635	685	0.095	0.100
24	16,043	10,482	8,948	5,833	854	583	0.095	0,100
25	21,627	13, 195	13,103	7,977	1,251	797	0.095	0.100
26	32,505	17,787	21,007	11,471	2,005	1,146	0.095	0.100
27	16,107	26,734	11,229	18,598	1,072	1,857	0.095	0,100
28	21,498	13,248	16,013	9,846	1,529	983	0.095	0.100
29	10,830	17,681	8,430	13,735	805	1,372	0.095	0.100
****		828888888888888888888888888888888888888		=========================		22222222232333	:2222222222222	222222222
5+	2,502,330	2,429,934	700,550	670,665	50,600	50 , 000		
14+	782,562	853,649	352,823	380,086	33,681	37,961		

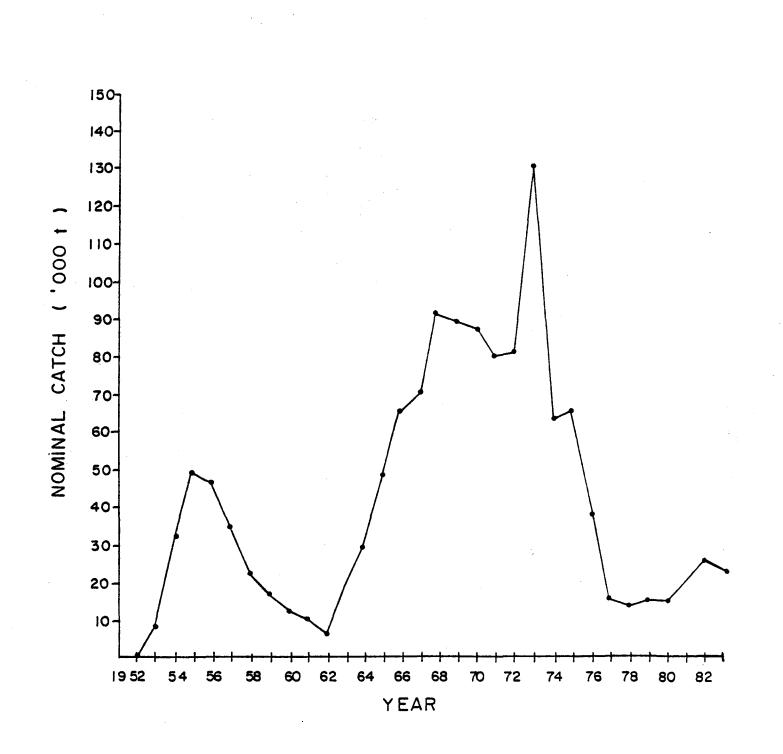
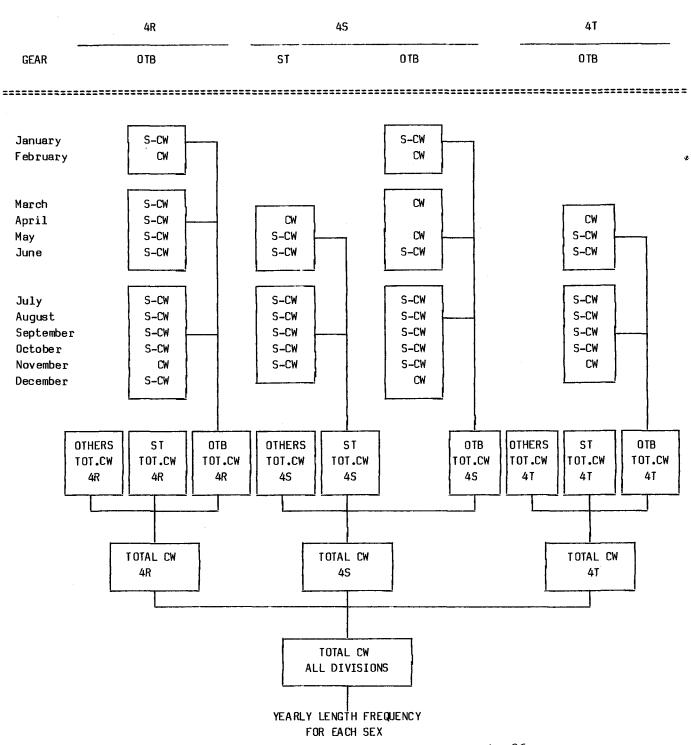



Figure 1. 4RST redfish total nominal catches for 1952-1983

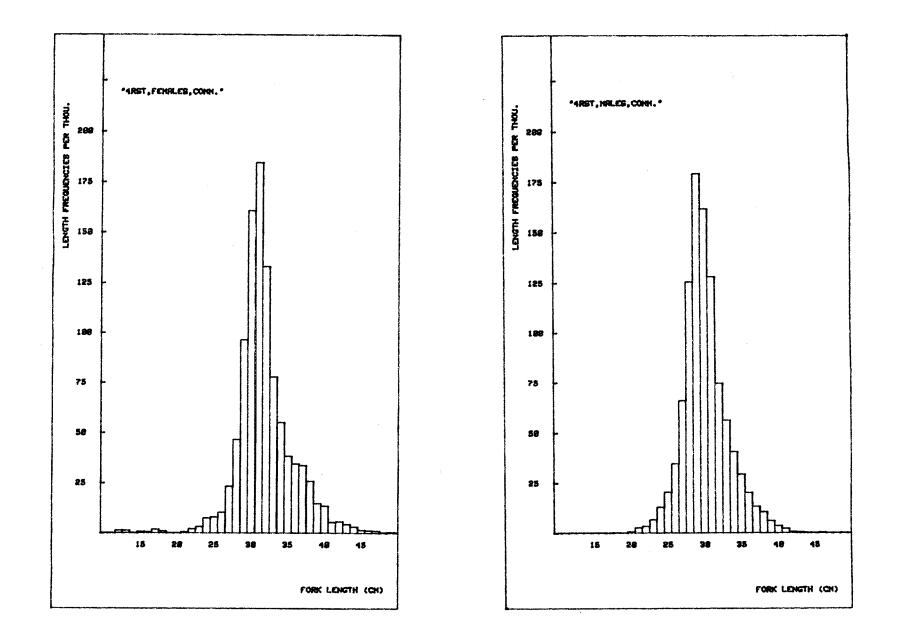
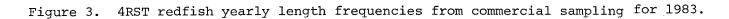

/...25

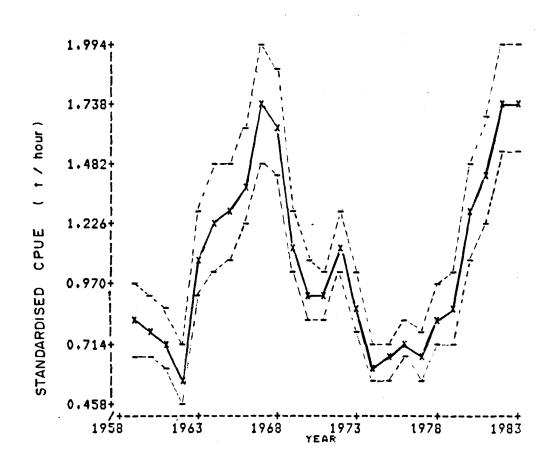
Figure 2: 4RST redfish sample combination used to calculate the 1983 catch at age for each sex. "S" represents length frequency samples which were combined and "CW" represents monthly weights to which length frequencies were applied.

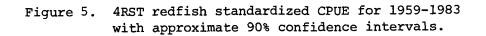
DIVISION



/...26

· • •


27



-26-

-27-

