```
Not to be cited without
permission of the authors }\mp@subsup{}{}{1
Canadian Atlantic Fisheries
Scientific Advisory Committee
CAFSAC Research Document 84/19
```

Ne pas citer sans autorisation des auteurs ${ }^{1}$

Comite scientifique consultatif des pêches canadiennes dans l'Atlantique

CSCPCA Document de recherche $84 / 19$.

# Assessment of Altantic Salmon Stocks in Statistical Areas K and L, Western Newfoundland, 1983 

by<br>J.L. Peppar<br>Fisheries Research Branch Department of Fisheries and Oceans Gulf Region<br>P.O. Box 2009<br>Corner Brook, Newfoundland<br>A2H 626

1
This series documents the scientific basis for fisheries management advice in Atlantic Canada. As such; it addresses the issues of the day in the time frames required and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research Documents are produced in the official language in which they are provided to the Secretariat by the author.

1 Cette série documente les bases scientifiques des conseils de gestion des pêches sur la côte atlantique du Canada. Comme telle, elle couvre les problèmes actuels selon les échéanciers voulus et les Documents de recherche qu'elle contient ne doivent pas être considérés comme des énoncés finals sur les sujets traités mais plutôt comme des rapports d'étape sur les etudes en cours.

Les Documents de recherche sont publiés dans la langue officielle utilisée par les auteurs dans le manuscrit envoyé au secrétariat.

## ABSTRACT

Using recreational catches as indices of spawning escapements, it was evident that spawning escapements were lower than in recent years, for rivers of both Areas $K$ and L. Target spawning requirements were not met on many river systems, and several rivers require substantial increases in spawners to meet these escapements. Total returns in 1983 were below average returns (1978-82) as forecasted. The low abundance of grilse supports last year's projection for 1984 , i.e., that there would be low returns of large salmon in 1984. The low abundance of spawners in all rivers in 1978 and 1979 contributed to the lower returns in 1983 , and should result in lower returns in 1984 as well.

## RE SUME

Les prises récréatives, utilisées comme indices d'échappement en vue de la reproduction, indiquent clairement que le nombre de poissons qui ont échappé a la capture pour frayer a êté inférieur a celui des récentes années, tant dans la zone $K$ que dans la zone $L$. Dans plusieurs réseaux fluviaux, les aiveaux cibles de reproducteurs n'ont pas été atteints, et bien des cours d'eau devront avoir des nombres de reproducteurs substantiellement plus élevés pour atteindre les niveaux visés. Tel que prédit, les retours de 1983 ont êtê inférieurs à la moyenne (1978-1982). La rareté des madeleineaux s'accorde avec les prévisions de l'an dernier pour 1984, a l'effet que les retours de grands saumons seraient faibles en 1984. Le nombre réduit de reproducteurs dans toutes les rivières en 1978 et 1979 a contribué à la faiblesse des retours en 1983, et 11 devrait en être de même en 1984 également.

## INTRODUCTION

A detailed assessment of the Atlantic salmon stocks in Fisheries Statistical Areas $K$ and $L$ of Western Newfoundland was presented by Porter and Chadwick (1983). The impact of restrictions imposed in 1978 by Fisheries and Oceans on commercial and recreational fisheries (Tables 1 and 2) and the present status of stocks in Areas $K$ and $L$, were evaluated. The assessment focused particular attention to concerns expressed earlier over declining commercial and recreational catches (especially large salmon) and apparent declines in egg depositions.

The purpose of this paper is to update and evaluate with previous years the catch and effort statistics from the commercial and recreational fisheries in 1983 and evaluate the status of stocks in light of management strategies imposed in 1983.

METHODS
Commercial landings of salmon for the 1983 season were initially obtained from Economic Services Branch, Corner Brook. These data were later updated with the historical landings for Areas $K$ and $L$ through data provided by DFO, St. John's and Porter and Chadwick (1983). The latter sources provided grilse/large salmon breakdowns of the catches.

Harvests of Atlantic salmon in the recreational fisheries are recorded by field personnel of the Protection and Regulations Branch. Salmon angling reports are completed in the field on a weekly basis and then submitted to Economic Services Branch, Corner Brook, who in turn, provide copies of each report to our Branch. The 1983 harvests were compiled and verified by us and values forwarded to DFO, St. John's. The 1983 harvest values were added to the tables of historical catches provided by DFO, St. John's and Porter and Chadwick (1983).

Target spawning requirements for each river system were provided by Porter and Chadwick (1983). These 2 $^{\text {equirements were calculated using }}$ an egg deposition of 240 eggs per $100 \mathrm{~m}^{2}$ of parr rearing area and an estimate of the number of eggs deposited per spawner (Table 3). An explanation of all the sources of data used and calculations made, is provided in Porter and Chadwick (1983).

Potential escapements to rivers of Areas $K$ and $L$ over the period 1978-82 have been presented (Porter and Chadwick 1983) (Table 21). Values presented in the above have been revised, by incorporating 1983 angling catches. Angling exploitation rates were not available for stocks in Areas $K$ and L. Spawning escapements were calculated using exploitation rates of $20 \%$ and $40 \%$; these are the minimum and maximum observed values for rivers in insular Newfoundland (Chadwick 1982). Thus the potential spawning escapements were based on two angling expoitation rates, $20 \%$ and $40 \%$, representing maximum and minimum values of escapement, respectively and the angling mean catch

1978-83 (Table 22). Adjustments were made for the earlier season openings on the Grand Codroy, Robinsons and Humber Rivers in 1983. Salmon catches during the season extensions in 1983 were subtracted from the "additional fish released" columns (Table 21) for each of these rivers and the totals for Areas $K$ and L, respectively (Table 21). Egg depositions during 1978-83 were calculated assuming that mean harvests in the recreational fishery during this period were proportional to spawning escapements (Chadwick 1982).

## RESULTS

## Area K

Total commercial landings of Atlantic salmon in 1983 were 20 t, up $15 \%$ over the amount landed in 1982 ( 17 t), and down $24 \%$ from the mean 1978-82 ( 26 t) (Table 4a). The landings for 1983 were composed of 6,178 grilse and 2,094 large salmon, down $35 \%$ and up $10 \%$ from the mean 1978-82 grilse (9,425) and large salmon (1,913) landings, respectively (Table 4b).

The commercial landings of grilse were the lowest recorded since 1978. Large salmon landings were the highest since 1980; a declining trend had been recorded since 1980. Overall landings in Area $K$ have been declining since 1980.

Total recreational catch and effort in 1983 were $3,629 \cdot f i s h$ and 16,480 rod days (CPUE of 0.22 ), down $34 \%$ from the catch in 1982 (5,514 fish) and up $7 \%$ over the total effort recorded in 1982 ( 15,417 rod days). The 1983 CPUE was down $39 \%$ from that recorded in 1982 (0.36) (Table 6).

Compared to the mean catch 1978-82 (4,278 fish), the 1982 catch was down $15 \%$, mean effort $1978-82$ ( 12,176 rod days), the 1983 effort was up $35 \%$ and mean CPUE 1978-82 (0.35), the 1983 CPUE was down $37 \%$.

Effort in 1983 was the highest recorded since 1977; an increasing trend since 1979. The grilse catch was the lowest since 1979; it had been increasing since 1978. The large salmon catch was the highest since 1980; it had been decreasing since 1980. Total recreational catch was the lowest since 1979; it had been increasing since 1979. CPUE was the lowest value ever recorded (since 1963); it has been decreasing since 1980.

The maximum estimate of spawning escapement in 1978-83 indicates a surplus of 9,168 fish and a minimum estimate a deficit of 1,257 fish, over the target number of 25,059 spawners (Table 22).

## Harry's River

The angling season on Harry's River was the same as previous years (since 1978). Total recreational catch and effort in 1983 were 563 fish and 2,439 rod days (CPUE of 0.23 ), down $6 \%$ from the catch in 1982 ( 601 fish) and up $14 \%$ over effort recorded in 1982 ( 2,141 rod days). The CPUE was down $18 \%$ from that recorded in 1982 ( 0.28 ) (Table 7).

Compared to the mean catch 1978-82 (558 fish), the 1983 catch was up $0.9 \%$, mean effort $1978-82$ ( 1,944 rod days), the 1983 effort was up $26 \%$, and mean CPUE 1978-82 (0.29), the 1983 CPUE was down $21 \%$.

Effort in 1983 was the highest recorded since 1978 and has been steadily increasing since 1979. The total salmon catch was the lowest since 1980. CPUE has been declining since 1980.

The target number of spawners for Harry's River is 4,911 fish. The maximum estimate of spawning escapement indicates a surplus of 181 fish and the minimum estimate a deficit of 1,216 fish (Table 22).

Southwest and Bottom Broooks
The angling season on Southwest and Bottom Brooks was basically the same as previous years (since 1978). Total recreational catch and effort in 1983 were 639 fish and 2,052 rod days (CPUE of 0.31 ), down $17 \%$ from the catch in 1982 ( 773 fish) and up $18 \%$ over effort recorded in 1982 ( 1,738 rod days). The CPUE was down $30 \%$ from that recorded in 1982 ( 0.44 ) (Table 8).

Compared to the mean catch 1978-82 (485 fish), the 1983 catch was up $32 \%$, mean effort $1978-82$ ( 1,377 rod days), the 1983 effort was up $49 \%$, and mean CPUE 1978-82 (0.35), the 1983 CPUE was down $11 \%$.

Effort in 1983 was the highest recorded since 1977 ; it has been increasing since 1979. The total salmon catch was the lowest since 1980. CPUE was the lowest since 1979.

Both maximum and minimum estimates of spawning escapement in Southwest and Bottom Brooks in $1978-83$ indicate surpluses ( 2,741 fish and 1,464 fish, respectively) over the target number of spawners ( 2,795 fish) (Table 22).

Little Barachois Brook
The angling seasonon Little Barachois Brook was the same as previous years (since 1978). Total recreational catch and effort in 1983 were 85 fish and 270 rod days (CPUE of 0.31 ), down $52 \%$ from the catch in 1982 ( 177 fish) and down $45 \%$ from the effort recorded in 1982 ( 489 rod days). The CPUE was down $14 \%$ from that recorded in 1982 (0.36) (Table 9).

Compared to the mean catch 1978-82 (129 fish), the 1983 catch was down $34 \%$, mean effort $1978-82$ ( 406 rod days), the 1983 effort was down $34 \%$, and mean CPUE 1978-82 (0.32), the 1983 CPUE was down $3 \%$.

Effort and total catch in 1983 were the lowest recorded since 1979 , with the grilse catch one of the lowest ever recorded. CPUE was similar to that recorded in 1982.

The target number of spawners for Little Barachois Brook is 759 fish. The maximum estimate of spawning escapement indicates a surplus of 298 fish and the minimum estimate a deficit of 7 fish (Table 22).

## Flat Bay Brook

The angling season on Flat Bay Brook was the same as that allowed 1981-82; i.e., closing on 31 August, as opposed to 20 July (1976-80). Total recreational catch and effort in 1983 were 315 fish and 1,123 rod days (CPUE of 0.28 ), down $32 \%$ from the catch in 1982 ( 460 fish) and down $17 \%$ from the effort recorded in 1982 ( 1,357 rod days). The CPUE was down $18 \%$ from that recorded in 1982 ( 0.34 ) (Table 10).

Compared to the mean catch 1978-82 (331 fish), the 1983 catch was down $5 \%$, mean effort $1978-82$ ( 878 rod days), the 1983 effort was up $28 \%$, and mean CPUE 1978-82 ( 0.38 ), the 1983 CPUE was down $26 \%$.

Effort in 1983 was the lowest recorded since the season extension. Grilse and large salmon catches were the lowest since 1979; the large salmon catch was the second lowest catch ever recorded (since 1963). CPUE was the lowest recorded since 1977, a decline since 1980.

Both maximum and minimum estimates of spawning escapement for Flat Bay Brook indicate deficits ( 263 fish and 1,083 fish, respectively) from the target number of spawners $(2,904)$ (Table 22).

## Fischells Brook

The angling season on Fischells Brook was basically the same as previous years (since 1978). Total recreational catch and effort in 1983 were 135 fish and 377 rod days (CPUE of 0.36 ), down $63 \%$ from the catch in 1982 and down $42 \%$ from the effort recorded in 1982 ( 651 rod days). The CPUE was down $36 \%$ from that recorded in 1982 (0.56) (Table 11).

Compared to the mean catch 1978-82 (233 fish), the 1983 catch was down $42 \%$, mean effort $1978-82$ ( 392 rod days), the 1983 effort was down $4 \%$, and mean CPUE 1978-82 (0.59), the 1983 CPUE was down $39 \%$.

Effort in 1983 was the lowest recorded since 1980. Total catch was the lowest since 1979; the large salmon catch the same as 1982 , i.e., the second lowest catch on record (since 1953). CPUE was the lowest recorded since 1974.

Both maximum and minimum estimates of spawning escapement for Fischells Brook indicate deficits ( 332 fish and 874 fish, respectively) from the target number of spawners ( $2,137 \mathrm{fish}$ ) (Table 22).

## Robinsons River

The angling season on Robinsons River opened earlier than previous years (since 1978), opening on 10 June, as opposed to 20 June of previous years. Total recreational catch and effort in 1983 were 488 fish and 2,580 rod days (CPUE of 0.19), down $48 \%$ from the catch in 1982 ( 946 fish) and up $57 \%$ over the effort recorded in 1982 ( 1,648 rod days). The CPUE was down $67 \%$ from that recorded in 1982 (0.57) (Table 12).

Compared to the mean catch 1978-82 (711 fish), the 1983 catch was down $31 \%$, mean effort $1978-82$ ( 1,237 rod days), the 1983 effort was up $109 \%$, and mean CPUE 1978-82 (0.57), the 1983 CPUE was down $67 \%$.

Effort in 1983 was the highest ever recorded (since 1953). The grilse catch was the lowest since 1978, and the large salmon catch the highest since 1964. Overall total catch was the lowest recorded since 1978. CPUE was the lowest ever recorded (since 1953).

Both maximum and minimum estimates of spawning escapement for Robinsons River indicate surpluses ( 2,232 fish and 547 fish, respectively) over the target number of spawners (1,752 fish) (Table 22).

## Barachois Brook

The angling season on Barachois Brook was basically the same as previous years (since 1978). Total recreational catch and effort in 1983 were 85 fish and 292 rod days (CPUE of 0.29 ), down $39 \%$ from the catch in 1982 ( 139 fish) and down $7 \%$ from the effort recorded in 1982 ( 313 rod days). The CPUE was down $34 \%$ from that recorded in 1982 ( 0.44 ) (Table 13).

Compared to the mean catch 1978-82 (189 fish), the 1983 catch was down $55 \%$, mean effort $1978-82$ ( 407 rod days), the 1983 effort was down $28 \%$, and mean CPUE 1978-82 (0.46), the 1983 CPUE was down $37 \%$.

Effort in 1983 was the lowest recorded since 1978, a decline since 1980. The grilse catch was the lowest recorded since 1978 , the third lowest catch ever recorded (since 1953). The large salmon catch was the lowest on record (since 1953), a decline since 1980. The total catch was the lowest recorded since 1959, i.e., one of the lowest catches ever recorded (since 1953). CPUE was the lowest ever recorded (since 1953), a decline since 1980.

Both maximum and minimum estimates of spawning escapement for Barachois Brook indicate surpluses ( 1,161 . fish and 734 fish, respectively) over the target number of spawners (1,350 fish) (Table 22).

## Crabbes River

The angling season on Crabbes River was basically the same as previous years (since 1978). Total recreational catch and effort in 1983 were 143 fish and 758 rod days (CPUE of 0.19 ), down $78 \%$ from the catch in 1982 ( 636 fish) and down $33 \%$ from the effort recorded in 1982 ( 1,135 rod days). The CPUE was down $66 \%$ from that recorded in 1982 ( 0.56 ) (Table 14).

Compared to the mean catch 1978-82 (420 fish), the 1983 catch was down $66 \%$, mean effort $1978-82$ ( 870 rod days), the 1983 effort was down $13 \%$, and mean CPUE 1978-82 (0.48), the 1983 CPUE was down $60 \%$.

Effort in 1983 was the lowest recorded since 1979. The grilse catch was the lowest since 1955, the large salmon catch the lowest since 1953, the second lowest on record. CPUE was the lowest ever recorded (since 1953), after an increasing trend since 1978.

The target number of spawners for Crabbes River is 2,345 fish. The maximum estimate of spawning escapement indicates a surplus of 798 fish and the minimum estimate a deficit of 137 fish (Table 22).

## Grand Codroy River

The angling season on the Grand Codroy River opened earlier than previous years (since 1978), opening on 10 June, as opposed to 20 June of previous years. Total recreational catch and effort in 1983 were 1,086 fish and 5,959 rod days (CPUE of 0.18 ), down $17 \%$ from the catch in 1982 ( 1,312 fish) and up $12 \%$ over the effort recorded in 1982 ( 5,300 rod days). The CPUE was down $28 \%$ from that recorded in 1982 ( 0.25 ) (Table 15).

Compared to the mean catch 1978-82 ( 1,140 fish), the 1983 catch was down $5 \%$, mean effort $1978-82$ ( 4,155 rod days), the 1983 effort was up $43 \%$, and mean CPUE 1978-82 (0.27), the 1983 CPUE was down $33 \%$.

Effort in 1983 was the highest ever recorded (since 1953). The grilse catch was the lowest recorded since 1978, the large salmon catch the highest since 1980 - total catch the lowest recorded since 1978. CPUE was the lowest ever recorded (since 1953).

Both maximum and mininium estimates of spawning escapement for Grand Codroy River indicate surpluses ( 3,804 fish and 977 fish, respectively) over the target number of spawners (3,511 fish) (Table 22).

## Little Codroy River

The angling season on the Little Codroy River was the same as previous years (since 1978). Total recreational catch and effort in 1983 were 61 fish and 266 rod days (CPUE of 0.23 ), down $27 \%$ from the catch in 1982 ( 83 fish ) and down $10 \%$ from the effort recorded in 1982 ( 294 rod days). The CPUE was down $18 \%$ from that recorded in 1982 ( 0.28 ) (Table 16).

Compared to the mean catch 1978-82 ( 70 fish), the 1983 catch was down $13 \%$, mean effort $1978-82$ ( 301 rod days), the 1983 effort was down $12 \%$, and mean CPUE 1978-82 (0.23), the 1983 CPUE was the same.

Effort in 1983 was the lowest recorded since 1980. Total catch the lowest since 1980. CPUE was the lowest recorded since 1980, after an increasing trend since 1980.

Both maximum and minimum estimates of spawning escapement for the Little Codroy River indicate surpluses ( 285 fish and 115 fish, respectively) over the target number of spawners ( 463 fish) (Table 22).

Area L
Total commercial landings of Atlantic salmon in 1983 were 13 t , down $7 \%$ from the amount landed in 1982 (14 t) and down the same amount from the mean 1978-82 (14t) (Table 5a). The landings for 1983 were composed of 4,701 grilse and 821 large salmon, down $7 \%$ and $8 \%$ from the mean 1978-82 grilse (5,071) and large salmon (895) landings, respectively (Table 5b).

The commercial landings of grilse were down from 1982, but are still higher than levels recorded in the late 1970's. Large salmon landings were the highest since 1980 ; and increasing trend has been recorded since 1981. Overall landings in Area $L$ were down from 1982, but are still higher than levels recorded in the late 1970's.

Total recreational catch and effort in 1983 were 3,318 fish and 8,993 rod days (CPUE of 0.37 ), down $29 \%$ from the catch recorded in 1982 ( 4,647 fish) and down $9 \%$ from the effort recorded in 1982 ( 9,829 rod days). The 1983 CPUE was down $21 \%$ from that recorded in 1982 ( 0.47 ) (Table 17).

Compared to the mean catch 1978-82 (3,981 fish), the 1983 catch was down $17 \%$, mean effort $1978-82$ ( 9,118 rod days), the 1983 effort was down $1 \%$, and mean CPUE 1978-82 (0.44), the 1983 CPUE was down $16 \%$.

Effort in 1983 was the lowest recorded since 1980, it has been increasing since 1977. The grilse catch was the lowest since 1978, it had been increasing since 1977. The large salmon catch was the lowest since 1979, the third lowest catch ever recorded (since 1953), it has been declining since 1980. CPUE was the same as that recorded in 1978, it had been increasing since 1977.

The maximum estimate of spawning escapement in 1978-83 indicates a deficit of 6,516 fish and the minimum estimate a deficit of 14,851 fish, from the target number of 24,682 spawners (Table 22).

Humber River
The angling season on the Humber River opened earlier than previous years (since 1978), opening on 10 June, as opposed to 20 June of previous years. Total recreational catch and effort in 1983 were 3,157 fish and 7,746 rod days (CPUE of 0.41 ), down $28 \%$ from the catch recorded in 1982 ( 4,382 fish) and down $11 \%$ from the effort recorded in 1982 ( 8,737 rod days). The CPUE was down $18 \%$ from that recorded in 1982 ( 0.50 ) (Table 18).

Compared to the mean catch 1978-82 (3,752 fish), the 1983 catch was down $16 \%$, mean effort $1978-82$ ( 8,265 rod days), the 1983 effort was down $6 \%$, and mean CPUE 1978-82 (0.45), the 1983 CPUE was down $9 \%$.

Effort in 1983 was the lowest recorded since 1978. Grilse and large salmon catches were the lowest since 1978 and 1979 , respectively; the large salmon catch was one of the lowest ever recorded (since 1953). CPUE was the lowest recorded since 1978.

Both maximum and minimum estimates of spawning escapement for the Humber River incicate deficits (873 fish and 10,005 fish, respectively) from the target number of spawners (18, 452 fish ) (Table 22).

Serpentine River
The angling season on the Serpentine River was the same as previous years (since 1978). Total recreational catch and effort in 1983 were 86 fish and 470 rod days (CPUE of 0.18 ), down $54 \%$ from the catch in 1982 (187 fish) and down $18 \%$ from the effort recorded in 1982 ( 576 rod days). The CPUE was down $46 \%$ from that recorded in 1982 (0.33) (Table 19).

Compared to the mean catch 1978-82 (189 fish), the 1983 catch was down $55 \%$, mean effort $1978-82$ ( 473 rod days), the 1983 effort was down $0.6 \%$, and mean CPUE 1978-82 (0.40), the 1983 CPUE was down $55 \%$.

Effort in 1983 was the second highest recorded value since 1978. Grilse and large salmon catches were the lowest since 1979; the large salmon catch was one of the lowest ever recorded (since 1953). CPUE was the lowest recorded since 1975.

Both maximum and minimum estimates of spawning escapement for the Serpentine River indicate deficits ( 1,272 fish and 1,702 fish, respectively) from the target number of spawners (2,233 fish) (Table 22).

## Fox Island River

The angling season on Fox Island River was basically the same as previous years (since 1981); the river was closed to angling 1976-80. Total recreational catch and effort in 1983 were 33 fish and 204 rod days (CPUE of 0.16 ), down $35 \%$ from the catch in 1982 ( 51 fish) and up $9 \%$ over the effort recorded in 1982 ( 188 rod days). The CPUE was down $41 \%$ from that recorded in 1982 (0.27) (Table 20).

Compared to the mean catch 1981-82 (58 fish), the 1983 catch was down $43 \%$, mean effort $1981-82$ ( 176 rod days), the 1983 effort was up $16 \%$, and mean CPUE 1981-82 (0.33), the 1983 CPUE was down $52 \%$.

Effort in 1983 was the highest recorded since 1981 (when angling was re-opened after a five year closure), an increasing trend since 1981. Total catch was the lowest since 1981, a declining trend since 1981. CPUE was the lowest recorded since 1981, a declining trend since 1981; the 1983 value is equal to that recorded in 1975.

Both maximum and minimum estimates of spawning escapement for Fox Island River indicate deficits ( 254 fish and 376 fish, respectively) from the target number of spawners ( 577 fish) (Table 22).

DISCUSSION

Results recorded in 1983 did little to provide a more optimistic picture regarding future production and escapement to the Western Newfoundland Rivers of Statistical Areas $K$ and $L$, over that presented earlier by Porter and Chadwick (1983). Using recreational catches as indices of spawning escapements, it was evident that spawning escapements were lower than in recent years, for rivers in both Areas $K$ and $L$. Target spawning requirements were not met on many river systems, and several rivers require substantial increases in spawners to meet these escapements.

The total returns in 1983 were below average returns (1978-82) as forecasted. The low abundance of grilse in Areas $K$ and $L$ supports last year's projection for 1984 , i.e., that there would be low returns of large salmon in 1984. In 1978 and 1979 the abundance of spawners was low in all river systems. This produced the lower returns in 1983 and should result in lower returns as well in 1984. In addition, recreational fishery effort has increased, which has increased catch and possibly reduced some of the benefits which should have accrued to the spawning escapement due to season restrictions. No mechanisms are in place to control recreational fishery effort, thence catch, in this fishery,

Recommendations for 1984

1. The following rivers should have a reduction in catch and effort
in 1984.

Area K: Little Barachois Brook, Flat Bay Brook, and Fischells Brook.
Area L: Humber River, and Serpentine River.
These rivers exhibit deficit spawning escapements and should have a reduction in catch in 1984 to contribute to improved spawning escapements. The extended angling season on the Humber River in 1983 should be rolled back in 1984 to the previously allowed season, to allow increased escapement of large salmon.
2. The following rivers would benefit from a reduction in catch and effort in 1984:

Area K; Harry's River, Robinsons River, Crabbes River, and Grand Codroy River.

Area L: Fox Island River.

These rivers exhibit surplus spawning escapements at present (except Fox Island River), however, if the present angling exploitation is greater
than $20 \%$, deficit spawning escapements could exist. The rivers would benefit from reduced harvests in 1984. The extended angling seasons on Grand Codroy and Robinson's Rivers in 1983 should be rolled back in 1984 to the previously allowed seasons, to allow increased escapement of large salmon.
3. The status quo (at least) should be maintained on the following rivers in 1984.

Area K; Southwest and Bottom Brooks, Barachois Brook and Little Codroy River.

These rivers exhibit surplus spawning escapements at present. Status quo, at least, should be maintained on harvests in 1984 , as no increases in runs to these rivers are predicted.

REFERENCES
Chadwick, E. M. P. 1982. Recreational catch as an index of Atlantic salmon spawning escapement. ICES C.M. $1982 / \mathrm{M}: 43.5 \mathrm{p}$.

Porter, T. R. and E. M. P. Chadwick. 1983. Assessment of Atlantic salmon stocks in Statistical Areas $K$ and $L$, Western Newfoundland, 1982. CAFSAC Res. Doc. \#83/87.

Table 1

Summary of season changes in commercial and recreational fisheries of Areas $K$ and $L$.


```
m 20 June-20 July 1976-80; 20 June-31 Aug. 1981-82
* }15\mathrm{ June-31 Aug. in 1979
** No Season 1976-80
mg 10 June-31 Aug. 1981-82 for Upper Humber; 20 June-7 Sept. 1980 for
    Lower Humber
.. Closed July 7-12
.. Closed July 7-13
```

Table 2
A summary of sections closed to fishing in rivers of Newfoundland

| River name | Section closed |
| :---: | :---: |
| Grand Codroy River to South Branch | Trans Canada Highway to source |
| Crabbes River | 12 mile pool to source |
| Barachois Brook | Mine pool (Mile 14) to source |
| Robinsons . River | Chatter Pool (Mile 16) to 25 ydis. above falls at Mile 19 |
| Fischells Brook | Big Steady (Mile 10) to 25 yds. above falls at Mile 18 |
| Little Barachois Brook | Old Logger's School (Mile 19) to source |
| Southwest Brook (St. George's Bay) | Mouth of John's Brook to source |
| Harry's River | Mouth of Harry's River to below Sandbank Pool |
| Spruce Brook | Mouth of Spruce Brook to source |
| Pinch Gut Lake | All tributaries of Pinch Gut Lake |
| Serpentine River | All tributaries of Serpentine Lake including Serpentine River upstream from Serpentine Lake |
| Humber River | From a line drawn from Lundrigan's Wharf to Wild Cove Point upstream to Ballams Bridge |
| Adies Lake | All tributaries of Adies Lake |
| Portland Creek (Southwest Feeder) | From falls upstream from Fisheries Cabin to source |
| Little Brook Ponds (Northern Peninsula) | Mouth to 1st. Pond |
| West River (St. Barbe) | Counting fence to 25 yds. above falls. |
| Exploits River (Great Rattling Bk) | From fishway at Mile 3.0 to source |
| Bellevue River | Cabot Highway to Trans Canada Highway |
| Northwest River (Trepassey) | 5 yds. below the falls called Ladder Falls to 25 yds. above |
| Branch River (St. Mary's Bay) | The Flats (beginning inside the gut and extending upstream $1 / 2$ mile.) |

Table 3

Summary of rearing areas and biological characteristics used to calculate spawning requirements for rivers in Areas $K$ and $L$. Optimal egg deposition was assumed to be 240 eggs per rearing unit $\left(100 \mathrm{~m}^{2}\right)$. Fecundity was assumed to be 1540 eggs per kg .


* Values from Le. Codroy were used.
+ Mean values from Area K.

Table $4 a$
Commercial landings of Atlantic salmon and licenced fishing gear in Statistical Area K, 1952 to 1983. A gear unit is 50 fathoms of gill net. The landings in 1974 to 1977 during the period June 1 to July 10 are shown in parentheses.

| Year (gear | $\begin{aligned} & \text { Licenced } \\ & \text { effort } \\ & \text { (gear units) } \end{aligned}$ | $\begin{gathered} \text { Salmon } \\ >2.7 \mathrm{~kg} \\ (\mathrm{mt}) \end{gathered}$ | $\begin{aligned} & \text { Salmon } \\ & <2.7 \mathrm{~kg} \\ & \quad(\mathrm{mt}) \end{aligned}$ | Total (mt) | Catch per licenced gear unit (mt) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1952 |  |  |  | 21 |  |
| 1953 |  |  |  | 40 |  |
| 1954 |  |  |  | 31 |  |
| 1955 |  |  |  | 39 |  |
| 1956 |  |  |  | 33 |  |
| 1957 |  |  |  | 43 |  |
| 1958 |  |  |  | 56 |  |
| 1959 |  |  |  | 48 |  |
| 1960 |  |  |  | 49 |  |
| 1961 |  |  |  | 50 |  |
| 1962 |  |  |  | 38 |  |
| 1963 |  |  |  | 44 |  |
| 1964 |  |  |  | 35 |  |
| 1965 |  |  |  | 42 |  |
| 1966 |  |  |  | 46 |  |
| 1967 |  |  |  | 56 |  |
| 1968 |  |  |  | 29 |  |
| 1969 | 218 | 13 | 22 | 35 | 0.16 |
| 1970 | 226 | 49 | 10 | 59 | 0.26 |
| 1971 | 337 | 21 | 7 | 28 | 0.08 |
| 1972 | 260 | 18 | 15 | 33 | 0.13 |
| 1973 | 365 | 12 | 33 | 45 | 0.12 |
| 1974 | 395 | 16(9) | 15(12) | $31(21)$ | 0.08 |
| 1975 | 574 | 11(7) | 9(8) | 20(15) | 0.03 |
| 1976 | 501 | 17(13) | 21(19) | 38(32) | 0.08 |
| 1977 | 467 | 22(17) | 19(15) | 41(32) | 0.09 |
| 1978 | 456 | 11 | 12 | 23 | 0.05 |
| 1979 | 455 | 6 | 17 | 23 | 0.05 |
| 1980 | 425 | 16 | 24 | 40 | 0.09 |
| 1981 | 403 | 7 | 19 | 26 | 0.06 |
| 1982 | 338 | 4 | 13 | 17 | 0.05 |
| 1983 | 418 | 9 | 11 | 20 | 0.05 |
| Mean |  |  |  |  |  |
| 1973-77 | 460 | 15.6 | 19.5 | 35.0 | 0.08 |
| S.D. | 84 | 4.4 | 10.3 | 9.8 |  |
| 1974-77* | * 484 | 11.5 | 13.5 | 25.0 |  |
| S.D. | 74 | 4.4 | 4.7 | 8.4 |  |
| 1978-82 | 415 | 8.8 | 17.0 | 25.8 | 0.06 |
| S.D. | 49 | 5.5 | 5.5 | 8.6 |  |

Commercial landings of Atlantic salmon and licenced fishing gear in Statistical Area K, 1969 to 1983.
STATISTICAL AREA: K

| Year | EFFORT GEAR UNITS | GRILSE WEIGHT | GRILSE numaer | SALMON WEIGHT | SALMON NUMEER | tOTAL WEIGHT | TOTAL number | CUE | PERCENT <br> GRILSE(W) | PERCENT <br> GRILSE(N) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1969 | 218 | 22 | 11990 | 13 | 2709 | 35 | 14699 | 0.16 | 62.86 | 81.57 |
| 1970 | 226 | 11 | 5865 | 49 | 9738 | 60 | 15603 | 0.27 | 18.33 | 37.59 |
| 1971 | 337 | 7 | 3756 | 21 | 4185 | 28 | 7941 | 0.08 | 25.00 | 47.30 |
| 1972 | 260 | 15 | 8202 | 18 | 3615 | 33 | 11817 | 0.13 | 45.45 | 69.41 |
| 1973 | 369 | 33 | 18137 | 12 | 2366 | 45 | 20503 | 0.12 | 73.33 | 88.46 |
| 1974 | 389 | 17 | 9934 | 15 | 3263 | 32 | 13197 | 0.08 | 53.13 | 75.27 |
| 1975 | 614 | 12 | 6529 | 7 | 1400 | 19 | 7929 | 0.03 | 63.16 | 82.34 |
| 1976 | 509 | 21 | 10474 | 16 | 3680 | 37 | 14154 | 0.07 | 56.76 | 74.00 |
| 1977 | 467 | 15 | 8530 | 26 | 5534 | 41 | 14064 | 0.09 | 36.59 | 60.65 |
| 1978 | 456 | 10 | 6495 | 13 | 2894 | 23 | 9309 | 0.05 | 43.48 | 69.18 |
| 1979 | 455 | 19 | 10242 | 4 | 868 | 23 | 11110 | 0.05 | 82.61 | 92.19 |
| 1980 | 426 | 24 | 11387 | 16 | 3439 | 40 | 14826 | 0.09 | 60.00 | 76.80 |
| 1981 | 403 | 19 | 11097 | 7 | 1573 | 26 | 12670 | 0.06 | 73.08 | 87.58 |
| 1982 | 364 | 13 | 7902 | 4 | 8.51 | 17 | 8753 | 0.04 | . 76.47 | 90.28 |
| 1983 | 418 | 11 | 6178 | 9 | 2094 | 20 | 8272 | 0.05 | 55.00 | 74.69 |

means and standard deyiations:

| MEAN: | 392.36 | 17.00 | 9324.29 | 15.71 | 3289.64 | 32.71 | 12649.21 | * 0.08 | *51.97 | *73.71 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S.D.: | 110.08 | 6.73 | 3479.69 | 11.53 | 2281.59 | 11.65 | 3442.26 | * 0.01 | * 6.16 | *10.55 |

note: flagged values indicate calculations obtained using ratio estimators

NOTE: MEANS AND STANDARD DEVIATIONS BASED ON YEARS 1969-1982. (IE; 1983 EXCLUOED).

Table 5a
Commercial landings of Atlantic salmon and licenced fishing gear in Statistical Area L, 1952 to 1983. A gear unit is 50 fathoms of gill net. The landings in 1974 to 1977 during the period June 1 to July 10 are shown in parentheses.

| Year | $\begin{aligned} & \text { Licenced } \\ & \text { effort } \\ & \text { (gear units) } \end{aligned}$ | $\begin{aligned} & \text { Salmon } \\ & >\underset{(\mathrm{mt})}{2.7 \mathrm{~kg}} \end{aligned}$ | $\begin{aligned} & \text { Salmon } \\ & <{ }^{2.7 \mathrm{~kg}} \\ & (\mathrm{mt}) \end{aligned}$ | $\begin{gathered} \text { Total } \\ (\mathrm{mt}) \end{gathered}$ | Catch per licenced gear unit (mt) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1952 |  |  |  | 20 |  |
| 1953 |  |  |  | 22 |  |
| 1954 |  |  |  | 33 |  |
| 1955 |  |  |  | 6 |  |
| 1956 |  |  |  | 20 |  |
| 1957 |  |  |  | - |  |
| 1958 |  |  |  | 28 |  |
| 1959 |  |  |  | 26 |  |
| 1960 |  |  |  | 25 |  |
| 1961 |  |  |  | 13 |  |
| 1962 |  |  |  | 17 |  |
| 1963 |  |  |  | 58 |  |
| 1964 |  |  |  | 26 |  |
| 1965 |  |  |  | 35 |  |
| 1966 |  |  |  | 43 |  |
| 1967 |  |  |  | 28 |  |
| 1968 |  |  |  | 11 |  |
| 1969 | 221 | 5 | 9 | 14 | 0.06 |
| 1970 | 153 | 3 | -13 | 16 | 0.11 |
| 1971 | 248 | 1 | 2 | 3 | 0.01 |
| 1972 | 258 | 3 | 9 | 12 | 0.05 |
| 1973 | 277 | 3 | 9 | 12 | 0.04 |
| 1974 | 198 | 7(5) | 4(3) | 11(8) | 0.06 |
| 1975 | 412 | 4(4) | 5(4) | 9(8) | 0.01 |
| 1976 | 301 | 4(3) | 3(3) | 7 (6) | 0.03 |
| 1977 | 270 | 7(5) | 5(4) | 12(9) | 0.05 |
| 1978 | 264 | 5 | 5 | 10 | 0.04 |
| 1979 | 247 | 2 | 6 | 9 | 0.04 |
| 1980 | 255 | 9 | 16 | 25 | 0.10 |
| 1981 | 253 | 4 | 8 | 12 | 0.05 |
| 1982 | 196 | 4 | 10 | 14 | 0.07 |
| 1983 | 259 | 4 | 9 | 13 | 0.05 |
| Mean |  |  |  |  |  |
| 1973-77 | 292 | 5 | 5 | 10.2 | . 03 |
| S.D. | 78 | 1.9 | 2.3 | 2.2 |  |
| 1974-77* | 295 | 4 | 4 | 8 |  |
| S.D. | 89 | 1.9 | . 6 | 1.3 |  |
| 1978-82 | 243 | 4.8 | 9.0 | 14.0 | . 06 |
| S.D. | 27 | 2.9 | 3.9 | 6.4 |  |

Table 5b

Commercial landings of Atlantic salmon and licenced fishing gear in Statistical Area L, 1969 to 1983. statistical area: l

| YEAR | EFFORT GEAR UNITS | GRILSE <br> WEIGHT | GRILSE NUMBER | SALMON WEIGHT | SALMON NLMBER | TOTA WEIGHT | TOTAL NLMBER | CuE | PERCENT <br> GRILSE(W) | PERCENT GRILSE(N) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1969 | 221 | 9 | 4944 | 5 | 945 | 14 | 5889 | 0.06 | 64.29 | 83.95 |
| 1970 | 153 | 13 | 7022 | 3 | 676 | 16 | 7698 | 0.10 | 81.25 | 91.22 |
| 1971 | 248 | 2 | 1259 | 1 | 116 | 3 | 1375 | 0.01 | 66.67 | 91.56 |
| 1972 | 258 | 10 | 5272 | 3 | 532 | 13 | 5804 | 0.05 | 76.92 | 90.83 |
| 1973 | 277 | 9 | 4875 | 3 | 560 | 12 | 5435 | 0.04 | 75.00 | 89.70 |
| 1974 | 198 | 8 | 4137 | 3 | 554 | 11 | 4691 | 0.06 | 72.73 | 88.19 |
| 1975 | 366 | 6 | 2882 | 3 | 694 | 9 | 3576 | 0.02 | 66.67 | 80.59 |
| 1976 | 327 | 6 | 2909 | 2 | 397 | 8 | 3306 | 0.02 | 75.00 | 87.99 |
| 1977 | 270 | 5 | 2377 | 7 | 1421 | 12 | 3798 | 0.04 | 41.67 | 62.59 |
| 1978 | 264 | 6 | 3557 | 4 | 891 | 10 | 4448 | 0.04 | 60.00 | 79.97 |
| 1979 | 250 | 8 | 3987 | 1 | 208 | 9 | 4275 | 0.04 | 88.89 | 93.26 |
| 1980 | 255 | 16 | 8113 | 9 | 1818 | 25 | 9931 | 0.10 | 64.00 | 81.69 |
| 1981 | 253 | 8 | 4230 | 3 | 687 | 11 | 4917 | 0.04 | 72.73 | 86.03 |
| 1982 | 214 | 10 | 5467 | 4 | 789 | 14 | 6255 | 0.07 | 71.43 | 87.40 |
| 1983 | 259 | 9 | 4701 | 4 | 821 | 13 | 5522 | 0.05 | 69.23 | 85.13 |
| MEANS AND STANDARD DEVIATIONS: |  |  |  |  |  |  |  |  |  |  |
| MEAN: | 253.86 | 8.29 | 4359.36 | 3.64 | 740.57 | 11.93 | 5099.86 | * 0.05 | *69.46 | *85.48 |
| S.O.: | 51.78 | 3.45 | 1808.60 | 2.17 | 440.60 | 4.92 | 2058.21 | * 0.01 | * 2.98 | *10.87 |

note: flagged values indicate calculations getaineo using ratio'estimators

NOTE: MEANS AND STANDARD DEVIATIONS BASED ON YEARS 1969-1982. (IE; 1983 EXCluded).

Sports harvest for Atlantic salmon in Area K, 1953-83
STATISTICALI AREA: K

| YEAR | $\begin{aligned} & \text { EFFORT } \\ & \text { ROD DAYS } \end{aligned}$ | $\begin{aligned} & \text { GRTLSE } \\ & <2.7 K G \end{aligned}$ | $\begin{aligned} & \text { SALMON } \\ & >2.7 K G \end{aligned}$ | $\begin{aligned} & \text { TOTAL } \\ & \text { CATCH } \end{aligned}$ | CUE: | $\begin{aligned} & \text { PERCENT } \\ & \text { GRILSE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1953 | 3040 | 3118 | 1066 | 4184 | 0.52 |  |
| 1954 | 3994 | 1578 | 670 | 2248 | 0.56 | 82 |
| 1955 | 5696 | 2126 | 617 | 2743 | $0 \cdot 48$ | 72 |
| 1956 | 8213 | 3187 | 1166 | 4353 | 0.53 | 65 |
| 1957 | 8720 | 4580 | 1621 | 6201 | 0.71 | 66 |
| 1958 | 7699 | 3172 | 1551 | 4723 | 0.81 | 75 |
| 1959 | 8824 | 2664 | 928 | 3592 | 0.41 | 77 |
| 1960 | 8054 | 3935 | 603 | 4538 | 0.56 | 82 |
| 1961 | 10244 | 3930 | 967 | 4897 | 0.48 | 80 |
| 1962 | 12834 | 6485 | 1133 | 7618 | 0.59 | 78 |
| 1963 | 15743 | 8420 | 2240 | 10660 | 0.68 | 74. |
| 1964 | 16849 | 8956 | 1878 | 10834 | 0.64 | 82 |
| 1965 | 14721 | 6127 | 1544 | 7671 | 0.52 | 85 |
| 1966 | 11977 | 3648 | 1450 | 5098 | 0.43 | 81 |
| 1967 | 15534 | 5608 | 1577 | 7185 | 0.46 | 70 |
| 1968 | 15114 | 5615 | 987 | 6602 | 0.44 | 85 |
| 1969 | 16025 | 6987 | 1082 | 8069 | 0.50 | 84 |
| 1970 | 19612 | 6153 | 1049 | 7202 | 0.37 | 87 |
| 1971 | 18103 | 5339 | 660 | 5999 | 0.33 | 90 |
| 1972 | 15803 | 4218 | 871 | 5089 | 0.32 | 86 |
| 1973 | 19017 | 6430 | 1020 | 7450 | 0.39 | 81 |
| 1974 | 18946 | 4322 | 744 | 5066 | 0.27 | 90 |
| 1975 | 21678 | 5771 | 756 | 6527 | 0.30 | 85 |
| 1976 | 20964. | 5121 | 554. | 5675 | 0.27 | 91 |
| 1977 | 17209 | 4355 | 994. | 5349 | 0.31 | 84. |
| 1978 | 11084 | 2327 | 597 | 2924 | 0.26 | 88 |
| 1979 | 7751 | 2572 | 84 | 2656 | 0.34 | 97 |
| 1980 | 12316 | 4213 | 673 | 4886 | 0.40 | 79 |
| 1981 | 14311 | 4911 | 500 | 5411 | 0.38 | 89 |
| $1982$ | 15417 | 5045 | 469 | 5514 | 0.36 | 91 |
| 1983 | 16480 | 3075 | 554. | 3629 | 0.22 | 90 |
| MEANS | STANDARD: | TIONS |  |  |  |  |
| $\begin{gathered} 53-57 \\ \frac{S}{N} \cdot 0 . \\ \hline \end{gathered}$ | $\begin{gathered} 6932.6 \\ 2014.0 \\ 5 . \end{gathered}$ | $\begin{gathered} 2917.8 \\ 1150.8 \\ 5 \end{gathered}$ | $\begin{gathered} 1028.0 \\ 409: 0 \\ 5 \end{gathered}$ | $\begin{gathered} 3945.8 \\ 1552.2 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.57 \\ & 0.05 \\ & 5 \end{aligned}$ | 71 4 |
| $\begin{gathered} 58-62 \\ 5 \cdot 0 . \\ N^{-} \end{gathered}$ | $\begin{gathered} 9531.0 \\ 2089.0 \\ 5 \end{gathered}$ | $\begin{gathered} 4037.2 \\ 1470.4 \\ 5 \end{gathered}$ | $\begin{gathered} 1036.4 \\ 345.9 \\ 5 \end{gathered}$ | $\begin{gathered} 5073.6 \\ 1509.1 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.53 \\ & 0.04 \\ & 5 \end{aligned}$ | 78 1 5 |
| $\begin{gathered} 63-67 \\ 5.0 . \\ N \end{gathered}$ | $\begin{gathered} 14964.8 \\ 1834.8 \\ 5 \end{gathered}$ | $\begin{gathered} 6551.8 \\ 2166.4 \\ 5 \end{gathered}$ | $\begin{array}{r} 1737.8 \\ 323.3 \\ 5 \end{array}$ | $\begin{gathered} 8289 \cdot 6 \\ 2443 \cdot 5 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.55 \\ & 0.05 \\ & 5 \end{aligned}$ | 79 3 5 |
| $\begin{gathered} 68-72 \\ S .0 . \\ N \end{gathered}$ | $\begin{gathered} 16931.4 \\ 1867.9 \\ 5 \end{gathered}$ | $\begin{gathered} 5662 \cdot 4 \\ 1023: 3 \\ 5 \end{gathered}$ | $\begin{gathered} 929.8 \\ 170.9 \\ 5 \end{gathered}$ | $\begin{gathered} 6592 \cdot 2 \\ 1136 \cdot 3 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.39 \\ & 0.03 \\ & 5 \end{aligned}$ | 86 1 5 |
| $\begin{gathered} 73=77 \\ \mathrm{~S} \cdot 0 . \\ \mathrm{N} \end{gathered}$ | $\begin{gathered} 19562.8 \\ 1778.8 \\ 5 \end{gathered}$ | $\begin{gathered} 5199.8 \\ 912.4 \\ 5 . \end{gathered}$ | $\begin{gathered} 813.6 \\ 194.1 \\ 5 \end{gathered}$ | $\begin{gathered} 6013 \cdot 4 \\ 972 \cdot 3 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.31 \\ & 0.02 \\ & 5 \end{aligned}$ | 86 2 5 |
| $\begin{gathered} 78-82 \\ S_{N} \cdot 0 \\ N \end{gathered}$ | $\begin{array}{r} 12175.8 \\ 2994.0 \\ 5 \end{array}$ | $\begin{array}{r} 3813.6 \\ 1287: 6 \\ 5 \end{array}$ | $\begin{aligned} & 464 \cdot 6 \\ & 227 \\ & 5 \end{aligned}$ | $\begin{gathered} 4278.2 \\ 1382.5 \\ 5 \end{gathered}$ | $\begin{aligned} & 0 \cdot 35 \\ & 0.02 \\ & 5 \end{aligned}$ | 89 2 5 |
| $\begin{gathered} 69-82 \\ \mathrm{~S} .00 \\ \mathrm{~N} \end{gathered}$ | $\begin{gathered} 16302.6 \\ 3935.3 \\ 14 \end{gathered}$ | $\begin{gathered} 4840.3 \\ 1325.7 \\ 14 \end{gathered}$ | $\begin{aligned} & 718.1 \\ & 276.4 \\ & 14 \end{aligned}$ | $\begin{gathered} 5558 \cdot 4 \\ 1521.0 \\ 14 \end{gathered}$ | $\begin{aligned} & 0.34 \\ & 0: 02 \\ & 14 \end{aligned}$ | 8.7 1 14 |

PERCENT GRILSE Figures are calculated using lagged grilse values - IN THE ABOVE TABLE INDICATES NO DATA FOR THAT YEAR

Sports harvest of Atlantic salmon in Harry's River, 1953-83
RIVER: HARRYS RIVER COOE: 41012000

| YEAR | $\begin{aligned} & \text { EFFORT } \\ & \text { ROD DAYS } \end{aligned}$ | $\begin{aligned} & \text { GRILSE } \\ & \angle 2.7 K G \end{aligned}$ | $\begin{aligned} & \text { SALMON } \\ & \gg-7 K G \end{aligned}$ | TOTAL CATCH | CUE | PERCENT GRILSE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1953 | 3458 | 935 | 146 | 1081 | 0.31 |  |
| 1954 | 800 | 244 | 18 | 262 | 0.33 | 98 |
| 1955 | 1464 | 499 | 61 | 560 | 0.38 | 80 |
| 1956 | 2211 | 668 | 206 | 874 | 0.40 | 71 |
| 1957 | 1689 | 1418 | 493 | 1911 | 1.13 | 58 |
| 1958 | 537 | 984. | 218 | 1202 | 2.24 | 87 |
| 1959 | 1466 | 604 | 95 | 699 | 0.48 | 91 |
| 1960 | 302 | 603 | 91 | 694 | 2.30 | 87 |
| 1961 | 1676 | 734 | 119 | 853 | 0.51 | 84 |
| 1962 | 3316 | 1488 | 226 | 1714 2924 | O.52 | 77 |
| 1963 1964 | 4354 3933 | 2467 2673 | 457 373 | 2924 3046 | 0.67 | 87 |
| 1965 | 3338 | 1175 | 262 | 1437 | 0.43 | 91 |
| 1966 | 2113 | 620 | 316 | 936 | 0.44 | 79 |
| 1967 | 2630 | 706 | 248 | 954 | 0.36 | 71 |
| 1968 | 2640 | 863 | 85 | 948 | 0.36 | 89 |
| 1969 | 3360 | 1491 | 181 | 1672 | 0.50 | 83 |
| 1970 | 5288 | 1662 | 207 | 1869 | 0.35 | 88 |
| 1971 | 5146 | 1435 | 47 | 1482 | $0 \cdot 29$ | 97 |
| 1972 1973 | 3632 4.748 | 782 1583 | 32 196 | 1779 | -. 0.37 | 80 |
| 1974 | 4218 | 941 | 34 | 975 | 0.23 | 98 |
| 1975 | 2180 | 704 | 16 | 720 | 0.33 | 98 |
| 1976 | 2893 | 902 | 40 | 942 | 0.33 | 95 |
| 1977 | 3853 | 1008 | 68 | 1076 | 0.23 | 93 |
| 1978 | 3142 | 713 | 65 | 778 | 0.25 | 94. |
| 1.979 | 755 | 148 | 1 | 149 | 0.20 | 100 |
| 1980 | 1602 | 518 | 65 | 583 | 0.36 | 69 |
| 1981 | 2082 | 659 | 18 | 677 | 0.33 | 97 |
| 1982 | 2141 | 570 | 31 | 601 | 0.28 | 96 |
| 1983 | 2439 | 533 | 30 | 563 | 0.23 | 95 |
| MEANS STANDARO DEVIATIONS N•S: |  |  |  |  |  |  |
| 53-57 | 1924.4 | 752.8 | 184.8 | 937.6 | 0.49 | 75 |
| S.0. | 995.7 | 448.9 | 187.1 | $\begin{array}{r} 626.7 \\ 5 \end{array}$ | 0.15 | 11 |
| 58-62 | 1459.4 | 882.6 | 149.8 | 1032.4 | 0.71 |  |
| $\mathrm{S} \cdot \mathrm{O}$. | 1192.1 | $372.4$ | $66.8$ | $433.4$ | $0.19$ | 2 |
| $\begin{gathered} 63-67 \\ S_{N} .0 . \end{gathered}$ | 3273.6917.5 |  | 331.285.9 | 1859.4 |  |  |
|  |  | 1528.2 976.9 |  |  | 0.57 0.08 | 84 3 |
|  |  | \%. | 8.9 | 5 |  |  |
| $\begin{gathered} 68-72 \\ \mathrm{~S} . \mathrm{N}^{2} \end{gathered}$ | 4013.2 | 1246.6 | 110.4 | 1357.0 | 0.34 |  |
|  | $\begin{gathered} 1158.2 \\ 5 \end{gathered}$ | 397.1 | 79.3 | $458.0$ | $0.04 .$ | 35 |
|  |  |  |  |  |  |  |
| $\begin{array}{r} 73-77 \\ 5.0 . \end{array}$ | 3578.41034.1 | 1027.6 | 70.8 | 1098.4 | 0.31 | 9335 |
|  |  | 330.5 | 72.4. | 402.1 | 0.03 |  |
| $\begin{gathered} 78-82 \\ 5.0 \\ N \end{gathered}$ | 1944.4869.4 | 521. 6 | $36.0$ | $557.6$ | 0.29 | 9425 |
|  |  |  |  |  |  |  |
|  |  |  | $\begin{gathered} 28.5 \\ 5 \end{gathered}$ | $24 \frac{1}{5} \cdot 0$ | ${ }_{5} 0.02$ |  |
| $\begin{gathered} 69-82 \\ S_{N} .0 . \end{gathered}$ | 3217.11365.914 | $\begin{aligned} & 936.9 \\ & 450.9 \\ & 144 \end{aligned}$ | $\begin{aligned} & 71.5 \\ & 69: 6 \\ & 14 \end{aligned}$ | $\begin{aligned} & 1008.4 \\ & 509.8 \\ & 14 \end{aligned}$ | $\begin{array}{r} 0.31 \\ 0.02 \\ 14 \end{array}$ | 93 |
|  |  |  |  |  |  | 2 |
|  |  |  |  |  |  | 14 |

PERCENT GRILSE FIGURES ARE CALCULATEDI USING LAGGED GRILSE VALUES - IN THE ABOVE TABLE INDICATES NO DATA FOR THAT YEAR

Sports harvest of Atlantic salmon in Southwest and Bottom Brooks, 1953-83.


MEANS STANDARD DEVIATIONS N:S:

| $\begin{gathered} 53-57 \\ \mathrm{~S} .0 \mathrm{D} \\ \mathrm{~N} \end{gathered}$ | $\begin{gathered} 427.6 \\ 197.6 \\ 5 \end{gathered}$ | $\begin{gathered} 124.4 \\ 62.7 \\ 5 \end{gathered}$ | $\begin{aligned} & 69.6 \\ & 35 \\ & 5 \end{aligned}$ | $\begin{gathered} 194.0 \\ 89.8 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.45 \\ & 0.04 \\ & 5 \end{aligned}$ | 57 6 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 58-62 \\ S=0 . \\ N \end{gathered}$ | $\begin{gathered} 735.8 \\ 499.2 \\ 5 \end{gathered}$ | $\begin{gathered} 405.4 \\ 178.7 \\ 5 \end{gathered}$ | $\begin{gathered} 90.0 \\ 58.7 \\ 5 \end{gathered}$ | $\begin{gathered} 495 \cdot 4 \\ 136: 8 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.67 \\ & 0.20 \\ & 5 \end{aligned}$ | 79 4 5 |
| $\begin{gathered} 63-67 \\ S .0 \\ N \end{gathered}$ | $\begin{gathered} 2066 \cdot 4 \\ 563.5 \\ 5 \end{gathered}$ | $\begin{gathered} 725.8 \\ 116.9 \\ 5 \end{gathered}$ | $\begin{gathered} 252 \cdot 2 \\ 116 \cdot 2 \\ 5 \end{gathered}$ | $\begin{array}{r} 978.0 \\ 171.9 \\ 5 \end{array}$ | $\begin{aligned} & 0.47 \\ & 0.05 \\ & 5 \end{aligned}$ | 73 5 5 |
| $\begin{gathered} 68-72 \\ 5.0 \\ N \end{gathered}$ | $\begin{gathered} 2139.6 \\ 328.0 \\ 5 \end{gathered}$ | $\begin{gathered} 594.0 \\ 166.4 \\ 5 \end{gathered}$ | $\begin{gathered} 108.4 \\ 52.0 \\ 5 \end{gathered}$ | $\begin{gathered} 702.4 \\ 125: 5 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.33 \\ & 0.03 \\ & 5 \end{aligned}$ | 86 3 5 |
| $\begin{gathered} 73-77 \\ 5.0 . \\ \mathrm{N} \end{gathered}$ | $\begin{gathered} 4362.6 \\ 1794.8 \\ 5 \end{gathered}$ | $\begin{gathered} 802.8 \\ 487.5 \\ 5 \end{gathered}$ | $\begin{array}{r} 173.0 \\ 68.7 \\ 5 \end{array}$ | $\begin{gathered} 975 \cdot 8 \\ 527 \cdot 5 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.22 \\ & 0.04 \\ & 5 \end{aligned}$ | 82 6 5 |
| $\begin{gathered} 78-82 \\ \mathrm{~S} .0 \\ \mathrm{~N} \end{gathered}$ | $\begin{gathered} 1376.8 \\ 398.6 \\ 5 \end{gathered}$ | $\begin{gathered} 456.0 \\ 24 \frac{1}{5} .2 \end{gathered}$ | $\begin{aligned} & 29.0 \\ & 14.6 \\ & 5 \end{aligned}$ | $\begin{array}{r} 485.0 \\ 249.8 \\ 5 \end{array}$ | $\begin{aligned} & 0.35 \\ & 0.05 \\ & 5 \end{aligned}$ | 94 2 5 |
| $\begin{gathered} 69-82 \\ S_{N} .0 \end{gathered}$ | $\begin{gathered} 2692.8 \\ 1689.1 \\ 14 \end{gathered}$ | $\begin{gathered} 624.1 \\ 349.7 \\ 14 \end{gathered}$ | $\begin{gathered} 104.6 \\ 79.6 \\ 14 \end{gathered}$ | $\begin{gathered} 728 \cdot 7 \\ 394 \cdot 0 \\ 14 \end{gathered}$ | $\begin{array}{r} 0.27 \\ 0.03 \\ 14 \end{array}$ | 85 3 14 |

PERCENT GRILSE FIGURES ARE CALCULATED USING LAGGED GRILSE VALUES - IN THE ABOVE TABLE INOICATES NO DATA FOR THAT YEAR

Sports harvest of Atlantic salmon in Little Barachois Brook, 1953-83.
RIVER: LITTLE BARACHOTS BROOK
CODE: 41011100

| YEAR | $\begin{array}{r} \text { EFFORT } \\ \text { ROO DAYS } \end{array}$ | $\begin{aligned} & \text { GRILSE } \\ & <2.7 K G \end{aligned}$ | $\begin{aligned} & \text { SALMON: } \\ & >2.7 K G \end{aligned}$ | $\begin{aligned} & \text { TOTAL } \\ & \text { CATCH } \end{aligned}$ | CUE | $\begin{aligned} & \text { PERCENT } \\ & \text { GRILSE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1953 | 115 | 48 | 29 | 97 | 0.84 | - |
| 1954 | -96 | 42 | 6 | 48 | 0.50 | 92 |
| 1955 | 204 | -57 | 3 | 60 | 0.29 | 93 |
| 1956 | 307 | 140 | 8 | 148 | 0.48 | 88 |
| 1957 | 226 | 131 | 12 | 143 | 0.63 | 92 |
| 1958 | 209 | 101 | 10 | 111 | 0.53 | 93 |
| 1959 | 247 | -44. | 22 | 66 | 0.27 | 82 |
| 1960 | 346 | 114 | 17 | 131 | 0.38 | 72 |
| 1961 | 361 | 1.36 | 7 | 143 | 0.40 | 94 |
| 1962 | 381 | 189 | 14 | 203 | 0.53 | 91 |
| 1963 | 357 | 222 | 9 | 231 | 0.65 | 95 |
| 1964 | 569 | 302 | 42 | 344 | 0.60 | 84 |
| 1965 | 690 | 253 | 23. | 276 | 0.40 | 93 |
| 1966 | 223 | 150 | 8 | 158 | 0.71 | 97 |
| 1967 | 253 | 125 | 4 | 129 | 0.51 | 97 |
| 1968 | 266 | 97 | 0 | 97 | 0.36 | 100 |
| 1969 | 142 | -59 | 0 | 59 | 0.42 | 100 |
| 1970 | 301 | 110 | 0 | 110 | 0.37 | 100 |
| 1971 | 337 | 172 | 4 | 176 | 0.52 | 96 |
| 1972 | 485 | 295 | 18 | 313 | 0.65 | 91 |
| 1973 | 621 | 230 | 35 | 265 | 0.43 | 89 |
| 1974 | 999 | 316 | 47 | 363 | 0.36 | 83 |
| 1975 | 756 | 256 | 27 | 283 | 0.37 | 92 |
| 1976 | 717 | 205 | 29 | 234 | 0.33 | 90 |
| 1977 | 932 | 249 | 37 | 286 | 0.31 | 85 |
| 1978 | 339 | 73. | 7 | 80 | 0.24 | 97 |
| 1979 | 165 | -37 | 0 | 37 | $0 \cdot 22$ | 100 |
| 1980 | 436 | 183 | 10 | 193 | 0.44 | 79 |
| 1981 | 602 | 151 | 7 | 158 | 0.26 | 96 |
| 1982 | 489 | 169 | 8. | 177 | 0.36 | 95 |
| 1983 | 270 | 84. | 1 | 85 | 0.31 | 99 |

MEANS STANOARD DEVIATION̈S NOS:

| $\begin{gathered} 53-57 \\ S .0 . \\ N \end{gathered}$ | $\begin{gathered} 189.6 \\ 86.1 \\ 5 \end{gathered}$ | $\begin{gathered} 87.6 \\ 44.8 \\ 5 \end{gathered}$ | $\begin{aligned} & 11 \\ & 10 \\ & 5 \end{aligned}$ | $\begin{gathered} 99 \cdot 2 \\ 46 \cdot 0 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.52 \\ & 0.08 \\ & 5 \end{aligned}$ | 91 1 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 58-62 \\ S .0 . \\ N \end{gathered}$ | $\begin{array}{r} 308.8 \\ 76.0 \\ 5 \end{array}$ | $\begin{gathered} 116.8 \\ 52.8 \\ 5 \end{gathered}$ | $\begin{gathered} 14.0 \\ 5.9 \\ 5 \end{gathered}$ | $\begin{gathered} 130.8 \\ 49.9 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.42 \\ & 0.05 \\ & 5 \end{aligned}$ | 88 3 5 |
| $\begin{gathered} 63-67 \\ 5=0 . \\ N \end{gathered}$ | $\begin{gathered} 418.4 \\ 203.6 \\ 5 \end{gathered}$ | $\begin{array}{r} 210.4 \\ 72.9 \\ 5 \end{array}$ | $\begin{aligned} & 17 \cdot 2 \\ & 15 \\ & 5 \end{aligned}$ | $\begin{gathered} 227 \cdot 6 \\ 87 \cdot 3 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.54 \\ & 0.06 \\ & 5 \end{aligned}$ | 93 3 5 |
| $\begin{gathered} 68-72 \\ 5.0 \\ N \end{gathered}$ | $\begin{gathered} 306.2 \\ 124.0 \\ 5 \end{gathered}$ | $\begin{gathered} 146.6 \\ 92.4 \\ 5 \end{gathered}$ | $\begin{aligned} & 4.4 \\ & 7.8 \\ & 5 \end{aligned}$ | $\begin{array}{r} 151: 0 \\ 99.9 \\ 5 \end{array}$ | $\begin{aligned} & 0.49 \\ & 0.07 \\ & 5 \end{aligned}$ | 96 2 5 |
| $\begin{array}{r} 73-77 \\ 5.70 \\ \mathrm{~N} \end{array}$ | $\begin{gathered} 805.0 \\ 156.3 \\ 5 \end{gathered}$ | $\begin{array}{r} 25 i \\ 41 \\ 5 \end{array}=\frac{2}{3}$ | $\begin{array}{r} 35.0 \\ 7 \\ 5 \end{array}$ | $\begin{gathered} 286 \cdot 2 \\ 47 \\ 5 \end{gathered}$ | $\begin{aligned} & 0 \cdot 36 \\ & 0.02 \\ & 5 \end{aligned}$ | 88 2 5 |
| $\begin{gathered} 78-62 \\ 5.0 . \\ N \end{gathered}$ | $\begin{array}{r} 406.2 \\ 164.9 \\ 5 \end{array}$ | $\begin{array}{r} 122.6 \\ 64.0 \\ 5 \end{array}$ | $\begin{aligned} & 6.4 \\ & 3.8 \\ & 5 \end{aligned}$ | $\begin{gathered} 129: 0 \\ 67.3 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.32 \\ & 0.04 \\ & 5 \end{aligned}$ | 96 1 5 |
| $\begin{gathered} 69-82 \\ S .0 \\ N \end{gathered}$ | $\begin{gathered} 522.9 \\ 263.5 \\ 14 \end{gathered}$ | $\begin{gathered} 178.9 \\ 86.8 \\ 14 . \end{gathered}$ | $\begin{aligned} & 16: 4 \\ & 15: 8 \\ & 14 \end{aligned}$ | $\begin{gathered} 195 \cdot 3 \\ 100.2 \\ 14 \end{gathered}$ | $\begin{array}{r} 0.37 \\ 0.03 \\ 14 \end{array}$ | 91 14 14 |

PERCENT GRILSE FIGUZES ARE CALCULATED USING LAGGED GRILSE VALUES: - IN THE ABOVE TABLEI INDICATES NO DATA FOR THAT YEAR

Sports harvest of Atlantic salmon in Flat Bay Brook, 1953-83.


MEANS STANDARD DEVIATIONS N:S:

| $\begin{array}{r} 53-57 \\ S_{N} .0 . \end{array}$ | $\begin{gathered} 784.0 \\ 166.7 \\ 5.7 \end{gathered}$ | $\begin{aligned} & 542.0 \\ & 161.7 \\ & 5 \end{aligned}$ | $\begin{array}{r} 49.2 \\ 40.2 \\ 5 \end{array}$ | $\begin{gathered} 591 \cdot 2 \\ 174: 5 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.75 \\ & 0.06 \\ & 5 \end{aligned}$ | 94 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 58-62 \\ & 5 \\ & N \end{aligned}$ | $\begin{array}{r} 1090.0 \\ 354.4 \\ 5 \end{array}$ | $\begin{array}{r} 821.2 \\ 395.8 \\ 5 \end{array}$ | $\begin{array}{r} 46.2 \\ 22.9 \\ 5 \end{array}$ | $\begin{gathered} 867.4 \\ 417.4 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.80 \\ & 0.8 \\ & 5 \end{aligned}$ | 94 2 5 |
| $\begin{gathered} 63-67 \\ S_{\mathrm{N}} .0 . \end{gathered}$ | $\begin{gathered} 1435.2 \\ 330.7 \\ 5 \end{gathered}$ | $\begin{gathered} 1186: 4 \\ 607: 7 \\ 5 \end{gathered}$ | $\begin{aligned} & 92.0 \\ & 53.0 \\ & 5.0 \end{aligned}$ | $\begin{array}{r} 1278.4 \\ 615: 7 \\ 5 \end{array}$ | $\begin{aligned} & 0.89 \\ & 0.15 \\ & 5 \end{aligned}$ | 93 1 5 |
| $\begin{gathered} 68-72 \\ S .0 . \\ N \end{gathered}$ | $\begin{array}{r} 2329.2 \\ 733.6 \\ 5 . \end{array}$ | $\begin{array}{r} 1040.4 \\ 262.5 \\ 5 . \end{array}$ | $\begin{gathered} 80.2 \\ 28.0 \\ 5 \end{gathered}$ | $\begin{array}{r} 1120.6 \\ 280.8 \\ 5 \end{array}$ | $\begin{aligned} & 0.48 \\ & 0.05 \\ & 5 \end{aligned}$ | 93 1 5 |
| $\begin{array}{r} 73-77 \\ \mathrm{~S} .0 . \end{array}$ | $\begin{array}{r} 1919.0 \\ 588.5 \\ 5 \end{array}$ | $\begin{gathered} 486.4 \\ 188.8 \\ 5 \end{gathered}$ | $\begin{aligned} & 51.8 \\ & 21: 8 \\ & 5 \end{aligned}$ | $\begin{gathered} 538.2 \\ 208.1 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.28 \\ & 0.05 \\ & 5 \end{aligned}$ | 92 1 5 |
| $\begin{gathered} 78-82 \\ S_{N} .0 \end{gathered}$ | $\begin{array}{r} 877.6 \\ 475.0 \\ 5 \end{array}$ | $\begin{gathered} 308.2 \\ 186.4 \\ 5 \end{gathered}$ | $\begin{gathered} 22.8 \\ 14.5 \\ 5 \end{gathered}$ | $\begin{gathered} 331: 0 \\ 200: 3 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.38 \\ & 0.04 \\ & 5 \end{aligned}$ | 92 2 5 |
| $\begin{gathered} 69-82 \\ \mathrm{~S} \cdot 0 . \\ \mathrm{N} \end{gathered}$ | $\begin{array}{r} 1723.1 \\ 876.9 \\ 14 \end{array}$ | $\begin{array}{r} 587.4 \\ 381.5 \\ 14.5 \end{array}$ | $\begin{aligned} & 52 \cdot 4 \\ & 32.7 \\ & 14 \end{aligned}$ | $\begin{aligned} & 639.9 \\ & 412.3 \\ & 14 \end{aligned}$ | $\begin{array}{r} 0.37 \\ 0.04 \\ 14 \end{array}$ | 92 1 14 |

percent grilse gigures are calculateg using lagged grilse values - in the above table indicates no data for that year

Sports harvest of Atlantic salmon in Fischells Brook,1953-83.


MEANS STANDARO DEVIATION゙S N:S:

| $\begin{gathered} 53-57 \\ 5.0 \\ N \end{gathered}$ | $\begin{gathered} 259.6 \\ 106.0 \\ 5 \end{gathered}$ | $\begin{gathered} 98.4 \\ 66.9 \\ 5 \end{gathered}$ | $\begin{aligned} & 54.6 \\ & 17.7 \\ & 5 \end{aligned}$ | $\begin{gathered} 153.0 \\ 82.6 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.59 \\ & 0.07 \\ & 5 \end{aligned}$ | 57 8 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 58-62 \\ S .0 . \\ N \end{gathered}$ | $\begin{gathered} 497.6 \\ 127.7 \\ 5 \end{gathered}$ | $\begin{gathered} 174.0 \\ 69.8 \\ 5 \end{gathered}$ | $\begin{gathered} 59.4 \\ 27.4 \\ 5 \end{gathered}$ | $\begin{gathered} 233.4 \\ 80.8 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.47 \\ & 0.03 \\ & 5 \end{aligned}$ | 72 5 5 |
| $\begin{gathered} 63-67 \\ S .0 \\ N \end{gathered}$ | $\begin{gathered} 699.0 \\ 205.8 \\ 5 \end{gathered}$ | $\begin{gathered} 267.8 \\ 145.4 \\ 5 \end{gathered}$ | $\begin{aligned} & 87.0 \\ & 41: 0 \\ & 5 \end{aligned}$ | $\begin{gathered} 354.8 \\ 166.9 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.51 \\ & 0.05 \\ & 5 \end{aligned}$ | 74 2 5 |
| $\begin{gathered} 68-72 \\ S=0 \\ N \end{gathered}$ | $\begin{gathered} 625.0 \\ 136.0 \\ 5 \end{gathered}$ | $\begin{gathered} 273.4 \\ 102 \\ 5 \end{gathered}$ | $\begin{gathered} 69 \cdot 2 \\ 4 \frac{1}{5} \end{gathered}$ | $\begin{gathered} 342.6 \\ 121.8 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.55 \\ & 0.04 \\ & 5 \end{aligned}$ | 82 3 5 |
| $\begin{gathered} 73=77 \\ 5 \cdot 0 . \\ N \end{gathered}$ | $\begin{gathered} 622.6 \\ 224.4 \\ 5 \end{gathered}$ | $\begin{array}{r} 247.0 \\ 890^{\circ} \\ 5 \end{array}$ | $\begin{gathered} 42 \cdot 2 \\ 29 \\ 5 \end{gathered}$ | $\begin{gathered} 289.2 \\ 116.5 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.46 \\ & 0.05 \\ & 5 \end{aligned}$ | 84 6 5 |
| $\begin{gathered} 78-82 \\ S .0 \\ N \end{gathered}$ | $\begin{gathered} 392.0 \\ 181.9 \\ 5 \end{gathered}$ | $\begin{array}{r} 215.4 \\ 110.9 \\ 5 \end{array}$ | $\begin{gathered} 17.8 \\ 16.9 \\ 5 \end{gathered}$ | $\begin{gathered} 233.2 \\ 112.6 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.59 \\ & 0.03 \\ & 5 \end{aligned}$ | 92 4 5 |
| $\begin{gathered} 69-82 \\ \mathrm{~S}=0 . \\ \mathrm{N} \end{gathered}$ | $\begin{aligned} & 539.7 \\ & 210.7 \end{aligned}$ | $\begin{aligned} & 243.0 \\ & 100.3 \\ & 14 \end{aligned}$ | $\begin{aligned} & 43.0 \\ & 37.3 \\ & 14.3 \end{aligned}$ | $\begin{gathered} 286.0 \\ 121.9 \\ 14 \end{gathered}$ | $\begin{array}{r} 0.53 \\ 0.03 \\ 14 \end{array}$ | 85 3 14 |

PERCENT GRILSE FIGURES ARE CALCULATED USING LAGGED GRILSE VALUES. - IN THE ABOVE TABLE: INDICATES NO DATA FOR THAT YEAR

Sports harvest of Atlantic salmon in Robinsons River,1953-83.


PERCENT GRILSE FIGURES ARE CALCULATED USING LAGGED GRILSE VALUES - IN THE ABOVE TABLE INDICATES NO DATA FOR THAT YEAR

Sports harvest of Atlantic salmon in Barachois Brook, 1953-83.
RIVER: BARACHOIS GROOK CODE: 40009000

| YEAR | $\begin{aligned} & \text { EFFORT } \\ & \text { ROD DAYS } \end{aligned}$ | $\begin{aligned} & \text { GRILSE } \\ & <2.7 \times G \end{aligned}$ | $\begin{aligned} & \text { SALMON } \\ & >2.7 K G \end{aligned}$ | $\begin{aligned} & \text { TOTAL } \\ & \text { CATCH } \end{aligned}$ | cue | $\begin{aligned} & \text { PERCENT } \\ & \text { GRILSE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1953 | 45 | 23 | 4 | 27 | 0.60 | * |
| 1954 | 66 | 33 | 14 | 47 | 0.71 | 62 |
| 1955 | 60 | $-27$ | 15. | 42 | 0.70 | 69 |
| 1956 | 183 | 276 | 70 | 298 | 1.63 | 28 |
| 1957 | 185 | 167 | 68 | 235 | 1.27 | 77 |
| 1958 | 237 | 109 | 87 | 196 | 0.83 | 66 |
| 1959 | 194 | 59 | 16 | 75 | 0.41 | 87 |
| 1960 | 179 | -86 | 15 | 101 | 0.56 | 80 |
| 1961 | 336 | 215 | 25 | 240 | 0.71 | 77 |
| 1962 | 404 | 236 | 47 | 283 | 0.70 | 82 |
| 1963 | 750 | 271 | 145 | 416 | 0.55 | 62 |
| 1964 | 839 | 342 | 99 | 441 | 0.53 | 73 |
| 1965 | 966 | 542 | 111 | 653 | 0.68 | 75 |
| 1966 | 507 | 187 | 90 | 277 | 0.55 | 86 |
| 1967 | 788 | 546 | 159 | 705 | 0.89 | 54 |
| 1968 | 878 | 613 | 124 | 737 | 0.84 | 81 |
| 1969 | 1343 | 766 | 154 | 920 | 0.69 | 80 |
| 1970 | 1300 | 372 | 69 | 441 | 0.34 | 92 |
| 1971 | 904 | 550 | 54. | 604 | 0.67 | 87 |
| 1972 | 1025 | 348 | 184 | 532 | 0.52 | 75 |
| 1973 | 1222 | 568 | 77 | 645 | 0.53 | 82 |
| 1974 | 894 | 257 | 70. | 327 | 0.37 | 89 |
| 1975 | 1129 | 510 | 117 | 627 | 0.56 | 69 |
| 1976 | 1572 | 526 | 46 | 572 | 0.36 | 92 |
| 1977 | 1218 | 534 | 56 | 590 | 0.48 | 90 |
| 1978 | 273 | -51 | 102 | 153 | 0.56 | 84 |
| 1979 | 342 | 124 | 0 | 124 | 0.36 | 100 |
| 1980 | 622 | 200 | 24 | 314 | 0.50 | 84 |
| 1981 | 487 | 210 | 3 | 213 | 0.44 | 99 |
| 1982 | 313 | 137 | 2 | 139 | 0.44 | 99 |
| 1983 | 292 | ${ }_{8} 4$ | I | 85 | 0.29 | 99 |

MEANS STANDARD DEVIATIOÑS N.S:

| $\begin{gathered} 53-57 \\ \mathrm{~S} \cdot 0 . \\ \mathrm{N} \end{gathered}$ | $\begin{array}{r} 107.8 \\ 70.0 \\ 5 \end{array}$ | $\begin{aligned} & 95.6 \\ & 95.6 \\ & 5 . \end{aligned}$ | $\begin{aligned} & 34 \cdot 2 \\ & 32 \cdot 1 \\ & 5 \end{aligned}$ | $\begin{gathered} 129.8 \\ 127.0 \\ 5 \end{gathered}$ | $\begin{aligned} & 1 \cdot 20 \\ & 0 \cdot 20 \\ & 5 \end{aligned}$ | 65 12 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 58-62 \\ S=0 \\ N \end{gathered}$ | $\begin{array}{r} 268.0 \\ 98.8 \\ 5 \end{array}$ | $\begin{array}{r} 141.0 \\ 79.5 \\ 5 \end{array}$ | $\begin{gathered} 38 \cdot 0 \\ 30: 3 \\ 5 \end{gathered}$ | $\begin{gathered} 179.0 \\ 89.1 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.67 \\ & 0.06 \\ & 5 \end{aligned}$ | 77 5 5 |
| $\begin{gathered} 63-67 \\ S .0 \\ N \end{gathered}$ | $\begin{gathered} 770.0 \\ 169.1 \\ 5 \end{gathered}$ | $\begin{array}{r} 377.6 \\ 161.5 \\ 5 \end{array}$ | $\begin{gathered} 120.8 \\ 29.9 \\ 5 \end{gathered}$ | $\begin{gathered} 498 \cdot 4 \\ 177 \cdot 3 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.65 \\ & 0.07 \\ & 5 \end{aligned}$ | 72 6 5 |
| $\begin{gathered} 68-72 \\ S .0 \\ N \end{gathered}$ | $\begin{array}{r} 1090.0 \\ 219.0 \\ 5 \end{array}$ | $\begin{gathered} 529.8 \\ 174.0 \\ 5 \end{gathered}$ | $\begin{array}{r} 117.0 \\ 55.2 \\ 5 . \end{array}$ | $\begin{gathered} 646 \cdot 8 \\ 187 \cdot 2 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.59 \\ & 0.09 \\ & 5 \end{aligned}$ | 83 3 5 |
| $\begin{gathered} 73-77 \\ 5.0 . \\ N \end{gathered}$ | $\begin{gathered} 1207.0 \\ 243.7 \\ 5 \end{gathered}$ | $\begin{array}{r} 479.0 \\ 125.9 \\ 5 \end{array}$ | $\begin{aligned} & 73 \cdot 2 \\ & 27 \cdot 3 \end{aligned}$ | $\begin{gathered} 552 \cdot 2 \\ 129 \cdot 2 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.46 \\ & 0.04 \\ & 5 \end{aligned}$ | 86 4 5 |
| $\begin{gathered} 78-82 \\ S .0 \\ N \end{gathered}$ | $\begin{gathered} 407.4 \\ 144.6 \\ 5 \end{gathered}$ | $\begin{array}{r} 162.4 \\ 90.9 \\ 5 \end{array}$ | $\begin{array}{r} 26 \cdot 2 \\ 43 \\ 5 \end{array}$ | $\begin{gathered} 188.6 \\ 77.8 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.46 \\ & 0.03 \\ & 5 \end{aligned}$ | 90 4 5 |
| $\begin{gathered} 69-82 \\ S .0 \\ N \end{gathered}$ | $\begin{aligned} & 903.1 \\ & 427.7 \\ & 14 \end{aligned}$ | $\begin{gathered} 374.5 \\ 207.7 \\ 14 \end{gathered}$ | $\begin{aligned} & 68.4 \\ & 55.8 \\ & 14 \end{aligned}$ | $\begin{gathered} 442 \cdot 9 \\ 237 \cdot 9 \\ 14 \end{gathered}$ | $\begin{array}{r} 0.49 \\ 0.04 \\ 14 \end{array}$ | 86 2 14 |

PERCENT GRILSE FIGURES ARE CALCULATED USING LAGGED GRILSE VALUES - IN THE ABOVE TABLE INDICATES NO DATA FOR THAT YEAR

Sports harvest of Atlantic salmon in Crabbes River, 1953-83.

| RIVER: | CRASBES | BROOK |  |  | CODE: | 40008600 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR | $\begin{aligned} & \text { EFFORT } \\ & \text { ROD DAYS } \end{aligned}$ | $\begin{aligned} & \text { GRILSE } \\ & \angle 2.7 K G \end{aligned}$ | $\begin{aligned} & \text { SALMON } \\ & >2.7 K G \end{aligned}$ | TOTAL CATCH | cue | $\begin{aligned} & \text { PERCENT } \\ & \text { GRILSE } \end{aligned}$ |
| 1953 | 153 | - 11 | 34 | 105 | 0.69 | * |
| 1954 | 157 | 116 | 51 | 167 | 1.06 | 58 |
| 1955 | 194 | -76 | 99 | 175 | 0.90 | 54 |
| 1956 | 747 | 180 | 219 | 399 | 0.53 | 26 |
| 1957 | 1278 | 331 | 311 | 642 | 0.50 | 37 |
| 1958 | 1088 | 134 | 274. | 408 | 0.38 | 55 |
| 1959 | 1142 | 236 | 184 | 420 | 0.37 | 42 |
| 1960 | 838 | 147 | 50 | 197 | 0.24 | 83 |
| 1961 | 1005 | 324 | 112 | 436 | 0.43 | 57 |
| 1962 | 1170 | 589 | 196 | 765 | 0.65 | 62 |
| 1963 | 1272 | 468 | 300 | 768 | 0.60 | 65 |
| 1964 | 1625 | 818 | 291 | 1109 | 0.68 | 62 |
| 1965 | 1252 | 430 | 242 | 672 | 0.54 | 77 |
| 1966 | 954 | 240 | 155 | 395 | 0.41 | 74 |
| 1967 | 1054 | 485 | 201 | 686 | 0.65 | 54 |
| 1968 | 1063 | 452 | $227^{\circ}$ | 679 | 0.64 | 68 |
| 1969 | 1397 | 833 | 234 | 1067 | 0.76 | 66 |
| 1970 | 1324 | 303 | 150 | 453 | 0.34 | 85 |
| 1971 | 1026 | 310 | 85 | 395 | 0.38 | 78 |
| 1972 | 932 | 398 | 152 | 550 | 0.59 | 67 |
| 1973 | 830 | 333 | 106 | 439 | 0.53 | 79 |
| 1974 | 1010 | 204 | 98 | 392 | 0.39 | 77 |
| 1975 | 1641 | 270 | 90 | 360 | 0.22 | 77 |
| 1976 | 859 | 191 | 58 | 249 | 0.29 | 82 |
| 1977 | 859 | 217 | 126 | 343 | 0.40 | 60 |
| 1978 | 907 | 138 | 127 | 265 | 0.29 | 63 |
| 1979 | 501 | 279 | 14 | 243 | 0.49 | 91 |
| 1980 | 902 | 363 | 91 | 454 | 0.50 | 72 |
| 1981 | 905 | 389 | 115 | 504 | 0.56 | 76 |
| 1982 | 1135 | $56 \frac{1}{5}$ | 75 | 636 | 0.56 | 84 |
| 1983 | 758 | 105 | 38 | 143 | 0.19 | 94 |

MEANS STANDARD DEVIATIONS N:S:

| $\begin{gathered} 53-57 \\ 5.0 \\ N \end{gathered}$ | $\begin{gathered} 505.8 \\ 499.5 \\ 5 \end{gathered}$ | $\begin{gathered} 154.8 \\ 107.7 \\ 5 \end{gathered}$ | $\begin{gathered} 142.8 \\ 118.8 \\ 5 \end{gathered}$ | $\begin{gathered} 297.6 \\ 222.5 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.59 \\ & 0.07 \\ & 5 \end{aligned}$ | 39 6 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 58-62 \\ S .0 \\ N \end{gathered}$ | $\begin{gathered} 1048.6 \\ 133.5 \\ 5 \end{gathered}$ | $\begin{gathered} 282.0 \\ 177.7 \\ 5 \end{gathered}$ | $\begin{array}{r} 163.2 \\ 85.5 \\ 5 \end{array}$ | $\begin{gathered} 445 \cdot 2 \\ 203 \cdot 7 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.42 \\ & 0.07 \\ & 5 \end{aligned}$ | 59 5 5 |
| $\begin{gathered} 63-67 \\ S .0 \\ N \end{gathered}$ | $\begin{array}{r} 1231.4 \\ 257.6 \\ 5 \end{array}$ | $\begin{gathered} 488.2 \\ 208.7 \\ 5 \end{gathered}$ | $\begin{array}{r} 237: 8 \\ 6 \frac{1}{5}: 1 \end{array}$ | $\begin{gathered} 726 \cdot 0 \\ 256 \cdot 2 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.59 \\ & 0.04 \\ & 5 \end{aligned}$ | 68 4 5 |
| $\begin{gathered} 68-72 \\ 5.0 \\ N \end{gathered}$ | $\begin{array}{r} 1 \frac{1}{4} 8.4 \\ 20 \frac{1}{5} .1 \end{array}$ | $\begin{gathered} 459.2 \\ 218.0 \\ 5 \end{gathered}$ | $\begin{array}{r} 169.6 \\ 61.8 \\ 5 \end{array}$ | $\begin{gathered} 628.8 \\ 267.5 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.55 \\ & 0.09 \\ & 5 \end{aligned}$ | 74 5 5 |
| $\begin{gathered} 73-77 \\ S \cdot 0 . \\ N \end{gathered}$ | $\begin{gathered} 1039.8 \\ 343.4 \\ 5 \end{gathered}$ | $\begin{gathered} 26 \overline{1} .0 \\ 57.4 \\ 5 . \end{gathered}$ | $\begin{gathered} 95.6 \\ 24.9 \\ 5 \end{gathered}$ | $\begin{gathered} 356.6 \\ 70.4 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.34 \\ & 0.06 \\ & 5 \end{aligned}$ | 76 3 5 |
| $\begin{gathered} 78-82 \\ S=0 \\ N \end{gathered}$ | $\begin{gathered} 870.0 \\ 229.1 \\ 5 \end{gathered}$ | $\begin{array}{r} 336.0 \\ 161.9 \\ 5 \end{array}$ | $\begin{aligned} & 84 \cdot 4 \\ & 44 \cdot 3 \\ & 5 \end{aligned}$ | $\begin{gathered} 420.4 \\ 166.0 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.48 \\ & 0.05 \\ & 5 \end{aligned}$ | 76 4 5 |
| $\begin{gathered} 69-82 \\ 5.0 \\ N \end{gathered}$ | $\begin{gathered} 1016.3 \\ 282.6 \\ 14 \end{gathered}$ | $\begin{gathered} 344.9 \\ 174.9 \\ 14 \end{gathered}$ | $\begin{gathered} 108.6 \\ 51.1 \\ 14 . \end{gathered}$ | $\begin{gathered} 453.6 \\ 209.7 \\ 14 . \end{gathered}$ | $\begin{aligned} & 0.45 \\ & 0.05 \\ & 14 \end{aligned}$ | 76 2 14 |

[^0]Sports harvest of Atlantic salmon in Grand Codroy River, 1953-83.
RIVER: GRANO CODROY RTVER CODE: 40003300

| YEAR | $\begin{aligned} & \text { EFFORT } \\ & \text { ROD OAYS } \end{aligned}$ | $\begin{aligned} & \text { ORILSE } \\ & \angle 2.7 K G \end{aligned}$ | SALMON $>2.7 \mathrm{KG}$ | TOTAL CATCH | CuE | PERCENT GRILSE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1953 | 1424 | 556 | 367 | 923 | 0.65 | - |
| 1954 | 1060 | 310 | 154. | 464 | 0.44 | 78. |
| 1955 | 1152 | 442 | 132 | 574 | O.50 | 70 60 |
| 1956 1957 | 1411 | 515 | 270 | 815 | 0.68 | 65 |
| 1958 | 1737 | 414. | 349. | 763 | 0.44 | 61 |
| 1959 | 1665 | 449 | 237 | 686 | 0.41 | 64 |
| 1960 | 1679 | 432 | 135 | 567 | 0.34 | 77 |
| 1961 | 2011 | 512 | 271 | 783 | 0.39 | 51 |
| 1962 | 2205 | 675 | 236 | 911 | 0.41 | 88 |
| 1963 | 2328 | 728 | 337 | 1065 | 0.46 | 87 |
| 1964 | 2465 | 985 | 332 | 1317 | 0.53 | 89 |
| 1965 | 2458 | 862 | 301 | 1163 | 0.47 | 77 |
| 1966 | 3051 | 678 | 301 | 979 | 0.32 | 74. |
| 1967 | 3260 | 688 | 238 | 926 | 0.28 | 74 |
| 1968 | 3988 | 925 | 222 | 1147 | 0.29 | 76 |
| 1969 | 3390 | 965 | 223 | 1188 | 0.35 | 81 |
| 1970 | 3447 | 627 | 137 | 764 | 0.22 | 88 |
| 1971 | 3243 | 732 | 120 | 852 | 0.26 | 84 |
| 1972 | 2537 | 488 | 120 | 588 | 0.22 | 86 |
| 1973 | 3468 | 825 | 143 | 968 | 0.28 | 77 |
| 1974 | 4.144 | 991 | 149 | 1140 | 0.28 | 85 |
| 1975 | 3757 | 1126 | 123 132 | 1249 1337 | 0.33 0.32 | 89 90 |
| 1977 | 4069 | 1205 77 | 212 | 985 | 0.32 | 85 |
| 1978 | 3125 | 510 | 148 | 658 | 0.21 | 84 |
| 1979 | 3298 | 1135 | 30 | 1165 | $0 \cdot 35$ | 94. |
| 1980 | 4645 | 1032 | 250 | 1282 | 0.28 | 82 |
| 1981 | 4407 | 1148 | 133 | 1281 | 0.29 | 89 |
| 1982 | 5300 | 1112 | 200 | 1312 | 0.25 | 85 |
| 1983 | 5959 | 867 | 219 | 1086 | 0.18 | 84 |

MEANS STANDARD DEVIATIONS NIS:

| $\begin{array}{r} 53-57 \\ 5.0 . \end{array}$ | $\begin{gathered} 1248.4 \\ 162.0 \\ 5 \end{gathered}$ | $\begin{gathered} 472.6 \\ 101.2 \\ 5 \end{gathered}$ | $\begin{array}{r} 244.4 \\ 99.3 \\ 5 \end{array}$ | $\begin{gathered} 717.0 \\ 190.4 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.57 \\ & 0.04 \\ & 5 \end{aligned}$ | 88 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 58-62 \\ S_{N} .0 . \end{gathered}$ | $\begin{array}{r} 1859.4 \\ 238: 6 \\ 5 \end{array}$ | $\begin{gathered} 496.4 \\ 106.4 \\ 5 \end{gathered}$ | $\begin{array}{r} 245.0 \\ 77.0 \\ 5 \end{array}$ | $\begin{gathered} 742.0 \\ 126.9 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.40 \\ & 0.40 \\ & 5 \end{aligned}$ | 66 3 5 |
| $\begin{array}{r} 63-67 \\ 5.0 . \end{array}$ | $\begin{gathered} 2712.4 \\ 414.8 \\ 5 \end{gathered}$ | $\begin{gathered} 788.2 \\ 132.3 \\ 5 \end{gathered}$ | $\begin{gathered} 301.8 \\ 39.4 \\ 5 \end{gathered}$ | $\begin{gathered} 1090.0 \\ 155: 5 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.40 \\ & 0.05 \\ & 5 \end{aligned}$ | 72 2 5 |
| $\begin{gathered} 68-72 \\ S_{N} .0 . \end{gathered}$ | $\begin{array}{r} 3341: 0 \\ 484: 1 \\ 5 \end{array}$ | $\begin{gathered} 743.4 \\ 207.1 \\ 5 \end{gathered}$ | $\begin{array}{r} 164.4 \\ 53.5 \\ 5 \end{array}$ | $\begin{gathered} 907.8 \\ 255.8 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.27 \\ & 0.02 \\ & 5 \end{aligned}$ | 83 2 5 |
| $\begin{gathered} 73-77 \\ S_{N}^{-0.0 .} \\ \mathrm{N} \end{gathered}$ | $\begin{array}{r} 3722.4 \\ 467: 6 \\ 5 \end{array}$ | $\begin{gathered} 984.0 \\ 186.3 \\ 5 \end{gathered}$ | $\begin{array}{r} 151.8 \\ 35: 1 \\ 5 \end{array}$ | $\begin{array}{r} 1135.8 \\ 161.4 \\ 5 \end{array}$ | $\begin{aligned} & 0.31 \\ & 0.01 \\ & 5.01 \end{aligned}$ | 86 |
| $\begin{gathered} 7 \mathrm{~B}-82 \\ \underset{N}{\mathrm{~N}} \mathrm{~N} . \end{gathered}$ | $\begin{gathered} 155.0 \\ 923.3 \\ 5 \end{gathered}$ | $\begin{gathered} 987.4 \\ 270: 6 \\ 5 \end{gathered}$ | $\begin{array}{r} 152.2 \\ 82.4 \\ 5 \end{array}$ | $\begin{gathered} 1139.6 \\ 275.0 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.27 \\ & 0.02 \\ & 5 \end{aligned}$ | 86 |
| $\begin{gathered} 69-82 \\ S_{N} .0 . \end{gathered}$ | $\begin{gathered} 3721.7 \\ 724.0 \\ 14 \end{gathered}$ | 903.5 24.9 14.9 | 151.4 55.1 14 | $\begin{array}{r} 1054.9 \\ 253.7 \\ 14 \end{array}$ | $\begin{array}{r} 0.28 \\ 0.21 \\ 14 \end{array}$ | 85 14 14 |

PERCENT GRILSE FIGURES ARE CALCULATED USING LAGGED GRILSE VALUES

- in the above table indicates no data for that year

Sports harvest of Atlantic salmon in Little Codroy River, 1953-83.
RIVER: LITTLE COOROY RIVER COOE: 40001400

| YEAR | $\begin{aligned} & \text { EFFORT } \\ & \text { ROO DAYS } \end{aligned}$ | $\begin{aligned} & \text { GRILSE } \\ & <2.7 K G \end{aligned}$ | $\begin{aligned} & \text { SALMON } \\ & >2.7 K G \end{aligned}$ | $\begin{aligned} & \text { TOTAL } \\ & \text { CATCH } \end{aligned}$ | CUE | $\begin{aligned} & \text { PERCENT } \\ & \text { GRILSE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1953 | 175 | 17 | 79 | 96 | 0.55 | * |
| 1954 | -93 | 14 | 25 | 39 | 0.42 | 40 |
| 1955 | 140 | 6 | 4 | 10 | 0.07 | 78 |
| 1956 | 101 | 2 | 6 | 8 | 0.08 | 50 |
| 1957 | 38 | 4 | 4 | 8 | 0.21 | 33 |
| 1958 | 57 | 3 | 9 | 12 | 0.21 | 31 |
| 1959 | 162 | 3 | 2 | 5 | 0.03 | 60 |
| 1960 | 111 | 1 | 0 | 1 | 0.01 | 100 |
| 1961 | 16 | 1 | 1 | 2 | 0.13 | 50 |
| 1962 | 76 | 6 | 1 | 7 | 0.09 | 50 |
| 1963 | 141 | 7 | 4 | 11 | 0.08 | 60 |
| 1964 | 323 | -9 | 12 | 21 | 0.07 | 37 |
| 1965 | 155 | 20 | 25 | 45 | 0.29 | 26 |
| 1966 | 197 | 19 | 10 | 29 | 0.15 | 67 |
| 1967 | 218 | 30 | 6 | 36 | 0.17 | 76 |
| 1968 | 150 | 50 | 0 | 50 | 0.33 | 100 |
| 1969 | 255 | 10 | 8 | 18 | 0.07 | 86 |
| 1970 | 381 | 42 | 11 | 53 | 0.14 | 48 |
| 1971 | 318 | 31 | 11 | 42 | 0.13 | 79 |
| 1972 | 451 | 38 | 28 | 66 | 0.15 | 53 |
| 1973 | 531 | 35 | 32 | 67 | 0.13 | 54 |
| 1974 | 316 | 43 | 13 | 56 | 0.18 | 73 |
| 1975 | 221 | -46 | 16. | 62 | $0 \cdot 28$ | 73 |
| 1976 | 522 | 126 | 50 | 176 | 0.34 | 48 |
| 1977 | 494 | 125 | 40 | 135 | $0.27^{\circ}$ | 76 |
| 1978 | 273 | 29 | 10 | 39 | 0.14 | 90 |
| 1979 | 336 | 83 | 2 | 85 | 0.25 | 94 |
| 1980 | 227 | 35 | 8 | 43 | 0.19 | 91 |
| 1981 | 377 | 87 | 11 | 98 | 0.26 | 76 |
| 1982 | 294 | 43 | 40 | 83 | $0 \cdot 28$ | 69 |
| 1983 | 266 | 46 | 15 | 61 | 0.23 | 74 |

MEANS STANDARO DEVIATIONS N:S:

| $\begin{gathered} 53-57 \\ S .0 . \\ N \end{gathered}$ | $\begin{gathered} 109.4 \\ 51.7 \\ 5 \end{gathered}$ | $\begin{aligned} & 8.6 \\ & 6.5 \\ & 5 \end{aligned}$ | $\begin{gathered} 23 \cdot 6 \\ 32 \cdot 2 \\ 5 \end{gathered}$ | $\begin{gathered} 32 \cdot 2 \\ 38: 0 \\ 5 \end{gathered}$ | $\begin{aligned} & 0 \cdot 29 \\ & 0 \cdot 12 \\ & 5 \end{aligned}$ | 50 10 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 58-62 \\ 5=0 . \\ N \end{gathered}$ | $\begin{gathered} 84.4 \\ 55.3 \\ 5 \end{gathered}$ | $\begin{aligned} & 2.8 \\ & 2.0 \\ & 5 \end{aligned}$ | $\begin{aligned} & 2.6 \\ & 3.6 \\ & 5 \end{aligned}$ | $\begin{aligned} & 5 \cdot 4 \\ & 4 \cdot 4 \\ & 5 \end{aligned}$ | $\begin{aligned} & 0.06 \\ & 0.03 \end{aligned}$ | 48 13 5 |
| $\begin{gathered} 63-67 \\ S .0 . \\ N \end{gathered}$ | $\begin{array}{r} 206.8 \\ 72.0 \\ 5 \end{array}$ | $\begin{aligned} & 17.0 \\ & 9.3 \\ & 5 \end{aligned}$ | $\begin{array}{r} 11 \cdot 4 \\ \frac{8}{5} \cdot 2 \end{array}$ | $\begin{gathered} 28.4 \\ 13.1 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.14 \\ & 0.04 \\ & 5 \end{aligned}$ | 52 11 5 |
| $\begin{gathered} 68-72 \\ S .0 \\ N \end{gathered}$ | $\begin{array}{r} 311.0 \\ 115.8 \\ 5 \end{array}$ | $\begin{gathered} 34 \\ 15: 2 \\ 5 \end{gathered}$ | $\begin{gathered} 11 \cdot 6 \\ 10 \\ 5 \end{gathered}$ | $\begin{gathered} 45 * 8 \\ 17 * 8 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.15 \\ & 0.02 \\ & 5 \end{aligned}$ | 74 9 5 |
| $\begin{gathered} 73-77 \\ S_{N} .0 . \end{gathered}$ | $\begin{array}{r} 416.8 \\ 140.1 \\ 5 \end{array}$ | $\begin{gathered} 69.0 \\ 39.6 \\ 5 . \end{gathered}$ | $\begin{aligned} & 30 \cdot 2 \\ & 15 \\ & 5 \end{aligned}$ | $\begin{gathered} 99 \cdot 2 \\ 53: 5 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.24 \\ & 0.04 \\ & 5 \end{aligned}$ | 66 7 5 |
| $\begin{gathered} 78-62 \\ S .0 \\ N \end{gathered}$ | $\begin{array}{r} 301 \\ 57 \\ 5 \end{array} .$ | $\begin{aligned} & 55.4 \\ & 27.5 \\ & 5 \end{aligned}$ | $\begin{gathered} 14.2 \\ 14 \\ 5 \end{gathered}$ | $\begin{gathered} 69.6 \\ 26.8 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.23 \\ & 0.02 \\ & 5 \end{aligned}$ | 82 6 5 |
| $\begin{gathered} 69-82 \\ S .0 . \\ N \end{gathered}$ | $\begin{aligned} & 356.9 \\ & 106.2 \\ & 14 \end{aligned}$ | $\begin{aligned} & 53.1 \\ & 32.0 \\ & 14 \end{aligned}$ | $\begin{aligned} & 20.0 \\ & 15.0 \\ & 14 \end{aligned}$ | $\begin{aligned} & 73 \cdot 1 \\ & 41: 4 \\ & 14 \end{aligned}$ | $\begin{aligned} & 0.20 \\ & 0.02 \\ & 14 \end{aligned}$ | 73 4 14 |

PERCENT GRILSE FIGURES ARE CALCULATED USING LAGGED GRILSE VALUES: - IN THE AROVE TABLE INNICATES NO DATA FOR THAT YEAR

Sports harvest of Atlantic salmon in Area L, 1953-83.

## STATISTICAL AREA: L

| YEAR | $\begin{aligned} & \text { EFFORT } \\ & \text { ROD DAYS } \end{aligned}$ | $\begin{aligned} & \text { GRILSE } \\ & <2.7 K G \end{aligned}$ | $\begin{aligned} & \text { SALMON } \\ & >2.7 K G \end{aligned}$ | TOTAL CATCH | CUE | $\begin{aligned} & \text { PERCENT } \\ & \text { GRILSE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1953 | 4075 | 1389 | 230 | 1619 | 0.40 |  |
| 1954 | 4595 | 994 | 196. | 1190 | 0.26 | 88 |
| 1955 | 2557 | 1534. | 193. | 1727 | 0.68 | 84. |
| 1956 | 7917 | 1419 | 283. | 1702 | 0.21 | 84. |
| 1957 | 3524 | 2201 | $293:$ | 2494 | 0.71 | 83 |
| 1958 | 4066 . | 1919 | 410 | 2329 | 0.57 | 84 |
| 1959 | 4481 | 2207 | 379 | 2586 | 0.58 | 84 |
| 1960 | 4385 | 2159 | 324 | 2483 | 0.57 | 87 |
| 1961 | 4541 | 2047 | 260 | 2307 | 0.51 | 89 |
| 1962 | 5393 | 2939 | 336 | 3275 | 0.61 | 86 |
| 1963 | 6518 | 4240 | 299 | 4539 | 0.70 | 91. |
| 1964 | 9798. | 5390 | 650 | 6040 | 0.62 | 87 |
| 1965 | 8193 | 4388 | 385 | 4773 | 0.58 | 93. |
| 1966 | 9992 | $442^{8}$ | 433 | 4861 | 0.49 | 91 |
| 1967 | 6685 | 2501 | 267 | 2768 | 0.41 | 94 |
| 1968 | 7207 | 2750 | 162 | 2912 | 0.40 | 94 |
| 1969 | 12805 | 5160 | 542 | 5702 | 0.45 | 84 |
| 1970 | 14848 | 3586 | 594 | 4180 | 0.28 | 90 |
| 1971 | 10925 | 4183 | 385: | 4568 | 0.42 | 90 |
| 1972 | 11811 | 4183 | 232 | 4415 | 0.37 | 95 |
| 1973 | 11938 | 3838 | 372 | 4210 | 0.35 | 92 |
| 1974 | 10367 | 2867 | 172 | 3039 | 0.29 | 96 |
| 1975 | 10575 | 6232 | 130 | 6362 | 0.60 | 96 |
| 1976 | 11958 | 5262 | 72 | 5334 | 0.45 | 99 |
| 1977 | 7265 | 2357 | 55 | 2412 | 0.33 | 99 |
| 1978 | 8602 | 2962 | 258 | 3220 | 0.37 | 90 |
| 1979 | 8632 | 3437 | 29 | 3466 | 0.40 | 99 |
| 1980 | 8997 | 3700 | 320 | 4020 | 0.45 | 91 |
| 1981 | 9528 | 4389 | 163 | 4552 | 0.48 | 96 |
| 1982 | 9829 | 4521 | 126 | 4647 | 0.47 | 97 |
| 1983 | 8993 | 3262 | 56. | 3318 | 0.37 | 99 |
| MEANS | STANDARD | ATIONS |  |  |  |  |
| $\begin{gathered} 53-57 \\ \mathrm{~S} \cdot \mathrm{D} \\ \mathrm{~N} \end{gathered}$ | $\begin{gathered} 4533: 6 \\ 2036: 4 \\ 5: \end{gathered}$ | $\begin{gathered} 1507.4 \\ 438: 0 \\ 5 \end{gathered}$ | $\begin{array}{r} 239: 0 \\ 47: 2 \\ 5: \end{array}$ | $\begin{array}{r} 1746 \cdot 4 \\ 40.9 \\ 5 \end{array}$ | $\begin{aligned} & 0 \cdot 39 \\ & 0.10 \\ & 5 \end{aligned}$ | 85 1 4 |
| $\begin{gathered} 5 B-62 \\ 5.0 \\ N \end{gathered}$ | $\begin{gathered} 4573: 2 \\ 493: 5 \\ 5 \end{gathered}$ | $\begin{gathered} 2254 \cdot 2 \\ 398.6 \\ 5 \end{gathered}$ | $\begin{gathered} 34 \frac{1}{57}: 8 \\ 5 \end{gathered}$ | $\begin{array}{r} 2596 \cdot 0 \\ 396 \\ 5 \end{array}$ | $\begin{aligned} & 0.57 \\ & 0.02 \\ & 5 i \end{aligned}$ | 86 1 5 |
| $\begin{gathered} 63-67 \\ S=0 . \\ N \end{gathered}$ | $\begin{gathered} 8237: 2 \\ 1649: 4 \\ 5 \end{gathered}$ | $\begin{gathered} 4189.4 \\ 1047.7 \\ 5 \end{gathered}$ | $\begin{gathered} 406 \cdot 8 \\ 15 \frac{8}{5} \cdot 2 \\ \end{gathered}$ | $\begin{gathered} 4596 \cdot 2 \\ 1176 \cdot 0 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.56 \\ & 0.04 \\ & 5 \end{aligned}$ | 91 1 5 |
| $\begin{aligned} & 68-72 \\ & 5 \cdot D . \\ & N \end{aligned}$ | $\begin{gathered} 11519.2 \\ 2818.1 \\ 5 \end{gathered}$ | $\begin{gathered} 3972.4 \\ 886.4 \\ 5 \end{gathered}$ | $\begin{gathered} 383.0 \\ 188.0 \\ 5: \end{gathered}$ | $\begin{gathered} 4355.4 \\ 997.0 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.38 \\ & 0.03 \\ & 5 \end{aligned}$ | 90 2 5 |
| $\begin{gathered} 73-77 \\ \mathrm{~S} \cdot 0 \\ \mathrm{~N} \end{gathered}$ | $\begin{gathered} 10420.6 \\ 1913.8 \\ 5 . \end{gathered}$ | $\begin{gathered} 4111.2 \\ 1621.9 \\ 5 \end{gathered}$ | $\begin{gathered} 160.2 \\ 127: 2 \\ 5 . \end{gathered}$ | $\begin{gathered} 4271 \cdot 4 \\ 1618 \cdot 6 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.42 \\ & 0.05 \\ & 5 \end{aligned}$ | 97 1 5 |
| $\begin{gathered} 78-82 \\ S \cdot D \\ N \end{gathered}$ | $\begin{gathered} 9117.6 \\ 545.6 \\ 5 \end{gathered}$ | $\begin{gathered} 3801.8 \\ 654.0 \\ 5 \end{gathered}$ | $\begin{gathered} 179 \cdot 2 \\ 113 \cdot 7 \\ 5 \end{gathered}$ | $\begin{array}{r} 3981 \cdot 0 \\ 635 \cdot 5 \\ 5 \end{array}$ | $\begin{aligned} & 0.44 \\ & 0.02 \\ & 5 \end{aligned}$ | 95 2 5 |
| $\begin{gathered} 69-82 \\ \mathrm{~S} .0 . \\ \mathrm{N} \end{gathered}$ | $\begin{gathered} 10577.1 \\ 1989.6 \\ 14 \end{gathered}$ | $\begin{gathered} 4048.4 \\ 1039.3 \\ 14 \end{gathered}$ | $\begin{gathered} 246 \cdot 4 \\ 176 \cdot 2 \\ 14 \end{gathered}$ | $\begin{gathered} 4294.8 \\ 1062.4 \\ 14 \end{gathered}$ | $\begin{array}{r} 0.41 \\ 0.02 \\ 14 \end{array}$ | 94 14 |

PERCENT GRILSE FIGURES ARE CALCULATED USING LAGGED GRILSE VALUES - IN THE ABOVE TABLE INDICATES NO DATA FOR THAT YEAR

Sports harvest of Atlantic salmon in Humber River, 1953-83.
RIVER: HUMEER RIVER COOE: 44024300

| YEAR | $\begin{aligned} & \text { EFFORT } \\ & \text { ROD DAYS } \end{aligned}$ | $\begin{aligned} & \text { GRILSE } \\ & <2.7 K G \end{aligned}$ | $\begin{aligned} & \text { SALMON: } \\ & >2.7 \mathrm{KG} \end{aligned}$ | TOTAL CATCH | CUE | $\begin{aligned} & \text { PERCENT } \\ & \text { GRILSE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1953 | 3715 | 1260 | 149 | 1409 | 0.38 | * |
| 1954 | 4161 | -876 | 137 | 1013 | 0.24 | 90 |
| 1955 | 2177 | 1376 | 138 | 1514 | 0.70 | 86 |
| 1956 | 6953 | 1076 | 110 | 1186 | 0.17 | 93 |
| 1957 | 2637 | 1778 | 89 | 1867 | 0.71 | 92 |
| 1958 | 3350 | 1686 | 194. | 1880 | 0.56 | 90 |
| 1959 | 3681 | 1996 | 187 | 2183 | 0.59 | 90 |
| 1960 | 3511 | 1938 | 178 | 2116 | 0.60 | 92 |
| 1961 | 3639 | 1867 | 134. | 2001 | 0.55 | 94 |
| 1962 | 4017 | 2390 | 108 | 2498 | 0.62 | 95 |
| 1963 | 5348 | 3898 | 160 | 4058 | 0.76 | 94 |
| 1964 | 7222 | 4681 | 268 | 4949 | 0.69 | 94 |
| 1965 | 6551 | 3951 | 193 | 4144 | 0.63 | 96 |
| 1966 | 8842 | 3999 | 322 | 4311 | 0.49 | 92 |
| 1967 | 5317 | 2252 | 160 | 2412 | 0.45 | 96 |
| 1968 | 5104 | 2168 | 96 | 2264 | 0.44 | 96 |
| 1969 | -9690 | 4459 | 478 | 4937 | 0.51 | 82 |
| 1970 | 11785 | 2785 | 526 | 3311 | 0.28 | 89 |
| 1971 | 9027 | 3949 | 375 | 4324 | 0.48 | 88 |
| 1972 | 9413 | 3961 | 219 | +180 | 0.44 | 95 |
| 1973 | 9612 | 3411 | 304 | 3715 | 0.39 | 93 |
| 1974 | 8976 | 2742 | 107 | 2849 | 0.32 | 97 |
| 1975 | 9611 | 6147 | 114 | 6261 | 0.65 | 96 |
| 1976 | 10489 | 5102 | 61 | 5163 | 0.49 | 99 |
| 1977 | 6127 | 2158 | 45 | 2203 | 0.36 | 99 |
| 1978 | 7633 | 2722 | 187 | 2909 | 0.38 | 92 |
| 1979 | 7961 | 3343 | 27 | 3370 | 0.42 | 99 |
| 1980 | 8292 | 3512 | 303 | 3815 | 0.46 | 92 |
| 1981 | 8701 | 4132 | 153 | 4285 | 0.49 | 96 |
| 1982 | 8737 | 4267 | 95 | 4382 | 0.50 | 98 |
| 1983 | 7746 | 3110 | 47 | 3157 | 0.41 | 99 |

MEANS STANDARD DEVIATIONS N:S:

| $\begin{gathered} 53-57 \\ 5.0 \\ \mathrm{~N} \end{gathered}$ | $\begin{gathered} 3928 \cdot 6 \\ 1869.7 \\ 5 \end{gathered}$ | $\begin{gathered} 1273.2 \\ 339.9 \\ 5 \end{gathered}$ | $\begin{array}{r} 124.6 \\ 24.5 \\ 5 \end{array}$ | $\begin{gathered} 1397.8 \\ 326.6 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.36 \\ & 0.10 \\ & 5 \end{aligned}$ | 91 1 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 5 \dot{9}=62 \\ \mathrm{~S}=0 . \\ \mathrm{N} \end{gathered}$ | $\begin{gathered} 3639.6 \\ 247: 3 \\ 5 \end{gathered}$ | $\begin{gathered} 1975.4 \\ 259.4 \\ 5 \end{gathered}$ | $\begin{gathered} 160.2 \\ 37.4 \\ 5 . \end{gathered}$ | $\begin{gathered} 2135.6 \\ 233.1 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.59 \\ & 0.01 \\ & 5 \end{aligned}$ | 92 1 5 |
| $\begin{gathered} 63-67 \\ \mathrm{~S} .0 . \\ \mathrm{N} \end{gathered}$ | $\begin{array}{r} 6656.0 \\ 1467.5 \\ 5 \end{array}$ | $\begin{array}{r} 3754.2 \\ 898.6 \\ 5 \end{array}$ | $\begin{array}{r} 220.6 \\ 7 \frac{1}{5} \end{array}$ | $\begin{gathered} 3974.8 \\ 940.7 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.60 \\ & 0.06 \\ & 5 \end{aligned}$ | 94 1 5 |
| $\begin{gathered} 68=72 \\ S=0 \\ N \end{gathered}$ | $\begin{gathered} 9003.8 \\ 2428.1 \\ 5 \end{gathered}$ | $\begin{gathered} 3464.4 \\ 950.4 \\ 5 \end{gathered}$ | $\begin{gathered} 338.8 \\ 179.6 \\ 5 . \end{gathered}$ | $\begin{gathered} 3803 \cdot 2 \\ 1038 \cdot 0 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.42 \\ & 0.05 \\ & 5 \end{aligned}$ | 90 2 5 |
| $\begin{gathered} 73-.77 \\ 5.0 . \\ N \end{gathered}$ | $\begin{array}{r} 6963.0 \\ 1674 \cdot 3 \\ 5: \end{array}$ | $\begin{gathered} 3912.0 \\ 1666.4 \\ 5 \end{gathered}$ | $\begin{gathered} 126.2 \\ 103.7 \\ 5 \end{gathered}$ | $\begin{gathered} 4038 \cdot 2 \\ 1665 \cdot 3 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.45 \\ & 0.06 \\ & 5 \end{aligned}$ | 97 1 5 |
| $\begin{gathered} 7 A-82 \\ S .0 . \\ N \end{gathered}$ | $\begin{gathered} 8264 \cdot 8 \\ 75 \cdot 8 \\ 5 \end{gathered}$ | $\begin{gathered} 3599.2 \\ 632: 4 \\ 5 \end{gathered}$ | $\begin{gathered} 153.0 \\ 103.6 \\ 5 \end{gathered}$ | $\begin{gathered} 3752 \cdot 2 \\ 620: 8 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.45 \\ & 0.02 \\ & 5 \end{aligned}$ | 95 1 5 |
| $\begin{gathered} 69-82 \\ 5.0 \\ N . \end{gathered}$ | $\begin{gathered} 9003.9 \\ 1336.8 \\ 14 . \end{gathered}$ | $\begin{gathered} 3765.0 \\ 1054.9 \\ 14 \end{gathered}$ | $\begin{aligned} & 213.9 \\ & 160.8 \\ & 14 \end{aligned}$ | $\begin{gathered} 3978.9 \\ 1053.6 \\ 14 \end{gathered}$ | $\begin{aligned} & 0.44 \\ & 0.03 \\ & 14 \end{aligned}$ | 94 1 14 |

PERCENT GRILSE FIGURES ARE CALCULATED USING LAGGED GRILSE VALUES - IN THE ABOVE TABLE: INDICATES NO DATA FOR THAT YEAR

Sports harvest for Atlantic Salmon in Serpentine River, 1953-83.
RIVER: SEROENTINE RIVER (COAL RIVER) COOE

| YEAR | $\begin{array}{r} \text { EFFORT } \\ \text { ROO. DAYS } \end{array}$ | $\begin{aligned} & \text { GRILSE } \\ & <2.7 K G \end{aligned}$ | $\begin{aligned} & \text { SALMON } \\ & >2.7 K G \end{aligned}$ | $\begin{aligned} & \text { TOTAL } \\ & \text { CATCH } \end{aligned}$ | CUE | $\begin{aligned} & \text { PERCENT } \\ & \text { GRILSE } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1953 | 143 | 01 | 59 | 150 | 1.05 | $7{ }^{\circ}$ |
| 1954 | 184 | 72 | 31 | 103 | 0.56 | 75 |
| 1955 | 56 | -77 | 39. | 116 | 2.07 | 65 |
| 1956 | 229 | 160 | 107 | 267 | 1.17 | 42 |
| 1957 | 266 | 136 | 115 | 251 | 0.94 | 58 |
| 1958 | 239 | 154 | 72 | 226 | 0.95 | 65 |
| 1959 | 459 | 175 | 138 | 313 | 0.68 | 53 |
| 1960 | 416 | 127 | 92 | 219 | 0.53 | 66 |
| 1961 | 639 | 119 | 103. | 222 | 0.35 | 55 |
| 1962 | 613 | 3 BO | 187 | 567 | 0.92 | 39 |
| 1963 | 330 | 176 | 105 | 281 | 0.85 | 78 |
| 1964 | 450 | 351 | 322 | 673 | 1.50 | 35 |
| 1965 | 776 | 249 | 169 | 418 | 0.54 | 67 |
| 1966 | 489 | 281 | 107 | 388 | 0.79 | 70 |
| 1967 | 449 | 103 | 50 | 153 | 0.34 | 85 |
| 1968 | 642 | 209 | 28 | 23.7 | 0.37 | 79 |
| 1969 | 875 | 182 | 49 | 231 | 0.26 | 81 |
| 1970 | 868 | 138 | 40 | 178 | 0.21 | 82 |
| 1971 | 834 | 130 | 7 | 137 | 0.16 | 95 |
| 1972 | 1088 | 116 | $5{ }^{\text {i }}$ | 121 | 0.11 | 96 |
| 1973 | 754 | 95 | 41 | 136 | 0.18 | 74 |
| 1974 | 654 | 71 | 18 | 89 | 0.14 | 84 |
| 1975 | 457 | -66 | 7 | 73 | 0.16 | 91 |
| 1976 | 475 | 133 | 7 | 140 | 0.29 | 90 |
| 1977 | 296 | 119 | 10 | 129 | 0.44 | 93 |
| 1978 | 667 | 237 | 71 | 308 | 0.46 | 63 |
| 1979 | 384 | -76 | 2 | 78 | 0.20 | 99 |
| 1980 | 329 | 169 | 15 | 184 | $0 \cdot 56$ | 84 |
| 1981 | 408 | 179 | 8 | 187 | 0.46 | 95 |
| 1982 | 576 | 165 | 22 | 187 | 0.32 | 89 |
| 1983 | 470 | 81. | 5 | 86 | 0.18 | - |

MEANS STANDARD DEVIATIONS N•S:

| $\begin{gathered} 53-57 \\ S .0 \\ N \end{gathered}$ | $\begin{gathered} 175.6 \\ 81.3 \\ 5 \end{gathered}$ | $\begin{array}{r} 107.2 \\ 38.8 \\ 5 \end{array}$ | $\begin{gathered} 70 \cdot 2 \\ 38 \cdot 7 \\ 5 \end{gathered}$ | $\begin{gathered} 177 \cdot 4 \\ 76 \cdot 7 \\ 5 \end{gathered}$ | $\begin{aligned} & 1.01 \\ & 0.14 \\ & 5 \end{aligned}$ | 58 6 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 58-62 \\ S .0 \\ N \end{gathered}$ | $\begin{array}{r} 473.2 \\ 162.3 \\ 5 \end{array}$ | $\begin{array}{r} 191.0 \\ 108.0 \\ 5 \end{array}$ | $\begin{array}{r} 118 \\ 45 \\ 5 \end{array}$ | $\begin{gathered} 309.4 \\ 149.3 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.65 \\ & 0.13 \\ & 5 \end{aligned}$ | 55 5 5 |
| $\begin{gathered} 63-67 \\ \mathrm{~S}=0 . \\ \mathrm{N} \end{gathered}$ | $\begin{gathered} 498.8 \\ 166.1 \\ 5 \end{gathered}$ | $\begin{array}{r} 232.0 \\ 95.7 \\ 5 \end{array}$ | $\begin{gathered} 150.6 \\ 104 \\ 5 \end{gathered}$ | $\begin{gathered} 382 \cdot 6 \\ 192 \cdot 8 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.77 \\ & 0.19 \\ & 5 \end{aligned}$ | 66 9 5 |
| $\begin{gathered} 68-72 \\ \mathrm{~S} \cdot 0 \\ \mathrm{~N} \end{gathered}$ | $\begin{gathered} 881.4 \\ 158.5 \\ 5 \end{gathered}$ | $\begin{array}{r} 155.0 \\ 39.0 \\ 5 \end{array}$ | $\begin{gathered} 25.8 \\ 19.6 \\ 5 \end{gathered}$ | $\begin{gathered} 180.8 \\ 52.9 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.21 \\ & 0.04 \\ & 5 \end{aligned}$ | 86 3 5 |
| $\begin{gathered} 73-77 \\ 5.0 . \\ \mathrm{N} \end{gathered}$ | $\begin{gathered} 527.2 \\ 179.3 \\ 5 \end{gathered}$ | $\begin{gathered} 96.8 \\ 29.2 \\ 5 \end{gathered}$ | $\begin{aligned} & 16.6 \\ & 14.4 \\ & 5 \end{aligned}$ | $\begin{gathered} 113.4 \\ 30.4 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.22 \\ & 0.04 \\ & 5 \end{aligned}$ | 85 4 5 |
| $\begin{gathered} 78-82 \\ 5.0 . \\ N \end{gathered}$ | $\begin{gathered} 472.8 \\ 142.4 \\ 5 \end{gathered}$ | $\begin{gathered} 165.2 \\ 57 \\ 5 \end{gathered}$ | $\begin{gathered} 23 \cdot 6 \\ 27 \\ 5 \end{gathered}$ | $\begin{gathered} 188.8 \\ 81.4 \\ 5 \end{gathered}$ | $\begin{aligned} & 0.40 \\ & 0.05 \\ & 5 \end{aligned}$ | 87 7 5 |
| $\begin{gathered} 69-82 \\ 5.0 \\ N \end{gathered}$ | $\begin{aligned} & 618.9 \\ & 240.6 \\ & 14 . \end{aligned}$ | $\begin{array}{r} 134.0 \\ 49.0 \\ 14 \end{array}$ | $\begin{aligned} & 21 \cdot 6 \\ & 20.7 \\ & 14 \end{aligned}$ | $\begin{gathered} 155.6 \\ 63.5 \\ 14 \end{gathered}$ | $\begin{array}{r} 0.25 \\ 0.03 \\ 14 \end{array}$ | 86 3 14 |

PERCENT GRILSE FIGURES ARE CALCULATED USING LAGGED GRILSE VALUES - IN THE ABOVE TABLE INDICATES NO DATA FOR THAT YEAR

Sports harvest for Atlantic salmon in Fox Island River, 1953-83.
RIVER: FOX ISLAND RIVER (FOX GROOK) COOE: 43019200


PERCENT GRILSE FIGURES are Calculated using lagged grilse values - IN THE ABOVE TABLE INOICATES NO DATA FOR THAT YEAR

Table 21
Spawning escapements (1978-82) for rivers in Areas $K$ and $L$ using two exploitation rates; these are compared to spawning requirements (Porter and Chadwick, 1983).

| River | Exploitation rate |  | Additional* <br> fish <br> released |  | Max. | Maximum** est. of escapement | Minimum*** est. of escapement |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 20\% | 40\% |  |  |  |  |  |
| Area K |  |  |  |  |  |  |  |
| Little Codroy | 276 | 104 | 488 | 463 | + | +301 | +129 |
| Grand Codroy | 4,556 | 1,709 | 2,964 | 3,511 | + | +4,009 | +1,162 |
| Highlands |  |  |  | 601 |  |  |  |
| Crabbes | 1,680 | 630 | 1,642 | 2,345 | + | +977 | -73 |
| Barachois | 752 | 282 | 1,829 | 1,350 | + | +1,231 | +761 |
| Robinsons | 2,844 | 1,067 | 1,546 | 1,752 | + | +2,638 | +861 |
| Fischells | 932 | 350 | 937 | 2,137 | - | -268 | -850 |
| Flat Bay | 1,324 | 497 | 1,329 | 2,904 | - | -251 | -1,078 |
| Lt. Barachois | 516 | 194 | 588 | 759 | + | +345 | +23 |
| Southwest | 1,940 | 728 | 3,473 | 2,795 | + | +2,618 | +1,406 |
| Harry's | 2,232 | 837 | 2,856 | 4,911 | + | +177 | -1,218 |
| Area L |  |  |  |  |  |  |  |
| Fox Island | 92 | 35 | 118 | 577 | - | -349 | -406 |
| Serpentine | 756 | 284 | 271 | 2,233 | - | -1,202 | -1,674 |
| Cooks | - | - | - | 357 |  |  |  |
| Humber | 15,008 | 5,628 | 3,034 | 18,452 | + | -458 | -9,838 |
| Hughes | - | - | - | 215 |  |  |  |

[^1]Table 22
Spawning escapements for rivers of Areas $K$ and $L$ using two exploitation rates; these are compared to spawning requirements (after Porter and Chadwick 1983).

|  | Exploitation rate |  | $\begin{gathered} \text { Addicional } \\ \text { Eish } \\ \text { released* } \end{gathered}$ | Required spawners | Max. | Maximum est. of escapement | Minimum est. of escapement |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 20\% | 40\% |  |  |  |  |  |
| Little Codroy | 272 | 102 | 476 | 463 | + | +285 | +115 |
| Grand Codroy | 4,524 | 1,697 | 2,791 | 3,511 | + | +3,804 | +977 |
| Crabbes | 1,496 | 561 | 1,647 | 2,345 | + | +798 | -137 |
| Barachois | 684 | 257 | 1,827 | 1,350 | + | +1,161 | +734 |
| Robinsons | 2,696 | 1,011 | 1,288 | 1,752 | + | +2,232 | +547 |
| Fischells | 868 | 326 | 937 | 2,137 | - | -332 | -874 |
| Flat Bay | 1,312 | 492 | 1,329 | 2,904 | - | -263 | -1,083 |
| Little Barachois | 488 | 183 | 569 | 759 | + | +298 | -7 |
| Southwest \& Bottom | 2,044 | 767 | 3,492 | 2,795 | + | +2,741 | +1,464 |
| Harry's | 2,236 | 839 | 2,856 | 4. 911 | + | +181 | -1,216 |
| Area K | 16,680 | 6,255 | 17,547 | 25,059 | + | +9,168 | -1,257 |
| Fox Island** | 196 | 74 | 127 | 577 | - | -254 | -376 |
| Serpentine | 688 | 258 | 273 | 2,233 | - | -1,272 | -1,702 |
| Humber | 14,612 | 5,480 | 2,967 | 18,452 | - | -873 | -10,005 |
| Area L | 13,336 | 5,001 | 4,830 | 24,682 | - | -6,516 | -14,851 |

* Fish released due to season reduction and adjusted to equivalent spawning potential (see Porter and Chadwick 1983).
** Based on angling mean catch 1981-83.


[^0]:    PERCENT GRILSE FIGURES ARE CALCULATED USING LAGGED GRILSE VALUES - IN THE ABOVE TABLE INDICATES NO DATA FOR THAT YEAR

[^1]:    * Fish released due to season reduction and adjusted to equivalent spawning potential i.e., additional fish released $=$ total $x$ ratio. Slight differences may occur due to rounding-off of ratios.
    ** Equal to Column $2+$ Column 4 - Column 5.
    *** Equal to Column 3 + Column 4 - Column 5.

