Not to be cited without permission of the authors ${ }^{2}$

Canadian Atlantic Fisheries Scientific Advisory Committee

CAFSAC Research Document 83/73

Ne pas citer sans autorisation des auteurs ${ }^{1}$

Comite scientifique consultatif des pêches canadiennes dans l'Atlantique

CSCPCA Document de recherche 83/73

## An evaluation of the 4X haddock population characterlstics during 1962-82 with yield projected to 1984.

by
R.N. O'Boyle, K. Waiwood ${ }^{2}$, and J. McMiltan

Marine Fish Division
Fisheries and Oceans
P.O. Box 1006

Dartmouth, N.S. B2Y 4A2
$2_{\text {Marine Fish Division }}$ Biological Station Fisheries and Oceans
St. Andrews, N.B. EOG $2 \times 0$
${ }^{1}$ This series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research Documents are produced in the official language in which they are provided to the Secretariat by the author.
${ }^{1}$ Cette série documente les bases scientifiques des conseils de gestion des pēches sur la cōte atlantique du Canada. Corme telle, elle couvre les problèmes actuels selon les êchêanciers voulus et les Documents de recherche qu'elle contient ne doivent pas être considērēs comme des ênoncēs finals sur les sujets traités mals plutôt corme des rapports d'étape sur des études en cours.

Les Documents de recherche sont publiēs dans la langue officielle utiliseée par les auteurs dans le manuscrit envoyē du secrētartat.


#### Abstract

Prior to 1960, nominal catches of Division $4 X$ haddock fluctuated between 10,000 and $20,000 \mathrm{t}$ annually. During the mid to late 1960s, heavy exploitation resulted in catches in excess of 30,000 t. Declining stock biomass prompted the introduction of TAC regulation in 1970. Nominal catches subsequently increased from a recent low of $13,000 \mathrm{t}$ in 1973 to $31,000 \mathrm{t}$ in 1981, but declined to $24,000 \mathrm{t}$ in 1982. The catch for 1982 was dominated by the 1975 and 1979 year classes. It was similar to the catch percent age composition as projected by the 1982 assessment. Canadian sumat groundfish survey abundance estimates indicate that whlle the number of age 2 to 5 haddock has steadily increased since 1976, that of ages $6+$ reached a peak in $1979-80$ and has declined thereafter. Survey recrutment indices show that the 1979, 1980, and possibly 1981 year classes are well above the long term average. The present assessment involved both the survivor method and cohort analysis in the detentination of the 1982 fishing mortalities. The partial recruitment pattern was similar to that calculated in 1981 while the fully recruited $F$, although chosen at 0.3 , could be as high as 0.42 which is suggested by the Survivor analysis. A new Fo. 1 value of 0.25 was calculated using 16 rather than 12 age groups which previously has been the case. Using the derived partial recruitments and the 1982 weights-at-age, yield projections to 1984 were made, assuming $F_{0.1}$ catch in 1984. The estimated 1984 yield was 32,000 t.


## Ratsung

Les prises nominales d'aiglefin de la div. $4 X$ avant 1960 ont fluctué entre 10000 et 20000 t annuellement. Du milifeu a la fin des années 60, une exploftation intensive a donne des prises de plus de 30000 t . Un déclin de la biomasse du stock a nécessité l'introduction d'une réglementation par TPA en 1970. Les prises nominales augmentèrent par la sulte, passant d'un creux de 13000 t en 1973 à 31000 t en 1981, mals elles déclinèrent de nouveau 24000 t en 1982. Les classes d'dge de 1975 et 1979 ont domine les prises de 1982. C'est la même structure d'ige qui avait đté prédite lors de l'évaluation de 1982. Les estimations d'abondance decoulant du releve estival des poissons de fond mene par les Canadiens indiquent que si 1e nombre d'aiglefins d'ages 25 a agnente rexguliarement depuis 1976, celui des Jges 6+ a atteint un somet en 1979-80 at diminue par la suite. Les indices de recrutement decoulant du relevé indiquent que les classes d'\&ige de 1979, 1980 et, possiblement, 1981 sont bien au-dessus de la moyenne a long terme. La présente évaluation est fondée a la fols sur la mêthode des survivants et l'analyse des cohortes pour determiner les mortalités par pēche en 1982. Le recrutement partiel avait les mêmes caractéristiques qu'en 1981, alors que $F$ de plein recrutement, bien que fixe a 0,3 , pouvait Être aussi ẽlevé que 0,42, comme le porte croire l'analyse des survivants. On a calcule une nouvelle valeur de 0,25 a F $_{0.1}$, utilisant 16 , plut才t que 12 groupes, d'lige conme ce fut le cas prêędemment. En se fondant sur les recrutement partiels derivés et les poids an age donne en 1982, on a fait des projections de rendement pour 1984, en supposant des prises au niveau de $\mathrm{F}_{0.1}$ en 1984. Le rendement a été estimé à 32000 t en 1984.

## Introduction

Biological evaluations of the $4 X$ haddock stock have been conducted since the mid-1960s. Prior to 1974, these involved examination of trends in commercial catch rates and/or survey abundance indices. Halliday (1974) conducted the first Cohort Analysis (Pope, 1972) to be used in these assessments and this approach has been continued to the present. In addition, 0'Boyle (1981a) employed Survivor Analysis (Doubleday, 1981a) in an attempt to make the choice of terminal fishing mortality a more objective process. The analyses conducted since 1981 have shown that in general the Cohort Analysis has led to lower estimated terminal fishing mortalities than those derived from the Survivor Analysis.

The present evaluation again uses the Survivor and Cohort Analyses to determine terminal fishing mortality, with the Canadian summer bottom trawl survey data being the main source of stock trend information. The stock sizes for 1962 to 1982 are determined and yield projected, under $\mathrm{F}_{0.1}$ conditions, to 1984.

## Trends in Reported Landings

Annual Trends
Prior to 1960, catches of haddock from Division $4 \times$ (Figure 1) fluctuated between $10-20,000 \mathrm{t}$ annually. These landings were split equally between Canada and the USA. In 1963, the USSR entered the fishery for the first time and reported landings of 400 t . This increased to $10,065 t$ by 1966. As well the Canadian offshore fleet catch expanded rapidly. During the 1970s, foreign catch, including that of the US, declined leaving Canada almost the sole exploiter of the stock (Table 1). High exploitation rates in the late 1960s caused sharp declines in abundance and provoked the establishment of quotas and closed spawning areas in 1970 in an attempt to curb fishing effort.

The stock showed signs of recovery in the mid-1ate 1970s. Since 1973 , when $12,958 t$ were landed, the annual catch has steadily increased with over $30,000 \mathrm{t}$ reported landed in 1981 (Table 1). Reports from the field indicate that the actual catch during the 1977-80 period was higher than that reported. Low quotas caused substantial discarding, dumping, and misreporting by species and division. During this period the inshore fleet overran and the offshore fleet underran its allocation (Table 2) In 1982, landings $(24,015 \mathrm{t})$ fell short of the TAC $(32,000 \mathrm{t})$ by a substantial margin for the first time in 10 years.

## Canadian Fishery by Gear Type, Tonnage Cl ass, and Unit Area

During the 1970 s , the landings of the tonnage class $1-3$ otter trawlers increased dramatically. Longliner catches have also increased but not to the same extent (Table 3 and Figures 2 and 3). Landings by other gear and size categories have remained relatively stable.

The largest change in the fishery has been from a predominantly tonnage class 4 and 5 vessel fishery in the 1960s - early 1970s to a tonnage class 1-3 vessel fishery from the mid-1970s to the present (Figure 3). This has caused a change in both the seasonal exploitation pattern and the area of fishing. Regarding the season, 0 'Boyle et al., (1983) showed that the smaller, inshore otter trawlers restrict their activity to the February-November period whereas the larger offshore vessels have increasingly resticted their activity to the beginning and end months of the year. Regarding area, the inshore otter trawlers fish first on Browns Bank and then move into the Bay of Fundy during the summer months (Figure 4). The offshore vessels, on the other hand, have always restricted their fishing to Browns Bank and its environs. Thus with the change in fleet catch composition, the spatial and temporal distribution pattern of exploitation has changed.

## Age Composition of the Commercial Catch

Sampling Intensity
Since 1970, sampling coverage by gear type has been good (Table 3). However, prior to 1981 coverage within gear type by tonnage class has been strongly biased toward the larger vessels. This is particularly evident when one examines the mean weight landed per commercial sample (Table 4) for the six main fishing fleets. In 1981, a shift in sampling intensity towards the smaller vessels was undertaken to rectify this problem and as a consequence sampling coverage since 1981 has been much more equitable. The 1982 sampling coverage by gear type, season, and unit area was very good with only tonnage class 4-5 trawler catches being undersampled (Table 5).

Examination of length-weight and length-at-age relationships by season and unit area

An analysis was conducted on the combined 1970-81 research survey data and 1981-82 port sampling information to examine seasonal changes in condition factor. Multiple regression analysis was used to fit the model:

$$
\text { (1) } W=A \cdot L^{B} \cdot T^{C}
$$

(2) $\log _{10} W=\log _{10} A+B \log _{10} L+C \log _{10} T$
where:

> W is the weight in grams
> L is the length in centimetres
> T is the Julian date of the year
> $\mathrm{A}, \mathrm{B}$, and C are equation constants

The model was fit for inshore ( $4 \mathrm{Xq}, r$ ) and offshore areas ( $4 \mathrm{Xm}, \mathrm{n}, 0, \mathrm{p}$ ) separately due to lack of coverage of inshore vessel data offshore and offshore vessel data inshore. Using the partial $F$ test, the $C$ coefficient was found to be significant at the $5 \%$ level; however the increase in fit was only slight. Nevertheless it was felt warranted to include the $C$ coefficient in determination of the length-weight relationship on a seasonal basis. Consequently the $C$ term was calculated for the mid day of the quarter in question and the $\log _{10}$ A term adjusted appropriately (Table 6). These eight length-weight relationships, four for inshore and four for offshore, were used when constructing the catch-at-age matrix.

It was observed that, with regard to the survey data, haddock found in inshore areas are longer-at-age than those found offshore (Figures 5A-D). This pattern was not clearly visible in the commercial data (Figures 5E-I), although there was a general tendency for age 2-6 fish to be longer at age inshore than offshore.

The reasons for these results needs to be further investigated. They could result from differential migration, exploitation or from the existence of different stocks. Work is presently underway to examine each of these effects.

## Construction of the Catch-at-age Matrix

Construction of the catch-at-age prior to 1978 is discussed by 0'Boyle (1981a). A key point is that no adjustment has been made for the USSR catches in the mid-1960s. The length frequency of the landings by this country was assumed to be the same as that for Canada. This is believed not to be the case, and efforts are presently underway to rectify the analysis. However, this should be kept in mind when analysing the present data set for recruitment studies.

The 1978-79 catch-at-age was reconstructed as per 0'Boyle (1981a). The 1980-81 catch-at-age was reconstructed using gear (otter trawler, longliner, and miscellaneous gear), area (mnopu and qr), and quarter for stratification (unit area "u" is "unit area unknown").

In 1982, tonnage class was added to the stratification scheme (Table 5) and seasonally adjusted length-weight relationships (Table
6) were used in converting sample numbers to catch numbers. For 1978-82, only Canadian sampling was used as no foreign sampling data was available. No correction for discarding has been applied.

The Catch-at-age Matrix
The numbers landed-at-age for 1962-1982 are presented along with the weights-at-age calculated for commercial landings in Tables 7 and 8 . Ages 4 to 7 haddock have over the years contributed the majority of numbers and biomass to the landings (Tables 9 and 10). In almost all years, catches of fish older than 12 years have represented a very small fraction of the total catch.

A comparison of the 1982 projected catch-at-age from O'Boyle and White (1982) with the observed 1982 catch-at-age (Figure 6 and Table 11) shows that the actual catch age composition was well predicted. The only discrepancy is the lower than predicted catch of the 1979 year class. Also, the absolute numbers caught was lower than those predicted.

## Stock Abundance Trends

## Groundfish Bottom Trawl Surveys

Canada and the US have conducted standardized groundfish surveys (Doubleday, 1981b) in NAFO Division 4 X since 1970 and 1963 respectively. Initially Canada only ran summer surveys, but in 1979 a fall survey was added and the following year a spring survey series was initiated. The US has conducted autumn surveys since 1963 and spring surveys since 1968. Summer surveys have also been conducted since 1963 but the series is not complete.

The Canadian surveys have habitually sampled all of $4 X$ (strata 70-95 of Figure 7a). On the other hand, recent coverage by the US surveys has been restricted to Browns Bank (strata 31-34 of Figure 7b). Consequently, although indicative of trends in abundance, the US data were felt not complete enough to use in tuning of the Sequential Population Analysis. The Canadian summer survey data, due to its completeness in sampling time and space, were used for this purpose.

In 1982, the A.T. Cameron, the Canadian summer survey vessel was replaced by the Lady Hammond. Comparison studies of the fishing efficiency of both vessels have been underway since 1979 but the final results are still forthcoming. Nevertheless, preliminary results (Koeller and Smith, 1983) indicate that, for haddock, the Lady Hammond's catch rates by numbers are $20 \%$ higher than those for the A.T Cameron. For this reason, the Lady Hammond figures in this analysis were divided by 1.2 to make the 1982 data comparable with the long time series available from the A.T. Cameron.

The longer US time series shows that stock size was high in 1963-67, declined during 1967-76, and subsequently rose to an asymptote in 1979-82. Present stock levels appear to be about $60 \%$ higher than those observed in the mid-1960s (Table 12).

The Canadian summer survey time series (Table 13) exhibits the same rapid rise in stock abundance during 1976-80 as was observed in the US data set (Figure 8). Most of the recent increase in abundance has occurred in the inshore areas, particularly stratum 90, at the mouth of the Bay of Fundy (Table 14).

An examination of the changes in the age structure of the population shows that whereas the relative abundance of the partially recruited age groups (age 2 to 5) has steadily increased since 1977 (Figure 9), the abundance of the fully recruited age groups (age 6+) increased during 1976-79 and have fallen off since then (Figure 10).

Recent recruitment fluctuations partially explain these trends. These were examined through the calculation of recruitment indices for the Canadian summer and U.S. fall surveys using the normalization method of O'Boyle (1981b). For each survey, two indices were developed. Indices for the Canadian survey were developed using ages $1+2$ and $2+3$ of each cohort while the US recruitment indices used ages $0+1$ and $1+2$ of each cohort (Table 15).

The US recruitment indices show exceptionally large 1962 and 1963 year classes. The 1971 year class is strong in this survey but only average in the Canadian survey (Figure 11). The year classes between 1972 and 1977 are not exceptional but above those seen during 1964-70. The 1978 year class represents a recent 10 w in recruitment but still larger in size than those seen in the $1964-70$ period. The 1979 year class is shown to be exceptionally strong in both surveys, as is the 1980 year class. Initial indications from the Canadian survey of the 1981 year class are that it is similar in size to the 1979 and 1980 year classes. The US survey results do not agree with this and show this year class to be weaker than the 1978 year class. Thus it is too early to predict with any degree of confidence the size of this year class.

It is interesting to examine seasonal trends in the strengths of these year classes to get some idea as when year class size is finally established. First, it is clear that the July survey only sporadically picks up the age 0 individuals (Table 16) and that the autumn survey is the first time that young of the year are caught in any number. It is uncertain, however whether or not year class size is fixed by this time. The 1980 year class was seen to be exceptionally large in the autumn survey but had become substantially reduced by

March 1981 and further reduced by the following summer. It now appears smaller than the 1979 or 1981 year classes in the second summer of life. From this it is apparent that the age $1+2$ recruitment indices should be superior to the age $0+1$ index in estimating year class size.

## Commercial Catch Rates

Previous attempts to use the commercial catch rate data available for $4 X$ haddock have not met with success (0'Boyle, 1981a; 0'Boyle and White, 1982). There are a number of reasons for this. First, until recently, the full data set has not been conducive to large scale analysis. Second, misreporting, dumping, and discarding in the late 1970 s has led to strong biases in the catch rate series. Finally, the fleets have undergone many changes, both in area, time of year fished and gear used over the time period of the available data set (1968-present). Without quantification of these changes, it is risky to consider the efficiency now in any way comparable to that observed in the early 1970s.

Thus, for the purposes of tuning the SPA, it was felt not valuable at this time to use the commercial catch rate data. However it was felt of benefit to examine the series to both prepare for its future use and get an impression of what the fishermen see in stock biomass trends.

0'Boyle and White (1982) developed two catch rate series one for the tonnage class 1-3 otter trawlers fishing in unit areas $4 \times q-r$ in August-September and the other for tonnage class $4-5$ otter trawlers fishing in unit area 4 Xn in January-March. Both series used tons per trip as indicative of abundance.

These series were reworked in this analysis. The first set of changes was to express catch rates as tons per fishing hour and for the tonnage class $4-5$ vessels include unit areas $4 \times m-p$ and $u$ in the calculations (Table 17).

The second set of calculations used the Multiplicative Model of Gavaris (1980) in an attempt to adjust for seasonal, areal, and vessel type and size effects on the catch rates. Essentially the Multiplicative Model is a large Analysis of Covariance with season, unit area, and vessel type and tonnage class as covariates. Unfortunately the model assumes linearity between the dependent and each independant variable which with vessel tonnage class is probably not the case. Nevertheless the analysis represents an important first step in the consideration of these confounding factors.

The analysis of the unit area $4 \mathrm{Xq}-\mathrm{r}$ (inshore) data was conducted separately from the $4 \times m-p, u$ (offshore)data. This was due to
the lack of tonnage class $4-5$ vessel activity in the former area.
The "inshore" analysis used 1968, tonnage class 2 , January-March and stern otter trawler type as a standard. The fit of the model to the data was barely significant ( $r^{2}$ of 0.23 ). The most significant difference in catch rates was observed between side and stern otter trawlers. Season and year were significant while tonnage class was not.

The "offshore" analysis used 1968, tonnage class 5, January-March and stern otter trawler type as a standard. Again the model fit was poor ( $r^{2}$ of 0.31 ) with vessel type and season explaining most of the variance.

These two models were used to calculate two catch rate series - one for unit area 4 Xar using stern otter trawlers of tonnage class 3 operating during July-September and the other for unit area $4 \times \mathrm{m}-\mathrm{p}$, $u$ using stern otter trawlers of tonnage class 5 operating during julySeptember.

The two series for each of the nonstandardized and standardized catch rates (Table 17) are illustrated in Figure 12. Standardization dramatically changes the view of the resource, particularly the trend in recent years. It also makes more comparable the catch rates series for the inshore and offshore area. According to the nonstandardized series, abundance inshore started to decline in 1977; offshore, declines were abrupt in 1981. The standardized series show decreases in fishable biomass since 1978. Biomass in 1982 is comparable to that observed in the late 1960s.

## Sequential Population Analysis

## Survivor Analysis

0'Boyle (1981a) used Survivor Analysis (Doubleday, 1981a) for the first time in the $4 X$ haddock stock evaluation. The method has the advantage of statistically fitting the survey data to the population numbers derived from an SPA and is thus objective. Its main weaknesses are: 1) it assumes the data are normally distributed and 2) there is a linear trend between survey catch rate and stock biomass. The latter means that one cannot use those age groups which are not well sampled by the survey. 0'Boyle (1981a) thus restricted his analysis to the age 3 to 8 individuals. As a consequence, the method cannot generate $0+$ population numbers but does provide a terminal fully recruited fishing mortality ( $F_{t}$ ) which can be used in a Cohort Analysis.

Because the Survivor method is a relatively new procedure which requires certain assumptions, the Sequential Population Analysis
procedure ( 0 'Boyle, 1981b) has continued to be used. In the 1981 evaluation, both approaches provide an $F_{t}$ of approximately 0.3. In the 1982 evaluation (0'Boyle and White, 1982), the Survivor Analysis provided an $F_{t}$ of about 0.46 while the Cohort Analysis provided an $F_{t}$ of 0.4. The latter was chosen because it presented population trends more in line with those calculated by 0'Boyle (1981a).

The Survivor Analysis on the 1970-82 data set was carried out for ages 3 to 8 . The calibration block was set for ages 3 to 7 , years 1970 to 1982, with the calibration constant, K, asymptotic after age 5. Natural mortality, M, was set at 0.2. Fishing mortalities for 1982 were calculated by inputting the survivor estimates and catch statistics for 1982 into a Newton-Raphson iterative solution of the Baranov catch equation. Adjustment of the survivor estimates from the end to the beginning of the year were made in this calculation.

The results of the Survivor Analysis (Table 18a and b) provided a weighted (by population numbers) terminal fishing mortality, $F_{t}$, for ages 6 to 8 of 0.417 . The unweighted value was 0.46 . However, as in previous years, the coefficients of variation on this analysis were quite high, ranging from 42 to 60 percent.

## Cohort Analysis

The determination of the 1982 partial recruitment vector and fully recruited fishing mortality closely followed the procedure outlined by 0'Boyle (1981b). A modification was however made to the Cohort Analysis (Pope, 1972) to improve the calculation of the age $13+$ population numbers. In previous assessments (0'Boyle, 1981a; O'Boyle and White, 1982), the age $13+$ catch-at-age has simply been dropped from the analysis. Here, the age 12 and $13+$ numbers were calculated using the "fishing incomplete" equation of Pope (1972). However only the age 12 numbers were used to commence the analysis. During the various runs to be mentioned below, these values, once the analysis commenced, were updated through an iteration process with the arithmetic mean of the age 6 to 9 fishing mortalities serving as input $F$ at age 12 and 13+ for the next run. The convergence criterion was $\mathrm{F}_{\boldsymbol{i}}-\mathrm{F}_{\mathbf{i}+1}<0.001$.

Choice of the 1982 partial recruitment pattern and fully recruited fishing mortality was made through close examination of the following relationships:

1. Age $6+$ SPA population numbers $\left(\times 10^{-3}\right)$ vs age $6+$ numbers per tow from Canadian summer research survey.
2. Age 2 to 5 SPA population numbers $\left(\times 10^{-3}\right)$ vs age 2 to 5 numbers per tow from Canadian summer research survey.
3. Age 1 SPA population numbers $\left(x 10^{-3}\right)$ vs age $1+2$ recruitment index from Canadian summer research survey.
4. Age $2+3$ SPA population numbers $\left(\times 10^{-3}\right)$ by cohort vs age $2+3$ recruitment index from Canadian summer research survey.

The partial recruitment pattern was established before choice
of the 1982 fully recruited fishing mortality ( $F_{t}$ ). First, the pattern as calculated for 1981 by 0'Boyle and White (1982) was multiplied by the $F_{t}$ estimated by the Survivor Analysis. Full recruitment in previous assessments has been shown to occur at age 6 and be asymptotic thereafter. Small adjustments were made to the age 1 to 5 partial recruitment values to maximize the $r^{2}$ of relationships 2, 3, and 4. The resultant vector was not dissimilar to that provided by $0^{\prime}$ Boyle and White (1982) and almost identical to that given by O'Boyle (1981a) (Table 19).

The fully recruited $F_{t}$ for 1982 was calculated using the following criteria:

1. Maximization of the $r^{2}$ of relationships $1,2,3$, and 4 examining the plots closely for the identification of outliers.
2. Assuming an intercept of zero and thus seeking those relationships which regress lines closest to the origin. Again plots were closely examined to identify data points which could be spurious.
3. Choice of a $1982 \mathrm{~F}_{\mathrm{t}}$ which gave a $1981 \mathrm{~F}_{\mathrm{t}}$ which is consistent with $1981 F_{t}$ provided by $0^{\prime}$ Boyle and White (1982).

In general, the discrimination power of the various criteria was low for the range of $F_{t}$ values chosen. The results for relationship 2 (Table 20) suggest that, from an $r^{2}$ point of view, an $F_{t}$ of 0.46 would be appropriate. From an intercept point of view, a value closes to 0.25 is likely. This relationship had two outliers those for 1974 and 1977. Removal of these points from the analysis would narrow the choice of $F_{t}$ to the range of 0.25 to 0.35 .

The first relationship's results (Table 21) suggest that $F_{t}$ should be around 0.4. The intercept never passed through the origin, the value of $A$ changing only slightly over the range of $F_{t}$ values tested.

The results for relationship 3 (Table 22) suggest an $F_{t}$ of 0.35 to maximize the $r^{2}$ and 0.25 to pass the intercept through the origin.

The last relationship's apalysis (Table 23) provided an $\mathrm{F}_{\mathrm{t}}$ in 1982 of 0.50 and 0.375 for the $r^{2}$ and intercept criteria respectively.

The summary of this analysis is that two relationships, 2 and 3 , suggest an average $F_{t}$ of 0.3 (middle of range $0.25-0.35$ ) while the remaining two suggest a value around 0.425 (average of $0.4,0.5$, and 0.375 ). The latter value is very close to that generated by the Survivor Analyis. Thus the choice in essence reduces to a decision for $\mathrm{F}_{\mathrm{t}}$ in 1982 between 0.3 and 0.42 .

The last criterion to examine, that of consistency with the 1982 assessment, was used to discriminate between these two options. In the Cohort Analysis using an $\mathrm{F}_{\mathrm{t}}$ of 0.3 , the average $1981 \mathrm{~F}_{\mathrm{t}}$ (weighted by population numbers) for ages 6 to 9 was 0.43 . The comparable value for the analysis with an $F_{t}$ of 0.4 was 0.52 . The $1981 \mathrm{~F}_{\mathrm{t}}$ chosen in the 1982 assessment was 0.4 (0'Boyle and White, 1982) which suggests that the $1982 \mathrm{~F}_{\mathrm{t}}$ for this analysis should be closer to 0.3 than 0.4 .

## Final Cohort Analysis

The Survivor Analysis suggested an $F_{t}$ of 0.42 whereas the Cohort Analysis suggested a value of 0.3. Both procedures have inherent problems. The first suffers from high variance while the second requires much subjective decision making. The most persuasive piece of information in the analysis is that an $F_{t}$ of 0.3 would be consistent with the decision for $F_{t}$ made in 1982. What is worrisome about this is that the analysis as presented by O'Boyle and White (1982) might be too optimistic. It is still too early to tell whether or not this is the case.

The Cohort Analysis using an $\mathrm{F}_{\mathrm{t}}$ of 0.3 and the partial recruitment pattern as given in Table 19 is presented in Table 24. The associated plots are provided in Figure 13. An examination of the age 1 estimates for the stock assessments over the last three years shows that the various evaluations have been fairly consistant (Table 25). There has been, however, a general increase in size estimates of the 1977 to 1978 year classes between this ( $F_{t}$ of 0.3 ) and the evaluation by O'Boyle and White (1982). It is important to point out here that the value for the 1980 year class $\left(93,681 \times 10^{-3}\right)$ was predicted from the relationship between age $1+2$ population numbers ( $\times 10^{-3}$ ) by cohort and age $1+2$ survey recruitment index. The same relationship predicts a large 1981 year class $\left(85,110 \times 10^{-3}\right)$. However, because there is still not enough data to definitively fix the size of this year class, the geometric mean of the age 1 estimates for 1962 to 1980 was used as representative of the size of the 1981 year class.

Table 25 also presents the age 1 population size estimates assuming an $F_{t}$ of 0.4. The view of the resource is much more pessimistic than that with $\mathrm{F}_{\mathrm{t}}=0.3$. Al so, an $\mathrm{F}_{\mathrm{t}}$ of 0.4 suggests that the $F_{t}$ value in the current year had been underestimated in the last three years as shown by the decreasing population numbers estimated by each successive assessment.

## Yield-per-recruit Analysis and Catch Projections

## Yield-per-recruit

In previous evaluations, the maximum age chosen for the yield per-recruit analysis has been 12 years. Closer examination of the available commercial sample data and discussions with other colleagues has indicated that the maximum age that a haddock can attain is in the order of 16 years.

The partial recruitment vector was that as derived above in the Cohort Analysis.

The weight-at-age (kg) was obtained through converting the 1982 commercial weight-at-age (Table 8) to length using the offshore, quarter 2 length-weight relationship (Table 6) and then fitting a Von Bertalanaffy growth equation to this data. This equation was used to calculate a 20 year vector of lengths which was then converted back to weight using the same length-weight relationship as used above (Table 26). M was taken as 0.2.

The $\mathrm{F}_{0.1}$ with 16 ages was 0.248 , compared to 0.3 for 12 ages, which is a decrease by $21 \%$. The yield per recruit, on the other hand, changed from 0.605 to 0.596 which is only a $2 \%$ decrease. The $\mathrm{F}_{\text {MAX }}$ and yield-per-recruit at $\mathrm{F}_{\text {MAX }}$ changed $5 \%$ and $1 \%$ respectively.

## Catch Projections

Projections were only carried out for the Cohort Analysis with $F_{t}$ of 0.3, although it is realized that this may represent an overly optimistic resource picture. The Cohort Analysis run with $\mathrm{F}_{\mathrm{t}}$ of 0.4 produces a 1982 population about $75 \%$ the size of that produced by the $F_{t}=0.3$ run. Thus under equivalent catch projection conditions, yield in this case can be expected to be $75 \%$ of that presented here.

The catch projection was run to 1984 using the starting conditions as given in Table 27. Three assumptions were considered for 1983-32,000 t caught (the TAC); F0. 1 caught; $25,000 \mathrm{t}$ caught (projected). The 1984 exploitation was at F0.1.

The results (Table 28) show that, regardless of the 1983 assumption, 1984 yield can be expected to be near the present TAC of $32,000 \mathrm{t}$. This conclusion is of course contingent on $\mathrm{F}_{\mathrm{t}}$ being 0.3.

## References

Doubleday, W.G. 1981a. A method of estimating the abundance of survivors of an exploited fish population using commercial fishing catch-at-age and research vessel abundance indices pp. 164-178. IN W.G. Doubleday and D. Rivard [ed.]. 1981. Bottom trawls surveys Can. Spec. publ. Fish. Aquat. Sci. 58.

Doubleday, W.G. 1981b. Manual on groundfish surveys in the northwest Atlantic. NAFO Scientific Council Study No. 2.

Gavaris, S. 1980. Use of a multiplicative model to estimate catch rates and effort from commercial data. Can. J. Fish. Aquat. Sci. 37: 2272-2275.

Halliday, R.G. 1974. Current status of the ICNAF Div. 4X haddock stocks. ICNAF Res. Doc. 74/91.

Koeller, P. and S. Smith. 1983. Preliminary analysis of A.T. Cameron - Lady Hammond comparative fishing experiments 1979-81. CAFSAC Res. Doc. 83/59.

O'Boyle, R.N. 1978. ICNAF Div. 4 X haddock spring 1978 status report. CAFSAC Res. Doc. 78/19.

0'Boyle, R.N. 1980. ICNAF Div. $4 X$ haddock January 1980 status report. CAFSAC Res. Doc. 80/2.

0'Boyle, R.N. 1981a. An assessment of the 4 X haddock stock for the 1962-80 period. CAFSAC Res. Doc. 81/24.

0'Boyle, R.N. 1981b. The generation of input parameters of sequential population analysis. CAFSAC Res. Doc. 81/78.

0'Boyle, R.N. and G.N. White III. 1982. An evaluation of the $4 X$ haddock population characteristics during 1962-81 with yield projected to 1983. CAFSAC Res. Doc. 82/53.

0'Boyle, R.N., L. Cleary, and J. McMillan. 1983. Determination of the size composition of the landed catch of haddock from NAFO Division $4 X$ during 1968-81. p. 217-234. IN W.G. Doubleday and D. Rivard [ed.]. Sampling commercial catches of marine fish and invertebrates. Can. Spec. Publ. Fish. Aquat. Sci. 66.

Pope, J.G. 1972. An investigation of the accuracy of virtual population analysis using cohort analysis. ICNAF Res. Bull 9: 65-74.

Table 1. Reported nominal catch (t round) of haddock from NAFO Division $4 x$ (excluding unit area $4 X$ s) by country.

| YEAR | CANADA (MQ) | CANADA (Nfld) | USA | USSR | SPAIN | OTHER | TOTAL | TAC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1970 | 15560 | - | 1639 | 2 | 370 | 12 | 17583 | 18000 |
| 1971 | 16067 | - | 656 | 97 | 347 | 1 | 17168 | 18000 |
| 1972 | 12391 | - | 411 | 10 | 470 | 1 | 13283 | 9000 |
| 1973 | 12535 | - | 268 | 14 | 134 | 6 | 12958 | 9000 |
| 1974 | 12243 | - | 662 | 35 | 97 | - | 13037 | 0 |
| 1975 | 15991 | - | 2109 | 39 | 7 | 2 | 18148 | 15000 |
| 1976 | 16294 | - | 972 | - | 95 | 5 | 17366 | 15000 |
| 1977 | 19561 | - | 1649 | 2 | - | 12 | 21224 | 15000 |
| 1978 | 25300 | 114 | 1135 | 2 | - | 27 | 26578 | 21500 |
| 1979 | 24287 | 268 | 69 | 3 | - | 15 | 24642 | 26000 |
| 1980 | 28215 | 75 | 256 | - | - | 34 | 28580 | 28000 |
| 1981 | 30156 | 113 | 342 | - | - | 16 | 30627 | 27850 |
| 1982 | 23216 | 28 | 767 | - | - | 4 | 24015 | 32000 |

Table 2. Recent Canadian fishery allocations and the respective reported catch of $4 x$ haddock ( $t$ ). (All information from Atlantic Quota Reports.)

| YEAR | VESSEL SIZE | ALlocation | REPORTED CATCH | \% OF ALLOCATION |
| :---: | :---: | :---: | :---: | :---: |
| 1975 | all vessels | 12500 | 15970 | 128 |
| 1976 | all vessels | 13300 | 15715 | 118 |
| 1977 | all vessels | 13400 | 20220 | 151 |
| 1978 | all vessels | 21500 | 25518 | 119 |
| 1979 | $\begin{aligned} & >125 \mathrm{ft} . \\ & <125 \mathrm{ft} . \end{aligned}$ | $\begin{array}{r} 8500 \\ 17500 \end{array}$ | $\begin{array}{r} 5471 \\ 17949 \end{array}$ | $\begin{array}{r} 76 \\ 103 \end{array}$ |
| 1980 | $\begin{aligned} & >125 \mathrm{ft} . \\ & <125 \mathrm{ft} \end{aligned}$ | $\begin{array}{r} 5500 \\ 22500 \end{array}$ | $\begin{array}{r} 5095 \\ 23585 \end{array}$ | $\begin{array}{r} 93 \\ 105 \end{array}$ |
| 1981 | $\begin{aligned} & >125 \mathrm{ft} . \\ & <125 \mathrm{ft} . \end{aligned}$ | $\begin{array}{r} 5500 \\ 22350 \end{array}$ | $\begin{array}{r} 5319 \\ 23881 \end{array}$ | $\begin{array}{r} 97 \\ 107 \end{array}$ |
| 1982 | $\begin{aligned} & <65 \mathrm{ft} . \\ & 65-100 \mathrm{ft} . \\ & >100 \mathrm{ft} . \end{aligned}$ | $\begin{array}{r} 23850 \\ 1100 \\ 7050 \end{array}$ | $\begin{array}{r} 21077 \\ 691 \\ 2829 \end{array}$ | 88 63 40 |

Table 3. Nominal catch (t round) of haddocx from unit areas $4 X \mathrm{~m}-\mathrm{r}$ and $u$ (unknown) landed in the Maritimes and reported by tonnage class and gear type. The number in brackets represents the number of commercial samples taken by MFD.

| YEAR | TONNAGE CLASS |  |  |  |  |  | TOTAL |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1-3$ |  |  |  | 4-5 |  |  |
|  | 01 | - | MISC | 01 | L | MISC |  |
| 1970 | 4894 (5) | 2754 | 1295 | 6500(22) | 113 | 3 | 15559 |
| 1971 | 4289 (6) | 3019(3) | 954 | 7712(17) | 93 | 0 | 16067 |
| 1972 | 2741 (3) | 3904 (7) | $933(1)$ | 4750(20) | 63 | 0 | 12391 |
| 1973 | 1822(6) | 5714(9) | 701 | 4228(14) | 70 | 0 | 12535 |
| 1974 | 3949 (5) | 6106(10) | $509(1)$ | 1623(5) | 56 | 0 | 12243 |
| 1975 | 6091(18) | 4917(8) | 548 (1) | 4409 (28) | 26 | 0 | 15991 |
| 1976 | 4348(4) | 4591 (6) | $1159(2)$ | 6144 (33) | 46 | 6 | 16294 |
| 1977 | 6185(6) | 3918(8) | 960 | 8345(64) | 117 | 35 | 19560 |
| 1978 | 9213(1) | 5957(10) | 1947 (4) | 8093 (48) | 92 | 0 | 25302 |
| 1979 | 9870(2) | 4292(12) | $1435(2)$ | 8634(33) | 56 | 0 | 24287 |
| 1980 | 12655(10) | 5635 (17) | 2403(4) | 7440(24) | 82 | 0 | 28215 |
| 1981 | 14599(42) | 6925(26) | 1915(7) | 6647 (7) | 70 | 0 | 30156 |
| 1982 | 11495(49) | 6708(20) | 1888(14) | 3091 (10) | 32 | 0 | 23214 |

Table 4. The mean weight ( $t$ ) per commercial sample as per Table 3.

| YEAR | TONNAGE CLASS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $1-3$ |  |  | 4-5 |  |  |
|  | 01 | 1 | MISC | 07 | L | MISC |
| 1970 | 979 | - | - | 295 | - | - |
| 1971 | 715 | 1006 | $\bigcirc$ | 454 | - | - |
| 1972 | 914 | 558 | 933 | 238 | - | - |
| 1973 | 304 | 635 | 50 | 302 | - |  |
| 1974 | 790 | 611 | 509 | 325 | - |  |
| 1975 | 338 | 615 | 548 | 157 | - | - |
| 1976 | 1087 | 765 | 580 | 186 | - | - |
| 1977 | 1031 | 490 | - | 130 | - | - |
| 1978 | 9213 | 596 | 487 | 169 | - | - |
| 1979 | 4935 | 358 | 718 | 262 | - | - |
| 1980 | 1266 | 331 | 601 | 310 | - | - |
| 1981 | 348 | 266 | 274 | 950 | - |  |
| 1982 | 235 | 335 | 135 | 309 | - | - |

Table 5. Summary of commercial sampling for the $4 X$ haddock fishery in 1982 - tons landed (no. of samples):

| Quarter | Otter Trawler Landings |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | mnopu |  | ar |  |
|  | 161-3 | $1 C^{4-5}$ | 16 1-3 | ic 4-5 |
|  | $1412(7)$ | 1781(7) | 46(1) | - |
| 2 | 2162(15) | 378 | 1915(2) | - |
| 3 | 1141 (5) | 219 (1) | 3472 (8) | 8 |
| 4 | 643 (3) | 705(1) | 704(5) | 1 |
| Total | 5358(30) | 3083(9) | 6137(16) | 9 |


| Quarter | $\operatorname{mnopu}$ |  | 9 r |  |
| :---: | :---: | :---: | :---: | :---: |
|  | TC 1-3 | TC 4-5 | TC-1-3 | TC 4-5 |
| 1 | 1975(3) | 29 | 37 | - |
| 2 | 1011 (2) | - | 97(1) | - |
| 3 | 2065 (6) | * | 88 | - |
| 4 | 1379(8) | 3 | 57 | - |
| Total | 6430(19) | 32 | 279(1) | - |


| Quarter | Miscellaneous Gear Landings |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | m $n 0 p u$ |  | Q ${ }^{\text {a }}$ |  |
|  | 16-3 | 4- | 16 | C $4=3$ |
| 1 | 71 | - | 1 | - |
| 2 | 432(2) | - | 29 | - |
| 3 | 1062(9) | - | 32 | - |
| 4 | 253 (3) | - | 9 | - |
| Total | 1818(14) | - | 71 | - |

Table 6. Seasonal adjustment in weight ( gm ) at length ( cm ) for inshore ( $4 \times \mathrm{g}, \mathrm{r}$ ) and offshore ( $4 \times \mathrm{m}, \mathrm{n}, 0, \mathrm{p}$ ) components based on comoined (1970-81) research survey data and 1981-82 port sample data.

| Fishery | Quarter | $\log a$ | $b$ | c | $\log a($ adjusted) | $n$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Inshore ( $q, r$ ) | 1 | -2.04376 | 3.03027 | $1.2378 \times 10^{-4}$ | -2.03782 | 7754 |
|  | 2 | 2.04376 | 3.03027 | $1.2378 \times 10$ | -2.02742 |  |
|  | 3 | " | " | " | -2.01529 |  |
|  | 4 | " | * | \% | -2.00403 |  |
| Offishore$(m, n, 0, p)$ | 1 | -2.11667 | 3.07669 | $2.8047 \times 10^{-5}$ | -2.11532 | 30091 |
|  | 2 |  | " |  | -2.11297 |  |
|  | 3 | " | " | " | -2.11022 |  |
|  | 4 | " | " | " | -2.10767 |  |

Table 7. Landing's at age (numbers in 000 's) of haddock caught in unit areas $4 X_{m}-4 X r$, excluding discards.

|  |  |  |  |  | 190 | 1367 | 1988 | 96 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ! | - | - |  |  | 0 | 0 | 0 |  |  |  |  | 150 |  | 1 | . |  |  | , | , |  |  |
| $\dot{2}$ | 139 | 713 | 155 | 70 | 219 | 22 | 665 | 10 | 1055 | 788 | 22 | 3077 | 694 | 2175 | 1296 | 1293 | 75 | 31 | 155 | 114 | 493 |
| 3 | 4324 | 2013 | 1272 | 3039 | 18341 | 515 | 297 | 2016 | 74 | 1617 | 3434 | 113 | 4053 |  | 1644 | 3123 | 3554 | 115 | 2305 | 176 | 35 |
| 4 | 1413 | 7185 | 4286 | 1981 | 9795 | 20300 | 1164 | 1983 | 1502 | 798 | 1841 | 2247 | 309 | 5164 | 4261 | 2019 | 7014 | 6709 | 2907 | 8177 | 236 |
| 5 | 177 | 3067 | 8337 | 315 | 3167 | 9148 | 17448 | 1621 | 377 | 1422 | 509 | 1067 | 1779 | 485 | $3{ }^{3} 2$ | 3193 | 2094 | 3681 | 5430 | 1150 | +406 |
| 5 | 1703 | 649 | 3018 | 5409 | 2149 | 1039 | $16{ }^{1} 4$ | 1243 | 524 | 404 | 545 | 327 | 509 | 103 | 434 | 2881 | 2832 | 070 | 8530 | 1150 | 675 |
| 71 | 1648 | 1413 | 492 | 1973 | 3747 | 735 | 713 | 3220 | 4536 | 59 | 90 | 500 | 189 | 247 | 807 | 360 | O49 | 244 | 505 | 1159 | 419 |
| 31 | 375 | 395 | 1370 | 1000 | 840 | 1052 | 518 | 455 | 1363 | 3516 | 57 | 322 | 269 | 172 | 154 | 369 | 137 | ? 63 | 625 | 373 | 3.1 |
| \% | 645 | 473 | 612 | 745 | 409 | 137 | 672 | 249 | 133 | 1020 | 1160 | 259 | \%o | 52 | 71 | 107 | 107 | 57 | 170 | 327 | 120 |
| 10 | 232 | 152 | 416 | 288 | $42^{4}$ | 102 | 100 | 194 | 76 | 103 | 512 | 214 | 269 | 32 | 95 | 72 | 26 | 68 | 3 | 37 | 7 |
| 51 | 203 | 112 | 297 | 203 | 88 | 90 | 131 | 172 | 175 | 181 | 26 | 55 | 532 | 165 | 39 | 23 | ? | 11 | 22 | 14 | 40 |
| 12 | 54 | 59 | 168 | 114 | 62 | 33 | 65 | 94 | 27 | 146 | 193 | 13 | 24 | 229 | 103 | 8 | d | 0 | 4 | 22 | 13 |
| :3 | 100 | 43 | 30 | $\pm 13$ | 34 | 81 | 89 | 69 | 37 | 105 | 72 | á | 4 | 11 | 157 | 67 | 48 | 18 | 16 | 11 | 10 |

Table 8. Mean weights at age ( kg ) of haddock caught in unit areas $4 \times \mathrm{m}-4 \times \mathrm{r}$.



Table 9. Percent comnosition (by weight) of haddock caught in unit areas $4 \times \mathrm{im}-4 \times r$, excluding discards.


Table 10. Percent composition (by numbers) of haddock caught in unit areas $4 \times m=4 \times r$, excluding discards.


Table 11. Comparison of 1982 catch-at-age as projected by 0'Boyle and White (1982) and as observed in the fishery.

| AGE | OBSERVED |  | O'BOYLE \& WHITE |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Number ( $10^{-3}$ ) | * Composition | Number ( $10^{-3}$ ) | \% Composition |
| 1 | 0 | 0 | 1 | 0 |
| 2 | 493 | 3.4 | 1002 | 4.9 |
| 3 | 3652 | 24.8 | 6101 | 29.8 |
| 4 | 2369 | 16.1 | 2785 | 13.6 |
| 5 | 4406 | 30.0 | 5775 | 28.2 |
| 6 | 1675 | 11.4 | 2150 | 10.5 |
| 7 | 1418 | 9.6 | 1641 | 8.0 |
| 8 | 341 | 2.3 | 601 | 2.9 |
| 9 | 180 | 1.2 | 192 | 0.9 |
| 10 | 93 | 0.6 | 168 | 0.8 |
| 11 | 46 | 0.3 | 50 | 0.2 |
| 12 | 18 | 0.1 | 7 | 0 |
| $13+$ | 10 | 0.1 | - | - |
| Number ( $10^{-3}$ ) | 14702 | 99.9 | 20473 | 99.8 |
| Catch (t) | 23216 |  | 32000 |  |
| Avg. wt (kg) | 1.579 |  | 1.563 |  |

Table 12. Stratified mean catch (in numbers) per standard tow of haddock caught during U.S. Fall Bottom Trawl Survey (Strata 31-34) (--- no data).

| AGE | 1963 | 1964 | 1965 | 1966 | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981* | 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 79.39 | 0.21 | 1.53 | 1.14 | 0.13 | 3.55 | 10.27 | 0.13 | 20.46 | 7.74 | 1.12 | 3.70 | 7.10 | 11.74 | 12.55 | 6.08 | 25.24 | 55.57 | 6.31 | --- |
| 1 | 48.68 | 14.21 | 2.46 | 1.83 | 6.29 | 1.72 | 4.66 | 4.88 | 0.06 | 34.03 | 3.85 | 2.77 | 4.42 | 13.66 | 16.16 | 9.85 | 12.05 | 42.83 | 47.82 | --- |
| 2 | 15.67 | 10.96 | 24.99 | 2.88 | 2.44 | 4.60 | 0.52 | 2.51 | 8.61 | 0.12 | 16.12 | 6.72 | 2.91 | 4.43 | 29.46 | 11.93 | 28.85 | 8.73 | --- | --- |
| 3 | 14.03 | 3.58 | 10.67 | 39.85 | 3.89 | 1.62 | 2.17 | 0.41 | 2.30 | 5.32 | 0.21 | 7.54 | 1.96 | 1.92 | 13.33 | 14.45 | 8.47 | 5.52 | --- | --- |
| 4 | 19.62 | 4.62 | 3.67 | 12.82 | 31.64 | 0.49 | 0.32 | 1.16 | 0.31 | 1.54 | 1.95 | - | 5.07 | 2.38 | 3.99 | 5.61 | 8.38 | 2.37 | --- | --- |
| 5 | 7.64 | 7.37 | 2.95 | 4.08 | 4.57 | 12.83 | 0.04 | 0.25 | 1.07 | 0.18 | 0.35 | 0.87 | - | 3.66 | 4.27 | 2.43 | 2.84 | 1.95 | --- | --- |
| 6 | 3.29 | 2.18 | 3.99 | 2.30 | 0.98 | 4.13 | 3.09 | 0.81 | 0.16 | 0.60 | 0.16 | 0.36 | 0.35 | - | 6.02 | 3.14 | 1.52 | 0.47 | --- | --- |
| 7 | 1.52 | 0.63 | 1.24 | 3.80 | 1.07 | 0.53 | 1.42 | 3.09 | 0.11 | 0.17 | 0.16 | 0.13 | 0.23 | 0.58 | 0.14 | 0.43 | 0.60 | 0.19 | --- | --- |
| 8 | 1.21 | 0.75 | 0.19 | 1.55 | 0.47 | 0.73 | 0.17 | 1.29 | 3.70 | 0.14 | 0.08 | 0.14 | 0.14 | 0.02 | 0.09 |  | 0.04 | 0.35 | --- | --- |
| 9 | 0.33 | 0.34 | 0.37 | 0.90 | 0.17 | 0.71 | 0.62 | 0.34 | 1.54 | 1.83 | 0.30 | 0.07 | 0.12 | - | 0.10 | 0.12 | - | 0.11 | --- | --- |
| 10 | 0.42 | 0.042 | - | - | - | - | 0.36 | 0.34 | 0.28 | 0.36 | 1.07 | 0.07 | - | 0.02 | - | 0.07 | - | - | --- | --- |
| 11 | 0.05 | - | - | - | - | - | 0.10 | 0.16 | 0.41 | - | 0.12 | 2.02 | 0.03 | - | 0.09 | - | - | - | --- | --- |
| 12 | 0.08 | - | - | - | - | - | - | 0.06 | - | 0.20 | - | 0.27 | 0.05 | 0.25 | - | - | - | - | --- | --- |
| 13 | - | - | - | - | - | - | - | 0.05 | - | - | - | - | 0.04 | 0.03 | - ${ }^{-}$ | 0.05 | - | - | --- | --- |
| 14 | - | - | - | - | - | - | - | - | - | - | - | 0.12 | - | - | 0.10 | 0.05 | - | - | --- | --- |
| TOTAL | 191.92 | 44.89 | 52.07 | 71.15 | 51.63 | 30.92 | 23.74 | 15.48 | 39.01 | 52.22 | 25.49 | 24.78 | 22.42 | 38.69 | 86.30 | 54.18 | 87.99 | 118.09 | 96.06 | 59.7 |
| AGES 2+ | 63.86 | 30.47 | 48.07 | 68.18 | 45.23 | 25.64 | 8.81 | 10.47 | 18.49 | 10.46 | 20.52 | 18.31 | 10.90 | 13.29 | 57.59 | 38.23 | 50.70 | 19.69 | 41.93 | --- |
| AGES $5+$ | 14.54 | 11.31 | 8.74 | 12.63 | 7.26 | 18.93 | 5.80 | 6.39 | 7.27 | 3.48 | 2.24 | 4.05 | 0.96 | 4.56 | 10.81 | 6.24 | 5.00 | 3.07 | --- | - |
| TOTAL kg/tow | 67.91 | 31.43 | 31.82 | 58.65 | 34.91 | 28.53 | 14.59 | 17.66 | 24.10 | 24.45 | 17.27 | 20.74 | 13.86 | 21.94 | 75.29 | 53.59 | 55.55 | 33.47 | 56.57 | 25.1 |

* Ageing data unavallable at this time.

Table 13. Stratified mean catch (in numbers) per standard tow of haddock caught during Canadian summer bottom trawl survey (strata 70-91, 95) 1970-81 - A. T. Cameron; 1982-Lady Hammond; includes Lady Harmond correction in 1982.

| AGE | 1970 | 1971 | 1972 | 1973 | $1974^{4}$ | 1975 | 1976 | $1977^{3}$ | 1978 | 1979 | 1980 | 1981 | $1982^{2}$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.352 | 0.024 | 0.510 | 0.117 |
| 1 | 4.872 | 0.099 | 4.404 | 4.976 | 8.153 | 5.518 | 4.617 | 5.278 | 5.391 | 1.636 | 18.511 | 11.7401 | 10.842 |
| 2 | 3.921 | 9.263 | 0.195 | 19.053 | 17.942 | 3.466 | 5.272 | 20.246 | 4.660 | 11.528 | 6.288 | 23.780 | 23.833 |
| 3 | 1.148 | 3.933 | 2.732 | 0.479 | 21.220 | 4.383 | 3.394 | 13.077 | 9.544 | 6.605 | 13.179 | 5.860 | 10.667 |
| 4 | 2.167 | 1.729 | 1.160 | 2.466 | 0.768 | 6.013 | 3.405 | 3.868 | 2.870 | 7.919 | 6.841 | 7.320 | 3.883 |
| 5 | 0.881 | 2.489 | 0.761 | 1.131 | 3.578 | 0.394 | 6.175 | 5.557 | 1.400 | 4.009 | 10.472 | 2.770 | 5.542 |
| 6 | 1.982 | 1.131 | 0.825 | 0.423 | 0.775 | 1.417 | 0.467 | 3.456 | 2.615 | 1.605 | 3.527 | 3.040 | 2.108 |
| 7 | 5.073 | 1.746 | 0.543 | 0.569 | 0.438 | 0.510 | 0.553 | 0.466 | 0.988 | 2.524 | 1.298 | 1.030 | 2.083 |
| 8 | 0.704 | 4.424 | 0.808 | 0.429 | 0.505 | 0.287 | 0.101 | 0.558 | 0.025 | 0.949 | 1.056 | 0.210 | 0.275 |
| 9 | 0.293 | 0.504 | 1.106 | 0.287 | 0.268 | 0.136 | 0.026 | 0.121 | 0.158 | 0.208 | 0.510 | 0.370 | 0.158 |
| 10 | 0.258 | 0.078 | 0.037 | 0.371 | 0.202 | 0.043 | 0.033 | 0.095 | 0.000 | 0.026 | 0.202 | 0.240 | 0.042 |
| 11 | 0.069 | 0.035 | 0.005 | 0.018 | 0.287 | 0.246 | 0.008 | 0.008 | 0.035 | 0.000 | 0.031 | 0.120 | 0.025 |
| $12+$ | 0.017 | 0.053 | 0.070 | 0.008 | 0.000 | 0.153 | 0.358 | 0.223 | 0.318 | 0.099 | 0.000 | 0.040 | 0.000 |
| NK | 0.000 | 0.000 | 0.066 | 0.000 | 0.000 | 0.000 | 0.074 | 0.007 | 0.088 | 0.121 | 0.000 | 0.010 | 0.100 |
| TOTAL | 21.39 | 25.48 | 12.71 | 30.21 | 54.14 | 22.57 | 24.48 | 52.97 | 27.99 | 37.58 | 61.68 | 57.04 | 59.68 |
| $2+$ | 16.51 | 25.39 | 8.31 | 25.23 | 45.98 | 17.05 | 19.87 | 47.68 | 22.60 | 35.59 | 43.14 | 44.79 | 48.72 |
| $5+$ | 9.28 | 10.46 | 4.22 | 3.24 | 6.05 | 3.19 | 7.80 | 10.48 | 5.53 | 9.54 | 17.10 | 7.83 | 10.33 |

1 set 66 (stratum 90) was changed to equal the numbers per tow in the next lowest set. This was done for age 1 fish only. Leaving set 66 as it was gives an estimate of 30.86 for age 1 and a total of 76.16 .

2 adjusted for differences in Lady Hammond and A.C. Cameron selectivity.
3 set 42 (stratum 76) was excluded.
4 set 13 (stratum 90) was excluded.

Table 14. Strata ranking of haddock catches (numbers per tow) from Canadian Summer Bottom Trawl Survey. 1 - highest catch rate; 2 - second highest catch rate . . . . . 5 - fifth highest catch rate. 1970-1981 - A.T. Cameron; 1982 - Lady Hammond.

| STRATA | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 70 | - | $\bullet$ | - | - | - | - | - | 2 | - | - | - | - | * |
| 71 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 72 | - | - | - | - | - | 4 | - | - | - | - | 2 | 2 | 3 |
| 73 | 2 | - | 2 | 4 | - | - | 2 | 3 | - | 5 | - | - | 4 |
| 74 | 5 | - | 4 | - | 4 | 2 | 4 | - | 2 | 2 | - | 4 | 5 |
| 75 | 3 | 4 | - | 5 | 3 | - | 1 | - | 4 | - | 5 | - | - |
| 76 | - | 2 | - | - | 5 | 3 | - | - | - | - | - | - | - |
| 77 | - | 5 | 5 | - | - | - | 5 | - | - | - | - | 5 | - |
| 78 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 79 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 80 | 1 | 1 | 1 | 2 | 2 | 1 | - | 1 | 1 | 3 | 3 | 3 | - |
| 81 | 4 | - | 3 | 1 | 1 | - | - | - | 3 | 4 | 4 | - | 2 |
| 82 | - | - | - | - | - | - | * | - | - | - | - | - | - |
| 83 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 84 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 85 | - | - | - | - | - | - | - | - | - | - | - | * | * |
| 90 | - | 3 | - | 3 | - | 5 | 3 | 5 | 5 | 1 | 1 | 1 | 1 |
| 91 | - | - | - | - | - | - | - | - | 4 | - | - | - | - |
| 92 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 93 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 94 | - | - | - | - | - | - | - | - | - | - | - | - | - |
| 95 | - | - | - | - | - | - | - | - | - | - | - | - | - |

Table 15. Recruitment Indices for the $4 X$ haddock stock (--- no data).

| Year Class | Based on Canadian Sumner Survey Ages $1+2$ $2+3$ | Based on U.S. Fall Survey Ages $0+1 \quad 1+2$ |
| :---: | :---: | :---: |
| 1962 | --- --* | --- 2.493 |
| 1963 | --- --- | 3.4551 .803 |
| 1964 | --- --m | 0.106 |
| 1965 | --- --- | 0.1290 .194 |
| 1966 | --- --- | $0.294 \quad 0.479$ |
| 1967 | --- | 0.074 |
| 1968 | 0.437 | 0.316 0.311 |
| 1969 | 0.7720 .588 | 0.5690 .620 |
| 1970 | 0.016 0.041 | 0.007 0.008 |
| 1971 | 1.163 2.264 | 2.108 2.160 |
| 1972 | 1.158 1.078 | 0.4360 .486 |
| 1973 | $0.767 \quad 0.380$ | 0.1520 .255 |
| 1974 | 0.647 1.113 | 0.3120 .396 |
| 1975 | $1.231 \quad 1.527$ | 0.806 2.001 |
| 1976 | 0.6020 .549 | 1.075 |
| 1977 | $0.910 \quad 1.393$ | 0.851 |
| 1978 | 0.386 | 0.704 0.914 |
| 1979 | 2.435 ( 1.757 | 2.635 3.435 ${ }^{1}$ |
| 1980 |  | 3.9403 3.835 |
| 1981 | $1.638^{1}$--* | $0.459^{3}$---- |

1 Based on age one catch/tow only.
2 Based on age two catch/tow only.
3 Based on age zero catch/tow only.

Table 16. Catch rates (numbers per tow weighted by stratum area) for age $0-12+$ haddock caught in Canadian groundfish survey (1 - Lady Hammond; 2-A.T. Cameron) in 1979 to 1982. M - March; J-July; $0-N$ - October-November. Only strata $70-85$ are included ( $-\cdots$ no data available) ( - incomplete survey).

| AGE | 1979 |  |  | 1980 |  |  | 1981 |  |  | 1982 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $M^{1}$ | $\mathrm{J}^{2}$ | $0-N^{1}$ | $M^{1}$ | $\mathrm{J}^{2}$ | $0-\mathrm{N}^{1}$ | $M^{1,3}$ | $\mathrm{J}^{2}$ | $0^{1,3}-N$ | $M^{1}$ | $0^{1}$ | $\mathrm{O}-\mathrm{N}^{1}$ |
| 0 | -- | 0.40 | 13.27 | 0.0 | 0.03 | 112.80 | 0.0 | 0.57 | 11.30 | --- | 0.17 | --- |
| 1 | -- | 1.58 | 6.61 | 7.08 | 20.19 | 21.15 | 44.50 | 13.05 | 13.13 | - | 14.16 | --- |
| 2 | -- | 7.00 | 20.71 | 2.62 | 3.41 | 5.99 | 18.45 | 3.68 | 12.01 | --- | 21.04 | --- |
| 3 | -- | 3.27 | 6.18 | 19.92 | 9.41 | 10.96 | 6.79 | 1.71 | 7.57 | --- | 7.11 | --- |
| 4 | -* | 6.61 | 8.33 | 7.30 | 6.74 | 5.34 | 16.87 | 6.99 | 21.40 | --- | 3.23 | --- |
| 5 | -- | 4.15 | 3.84 | 8.07 | 11.13 | 5.42 | 7.77 | 2.87 | 7.89 | --- | 6.32 | --- |
| 6 | -- | 1.73 | 1.23 | 6.30 | 3.77 | 3.13 | 5.52 | 3.30 | 7.37 | --- | 2.60 | --- |
| 7 | - | 2.75 | 1.77 | 2.38 | 1.46 | 0.76 | 3.85 | 1.12 | 3.70 | --- | 2.60 | --- |
| 8 | -* | 1.00 | 0.37 | 2.96 | 1.16 | 0.80 | 0.98 | 0.24 | 0.77 | --- | 0.32 | --- |
| 9 | -- | 0.23 | 0.14 | 1.41 | 2.53 | 0.21 | 0.40 | 0.40 | 1.50 | --- | 0.21 | --- |
| 10 | -- | 0.0 | 0.06 | 0.09 | 0.23 | 0.02 | 0.34 | 0.26 | 0.92 | --- | 0.07 | --- |
| 11 | -- | 0.0 | 0.0 | 0.26 | 0.03 | 0.02 | 0.05 | 0.13 | 0.33 | --- | 0.04 | --- |
| 12+ | -- | 0.11 | 0.09 | 0.12 | 0.0 | 0.06 | 0.04 | 0.04 | 0.06 | --- | 0.0 | --- |
| $4+$ | -* | 16.58 | 15.83 | 28.89 | 27.05 | 15.76 | 35.82 | 15.35 | 43.94 | --- | 15.39 | --- |
| $5+$ | -* | 9.97 | 7.50 | 21.59 | 20.31 | 10.42 | 18.95 | 8.36 | 22.54 | --- | 12.16 | --- |
| TOTAL | -- | 28.83 | 62.66 | 58.51 | 60.09 | 166.66 | 105.56 | 34.36 | 87.95 | -- | 57.87 | --- |

3 excludes strata 83 and 84 .

Table 17. Research and conmercial abundance indices for the $4 x$ haddock stock (--- no data).

| Year <br> Sampled | Canadian Summer <br> Strata 70-91, 95 |  | Commercial Catch Rates ( $\mathrm{t} / \mathrm{hr}$ ) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Age 2-5 No/tow | Age $5+$ No/tow | $\begin{gathered} \text { OTB2 TC2-3 } \\ \text { May-Aug. } \\ 4 \times q-r \end{gathered}$ | $\begin{gathered} \text { OTB2 TC4-5 } \\ \text { Jan-March } \\ 4 \times m-p, u \end{gathered}$ | $\begin{gathered} \text { OTB2 TC3 }{ }^{1} \\ \text { July-Sept. } \\ 4 \times q-r \end{gathered}$ | $\begin{array}{r} \text { OTB2 TC5! } \\ \text { July Sept. } \\ 4 \times m-\rho, u \end{array}$ |
| 1968 | --- | --- | 0.453 | 0.443 | 0.258 | 0.386 |
| 1969 | --- | --- | 0.231 | 0.534 | 0.277 | 0.354 |
| 1970 | 8.117 | 8.396 | 0.201 | 0.232 | 0.137 | 0.306 |
| 1971 | 17.414 | 7.971 | 0.098 | 0.261 | 0.149 | 0.256 |
| 1972 | 4.848 | 3.462 | 0.114 | 0.243 | 0.193 | 0.240 |
| 1973 | 23.129 | 2.105 | 0.091 | 0.265 | 0.144 | 0.259 |
| 1974 | 43.508 | 2.475 | 0.185 | 0.301 | 0.233 | 0.283 |
| 1975 | 14.256 | 2.792 | 0.199 | 0.342 | 0.270 | 0.364 |
| 1976 | 18.246 | 1.620 | 0.163 | 0.459 | 0.240 | 0.380 |
| 1977 | 42.748 | 4.934 | 0.274 | 0.413 | 0.370 | 0.487 |
| 1978 | 18.474 | 4.127 | 0.247 | 0.447 | 0.413 | 0.651 |
| 1979 | 30.061 | 5.532 | 0.242 | 0.653 | 0.346 | 0.610 |
| 1980 | 36.520 | 6.624 | 0.208 | 0.679 | 0.320 | 0.550 |
| 1981 | 39.730 | 5.060 | 0.218 | 0.777 | 0.307 | 0.529 |
| 1982 | 43.925 | 4.791 | 0.190 | 0.523 | 0.266 | 0.395 |

1 derived through multiplicative model

Table IBa. $4 \times$ haddock population numbers, survivors, variance of survivors and weighted survivors estimated using Survivor. The calibration block was 1970-1982; age 3-7 and $K=6$.


Table 18b. Estimated survivors for age 8 and 1982 and estimation of $k$ and residuals from Survivor. The calibration block was 1970-1982; age 3-7 and $K=6$. In insert, F's (1982) for age 3-8 were calculated from Survivor using Newton.


Table 19. Comparison of partial recruitment vectors used for 1982 with those determined in the last two assessments.

| $A G E$ | $\begin{gathered} P R \\ 1980 \\ \text { (0'Boyle, 1981a) } \end{gathered}$ | $\begin{gathered} P R \\ 1981 \\ \text { (0'Boyle and White, 1982) } \end{gathered}$ | PR 1982 (This assessment) |
| :---: | :---: | :---: | :---: |
| 1 | 0.003 | 0.00006 | 0.0002 |
| 2 | 0.017 | 0.04 | 0.021 |
| 3 | 0.200 | 0.3 | 0.180 |
| 4 | 0.600 | 0.6 | 0.541 |
| 5 | 0.800 | 1 | 0.770 |
| 6 | 1 | 1 | 1 |

Tabie 20. Age 2-5 SPA population numbers $\left(x 10^{-3}\right)$ vs age $2-5$ numbers per tow from the Canadian research summer survey. A and $B$ are the intercept and the slope respectively of the linear regression of the SPA estimate on the research data.

| YEAR | Age 2-5 Research no/tow | Terminal Fishing Mortality |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0.2 | 0.3 | 0.35 | 0.40 | 0.46 | 0.50 | 0.55 | 0.60 |
| 1970 | 8.12 | 22585 | 22554 | 22545 | 22538 | 22532 | 22529 | 22525 | 22522 |
| 1971 | 17.41 | 32024 | 31881 | 31840 | 31810 | 31782 | 31767 | 31752 | 31739 |
| 1972 | 4.85 | 24213 | 23879 | 23784 | 23713 | 23648 | 23614 | 23578 | 23548 |
| 1973 | 23.13 | 48849 | 48115 | 47906 | 47750 | 47608 | 47532 | 47453 | 47388 |
| 1974 | 43.51 | 66248 | 64892 | 64506 | 64217 | 63954 | 63814 | 63668 | 63547 |
| 1975 | 14.26 | 61483 | 59209 | 58562 | 58077 | 57636 | 57402 | 57158 | 56955 |
| 1976 | 18.25 | 78054 | 74412 | 73374 | 72598 | 71892 | 71517 | 71125 | 70801 |
| 1977 | 42.75 | 102497 | 93334 | 90725 | 88772 | 86996 | 86051 | 85067 | 84250 |
| 1978 | 18.47 | 100477 | 87116 | 83310 | 80462 | 77870 | 76492 | 75056 | 73864 |
| 1979 | 30.06 | 135288 | 107569 | 99666 | 93749 | 88359 | 85491 | 82499 | 80014 |
| 1980 | 36.52 | 129906 | 97174 | 87833 | 80836 | 74457 | 71060 | 67515 | 64567 |
| 1981 | 39.73 | 209290 | 144074 | 125437 | 111459 | 98695 | 91889 | 84774 | 78846 |
| 1982 | 43.93 | 268656 | 179007 | 153388 | 134172 | 116623 | 107262 | 97474 | 89315 |
| $\lambda$ |  | -495 | 13425 | 17397 | 20377 | 23100 | 24553 | 26074 | 27381 |
| 8 |  | 3770 | 2518 | 2160 | 1892 | 1647 | 1517 | 1380 | 1267 |
| $r^{2}$ |  | 0.512 | 0.575 | 0.599 | 0.617 | 0.626 | 0.625 | 0.616 | 0.598 |

Table 21. Age $6+$ SPA population numbers $\left(x 10^{-3}\right)$ vs age $6+$ numbers per tow from the Canadian rseareh summer survey. A and $B$ are the intercept and the slope respectively of the linear regression of the SPA estimate on the research data.

| YEAR | Age 6+ Research no/tow | Terminal Fishing Mortality |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0.2 | 0.3 | 0.35 | 0.40 | 0.46 | 0.50 | 0.55 | 0.60 |
| 1970 | 8.40 | 19634 | 19610 | 19603 | 19597 | 19593 | 19590 | 19587 | 19584 |
| 1971 | 7.97 | 11944 | 11923 | 11916 | 11912 | 11908 | 11905 | 11902 | 11900 |
| 1972 | 3.46 | 8513 | 8491 | 8485 | 8480 | 8476 | 8473 | 8470 | 8468 |
| 1973 | 2.10 | 5647 | 5628 | 5623 | 5619 | 5615 | 5613 | 5610 | 5609 |
| 1974 | 2.47 | 3984 | 3959 | 3952 | 3946 | 3941 | 3938 | 3936 | 3933 |
| 1975 | 2.79 | 4760 | 4685 | 4664 | 4648 | 4633 | 4626 | 4617 | 4611 |
| 1976 | 1.62 | 3574 | 3509 | 3462 | 3427 | 3395 | 3378 | 3360 | 3345 |
| 1977 | 4.93 | 5727 | 5373 | 5272 | 5195 | 5126 | 5089 | 5051 | 5019 |
| 1978 | 4.13 | 8080 | 7432 | 7247 | 7108 | 6981 | 6914 | 6844 | 6785 |
| 1979 | 5.53 | 7654 | 6583 | 6277 | 6048 | 5838 | 5727 | 5611 | 5514 |
| 1980 | 6.52 | 10255 | 8488 | 7980 | 7599 | 7250 | 7064 | 6870 | 6708 |
| 1981 | 5.06 | 16542 | 12187 | 10942 | 10005 | 9148 | 8690 | 8211 | 7811 |
| 1982 | 4.79 | 18780 | 12473 | 10668 | 9312 | 8072 | 7410 | 6716 | 6137 |
| A |  | 1387 | 819 | 656 | 535 | 422 | 363 | 300 | 248 |
| 3 |  | 1789 | 1665 | 1629 | 1602 | 1578 | 1565 | 1551 | 1539 |
| $\Gamma^{2}$ |  | 0.484 | 0.621 | 0.639 | 0.640 | 0.63 | 0.621 | 0.608 | 0.595 |

Table 22. Age 1 SPA population numbers $\left(x 10^{-3}\right)$ vs age $1+2$ recruitment index from the Canadian research summer survey. $A$ and $B$ are the intercept and the slope respectively of the linear regression of the SPA estimate on the Canadian research data.

| year Class | Age 1+2 Index | Terminal Fishing Mortality |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 0.2 | 0.3 | 0.35 | 0.40 | 0.46 | 0.50 | 0.55 | 0.50 |
| 1969 | 0.772 | 25612 | 25452 | 25406 | 25372 | 25341 | 25324 | 25307 | 25292 |
| 1970 | 0.016 | 6902 | 6605 | 6520 | 6457 | 6399 | 6369 | 6337 | 6310 |
| 1971 | 1.163 | 48616 | 47994 | 47817 | 47684 | 47564 | 47500 | 47433 | 47377 |
| 1972 | 1.158 | 46145 | 45115 | 44821 | 44602 | 44402 | 44296 | 44186 | 44094 |
| 1973 | 0.767 | 27011 | 25379 | 24915 | 24567 | 24250 | 24082 | 23907 | 23762 |
| 1974 | 0.647 | 53921 | 51390 | 50669 | 50130 | 49639 | 49378 | 49106 | 48881 |
| 1975 | 1.231 | 72294 | 63675 | 61221 | 59385 | 57714 | 56826 | 55901 | 55133 |
| 1976 | 0.602 | 45950 | 37615 | 35242 | 33466 | 31850 | 30991 | 30096 | 29353 |
| 1977 | 0.910 | 91956 | 68601 | 61941 | 56954 | 52409 | 49990 | 47466 | 45368 |
| 1978 | 0.386 | 50155 | 35501 | 31319 | 28185 | 25325 | 23802 | 22211 | 20887 |
| 1979 | 2.435 | 171460 | 115809 | 99911 | 87988 | 77104 | 71299 | 65231 | 60175 |
| 1980 | 1.925 | 158507 | 105780 | 90715 | 79416 | 69099 | 63597 | 57845 | 53058 |
| A |  | -2467 | 7605 | 10487 | 12651 | 14630 | 15687 | 16793 | 17717 |
| 3 |  | 18939 | 44758 | 37848 | 32665 | 27933 | 25408 | 22768 | 20568 |
| $r^{2}$ |  | 0.798 | 0.843 | 0.846 | 0.836 | 0.803 | 0.771 | 0.722 | 0.666 |

Table 23. Age $2+3$ SPA population numbers $\left(x 10^{-3}\right)$ vs age $2+3$ recruitment index from the canadian research survey. $A$ and 8 are the intercept and the slope respectively of the linear regression of the SPA estimate on the Canadian research data.

| Year | Age $2+3$ | Terminal Fishing Mortality |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Class | Index | 0.20 | 0.30 | 0.35 | 0.40 | 0.46 | 0.50 | 0.55 | 0.60 |
| 1968 | 0.44 | 8677 | 8658 | 8653 | 8649 | 8646 | 8644 | 8642 | 8640 |
| 1969 | 0.59 | 15818 | 15709 | 15678 | 15655 | 15634 | 15623 | 15611 | 15602 |
| 1970 | 0.04 | 4607 | 4407 | 4350 | 4307 | 4268 | 4247 | 4226 | 4208 |
| 1971 | 2.26 | 29457 | 29036 | 28917 | 28827 | 28746 | 28702 | 28657 | 28620 |
| 1972 | 1.08 | 29322 | 28627 | 28429 | 28281 | 28146 | 28074 | 28000 | 27938 |
| 1973 | 0.38 | 15323 | 15222 | 14908 | 14673 | 14450 | 14346 | 14228 | 14129 |
| 1974 | 1.11 | 34639 | 32932 | 32446 | 32083 | 31752 | 31576 | 31393 | 31241 |
| 1975 | 1.53 | 46984 | 41175 | 39521 | 38284 | 37157 | 36559 | 35935 | 35417 |
| 1976 | 0.65 | 30612 | 24996 | 23397 | 22201 | 21112 | 20533 | 19930 | 19429 |
| 1977 | 1.39 | 61313 | 45577 | 41089 | 37729 | 34666 | 33036 | 31335 | 29921 |
| 1978 | 0.66 | 33131 | 23256 | 20436 | 18322 | 16394 | 15366 | 14293 | 13399 |
| 1979 | 1.76 | 113821 | 76327 | 65615 | 57580 | 50245 | 46333 | 42243 | 38835 |
| A |  | -7389 | -1943 | -387 | 780 | 1846 | 2415 | 3010 | 3506 |
| 8 |  | 49530 | 35159 | 31055 | 27978 | 25771 | 23674 | 22110 | 20808 |
| $\mathrm{r}^{2}$ |  | 0.750 | 0.867 | 0.909 | 0.939 | 0.959 | 0.962 | 0.956 | 0.942 |

Table 24. Results of cohort analysis with terminal $F$ of 0.3 .


FISHIHE MORTALITY
18/10/83

|  | 1962 | 1963 | 196 | 1965 | 1986 | 1937 | 1968 | 1969 | 1970 | 197 | 1972 | 1973 | 1974 | 1975 | 197 | 1977 | 1978 | 1979 | 1880 | 1981 | 1982 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 0 |
| 2 | 0.005 | 0.039 | 0.002 | 0.000 | 0.018 |  |  |  |  |  |  |  |  | 0.12 | 0.0 |  | 0.00 |  | 0.005 | 0.0 | 07 |
| 3 | 0.087 | 0.088 | 0.091 | 0.058 | 0.163 | 0.055 | 0.050 | 0.225 | 0.160 | 0.227 | 0.264 | 0.029 | 0.193 |  | 0.129 | 0.110 | 0.094 | 0.052 | 0.057 | 0.107 | . 054 |
| 4 | 0.085 | 0.195 |  | 0.201 | 0.259 | 0.275 | 0.189 | 0.535 | 0.261 | 0.253 | 0.439 | 0.277 | 0.102 | 0.339 | 0.258 |  | 0.392 | 0.274 | 0.185 |  | 32 |
| 5 | 0.183 | 0.259 |  | 0.330 |  |  |  |  |  |  |  |  |  | 0.232 |  |  | 0.399 | 0.378 | 0.373 | O | 31 |
| 6 | 10.220 | 0.258 | 0.459 | 0.458 | 0.394 | 0.337 | 0.383 | 0.173 | 0.199 |  | 0.314 | 0.500 | 0.466 | 0.41 | 0.336 |  | 0.552 | 0.335 | 0.717 | 0.3 | 300 |
| 7 | 0.487 | 0.286 | 0.393 | 0.625 | 0.675 | 0.225 | 0.435 | 0.497 | 0.377 | 0.035 | 0.101 | 0.628 | 0.335 | 0.433 | 0.505 | 0.517 | 0.647 | 0.503 | 0.293 | 0.54 | 0.300 |
| 8 | 10.418 | 0.372 | 0.195 | 0.501 | 0.300 | 0.401 | 0.245 | 0.618 | 0.607 | 0.525 | 0.038 | 0.621 | 0.851 | 0.583 | 0.532 | 0.675 | 0.378 | 0.330 | 0.514 | 0.356 | 0.300 |
| 9 | 0.468 | 0.373 | 0, 55 2 | 0.555 | 0.393 | 0.253 |  | 0.178 | 0.354 | 0.819 | 0.352 | 0.241 | 0.933 | 0.299 | 0.509 | 0.907 | 0.392 | 0.286 | 0.369 | 0.560 | 0.300 |
| 10 | 0.277 | 0.189 | 0.654 | 0.752 | 0.728 | 0.158 | 0.442 | 0.250 | 0.096 | 1.073 | 1.500 | 0.317 | 0.423 | 0.392 | 1,056 | 1,727 | 0.577 | 0.485 | 0.213 | 0.372 | 0.300 |
| 11 | 0.545 | 0.211 | 0.585 | 0.799 | 0.512 | 0.325 |  | 0.953 | 0.375 | 0.255 | 0.470 | 0.610 | 0.526 | 0.502 | 1.253 | 0.808 | 1.225 | 0.517 | 0.267 | 0.151 | 0.300 |
| 12 | 10.412 | 0.292 | 0.548 | 0.608 | 0.598 |  | 0.410 | 0.388 | 0.351 | 0.613 | 0.498 | 0.451 | 0.586 | 0.427 | 0.676 | 0.957 | 0.498 | 0.391 | 0.354 | 0.4 | 0.300 |
| 13 | 10.41 | 0.297 | 0.548 | 0.609 | 0.598 | 0.259 | 0.410 | 0.386 | 0.361 | 0.613 | 0.498 | 0.451 | 0.595 | 0.427 | 0.676 | 0.957 | 0.498 | 0.791 | 0.751 | 0.4in | 0.300 |
|  | 0.098 | 0.098 | 0.083 | 0.082 | 0.215 | 0,247 | 0.294 | 0.332 | 0.184 | 0.223 | 0.130 | 0.105 | 0.112 | 0.140 | 0.105 | 0.115 | 0.121 | 0.110 | 0.087 | 0.083 | 0.681 |

Table 25. Comparison of numbers $\left(\times 10^{-3}\right)$ at age 1 generated by CAFSAC assessments since 1976.

| Assessment | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | $F_{t}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0'Boyle unpublished assessment \#1 1971 | 30810 | 7007 | 60391 | 49293 | 28861 | 33393 | - | - | - | - | - | - | - | 0.28 |
| 0'Boyle unpublished assessment "2 1978 | 20810 | 7007 | 60231 | 35308 | 14606 | 26889 | 44755 | - | - | - | - | - | - | 0.33 |
| Res. DoC. 78/19* | 33077 | 10775 | 75014 | 56364 | 34737 | 43539 | 83036 | 29423 | - | - | - | - | - | 0.3 |
| Res. Doc. 80/2 ** | 26436 | 7169 | 50301 | 53352 | 28948 | 56167 | 73480 | 41293 | 50339 | - | - | - | - | 0.325 |
| Res. Doc. 81/24 | 25436 | 6504 | 48605 | 47176 | 26207 | 50577 | 81785 | 41959 | 76120 | 45299 | 100000 | - | - | 0.300 |
| Res. Doc. 82/53 | 25524 | 6146 | 47857 | 46326 | 24960 | 54146 | 62978 | 38975 | 61878 | 31820 | 97036 | 91945 | - | 0.400 |
| Present Document | 25452 | 6605 | 47994 | 45115 | 25379 | 51390 | 63675 | 37615 | 68601 | 35501 | 115809 | 93681 | 32367 | 0.300 |
| Present Document | 25372 | 6457 | 47684 | 44602 | 24567 | 50130 | 59385 | 33466 | 56954 | 28185 | 87988 | 75471 | 30736 | 0.400 |

*(0'Boyle, 1978)
**(0'Boyle, 1980)

Table 26. Weight-at-age ( kg ) and partial recruitment vectors used in yield-per-recruit calculations.

|  |  |  |
| :--- | :--- | :--- |
| Age | Weight | PR |
| 1 | 0.220 | 0.0002 |
| 2 | 0.498 | 0.021 |
| 3 | 0.862 | 0.180 |
| 4 | 1.283 | 0.541 |
| 5 | 1.729 | 0.700 |
| 6 | 2.177 | 1.000 |
| 7 | 2.611 | 1.000 |
| 8 | 3.018 | 1.000 |
| 9 | 3.732 | 1.000 |
| 10 | 4.032 | 1.000 |
| 11 | 4.298 | 1.000 |
| 12 | 4.531 | 1.000 |
| 13 | 4.734 | 1.000 |
| 14 | 5.909 | 1.000 |
| 15 | 5.060 | 1.000 |
| 16 | 5.300 | 1.000 |
| 17 | 5.394 | 1.000 |
| 18 | 5.475 | 1.000 |
| 19 |  | 1.000 |
| 20 |  |  |

Table 27. 1982 population characteristics used in catch projections.

| AGE | Population <br> No. $\left(000^{\prime} \mathrm{s}\right)$ | Catch <br> No. $\left(000^{\prime} \mathrm{s}\right)$ | Weight-at-age <br> $(\mathrm{kg})$ | Partial <br> Recruitment |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 32367 | 0 | 0.22 | 0.0002 |
| 2 | 76700 | 493 | 0.49 | 0.021 |
| 3 | 76582 | 3652 | 0.90 | 0.180 |
| 4 | 17400 | 2369 | 1.29 | 0.541 |
| 5 | 23478 | 4406 | 1.67 | 0.770 |
| 6 | 7095 | 1675 | 2.14 | 1 |
| 7 | 6006 | 341 | 2.58 | 1 |
| 8 | 1444 | 180 | 3.96 | 1 |
| 9 | 762 | 93 | 4.04 | 1 |
| 10 | 394 | 18 | 3.96 | 1 |
| 11 | 76 | 10 | 4.13 | 1 |
| 12 | 42 |  | 4.02 | 1 |
| $13+$ |  |  |  |  |

1 As observed in 1982 fishery.

Table 28. Catch projections with varying assumptions concerning the catch in 1983 and fishing at $F_{0.1}=0.25$ in 1982. A value of $32,367 \times 10^{3}$ (geometric mean of 1962-1980) was taken for age one recruitment in 1982-84.

| Assumptio Concenring 1983 Catch | Year | Fully Recruited Fishing Mortality | 1+ Mean Population Biomaşs, $t\left(10^{-3}\right)$ | ```1+ Fishable Population Biomaşs, t(10-3)``` | $\begin{aligned} & 1+\text { Catch } \\ & \text { Biomaşs, } \\ & \text { t }\left(10^{-3}\right) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 32,000 t | 1982 | 0.3 | 183.8 | 96.0 | 23.5 |
| in 1983 | 1983 | 0.31 | 196.2 | 128.5 | 32.0 |
| (TAC) | 1984 | 0.25 | 193.6 | 150.4 | 31.0 |
| $\begin{aligned} & \text { Fo. }_{0.1} \\ & \text { in } 1983 \end{aligned}$ | 1982 | 0.3 | 183.8 | 96.0 | 23.5 |
|  | 1983 | 0.25 | 199.0 | 128.5 | 26.6 |
|  | 1984 | 0.25 | 198.5 | 155.7 | 32.1 |
| $\begin{aligned} & 25,000 \mathrm{t} \\ & \text { in } 1983 \end{aligned}$ | 1982 | 0.3 | 183.8 | 96.0 | 23.5 |
|  | 1983 | 0.23 | 199.8 | 128.5 | 25.0 |
|  | 1984 | 0.25 | 200.0 | 157.3 | 32.4 |



Figure 1. Cumulative reported nominal catches ( $t$ round) of haddock from NAFD Division $4 X$ (excluding unit area $4 \times$ s) by country.


Figure 2. Cumulative nominal catch (t) of haddock from unit areas $4 \times m-r$ for Canadian (MQ) fishing fleets during 1962-1982.


Figure 3. Cumulative reported nominal catch ( $t$ round) of haddock from unit areas $4 x_{m-r}$ for the Canadian (MQ) otter trawl fishery by tonnage class.


Figure 4. Canadian fisheries statistical unit areas in NAFO Division $4 X$.


Figure 5. Length-at-age for $4 \times \mathrm{ar}$ (inshore), $4 \times \mathrm{mnoo}$ (offshore), and 4 xs haddock from 1970-1981 RV survey data (A-D) and from 1970-1981 commercial sample data $(E-I)$. Gears quarters and sample size are indicated in figures.


Figure 5 (cont'd)


Figure 5 (cont'd)


Figure 5 (cont'd)


Figure 5 (cont'd)



Figure 6. Comparison of the projected 1982 catch-at-age from the 1982 4X haddock assessment (0'Boyle and White, 1982) and the observed 1982 catch-at-age.
a. numbers $\left(10^{-3}\right)$ at-age vs age
b. percent of total numbers-at-age vs age.


Figure 7 a. Stratification scheme used for the Canadian bottom-trawl surveys.


Figure 75. Stratification used for the U.S. bottom trawl surveys. The stratification illustrated in the outset had been used prior to 1970.


Figure 8. Research abundance indices (age $0+$ ) for $4 X$ haddock stock. Canadian summer survev strata $70-91$ and 95 . Solid line is based on median smoothed data.


Figure 9. Research abundance indices (age 2-5 no./tow) for $4 x$ haddock stock. Canadian summer survey strats 70-91,95. Solid line is based on median smoothed data.


Figure 10. Research abundance indices (age 6+ no./tow) for $4 X$ haddock stock. Canadian summer survey strats 70-91,95. Solid line is based on median smoothed data.


Figure 11. Recruitment indices for the $4 X$ haddock stock (catch/tow) as determined by the Canadian summer (anes $1+2$ ) and U.S. fall (ages $n+1$ ) bottom trawl surveys.


Figure 12. Trends in commercial catch rates by otter traw in the $4 \times$ haddock fishery. A+B were calculated for the landing statistics while C+D were standardized using the multiplicative model of Gavaris (1980).



$$
c \cdot r^{2}=0.84
$$




Figure 13. The relationshin between the $S P A$ results at $F_{t}=0.3$ and the survey indices of abundance for a) ages $2-5$, b) anes ${ }^{6}+$, c) ane 1 SPA vs age $1+2$ survev and d) anes $2+3$. The number renresents the observed value in that year and the $X$ reoresents the predicted.

