Not to be cited without permiasion of the authors ${ }^{1}$

Canadian Atlantic Fisheries
Scientific Advisory Comittea
CAFSAC Research Document 83/66

Ne pas citer sans autorisation des auteurs ${ }^{1}$

Conith scientifique consultatif des patches canadiennes dans l'Atlantique

CSCPGA Document de recherche $83 / 66$

Spawning and river escapement requirements for Atlantic salmon of the Saint John River, New Brunswick

by

T.L. Marshall and G.H. Penney

Freshwater and Anadromous Division
Fisheries Research Branch
Fisheries and Oceans
P.O. Box 550

Hallfax, N.S.
B3J 2S7
${ }^{1}$ This series documents the scientific basis for fisheries management advice in Atlantic Canada. As such, it addresses the issues of the day in the time frames required and the Research Documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research Documents are produced in the official language in which they are provided to the Secretariat by the author.

1 Cette sfrie documente les bases scientifiques des conseils de gestion des pâches sur la cofte atlantique du Canada. Comme telle, elle couvre les problèmes actuels selon les echeanciers voulus et les Documents de recherche qu'elle contient ae doivent pas etre consideres come des enonces finals sur les sujets traites mais plutot comme des rapports d'étape sur les Ctudes en cours.

Les Documents de recherche sont publies dans la langue officielle utilisce par les auteurs dans le manuscrit envoye au secretariat.

Abstract

Numbers of Atlantic salmon required for river cecapemant and spawaing in the Saint John River, N.B., 1972-1982, were based on; a length-fecundity relationship for hatchery-spawned fiah, proportione of wild and hatchery 1-SW and 2 -SW and older fomales in the population, an accessible selpon-producing substrate of $28,189,000 \mathrm{~m}^{2}$, an assumed requiresent of $2.4 \mathrm{egg} / \mathrm{m}^{2}$ for optian adult production, and a managemant philosophy that requires only as many wild male $1-5 W$ fish as there are 2 -SW and older famales uniccompanied by males. The required river escapement of $2-S W$ and older fish, including 200 for broodstock at the Mactaquac Fish Culture Station, is estimated at $10,314 \pm 623$ fish. The required total 1-SW river escapement is 10,549 fish. of that total, 7,656 1-SW fish are target spawaing escapement and 2,893 are asociating fish of hatchery origin which are surplus to spawaing escapemant upon arrival at Mactaquac.

Mana
Le nombre de saumons atlantiques qui ont da fopper la capture en riviare et se reproduire dans la rivilare Saint-Jaan (N.-B.) entre 1972 et 1982 a 6 t etabli a partir : d'une relation longueurfifcondite de poissons de pisciculture; des proportions, dans la population, de saumone famelles uaibermarine, dibermarins ou redibermarins sauvage tt de pieciculture; d'un substrat propice a la production de samen, açatilible, d'uon auperificia de $28189000 \mathrm{~m}^{2}$; du nombre estime de 2,4 oenfa/m rwais pour une production optimis d'adultes; et, enfin, d'une philosophie de gestion te requirant que le alme nembre de alles unibermarina sauvages que de femellea diber ou redibermarines non accompagnees de miles. On eatima $10314+623$ le nombre de saumons di ou redibermarins echappant a la capture en riviJre requis pour la reproduction. Ce noabre inclut un stock de 200 giniteurs pour l'dtablistament de pisciculture de Kactaquac. Le nombre total de aumons unibermarins tehappant ia capture en rivizre at requis pour la reproduction est de 10549 . De ce nombre, 7656 samons unibermarins reprbsentent l'fchappement cible en vae de le reproduction, et 2893 polssona de pisciculture, surplus d'echappenant au monent de l'arrivee a Mectaquac.

Introduction

The Saint John River, New Brunswick, sustains runs of Atlantic salmon of wild and hatchery origins. To optimize production of self-sustaining stocks of Atlantic salmon it is essential to quantify target spawning requirements. This document presents physical and biological data, methodology and rationale used in arriving at both target spawing requirement and river escapement.

Background

The Saint John River (Fig. 1) has a total drainage area of $54,930 \mathrm{~km}^{2}$ of which 53 percent is in the Province of New Brunswick. Natural production of Atlantic salmon in the Saint John is currently restricted primarily to those waters within New Brunswick and, more specifically, to those tributaries below Grand Falls. The main stem is characterized (proceeding upstream) by an estuary of 96 km length extending to within 3 km of the Mactaquac hydroelectric dam; Mactaquac headpond of 97 km length; 34 km of free running river below the Beechwood hydroelectric dam; Beechwood headpond of 35 km length, and 30 km of free running river below Grand Falls. Salmon reaching Mactaquac are collected, sorted, and trucked upriver, principally to the Tobique River. Salmon liberated above Mactaquac at Woodstock can, however, ascend Beechwood Dam in a fish lift and the Tobique tributary hydroelectric dam in a fishway.

Loss of Atlantic salmon production to hydroelectric development is currently compensated for by the production of approximately 250,000 smolts/year at the Mactaquac Fish Culture Station (F.C.S.) located 2.5 km below the Mactaquac Dam. Until recently, most smolts have been fin clipped and released directly to the Saint John River from the hatchery. Since 1981, up to 24 percent $(49,000)$ of the smolts have been liberated primarily marked to tributaries downriver of Mactaquac.

Methods
Estimates of the required numbers of salmon for spawning and for river escapement for the Saint John River both above and below Mactaquac dam were based on the analysis of 11 years of data in the general formula

	$P_{s}=E / m^{2} \cdot R_{a} / \sum_{i=1}^{n}\left(E /+_{i} \cdot p_{i} q \cdot p_{i}\right)$ where,
P_{s}	$=$ required number of male and female spawners,
$\mathrm{E} / \mathrm{m}^{2}$	$=$ required number of eggs deposited per m^{2},
R_{a}	$=$ accessible rearing area (m^{2}),
p\%	= proportion female,
$1_{1 . .} n$	= identifiable components of the run, e.g., $1-S W$ fish of hatchery origin, l-SW fish of wild origin, $2-\mathrm{SW}$ and older fish of hatchery -- etc.,
P	$=$ proportion total population,
E/ ${ }^{\circ}$	= number of eggs carried per female.

Fecundity

A length-fecundity relationship of the form $y=a e^{b x}$ was established for 121 spring-, sumer-, and fall-run wild salmon ranging 51 to 102 cm fork length collected at Mactaquac F.C.S. for broodstock in 1968, 1969, and 1970. Estimates of eggs/fish were derived by the von Bayer method. The number of eggs taken by artificial spawning was assumed to approximate those extruded in natural spawning (Baum and Meister, 1971).

Eggs/female figures were calculated by solving the length-fecundity relationship for lengths of female $1-S W$ and $2-S W$ and older, wild and hatchery fish sorted and sampled at Mactaquac for years where lengths were available. Annual means were used to derive fecundities for years for which there were no data.

Sea-age, place of origin and sex
All fish arriving at Mactaquac were identified as having spent one ($<65 \mathrm{~cm}$) or more ($>65 \mathrm{~cm}$) winters at sea.

All adults of hatchery origin were identifiable by fin clips or tags applied to the smolt before release.

All adults were sexed by external examination. While June and July 1-SW fish in particular were difficult to sex, checks in various years and experience gained from broodstock collections and occasional sacrifices lend confidence to the method.

Proportions for $1-S W$ and $2-S W$ and older, hatchery and wild female salmon (p ㅇ) distributed above Mactaquac were derived from Ingram (1980; 1983 Unpub1. data). Spawners below Mactaquac were assumed to be of the same sex ratio as wild fish sorted at Mactaquac. The proportion of $1-S W: 2-S W$ and older fish among wild fish spawning below Mactaquac was assumed to be the same as the proportion below the Kingsclear Indian fishery located between the Mactaquac F.C.S. and dam. This proportion was estimated from the summed estimated harvest of $1-\mathrm{SW}$ and $2-S W$ and older wild salmon by Kingsclear and the count of wild fish at Mactaquac.

Estimates of the Kingsclear catch were based on a synthesis of various reports and exploitation rates determined for hatchery fish from returned tags. The reconstituted proportions of $1-S W$ fish below Kingsclear showed improved correlation with the proportions of $1-S W$ fish in the New Brunswick angling statistics for the Nashwaak, Hammond, and Kennebecasis rivers, 1972-1982.

The length-fecundity relationship established for wild salmon was applied to hatchery fish.

Accessible Rearing Area

Estimates of the total accessible rearing area were developed by various personnel and methods over the last 30 years. Methods of estimating area have included measurement of streams by tapes and range finders in both selected
areas and sample transects (every 0.8 to 1.6 km), measurement of stream length and widths on topographic maps and aerial photos, and the application of the proportion of salmon-producing habitat determined for the drainage area of a surveyed stream to the drainage area of an unsurveyed stream.

Required egg deposition

An egg deposition of $2.4 \mathrm{eggs} / \mathrm{m}^{2}$ (Elson, 1975) was assumed to be optimal for adult returns to the Saint John River.

Results
Solution of the length-fecundity relationship $Y_{\text {fec }}=$ $430.19 e^{0.03605 X}$ length (Fig. 2) for mean annual fork lengths of $1-$ SW and 2 -SW and older wild and hatchery fish provided respective eggs/female values ranging from 2,954 to 4,$084 ; 7,175$ to 8,$182 ; 3,246$ to 3,857 and 6,874 to 7,795 (Table 1).

Eggs/fish values for wild populations of presumed sea-age and female composition spawning below Mactaquac were calculated for 1972 to 1982 and ranged from 2,219 (1979) to 4,926 (1972) (Table 2). Eggs/fish values for combined hatchery and wild fish distributed above Mactaquac, 1972-1982 ranged from 1,564 (1979) to 4,784 (1972) (Table 3).

The current estimated total salmon production habitat of the Saint John River is $28,189,000 \mathrm{~m}^{2}$ (App. 1). Of the total, $12,261,000 \mathrm{~m}^{2}$ (43.5%) are above Mactaquac and $15,928,000$ (56.5%) are below Mactaquac. The 11 -year mean number of $2-S W$ and older salmon required to seed the total accessible production area is $10,114 \pm 623$ ($95 \% \mathrm{CL}$) (Table 4). One-sea-winter fish which by virtue of the proportion of $1-\mathrm{SW}: 2-\mathrm{SW}$ and older fish would have accompanied but contributed 0.4 to 4.8 percent ($\mathrm{X}_{11 \mathrm{yr}}=2.1$ percent) of eggs below Mactaquac and 1.5 to 11.2 percent ($X_{11 \mathrm{yr}}=4.4$ percent) of eggs above Mactaquac averaged $12,214 \pm 4,524$ ($95 \% \mathrm{CL}$) over the same 11 years.

Discussion

From the length-fecundity relationship, Saint John River salmon of 60 and 80 cm fork length would carry an estimated 3,741 and 7,694 eggs respectively. Pope et al. (1961) provide a relationship which indicates that British salmon of the same lengths have fecundities of 3,764 and 7,191 eggs. Fish from Big Salmon River, N.B., carry 3,571 and 9,706 eggs at 60 and 80 cm fork length respectively (Glebe et al. MS 1979). A length-weight relationship for 73 wild females at Mactaquac, 1970, ($\log _{\mathrm{e}} \mathrm{Wt}=-3,6068+2.7857 \log _{\mathrm{e}}$ length; $\mathrm{r}^{2}=0.88$) indicates that 60 and 80 cm fish weigh 2.4 and 5.4 kg respectively and therefore would yield 1,535 and 1,416 eggs $/ \mathrm{kg}$ body weight. British salmon weighing 2.0 and 4.7 kg at 60 and 80 cm length (Pope et al. 1961) yield 1,855 and 1,531 eggs $/ \mathrm{kg}$ respectively.

Elson (1975) suggests that both $1-S W$ and $2-S W$ and older Miramichi River salmon yield 1,764 eggs $/ \mathrm{kg}$ ($800 \mathrm{eggs} / \mathrm{lb}$). One sea-winter and $2-\mathrm{SW}$ and older salmon returning to the Saint John average an estimated 2.2 and 5.2 kg body weight, and approximately 1,580 and $1,410 \mathrm{eggs} / \mathrm{kg}$ respectively. Hence,
despite their large size, Saint John River salmon do not yield as many eggs as would be expected using Elson (1975) values.

Selection of the $2.4 \mathrm{eggs} / \mathrm{m}^{2}$ value as optimum spawning requirement for the Saint John River is in relative accordance with the suggested minimal value of $2.0 \mathrm{eggs} / \mathrm{m}^{2}$ (CAFSAC, 1980 Unpubl. data). It allows for: possible underestimation of the total production area (e.g., exclusion of 7.6×10^{6} m^{2} main stem above Mactaquac); concern about the reluctance of f ish of hatchery origin to seek prime spawning substrate (e.g., 64 percent of hatchery, relative to 41 percent of wild $2-S W$ and older fish ascended Beechwood dam 1976-1982 (Ingram; 1983 Unpubl. data)); and fall-back of hatchery and some wild fish from headwater and headpond release sites to less desirable spawning substrate.

Watt and Penney (1980), using "total potential" (as opposed to "actual") adult returns from estimated egg depositions in the Tobique River 1967-1972, anticipated that maximum smolt production on the Saint John (Tobique) might be met with an egg deposition of $1.5-2.0$ eggs $/ \mathrm{m}^{2}$. A 4 -year update and revision of base information (Watt and Penney, op. cit) on estimated egg deposition so as to coincide with methodology and data base of this paper and on total potential returns to Mactaquac, appear in Table 5. Unlike the original straight line 6 -point plot (Fig. 6; Watt \& Penney (1980)) these ten-and eight-point relationships between potential egg deposition and $1-$ SW and $2-$ SW and older fish, both separate and combined (Fig. 3), provide little evidence for the selection of a value different than $2.4 \mathrm{eggs} / \mathrm{m}^{2}$.

If we accept that 2.4 eggs $/ \mathrm{m}^{2}$ remains a viable objective in maximizing adult returns to the entire Saint John, the 11 -year mean of $10,114 \pm 6232-\mathrm{SW}$ and older salmon would on average be an adequate $2-S W$ and older target spawning escapement. This estimate includes a small proportion of fish of hatchery origin (principally females) which, because they are retained at Mactaquac until dates proximate to the spawning event, are considered to be the equivalent of wild fish. An additional $2002-\mathrm{SW}$ and older fish are used as broodstock at Mactquac, bringing the total $2-\mathrm{SW}$ and older requirement to $10,314 \pm 623$ fish.

The $12,214 \pm 4,524$ 1-SW fish, which would on average accompany the $2-S W$ and older spawning requirement, contribute less than 5 percent on average of the total egg requirement and are therefore of little consequence in meeting target egg deposition. The management philosophy that recognizes the need to make $1-S W$ males available for improved chances of servicing $2-5 W$ and older females unaccompanied by males and the need for a broad genetic diversity among progeny suggests that the required spawning escapement of $1-S W$ fish should be that number which would provide sufficient wild 1 -SW males to approximate a $1: 1$ male:female sex ratio in the total spawning population. Moreover, because of the general abundance of 1 -SW fish at Mactaquac, the concerns about the contribution of hatchery fish to spawning, and the incapacity to retain $1-S W$ fish at Mactaquac until spawning time, $1-\mathrm{SW}$ fish of hatchery origin are included in required river escapement but excluded from target spawning requirement.

An approximation of the total $1-S W$ requirement can be calculated as follows:

Relationship to Mactaquac	No. 2-SW and older fish unaccomp. by males	No. 1-SW fish to provide equal males	No. 1-SW fish to provide wild males
Below	$\begin{aligned} & 5,718^{1}\left(0.869^{2}-0.131^{3}\right) \\ & =4,220 \end{aligned}$	$\begin{aligned} & 4,220 / 0.952^{4} \\ & =4,433 \end{aligned}$	4,433
Above	$\begin{aligned} & 4,396^{1}\left(0.849^{2}-0.151^{3}\right) \\ & =3,068 \end{aligned}$	$\begin{aligned} & \begin{array}{l} 3,068 / 0.952^{4} \\ =3,223 \end{array} \end{aligned}$	$\begin{aligned} & 3,223 / 0 \cdot 527^{5} \\ & =6,116 \end{aligned}$
TOTAL	7,288	7,656	10,549

${ }^{1}$ Table 4
${ }^{2} 11-y r$ mean prop. females (arcsin transf.)
$3_{11-y r}$ mean prop. males (arcsin transf.)
${ }^{4} 11$-yr mean prop males (arcsin transf.)
511-yr mean prop. wild (arcsin transf.)
The required total l-SW river escapement is 10,549 of which 7,656 are target spawning escapement and $2,893(10,549-7,656)$ are hatchery fish surplus to spawning escapement upon arrival at Mactaquac.

The identified target spawning requirement and river escapement will necessarily need upward revision if additional rearing area in the Saint John River basin is developed for salmon usage.

Literature Cited

Baum, E.T., and A.L. Meister. 1971. Fecundity of Atlantic salmon (Salmo salar) from two Maine rivers. J. Fish. Res. Board 28:764-767.

Elson, P.F. 1975. Atlantic salmon rivers, smolt production and optimal spawning - an overview of natural production. Int. At1. Salmon Found. Spec. Pub. No. 6:96-119.

Glebe, B.D., T.D. Appy, and R.L. Saunders. MS 1979. Variation in Atlantic salmon (Salmo salar) reproductive traits and their implications in breeding programs. ICES CM 1979/M:23, 11 p.

Ingram, J.H. 1980. Capture and distribution of Atlantic salmon and other species at Mactaquac dam and hatchery, Saint John River, N.B., 1972-76. Can. Data Rep. Fish. and Aquat. Sci. No. 181, 65 p.

Pope, J.A., D.H. Mills, and W.M. Shearer. 1961. The fecundity of Atlantic salmon (Salmo salar Linn.). Freshw. and Salmon Fish. Res., Dep. Agr. and Fish. Scotland, Edinburgh. Rep. 26, 12 p.

Watt, W.D., and G.H. Penney. 1980. Juvenile salmon survival in the Saint John River system. Can. Tech. Rep. Fish. and Aquat. Sci. No. 939, 13 p.

Table 1. Mean estimated fecundity of wild and hatchery $1-S W$ and $2-S W$ and older female salmon at Mactaquac, Saint John River, 1972-1982. Sample size in parentheses.

Year	Eggs/Female			
	1-SW		2-SW and older	
	Wild	Hatchery	Wild	Hatchery
1972	3513 (24)	3642^{1}	7175 (147)	74621
1973	2954 (31)	3642^{1}	7491 (173)	$7462{ }^{1}$
1974	3495 (7)	3642^{1}	8182 (156)	$7462{ }^{1}$
1975	3238 (185)	3246 (393)	7677 (5560)	7503 (1360)
1976	3692 (21)	3684 (67)	7441 (744)	6874 (255)
1977	3492 (15)	3648 (42)	7551 (825)	7360 (398)
1978	3676 (16)	3857 (23)	7775 (694)	7795 (406)
1979	3368 (58)	3620 (24)	8018 (250)	7741 (218)
1980	3891 (84)	3834 (143)	7548 (755)	7445 (437)
1981	3233 (24)	3604 (16)	7455 (387)	7514 (275)
1982	- 4084 (25)	3642^{1}	7390 (168)	7462^{1}

$1_{\text {mean of }} 7$ values, $1975-81$.

Table 2. Numbers of eggs/1-SW and $2-S W$ and older salmon spawning below Mactaquac as estimated from the product of numbers of eggs/female salmon, proportion of females in each sea-age and proportion of $1-S W$ and $2-S W$ and older fish, 1972-1982.

Year	$\begin{aligned} & \text { Sea- } \\ & \text { age } \end{aligned}$	No. eggs/ 	Proportion female ($\mathrm{p}_{\mathrm{i}}+$)	Proportion pop'n (p_{i})	Eggs/fish by sea-age
1972	1-SW	3513	. 115	. 140	57
	2^{+}-SW	7175	. 789	. 860	4869
	Total				4926
1973	1-SW	2954	. 139	. 439	180
	2^{+}-SW	7491	. 847	. 561	3559
	Total				3739
1974	1-SW	3495	. 095	. 410	136
	2^{+}-SW	8182	. 883	. 590	4263
	Total				4399
1975	1-SW	3238	. 040	. 469	61
	2^{+}-SW	7677	. 891	. 531	3632
	Total				3693
1976	1-SW	3692	. 010	. 483	18
	$2^{+}-\mathrm{SW}$	7441	. 753	. 517	2897
	Total				2915
1977	1-SW	3492	. 020	. 264	18
	$2^{+}-$SW	7551	. 892	. 736	4957
	Total				4975
1978	1-SW	3676	. 033	. 285	35
	2^{+}-SW	7775	. 882	. 715	4903
	Total				4938
1979	1-SW	3368	. 032	. 701	76
	$2^{+}-\mathrm{SW}$	8018	. 894	. 299	2143
	Total				2219
1980	1-SW	3891	. 045	. 436	76
	$2^{+}-\mathrm{SW}$	7548	. 873	. 564	3716
	Total				$\overline{3792}$
1981	1-SW	3233	. 022	. 611	43
	2^{+}-SW	7455	. 896	. 389	2598
	Total				2641
1982	1-SW	4084	. 051	. 524	109
	$2^{+}-\mathrm{SW}$	7390	. 921	. 476	3240
	Total				3349

[^0]Table 3. Numbers of eggs/1-SW and $2-S W$ and older salmon spawning above Mactaquac as estimated from the product of numbers of eggs/female salmon, proportion of females in each sea-age, and proportion of 1-SW and 2-SW and older fish, 1972-1982.

Year	Stock	$\begin{aligned} & \text { Sea- } \\ & \text { age } \end{aligned}$	$\begin{aligned} & \text { No. eggs/ } \\ & \text { female }\left(E / \frac{\circ}{i}\right)^{1} \end{aligned}$	Proportion female $\left(p_{i}+\right)$	Proportion pop'n (p_{i})	$\begin{aligned} & \text { Eggs/fish } \\ & \text { by sea-age } \end{aligned}$
1972	Wild	1-SW	3513	. 115	. 126	51
		2^{+}-SW	7175	. 789	. 772	4370
	Hatchery	1-SW	3642	. 203	. 031	23
		2^{+}-SW	7462	. 642	. 071	340
		Total				$\overline{4784}$
1973	Wild	1-SW	2954	. 139	. 297	122
		$2^{+}-\mathrm{SW}$	7491	. 847	. 374	2373
	Hatchery	1-SW	3642	. 213	. 276	214
		$2^{+}-$SW	7462	. 764	. 053	302
		Total				3011
1974	Wild	1-SW	3495	. 095	. 250	83
		2^{+}-SW	8182	. 883	. 350	2529
	Hatchery	1-SW	3642	. 192	. 274	192
		$2^{+} \mathrm{SW}$	7462	. 800	. 126	752
		Total				3556
1975	Wild	1-SW	3238	. 040	. 302	39
		2^{+}-SW	7677	. 891	. 326	2230
	Hatchery	1-SW	3246	. 081	. 282	74
		2^{+}-SW	7503	. 813	. 090	549
		Total				2892
1976	Wild	1-SW	3692	. 010	. 317	12
		$2^{+}-$SW	7441	.753	. 256	1434
	Hatchery	1-SW	3684	. 036	. 359	48
		2^{+}-SW	6874	. 787	. 068	368
		Total				1862
1977	Wild	1-SW	3492	. 020	. 187	13
		2^{+}-SW	7551	. 892	. 382	2573
	Hatchery	1-SW	3648	. 032	. 329	38
		2^{+}-SW	7360	. 808	. 102	607
		Total				3231
1978	Wild	1-SW	3676	. 033	. 174	21
		2^{+}-SW	7775	. 882	. 328	2249
	Hatchery	1-SW	3857	. 034	. 290	38
		2^{+}-SW	7795	. 804	. 208	1304
		Total				3612
1979	Wild	1-SW	3368	. 032	.500	54
		2^{+}-SW	8018	. 894	. 154	1104
	Hatchery	1-SW	3620	. 032	. 282	33
		2^{+}- SW	7741	. 753	. 064	373
		Total				$\overline{1564}$

Table 3. (Continued)

Year	Stock	$\begin{aligned} & \text { Sea- } \\ & \text { age } \end{aligned}$	$\begin{aligned} & \text { No. eggs } / \\ & \text { female }\left(\mathrm{E} / \mathrm{q}_{\mathrm{i}}\right)^{1} \end{aligned}$	Proportion female ($p_{i}{ }^{+}$)	Proportion pop'n (pi)	Eggs/fish by sea-age
1980	Wild	1-SW	3891	. 045	. 279	49
		$2^{+}-$SW	7548	. 873	. 299	1970
	Hatchery	1-SW	3834	. 066	. 356	90
		2^{+}-SW	7445	. 753	. 066	370
		Total				$\overline{2479}$
1981	Wild	1-SW	3233	. 022	. 391	28
		$2^{+}-$SW	7455	.896	. 202	1349
	Hatchery	1-SW	3604	. 044	. 323	51
		$2^{+}-$SW	7514	. 815	. 084	514
		Total				$\overline{1942}$
1982	Wild	1-SW	4084	. 051	. 438	91
		$2^{+}-\mathrm{SW}$	7390	. 921	. 242	1647
	Hatchery	$1-\mathrm{SW}$	3642	. 050	. 256	47
		$2^{+}-\mathrm{SW}$	7462	. 786	. 064	375
		Total				$\overline{2160}$

${ }^{1}$ Table 1.

Table 4. Estimated number of $1-S W$ and $2-S W$ and older salmon ${ }^{1}$ required to seed accessible production areas ${ }^{2}$ below and above Mactaquac on the Saint John River at 2.4 eggs/m ${ }^{2}$.

${ }^{1}$ Calculated as: $\frac{1}{\text { total eggs/fishá }} \times$ area $\times 2.4 \times$ proportion pop' n
${ }^{2}$ Area: below Mactaquac $=15,928,00 \mathrm{~m}^{2}$; above Mactaquac $=12,261,000 \mathrm{~m}^{2}$.
${ }^{\text {a }}$ Tables 2 and 3; right-hand columns.
-

Table 5. Estimated numbers of spawners and eggs deposited in the Tobique River, 1967-1976, and estimated total potential numbers of $1-S W$ and $2^{+}-$SW progeny returning to Mactaquac.

Year	No. spawners				$\begin{aligned} & \text { Eggs/ } \\ & \mathrm{m}^{2} \end{aligned}$	Total potential returns to Mactaquac		
	1-SW		$2^{+}-$SW					
	Wild	Hatch.	Wild	Hatch.		1-SW	2^{+}-SW	Total
1967	302	0	149	0	0.108	963	2884	3847
1968	305	0	61	0	0.057	558	1006	1564
1969	1594	0	589	0	0.436	3279	6605	9884
1970	1873	0	925	0	0.609	5649	8286	13935
1971	757	0	1155	0	0.712	4885	5926	10811
1972	215	42	1969	155	1.308	6968	8932	15900
1973	885	605	1062	118	0.865	2343	2909	5252
1974	1828	1823	2648	808	2.694	3944	5915	9859
1975	3780	2893	3941	1075	3.682	9088	8280	17368
1976	3812	3764	3314	733	2.454	5872	4725	10597

FIG. I. Saint John River system map, indicating positions of dams and some major tributaries.

FIG. 2. Relationship between female fork length (cm) and fecundity of 121 wild salmon captured at Mactaquac, Saint John River, 1968, 1969 and 1970.

Fig. 3. Relationship between total potential returns to Mactaquac of wild 1-SW and $2-S W$ and older salmon, both separately and combined, resulting from estimated egg depositions in the Tobique River, 1967-1976. (Broken lines exclude egg depositions for 1973 and 1974 contributory to the 1977 smolt-class.)

Appendix I. Accessible salmon production habitat (both spawning and rearing) above and below Mactaquac on the Saint John River, New Brunswick.

ABOVE MACTAQUAC

AREA $\left(\mathrm{m}^{2}\right)$

9,442,000
10. Main Nackawic River. Field survey in 1972 (J.R. Semple, pers. comm.)
11. Mactaquac River. This stream considered to contribute little to salmon production. No value assigned.
12. Presquile River. (International)

Qualitative stream survey report (Warner, 1964). Current fish passage provisions and river quality unknown. No value included for salmon production area.
J.H. Ingram, Freshw. and Anad. Div., Fish. and Oceans, P.0. Box 550, Halifax, N.S. B3J 2S7
J.R. Semple, Freshw. and Anad. Div., Fish. and Oceans, P.O. Box 550, Halifax, N.S. B3J 257
13. Meduxnekeag River. (International) Qualitative stream survey report (Warner, 1967). Current fish passage provisions and river quality unknown. No value included
for salmon production area.
14. Eel River. This stream considered to contribute little to salmon production. No value assigned.

0

0
15. Shogomoc River. This stream considered to contribute little to salmon production. No value assigned.
16. Pokiok River. This stream considered to contribute little to salmon production.

TOTAL ABOVE MACTAQUAC (Not including an estimated 7,596,000 m^{2} of potential rearing habitat in the main Saint John).

BELOW MACTAQUAC
17. Keswick River. Quantitative field survey (Smith, 1956a). 789,000
18. Nashwaksis Stream. This stream considered to contribute little to salmon production. No value assigned.
19. Nashwaak River. Quantitative field survey (Smith, 1956b).
$4,938,000$
20 Grand Lake drainage.

Portabello Creek	- No information/value assigned.	0
Noonan Brook	- No information/value assigned.	0
Burpee Mill Stream	- No information/value assigned.	0
Little River	- Hooper et al. (1977).	293,000
Newcastle Creek	- No information/value assigned	0
Gaspereau River	$\begin{array}{r} \text { - Hooper et al. (1977) and } \\ \text { T. Pettigrew (pers. comm.) } \end{array}$	1,004,000
Salmon River	- Hooper et al. (1977); field survey (Smith, 1953).	401,000
Coal Creek	- No information/value assigned.	0
Cumberland Bay	- No information/value assigned.	0
Youngs Cove	- No information/value assigned.	0

21. Canaan River. Qualitative field survey (Smith and Ingram, 1954). Production area $=$ drainage area ($668 \mathrm{~km}{ }^{2}$) x prod. area factor of 0.1732 percent determined for Keswick River.
$1,157,000$
22. Belleisle Creek. No information/value assigned.
23. Kennebecasis River. Quantitative field survey in 1976 and 1977
(Francis, 1984).
$4,191,000$
T. Pettigrew, New Brunswick Dep. Nat. Resources, Fish and Wildife Br., Hampton, N.B. EOG 120
24. Hammond River. Quantitative field survey in 1976 and 1977 (Francis, 1984).

2,648,000
25. Oromocto River: This stream considered to contribute little to salmon production. No value assigned.
26. Nerepis River. Production area m drainage area (293 km ${ }^{2}$) x prod. area factor of 0.1732 percent determined for Keswick River.

507,000
TOTAL BELOW MACTAQUAC
$15,928,000$
TOTAL SAINT JOHN (exclusive of main stem)

Literature Cited

Francis, A.A. 1984. Surveys of rearing potential for juvenile Atlantic salmon in some areas of the Saint John River system, New Brunswick. Can. MS Rep. Fish. Aquat. Sci. (In preparation).

Hooper, W.C., P.J. Cronin and J.C. Gilbert. 1977. Sport fisheries development of the Grand Lake area, New Brunswick. Dep. Nat. Resources, Fish and Wildl. Br., Fredericton, N.B., Draft MS Rep. 30 p.

Smith, K.E.H. 1953. Salmon investigation - Salmon River, Queens Co., N.B. Can. Dep. Fish. and Forestry, Resource Develop. Br., Halifax, N.S. MS Rep. 9 p.

Smith, K.E.H. and J.H. Ingram. 1954. Atlantic salmon survey, Canaan River, Westmorland and Queens counties, New Brunswick. Can. Dep. Fish. and Forestry, Resource Develop. Br., Hallfax, N.S. MS Rep. No. $54-6,10$ p.

Smith, K.E.H, and J.H. Ingram. 1955. Tobique River salmon survey. Can. Dep. Fish. and Forestry, Resource Develop. Br., Halifax, N.S. MS Rep. No. 55-7, 29 p.

Smith, K.E.H. 1956a. Keswick River salmon survey, Can. Dep. Fish. Res. Develop. Br., Halifax, N.S. MS Rep. No. $56-8,15 \mathrm{p}$.

Smith, K.E.H. 1956b. Nashwaak River salmon survey. Can. Dep. Fish. and Forestry. Resource Develop. Br. Halifax, N.S. MS Rep. No. 56-6, 20 p.

Warner, K. 1967. Meduxnekeag River fishery management. Maine Dep. Inland Fish and Game. Augusta. Me. MS Rep. 23 p.

Warner, K. 1964. Presquile Stream fishery management. Maine Dep. Inland Fish. and Game, Augusta, Me. MS Rep. 12 p.

[^0]: 1Table 1.

