

# **Salmon Bycatch Monitoring and Sampling Results for the Pacific Region 2024/25 Groundfish Trawl Fishery**

Cory R. Lagasse, Kathryn A. Fraser, Emily Braithwaite, Nicholas Komick

Fisheries and Oceans Canada  
Pacific Biological Station  
3190 Hammond Bay Rd  
Nanaimo, BC V9T 6N7

2026

**Canadian Manuscript Report of  
Fisheries and Aquatic Sciences 3318**



Fisheries and Oceans  
Canada      Pêches et Océans  
Canada

**Canada**

## **Canadian Manuscript Report of Fisheries and Aquatic Sciences**

Manuscript reports contain scientific and technical information that contributes to existing knowledge but which deals with national or regional problems. Distribution is restricted to institutions or individuals located in particular regions of Canada. However, no restriction is placed on subject matter, and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely, fisheries and aquatic sciences.

Manuscript reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base *Aquatic Sciences and Fisheries Abstracts*.

Manuscript reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page.

Numbers 1-900 in this series were issued as Manuscript Reports (Biological Series) of the Biological Board of Canada, and subsequent to 1937 when the name of the Board was changed by Act of Parliament, as Manuscript Reports (Biological Series) of the Fisheries Research Board of Canada. Numbers 1426 - 1550 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Manuscript Reports. The current series name was changed with report number 1551.

## **Rapport manuscrit canadien des sciences halieutiques et aquatiques**

Les rapports manuscrits contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui traitent de problèmes nationaux ou régionaux. La distribution en est limitée aux organismes et aux personnes de régions particulières du Canada. Il n'y a aucune restriction quant au sujet; de fait, la série reflète la vaste gamme des intérêts et des politiques de Pêches et Océans Canada, c'est-à-dire les sciences halieutiques et aquatiques.

Les rapports manuscrits peuvent être cités comme des publications à part entière. Le titre exact figure au-dessus du résumé de chaque rapport. Les rapports manuscrits sont résumés dans la base de données *Résumés des sciences aquatiques et halieutiques*.

Les rapports manuscrits sont produits à l'échelon régional, mais numérotés à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page du titre.

Les numéros 1 à 900 de cette série ont été publiés à titre de Manuscrits (série biologique) de l'Office de biologie du Canada, et après le changement de la désignation de cet organisme par décret du Parlement, en 1937, ont été classés comme Manuscrits (série biologique) de l'Office des recherches sur les pêcheries du Canada. Les numéros 901 à 1425 ont été publiés à titre de Rapports manuscrits de l'Office des recherches sur les pêcheries du Canada. Les numéros 1426 à 1550 sont parus à titre de Rapports manuscrits du Service des pêches et de la mer, ministère des Pêches et de l'Environnement. Le nom actuel de la série a été établi lors de la parution du numéro 1551.

Canadian Manuscript Report of  
Fisheries and Aquatic Sciences 3318

2026

Salmon Bycatch Monitoring and Sampling Results for the Pacific Region 2024/25  
Groundfish Trawl Fishery

Cory R. Lagasse, Kathryn A. Fraser, Emily Braithwaite, Nicholas Komick

Fisheries and Oceans Canada  
Pacific Biological Station  
3190 Hammond Bay Rd  
Nanaimo, BC  
V9T 6N7

© His Majesty the King in Right of Canada, as represented by the Minister of the  
Department of Fisheries and Oceans, 2026.

Cat. No. Fs97-4/3318E-PDF ISBN 978-0-660-98070-6 ISSN 1488-5387

<https://doi.org/10.60825/s7pb-fq56>

Correct Citation for this publication:

Lagasse, C.R., Fraser, K.A., Braithwaite, E., Komick, N. 2026. Salmon Bycatch Monitoring and Sampling Results for the Pacific Region 2024/25 Groundfish Trawl Fishery. Can. Manuscr. Rep. Fish. Aquat. Sci. 3318: vi + 38 p. <https://doi.org/10.60825/s7pb-fq56>

## TABLE OF CONTENTS

|                                                                                                 |    |
|-------------------------------------------------------------------------------------------------|----|
| Introduction .....                                                                              | 1  |
| Methods.....                                                                                    | 1  |
| Groundfish Trawl Catch Monitoring and Sampling.....                                             | 1  |
| Catch and Effort Estimation.....                                                                | 2  |
| Stock Composition and CWT Analysis.....                                                         | 3  |
| Stock Composition Analysis .....                                                                | 3  |
| CWT Analysis.....                                                                               | 4  |
| Age Composition.....                                                                            | 4  |
| Results.....                                                                                    | 5  |
| Salmon Bycatch.....                                                                             | 5  |
| Stock Composition and CWT.....                                                                  | 5  |
| Stock Composition .....                                                                         | 5  |
| CWT Indicator Stocks .....                                                                      | 6  |
| Age Composition.....                                                                            | 6  |
| Discussion.....                                                                                 | 6  |
| Acknowledgements.....                                                                           | 7  |
| References .....                                                                                | 7  |
| Figures.....                                                                                    | 8  |
| Tables .....                                                                                    | 14 |
| Appendix A - 2024/25 Option A Groundfish Trawl Salmon Bycatch Requirements.....                 | 25 |
| Appendix B - Regions and Catch Strata for Reporting and Analysis .....                          | 29 |
| Appendix C - SMU-CU-Reporting Units Tables.....                                                 | 30 |
| Appendix D - CWT Exploitation Rate Indicator Stocks used in Exploitation Rate Analysis.....     | 34 |
| Appendix E – Salmon bycatch by groundfish management area for the 2023/24 groundfish fishery... | 37 |
| Appendix F - Salmon bycatch by Pacific fishery management area for the 2024 calendar year.....  | 38 |

## List of Figures

|                                                                                                                                                                    |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 1 – Map of regions used for stratifying salmon bycatch. ....                                                                                                | 8  |
| Figure 2 – Chinook salmon bycatch by month and region in the groundfish trawl fishery from 2022 to the end of the 2024/25 fishery on February 21, 2025.....        | 9  |
| Figure 3 – Stock assignments of Chinook salmon bycatch samples by catch region and month.....                                                                      | 10 |
| Figure 4 - Stock composition of Chinook salmon trawl bycatch by region and time period .....                                                                       | 11 |
| Figure 5 – Estimated Chinook salmon bycatch by stock during the 2024 calendar year.....                                                                            | 12 |
| Figure 6 – Density and box plots of fork lengths by sex from Chinook salmon bycatch sampled from the Strait of Georgia region from October 2024 to March 2025..... | 13 |

## List of Tables

|                                                                                                                                                                                                |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 1 – Summary of annual coastwide salmon catch reported by groundfish fishing year .....                                                                                                   | 14 |
| Table 2 – Estimated annual coastwide salmon catch reported by calendar year. ....                                                                                                              | 15 |
| Table 3 – Number of tows and salmon catch (numbers of fish retained and released) by species, region, and gear subtype for the 2024/25 groundfish fishery year .....                           | 16 |
| Table 4 – Total salmon catch (numbers of fish retained and released) by species, region, and catch type for the 2024/25 groundfish fishery year (February 21, 2024 to February 20, 2025). .... | 17 |
| Table 5 – Summary of Chinook catch (numbers of fish), sample sizes of CWTs and PBT-GSI, and sample rates for CWT and stock composition analysis during the 2024 calendar year.....             | 18 |
| Table 6 – Stock composition of Chinook salmon stock management units during the 2024 calendar year across region, catch type, and half-year time strata.....                                   | 19 |
| Table 7 – Estimates of Chinook salmon stock management unit bycatch by region in the groundfish trawl fishery during the 2024 calendar year.....                                               | 20 |
| Table 8 – Estimates of CWT recoveries of Canadian exploitation rate indicator stocks in the Groundfish Trawl Fishery during the 2024 calendar year by region and catch type. ....              | 21 |
| Table 9 – Age composition of Canadian stock management units from PBT and CWT samples from the 2024 calendar year. ....                                                                        | 22 |
| Table 10 – Age composition of PBT samples from groundfish trawl bycatch for the 2024 calendar year by stock management unit and region.....                                                    | 23 |
| Table 11 – Mean fork length by stock management unit and brood year for samples of Chinook salmon bycatch from the Strait of Georgia region from October 2024 to March 2025..                  | 24 |

## ABSTRACT

Lagasse, C.R., Fraser, K.A., Braithwaite, E., Komick, N. 2026. Salmon Bycatch Monitoring and Sampling Results for the Pacific Region 2024/25 Groundfish Trawl Fishery. Can. Manusc. Rep. Fish. Aquat. Sci. 3318: vi + 38 p. <https://doi.org/10.60825/s7pb-fq56>

Beginning fall 2022, new monitoring and retention requirements for salmon bycatch were introduced in the Pacific Region Option A groundfish trawl fishery to improve the accuracy of catch estimates and collect information on Chinook salmon stock composition and coded wire tags (CWT). This report describes results from the enhanced salmon bycatch monitoring program for the 2024/25 groundfish fishery and 2024 calendar year, including salmon bycatch by species, stock composition, CWT indicator stock catches, and age composition of Chinook salmon bycatch. The 2024/25 fishery was the first year under a salmon bycatch management plan that introduced a fleet-wide annual bycatch cap of 9,500 Chinook salmon. There was an estimated total of 7,527 salmon caught in the 2024/25 groundfish fishery including 7,040 Chinook salmon. CWT and genetic stock composition estimates indicate that most bycatch of Canadian origin Chinook salmon was from the Fraser Fall 4(1) stock management unit (78%), which includes CWT exploitation rate indicator stocks from the Chilliwack and Harrison Rivers.

## RÉSUMÉ

Lagasse, C.R., Fraser, K.A., Braithwaite, E., Komick, N. 2026. Salmon Bycatch Monitoring and Sampling Results for the Pacific Region 2024/25 Groundfish Trawl Fishery. Can. Manusc. Rep. Fish. Aquat. Sci. 3318: vi + 38 p. <https://doi.org/10.60825/s7pb-fq56>

À partir de l'automne 2022, de nouvelles exigences de surveillance et de rétention des prises accessoires de saumon ont été introduites dans la pêche au chalut de fond de la région du Pacifique (Option A) afin d'améliorer la précision des estimations de prises et de recueillir des informations sur la composition des stocks de saumon quinnat et les étiquette de fil codée (CWT). Ce rapport décrit les résultats de la pêche au poisson de fond 2024-2025 et de l'année civile 2024, y compris les prises accessoires de saumon par espèce, la composition des stocks, les prises des stocks indicateurs de CWT et la composition par âge des prises accessoires de saumon quinnat. La pêche 2024-2025 a marqué la première année de mise en œuvre du plan de gestion des prises accessoires de saumon, qui prévoyait un plafond de prises accessoires à l'échelle de la flottille de 9 500 saumons quinnats. On estime que 7 527 saumons ont été capturés lors de la pêche au poisson de fond 2024-2025, dont 7 040 saumons quinnats. Les estimations de la composition génétique et du CWT des stocks indiquent que la plupart des prises accessoires de saumon quinnat d'origine canadienne provenaient de l'unité de gestion des stocks Fraser Fall 4(1) (78%), qui comprend les stocks indicateurs du taux d'exploitation du CWT des rivières Chilliwack et Harrison.

## INTRODUCTION

Beginning in September 2022 an enhanced salmon bycatch monitoring program was initiated in the groundfish trawl fishery. The purpose of the program was to provide accurate estimates of Pacific salmon bycatch by species and assess the stock composition and CWT recoveries of Chinook salmon bycatch. Prior results from the enhanced monitoring program were described in Lagasse et al. 2024 and Lagasse et al. 2025, focusing on the 2022/23 and 2023/24 groundfish fisheries, respectively. This report describes salmon bycatch monitoring and sampling results for the 2024/25 groundfish fishery and the 2024 calendar year. We provide information on salmon bycatch by species for the 2024/25 fishery from February 21, 2024 to February 20, 2025. Information on stock composition, CWT indicator stock catches, and age composition of Chinook salmon bycatch is reported for the 2024 calendar year.

The results in this report represent the second full year of mandatory retention requirements and sampling to better understand potential impacts of the groundfish trawl fishery on Chinook salmon stocks of concern. The monitoring requirements and methods used to estimate catch by species and stock composition are similar to those described in Lagasse et al. 2025, with a few updates to monitoring procedures to support implementation of the new salmon bycatch management plan. This plan was introduced for the 2024/25 fishery and included a Chinook salmon bycatch cap of 9,500 Chinook salmon for the trawl fleet along with individual vessel bycatch cap allowances.

## METHODS

### **Groundfish Trawl Catch Monitoring and Sampling**

Commercial groundfish trawl catch is monitored and reported using a combination of fisher logs, audits of independent at-sea electronic monitoring (EM), and dockside monitoring program (DMP) validation of landed catch. While hauled out, all vessels must keep accurate records of fishing activities in an electronic fishing log while ensuring that the at-sea EM systems are fully operational. At the end of each fishing trip, all landed catch must be independently validated by the DMP during offload to ensure accurate catch weights for each species. Further details on monitoring requirements for the groundfish trawl fishery are detailed in Appendix 8 of the Groundfish Integrated Fisheries Management Plan (DFO 2024).

Retention and sampling requirements for Pacific salmon bycatch in the Option A groundfish trawl fishery were changed in 2022 to enable accurate estimation of the number of salmon caught by species, and accurate estimation of stock composition for Chinook salmon catch. For the 2024/25 groundfish trawl fishery, minor updates to monitoring procedures were implemented to support in-season tracking of Chinook salmon bycatch as part of the salmon bycatch management plan. Changes to monitoring and retention requirements for salmon were implemented via section 52 scientific licences that were issued to each vessel participating in the Option A groundfish trawl fishery. Requirements for the 2024/25 groundfish trawl fishery are provided in Appendix A and summarized below by catch type with vessels landing catch fresh on ice subject to different requirements than vessels that head, gut, and freeze catch at-sea.

For vessels landing fresh catch, which consist of most Option A trawl licence holders, all Pacific salmon were required to be retained and landed whole for DMP validation of catch numbers and weights by species. From April to June 2024, 25% of trips were randomly selected for collection of Chinook and Coho salmon heads by dockside observers, with the random selection occurring after vessel hail-in. The trip sample rate was increased to 50% from July 2024 to March 2025 to ensure sufficient samples were

collected to representatively estimate stock composition following reduced catches under the salmon bycatch management plan.

For vessels landing frozen catch headed and gutted at sea, also known as receiving tank vessels, scientific licences required the retention of salmon heads only, in recognition of the limited freezer space available for storage of non-marketable fish. Receiving tank vessels were responsible for cutting, bagging, and labelling heads on all trips according to instructions provided by DFO (Appendix A). Salmon smaller than 30cm in length were required to be retained whole to enable accurate species identification, however, only a small portion of catch was expected within this size range. Vessels were required to bag heads separately for each tow, with a maximum of ten heads loosely packed in each bag to facilitate efficient species identification and counting. Chinook salmon heads were required to be bagged separately from other salmon species because they were the dominant species of salmon bycatch and the only species managed under a bycatch cap. At offload, bagged heads were examined and counted by dockside observers for independent validation of catch by species.

Validated salmon catch by species from all vessels was recorded in Vericatch, the trawl fishery's catch and sample logging system, after each trip. Catch of Chinook salmon from each trip was counted towards the individual vessel Chinook bycatch cap allowance and the fleetwide Chinook salmon bycatch cap. After validation, Chinook salmon heads were packaged and labelled by dockside observers, placed in cold storage, and shipped to the DFO-contracted coded wire tag (CWT) lab at J.O. Thomas and Associates Ltd. Every head was identified to species, counted, and examined for the recovery of a CWT using lab dissection techniques. DNA cheek tissue samples were collected from heads that did not have CWTs. Heads from other salmon species were not retained for further sampling during the 2024/25 fishery.

In addition to the enhanced monitoring and sampling protocols, bio-sampling of length, sex, and adipose clip status was conducted for Chinook salmon bycatch from the Strait of Georgia hake fishery from October 2024 to March 2025. This sampling of individual fish aimed to better characterize the size and sex distribution of Chinook salmon catch from a portion of the fishery where Chinook salmon bycatch is most easily accessible to dockside observers. Individual biodata was matched to CWT and stock identification information using the DNA sample ID. All trips from vessels targeting hake in the Strait of Georgia were sampled using these enhanced bio-sampling procedures from October 1, 2024 to March 31, 2025. Otolith samples were also collected from 100 Chinook salmon each for catch originating from the West Coast Vancouver Island and Strait of Georgia regions for stable isotope analysis.

### **Catch and Effort Estimation**

Estimates of numbers of salmon caught by species were compiled from the Official Catch table in the 'Groundfish views of FOS' (GFFOS) database, a restructured version of DFO's Fisheries Operations Systems database. Landed counts recorded by DMP observers were used as the official catch of salmon by species for all trips, including receiving tank vessels that bagged and retained heads only. This procedure was modified from previous years of the enhanced monitoring program, where lab enumeration was used as the best catch estimate for receiving tank vessels, to correspond with the shift to dockside validation of all salmon bycatch as part of the salmon bycatch management plan.

Salmon catch was matched to fishing events (i.e. the trawl tow) to determine location and gear sub-type (midwater or bottom trawl) using fisher log information where available. For salmon heads that could not be matched to a specific tow due to unlabeled samples or catch not reported in fisher logs, catch locations were inferred by PFMA and region based on the locations of all tows within a trip. A small portion of

salmon bycatch was assigned to an unknown category because fishing activity occurred in multiple regions and could not be associated to a specific region.

In March 2024, a receiving tank vessel conducted experiments with a bycatch reduction device to evaluate escape rates for salmon and its effect on catch per unit effort (CPUE) while targeting Walleye pollock (*Gadus chalcogrammus*) around Johnstone Strait and Queen Charlotte Strait. These experiments were conducted under a scientific permit and not counted towards the individual vessel bycatch allowance or the fleetwide bycatch cap, however, we included these results in catch estimates as well as stock composition. Results from this experiment are described in a report by Archipelago Marine Research Inc and not included here.

### **Stock Composition and CWT Analysis**

The collection of CWT and DNA samples allowed estimation of stock composition and catch by stock from Chinook salmon bycatch, and also provided information on bycatch age composition. To representatively sample for stock identification, all Chinook salmon heads were first examined for the presence of CWTs. Any heads that did not contain a CWT had a DNA sample collected from cheek tissue. A sub-sample of DNA was selected for parentage-based tagging (PBT) and genetic stock identification (GSI) analysis, targeting a minimum sample size of 150 within each catch strata or a sample rate greater than 25% dependent on total catches within the strata.

The catch strata for estimation of stock composition and total CWT recoveries consisted of combinations of regions (West Coast Vancouver Island, Strait of Georgia, Queen Charlotte & Johnstone Strait, North Coast, or unknown), catch type (fresh or frozen), and time periods (January – June or July – December, 2024). These factors combined to form 16 possible catch strata during the 2024 calendar year (see Appendix B for all strata). Out of these catch strata, 13 included CWT and DNA samples and were included for estimation of stock composition and catch by stock. For reporting purposes, both catch types were combined in order to meet the “rule of three” privacy requirements when reporting on fisher catch data.

### **Stock Composition Analysis**

Stock composition of Chinook salmon bycatch in each stratum was estimated using both CWT and genetic methods to identify fish to population or Conservation Unit (CU) of origin, which were rolled up to the stock management unit (SMU) level for reporting (see Appendix C for correspondence between SMU, CUs and genetic reporting units). CWT recoveries can determine the stock of origin to high accuracy and resolution for populations that have been tagged. For fish that did not contain a CWT, a sub-sample of DNA tissue samples were analyzed by DFO’s Molecular Genetics Lab to determine stock of origin using PBT or GSI assignment methods from a panel of at least 150 single nucleotide polymorphisms (SNPs) (Beacham et al. 2018).

GSI assignment matches genetic markers (SNPs in this case) from samples to baselines collected from spawning grounds to identify the population of origin for wild or hatchery salmon, while PBT assignment matches sampled fish with their parents from hatchery broodstock, allowing determination of the hatchery of origin and age of sampled fish (Beacham et al. 2018). While GSI provides river or region of origin for most Chinook, including Alaska and the southern US, PBT results are limited to Canadian populations that have PBT programs in place. When available, PBT results provide better accuracy and resolution than GSI and were used instead of GSI to determine stock of origin where available, with the combined application of both methods denoted by PBT-GSI.

To determine stock proportions and catch by stock in each catch strata, separate stock proportions were estimated using CWT versus GSI-PBT methods, and then a combined stock proportion was calculated by weighting these proportions according to their respective partition of the catch. For rare cases where a fish was identified using both CWT and GSI-PBT methods, the CWT assignment was used due to its higher resolution and accuracy. The CWT partition was the proportion of the Chinook bycatch in the strata represented by CWTs, calculated as the number of CWTs recovered divided by the number of heads collected and examined. The GSI-PBT partition was then the remaining proportion of the catch. This partitioning prevented bias in stock composition estimates associated with the higher sample rate for CWTs versus GSI-PBT, ensuring that stocks without CWT indicator programs would be accurately represented when estimating stock proportions.

We assumed 100% accuracy from stock assignments using CWT and PBT methods, and characterized uncertainty in GSI stock proportions by bootstrapping assignment probabilities. For each Chinook salmon identified using GSI, we simulated 1,000 samples from a probability distribution equal to the assignment probabilities for each stock. We then estimated stock proportions from GSI-PBT samples in each strata by calculating the mean proportions of samples assigned to each stock across all simulations. Uncertainty in GSI stock assignment was summarized using 95% confidence intervals ( $\pm 1.96$  SD) of the stock proportions across all simulations. Finally, the mean weighted stock proportions from CWT and GSI-PBT stock assignments with confidence intervals were multiplied by catch in each strata to obtain estimates of catch by stock including uncertainty in GSI assignment.

### ***CWT Analysis***

For Chinook salmon bycatch in the trawl fishery, we estimate total CWT recoveries to provide information on mortality of exploitation rate indicator stocks in Canada. The Chinook Technical Committee (CTC) of the Pacific Salmon Commission uses CWTs to perform an annual exploitation rate analysis (CTC 2023), and currently monitors 45 Chinook CWT exploitation rate indicator stocks, including 16 within Canada (see Appendix D for geographic locations, stock acronyms, and full stock names). Notably, this includes Harrison and Chilliwack River indicator stocks, which are both within the Fraser Fall 4(1) SMU and cannot be reliably distinguished using genetic methods. The CTC uses CWT recoveries to estimate exploitation rates in fisheries, however, this analysis is developed for salmon-directed fisheries only.

To estimate total CWT recoveries of Canadian Chinook indicator stocks within each catch stratum, we divide the number of CWTs observed for each stock by the CWT sampling rate in each stratum. The CWT sample rate was the number of Chinook salmon heads collected divided by the total Chinook salmon catch in each stratum.

### ***Age Composition***

We provide a summary of Chinook salmon bycatch age composition data using brood year assignments from CWTs and PBT analysis. Due to the Covid pandemic, most Canadian CWT indicator stocks from the 2019 brood year were not tagged, therefore age 5 fish are not represented in the CWT age data. However, these fish likely represent only a small proportion of samples based on current and previous year age compositions (Lagasse et al 2025). We report on age composition by SMU for trawl bycatch in all regions, as well as age composition by region where PBT sample sizes were four or greater.

## RESULTS

### Salmon Bycatch

There was an estimated total of 7,527 salmon caught in the 2024/25 groundfish fishery, which was less than a third of the previous year's catch of 28,145 (Table 1, also reported by calendar year in Table 2). Total bycatch of Chinook salmon was 7,040 pieces in 2024/25, representing 94% of salmon caught. This total bycatch includes 666 Chinook salmon caught under scientific licence during experiments on a bycatch reduction device that did not count towards the fleetwide Chinook salmon bycatch cap. The majority of Chinook salmon bycatch occurred using mid-water trawl gear, with 84% or 5,940 Chinook salmon caught using mid-water trawl gear (Table 3).

Bycatch of Chinook salmon was lower across all regions and months compared to the previous two years of the enhanced monitoring program (Figure 2). The highest catches occurred in the West Coast Vancouver Island (WCVI) region between May and October (Figure 2 4). Vessels in this region targeted a mixture of species, but Pacific Hake landings were much lower compared to previous years due to reduced abundance of the stock in Canadian waters.

### Stock Composition and CWT

Over the 2024 calendar year, 2,042 samples from individual Chinook salmon were collected and successfully analyzed to determine stock of origin, representing 28% of estimated Chinook salmon bycatch. Of these samples, 1,196 were assigned to stock of origin using GSI and 239 could be matched to parental origin using PBT. There were 607 CWTs successfully analyzed and matched to a release group by tag code out of 4,523 Chinook heads that were collected (Table 5). Analyzed samples covered all regions and time periods where Chinook salmon bycatch was observed (Figure 33).

Sampling rates for Chinook salmon bycatch were variable using CWT and PBT-GSI, with most regions and time periods represented with CWT and PBT-GSI sampling rates above 20% (Table 5). Sample rates increased in the second half of the year with sample rates above 20% in all strata and with sample rates above 50% in many strata following the increase in sampling rates for vessels landing fresh catch (Table 5).

### Stock Composition

Chinook salmon stock composition was variable among regions and time periods with the proportion of Canadian origin stocks in trawl salmon bycatch ranging from 32 - 88% across strata during the 2024 calendar year (Figure 4, Table 6). The proportion of Canadian origin stocks was highest in the Strait of Georgia region where it was 80 - 88% throughout the year. The estimated bycatch of all Canadian origin stocks was 2,927 across all strata, representing 48% of Chinook salmon bycatch for the 2024 calendar year (Table 7).

Among Canadian origin stocks, the Fraser Fall 4(1) SMU was the largest proportion of bycatch across regions and time periods, with the exception of smaller catches in the North Coast region. Fraser Fall 4(1)s represented 23-96% of the Canadian proportion of Chinook bycatch in the Strait of Georgia (SoG), Queen Charlotte and Johnstone Strait (QC&JSt), and WCVI regions. The mean estimated bycatch of Fraser Fall 4(1) was 2,281 salmon, representing 78% of Canadian origin stocks (Figure 5). Other Canadian stocks representing greater than 1% of Canadian origin catch included the Lower Georgia Strait, Middle Georgia Strait, Fraser Summer 5(2), Fraser Spring 5(2), and Fraser Summer 4(1) SMUs.

### ***CWT Indicator Stocks***

Most CWT recoveries were from stocks of US origin, with 540 out of the 732 CWTs belonging to stocks from the US West Coast after expanding for sample rates. Tagging rates are a factor in this result; the US released nearly 256.4 million CWT Chinook between brood years 2018 and 2022, compared to just 22.6 million from Canada (PSC DSWG 2023). Total estimated recoveries of Canadian stocks were dominated by Chilliwack and Harrison CWT indicator stocks, with 121.4 and 139.7 total estimated CWT recoveries, respectively (Table 8). Cowichan River, Big Qualicum River, and Nicola River had total estimated recoveries of 31.1, 11.9 and 7.5 CWTs respectively. There were no CWT recoveries of other Canadian indicator stocks or the Similkameen River stock, which originates from the US just downstream of the Canadian Okanagan River.

### ***Age Composition***

Observed PBTs among Chinook salmon in 2024 belonged primarily to the Fraser Fall 4(1) and Middle Georgia Strait SMUs, which respectively represented 161 and 58 out of the total of 239 PBT samples (Table 9). Fraser Fall 4(1)s sampled by PBT and CWT were primarily age 2 and 3, with a higher proportion of age 3 fish in CWT samples than PBT. For Middle Georgia Strait, higher proportions of age 2 fish were observed from both CWT and PBT samples (82% and 88% respectively). There were differences in PBT age composition by stock and region (Table 10), with higher proportions of age 2 caught in the Strait of Georgia compared to Queen Charlotte and Johnstone Strait regions for PBT populations within the Fraser Fall 4(1) SMU.

### ***Length and sex sampling***

From October 2024 to March 2025, 851 Chinook salmon caught in the Strait of Georgia region were individually sampled for length, sex, and adipose clip status, in addition to typical sampling for CWTs and DNA. This bycatch occurred almost exclusively in PFMA 14 (Appendix F) when vessels were targeting Pacific hake. Mean fork lengths for these samples were 557 mm for females and 529 mm for males (Figure 8). 397 Chinook salmon were identified as female, 346 were male, while 108 could not be identified to sex. Lengths varied by age and stock, although 443 samples were not matched to stock and only a subset could be aged where PBT or CWT information was available (Table 11).

## **DISCUSSION**

This report provides results from the second full year of the enhanced salmon bycatch monitoring program for the Pacific Region groundfish trawl fishery, based on monitoring procedures and methodologies previously described in Lagasse et al. 2025. Total bycatch of Pacific salmon for the 2024/25 fishery was reduced by more than two thirds compared to the previous year following implementation of a salmon bycatch management plan and reduced landings of Pacific Hake. The total Chinook salmon bycatch of 7,040 was closer to historical levels estimated prior to 2022/23 (Table 1) and below the 2024/25 Chinook salmon bycatch cap of 9,500.

Although total landings decreased significantly, stock composition of catch was similar to the year prior with the majority of Chinook salmon catch consisting of US origin stocks and most Canadian origin Chinook salmon bycatch belonging to the Fraser Fall 4(1) SMU. Estimated bycatch of other Canadian stocks was much lower than Fraser Fall 4(1)s, but included stocks of conservation concern, including Fraser Spring 4(2), Fraser Spring 5(2), and Fraser Summer 5(2) SMUs.

Sources of error in catch and stock composition estimates were previously described (Lagasse et al. 2025) and apply to these results. Stock composition and stock-specific catch information represent estimates

with potential error related to sampling, stock identification, and analysis of stock composition. Chinook salmon stock composition can vary significantly across weeks and months, particularly during summer periods when stocks migrate through marine areas towards their natal streams at different times (Freshwater et al. 2021). Thus, our aggregation of catch into half-year periods for estimating stock composition may not capture this variability.

Enhanced monitoring of salmon bycatch and implementation of the salmon bycatch management plan is ongoing during the 2025/26 groundfish trawl fishery. Funding for the enhanced monitoring program has been provided by the Pacific Salmon Strategy Initiative that sunsets at the end of March 2026.

## ACKNOWLEDGEMENTS

The program was developed collaboratively by the trawl salmon bycatch working group that included representatives from DFO Fisheries Management, DFO Science, the groundfish trawl industry, the Canadian Groundfish Research and Conservation Society, Archipelago Marine Research, and JO Thomas and Associates. As with any fisheries monitoring and sampling program, collection of data relies upon the work and dedication of fishers, technicians, and field staff. We are grateful to trawl fishers, dockside monitors from Archipelago Marine Research, and technicians from JO Thomas and Associates for their work to count, collect, and analyze salmon bycatch.

## REFERENCES

- Beacham, T.D., Wallace, C., Macconnachie, C., Jonsen, K., McIntosh, B., Candy, J.R., and Withler, R.E. 2018. Population and individual identification of chinook salmon in British Columbia through parentage-based tagging and genetic stock identification with single nucleotide polymorphisms. *Canadian Journal of Fisheries and Aquatic Sciences* **75**(7): 1096–1105. doi:10.1139/cjfas-2017-0168.
- Chinook Technical Committee. 2023. 2023 Exploitation Rate Analysis. Pacific Salmon Commission Joint Technical Committee Report TCCHINOOK (23)-06. Vancouver, BC.
- Fisheries and Oceans Canada. 2024. Groundfish Integrated Fisheries Management Plan 2024/25. *In* Fisheries Management.
- Freshwater, C., Anderson, S.C., Beacham, T.D., Luedke, W., Wor, C., and King, J. 2021. An integrated model of seasonal changes in stock composition and abundance with an application to Chinook salmon. *PeerJ* **9**: 1–27. doi:10.7717/peerj.11163.
- Lagasse, C.R., Fraser, K.A., Braithwaite, E., and Komick, N. 2025. Salmon bycatch monitoring and sampling results for the Pacific Region 2023/24 groundfish trawl fishery. *In* Canadian manuscript report of fisheries and aquatic sciences. Fisheries and Oceans Canada. doi:10.60825/D0E4-PP46.
- Lagasse, C.R., Fraser, K.A., Houtman, R., Grundmann, E., Komick, N., Brien, M.O., Braithwaite, E., and Cornthwaite, A.M. 2024. Review of Salmon Bycatch in the Pacific Region 2022/23 Groundfish Trawl Fishery and Preliminary Results of an Enhanced Monitoring Program. *Can. Manuscr. Rep. Fish. Aquat. Sci.* **3273**: v + 35 p.
- Pacific Salmon Commission Data Standards Work Group (PSC DSWG). 2023. Specifications and Definitions for the Exchange of Coded Wire Tag Data for the North American Pacific Coast. Pacific Salmon Comm. Tech. Rep. No. 52: 97 p.

## FIGURES

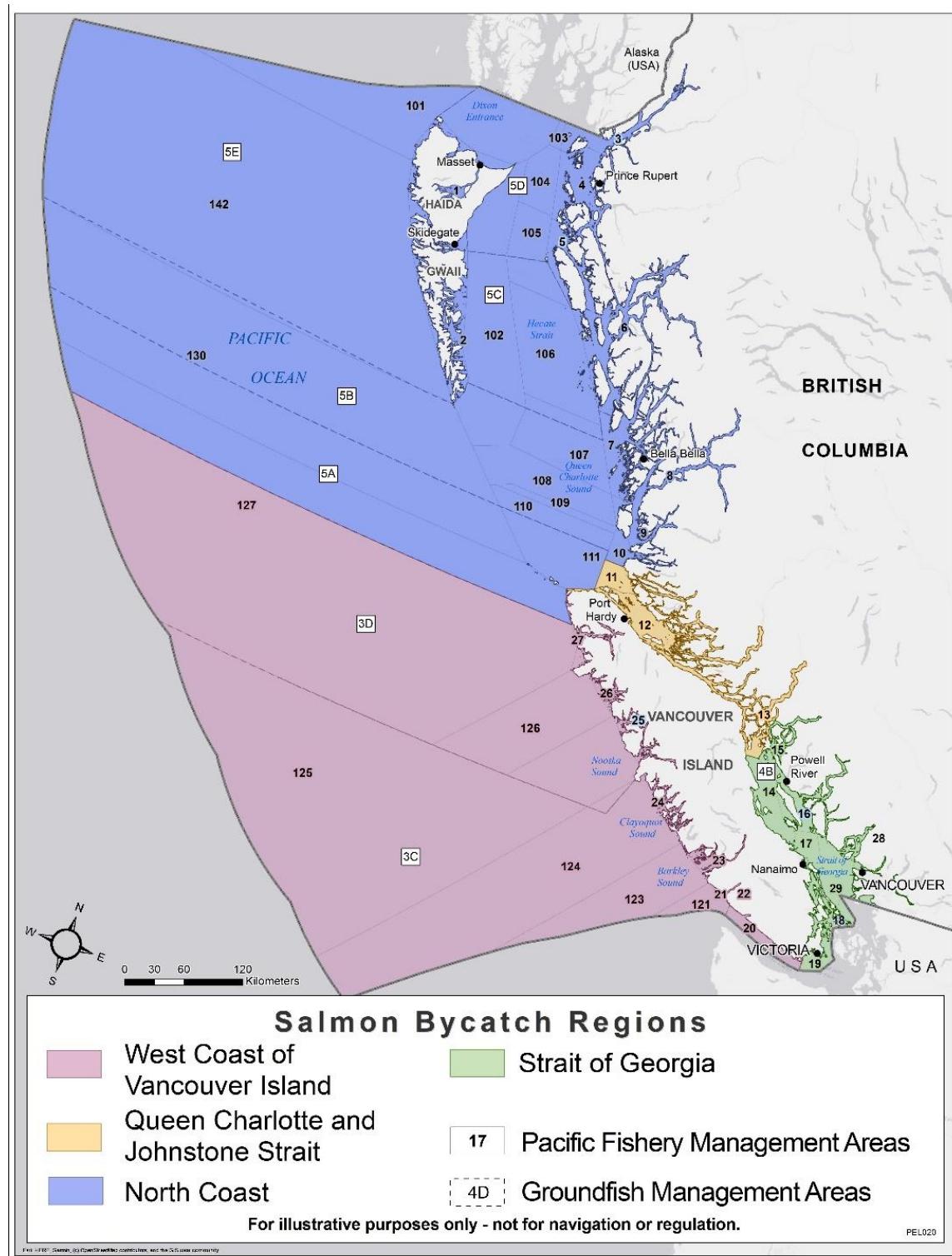
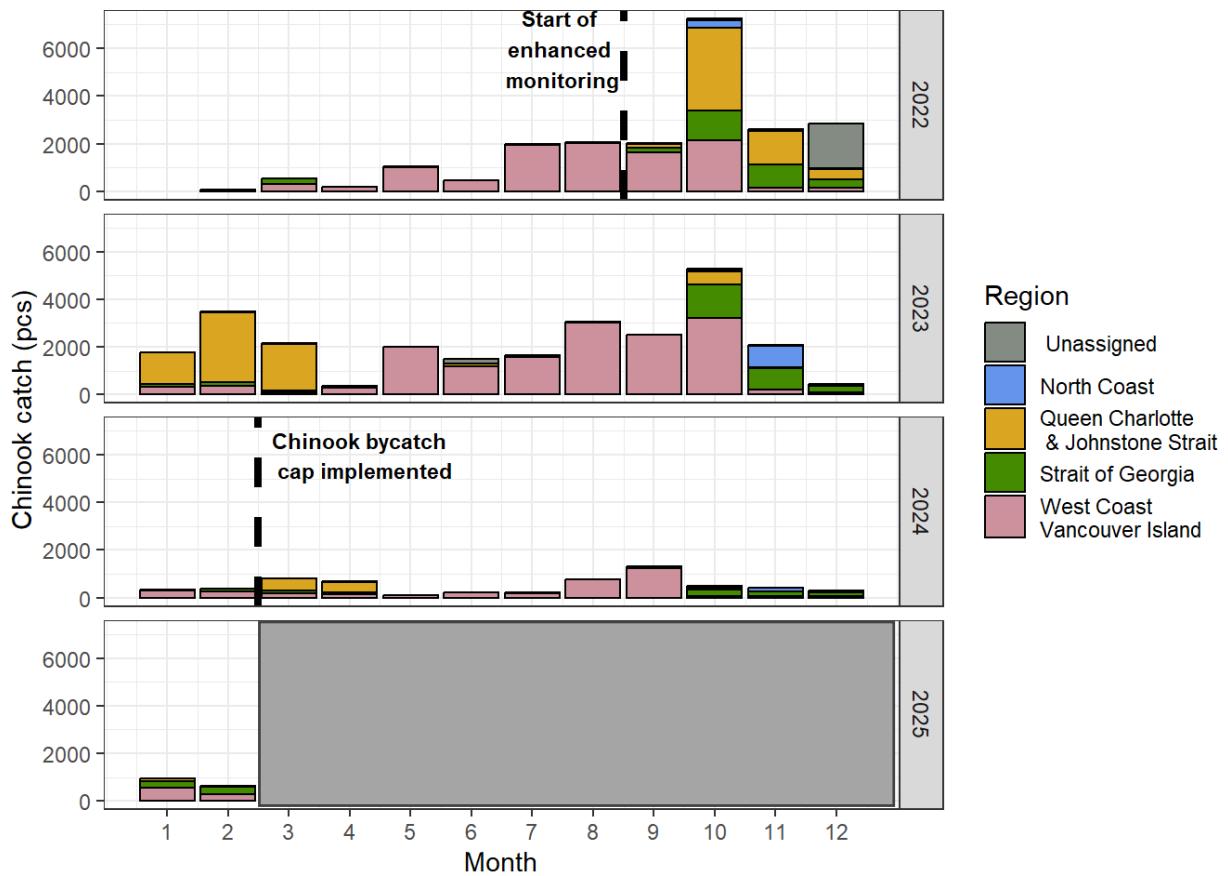
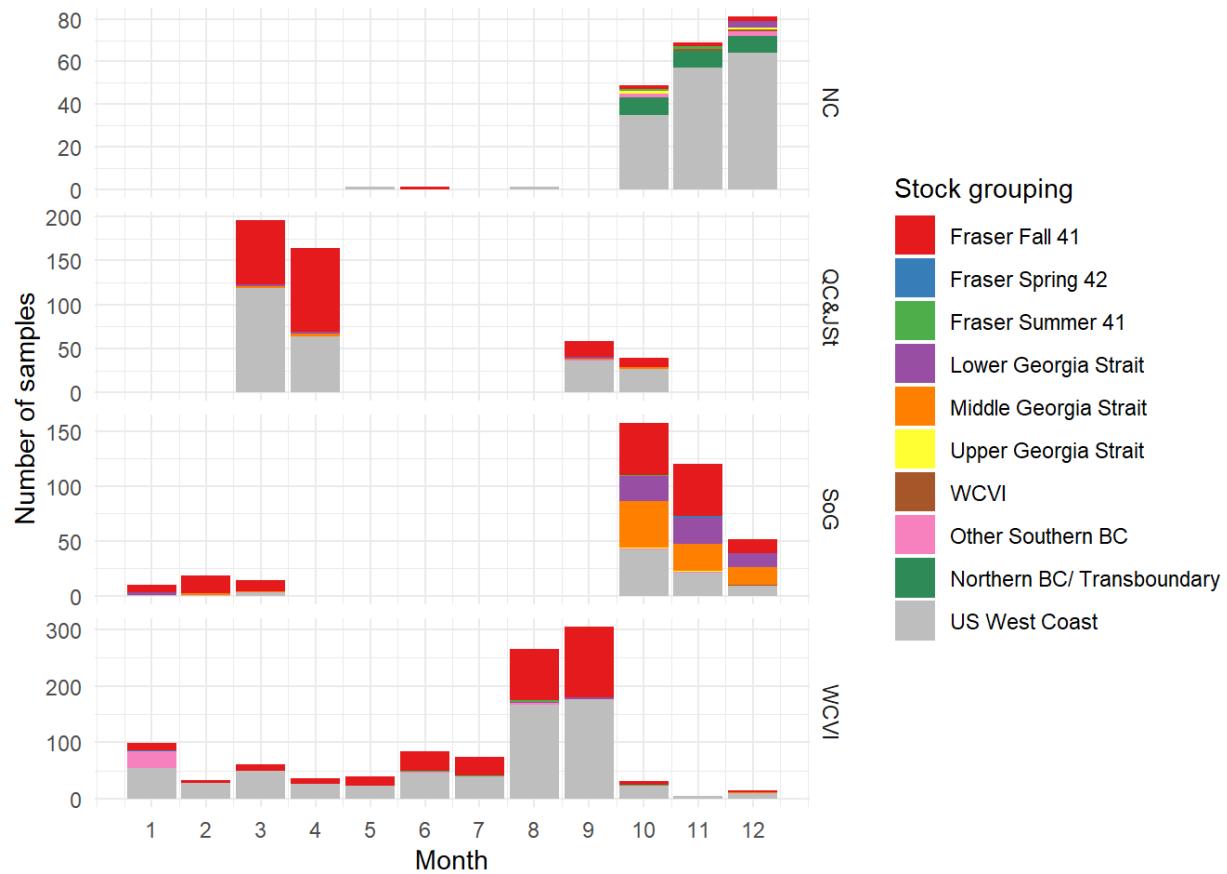
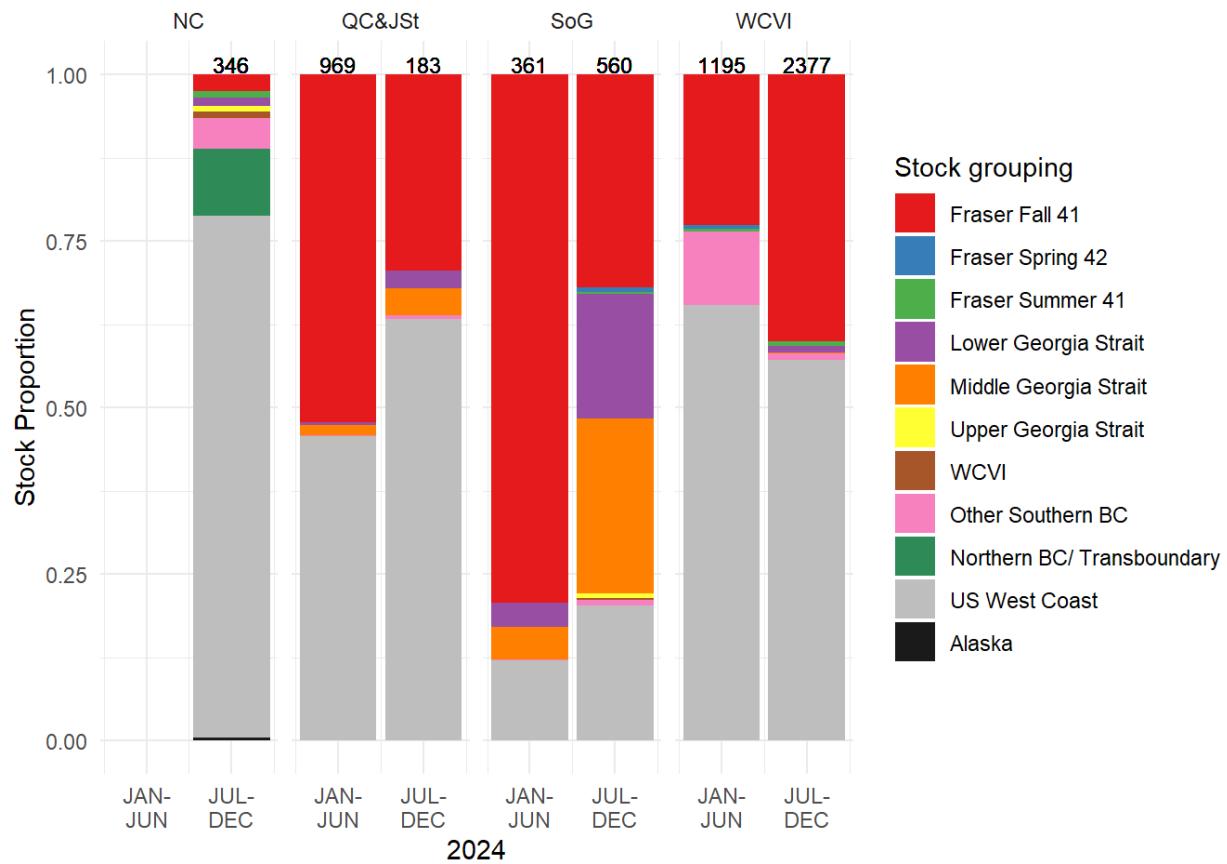
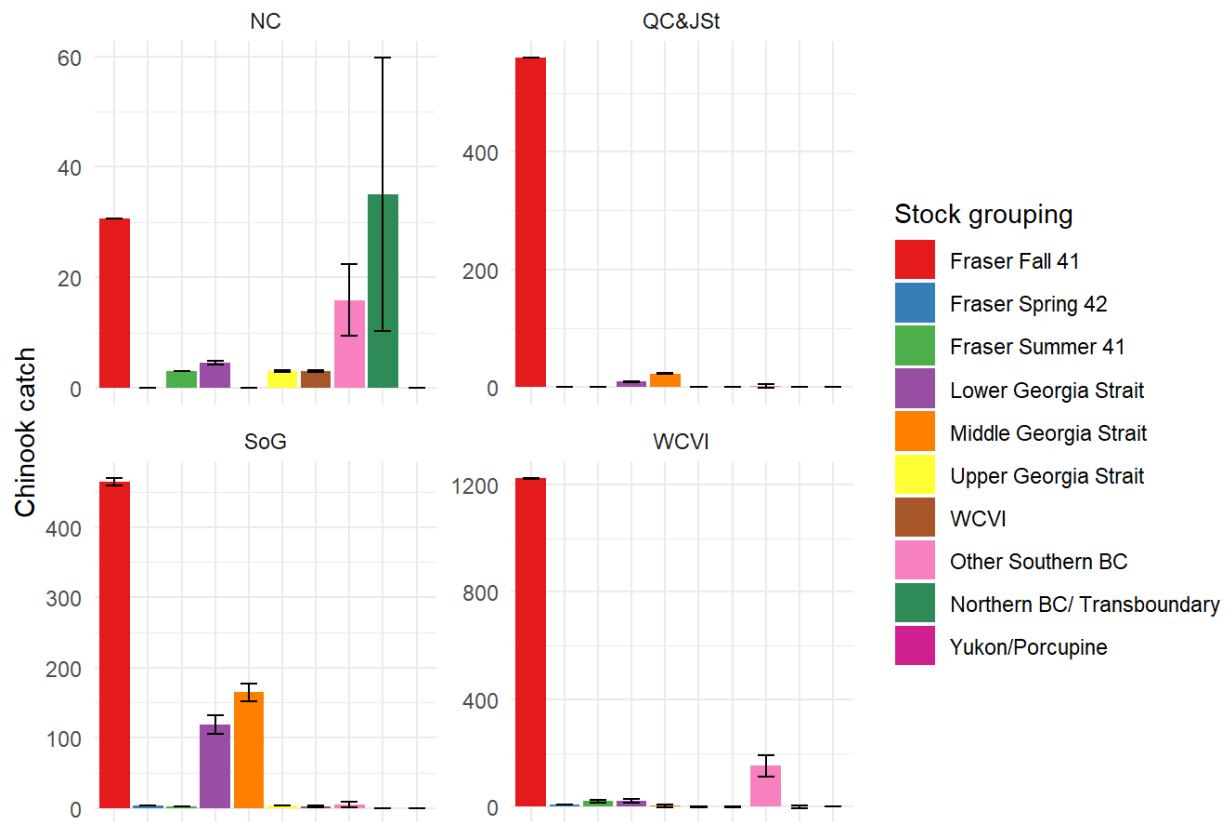
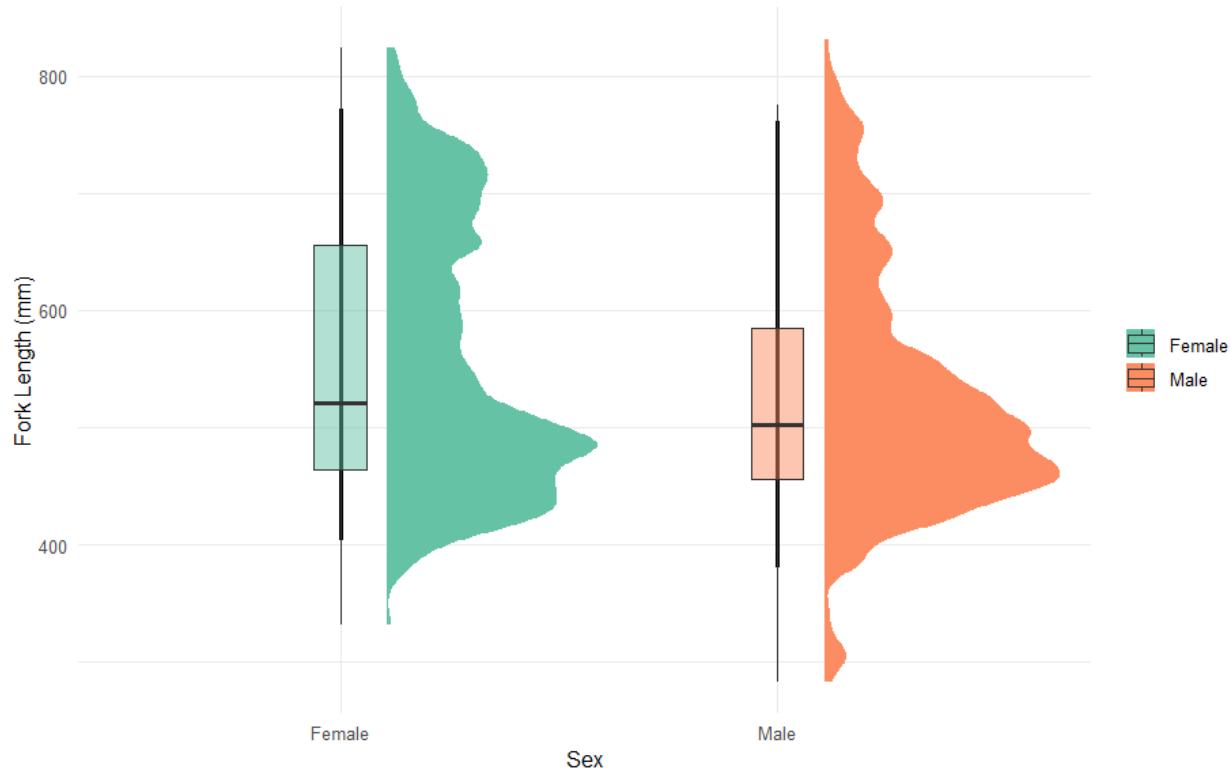



Figure 1 – Map of the British Columbia coast with regions used for stratifying salmon bycatch overlaid on groundfish management areas (dashed lines) and Pacific fishery management areas (PFMAs, solid lines).



Figure 2 – Chinook salmon bycatch by month and region in the groundfish trawl fishery from 2022 to the end of the 2024/25 fishery on February 21, 2025. The enhanced monitoring program and changes to retention requirements began on September 22, 2022. Chinook salmon bycatch since February 21, 2025 is not yet available or shown.




**Figure 3 – Stock assignments of Chinook salmon bycatch samples from the trawl fishery in 2024 by catch region and month. Stock assignment from samples used either CWT, or GSI-PBT methods. The stock with the highest assignment probability from GSI analysis is shown in cases where there are multiple potential stocks of origin. The Other Southern BC group includes including Fraser Spring 5(2), Fraser Summer 5(2), Boundary Bay Fall 4(1), and Mainland Inlet SMUs, and the Northern BC/ Transboundary includes Nass, Skeena, Central Coast, Alsek, and Unuk SMUs. Note the different y-axis scales between panels.**



**Figure 4 - Stock composition of Chinook salmon trawl bycatch by region and time period (January-June or July-December 2024).** Numbers above each bar represent the total catch of Chinook salmon in the stratum. The Other Southern BC group includes including Fraser Spring 5(2), Fraser Summer 5(2), Boundary Bay Fall 4(1), and Mainland Inlet SMUs, and the Northern BC/ Transboundary includes Nass, Skeena, Central Coast, Alsek, and Unuk SMUs.



**Figure 5 – Estimated Chinook salmon bycatch during the 2024 calendar year for Canadian SMUs by region including error bars representing 95% confidence intervals from GSI assignments. The Other Southern BC group includes Fraser Spring 5(2), Fraser Summer 5(2), Boundary Bay Fall 4(1), and Mainland Inlet SMUs, and the Northern BC/ Transboundary includes Nass, Skeena, Central Coast, Alsek, and Unuk SMUs. Note the different y-axis scales between panels.**



**Figure 6 – Density and box plots of fork lengths by sex from Chinook salmon bycatch sampled from the Strait of Georgia region from October 2024 to March 2025. Sample sizes were 397 female and 346 male Chinook salmon. 108 samples of unknown sex are not shown in the plot. Box plot bars represent 25<sup>th</sup>, 50<sup>th</sup> and 75<sup>th</sup> percentiles.**

## TABLES

**Table 1 – Summary of annual coastwide salmon catch (numbers of fish retained and released) by species, and landed catches (kg) in the groundfish trawl fishery reported by groundfish fishing year (February 21 of the starting year to February 20 of the subsequent year). Unidentified salmon catch was reported as Pacific salmon and trout and represents salmonids that could not be identified to species either by fisher or independent monitoring programs. Total landed catch is the landed weight of all species in the groundfish trawl fishery.**

| Groundfish Fishery         | Total salmon (# of fish) | Chinook (# of fish) | Coho (# of fish) | Chum (# of fish) | Pink (# of fish) | Sockeye (# of fish) | Steelhead (# of fish) | Unidentified salmon (# of fish) | Total landed catch (kg) |
|----------------------------|--------------------------|---------------------|------------------|------------------|------------------|---------------------|-----------------------|---------------------------------|-------------------------|
| <b>2008/09</b>             | 3,470                    | 3,121               | 56               | 195              | 19               | 0                   | 0                     | 79                              | 103,600,000             |
| <b>2009/10</b>             | 9,611                    | 8,628               | 95               | 191              | 566              | 32                  | 0                     | 99                              | 85,280,000              |
| <b>2010/11</b>             | 7,364                    | 6,973               | 62               | 185              | 44               | 21                  | 0                     | 79                              | 85,760,000              |
| <b>2011/12</b>             | 11,193                   | 9,808               | 242              | 457              | 328              | 22                  | 0                     | 336                             | 90,780,000              |
| <b>2012/13</b>             | 8,062                    | 7,119               | 418              | 253              | 25               | 18                  | 0                     | 229                             | 81,190,000              |
| <b>2013/14</b>             | 4,813                    | 3,034               | 292              | 218              | 700              | 16                  | 7                     | 553                             | 90,790,000              |
| <b>2014/15</b>             | 7,668                    | 6,641               | 234              | 240              | 125              | 23                  | 1                     | 405                             | 79,640,000              |
| <b>2015/16</b>             | 7,645                    | 6,319               | 193              | 794              | 122              | 80                  | 4                     | 137                             | 80,470,000              |
| <b>2016/17</b>             | 3,510                    | 2,469               | 403              | 296              | 21               | 28                  | 3                     | 293                             | 109,800,000             |
| <b>2017/18</b>             | 8,265                    | 7,320               | 113              | 394              | 157              | 39                  | 1                     | 242                             | 124,300,000             |
| <b>2018/19</b>             | 8,886                    | 8,290               | 123              | 284              | 46               | 16                  | 0                     | 127                             | 133,200,000             |
| <b>2019/20</b>             | 7,680                    | 6,776               | 199              | 294              | 80               | 59                  | 10                    | 272                             | 132,200,000             |
| <b>2020/21</b>             | 12,354                   | 11,848              | 27               | 197              | 30               | 2                   | 0                     | 250                             | 127,300,000             |
| <b>2021/22</b>             | 11,627                   | 9,635               | 695              | 708              | 572              | 17                  | 0                     | 0                               | 98,350,000              |
| <b>2022/23<sup>a</sup></b> | 28,183                   | 26,273              | 628              | 1,099            | 18               | 42                  | 0                     | 123                             | 74,710,000              |
| <b>2023/24</b>             | 28,145                   | 21,696              | 501              | 1,952            | 3,894            | 30                  | 0                     | 72                              | 61,590,000              |
| <b>2024/25<sup>b</sup></b> | 7,527                    | 7,040 <sup>c</sup>  | 182              | 263              | 39               | 3                   | 0                     | 0                               | 45,750,000              |

<sup>a</sup> Changes to salmon monitoring requirements including mandatory retention began on September 26, 2022

<sup>b</sup> The 2024/25 fishery was the first year of implementation of the salmon bycatch management plan

<sup>c</sup> Includes 666 Chinook salmon caught under scientific licence for an excluder device experiment not counted towards the bycatch cap

**Table 2 – Estimated annual coastwide salmon catch (numbers of fish retained and released) by species in the groundfish trawl fishery reported by calendar year.**

| Calendar year | Total salmon catch | Chinook catch | Coho catch | Chum catch | Pink catch | Sockeye catch | Steelhead catch | Unidentified salmon catch |
|---------------|--------------------|---------------|------------|------------|------------|---------------|-----------------|---------------------------|
| <b>2008</b>   | 3,209              | 2,871         | 26         | 191        | 19         | 0             | 0               | 102                       |
| <b>2009</b>   | 9,646              | 8,666         | 121        | 178        | 566        | 32            | 0               | 83                        |
| <b>2010</b>   | 7,582              | 7,097         | 65         | 205        | 44         | 20            | 0               | 151                       |
| <b>2011</b>   | 11,081             | 9,753         | 242        | 456        | 325        | 23            | 0               | 282                       |
| <b>2012</b>   | 8,299              | 7,404         | 378        | 254        | 28         | 18            | 0               | 217                       |
| <b>2013</b>   | 4,681              | 2,898         | 289        | 212        | 701        | 14            | 1               | 567                       |
| <b>2014</b>   | 7,299              | 6,303         | 247        | 244        | 121        | 24            | 7               | 360                       |
| <b>2015</b>   | 8,171              | 6,731         | 211        | 795        | 119        | 81            | 4               | 234                       |
| <b>2016</b>   | 3,157              | 2,211         | 400        | 290        | 28         | 28            | 3               | 200                       |
| <b>2017</b>   | 6,839              | 5,944         | 129        | 394        | 93         | 39            | 1               | 240                       |
| <b>2018</b>   | 9,218              | 8,514         | 119        | 288        | 85         | 16            | 0               | 196                       |
| <b>2019</b>   | 7,828              | 6,945         | 146        | 292        | 96         | 55            | 9               | 294                       |
| <b>2020</b>   | 10,002             | 9,442         | 83         | 178        | 39         | 6             | 1               | 254                       |
| <b>2021</b>   | 14,270             | 12,255        | 697        | 729        | 572        | 17            | 0               | 0                         |
| <b>2022</b>   | 24,227             | 22,333        | 613        | 1,101      | 16         | 42            | 0               | 122                       |
| <b>2023</b>   | 31,941             | 26,091        | 511        | 1,344      | 3,892      | 30            | 0               | 73                        |
| <b>2024</b>   | 6,539              | 6,072         | 175        | 250        | 39         | 3             | 0               | 0                         |

**Table 3 – Number of tows and salmon catch (numbers of fish retained and released) by species, region, and gear subtype for the 2024/25 groundfish fishery year (February 21, 2024 to February 20, 2025). Catch with unspecified gear subtype represent a small proportion of tow events and are summarized across all regions only. Regions are abbreviated as follows: NC = North Coast, QC&JST = Queen Charlotte & Johnstone Strait, SoG = Strait of Georgia, WCVI = West Coast Vancouver Island, UNK = Unknown. Catch with Region UNK could not be associated to a single geographic Region.**

| Gear subtype   | Region | Number of tows | Total salmon catch | Chinook catch | Coho catch | Chum catch | Pink catch | Sockeye catch | Unidentified salmon catch |
|----------------|--------|----------------|--------------------|---------------|------------|------------|------------|---------------|---------------------------|
| Bottom Trawl   | TOTAL  | 5,212          | 1,095              | 979           | 9          | 96         | 11         | 0             | 0                         |
|                | NC     | 2,613          | 174                | 75            | 6          | 82         | 11         | 0             | 0                         |
|                | QC&JSt | 0              | 0                  | 0             | 0          | 0          | 0          | 0             | 0                         |
|                | SoG    | 735            | 0                  | 0             | 0          | 0          | 0          | 0             | 0                         |
|                | UNK    | 102            | 0                  | 0             | 0          | 0          | 0          | 0             | 0                         |
|                | WCVI   | 1,762          | 921                | 904           | 3          | 14         | 0          | 0             | 0                         |
| Midwater Trawl | TOTAL  | 1,682          | 6,239              | 5,940         | 155        | 117        | 24         | 3             | 0                         |
|                | NC     | 287            | 361                | 343           | 0          | 18         | 0          | 0             | 0                         |
|                | QC&JSt | 73             | 1,292              | 1,278         | 3          | 8          | 3          | 0             | 0                         |
|                | SoG    | 391            | 1,376              | 1,360         | 12         | 4          | 0          | 0             | 0                         |
|                | UNK    | 12             | 12                 | 0             | 0          | 12         | 0          | 0             | 0                         |
|                | WCVI   | 919            | 3,198              | 2,959         | 140        | 75         | 21         | 3             | 0                         |
| Unspecified    | TOTAL  | 143            | 193                | 121           | 18         | 50         | 4          | 0             | 0                         |

Table 4 – Total salmon catch (numbers of fish retained and released) by catch region and time period for the 2024/25 groundfish fishery year (February 21, 2024 to February 20, 2025). Regions are abbreviated as follows: NC = North Coast, QC&JST = Queen Charlotte & Johnstone Strait, SoG = Strait of Georgia, WCVI = West Coast Vancouver Island. Catch with Region UNK could not be associated to a single geographic Region.

| Catch Region | Time Period | Total salmon catch | Chinook catch | Coho catch | Chum catch | Pink catch | Sockeye catch | Unidentified salmon catch |
|--------------|-------------|--------------------|---------------|------------|------------|------------|---------------|---------------------------|
| NC           | JAN-JUN     | 80                 | 73            | 0          | 7          | 0          | 0             | 0                         |
|              | JUL-DEC     | 458                | 346           | 6          | 95         | 11         | 0             | 0                         |
| QC&JSt       | JAN-JUN     | 1,095              | 1,095         | 0          | 0          | 0          | 0             | 0                         |
|              | JUL-DEC     | 197                | 183           | 3          | 8          | 3          | 0             | 0                         |
| SoG          | JAN-JUN     | 807                | 800           | 7          | 0          | 0          | 0             | 0                         |
|              | JUL-DEC     | 569                | 560           | 5          | 4          | 0          | 0             | 0                         |
| WCVI         | JAN-JUN     | 1,611              | 1,571         | 18         | 22         | 0          | 0             | 0                         |
|              | JUL-DEC     | 2,663              | 2,377         | 143        | 115        | 25         | 3             | 0                         |
| UNK          | JAN-JUN     | 1                  | 1             | 0          | 0          | 0          | 0             | 0                         |
|              | JUL-DEC     | 46                 | 34            | 0          | 12         | 0          | 0             | 0                         |
| <b>TOTAL</b> |             | <b>7,527</b>       | <b>7,040</b>  | <b>182</b> | <b>263</b> | <b>39</b>  | <b>3</b>      | <b>0</b>                  |

**Table 5 – Summary of Chinook catch (numbers of fish), sample sizes of CWTs and PBT-GSI, and sample rates for CWT and stock composition analysis during the 2024 calendar year. Sample rates shown are divided by region and bi-annual time periods, but aggregated by catch type to meet privacy restrictions. The CWT sample rate is equal to the proportion of Chinook catch that had heads collected and examined for CWTs, while the PBT-GSI sample rate is the number of successfully analyzed PBT-GSI samples within the PBT-GSI proportion of catch.**

| Catch Region | Time Period | Chinook catch | Chinook sampled | CWT Analysis    |                 | Stock Composition Analysis |                               |
|--------------|-------------|---------------|-----------------|-----------------|-----------------|----------------------------|-------------------------------|
|              |             |               |                 | # CWTs observed | CWT Sample Rate | # PBT-GSI analyzed         | PBT-GSI Partition Sample Rate |
| NC           | JAN-JUN     | 46            | 5               | 0               | 11%             | 2                          | 5%                            |
|              | JUL-DEC     | 346           | 284             | 50              | 82%             | 150                        | 53%                           |
| QC&JSt       | JAN-JUN     | 969           | 969             | 179             | 100%            | 182                        | 23%                           |
|              | JUL-DEC     | 183           | 183             | 37              | 100%            | 60                         | 41%                           |
| SoG          | JAN-JUN     | 361           | 54              | 2               | 15%             | 40                         | 12%                           |
|              | JUL-DEC     | 560           | 544             | 68              | 97%             | 262                        | 53%                           |
| WCVI         | JAN-JUN     | 1,195         | 455             | 84              | 38%             | 269                        | 27%                           |
|              | JUL-DEC     | 2,377         | 1,924           | 278             | 81%             | 421                        | 21%                           |
| TOTAL        |             | 6,037         | 4,418           | 698             | 66%             | 1,386                      | 29%                           |

**Table 6 – Stock composition of Chinook salmon stock management units during the 2024 calendar year across region, catch type, and half-year time strata.**  
**Stock proportions are estimated using weighted proportions from CWT and PBT-GSI samples and values shown represent mean estimates from bootstrapping GSI assignment probabilities. The North Coast grouping includes the Nass, Skeena, and Central Coast stocks, and the Transboundary group includes Unuk, Stikine, and Taku stocks.**

| Catch region | Time period | % Canadian | Fraser Fall 41 | Fraser Summer 41 | Fraser Spring 42 | Fraser Spring 52 | Fraser Summer 52 | Fall 41 Boundary Bay | Fraser Cross | Lower Georgia Strait | Middle Georgia Strait | Upper Georgia Strait | WCVI | North Coast | Trans-boundary |
|--------------|-------------|------------|----------------|------------------|------------------|------------------|------------------|----------------------|--------------|----------------------|-----------------------|----------------------|------|-------------|----------------|
| NC           | JAN-JUN     | 48%        | 47.8%          | 0.0%             | 0.0%             | 0.0%             | 0.0%             | 0.0%                 | 0.0%         | 0.0%                 | 0.0%                  | 0.0%                 | 0.0% | 0.0%        | 0.0%           |
|              | JUL-DEC     | 32%        | 2.5%           | 0.9%             | 0.0%             | 3.5%             | 0.3%             | 0.0%                 | 0.8%         | 1.3%                 | 0.0%                  | 0.9%                 | 0.9% | 6.6%        | 3.6%           |
| QC& JSt      | JAN-JUN     | 54%        | 52.2%          | 0.0%             | 0.0%             | 0.0%             | 0.0%             | 0.1%                 | 0.0%         | 0.4%                 | 1.6%                  | 0.0%                 | 0.0% | 0.0%        | 0.0%           |
|              | JUL-DEC     | 37%        | 29.4%          | 0.0%             | 0.0%             | 0.0%             | 0.0%             | 0.5%                 | 0.0%         | 2.7%                 | 4.0%                  | 0.0%                 | 0.0% | 0.0%        | 0.0%           |
| SoG          | JAN-JUN     | 88%        | 79.3%          | 0.0%             | 0.0%             | 0.0%             | 0.0%             | 0.1%                 | 0.0%         | 3.7%                 | 4.9%                  | 0.0%                 | 0.0% | 0.0%        | 0.0%           |
|              | JUL-DEC     | 80%        | 31.9%          | 0.3%             | 0.7%             | 0.0%             | 0.3%             | 0.1%                 | 0.3%         | 18.7%                | 26.3%                 | 0.7%                 | 0.3% | 0.0%        | 0.0%           |
| UNK          | JAN-JUN     | 0%         | 0.0%           | 0.0%             | 0.0%             | 0.0%             | 0.0%             | 0.0%                 | 0.0%         | 0.0%                 | 0.0%                  | 0.0%                 | 0.0% | 0.0%        | 0.0%           |
|              | JUL-DEC     | 48%        | 5.3%           | 34.5%            | 0.0%             | 0.0%             | 5.3%             | 0.0%                 | 0.0%         | 2.6%                 | 0.1%                  | 0.0%                 | 0.0% | 0.0%        | 0.0%           |
| WCVI         | JAN-JUN     | 35%        | 22.6%          | 0.4%             | 0.6%             | 5.5%             | 4.5%             | 0.3%                 | 0.7%         | 0.0%                 | 0.0%                  | 0.0%                 | 0.0% | 0.0%        | 0.0%           |
|              | JUL-DEC     | 43%        | 40.1%          | 0.7%             | 0.0%             | 0.0%             | 0.2%             | 0.5%                 | 0.2%         | 0.9%                 | 0.1%                  | 0.0%                 | 0.0% | 0.0%        | 0.0%           |

**Table 7 – Estimates of Chinook salmon stock management unit bycatch by region in the groundfish trawl fishery during the 2024 calendar year. Lower and upper 95% confidence intervals are included for total catches by stock using results from bootstrapping GSI assignment probabilities.**

| Catch region        | Chinook catch | Canadian stocks catch | Fraser Fall 41 | Fraser Summer 41 | Fraser Spring 42 | Fraser Spring 52 | Fraser Summer 52 | Fall 41 Boundary Bay | Fraser-Cross | Lower Georgia Strait | Middle Georgia Strait | Upper Georgia Strait | WCVI     | North Coast | Trans-boundary |    |
|---------------------|---------------|-----------------------|----------------|------------------|------------------|------------------|------------------|----------------------|--------------|----------------------|-----------------------|----------------------|----------|-------------|----------------|----|
| NC                  | 392           | 119                   | 31             | 3                | 0                | 12               | 1                | 0                    | 3            | 5                    | 0                     | 3                    | 3        | 23          | 12             |    |
| QC&JSt              | 1152          | 593                   | 560            | 0                | 0                | 0                | 0                | 2                    | 0            | 9                    | 22                    | 0                    | 0        | 0           | 0              |    |
| SoG                 | 921           | 765                   | 465            | 2                | 4                | 0                | 2                | 1                    | 2            | 118                  | 165                   | 4                    | 2        | 0           | 0              |    |
| UNK                 | 35            | 17                    | 2              | 12               | 0                | 0                | 2                | 0                    | 0            | 1                    | 0                     | 0                    | 0        | 0           | 0              |    |
| WCVI                | 3572          | 1,431                 | 1,223          | 21               | 7                | 66               | 58               | 16                   | 13           | 22                   | 3                     | 0                    | 0        | 1           | 0              |    |
| <b>Total (mean)</b> | <b>6,072</b>  | <b>2,927</b>          | <b>2,281</b>   | <b>38</b>        | <b>11</b>        | <b>78</b>        | <b>63</b>        | <b>19</b>            | <b>18</b>    | <b>155</b>           | <b>190</b>            | <b>7</b>             | <b>5</b> | <b>24</b>   | <b>12</b>      |    |
| <b>Lower 95%</b>    |               |                       | 2,767          | 2,272            | 33               | 11               | 54               | 54                   | 0            | 14                   | 133.9                 | 171.7                | 6        | 2           | 3              | 8  |
| <b>Upper 95%</b>    |               |                       | 3,080          | 2,288            | 43               | 11               | 101              | 71                   | 38           | 21                   | 175.3                 | 209.1                | 8        | 7           | 46             | 16 |

**Table 8 – Estimates of CWT recoveries of Canadian exploitation rate indicator stocks in the Groundfish Trawl Fishery during the 2024 calendar year by region and catch type. CWT estimates are calculated by multiplying the observed number of CWTs by the inverse of the sample rate, with sample rates calculated for each combination of region, catch type, and half-year period.**

Canadian CWT stock codes are as follows: ATN = Atnarko, BQR = Big Qualicum River; COW = Cowichan River; CHI = Chilliwack River; HAR = Harrison River; NIC = Nicola River; RBT = Robertson Creek; PPS = Puntledge River; QUI = Quinsam River, SHU = Shuswap River. The Similkameen River (SMK) US CWT stock is included as a proxy for Okanagan Chinook.

| Estimated CWT Recoveries By Indicator Stock |             |                 |                 |                      |          |             |              |             |              |          |          |          |            |          |          |          |          |          |     |
|---------------------------------------------|-------------|-----------------|-----------------|----------------------|----------|-------------|--------------|-------------|--------------|----------|----------|----------|------------|----------|----------|----------|----------|----------|-----|
| Catch Region                                | Time Period | CWT Sample Rate | # CWTs observed | CWT Estimated Number | ATN      | BQR         | CHI          | COW         | HAR          | KLM      | KLY      | MSH      | NIC        | PHI      | PPS      | QUI      | SHU      | RBT      | SMK |
| NC                                          | JAN-JUN     | 1.176           | 50.0            | 6.9                  | 0        | 0           | 0            | 0           | 0            | 0        | 0        | 0        | 0          | 0        | 0        | 0        | 0        | 0        |     |
|                                             | JUL-DEC     |                 |                 |                      | 0        | 0           | 0            | 0           | 0            | 0        | 0        | 0        | 0          | 0        | 0        | 0        | 0        | 0        |     |
| QC&JSt                                      | JAN-JUN     | 1.022           | 179.0           | 1.0                  | 0        | 2           | 20           | 4           | 36           | 0        | 0        | 0        | 0          | 0        | 0        | 0        | 0        | 0        |     |
|                                             | JUL-DEC     |                 |                 |                      | 0        | 0           | 4.9          | 0           | 3.9          | 0        | 0        | 0        | 0          | 0        | 0        | 0        | 0        | 0        |     |
| SoG                                         | JAN-JUN     | 0.15            | 2.0             | 6.7                  | 0        | 0           | 0            | 13.4        | 0            | 0        | 0        | 0        | 0          | 0        | 0        | 0        | 0        | 0        |     |
|                                             | JUL-DEC     |                 |                 |                      | 0        | 8.2         | 13.4         | 9.3         | 6.2          | 0        | 0        | 0        | 0          | 0        | 0        | 0        | 0        | 0        |     |
| WCVI                                        | JAN-JUN     | 1.309           | 84.0            | 4.7                  | 0        | 0           | 43.1         | 0           | 43.1         | 0        | 0        | 0        | 7.5        | 0        | 0        | 0        | 0        | 0        |     |
|                                             | JUL-DEC     |                 |                 |                      | 0        | 1.7         | 40           | 4.4         | 50.5         | 0        | 0        | 0        | 0          | 0        | 0        | 0        | 0        | 0        |     |
| <b>Total</b>                                |             |                 |                 |                      | <b>0</b> | <b>11.9</b> | <b>121.4</b> | <b>31.1</b> | <b>139.7</b> | <b>0</b> | <b>0</b> | <b>0</b> | <b>7.5</b> | <b>0</b> | <b>0</b> | <b>0</b> | <b>0</b> | <b>0</b> |     |

**Table 9 – Age composition of Canadian stock management units from PBT and CWT samples from the 2024 calendar year. Salmon age is calculated by subtracting the year a fish was caught from the brood year.**

| Stock Management Unit        | # CWTs | # PBTs | CWT age composition |       |       |       | PBT age composition |       |       |       |
|------------------------------|--------|--------|---------------------|-------|-------|-------|---------------------|-------|-------|-------|
|                              |        |        | Age 2               | Age 3 | Age 4 | Age 5 | Age 2               | Age 3 | Age 4 | Age 5 |
| <b>Central Coast</b>         | 0      | 2      |                     |       |       |       | 50%                 | 50%   | 0%    | 0%    |
| <b>Fall 41 Boundary Bay</b>  | 1      | 1      | 0%                  | 100%  | 0%    | 0%    | 0%                  | 100%  | 0%    | 0%    |
| <b>Fraser Fall 41</b>        | 229    | 161    | 17%                 | 68%   | 14%   | 0%    | 43%                 | 45%   | 10%   | 1%    |
| <b>Fraser Spring 42</b>      | 2      | 0      | 0%                  | 100%  | 0%    | 0%    |                     |       |       |       |
| <b>Fraser Summer 52</b>      | 1      | 0      | 0%                  | 0%    | 100%  | 0%    |                     |       |       |       |
| <b>Lower Georgia Strait</b>  | 18     | 8      | 44%                 | 56%   | 0%    | 0%    | 88%                 | 12%   | 0%    | 0%    |
| <b>Middle Georgia Strait</b> | 11     | 58     | 82%                 | 18%   | 0%    | 0%    | 88%                 | 12%   | 0%    | 0%    |
| <b>Upper Georgia Strait</b>  | 0      | 3      |                     |       |       |       | 100%                | 0%    | 0%    | 0%    |
| <b>WCVI</b>                  | 0      | 1      | 0%                  | 0%    | 0%    | 0%    | 0%                  | 0%    | 100%  | 0%    |

**Table 10 – Age composition of PBT samples from groundfish trawl bycatch for the 2024 calendar year by stock management unit and region. Only region and stock combinations with four or more PBT samples are included.**

| Stock Management Unit | Region | # PBT | Age 2 | Age 3 | Age 4 | Age 5 |
|-----------------------|--------|-------|-------|-------|-------|-------|
| Fraser Fall 41        | QC&JSt | 38    | 21%   | 63%   | 16%   | 0%    |
| Fraser Fall 41        | SoG    | 46    | 46%   | 50%   | 2%    | 2%    |
| Fraser Fall 41        | WCVI   | 74    | 53%   | 34%   | 12%   | 1%    |
| Lower Georgia Strait  | SoG    | 7     | 86%   | 14%   | 0%    | 0%    |
| Middle Georgia Strait | SoG    | 55    | 91%   | 9%    | 0%    | 0%    |

**Table 11 – Mean fork length by stock management unit and brood year for samples of Chinook salmon bycatch from the Strait of Georgia region from October 2024 to March 2025. Length information was matched to stock management unit using DNA sample IDs. Samples with Unknown stock management unit were not matched to a DNA sample or did not undergo genetic stock identification. Brood year was determined from PBT or CWT information. Only stock-brood year combinations with more than 3 samples were included.**

| Stock Management Unit | Brood Year | # samples | Mean Fork Length (mm) |
|-----------------------|------------|-----------|-----------------------|
| Fraser Fall 41        | 2021       | 18        | 670.6                 |
|                       | 2022       | 22        | 524.5                 |
|                       | Unknown    | 58        | 620.9                 |
| Lower Georgia Strait  | 2022       | 7         | 443.1                 |
| Lower Georgia Strait  | Unknown    | 51        | 483.0                 |
| Middle Georgia Strait | 2021       | 4         | 568.0                 |
| Middle Georgia Strait | 2022       | 54        | 468.0                 |
| Middle Georgia Strait | Unknown    | 22        | 503.3                 |
| Unknown               | Unknown    | 443       | 557.9                 |

## Appendix A - 2024/25 Option A Groundfish Trawl Salmon Bycatch Requirements

### Introduction

February 21, 2024

Monitoring and sampling requirements for Pacific salmon bycatch were first introduced in 2022 to provide more accurate information on salmon catch by species and stock composition of Chinook salmon catch. Requirements are being updated for the 2024/25 groundfish year to support implementation of a Chinook salmon bycatch cap and individual vessel accountabilities.

Separate requirements have been developed for Receiving Tank Vessels (RTVs) that freeze catch at sea and vessels that land fresh catch.

### Vessels Freezing Catch at Sea

**Changes to support the Chinook salmon bycatch cap and dockside validation are:**

- Chinook heads must be kept separate from heads of other salmon species.
- Small salmon less than 30 cm (12 inches) must be kept whole.
- Each tow bag must contain a tow bag label and no more than 10 specimens of:
  - Chinook heads only,
  - Salmon heads from other species (no Chinook heads), or
  - Small whole salmon only (all species).
- Bags of salmon heads from species other than Chinook must have an external label attached to identify them as distinct from bags of Chinook heads.
- All bags must be packed loosely and frozen flat to allow them to be counted in a frozen state at offload by the dockside observer.

**Vessel Requirements:** The following requirements apply to all trips.

1. For **Chinook salmon greater than 30 cm (12 inches)** length from each tow:
  - a. Remove and retain the heads using a cut following the outline of the operculum and remove the gills **according to DFO Groundfish Trawl RTV Salmon Bycatch Packing Instructions**.
  - b. Package all Chinook salmon heads separately from other species into tow bags with a maximum of 10 heads per bag. Do not mix Chinook heads from separate tows or with other salmon species or whole fish. Pack heads loosely and frozen flat to facilitate piece counts during dockside validation.
  - c. Using TOW bag labels in sequence, record the vessel name, packing date and time, and tow # using pencil on a TOW bag label.
  - d. **Put a completed TOW bag label into each bag** of Chinook heads and seal with a zip tie.
2. For **all other salmon species (excluding Chinook) greater than 30 cm (12 inches)** length from each tow:
  - a. Remove and retain the heads using a cut following the outline of the operculum and remove the gills **according to DFO Option A Trawl RTV Salmon Bycatch Packing Instructions**.
  - b. Package all heads from other salmon species together in tow bags with a maximum of 10 heads per bag. Do not mix heads from separate tows or with Chinook heads or whole

fish. Pack heads loosely and frozen flat to facilitate piece counts during dockside validation.

- c. Using TOW bag labels in sequence, record the vessel name, packing date and time, and tow # using pencil on a TOW bag label.
  - d. **Put a completed TOW bag label into each bag of salmon heads.**
  - e. Using a zip tie, **attach an external coloured label indicating the bag contains salmon heads that are not Chinook**, and seal the bag.
3. For all salmon less than approximately 12 inches (30cm) in length from each tow:
    - a. Retain the whole fish and package into separate tow bags with a maximum of 10 per bag. Do not mix small salmon from separate tows or with any salmon heads.
    - b. Using TOW bag labels in sequence, record the vessel name, packing date and time, and tow # **using pencil** on a TOW bag label.
    - c. Put a completed TOW bag label into each bag of small salmon and seal with a zip tie.
  4. In the at-sea observer logbook, for each tow record the total estimated weights and retained pieces of salmon by species, with utilization “retained”. Where species cannot be determined, record as “salmonids (106)”.
  5. Freeze all tow bags until delivery, with specimens packed loosely and frozen flat to the extent possible.
  6. Record the total number of salmon retained for each trip in the comments of the hail-in within the Trawler application.
  7. Transfer all tow bags to the dockside monitor during the offload.

Supplies will be provided by the dockside monitor and include:

- Detailed RTV salmon bycatch packing instructions,
- Tow bags for packing specimens,
- Tow bag labels to be completed and sealed inside bags,
- External labels to be attached to non-Chinook salmon bags,
- Pencils and zip ties

Throughout the season, more supplies will be available from the dockside monitor. Please verify sufficient supply as part of your pre-departure checklist.

### **AMR Dockside Monitor Procedures**

Detailed dockside observer staff procedures and requirements are specified by Archipelago Marine Research in the **Option A Groundfish Trawl Salmon Monitoring and Sample Collection Program Requirements**.

General requirements are described below and **apply to all landings**:

1. Receive all tow bags from the vessel.
2. General inspection of bag packaging procedures to provide feedback to vessel to improve for future trips
  - a. Are bags packed loosely and flat?
  - b. Do tow bags include tow labels with information recorded?
  - c. Has the vessel packed Chinook heads separately from other species heads and from small salmon (< 30 cm / 12" length)?
  - d. Has the vessel identified the bags with heads from other species with external coloured labels?

3. Ask the vessel crew if they need a resupply of any items they are running low on.

Validation procedures:

4. Separate the bags with Chinook salmon heads from bags containing other species heads and whole fish. Bags containing other species heads should contain a label affixed to the zip tie to distinguish them.
5. Count the number of heads from all Chinook salmon tow bags. If Chinook bags are opened in order to count the Chinook, they must be repacked, including the tow bag label. Chinook salmon heads should remain frozen to the extent possible to preserve DNA.
6. Count and speciate all heads of other salmon to get a trip count of salmon by species. These heads may need to be thawed to verify species identification, with procedures completed during or after offload depending on conditions. If there are any Chinook heads included in a bag, keep them by repacking them into the original bag with the tow label and count them with Chinook salmon. If there is no tow label, they still must be repacked as a Chinook bag.
7. Count and speciate all small whole fish) from bags. Include these counts with the number of heads counted to get a total salmon count by species. If there are any Chinook salmon included in the small whole salmon bag, keep them by repacking them into the original bag with the tow label and count them with Chinook salmon. If there is no tow label, they still must be repacked as a Chinook bag.
8. Send all heads or whole small fish of non-Chinook salmon to offal.

Bio-sample collection and packaging procedures:

9. Pack tow bags with Chinook salmon heads or whole fish into larger trip bags for consolidation and shipping to JO Thomas.
10. Close all trip bags and, using trip bag labels in sequence, attach a completed (**in pencil**) TRIP bag label **to each bag** using zip ties.
11. Take a digital photo of the first TRIP bag label used and the last TRIP bag label used to associate the TRIP label series used to the haul number.
12. Create a record of each TRIP bag in the “tagged fish” form of the Trawler dockside monitor application noting the haul number and TRIP bag label number.

Trip reporting and shipment procedures:

13. Fill in salmon DMP forms using pencil.
14. The number of salmon by species should be entered in the pieces field in the Trawler application for dockside monitors. The weight should be entered as “1” for any salmon species that is counted.
15. Coordinate cold storage and direct shipment of trip bags to the JO Thomas lab in Vancouver or to DFO’s Pacific Biological Station in Nanaimo.

## Vessels Landing Fresh Catch

### Vessel Requirements

For all trips:

1. Retain all salmon bycatch.
2. In the at-sea observer logbook, for each tow record the total estimated weights and retained pieces of all salmon by species. If species cannot be determined, record as “salmonids (106)”.
3. All salmon retained must be landed at the conclusion of each trip.

### AMR Dockside Monitor Procedures

Dockside Monitors will be responsible for counting and weighing the salmon bycatch for all trips, and the collection of Chinook salmon heads from 25% of the landings. The dockside monitoring data

management system will be used to randomly select vessels and notify dockside monitors which landings require salmon head sampling.

For all landings:

1. In the trawler platform, record the **pieces** and weights of all salmon by species. Pieces is a mandatory field for salmon catch at offload.

For landings randomly selected for Chinook salmon head sampling:

1. Remove the heads from all Chinook salmon using a cut following the line of the operculum and remove the gills. Small salmon < 30cm (12") should be retained as whole fish.
2. Package Chinook salmon heads and small salmon into bags. Do not mix specimens from separate landings.
3. Using TRIP bag labels in sequence, record essential information for the landing on TRIP bag labels **using pencil**.
4. Take a digital photo of the first TRIP bag label used and the last TRIP bag label used to associate the TRIP label series used to the hail number.
5. Close all trip bags and attach a TRIP bag label **to each bag** of heads using zip ties.
6. Fill in salmon DMP forms using pencil.
7. Create a record of each bag of salmon heads in the “tagged fish” form of the Trawler dockside monitor application noting the hail number and TRIP bag label number.
8. Coordinate storage or direct shipment of trip bags to the CWT lab in Vancouver or to DFO’s Pacific Biological Station in Nanaimo.
9. After heads have been removed, send all Chinook salmon bodies and other salmon species to offal.

For landings not selected for salmon head sampling, send all salmon to offal.

## Appendix B - Regions and Catch Strata for Reporting and Analysis

**Table B1 – Strata variables used for grouping Chinook salmon bycatch for CWT analysis, and stock composition estimation. The catch types were aggregated together for reporting to meet privacy requirements.**

| Variable          | Region                                             | Catch Type                         | Period                       |
|-------------------|----------------------------------------------------|------------------------------------|------------------------------|
| <b>Definition</b> | Location of catch by tow (where available) or trip | Vessel type and method of sampling | Calendar half-year           |
| <b>Values</b>     | WCVI<br>QC&JS<br>SoG<br>NC                         | Fresh<br>Frozen                    | Jan-Jun 2024<br>Jul-Dec 2024 |

**Table B2 – Correspondence between Regions and PFMs and groundfish management areas. Regions were used to define strata for reporting, CWT analysis, and stock composition estimation.**

| Region                                    | Abbreviation | Pacific Fishery Management Areas (PFMAs)      | Groundfish Management Areas |
|-------------------------------------------|--------------|-----------------------------------------------|-----------------------------|
| West Coast Vancouver Island               | WCVI         | 20 to 27, 121 to 126, 127-1 and 127-2         | 3C and 3D                   |
| Strait of Georgia                         | SoG          | 14 to 19, 28, 29                              | Portions of 4B              |
| Queen Charlotte Strait & Johnstone Strait | QC&JSt       | 11, 12                                        | Portions of 4B and 5A       |
| North Coast                               | NC           | 3 to 10, 101 to 11, 127-3 and 127-4, 130, 142 | 5A, 5B, 5C, 5D, 5E          |
| Unassigned                                | UNK          | Unknown or multiple PFMs                      | Unknown or multiple areas   |

## Appendix C - SMU-CU-Reporting Units Tables

Table C1 – PBT-GSI reporting units and corresponding CU and SMU assignments used for stock composition estimates in this report.

| Reporting Unit | CU #   | Conservation Unit (CU) name          | Stock Management Unit (SMU) |
|----------------|--------|--------------------------------------|-----------------------------|
| AKK            | AKK    | ALASKA_KOYUKUK RIVER                 | Alaska                      |
| AKT            | AKT    | ALASKA_TANANA RIVER                  | Alaska                      |
| AKYR-L         | AKYR-L | ALASKA_LOWER YUKON RIVER             | Alaska                      |
| AKYR-M         | AKYR-M | ALASKA_MID YUKON RIVER               | Alaska                      |
| AKYR-U         | AKYR-U | ALASKA_UPPER YUKON RIVER             | Alaska                      |
| SEAK           | SEAK   | SOUTH EAST ALASKA                    | Alaska                      |
| Alsek          | 67     | ALSEK                                | Alsek                       |
| DOCEE          | 36     | DOCEE                                | Central Coast               |
| RI             | 37     | RIVERS INLET                         | Central Coast               |
| WANN           | 38     | WANNOCK                              | Central Coast               |
| BCR-BENT       | 39     | BELLA COOLA-BENTINCK                 | Central Coast               |
| DEAN           | 40     | DEAN RIVER                           | Central Coast               |
| NCC-lake       | 41     | NORTH AND CENTRAL COAST-LATE TIMING  | Central Coast               |
| NCC-stream     | 42     | NORTH AND CENTRAL COAST-EARLY TIMING | Central Coast               |
| BB             | 2      | BOUNDARY BAY_FA_0.3                  | Fall 41 Boundary Bay        |
| LFR-fall       | 3      | LOWER FRASER RIVER_FA_0.3            | Fraser Fall 41              |
| STh-BESS       | 16     | SOUTH THOMPSON-BESSETTE CREEK_SU_1.2 | Fraser Spring 42            |
| LTh            | 17     | LOWER THOMPSON_SP_1.2                | Fraser Spring 42            |
| MFR-spring     | 10     | MIDDLE FRASER RIVER_SP_1.3           | Fraser Spring 52            |
| UFR-spring     | 12     | UPPER FRASER RIVER_SP_1.3            | Fraser Spring 52            |
| NTh-spr        | 18     | NORTH THOMPSON_SP_1.3                | Fraser Spring 52            |
| LFR-spring     | 4      | LOWER FRASER RIVER_SP_1.3            | Fraser Spring 52            |
| LFR-UPITT      | 5      | LOWER FRASER RIVER-UPPER PITT_SU_1.3 | Fraser Spring 52            |
| FRCanyon       | 8      | MIDDLE FRASER-FRASER CANYON_SP_1.3   | Fraser Spring 52            |
| STh-0.3        | 13     | SOUTH THOMPSON_SU_0.3                | Fraser Summer 41            |
| STh-SHUR       | 15     | SHUSWAP RIVER_SU_0.3                 | Fraser Summer 41            |
| Maria          | 7      | MARIA SLOUGH_SU_0.3                  | Fraser Summer 41            |
| MFR-summer     | 11     | MIDDLE FRASER RIVER_SU_1.3           | Fraser Summer 52            |
| STh-1.3        | 14     | SOUTH THOMPSON_SU_1.3                | Fraser Summer 52            |
| NTh-sum        | 19     | NORTH THOMPSON_SU_1.3                | Fraser Summer 52            |
| LFR-summer     | 6      | LOWER FRASER RIVER_SU_1.3            | Fraser Summer 52            |

|                    |         |                                                     |                       |
|--------------------|---------|-----------------------------------------------------|-----------------------|
| <b>Portage</b>     | 9       | MIDDLE FRASER RIVER-PORTAGE_FA_1.3                  | Fraser Summer 52      |
| <b>LFR-suppl</b>   | 9006    | FRASER-CROSS-CU SUPPLEMENTATION EXCLUSION<<BIN>>    | Fraser-Cross          |
| <b>HGN</b>         | 43      | HAIDA GWAII-NORTH                                   | Haida Gwaii           |
| <b>CWCH-KOK</b>    | 22      | EAST VANCOUVER ISLAND-COWICHAN AND KOKSILAH_FA_0.X  | Lower Georgia Strait  |
| <b>EVI-fall</b>    | 25      | EAST VANCOUVER ISLAND-NANAIMO AND CHEMAINUS_FA_0.X  | Lower Georgia Strait  |
| <b>SMn-SFj</b>     | 28      | SOUTHERN MAINLAND-SOUTHERN FJORDS_FA_0.X            | Mainland Inlet        |
| <b>HOMATH</b>      | 34      | HOMATHKO_SU_X.X                                     | Mainland Inlet        |
| <b>KLINA</b>       | 35      | KLINAKLINI_SU_1.3                                   | Mainland Inlet        |
| <b>SMn-GStr</b>    | 20      | SOUTHERN MAINLAND-GEORGIA STRAIT_FA_0.X             | Mainland Inlet        |
| <b>QP-fall</b>     | 27      | EAST VANCOUVER ISLAND-QUALICUM AND PUNTLEDGE_FA_0.X | Middle Georgia Strait |
| <b>EVIGStr-sum</b> | 83      | EAST VANCOUVER ISLAND-GEORGIA STRAIT_SU_0.3         | Middle Georgia Strait |
| <b>LNR-P</b>       | 57      | PORTLAND SOUND-OBSERVATORY INLET-LOWER NASS         | Nass                  |
| <b>UNR</b>         | 58      | UPPER NASS                                          | Nass                  |
| <b>SFork</b>       | 77      | SALMON FORK                                         | Porcupine             |
| <b>Porcu</b>       | 78      | PORCUPINE                                           | Porcupine             |
| <b>Russia</b>      | Russia  | RUSSIA                                              | Russia                |
| <b>SKEst</b>       | 45      | SKEENA ESTUARY                                      | Skeena                |
| <b>ECST</b>        | 46      | ECSTALL                                             | Skeena                |
| <b>LSK</b>         | 48      | LOWER SKEENA                                        | Skeena                |
| <b>KALUM-E</b>     | 49      | KALUM_EARLY TIMING                                  | Skeena                |
| <b>KALUM-L</b>     | 50      | KALUM_LATE TIMING                                   | Skeena                |
| <b>MSK-LGLKS</b>   | 53      | MIDDLE SKEENA-LARGE LAKES                           | Skeena                |
| <b>MSK-M_S</b>     | 54      | MIDDLE SKEENA-MAINSTEM TRIBUTARIES                  | Skeena                |
| <b>MSK-UprBulk</b> | 55      | UPPER BULKLEY RIVER                                 | Skeena                |
| <b>USK</b>         | 56      | UPPER SKEENA                                        | Skeena                |
| <b>ZYM</b>         | 80      | ZYMOETZ                                             | Skeena                |
| <b>SIC</b>         | 81      | SICINTINE                                           | Skeena                |
| <b>LSTK-early</b>  | 60      | STIKINE_EARLY TIMING                                | Stikine               |
| <b>LSTK-late</b>   | 61      | STIKINE_LATE TIMING                                 | Stikine               |
| <b>TAKU-early</b>  | 63      | TAKU_EARLY TIMING                                   | Taku                  |
| <b>TAKU-mid</b>    | 64      | TAKU_MID TIMING                                     | Taku                  |
| <b>TAKU-late</b>   | 65      | TAKU_LATE TIMING                                    | Taku                  |
| <b>UNUK</b>        | 59      | UNUK                                                | Unuk                  |
| <b>NEVI</b>        | 29      | EAST VANCOUVER ISLAND-NORTH_FA_0.X                  | Upper Georgia Strait  |
| <b>CACO</b>        | CACO    | COASTAL CALIFORNIA                                  | US West Coast         |
| <b>CACV-F</b>      | CACV-F  | CALIFORNIA CENTRAL VALLEY_FALL                      | US West Coast         |
| <b>CACV-Sp</b>     | CACV-Sp | CALIFORNIA CENTRAL VALLEY_SPRING                    | US West Coast         |
| <b>CAKT</b>        | CAKT    | CALIFORNIA KLAMATH TRINITY                          | US West Coast         |

|                   |         |                                                 |               |
|-------------------|---------|-------------------------------------------------|---------------|
| <b>COWA</b>       | COWA    | COASTAL WASHINGTON                              | US West Coast |
| <b>JDF</b>        | JDF     | JUAN DE FUCA                                    | US West Coast |
| <b>LCR</b>        | LCR     | LOWER COLUMBIA RIVER                            | US West Coast |
| <b>MCR-Sp</b>     | MCR-Sp  | MID COLUMBIA RIVER_SP                           | US West Coast |
| <b>NCOR</b>       | NCOR    | NORTH & CENTRAL OREGON                          | US West Coast |
| <b>NPS</b>        | NPS     | NORTH PUGET SOUND                               | US West Coast |
| <b>SOR</b>        | SOR     | SOUTH OREGON COASTAL                            | US West Coast |
| <b>SPS</b>        | SPS     | SOUTH PUGET SOUND                               | US West Coast |
| <b>SR-F</b>       | SR-F    | SNAKE RIVER_FA                                  | US West Coast |
| <b>SR-SpSu</b>    | SR-SpSu | SNAKE RIVER_SP_SU                               | US West Coast |
| <b>UCR-Sp</b>     | UCR-Sp  | UPPER COLUMBIA RIVER_SP                         | US West Coast |
| <b>UWR</b>        | UWR     | UPPER WILLAMETTE RIVER                          | US West Coast |
| <b>1-UCR-</b>     |         |                                                 |               |
| <b>OK-UCR-SuF</b> | SuF     | OKANAGAN_1.X_UPPER COLUMBIA RIVER_SU_FA         | US West Coast |
| <b>SWVI</b>       | 31      | WEST VANCOUVER ISLAND-SOUTH_FA_0.X              | WCVI          |
| <b>NoKy</b>       | 32      | WEST VANCOUVER ISLAND-NOOTKA AND KYUQUOT_FA_0.X | WCVI          |
| <b>NWVI</b>       | 33      | WEST VANCOUVER ISLAND-NORTH_FA_0.X              | WCVI          |
| <b>Teslin</b>     | 68      | YUKON RIVER-TESLIN HEADWATERS                   | Yukon         |
| <b>UpperYR</b>    | 69      | UPPER YUKON RIVER                               | Yukon         |
| <b>Norden</b>     | 71      | NORDENSKIOLD                                    | Yukon         |
| <b>Pelly</b>      | 72      | PELLY                                           | Yukon         |
| <b>MidYR</b>      | 73      | MIDDLE YUKON RIVER AND TRIBUTARIES              | Yukon         |
| <b>Stew</b>       | 74      | STEWART                                         | Yukon         |
| <b>White</b>      | 75      | WHITE AND TRIBUTARIES                           | Yukon         |
| <b>NYR</b>        | 76      | NORTHERN YUKON RIVER AND TRIBUTARIES            | Yukon         |

**Table C2 – CWT exploitation rate indicator stock codes and corresponding Chinook salmon CUs and SMUs used for stock composition estimates. Canadian CWTs that did not belong to an indicator stock are not included in this table, but were matched to CU and SMU through a table provided by the Enhancement Planning and Assessment Database (EPAD). EPAD is maintained by the Salmonid Enhancement Program and is DFO’s centralized repository for enhancement data in the Pacific Region.**

| Stock code | Stock name          | Conservation Unit (CU)                              | Stock Management Unit (SMU) |
|------------|---------------------|-----------------------------------------------------|-----------------------------|
| SHU        | Lower Shuswap       | Shuswap River_SU_0.3                                | Fraser Summer 41            |
| MSH        | Middle Shuswap      | Shuswap River_SU_0.3                                | Fraser Summer 41            |
| HAR        | Harrison River      | Lower Fraser River_FA_0.3                           | Fraser Fall 41              |
| RBT        | Robertson Creek     | West Vancouver Island-South_FA_0.x                  | WCVI                        |
| KLM        | Kitsumkalum         | Kalum_late timing                                   | Skeena                      |
| PHI        | Phillips River Fall | Southern Mainland-Southern Fjords_FA_0.x            | Mainland Inlet              |
| ATN        | Atnarko             | Bella Coola-Bentinck                                | Central Coast               |
| BQR        | Big Qualicum River  | East Vancouver Island-Qualicum and Puntledge_FA_0.x | Middle Georgia Strait       |
| KLY        | Kitsumkalum         | Kalum_late timing                                   | Skeena                      |
| QUI        | Quinsam River       | East Vancouver Island-North_FA_0.x                  | Upper Georgia Strait        |
| PPS        | Puntledge River     | East Vancouver Island-Georgia Strait_SU_0.3         | Middle Georgia Strait       |
| NIC        | Nicola River        | Lower Thompson_SP_1.2                               | Fraser Spring 42            |
| COW        | Cowichan River      | East Vancouver Island-Cowichan and Koksilah_FA_0.x  | Lower Georgia Strait        |
| CHI        | Chilliwack River    | Fraser-Harrison Fall Transplant_FA_0.3              | Fraser Fall 41              |

## Appendix D - CWT Exploitation Rate Indicator Stocks used in Exploitation Rate Analysis

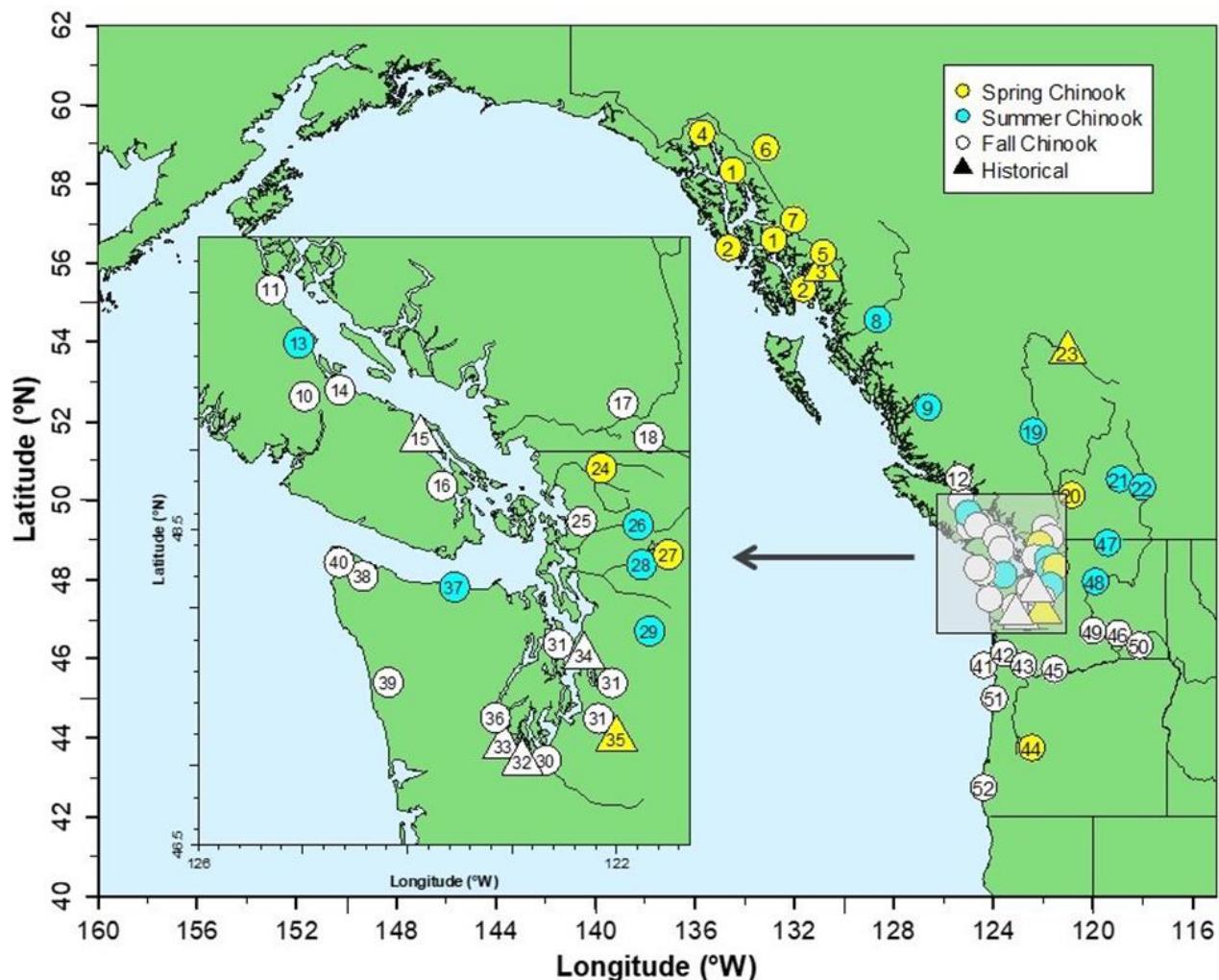



Figure D1—Geographical locations of historic and current Chinook salmon coded wire tag (CWT) exploitation rate indicator stocks. See Table D1 for the full stock names associated with each number. The southern B.C. and Puget Sound area, where concentration of the CWT indicators is greatest, is shown in the expanded view. Adapted from CTC 2023, Page 3

**Table D1—Summary of current and historic (last tagged brood year in brackets) coded wire tag (CWT) exploitation rate indicator stocks, location, run type, and smolt age. Adapted from CTC 2023, Pages 4-5.**

| Stock/Area           | Exploitation Rate Indicator Stock         | Hatchery                                                                           | Run Type    | Smolt Age | Map No. | Status            |
|----------------------|-------------------------------------------|------------------------------------------------------------------------------------|-------------|-----------|---------|-------------------|
| Southeast Alaska     | Northern Southeast Alaska (NSA)           | Crystal Lake (ACI), Macaulay (AMC)                                                 | Spring      | Age 1     | 1       | Current           |
|                      | Southern Southeast Alaska (SSA)           | Herring Cove (AHC), Little Port Walter (ALP), Deer Mountain (ADM), Neets Bay (ANB) | Spring      | Age 1     | 2       | Current           |
|                      | Chickamin (CHM)                           | Wild                                                                               | Spring      | Age 1     | 3       | Historical (2005) |
|                      | Chilkat (CHK)                             | Wild                                                                               | Spring      | Age 1     | 4       | Current           |
|                      | Unuk (UNU)                                | Wild                                                                               | Spring      | Age 1     | 5       | Current           |
| Transboundary Rivers | Taku (TAK)                                | Wild                                                                               | Spring      | Age 1     | 6       | Current           |
|                      | Stikine (STI)                             | Wild                                                                               | Spring      | Age 1     | 7       | Current           |
| North/Central B.C.   | Kitsumkalum (KLM)                         | Deep Creek                                                                         | Summer      | Age 1     | 8       | Current           |
|                      | Atnarko (ATN)                             | Snootli                                                                            | Summer      | Age 0     | 9       | Current           |
| WCVI                 | Robertson Creek (RBT)                     | Robertson Creek                                                                    | Fall        | Age 0     | 10      | Current           |
| Strait of Georgia    | Quinsam (QUI)                             | Quinsam                                                                            | Fall        | Age 0     | 11      | Current           |
|                      | Phillips (PHI)                            | Gillard Pass                                                                       | Summer/Fall | Age 0     | 12      | Current           |
|                      | Puntledge (PPS)                           | Puntledge                                                                          | Summer      | Age 0     | 13      | Current           |
|                      | Big Qualicum (BQR)                        | Big Qualicum                                                                       | Fall        | Age 0     | 14      | Current           |
|                      | Nanaimo (NAN)                             | Nanaimo                                                                            | Fall        | Age 0     | 15      | Historical (2004) |
|                      | Cowichan (COW) <sub>1</sub>               | Cowichan                                                                           | Fall        | Age 0     | 16      | Current           |
| Fraser River         | Harrison (HAR)                            | Chehalis                                                                           | Fall        | Age 0     | 17      | Current           |
|                      | Chilliwack (CHI) <sub>1</sub>             | Chilliwack                                                                         | Fall        | Age 0     | 18      | Current           |
|                      | Chilko (CKO)                              | Spius Creek, Chehalis                                                              | Summer      | Age 1     | 19      | In development    |
|                      | Nicola (NIC)                              | Spius Creek                                                                        | Spring      | Age 1     | 20      | Current           |
|                      | Lower Shuswap (SHU) <sub>1</sub>          | Shuswap Falls                                                                      | Summer      | Age 0     | 21      | Current           |
|                      | Middle Shuswap (MSH)                      | Shuswap Falls                                                                      | Summer      | Age 0     | 22      | Current           |
|                      | Dome (DOM)                                | Penny Creek                                                                        | Spring      | Age 1     | 23      | Historical (2002) |
| North Puget Sound    | Nooksack Spring Fingerling (NSF)          | Kendall Creek                                                                      | Spring      | Age 0     |         | Current           |
|                      | Nooksack Spring Yearling (NKS)            | Kendall Creek                                                                      | Spring      | Age 1     | 24      | Historical (1996) |
|                      | Samish Fall Fingerling (SAM) <sub>2</sub> | Samish                                                                             | Summer/Fall | Age 0     | 25      | Current           |
|                      | Skagit Summer Fingerling (SSF)            | Marblemount                                                                        | Summer      | Age 0     | 26      | Current           |
|                      | Skagit Spring Fingerling (SKF)            | Marblemount                                                                        | Spring      | Age 0     |         | Current           |
|                      | Skagit Spring Yearling (SKS) <sub>2</sub> | Marblemount                                                                        | Spring      | Age 1     | 27      | Historical (2010) |

| Stock/Area             | Exploitation Rate Indicator Stock                    | Hatchery                       | Run Type    | Smolt Age | Map No. | Status            |
|------------------------|------------------------------------------------------|--------------------------------|-------------|-----------|---------|-------------------|
| Central Puget Sound    | Stillaguamish Fall Fingerling (STL) <sub>3</sub>     | Stillaguamish Tribal           | Summer/Fall | Age 0     | 28      | Current           |
|                        | Skykomish Summer Fingerling (SKY) <sub>2,3</sub>     | Wallace                        | Summer/Fall | Age 0     | 29      | Current           |
| South Puget Sound      | Nisqually Fall Fingerling (NIS) <sub>2</sub>         | Clear Creek                    | Summer/Fall | Age 0     | 30      | Current           |
|                        | South Puget Sound Fall Fingerling (SPS) <sub>2</sub> | Soos/Grovers/Is saquah creeks  | Summer/Fall | Age 0     | 31      | Current           |
|                        | South Puget Sound Fall Yearling (SPY)                | Tumwater Falls                 | Summer/Fall | Age 1     | 32      | Historical (2013) |
|                        | Squaxin Net Pens Fall (SQP)                          | Squaxin Net Pen                |             |           | 33      | Historical (1997) |
|                        | University of Washington Accelerated (UWA)           | University of Washington       |             |           | 34      | Historical (1988) |
|                        | White River Spring Yearling (WRY) <sub>4</sub>       | White River                    | Spring      | Age 1     | 35      | Historical (2015) |
| Hood Canal             | George Adams Fall Fingerling (GAD) <sub>2</sub>      | George Adams                   | Summer/Fall | Age 0     | 36      | Current           |
| Juan de Fuca           | Elwha Fall Fingerling (ELW)                          | Lower Elwha                    | Summer/Fall | Age 0     | 37      | Current           |
| North Washington Coast | Hoko Fall Fingerling (HOK)                           | Hoko Makah National Hatchery   | Fall        | Age 0     | 38      | Current           |
|                        | Queets Fall Fingerling (QUE)                         | Wild, Salmon River (WA)        | Fall        | Age 0     | 39      | Current           |
|                        | Tsoo-Yess Fall Fingerling (SOO) <sub>5</sub>         | Makah National Fish Hatchery   | Fall        | Age 0     | 40      | Current           |
| Lower Columbia River   | Columbia Lower River Hatchery (LRH) <sub>2</sub>     | Big Creek                      | Fall Tule   | Age 0     | 41      | Current           |
|                        | Cowlitz Tule (WA) (CWF)                              | Cowlitz                        | Fall Tule   | Age 0     | 42      | Current           |
|                        | Lewis River Wild (LRW)                               | Wild                           | Fall Bright | Age 0     | 43      | Current           |
|                        | Willamette Spring (WSH) <sub>1</sub>                 | Willamette Hatcheries          | Spring      | Age 1     | 44      | Current           |
|                        | Spring Creek Tule (WA) (SPR) <sub>2</sub>            | Spring Creek National Hatchery | Fall Tule   | Age 0     | 45      | Current           |
| Upper Columbia River   | Hanford Wild (HAN)                                   | Wild                           | Fall Bright | Age 0     | 46      | Current           |
|                        | Similkameen Summer Yearling (SMK)                    | Similkameen and Omak Pond      | Summer      | Age 1     | 47      | Current           |
|                        | Columbia Summers (WA) (SUM)                          | Wells                          | Summer      | Age 0/1   | 48      | Current           |
|                        | Columbia Upriver Brights (URB) <sub>2</sub>          | Priest Rapids                  | Fall Bright | Age 0     | 49      | Current           |
| Snake River            | Lyons Ferry Fingerling (LYF) <sub>6</sub>            | Lyons Ferry                    | Fall Bright | Age 0     | 50      | Current           |
|                        | Lyons Ferry Yearling (LYY) <sub>2</sub>              | Lyons Ferry                    | Fall Bright | Age 1     |         | Current           |
| North Oregon Coast     | Salmon (SRH)                                         | Salmon                         | Fall        | Age 0     | 51      | Current           |
| Mid Oregon Coast       | Elk River (ELK)                                      | Elk River                      | Fall        | Age 0     | 52      | Current           |

**Appendix E – Salmon bycatch by groundfish management area for the 2024/25 groundfish fishery**

**Table E1 – Total salmon catch (numbers of fish retained and released) by species and groundfish management area for the 2024/25 groundfish fishery year (February 21, 2024 to February 20, 2025). Catch in the UNK category could not be associated to a single area.**

| Groundfish Management Area | Total salmon catch | Chinook catch | Coho catch | Chum catch | Pink catch | Sockeye catch | Unidentified salmon catch |
|----------------------------|--------------------|---------------|------------|------------|------------|---------------|---------------------------|
| <b>3C</b>                  | <b>2887</b>        | <b>2689</b>   | <b>122</b> | <b>60</b>  | <b>13</b>  | <b>3</b>      | <b>0</b>                  |
| <b>3D</b>                  | <b>631</b>         | <b>599</b>    | <b>10</b>  | <b>22</b>  | <b>0</b>   | <b>0</b>      | <b>0</b>                  |
| <b>4B</b>                  | <b>3039</b>        | <b>2971</b>   | <b>43</b>  | <b>14</b>  | <b>11</b>  | <b>0</b>      | <b>0</b>                  |
| <b>5A</b>                  | <b>309</b>         | <b>281</b>    | <b>0</b>   | <b>27</b>  | <b>1</b>   | <b>0</b>      | <b>0</b>                  |
| <b>5B</b>                  | <b>67</b>          | <b>14</b>     | <b>1</b>   | <b>52</b>  | <b>0</b>   | <b>0</b>      | <b>0</b>                  |
| <b>5C</b>                  | <b>3</b>           | <b>3</b>      | <b>0</b>   | <b>0</b>   | <b>0</b>   | <b>0</b>      | <b>0</b>                  |
| <b>5D</b>                  | <b>307</b>         | <b>291</b>    | <b>0</b>   | <b>15</b>  | <b>1</b>   | <b>0</b>      | <b>0</b>                  |
| <b>5E</b>                  | <b>12</b>          | <b>9</b>      | <b>0</b>   | <b>3</b>   | <b>0</b>   | <b>0</b>      | <b>0</b>                  |
| <b>UN</b>                  | <b>272</b>         | <b>183</b>    | <b>6</b>   | <b>70</b>  | <b>13</b>  | <b>0</b>      | <b>0</b>                  |
| <b>TOTAL 2024/25</b>       | <b>7527</b>        | <b>7040</b>   | <b>182</b> | <b>263</b> | <b>39</b>  | <b>3</b>      | <b>0</b>                  |

## Appendix F - Salmon bycatch by Pacific fishery management area for the 2024 calendar year

**Table F1 – Estimated annual salmon catch (pieces retained and released) by Pacific Fishery Management Area (PFMA) in the groundfish trawl fishery during the 2024 calendar year. PFMA where catch values come from less than 3 vessels were excluded due to privacy restrictions. Catch assigned to PFMA UNK represent catch enumerated at landing that could not be assigned to a specific PFMA.**

| PFMA                                          | Total salmon catch | Chinook | Coho  | Chum  | Pink  | Sockeye | Unidentified salmon |
|-----------------------------------------------|--------------------|---------|-------|-------|-------|---------|---------------------|
| 0                                             | 416                | 277     | 26    | 100   | 13    | 0       | 0                   |
| 3                                             | 0                  | 0       | 0     | 0     | 0     | 0       | 0                   |
| 4                                             | 0                  | 0       | 0     | 0     | 0     | 0       | 0                   |
| 5                                             | 0                  | 0       | 0     | 0     | 0     | 0       | 0                   |
| 7                                             | 0                  | 0       | 0     | 0     | 0     | 0       | 0                   |
| 14                                            | 818                | 809     | 5     | 4     | 0     | 0       | 0                   |
| 16                                            | 0                  | 0       | 0     | 0     | 0     | 0       | 0                   |
| 18                                            | 0                  | 0       | 0     | 0     | 0     | 0       | 0                   |
| 19                                            | 0                  | 0       | 0     | 0     | 0     | 0       | 0                   |
| 20                                            | 558                | 520     | 28    | 2     | 8     | 0       | 0                   |
| 23                                            | 0                  | 0       | 0     | 0     | 0     | 0       | 0                   |
| 29                                            | 91                 | 91      | 0     | 0     | 0     | 0       | 0                   |
| 101                                           | 288                | 273     | 0     | 14    | 1     | 0       | 0                   |
| 102                                           | 3                  | 3       | 0     | 0     | 0     | 0       | 0                   |
| 103                                           | 2                  | 2       | 0     | 0     | 0     | 0       | 0                   |
| 104                                           | 17                 | 16      | 0     | 1     | 0     | 0       | 0                   |
| 105                                           | 0                  | 0       | 0     | 0     | 0     | 0       | 0                   |
| 106                                           | 2                  | 2       | 0     | 0     | 0     | 0       | 0                   |
| 107                                           | 5                  | 3       | 0     | 2     | 0     | 0       | 0                   |
| 108                                           | 13                 | 7       | 0     | 6     | 0     | 0       | 0                   |
| 109                                           | 0                  | 0       | 0     | 0     | 0     | 0       | 0                   |
| 110                                           | 38                 | 2       | 0     | 36    | 0     | 0       | 0                   |
| 111                                           | 36                 | 10      | 0     | 25    | 1     | 0       | 0                   |
| 121                                           | 1,131              | 1,032   | 80    | 6     | 10    | 3       | 0                   |
| 123                                           | 778                | 763     | 11    | 1     | 3     | 0       | 0                   |
| 124                                           | 646                | 597     | 17    | 32    | 0     | 0       | 0                   |
| 125                                           | 313                | 305     | 1     | 7     | 0     | 0       | 0                   |
| 126                                           | 60                 | 58      | 0     | 2     | 0     | 0       | 0                   |
| 127                                           | 132                | 124     | 4     | 4     | 0     | 0       | 0                   |
| 130                                           | 16                 | 16      | 0     | 0     | 0     | 0       | 0                   |
| 142                                           | 2                  | 2       | 0     | 0     | 0     | 0       | 0                   |
| <b>% excluded due to privacy restrictions</b> | 17.95%             | 19.10%  | 1.71% | 3.20% | 7.69% | 0.00%   | 0.00%               |
| <b>Total catch</b>                            | 6,539              | 6,072   | 175   | 250   | 39    | 3       | 0                   |
| <b>Total catch included</b>                   | 5,365              | 4,912   | 172   | 242   | 36    | 3       | 0                   |