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ABSTRACT 

The Music Information Retrieval Feature-Extracting Ensemble (MIRFEE) classifier was 
developed as a plugin for PAMGuard to provide species classification for the Whistle 
and Moan Detector (WMD) module. When used on audio recorded by hydrophones 
deployed in and around the Salish Sea for the purpose of killer whale detection, the 
WMD is routinely triggered by humpback whale vocalizations and vessel noise. The 
MIRFEE classifier was thus developed as a means of reducing these false positives. 
MIRFEE works by extracting features from both detection metadata and audio clips 
taken from when detections occur. These features are subsequently used as training 
data for an ensemble learning model. 

Pre-recorded hydrophone audio from 12 different deployment locations in the Strait of 
Juan de Fuca and Southern Gulf Islands across all seasons were run through the WMD. 
Manually-annotated detections produced by one of three classes—killer whale calls, 
humpback whale calls, or anthropogenic or environmental noise—were arranged into 18 
subsets, and corresponding audio was subsequently run through the MIRFEE Feature 
Extractor. The resulting feature vectors were used to create two training sets that used 
different audio clip lengths, and the cross-validation results of the consequent training 
models are discussed. 
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RÉSUMÉ 

Le classificateur ensembliste d’extraction des caractéristiques de recherche 
d’informations musicales (MIRFEE en anglais) a été développé sous la forme d’un 
plugiciel pour PAMGuard pour fournir la classification des espèces au détecteur de 
sifflements et gémissements (Whistle and Moan Detector en anglais). Lorsqu’il est 
utilisé sur les fichiers audio enregistrés par les hydrophones déployés dans et autour de 
la mer des Salish pour la détection des orques, le détecteur est régulièrement 
déclenché par les vocalisations des baleines à bosse et le bruit des navires. Le 
classificateur MIRFEE a donc été développé pour réduire le nombre de ces faux 
positifs. MIRFEE extrait les caractéristiques des métadonnées des détections ainsi que 
des extraits audio correspondant à chaque détection. Ces caractéristiques sont ensuite 
utilisées comme données d’apprentissage pour un modèle ensembliste. 

Des fichiers audio d’hydrophones provenant de 12 déploiements différents dans le 
détroit de Juan de Fuca et du sud des îles Gulf, comprenant toutes les saisons, ont été 
analysés par le détecteur. Les annotations correspondant à chacune des trois classes 
de détection—vocalisations des orques, vocalisations des baleines à bosse, ou le bruit 
anthropique ou environnemental—ont été organisées en 18 sous-ensembles, et les 
fichiers audio correspondants ont ensuite été traités par l’extracteur de caractéristiques 
MIRFEE (Feature Extractor en anglais). Les vecteurs de caractéristiques qui en 
résultent ont été utilisés pour créer deux jeux de données d’apprentissage avec 
différentes durées d’extraits audio, et les résultats de validation croisée des modèles 
d’apprentissage qui en découlent sont discutés dans ce rapport.
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INTRODUCTION 

Passive acoustic monitoring (PAM) is a tool for detecting vocalizing cetaceans and has 
been used effectively to mitigate disturbances and determine habitat presence, spatial 
and temporal use of habitats, and animal movement (Zimmer 2011, Sousa-Lima et al. 
2013, Verfuss et al. 2018). Its effectiveness has substantially increased in the last few 
decades due to the development of digital acoustic recording devices that can collect, 
store, and transmit large amounts of acoustic data (Sousa-Lima et al. 2013). This has 
created the ability to acoustically monitor underwater environments continuously for long 
periods of time. The large volume of acoustic data created by this technological 
advancement has also created the need for automated tools to efficiently analyse these 
large-scale datasets. This includes the development of methods for detection and 
classification of sounds based on their respective sources (e.g., whale, vessel, natural 
ambient sound, etc.) (Gibb et al. 2019).  

In an automated detector-classifier (DC) system, a detection algorithm scans through 
audio data, which is often converted into spectrographic imagery, for possible marine 
mammal vocalizations, while a classifier model attempts to determine what actually 
triggered the detector. Some DC systems use the energy of harmonics in specific 
frequency bands exceeding a set threshold for call detection. The spectrographic image 
quality of the vocalizations is influenced by the signal-to-noise ratio (SNR) and the 
distance of the caller from the receiving hydrophone. Higher sound frequencies 
attenuate faster with distance than lower ones, often resulting in higher harmonics 
disappearing from the image while lower harmonics remain visible. Higher ambient 
noise levels also decrease the SNR, resulting in calls being masked. As a result, the 
classifier performance of a DC system usually decreases with decreasing SNR and 
increasing distance between caller and receiver (Binder and Hines 2019). Modifications 
to the input audio data such as adding frequency filters and noise reduction procedures 
may be useful for increasing the signal strength over the acoustic background. 

A variety of automated DC systems exist and those applying machine learning 
algorithms have become increasingly accurate at detecting cetacean calls. In recent 
years, deep learning models trained on spectrogram images of sound files have become 
more widely used (Usman et al., 2020). Alternative DC systems extract relevant 
acoustic information from audio data to make classifications based off of patterns and 
differences between classes found in this information. Either method requires the 
creation of training sets that consist of human-annotated audio data. After training a 
classifier model to achieve a certain level of precision and recall on either a separate 
testing set or through cross-validation, the model is deemed effective for use on new 
acoustic data. 

While DC systems can be useful for determining the presence of certain species in an 
aquatic environment, there are often additional challenges: underwater soundscapes 
are dynamic, as sound propagation is highly variable and is influenced by environmental 
factors, such as bathymetry, water temperature, salinity, and pressure, all of which 
affect the sound speed of signals (Vagle et al. 2021). Furthermore, the target species is 
often one of multiple simultaneously-present sound sources at any given location. Many 
cetacean species produce sounds in overlapping frequency ranges, so it cannot always 
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be assumed that every automated detection within a certain frequency range was 
produced by the target species. For this reason, the automated detections and species 
classifications often need to be verified by a human listener (Socheleau et al., 2015), as 
some DC systems may produce a disproportionately large number of false positives in 
certain environments. This process is time-consuming and often requires multiple 
human annotators to manually process large detection data sets. The ability to detect 
whales quickly is very important when classified detections are used to mitigate 
disturbances that pose threats to the health of a target species, such as being struck by 
vessels, getting entangled in fishing gear, or entering an area that is contaminated with 
oil sheens after a spill. 

In 2013, Ness and colleagues (2013) released the Orchive—a collection of over 20,000 
hours of machine learning-annotated hydrophone audio recorded for killer whale 
research by OrcaLab, located on Hanson Island off of northern Vancouver Island near 
Port McNeill, British Columbia (Ness et al., 2013). Ness and colleagues used a custom-
made machine learning classifier that extracted the Mel-frequency cepstral coefficients 
(MFCCs), spectral centroid, spectral rolloff, spectral flux, and zero-crossing rate from 
frames of audio clips and constructed feature vectors out of the means and standard 
deviations of these features. These features are commonly used in the field of music 
information retrieval (MIR) (Alías et al., 2016) for tasks such as musical instrument 
recognition (Benetos et al., 2006) and genre classification (Tzanetakis & Cook, 2002). 
Therefore, one might infer that these techniques may be useful in bioacoustics for 
identifying animal vocalizations through the analysis of timbre and other audio qualities. 
This technique was used to separate killer whale calls from background noise and voice 
notes from researchers, and then was further used to separate between a selection of 
common northern resident killer whale (NRKW) call types. When trained on a support 
vector machine (SVM) classifier, this resulted in accuracies of 96.5% and 98.5% for 
each respective task. Following this, a deep-learning model produced with the ORCA-
SPOT toolkit (Bergler et al., 2019) achieved a time-based precision value of 93.2% 
when attempting to automatically segment killer whale calls from background noise in 
the entirety of the Orchive. The acoustic environment surrounding OrcaLab, however, is 
likely substantially different from those of the areas frequented by Southern Resident 
Killer Whales (SRKW) between Vancouver and the mouth of the Strait of Juan de Fuca, 
which experience significantly more commercial and recreational vessel traffic, and the 
Orchive audio was recorded only when a live monitoring crew noticed the presence of 
killer whale vocalizations (Bergler et al., 2019). Additionally, it was noted that the ORCA-
SPOT deep-learning model had a tendency to produce false positives in certain 
instances of tonal vessel noise (Bergler et al., 2019). 

This report describes initial efficacy testing of the Music Information Retrieval Feature-
Extracting Ensemble (MIRFEE) classifier—a publicly-available PAMGuard plugin. 
Designed to be used in conjunction with the Whistle and Moan Detector (WMD) in a DC 
system, MIRFEE uses audio-based feature extraction in combination with features 
calculated from detection metadata to classify WMD detections. The classifier attempts 
to adapt such methods to an acoustically-dynamic environment with high potential for 
encounters of different triggering sound sources to occur simultaneously. While this 
module was developed primarily for the purpose of differentiating between killer whale 
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calls, humpback whale calls, and tonal vessel noise off of southern Vancouver Island, it 
was designed to be adaptable for use with any sound source that can trigger the WMD. 

Ecological background 

Killer whales (Orcinus orca) and humpback whales (Megaptera novaeangliae) both 
occur along the coast of the northeast Pacific Ocean. Their distribution in this region 
coincides with international shipping lanes, along with a heavy presence of commercial 
and recreational vessel activity (Vagle et al., 2021). This overlap raises concerns about 
acoustic and physical disturbance, including potential vessel strikes (Thornton et al., 
2022). The three populations of killer whales that occur in the study area include two 
populations of the fish-eating Northern Resident and Southern Resident ecotypes, and a 
mammal-eating Transient ecotype (Bigg’s). The Southern Resident Killer Whales 
(SRKWs) are listed as Endangered and both Northern Resident Killer Whales (NRKWs) 
and Bigg’s Killer Whales are listed as Threatened under the Species at Risk Act (Ford et 
al., 2017; Fisheries and Oceans Canada, 2007). Killer whales actively use sound to 
navigate, socialize and forage (Ford, 1989), and have acute hearing which allows them 
to maintain contact with group members while spread out over large areas, especially 
under quiet conditions (Miller, 2006). Killer whales produce echolocation clicks for 
navigation and foraging (Au et al., 2004), whistles appear to be used by group members 
to communicate over short distances (Thomsen et al., 2002; Riesch & Deecke, 2011), 
while mono-phonic or bi-phonic pulsed calls are used in social communication over 
distances of several kilometers (Filatova et al., 2013).  

Humpback whales produce both social calls and songs that can propagate over long 
distances (Payne & McVay, 1971; Molder et al., 2024). The British Columbia coast is 
considered to be a summer feeding ground for humpback whales (McSweeney et al., 
1989; Ford et al., 2010), so the songs that are produced are often abbreviated and 
considered to be “training songs” compared to the fully formed songs produced in the 
breeding ground. Social calls are often lower frequency than sounds produced during 
songs and do not follow a particular pattern (Dunlop et al., 2008). The distinctiveness of 
killer whale and humpback sounds and their ability to propagate over several kilometers 
makes them a good target candidate for automated detection, which has become an 
essential tool in determining variations in temporal and spatial distribution of whales. 

The magnitude of disturbance is often directly related to the behaviours of the target 
species; for example, most odontocetes (toothed whales) are highly mobile and move 
relatively fast (1 to 6 meters per second (Rohr et al. 2002)), which makes them less 
prone to being struck by large vessels, but not enough to substantially reduce the risk of 
strikes from smaller vessels such as pleasure craft. On the other hand, mysticetes 
(baleen whales) tend to be less mobile and often remain in the same location for longer 
periods of time, making them more prone to ship strikes. The time needed to detect and 
classify whale species and alert nearby vessel operators of their presence is therefore 
crucial. 
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PAMGuard 

PAMGuard, an open-source acoustic analysis program developed by researchers from 
the Sea Mammal Research Unit (SMRU) at the University of St Andrews (Gillespie et 
al., 2008), is commonly used for passive acoustic monitoring (PAM) tasks. One of these 
tasks, performed by the Whistle and Moan Detector (WMD) module within the program, 
is to mark harmonic contours that exceed a magnitude threshold in a spectrogram 
stream, potentially signalling the presence of cetacean vocalizations (Gillespie et al., 
2013). Background noise is reduced using a median filter, average subtraction, and, 
optionally, Gaussian kernel smoothing to reduce background noise (Gillespie et al., 
2013). 

 

Figure 1. Screenshots from PAMGuard displaying spectrograms with Whistle and Moan Detector contours 
(bright white lines) triggered by killer whale calls (left), a humpback whale's moan (centre), and, 
undesirably, tonal propeller noise from a passing motor vessel (right). Each white line (also known as a 
contour) represents a single independent detection. 

The WMD is effective at detecting killer whale and humpback whale calls while filtering 
out constant tones produced by vessels due to noise reduction. However, it struggles to 
ignore vessels that produce wavering pitch or intermittent tones (Figure 1). Humpback 
whale calls can contain harmonics that overlap with the frequency range of killer whale 
calls, and tonal vessel noise can occur across the frequency spectrum, so detections 
from only one of these sources may not be completely isolated using only a frequency 
threshold. 

There are two pre-existing machine learning classifiers for WMD detections that come 
with PAMGuard: ROCCA, which includes models for differentiating between specific 
odontocete species, but currently does not allow users to produce their own training 
data (PAMGuard, no date), and the Whistle Classifier, which does allow for the latter. 
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The Whistle Classifier was found to be capable of differentiating between encounters 
from four odontocete species in the Polar Atlantic, achieving recall rates from 92.3% to 
97.4% across species (Gillespie et al., 2013). However, this classifier was designed to 
extract features and make predictions over sizeable quantity-defined groupings of 
detection fragments rather than making predictions for time-defined groups of detections 
representing individual “calls”. This approach may not be desirable in situations where 
multiple sound source encounters occur simultaneously, as is common in the Salish 
Sea. 

METHODOLOGY 

Plugin overview 

The MIRFEE classifier was developed as a PAMGuard plugin to provide the WMD with 
sound source identification capabilities. The plugin consists of several modules, those 
relevant to this study being the Feature Extractor and the Test Classifier.  

The Feature Extractor module produces audio clips where WMD detections occur and 
sends them to a Python script to extract audio features. The extracted features are 
incorporated into feature vectors used for training and testing data. “Feature vector” 
refers to the array of feature values produced by all the selected feature extraction 
algorithms that represents an individual detection. The Feature Extractor can take a 
WMD data stream as input, or it can use pre-existing annotated WMD data and extract 
clips at the corresponding timestamps without the presence of the WMD in the 
configuration. The Feature Extractor arranges detections into “call clusters”, which are 
separated by a specified time threshold. While the classifier predictions are performed 
on each individual detection, the average probability scores across each detection in a 
cluster provides the overall prediction for the call cluster, which are what are used for 
calculating the precision, recall, and accuracy percentages in this report. The purpose of 
this was to provide predictions at the call level rather than on every individual detection 
produced by, for example, stacked harmonics, although it should be noted that some 
clusters can contain multiple separate calls that happen to occur closely together. 

Most feature extraction algorithms are performed on a short-time Fourier transform 
(STFT, the magnitude of which produces a spectrogram) of each audio clip, or are 
performed on successive frames of the audio time-series. These algorithms output an 
array of values that represent each time frame, so the actual value used in the feature 
vector is often the mean or standard deviation of this array. Conversely, all header data 
features are single constants taken directly from detection metadata and are used as-is. 

The following features are taken directly from WMD detection metadata and do not 
change with audio settings: 

● Contour duration, in milliseconds 

● Contour frequency (minimum or maximum), in hertz 

● Contour frequency range, in hertz 
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● Contour frequency “slope”, in hertz per second – the absolute frequency range 
divided by the contour duration, and is always a positive number 

The following features are calculated from contour slice data (i.e. the frequencies and 
timestamps of each “pixel” in a contour), and also do not change with audio settings: 

● Contour slice frequencies, in hertz 

● 1st derivative of contour slice frequencies, in hertz 

● 2nd derivative of contour slice frequencies, in hertz 

● Contour “start-to-end slope”, in hertz per second – “as-the-crow-flies” slope in 
terms of time and frequency between the first and last slices of the contour, 
and can be either positive or negative 

The following features were used with the Orchive (Ness et al., 2013) and are extracted 
from the produced audio clips using the Librosa Python library (McFee et al., 2015): 

● Mel-frequency cepstral coefficients (MFCCs) 

● Spectral centroid, in hertz 

● Spectral rolloff, in hertz 

● Spectral flux (onset strength) 

● Zero-crossing rate 

The following features are also provided by the Librosa library (McFee et al., 2015), and 
were added experimentally: 

● Root mean square (RMS), in decibels 

● Spectral bandwidth, in hertz 

● Spectral contrast 

● Spectral flatness 

● “Spectral magnitude”, in decibels — the magnitudes from a specified range of 
short-time Fourier transform (STFT) frequency bins 

The following features were calculated from formants, which are commonly used to 
acoustically represent vowels in human speech (Kent & Vorperian, 2018), but are 
adapted here for experimental use with whale calls: 

● Frequency of a specific formant, in hertz 
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● Ratio between the frequency of a selected formant and the first formant 

The formants were calculated using Librosa’s linear predictive coding (LPC) function 
(McFee et al., 2015) and adapting a formula from MathWorks.com (MathWorks, no 
date), which in turn was adapted from formulae by Snell & Milinazzo (1993). The LPC 
order (number of poles) was derived by dividing the sampling rate by a quarter of the 
specified maximum-expected fundamental frequency, as per an equation described in 
the user manual for IRCAM’s AudioSculpt 3.0 software (IRCAM, no date). 

Lastly, the following features use the Praat pitch-tracking algorithm from the 
Parselmouth Python Library (Jadoul et al., 2018). Note that these features are only 
calculated from frames where the tracker found a discernable pitch, and the features 
involving harmonics use a series of FFTs with a length equal to the sampling rate in 
place of the aforementioned STFT: 

● Praat fundamental frequency, in hertz 

● Total harmonic distortion (fundamental; THDF) – generally used as a metric for 
determining sound reproduction quality in audio systems (Westerhold, 2022), 
but is re-appropriated here as a measurement of brightness (how much 
emphasis there is on the upper harmonics) 

● “Harmonics-to-background ratio” – the mean magnitude of FFT bins 
corresponding to approximated harmonics divided by the median magnitude 
of the whole FFT frame 

● Harmonic centroid – the spectral centroid divided by the found fundamental 
frequency, effectively the “centroid” as a harmonic number (Hermes et al., 
2016) 

● “Bin-exclusive harmonic centroid” (BEHC) – an alternative version of the 
harmonic centroid that only takes the FFT bins corresponding to 
approximated harmonics into account 

When calculating BEHC on a single frame, a histogram is created where the number of 
the strongest harmonic is appended to a set 100 times, and the number of every other 
harmonic is appended to said set n times: 

𝑛 = floor (100 ∙
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐

𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑠𝑡𝑟𝑜𝑛𝑔𝑒𝑠𝑡 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐
) (1) 

The mean of the histogram from each frame fills the resulting array. If the Praat 
algorithm was unable to find any fundamental frequency, then the array defaults to 
consisting of a single 1. The purpose of this version of the harmonic centroid was to 
avoid background noise between harmonics being factored into the equation. 

Additionally, the module includes options to specify the length of the produced audio 
clips (or, alternatively, to have each clip be as long as their corresponding contour), and 
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to specify the length and hop size of the STFT produced for features that use it as an 
input. It also provides the option to apply high- or low-pass Butterworth filters to the 
audio, as well as the option to apply noise reduction on the clips. The noise reduction 
algorithm works as follows: 

𝑁[𝜔] =
∑ |𝑋𝑁[𝜏, 𝜔]|𝐿−1

𝜏=0

𝐿
∙ 𝑆 (2𝑎) 

𝑋𝑁𝑅[𝜏, 𝜔] = {
𝑋𝑂[𝜏, 𝜔] ∙

|𝑋𝑂[𝜏, 𝜔]| − 𝑁[𝜔]

|𝑋𝑂[𝜏, 𝜔]|
, 𝑖𝑓 𝑁[𝜔] < |𝑋𝑂[𝜏, 𝜔]|

 
0 + 0𝑖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(2𝑏) 

Where equation 2a is the average frequency band magnitude at frequency bin 𝜔, and 

equation 2b is the signal amplitude at time frame 𝜏 and frequency bin 𝜔 after undergoing 
noise reduction. 𝑋𝑂 is the STFT of the unaltered audio clip where a detection occurs; 𝑋𝑁 
is the STFT of a “noise profile” clip taken slightly before the first detection in the cluster, 
with a rectangular window function applied to it; 𝐿 is the time length of 𝑋𝑁, in frames; 𝑆 is 
a specified scalar; and 𝑋𝑁𝑅 is  𝑋𝑂 after noise reduction. In simpler terms, a separate clip 
is taken just before the first detection in a call cluster, the mean magnitude is calculated 
from each of its frequency bands, and each STFT bin in the original clip is proportionally 
scaled down such that the aforementioned mean magnitudes of corresponding 
frequency bins are subtracted from the original STFT’s magnitudes. The STFT is then 
converted back to an audio time-series via an inverse short-time Fourier transform 
(ISTFT) for features that use a time-series as input. The purpose of this specific 
formulation of noise reduction is to remove unwavering tonal sounds that occur both 
during and before the actual detection, such as when a whale is vocalizing with 
monotone vessel noise in the background. 

After processing, saved feature vector data produced by the Feature Extractor can then 
be matched with corresponding manually-annotated WMD data to create training sets 
using the MIRFEE Training Set Builder module. A training set can then be loaded into 
one of the MIRFEE classifier modules—either the Live Classifier for live processing of 
data directly from the Feature Extractor, or the Test Classifier for cross-validation of the 
training set—where it is fitted into an ensemble learning model from the Scikit-Learn 
Python library (Pedregosa et al., 2011). The classifier predictions are performed on each 
detection, with the overall prediction for the cluster being the class with the highest 
average prediction score across all the detections. This is done in order for the classifier 
prediction to represent the entire call, rather than having a large number of individual 
predictions for every WMD detection produced by stacked harmonics.  

Data collection 

Digital audio recordings were retrieved from passive acoustic recorders deployed in 
various locations off of southern Vancouver Island between May 2018 and March 2023 
(Figure 2). These recorders were either SoundTrap high-frequency autonomous 
recorders (ST600-HF, Ocean Instruments, Auckland, New Zealand, 
www.oceaninstruments.co.nz), Autonomous Marine Acoustic Recorders (AMAR, 

http://www.oceaninstruments.co.nz/
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JASCO Applied Sciences, Halifax, NS, Canada, www.jasco.com), or TR-ORCAs 
(Turbulent Research, Bedford, NS, Canada, www.turbulentresearch.com), and were 
deployed at water depths of 50 to 100m in areas where whales had previously been 
observed during visual surveys (Thornton et al. 2022). The collected digital audio data 
were arranged into 18 subsets for cross-validating the resulting training set, arranged by 
deployment location and time frame (Table 1). 

 

Figure 2. Map of southern Vancouver Island and Gulf Islands, displaying locations where hydrophones 
were deployed. 

The locations and time periods in Table 1 were chosen to capture a variety of seasonal, 
environmental and anthropogenic conditions. Note that the audio from each time frame 
that was included in this study does not necessarily encompass the full time period 
between start and end dates. As such, the number of detections in each subset are not 
representative of the presence, or lack thereof, of each species at each location. For 
example, the recordings from Swiftsure Bank Shelf in November 2018 (Subset 1) took 
place during a near-constant presence of humpback whales at that site. This resulted in 
an overwhelming number of detections over only five days, so only a portion of the calls 
were annotated. Strong calls with visible harmonics were prioritized over quieter calls 
with little to no visible harmonic content. This was done as strong calls were much less 
common than weak calls in the rest of the dataset.  

http://www.jasco.com/
http://www.turbulentresearch.com/
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When processing the audio through PAMGuard for acquiring WMD detection data, all 
audio files were downsampled to 48 kHz and streamed through the FFT engine module 
with an FFT length of 2048 samples, a hop length of 1024 samples, and a Hann window 
function, with click removal kept off. In most subsets, the downsampled audio files were 
saved via the PAMGuard Sound Recorder module while it was simultaneously being run 
through the WMD, in order to reduce the file sizes for easier processing; however, 
following annotation, it was discovered that the anti-aliasing filter in the Decimator 
module had been erroneously removed. There was an attempt to fix this by re-
downsampling all of the raw audio, but this revealed that PAMGuard version 2.01.04, 
which was used to process subsets 1, 3, 4, 5, 8, and A, had a bug in the Decimator 
module that produced random extra samples in each recorded file, which resulted in the 
contours only matching up time-wise with the actual calls in the files produced by the 
Sound Recorder and not in the raw audio. This was not replicable, and due to the time 
constraints of re-processing and re-annotating the data from these sets, they were kept 
as-is, with the compromise that the audio would be further downsampled to 32 kHz for 
the Feature Extractor from this point on, and any contours above 12 kHz would be 
ignored, as counter-measures against the aliased audio. Visual analysis of the audio 
before the addition of these counter-measures revealed the (albeit rare) presence of 
signal-produced aliasing, which was generally caused by especially-strong instances of 
KW or HW harmonicism that were mistaken for secondary call components. 

WMD noise and thresholding processes were kept at their default values, with a median 
filter length of 61, an average subtraction update constant of 0.02, and thresholding at 8 
dB. The minimum contour frequency was set to 200 Hz, and the minimum contour 
length was set to 15 slices (~341 ms). 

Manual annotation of the WMD detections was performed using the Whistle and Moan 
Annotation Tool (WMAT), which comes included with the MIRFEE plugin. Detections 
were labelled by species or sound source in the “species” column of the WMAT. When 
combining annotation data with feature vector data in the Training Set Builder, all 
detections that were unambiguously produced by killer whales regardless of ecotype 
were all simply labelled “KW” in the training set; likewise, all humpback whale detections 
were labelled “HW”, and all detections caused by either man-made or non-biological 
sound sources were labelled “V/E” (for “vessel or environment”). The vast majority of 
detections could be fit into one of these three categories, with rare exceptions, most 
notably a Pacific white-sided dolphin encounter that produced a large number of 
detections occurred in subset 2, but this species rarely occurred outside of this instance. 
Detections from outside the three main categories were ultimately omitted from the 
training set in this study due to their small quantities. 

Every detection in the final training set came from an audio file that contained at least 
five detections (the “Full Audio Set”). To save processing time during the Feature 
Extractor settings testing phase, a smaller audio set (the “Reduced Audio Set”) was 
created by randomly selecting files from the Full Audio Set, with the additional 
constraints that each subset could only contribute 2000 detections from each species, 
and each audio file could not contain more than 200 detections. This was to prevent an 
audio file with a large number of detections from representing too large of a portion of 
that set. Any detection that could not be labelled with certainty was omitted from the 
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training set for this study. Any contours that overlapped temporally with any other 
contour with a different label were removed as far as could be done. In cases where a 
call cluster contains contours from more than one label, only the detections where the 
label had a plurality were kept, using a built-in feature of the Training Set Builder.      
Lastly, contours were grouped into call clusters with a separation threshold of two 
seconds. 

Feature Extractor settings testing 

To determine the optimal Feature Extractor settings, the Reduced Audio Set was 
repeatedly run through the Feature Extractor using different combinations of settings 
with a feature vector consisting of audio-based features with generic parameters. The 
resulting training sets were cross-validated with the Test Classifier twice using the 
following settings: 

● The HistGradientBoostingClassifier (Pedregosa et al., 2011) was used as the 
training model, with a learning rate of 0.1, 100 iterations at maximum, and 
maximum depth turned off. This model was found to be the most effective in 
prototype testing for virtually every test compared to Scikit-Learn’s other 
ensemble models, so it was used exclusively. 

● Leave-one-out cross-validation, where the training set was partitioned by the 
first digit of each detection’s subset ID (equivalent to the ID column in Tables 
1 and 2), thus, no detections were tested against training data that came from 
the same subset. 

● For each instance of the training model for each partition, the number of data 
entries from each label were reduced to match that of the least-populous 
label, in order to reduce bias. Additionally, it was set such that each call 
cluster only contributed, at most, two detections each to the training data, in 
order to reduce bias towards especially clear calls that produced a lot of 
detections. Which detections were discarded were chosen randomly by the 
algorithm for every test run. 

All audio was downsampled to 32 kHz, and all contours above 12 kHz were omitted from 
this study. For the first run, the clip length was set to 350 ms, the STFT length was set to 
1024 bins, the STFT hop size was set to 512 samples, and noise reduction and filters 
were turned off. From there, the settings were iteratively adjusted for each run and the 
best result for a setting was kept for testing the next setting; in order, these were noise 
reduction, high-pass filtering without noise reduction, noise reduction and high-pass 
filtering combined, clip length, and STFT length and hop. 

After determining which audio settings produced the best overall recall values, to 
determine which features to use for the final tests, the Reduced Audio Set was run 
through the Feature Extractor using a longer feature vector with contour metadata 
features added and a wider variety of combinations for features with specific 
parameters. ANOVA-F scores were calculated for each feature using Scikit-Learn’s 
SelectKBest function (Pedregosa et al., 2011) to determine which features performed 
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the best at distinguishing between different species’ calls. In some cases where multiple 
features were found to be too similar to each other (e.g. minimum versus maximum 
contour frequency), only the one that scored highest was kept. Some features that were 
implemented for the audio settings testing were not found to be useful in this run, and 
were thus removed from the final vector and not further mentioned in this report. 
Additionally, the algorithms of some features (specifically spectral contrast, formants, 
harmonic centroid, and BEHC) were modified after this run, so the new implementations 
of these features were run through again and tested similarly. 

The final feature vector used consisted of the following: 

• Contour duration 

• Minimum contour frequency 

• Contour frequency range 

• Contour frequency slope 

• Slice data frequencies: standard deviation 

• 1st derivative of slice data frequencies: mean, standard deviation, and maximum 
(3 features) 

• 2nd derivative of slice data frequencies: mean, standard deviation, and maximum 
(3 features) 

• Slice data frequency start-to-end slope 

• Formants, using 22 poles (maximum expected fundamental of 6000 Hz), 
minimum formant frequency of 90 Hz, maximum formant bandwidth of 400 Hz: 

o Frequencies of formants 1 to 4: means and standard deviations (8 
features) 

o Frequency ratios of formants 2 to 4 against formant 1: means and 
standard deviations (6 features) 

• MFCCs, 12 coefficients calculated: 
o Coefficients 1 to 12: means and standard deviations (24 features) 
o All coefficients combined: mean and standard deviation (2 features) 

• Praat fundamental frequencies, pitch tracking range of 50 to 16000 Hz: median 
and standard deviation (2 features) 

• Praat-tracked harmonic features, pitch tracking range of 50 to 16000 Hz: 
o Total harmonic distortion, calculated on 8 harmonics: median and 

standard deviation (2 features) 
o Harmonics-to-background ratio, calculated on 8 harmonics: mean and 

standard deviation (2 features) 
o Harmonic centroid: mean and standard deviation (2 features) 
o BEHC, calculated on 8 harmonics, frame means: median and standard 

deviation (2 features) 

• Root mean square: mean and standard deviation (2 features) 

• Spectral bandwidth: 
o Power of 2, normalized: standard deviation 
o Power of 4, normalized: mean 
o Power of 4, not normalized: standard deviation 

• Spectral centroid: mean and standard deviation (2 features) 
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• Spectral contrast, 4 frequency bands, first-bin frequency cutoff of 500 Hz, linear: 
o Bands 1 to 4: means and standard deviations (8 features) 
o All bands combined: mean and standard deviation (2 features) 

• Spectral flatness, power of 3: mean and standard deviation (2 features) 

• Spectral flux: mean and standard deviation (2 features) 

• Spectral magnitude: 
o 0 to 1000 Hz: mean and standard deviation (2 features) 
o 1000 to 2000 Hz: mean and standard deviation (2 features) 
o 2000 to 4000 Hz: mean and standard deviation (2 features) 
o 4000 to 12000 Hz: mean and standard deviation (2 features) 

• Spectral rolloff, threshold of 85%: mean and standard deviation (2 features) 

• Zero-crossing rate: mean, standard deviation, and maximum (3 features) 

This comes to a total of 96 features. 

Following settings testing, the Full Audio Set was run through the Feature Extractor 
using the settings combination with the best results and the aforementioned feature 
vector, which, as will be explained in the results, used a 2-second clip length. From this 
point on, this training set will be referred to as “Set A”. 

As the vast majority of contours (and harmonics that caused said contours) were much 
shorter than the 2-second clip length, likely resulting in some clips containing a large 
chunk of silence or background noise, the Full Audio Set was run through again with the 
same settings and features as Set A, but with the clip length set to variably match that of 
each contour, in order to analyze which features are affected by such a discrepancy. 
This second training set will be referred to as “Set B”. 

RESULTS AND DISCUSSION 

Data collection 

The detection and call cluster counts for each species in each subset are detailed in 
Table 2. Data was organized into 18 subsets, containing 316,555 WMD detections 
organized into 111,859 call clusters. The KW, HW, and V/E labels applied to 37.7%, 
34.4%, and 27.9% of the detections, respectively, and 28.2%, 39.3%, and 32.4% of the 
call clusters, respectively. KW call clusters were thus larger and less numerous overall 
than HW or V/E clusters. 

Feature Extractor settings testing 

Using the procedure described in the methodology, the best overall recall values were 
produced using the following audio settings: 

● Noise reduction applied with a scalar of 1.5 

● A high-pass filter applied with a threshold of 500 Hz and a filter order of 4 
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● A clip length of 2000 ms (which was the maximum clip length attempted due 
to the already-extensive processing time) 

● An STFT length of 4096 bins and a hop size of 1024 samples 

The recall and overall accuracy values of select test runs are displayed in Table 3, in 
order to demonstrate how each setting change improved the results. Set 05-04, which 
used the settings above (albeit with a clip length of 1000 ms, to save processing time), 
performed substantially better than the first test, 00-01, with overall accuracy increases 
from 71.6% and 71.7% to 81.5% and 81.6%, and KW recall score increases from 63.3% 
and 64.5% to 80.5% on both runs. While the initial addition of noise reduction (set 01-
03) does not appear to significantly improve the results compared to those of set 00-01 
and even causes V/E recall to decrease, when using the settings from 05-04 and 
removing noise removal (set 05-08), overall accuracy decreased to 76.0% and 76.1% 
and KW recall score decreased to 68.7% and 69.3%, demonstrating that the noise 
reduction is useful in combination with the updated settings. 

Call classification and model analysis 

Using the same Test Classifier settings as in the Feature Extractor settings testing, Set 
A (2-second clip length) and Set B (contour-matched clip length) were cross-validated, 
with the confusion matrices from these runs shown in Tables 4 and 5. For the results for 
each subset shown in Tables 1 and 2, see Supplementary Material. 

With Set A, recall scores ranged between 86.4% (HW) and 90.1% (V/E), while there was 
a much wider gap for precision scores, which ranged between 79.6% (KW) and 91.6% 
(HW), with an overall accuracy of 87.8%. As was observed in settings testing with the 
smaller audio set, using a 2-second clip length as with Set A produced slightly superior 
results compared to using the variable clip length as with Set B in every metric, with a 
difference of 2.4 percentage points in overall accuracy. However, using the variable clip 
length setting takes roughly 40% as much time to process as using a 2-second clip 
length, so this may be perceived as a reasonable trade-off. 
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Figure 3. Precision-recall curves and receiver-operating-characteristic curves of Set A’s cross-validation 
run for each class (killer whale, humpback whale, and vessel/environment call clusters, from left to right), 
with plot points labelled by prediction score threshold value. As there are more than two classes, non-
target clusters incorrectly predicted as the other non-target class are counted here as true negatives. Note 
the axis limits. 

The HistGradientBoostingClassifier provides class probability scores using the 
predict_proba function (Pedregosa et al., 2011), which in turn provides a certainty metric 
for each prediction. Using this with a range of specified score thresholds, precision-
recall and receiver-operating-characteristic (ROC) curves (Hildebrand et al., 2022) for 
Set A’s cross-validation run (Figure 3) demonstrated that higher score thresholds 
produce higher precision rates and lower false-positive rates, at the expense of recall 
and true-positive rates. The KW class notably had a less favourable precision rate at 
any reasonable threshold. 

During the annotation process, it was noted that the majority of HW calls that were 
annotated were distant moans with little or no harmonicism visible in the spectrogram; 
this is partially observable in the minimum contour frequency histogram in Figure 4. 
Therefore, there were concerns about the viability of the classifier when classifying a 
HW call with stronger harmonicism, such as the one shown in Figure 1, due to those 
types of calls producing detections within the typical frequency range of KW and V/E 
detections. These calls were not specially marked when annotated, but they tended to 
produce a large number of detections per call cluster compared to distant calls with little 
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to no harmonicism visible. When only analyzing the results from call clusters that 
contained 10 or more detections each (Table 6), the recall scores for KW and V/E 
clusters dramatically increase to 98.0% and 98.8%, respectively, whereas the recall 
score for HW clusters decreases to 77.4%. This implies that the classifier is capable of 
recognizing HW calls with visible harmonicism, but is worse at it than it is at classifying 
low frequency HW calls with less harmonic activity. Noting that KW and V/E clusters 
with large numbers of harmonics were able to be easily identified, simply adding more 
harmonic/high-frequency HW calls to the training set may alleviate this problem. 
Inversely, this also implies that the classifier is better at identifying KW calls with a lot of 
visible harmonics than with KW calls that are either distant or masked by noise. 

Performance analysis of select features 

In order to analyze the performance of each feature, ANOVA F-scores were calculated 
for each feature using Scikit-Learn’s SelectKBest function (Pedregosa et al., 2011). Due 
to the dependant nature of the training data, p-values and the numerical values of the F-
scores are not useful because of the potential for pseudo-replication, but the relative 
differences in F-scores between features does provide a means of comparing their 
performance. There was a very large variation in F-scores, which demonstrates that 
some features are much more useful than others. To demonstrate this, the F-scores for 
the best-performing features from each algorithm are displayed in Table 7. For the F-
scores of all features, see Supplementary Material. It should be noted that when fitting 
the models for producing these scores, the same random sampling methods used to fit 
the models for the cross-validation tests are also used, so different scores would be 
produced with each fit and do not exactly correspond to the same models used in the 
cross-validation tests; however, the scores produced should provide a close 
representation nonetheless. 

When using a 2-second clip length as per Set A, spectral rolloff, spectral bandwidth, 
spectral centroid (standard deviation), and spectral flatness all appear to be specifically 
useful at differentiating V/E detections from the marine mammal vocalizations in this 
study. Minimum contour frequency, formant frequency, MFCCs, formant frequency ratio, 
zero-crossing rate, harmonics-to-background ratio, and spectral centroid (mean) all 
appear to be specifically useful for identifying humpback whale calls. Frequency slope 
and range, standard deviation of slice data frequencies, Praat fundamental frequency 
(standard deviation), and spectral flux appear to be specifically useful for identifying 
killer whale calls. BEHC appears to be useful for all three classes. When using a 
variable clip length matched to the length of each contour, however, some of the F-
scores for the audio-based features drop significantly, especially the ones that are best 
at identifying V/E detections. One potential reason for this is that vessel noise 
“encounters” are typically long harmonic drones that produce detections with subtle 
changes in frequency and magnitude, resulting in most 2-second clips containing vessel 
noise beyond the length of the contour, whereas KW and HW calls are typically much 
shorter than 2 seconds, resulting in much of each clip consisting of silence or 
background noise instead; examples of these phenomena are shown in Figure 1. 
Conversely, the F-scores for the selected MFCC and formant features increased 
significantly with the variable clip length, and pitch tracker-based features (barring the 
standard deviation of the Praat fundamental frequency, for unclear reasons) appear to 
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have been less affected, possibly explained by those features not taking audio frames 
where a pitch could not be discerned (e.g. in silence or non-tonal noise) into account. 
The best features from each “category” in Set B with all three classes are largely the 
same as those in Set A, with a few exceptions, the most notable by far being the mean 
of the spectral centroid receiving an F-score nearly three times greater than the 
standard deviation. Again, this makes sense, as the mean would work better if the clip is 
limited to an actual vocalization, whereas the standard deviation would work better at 
telling apart clips that contain a large section of silence from those that do not. 

 

Figure 4. Histograms counting the number of detections by minimum contour frequency (left column) and 
header data frequency “slope” (right column) for killer whales (top row), humpback whales (centre row) 
and vessel and environmental noise (bottom row). Note that many if not most detections were caused by 
harmonics as opposed to the fundamental frequency. 

     KWs were almost equally as likely to be mistakenly labelled as V/E as HW (Table 4), 
yet HWs were almost five times more likely to be mistakenly labelled as KW than V/E. A 
potential contributor to this is that the majority of HW calls were distant low-frequency 
moans with little or no harmonic activity visible in the spectrogram, and most HW 
detections had a minimum contour frequency below 1000 Hz, whereas the bulk of KW 
detections were spread out between 500 and 6000 Hz, while V/E detections were 
spread out across much of the whole spectrum (Figure 4). Thus, perhaps unsurprisingly, 
minimum contour frequency produced the highest ANOVA-F score of all features 
between the three classes (Table 7). This score slightly increases when only KW and 
HW detections were in the set and doubles when only HW and V/E detections were in 
the set, but decreases to only a sixth as much when only KW and V/E detections were in 
the set. 

Another tendency that was frequently observed during the annotation process was KW 
contours being more likely to change in frequency compared to V/E contours, due to the 
general nature of killer whale calls versus detections caused by monotone singing 
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propellers. While this has plenty of exceptions (e.g. engine acceleration, monotone KW 
calls), this pattern generally holds true, as half of the KW detections have a higher 
header data contour frequency “slope” than the vast majority of HW and V/E detections 
(Figure 4). The ANOVA-F score for this feature was on the higher end in comparison to 
other features, and this held true when only KW and V/E detections were in the set and 
when only KW and HW detections were in the set, but the score for this feature 
decreases to only a tenth as much with only HW and V/E detections in the set. 

 

Figure 5. Histograms counting the number of detections in Set B by the mean of the harmonic centroid 
(left column) and the median of frame means of the bin-exclusive harmonic centroid by (right column) for 
killer whales (top row), humpback whales (centre row) and vessel and environmental noise (bottom row). 

The median of the frame means of the “bin-exclusive harmonic centroid” feature had the 
highest score of all features for its worst species combination, with its lowest F-score 
between sets being for KW vs. V/E in Set B. Comparatively, the mean of the original 
harmonic centroid received a slightly higher score in this particular combination, but 
received substantially lower scores in every other case. As shown in Figure 5, there are 
visible differences in BEHC distribution between the classes, with KW detections spread 
out between the bottom six harmonics and centered around the third harmonic, with HW 
detections largely clustered around the fundamental and second harmonic, and V/E 
detections centered around the fifth harmonic, with little activity around the second and 
third harmonics. With harmonic centroid, the KW and HW distributions overlap much 
more closely. The key difference between these two features is that the BEHC only 
takes the bins corresponding to approximate harmonics of the found fundamental into 
account, whereas the harmonic centroid uses the centroid of the whole spectrum. While 
the noise reduction algorithm was found to improve the results, it is certainly not perfect 
at removing background noise that occurs between harmonics, and it does not attempt 
to remove clicks or work around instances where multiple individuals of the same 
species are vocalizing; the harmonic centroid would likely be more negatively affected 
by these factors. 
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CONCLUSION 

This report describes the effectiveness of MIRFEE, an ensemble-type machine learning 
classifier, used in conjunction with the PAMGuard Whistle and Moan Detector, at 
differentiating between killer whale and humpback whale vocalizations, and non-
biological sounds at various locations in and around the Salish Sea using features 
derived from detection metadata and corresponding audio data. The training set used to 
test the efficacy of the classifier covered a wide range of locations, seasons, and 
environmental conditions. The final training sets contained a total of 316555 detections 
that were organized into 111859 “call clusters” defined by grouping all detections within 
two seconds of each other together, with a relatively even distribution between the three 
classification categories. 

When performing leave-one-out cross-validation on a training set consisting of features 
extracted from a large set of hydrophone audio and sorted into subsets by location and 
timeframe, the resulting precision and recall rates were 79.6% and 87.2%, respectively, 
for killer whale calls, 91.6% and 86.4% for humpback whale calls, and 91.4% and 90.1% 
for vessel and environmental noise, with an overall accuracy of 87.8%. The use of a 
noise reduction algorithm that proportionally reduces the magnitudes of STFT bins using 
average frequency band magnitudes from a clip preceding a cluster of detections was 
found to improve the results, as was the simultaneous use of a 4-order high-pass filter 
with a threshold of 500 Hz. To improve the classification of humpback whale calls that 
overlap in frequency with killer whale calls and vessel noise, adding more humpback 
song and/or highly-harmonic social calls to the training set is recommended. 

The vast range of ANOVA F-scores implies that some features are substantially more 
useful than others. Features taken from the detector’s metadata involving frequency and 
changes of frequency were found to be useful, which is highly beneficial due to their low 
computational complexity. In terms of audio-based features, while MFCCs, spectral 
centroid, spectral rolloff, and zero-crossing rate—features used with the Orchive (Ness et 
al., 2013)—were all found to be useful in this scenario, spectral bandwidth, BEHC, 
formants, spectral flatness, and harmonics-to-background ratio—all experimental 
additions—were found to be useful as well, and further investigation into the use of these 
features for similar purposes is encouraged. 

SUPPLEMENTARY MATERIAL 

See supplementary material at 
https://github.com/htleblond/PAMGuardMIRFEE/tree/main/supplementary%20material 
for full cross-validation results and ANOVA F-Scores for the full feature vectors of each 
test run. 

The MIRFEE plugin can be downloaded at: 
https://github.com/htleblond/PAMGuardMIRFEE. 
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TABLES 

Table 1. Audio subset information including hydrophone deployment location and 
model, recording timeframes, and amount of audio used in the Full Audio Set. 

ID Location Hydrophone Start date End date Audio used (mins.) * 

1 Swiftsure Bank Shelf AMAR 2018-11-26 2018-11-30 1474 

2 Swiftsure Bank Canyon ORCA 2021-02-27 2021-05-17 6931 

3 Swiftsure Bank Shelf ORCA 2021-06-03 2021-08-01 5931 

4 Bonilla Point SoundTrap 2021-08-11 2022-01-20 3775 

5 Carmanah Point SoundTrap 2022-03-07 2022-06-08 2296 

6 Enterprise Reef SoundTrap 2022-11-02 2023-03-13 1335 
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7 Swanson Channel AMAR 2021-07-31 2021-10-06 4944 

8 Port Renfrew AMAR 2018-05-01 2018-10-11 597 

9 Swanson Channel AMAR 2023-01-19 2023-03-08 1129 

A Swiftsure Bank Shelf AMAR 2019-03-03 2019-04-01 1721 

B Carmanah Point SoundTrap 2022-06-15 2022-07-04 1743 

C Nitinat SoundTrap 2022-06-15 2022-06-24 435 

D Sheringham Point SoundTrap 2022-07-25 2022-08-23 921 

E Strait of Georgia North AMAR 2021-09-01 2021-11-30 2324 

F Strait of Georgia South AMAR 2021-09-01 2021-12-31 5364 

G Swiftsure Bank Canyon AMAR 2022-07-01 2022-08-12 6086 

H Carmanah Point SoundTrap 2022-12-01 2023-02-10 1880 

I Miners Bay SoundTrap 2021-09-17 2022-01-30 1794 

* Combined length of all files that contained at least five detections. Note that file lengths were between 3 
to 10 minutes in length depending on the subset, and actual calls consisted of a small fraction of these 
numbers. 

 

Table 2. Audio subset detection and call cluster counts for the Full Audio Set. A 
“detection” refers to an individual spectrogram contour marked by the Whistle and Moan 
Detector, whereas a “call cluster” refers to a grouping of detections where each occurs 
within two seconds of another. 

ID 

Detection count Call cluster count 

KW HW V/E Total KW HW V/E Total 

1 110 22143 34 22287 68 4533 27 4628 

2 4326 2273 5033 11632 1600 1324 2867 5791 

3 19532 2014 5029 26575 5217 1169 2453 8839 

4 7373 33556 3562 44491 1965 11054 1542 14561 

5 3696 2765 5296 11757 1464 1879 2855 6198 

6 6884 0 2702 9586 1542 0 1117 2659 

7 19514 16 22407 41937 2572 10 7075 9657 
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8 137 661 849 1647 83 416 432 931 

9 4882 11 1492 6385 1347 10 604 1961 

A 9296 1237 335 10868 3185 1017 277 4479 

B 2925 505 3870 7300 1263 264 2521 4048 

C 364 8 1105 1477 211 4 753 968 

D 1616 0 4003 5619 544 0 1631 2175 

E 6126 132 7888 14146 1642 122 3283 5047 

F 2641 16822 3463 22926 977 10418 1801 13196 

G 28424 6080 11237 45741 7437 2758 4989 15184 

H 902 20383 150 21435 364 8834 135 9333 

I 672 320 9754 10746 86 193 1925 2204 

Total 119420 108926 88209 316555 31567 44005 36287 111859 

 

 

Table 3. Recall scores for select audio settings-testing runs, demonstrating the 
improvement between models when new settings were applied. Note that two runs were 
performed for each set. The “set IDs” were designations used to arrange runs into which 
category of settings was being tested. 

Set ID Description 

Recall (in %) Overall 
accuracy 

(in %) KW HW V/E 

00-01 
Clip length: 350 ms, STFT length: 
1024, STFT hop: 512, noise reduction 
(NR) and filters off 

63.3 

64.5 

71.9 

71.6 

78.2 

77.8 

71.6 

71.7 

01-03 00-01 with NR: scalar 1.5 
67.4 

67.1 

76.3 

76.4 

74.1 

73.9 

72.6 

72.5 

02-06 
00-01 with high-pass filter (HPF): 500 
Hz, order 4 

66.0 

65.8 

73.5 

73.6 

81.2 

81.2 

74.1 

74.0 

03-01 01-03 NR combined with 02-06 filter 
72.5 

72.2 

79.8 

79.1 

76.5 

75.8 

76.2 

75.6 
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04-04 03-01, clip length: 1000 ms 
75.6 

76.1 

78.3 

78.5 

79.4 

79.1 

77.8 

77.9 

04-06 03-01, clip length: 2000 ms 
77.2 

77.5 

78.9 

78.5 

82.3 

82.6 

79.7 

79.8 

05-04 
03-01, clip length: 1000 ms, STFT 
length: 4096, STFT hop: 1024 

80.5 

80.5 

80.6 

80.6 

83.1 

83.3 

81.5 

81.6 

05-08 05-04 without NR 
68.7 

69.3 

73.5 

73.5 

83.9 

83.7 

76.0 

76.1 

 

 

Table 4. The confusion matrix for leave-one-out cross-validation on Set A, which used a 
clip length of two seconds. 

 KW HW V/E Recall 

KW 27535 1979 2052 87.2% 

HW 4940 38029 1036 86.4% 

V/E 2109 1493 32685 90.1% 

Precision 79.6% 91.6% 91.4% 87.8% 

 

 

Table 5. The confusion matrix for leave-one-out cross-validation on Set B, which used a 
variable clip length that matches that of each contour. 

 KW HW V/E Recall 

KW 26955 1761 2851 85.4% 

HW 5243 36894 1868 83.8% 

V/E 2952 1684 31651 87.2% 

Precision 76.7% 91.5% 87.0% 85.4% 
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Table 6. The confusion matrix for leave-one-out cross-validation on Set A, but only 
including clusters containing 10 or more detections. 

 KW HW V/E Recall 

KW 2169 19 26 98.0% 

HW 270 1088 47 77.4% 

V/E 9 5 1177 98.8% 

Precision 88.6% 97.8% 94.2% 92.2% 

 

 

Table 7. ANOVA F-scores of select features with the best-performing parameters from 
their respective category between all three classes in both sets. Due to the dependent 
nature of the training data, the numerical values of the F-scores are not useful on their 
own due to potential for pseudo-replication and are only intended for comparing 
performance between features. 

Feature name 
Set A Set B 

All three 
classes 

KW vs. 
HW 

KW vs. 
V/E 

HW vs. 
V/E 

All three 
classes 

KW vs. 
HW 

KW vs. 
V/E 

HW vs. 
V/E 

Minimum contour 
frequency * 

46912.4 50821.7 7765.4 100981.6 47159.3 51063.6 7838.0 101146.9 

Spectral rolloff, 85% 
threshold, standard 
deviation 

29758.6 273.1 50371.7 52635.3 11270.8 39.9 17043.9 22963.9 

BEHC, 8 harmonics, 
median of frame means 

28736.1 10352.3 18860.0 54270.9 22953.5 15014.5 9073.1 45152.5 

Spectral bandwidth, 
power of 2, normalized, 
standard deviation 

25758.4 418.9 52106.6 37619.8 7952.4 136.2 13611.4 12505.7 

Spectral centroid, 
standard deviation ** 

21339.0 785.8 38400.0 37321.9 6904.0 282.3 11430.7 13870.3 

Frequency of 1st 
formant, mean 

19179.0 26945.5 134.8 37241.3 27007.1 41700.7 18.1 48538.1 

MFCCs, 2nd coefficient 
of 12, mean 

18834.2 21426.3 2701.1 35980.8 27428.8 32601.4 2127.9 50932.3 

Ratio between 4th and 
1st formants, mean 

17687.7 16243.0 1464.5 30590.6 28371.6 33822.4 2.8 36083.3 

Frequency slope 
(absolute value) * 

17634.5 15864.4 25516.6 1895.9 17741.0 16102.0 25849.3 1921.4 

Zero-crossing rate, 
mean ** 

16837.2 14481.4 5510.0 35179.0 15061.1 23238.4 650.3 31380.3 

Frequency range * 16440.7 11144.0 26523.2 6163.3 16426.0 11357.2 26698.6 6326.1 

Zero-crossing rate, 
maximum *** 

16097.0 25743.5 0.4 33542.7 16436.9 27027.6 104.1 32691.9 

Slice data frequencies, 
standard deviation * 

14792.7 10686.2 23664.9 4386.0 14807.0 10838.1 23976.1 4507.9 

Harmonics-to-
background ratio, 
mean 

13399.6 9979.1 3709.8 25078.2 14026.1 6157.1 7851.0 28206.3 
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Spectral flatness, 
power of 3, standard 
deviation ** 

11060.7 186.5 16895.4 22318.8 1633.7 716.8 1038.3 3287.6 

Praat fundamental 
frequency, standard 
deviation ** 

8287.8 7979.3 13121.5 382.4 638.5 506.2 1408.5 98.1 

Spectral centroid, 
mean *** 

7976.3 11913.0 564.4 10911.8 18709.0 20353.6 745.7 34359.3 

1st derivative of slice 
data frequencies, 
maximum * 

6239.0 3116.8 11493.5 3347.6 6200.8 3175.9 11782.0 3292.0 

Spectral flatness, 
power of 3, mean *** 

6080.8 189.3 9038.6 11805.1 2455.9 2216.9 342.4 3823.6 

Harmonic centroid, 
mean 

5747.2 1386.8 10369.4 4282.0 5039.7 1665.6 9296.7 3263.0 

Spectral magnitude, 0 
to 1000 Hz, standard 
deviation 

5562.9 6785.8 0.5 6088.5 6357.2 6981.6 14.9 7239.5 

Slice data frequency 
start-to-end slope * 

4937.4 3539.0 7285.8 1669.4 4836.4 3546.8 7379.1 1634.3 

Spectral flux, standard 
deviation 

4572.6 6073.2 5368.7 135.5 2328.5 3850.9 316.0 2850.6 

Spectral contrast, 1st 
band of 4, linear, 
standard deviation 

4340.6 4258.2 228.2 5267.1 3898.6 3767.1 221.5 4999.9 

Contour duration * 4083.4 3515.6 783.3 6307.4 4064.2 3526.6 768.6 6490.6 

Praat fundamental 
frequency, median *** 

2937.0 3942.6 3238.5 203.6 2665.5 4826.4 1729.3 1101.9 

2nd derivative of slice 
data frequencies, 
maximum * 

2289.0 190.4 4382.9 2917.7 2318.5 184.8 4539.9 2890.9 

Root mean square, 
standard deviation 

1867.8 736.5 1317.9 3670.1 1808.4 1266.5 594.4 2976.4 

Total harmonic 
distortion, standard 
deviation 

307.7 5110.9 19.0 339.3 5247.2 4654.0 778.3 7280.1 

* Feature is not affected by audio clip length. The difference in scores between Set A and Set B for these features is due to the use 
of random sampling each time the training model is fitted. 

** Feature was the best in its category in Set A, but not Set B. 

*** Feature was the best in its category in Set B, but not Set A. 
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