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ABSTRACT 

Under the renewed Pacifc Salmon Treaty (PST) provisions, Canada has agreed to complete a 
comprehensive escapement goal review for sockeye salmon (Oncorhynchus nerka) returning to 
the Skeena and Nass rivers, which include 31 stocks with a range of life histories and observed 
productivities. We tested alternative spawner-recruit model fts, developed guidelines for chosing 
alternative productivity scenarios based on the model fts, and calculated biological benchmarks 
for the selected scenarios. We also compare alternative approaches for combining stock-level 
estimates of biological benchmarks into aggregate reference points. A large proportion of sockeye 
salmon returns to the Skeena originates from the Babine Lake Development Project (BLDP), a 
low-intensity enhancement program that consists of a series of spawning channels and managed 
river sections on two Babine Lake tributaries (Pinkut and Fulton). As part of this review, we 
summarized production trends in BLDP production data and found that while loading densities 
for these systems have remained relatively constant over time, the overall productivity for the 
enhanced component of Skeena sockeye has decreased during the past 20 years. 
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ACRONYMS AND INITIALISMS 

Table 1. Short forms and expansions of technical terms used throughout the report. 

Short Form Expansion 

AAH Aggregate Allowable Harvest 

ADF&G Alaska Department of Fish and Game 

BLDP Babine Lake Development Project 

CU Conservation Unit 

DFO Fisheries and Oceans Canada, formerly Department 
of Fisheries and Oceans 

FSC Food, Social, and Ceremonial Fisheries 

GSI Genetic stock identifcation 

HCR Harvest Control Rule 

LHAZ Life History and Adaptive Zone 

NBRR and NBSRR Northern Boundary Run Reconstruction and Northern 
Boundary Sockeye Run Reconstruction model 

NCCSDB North and Central Coast Salmon Data Base 

NUSEDS Fisheries and Oceans Canada New Salmon 
Escapement Database 

PR Photosynthetic Rate 

PST Pacifc Salmon Treaty 

SR Spawner-Recruit 

SSIRR Skeena Sockeye In-River Run Reconstruction model 

WSP Wild Salmon Policy 
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1. INTRODUCTION 

1.1. ESCAPEMENT GOAL REVIEW 

1.1.1. Background 

Sockeye salmon populations are changing rapidly with the cumulative effects of anthropogenenic 
stressors including fshing pressure, habitat degradation, and climate change. Skeena and 
Nass Sockeye, which are the second and third largest Sockeye runs in British Columbia, have 
experienced declining productivity, together with increasing variability in run size and increased 
frequency of low returns since 2000. In recent years, low returns of Skeena and Nass Sockeye 
have led to reductions or closures of Canadian commercial fsheries, and restrictions on Indigenous 
fsheries targeting Skeena Sockeye in some years. The four lowest Nass Sockeye returns were 
recorded from 2017-2021. For Skeena Sockeye, the lowest escapements since a catastrophic 
Babine landslide in the 1950s occurred in 2013, 2017, and 2019. 

Under the renewed Pacifc Salmon Treaty (PST) provisions, Canada has agreed to complete a 
comprehensive escapement goal analysis for Sockeye salmon (Oncorhynchus nerka) returning 
to the Skeena and Nass rivers (Pacifc Salmon Commission 2020). Aggregate escapement 
goals for Skeena and Nass Sockeye salmon are used to set Annual Allowable Harvests (AAH) 
for U.S. and Canadian fsheries targeting both stock aggregates. In addition to renewed PST 
provisions, biologically-based escapement goals for Skeena and Nass River Sockeye salmon are 
used for Canadian fshery management including the Nisga’a Treaty (British Columbia, Canada, 
and Nisga’a Lisims Government 2000), and First Nations Food, Social and Ceremonial (FSC), 
economic opportunity and recreational fsheries in the Skeena and Nass rivers. 

Aggregate Sockeye salmon returns to the Skeena and Nass watersheds are comprised of numerous 
distinct stocks, some of which are depressed and are considered stocks of concern, while others 
have small spawner abundances and few or no reliable estimates (Pestal et al. 2025b). Enhanced-
origin Sockeye salmon from two tributaries to Babine Lake account for a large proportion of 
aggregate Skeena Sockeye salmon production. Although the individual wild stocks, with run 
sizes ranging from hundreds to tens of thousands, are much smaller in terms of abundance than 
enhanced Babine stocks, they account for most of the genetic diversity among Skeena and Nass 
Sockeye. Under the Wild Salmon Policy (DFO 2005), Canada is seeking to maintain the future 
productivity of Skeena and Nass Sockeye salmon returns by maintaining the genetically unique 
wild Sockeye salmon populations that contribute to overall returns. Concerns about potential 
overharvesting of smaller, less productive Skeena and Nass in mixed stock fsheries targeting the 
large lake stocks have been noted since at least the 1960s, prior to the start of BLDP-enhanced 
returns (e.g., Larkin and McDonald 1968). More recently, an independent review of Skeena 
emphasized the need to consider tradeoffs between fshery management measures and WSP 
requirements to conserve already depressed weaker stocks (Walters et al. 2008). 

The current aggregate escapement goals for Skeena and Nass Sockeye salmon, based on 
previous estimates of aggregate spawner abundance to produce maximum sustained yield 
(Smsy) are 900,000 for Skeena Sockeye and 200,000 for Nass Sockeye (Shepard and Withler 
1958; Ricker and Smith 1975; Bocking et al. 2002; Cox-Rogers 2013). These goals do not 
consider the complex stock structure of each aggregate. Furthermore, the productivity of Skeena 
and Nass Sockeye salmon aggregates has declined considerably in recent years, and stock 
composition within and between the two aggregates has changed, most notably after the implementation 
of the enhancement facilities at Babine Lake in the 1970s, and a more recent reduction in the 
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proportion of Sockeye returning to Meziadin Lake, which is the largest Sockeye system in the 
Nass watershed. Aggregate escapement goals based on maximum sustainable yield, which 
assume long term average productivity and stable stock composition, do not account for these 
changes and may not refect current or future conditions for Skeena or Nass Sockeye. 

The current escapement goal for Skeena Sockeye does not consider the contribution from enhanced 
Babine Sockeye originating from the BLDP, which accounts for an average of 67% (1970-2020) 
of the Skeena Sockeye return, with high variability between years (range 33-83%). Given that 
the average ratio of enhanced to wild Skeena Sockeye is approximately 2:1, the assumed interim 
escapement goal for the wild component of Skeena Sockeye is approximately 300,000, or 1/3 of 
the current 900,000 escapement goal. 

Skeena and Nass Sockeye, which originate in Canadian waters, are primarily harvested in 
Canadian and Alaskan commercial fsheries, and Indigenous fsheries in marine approach 
areas and throughout the Skeena and Nass watersheds. A small number of Skeena and Nass 
Sockeye are harvested in recreational fsheries in each river. From 1985-2021, the average total 
exploitation rate was 54% for Skeena Sockeye and 64.6% for Nass Sockeye (Northern Boundary 
Technical Committee 2020). Total exploitation rates for both Skeena and Nass Sockeye have 
decreased during this time period, and the proportion of Skeena and Nass Sockeye in the total 
harvest has varied by sector. 

Aggregate escapement goals for Sockeye salmon returning to the Skeena and Nass Rivers 
(Skeena and Nass Sockeye) are required to implement Pacifc Salmon Treaty Chapter 2 provisions. 
Chapter 2 allows the U.S. to harvest 2.45% of the Annual Allowable Harvest (AAH) of Skeena 
and Nass River salmon prior to U.S. Statistical Week 31 in the District 104 purse seine fshery, 
and 13.8% of the AAH for Nass Sockeye in the District 101 gillnet fshery. The AAH each year is 
calculated as the combined total run above the combined escapement targets for Skeena and 
Nass Sockeye, unless the run size falls below the combined escapement target of 1.1m, in which 
case the AAH is defned as the total run less actual escapement. 

1.1.2. Escapement Goal Review Process 

The escapement goal review is guided by bilaterally accepted Terms of Reference that specify 
the following objectives: 

1. Summarize and evaluate relevant biological information to inform the development of aggregate 
escapement goals for Skeena and Nass Sockeye including an assessment of key uncertainties 
and gaps in the data for Sockeye populations in these basins. 

2. Evaluate alternative aggregate escapement goals for Nass and Skeena River Sockeye, 
including an evaluation of stock status, production, and implications of key uncertainties. 

Canadian members of the Northern Boundary Technical Committee (NBTC) of the Pacifc Salmon 
Commission (PSC) have been tasked with leading a technical review of data, methods and 
metrics that can be used to developed biologically based escapement goals for Skeena and 
Nass Sockeye. A Technical Working Group (TWG) was established to support this work. The 
TWG included participants from Fisheries and Oceans Canada, North Coast Area First Nations, 
Pacifc Salmon Foundation, and consulting organizations. Two independent reviewers were also 
identifed, one by each country, to guide the technical work and review the resulting science 
advice. The technical work is one part of the broader escapement goal review process, and this 
document is one step in the technical work. Appendix A lists TWG members and independent 
reviewers. 
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The TWG and independent reviewers have completed four key steps leading up to this Research 
Document: 

• Scoping workshop: We prepared a workshop with Canadian rights holders and stakeholders 
in the fall of 2019, presenting an overview of planned technical work, seeking feedback 
on analytical priorities, and compiling suggestions for the overall escapement goal review 
process. 

• Data review - Part 1: Stock structure: We consolidated information on population structure 
for Skeena and Nass Sockeye aggregates, established an agreed-upon list of 31 stocks for 
subsequent analyses, and documented how stocks align with designated Conservation 
Units (CU) under Canada’s Wild Salmon Policy (DFO 2005). A key fnding of the stock 
structure review was that some of the existing CU designations were likely errors that required 
further review, but this is outside the scope of the current process. 

• Data review - Part 2: Spawner-recruit data: We compiled, reviewed, and updated available 
data to generate agreed-upon spawner-recruit data sets for stocks and aggregates (Pestal 
et al. 2025b). The 31 stocks were organized into three groups based on relative abundance 
and available data for subsequent analyses. Based on the data review and extensive sensitivity 
testing, we identifed priorities for the analysis. The key issues highlighted for investigation 
are: 

1. Changes in productivity : Productivity for Skeena and Nass Sockeye has declined considerably 
in recent years with increasing variability in total returns and productivity for both aggregates, 
and for many of the component stocks. An effective escapement goal needs to consider 
that these changes are likely to persist in the future. The TWG and both independent 
reviewers identifed time-varying productivity as one of the most important factors to 
consider in the analytical plan. 

2. Aggregate vs. stock-level management reference points: The Skeena and Nass Sockeye 
aggregates are both comprised of many smaller stocks with unique characteristics and 
population dynamics. A key objective for the review of Skeena and Nass Sockeye escapement 
goals is to recommend a combined aggregate escapement goal for Skeena and Nass 
Sockeye which considers stock-level genetic diversity in addition to variable productivity. 

3. Enhanced stocks vs. wild stocks: The largest component of the combined aggregate 
Skeena and Nass Sockeye return originates from the BLDP-enhanced systems where 
spawner escapement is relatively constant and managed to maintain optimal production 
of fry. The current aggregate escapement goal for Skeena Sockeye of 900,000 spawners 
is based on spawner recruitment analyses that were conducted in the 1950s and 1960s 
(Shepard and Withler 1958) prior to the BLDP. A review of management targets for Skeena 
Sockeye needs to consider the large contribution and spawning capacity for the enhanced 
stocks. 

This Research Document provides science advice regarding these analytical priorities. Trade-
offs and eventual decisions regarding aggregate management goals and associated harvest 
strategies, which will consider biological as well as other factors (e.g., socio-economic objectives), 
will depend on policy decisions and the specifc objectives of First Nation and stakeholder groups 
which will be defned in a subsequent management process. This Research Document presents 
candidate biological benchmarks for Skeena and Nass Sockeye stocks based on the best available 
data and compares alternative approaches for developing aggregate biological escapement 
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goals for these stocks. Section 1.3 explains the rationale for the scope and structure of this 
Research Document. 

This project is closely linked to other ongoing initiatives: 

• New Fish Stock Provisions defned under Canada’s revised Fisheries Act (Government 
of Canada 2019) require the development of Limit Reference Points (LRP) for major fsh 
stocks. Stock management units have been defned for Pacifc salmon, which are groups of 
CUs that have been organized into Stock Management Units (SMU), which are considered 
to be major fsh stocks which will be managed as a unit to achieve joint status. Under the 
proposed framework to defne Stock Management Units, Skeena and Nass Sockeye are 
defned as separate SMUs (DFO 2022a). 

• A key pillar of Canada’s Wild Salmon Policy (WSP) is to identify Conservation Units and 
assess their status using a standard suite of indicators, which are combined into an overall 
integrated status (DFO 2005; Holtby and Ciruna 2007; Holt et al. 2009; Wade et al. 2019). 
An overarching goal of the WSP is to maintain CUs above their lower benchmarks to buffer 
from extinction risk and conserve their adaptive diversity. Implementation guidelines for the 
new Fisheries Act provisions are a key deliverable under the updated WSP implementation 
plan (DFO 2021). Guidelines and case studies were peer-reviewed in early March 2022 
(DFO 2022b). Work to develop LRPs for Pacifc salmon SMUs is onging, and we summarize 
recommendations for the types of analyses and analytical tools that would be required 
to support the development of LRPs for Skeena and Nass Sockeye, but do not include 
candidate LRPs for Skeena and Nass Sockeye in this Research Document. 

• A Canadian domestic engagement process started in the Fall of 2022, in which rights holders 
and stakeholders are reviewing technical information and are providing feedback regarding 
the current Skeena and Nass escapement goals. The examples included in this Research 
Document are intended to provide a sound technical basis for prioritizing future work to 
support the engagement process. 

1.1.3. Research Document Objectives 

The project mandate established by the Northern Panel of the Pacifc Salmon Commission 
(Section 1.1.2) requires the “development and evaluation of candidate benchmarks at the stock 
level and aggregate level”. Aggregate benchmarks are required to implement international 
management provisions under the renewed Pacifc Salmon Treaty (Pacifc Salmon Commission 
2020), while stock-level benchmarks are needed to address conservation objectives under 
Canada’s Wild Salmon Policy (DFO 2005). 

The specifc objectives of this Research Document are to: 

1. Develop an approach for the evaluation and selection of spawner-recruit model fts using 
alternative data sets and alternative model forms, including time-varying model forms, 
and apply this approach at the stock and aggregate levels for Skeena and Nass Sockeye 
salmon. 

2. Develop an approach to identify plausible alternative productivity scenarios (e.g., long-term 
average vs. current productivity) and corresponding spawner-recruit parameter sets. 

3. Develop stock-level biological benchmarks using current data sets and appropriate methods 
for wild and enhanced Skeena and Nass Sockeye salmon stocks including: 
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a. Estimate and evaluate candidate biological benchmarks (e.g., Smsy, Smax, Sgen, Umsy) 
from model fts based on the plausible alternative productivity scenarios for wild Skeena 
and Nass Sockeye salmon stocks. 

b. Review channel capacity and observed patterns in productivity for enhanced Skeena 
Sockeye salmon stocks originating from the Babine Lake Development Project. 

4. Compare alternative approaches for choosing aggregate-level biological reference points 
for Skeena and Nass Sockeye salmon, evaluate advantages and disadvantages for each 
approach, and compare uncertainties in aggregate reference points generated using different 
approaches. 

5. Identify priorities for future work to support the development of stock-specifc escapement 
goals and aggregate reference points. 

6. Examine and identify uncertainties in stock-level benchmarks by comparing outputs generated 
using alternative spawner-recruit model forms and data sets, and compare uncertainties in 
aggregate reference points generated using alternative approaches. 

1.2. STOCK STRUCTURE OF SKEENA AND NASS SOCKEYE 

1.2.1. Life History Types, Stocks, and Conservation Units 

Skeena and Nass Sockeye are the second and third largest Sockeye salmon returns in Canada, 
after Fraser Sockeye. Together, Skeena and Nass Sockeye comprise dozens of genetically 
unique populations that return to different tributaries throughout both watersheds and are harvested 
in large-scale commercial and numerous constitutionally protected Indigenous fsheries throughout 
both watersheds (Moore et al. 2015). The importance of stock-level diversity, which is protected 
by Canadian fsheries policy, is a key consideration for the current review of Skeena and Nass 
Sockeye escapement goals. 

A key characteristic of both Skeena and Nass Sockeye salmon returns is that a single large lake 
accounts for most Sockeye production (Babine Lake for Skeena, Meziadin Lake for Nass). These 
large lake populations are themselves aggregates that are comprised of many smaller spawning 
populations, and for both, stock composition has changed over time. The many other smaller 
stocks account for most of the genetic diversity of Skeena and Nass Sockeye, and some are 
harvested in small-scale in-river or terminal Indigenous fsheries which support local economies 
(Gottesfeld and Rabnett 2008). 

Beacham and Withler (2017) describe three alternative life history strategies observed in the 
juveniles of sea-going (anadromous) Sockeye salmon: 

• lake-type Sockeye spawn in lakes or lake tributaries, and rear in the lake for at least 1 year 
after hatching 

• sea-type Sockeye spawn in tributaries or mainstem side channels, and the juveniles rear for 
several months in estuarine waters after hatching, with a total freshwater residency of less 
than one year 

• river-type Sockeye spawn in tributaries or mainstem side channels, and the juveniles rear in 
a river environment for at least 1 year before migrating to the ocean 

Lake-type Sockeye account for most of the large stocks on the Pacifc Coast, but river- and sea-
type Sockeye may have more adaptive potential, because they are less specialized for specifc 
sites and are more versatile in their use of variable or changing habitats (Sec. 9.2 in Holtby and 
Ciruna 2007). Evolutionary linkages between lake-, sea- and river-type Sockeye populations 
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continue to be explored (e.g., Wood et al. 1987; Wood 1995; Beacham et al. 2004; Wood et al. 
2008; Beacham and Withler 2017). 

Most Sockeye that originate from the Skeena and Nass watersheds follow the lake-type life 
history, but there are river-type populations that spawn throughout both basins. There are also 
at least two sea-type populations that spawn in the lower Nass River in Gingit and Gityzon 
creeks (Beveridge et al. 2017). Contributions from these sea-type populations to the Nass 
aggregate have increased in recent years. The Lower Nass sea-type population, for which the 
most abundant spawning population (Gingit Creek) has been surveyed regularly since 2000 
(Beveridge et al. 2017), contributed about 31% of the Nass Sockeye return in 2019 (Nisga’a 
Fisheries and Wildlife Department 2020). 

Under the Wild Salmon Policy, Canadian anadromous salmon have been grouped into distinct 
conservation units (CU), defned as “a group of wild salmon suffciently isolated from other 
groups that, if extirpated, is very unlikely to recolonize naturally within an acceptable timeframe” 
(DFO 2005). For Nass and Skeena Sockeye, CU defnitions are based on preliminary designations 
that were established in 2009, which for lake-type Sockeye generally correspond to the rearing 
lake of origin (Holtby and Ciruna 2007). Most of the stocks identifed in our analyses align with 
a single CU, while for some smaller stocks, we have combined 2-3 CUs, either because they 
rear in cojoined lakes and the population structure is unclear, or they are assessed together, and 
the data cannot be separated. Babine, the largest CU, is split into 5 distinct stocks based on 
enhancement status and run timing. 

Nass and Skeena Sockeye have been organized into 31 stocks for this review, including 7 Nass 
and 24 Skeena stocks, as described in Pestal et al. (2025b) and summarized in Figure 1. Stocks 
can be grouped together based on life history and adaptive zone, as well as by watershed. 

1.2.2. Babine Lake Development Project (Pinkut and Fulton) 

Babine Lake is the largest natural freshwater lake in British Columbia and the largest producer 
of Sockeye salmon in the Skeena basin, and has accounted for 87-93% of aggregate Skeena 
Sockeye returns since 2000 (i.e., Cox-Rogers and Spilsted 2012), and includes wild and enhanced 
populations. The Babine Lake Development Project (BLDP) consists of a series of spawning 
channels and fow control structures that were built on Pinkut Creek and Fulton River starting in 
the late 1960s to increase the production of Babine Sockeye. 

Wild Babine Sockeye spawn in dozens of tributaries and lake-spawning habitats throughout the 
main basin of Babine Lake, in sections of Babine River between Babine and Nilkitkwa Lake, and 
in Morrison Lake and Tahlo Creek. Here, “Babine Sockeye” refers to all Sockeye returning to 
Babine Lake and upstream areas and includes wild and enhanced Sockeye from the Babine-
Nilkitkwa and Morrison-Tahlo CUs, which are assessed together at the Babine weir and smolt 
enumeration programs and run-reconstruction procedures. Sockeye returning to Fulton River 
and Pinkut Creek, along with the late-timed Babine River stock, were the largest Babine Lake 
Sockeye populations before the BLDP. 

From a fsheries perspective, the BLDP has proven to be a successful enhancement program 
that has substantially increased returns of Babine and Skeena Sockeye. West and Mason (1987) 
estimated that for the frst two decades following completion of the BLDP spawning channels and 
associated infrastructure, total returns for Skeena Sockeye nearly doubled, from 1.3 to nearly 2.5 
million, with commensurate increases in fshery landings. 
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Figure 1. Population Structure of the Skeena/Nass Sockeye Management Unit. This fgure summarizes all 
stocks and current Conservation Unit (CU) delineations, grouping them based on life history (i.e., 
lake-type vs. river-type and sea-type) as well as freshwater adaptive zone (LHAZ). Enhanced Pinkut and 
Fulton are part of the Middle Skeena Lake-Type LHAZ. 

Sockeye returns to the channel-enhanced systems have exceeded the capacity of the available 
spawning habitat in the spawning channels and managed sections of Pinkut Creek and Fulton 
River in most years since the start of the BLDP (Wood 1995). Enhanced Sockeye returns to 
in excess of spawning capacity are considered surplus production. Some of these fsh are 
harvested in ESSR (Excess Sockeye to Spawning Requirements) in Babine Lake after loading 
targets for wild and enhanced systems have been met, but these fsheries do not take place 
every year. 

Concerns have been raised about negative effects of the enhanced Babine Sockeye on wild 
Babine and other Skeena Sockeye stocks. Increased returns of enhanced Babine Sockeye have 
introduced new fshing pressure on wild Babine and other Skeena Sockeye stocks in mixed stock 
fsheries, with less productive wild stocks experiencing higher exploitation rates following more 
intensive mixed-stock fsheries targeting enhanced returns. Sockeye returns to wild Babine 
systems, and the numerous non-Babine Skeena Sockeye populations, which were in already 
decline prior to the start of the BLDP, have seen further declines since its implementation. 

Other potential interactions between wild and enhanced Babine Sockeye populations include 
potential straying of enhanced Sockeye into wild spawning tributaries, and competition related to 
density dependence in freshwater and marine rearing habitats. The BLDP spawning channels 
were built after limnological assessments conducted in the 1950s and 1960s found that the 
Sockeye rearing capacity of Babine Lake was underutilized (i.e., Brett 1951; Johnson 1956) 
and that Sockeye production was limited by available spawning habitat. At the time, Babine Lake 
was estimated to have rearing capacity to support 300 million Sockeye fry (West and Mason 
1987). Further, size and size at age have declined for Skeena Sockeye consistent with other 
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salmon populations in the North Pacifc (Oke et al. 2020), along with declines in fecundity, and 
modest declines in overall length are associated with much larger decreases in fecundity. For 
example, average fecundity for Pinkut and Fulton Sockeye, measured at the enhancement 
facilities, has declined over 10% since the 1980s. A signifcant decline in fecundity for wild and 
enhanced Skeena Sockeye could contribute to reduced productivity for these populations. An 
abundance based escapement goal based on the number of spawners which assumes constant 
egg production over time may not account for demographic changes such as changes in body 
size, age composition, or sex ratio, which have the potential to increase the escapements required 
to achieve maximum sustained yield over time (Staton et al. 2021). 

Incorporating BLDP capacity limitations into the development of an aggregate escapement goal 
for Skeena Sockeye poses challenges because loading targets for the spawning channels and 
fow-controlled sections of Pinkut Creek and Fulton River are fxed to maintain optimal densities 
of spawners to maximize fry production. Spawner-recruitment models such as the Ricker models 
which were used to develop biological benchmarks for other stocks, require a range of spawner 
escapements (i.e., contrast in the data) may not produce useful parameter estimates for the 
enhanced stocks. 

Enhanced Pinkut and Fulton Sockeye currently represent the largest component of Skeena 
Sockeye and are thus an important consideration for developing an aggregate escapement 
goal. However, a full review and updated recommendations for loading targets and operational 
procedures will require input and advice from the facility operator (DFO Salmonid Enhancement 
program) and is outside the scope of the current review, which focused on developing biological 
escapement goals for wild Skeena and Nass Sockeye stocks. In this paper we summarize estimation 
methods and run-reconstructions specifc to Babine Sockeye, and assessed trends in surplus 
production and ratio of wild and enhanced Skeena Sockeye in order to develop advice for incorporating 
the enhanced stocks into an aggregate escapement goal for Skeena Sockeye. 

To address questions about the effects of enhancement on wild Sockeye production, we reviewed 
and updated production data for wild and enhanced Babine Sockeye to assess general trends in 
adult returns, escapement quality (size, sex ratio and fecundity), egg production, and fry outputs. 
This was not intended to be a comprehensive assessment of Babine Sockeye production, or 
a detailed analysis of the effects of the BLDP enhancement facilities on wild Babine and other 
Skeena Sockeye stocks. Rather, we provide a high-level overview of observed trends in freshwater 
production based on available information and make recommendations for further work on this 
topic. 

1.3. ANALYSIS OVERVIEW 

1.3.1. Research Document Scope and Organization 

The analyses presented in this Research Document were bounded based on scoping discussions 
throughout the Skeena and Nass Sockeye escapement goal review process since 2019. These 
discussions included a technical working group process, scoping workshop, and feedback from 
two independent reviewers (Section 1.1.2), as well as the peer-review process (DFO 2022c, 
2023) which included the main Regional Peer Review (RPR) meeting in April of 2022 and a 
follow-up process led by CSAS to develop recommendations on alternative approaches for 
developing aggregate management reference points for Skeena and Nass Sockeye. 

Data issues were mostly resolved by the Technical Working Group (TWG) prior to the peer-
review meeting, with details documented in a stand-alone report (Pestal et al. 2025b). Data-
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related revisions identifed through the peer review focused on clarifcations and some additional 
testing of data treatment choices, such as procedures for inflling missing brood years. 

The focus of discussions around the scope of our analyses related to the three topics that were 
identifed as key analytical priorities by the TWG (Section 1.1.2), including: 

• Methods for spawner-recruit SR model ftting to account for time-varying productivity 

• Methods for developing aggregate management reference points based on stock-level SR 
model fts 

• Treatment of enhanced Pinkut and Fulton in the analyses 

This paper is structured as a series of modular steps, and includes extensive sensitivity testing 
of the initial steps (i.e., developing candidate SR models and model selection), or “building 
blocks” that are used in subsequent analyses. We provide examples for each of the subsequent 
steps which demonstrate how the biological information produced in the initial steps could be 
used to develop scientifc advice for developing reference points. Depending on the specifc 
context and requirements of current the Skeena and Nass Sockeye escapement goal review and 
future processes, this advice can be applied to develop specifc questions, and specifc analyses 
prioritized to address them. The examples provided in the second part of the results are intended 
to assist with identifying those priorities. 

The next three sections summarize how we approached each of these three components, and 
how our work compares to previous analyses. Section 1.3.5 describes how this Research Document 
addresses each of the objectives in the Terms of Reference, linking to specifc sections of the 
paper. 

1.3.2. Spawner-recruit Model Fits, Productivity Scenarios and Biological Benchmarks 

Previous work on SR model fts and biological benchmarks for Skeena and Nass Sockeye has 
differed widely in scope and approach (Table 2). Earlier work was mainly focused on estimating 
stock-level SR-based benchmarks like Smsy, Smax, and Umsy (Bocking et al. 2002; Walters et 
al. 2008; Korman and English 2013; Hawkshaw 2018). Pacifc Salmon Foundation (2021) also 
included percentile benchmarks. SR model details varied widely across these analyses. 

To address the priorities and Research Document objectives listed in Section 1.1.3, we ftted 
alternative model forms of the Ricker model to each spawner-recruit data set (Skeena and Nass 
aggregates and 20 component stocks with suffcient SR data). The types of models used for 
each stock depended on data availability. We focused on developing simple single-stock models 
along with time-varying model forms (AR1 and Recursive Bayes models) to explore underlying 
productivity patterns for the different stocks and calculate biological benchmarks for alternative 
productivity scenarios. 

Following a review of candidate SR model fts by TWG participants, we selected model fts 
that best described the dynamics of each stock. We sampled from the posterior distributions 
of selected single stock models to characterize high, low, recent, and long-term productivity 
scenarios, which were then used as inputs for examples of alternative methods for developing 
aggregate management reference points, as summarized in the next section. 

Standard biological benchmarks based on spawner recruitment parameters were calculated 
for each model ft (Smsy, Smax, Umsy; Section 2.4). The resulting benchmark estimates were 
compared to observed spawner abundances and lake capacity estimates. 
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Some TWG members recommended the development of an updated version of a hierarchal 
Bayesian model (HBM) used in a previous process to estimate biological benchmarks for Skeena 
Sockeye, which would allow for a direct comparison of results generated using updated data. 
McAllister and Challenger (Appendix D) contributed preliminary results for the updated HBM 
model fts. We include a comparison of the initial HBM results to our single-stock SR model fts 
and discuss potential sources for observed discrepancies (Sections 2.2.6 and 3.2). However, we 
did not include the initial HBM results in the model selection process to defne different productivity 
scenarios used for the example results in the rest of the paper. This may be a priority for future 
work. 

The initial version of the Research Document was presented for peer review in April 2022 and 
included alternative SR model fts and alternative productivity scenarios. Revisions identifed 
through the peer-review process focused on additional sensitivity testing (e.g., additional productivity 
scenarios), comparisons of alternative methods (e.g., single-stock vs. hierarchical model fts), 
and clarifcation of the analytical steps (e.g., log-normal bias correction, smoothing of time-
varying parameter estimates). 

1.3.3. Alternative Approaches for Developing Management Reference Points for Stock 
Aggregates 

The analyses presented in this Research Document are intended to inform a review of Skeena 
and Nass Sockeye management targets. The development of management targets needs to take 
into account social and economic considerations in addition to biological objectives, and requires 
additional work after biological benchmarks have been estimated, such as Smsy (e.g., Holt and 
Irvine 2013). 

Considerations for choosing an appropriate approach for developing management targets include: 

• Type of harvest strategy : The purpose of management reference points is to trigger a 
response to changing conditions. Therefore, the approach to developing management 
reference points needs to ft the harvest strategy being used (i.e., fxed escapement, fxed 
exploitation rate, abundance-based rule). 

• Specifc objectives: Clearly specifed objectives are needed to allow for a structured and 
consistent comparison of alternative management reference points. 

A straightforward approach that has been applied extensively in Pacifc salmon fshery management 
is to select the estimate of a biological benchmark, such as Smsy, as the management target. 
This approach assumes (1) a harvest strategy where the stock overall is managed to a fxed 
escapement goal, and all returning adults in addition to the escapement goal are harvested; and 
(2) a management objective to maximize total harvest on average over the long-term, regardless 
of annual variability in harvest (i.e., most of the year-to-year variation in returns translates into 
variation of harvests). 
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Table 2. Overview of Previous Work on Biological Benchmarks and Escapement Goals for Skeena and 
Nass Sockeye. Previous work differs in terms of scope, estimation approach, analysis type, and 
performance evaluation. 

Reference Main 
Objective 

Scope Parameter 
Estimation 

Forward 
Simulation 

Performance 
Evaluation 

Bocking 
et al. 
(2002) 

Meziadin 
escapement 
goal 

Single stock, 
representing 
majority of Nass 
sockeye production. 
Data up to 1994 
brood year (BY). 

4 models (euphotic 
volume, photosynthetic 
rate, spawner-recruit 
Ricker ft, egg-to-fry 
relationship) 

N/A Comparing Smsy 
estimates from 
alternative models 

Walters 
et al. 
(2008) 

Evaluate 
mixed-stock 
fshery 
performance 
(and many 
others) 

Babine (single 
unit?) plus 8 
Skeena CUs and 2 
non-Skeena CUs. 
Up to 2006 BY. 

Ricker ft, Avg obs R/S, 
other? 

N/A Proportion of stocks 
overfshed or extinct 
at different harvest 
levels 

Cox-
Rogers 
et al. 
(2010) 

Risk 
assessment of 
average 
harvest levels 
at the time 

28 nursery lakes, 
each treated as a 
stock (Babine as a 
single unit). Up to 
2002 BY. 

Calculate Ricker 
parameters based on 
Smax and Rmax derived 
from lake capacity 
estimate (photo-synthetic 
rate) 

15 yrs and 100 
yrs. Models 5 
fshing areas, 
applying avg 
1990-1999 
harvest levels 
in open loop 
sim. 

Prob of quasi 
extinction, Prob of 
meeting various 
benchmarks 

Korman 
and 
English 
(2013) 

Biological 
benchmarks 
and status 

17 Skeena 
conservation units 
(Babine split into 1 
enhanced plus 3 
wild). Up to 2008 
BY. 

Hierarchical Bayesian 
Ricker model ft to SR data 
for all 17 Skeena CUs, 
using Smax from PR 
model as a prior (except 
for Babine), and compared 
to individual model fts 

N/A Status based on 
comparing recent 
ER to Usmy and 
recent Spn to Sgen 

Hawkshaw 
(2018) 

Several 
(harvest control 
rule for 
mixed-stock 
fshery, run 
recon, fshing 
plan 
optimization) 

5 Pacifc salmon 
species and 
Steelhead, each 
modeled as a single 
Skeena stock. Up to 
2006 BY. 

Used parameters from 
Walters et al. (2008) 

closed loop 
harvest control 
rule sims 

spawner trajectories 
relative to Sgen and 
Smsy, value and 
utility of catch 

Pacifc 
Salmon 
Foundation 
(2021) 

Coastwide 
status and 
trend summary 

18 Skeena and 4 
Nass CUs with SR 
models (Babine 
split into 3: 
Enhanced, 
Babine/Onerka, 
Tahlo-Morrison) 

Hierarchical Bayesian 
Ricker model ft to SR data 
for all CUs with data (I 
model/basin), adapted 
from Korman and English 
(2013). 

N/A Comparing 
alternative status 
assessments 
(calculated SR and 
percentile, 
previously 
published) 

Atlas et 
al. 
(2021) 

Conservation 
benchmarks for 
data-limited 
systems 

North Coast Area 
sockeye populations 
(54 CUs) 

Hierarchical Bayesian 
Ricker model ft to SR data 
for all CUs with data (1 
model for each 
biogeoclimactic zone) 

N/A Comparing SR 
parameters using 
PR-based lake 
capacity prior with 
uninformative prior 

12 



Alternatives to this basic approach have evolved to: 

• capture other objectives (e.g., reduce variability in harvest) 

• deal with practical considerations (e.g., constraints on implementing target harvests) 

• consider current conditions (e.g., recent returns, recent productivity) 

• consider multiple stocks in an aggregate 

The initial version of the Research Document included examples of seven alternative approaches. 
Each of these had previously been used or recommended for the development of Pacifc salmon 
escapement goals, and some had been previously applied to Skeena or Nass Sockeye (Table 2). 
The strengths and limitations of these alternative approaches were discussed extensively during 
the CSAS RPR, but participants did not reach consensus or frm recommendation regarding a 
single approach, and recommended the inclusion of one additional candidate approach. This 
paper includes examples of a total of eight alternative approaches. 

Peer review participants recommended that clear advice on choosing an appropriate approach 
should be developed. A subgroup of participants was then convened to develop this advice, 
which included (1) identifying criteria for evaluating the alternative approaches, (2) completing 
a detailed evaluation of each approach, and (3) generating a summary table of comparisons, 
along with an overview of practical challenges for the alternative approaches. This structured 
comparison of approaches is a key product of the peer review process, and is documented in 
Section 2.5. This Research Document includes worked examples for each approach, so that 
decision makers have a tangible basis for prioritizing next steps. 

1.3.4. Alternative Approaches for Including Enhanced Pinkut and Fulton in the Analyses 

Most Skeena Sockeye production occurs in actively managed spawning channels at Pinkut and 
Fulton, which are fundamentally different from wild stocks where variations in observed spawner 
abundance and resulting production can be used to ft spawner-recruit models and estimate 
biological benchmarks. This creates challenges for modelling stock dynamics and for developing 
management targets for the stock aggregate. 

This Research Document focuses on wild Skeena and Nass Sockeye stocks. A comprehensive 
review of enhanced production dynamics and channel loading targets is outside the scope of 
this work, and may be addressed in a separate process led by DFO’s Salmonid Enhancement 
Program, which operates the Babine enhancement facilities. An explicit analysis of trade-offs 
between enhanced production objectives and wild stock objectives is also outside the scope of 
the current project. 

Previous analyses of Skeena Sockeye, summarized in Table 2, treated Pinkut and Fulton the 
same as for wild stocks, either in a single-stock analysis or as part of the aggregate. We assume 
that the spawner time series used for these analyses were actual channel loading plus capacity 
below the fence, rather than the gross escapement (i.e., accounted for top-ups and non-spawning 
surplus). However, this was not easily verifable. 

Three types of approach for accounting for enhanced Skeena Sockeye from Pinkut and Fulton 
were discussed during the peer-review and follow-up process: 

• Develop SR-based benchmarks for all wild and enhanced stocks: Fit alternative SR model 
forms to generate parameter sets for alternative productivity scenarios for wild and enhanced 
stocks, and include resulting benchmarks for enhanced stocks in the development of alternative 
management targets. Caveats should be clearly stated regarding the SR model fts for 
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enhanced stocks and their implication for the results shown, and nuances for interpretation. 
For example, estimates of Smsy for Pinkut and Fulton are not only highly uncertain due 
to the low contrast in spawner abundance, but they are also not relevant to the current 
management approach which focuses on loading targets that maximize fry production. 

• Explicitly model the distinct management and production dynamics of the enhanced stocks: 
Depending on the chosen aggregation approach, the dynamics of enhanced stocks could be 
incorporated in different ways. For instance Pinkut and Fulton could be added to a forward 
simulation by developing additional model components, which would include an enhanced 
sub-model of the population dynamics (e.g., two steps linking channel loading to fry output, 
and then fry-to-adult survival), a harvest sub-model that refects differences in wild and 
enhanced harvest (e.g., fsheries targeting the enhanced non-spawning surplus in some 
years), and a channel management sub-model that captures how loading targets might 
change with aggregate and stock-specifc abundance. This type of model could test interactions 
between alternative harvest strategies and alternative channel operation strategies, and 
explore trade-offs between total harvest including enhanced fsh and conservation objectives 
for wild stocks. 

• Clearly distinguish between considerations of wild and enhanced Skeena Sockeye: Given 
WSP requirements, estimate biological benchmarks for wild stocks and apply the candidate 
approaches for aggregate management targets to the Skeena Wild stock aggregate, then 
explore how the resulting management targets could be scaled up to cover the entire Skeena 
return. 

The third option is the most feasible for the current project, given the complexity of capturing 
enhanced production dynamics in a detailed forward simulation. Thus, most of the analyses 
in this paper focus on the wild stocks, but we have included a review of available information 
the Babine Sockeye enhancement facilities (Appendix H), and we include two examples of how 
management targets for Skeena Wild could be scaled up to account for enhanced production 
(Section 3.10). We recommend future work to more fully integrate enhanced and wild considerations 
take place as part of a management strategy evaluation for Skeena Sockeye. As a reference, 
some SR model results for the enhanced stocks are provided in Appendix H. 

1.3.5. How this Research Document Addresses the Terms of Reference 

We reviewed and updated the spawner recruit data, and set up a framework for ftting and selecting 
alternative spawner-recruit models. We then used the selected spawner-recruit model fts in 
worked examples of alternative approaches for developing aggregate management reference 
points. Our approach was designed with a focus on fexibility and the ability to respond rapidly 
to changing conditions, new data, alternative benchmark formulations, requests for alternative 
productivity scenarios, and comparison of alternative objectives. Much work remains to fully 
connect the information and decision makers through a structured process, such as a management 
strategy evaluation (MSE). 

Below we briefy summarize how this Research Document addresses each objective from the 
Terms of Reference: 

1. Develop an approach for the evaluation and selection of spawner-recruit model fts using 
alternative data sets and alternative model forms, including time-varying model forms, and 
apply this approach at the stock and aggregate levels for Skeena and Nass Sockeye salmon: 
We developed a checklist for identifying candidate SR models for single-stock model fts, 
covering three alternative model forms (Figure 4). We tested the candidate models on 20 
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stock-level data sets and three aggregate-level data sets (Sections 2.2.5 and 2.2.4), and 
completed extensive sensitivity tests (Section 3.1.1). In addition, we compared the single-
stock model fts to results from an independent SR analysis by McAllister and Challenger 
(Appendix D) using a Hierarchical Bayesian model on the same data sets (Section 3.2). 

2. Develop an approach to identify plausible alternative productivity scenarios (e.g., long-
term average vs. current productivity) and corresponding spawner-recruit parameter sets: 
We identifed four alternative productivity scenarios intended to provide contrasting stock 
dynamics, and established guidelines for sampling parameter sets from the candidate SR 
models to populate the scenarios (Figure 5). 

3. Develop stock-level biological benchmarks using current data sets and appropriate methods 
for wild and enhanced Skeena and Nass Sockeye salmon stocks including: 

a. Estimate and evaluate candidate biological benchmarks (e.g., Smsy, Smax, Sgen, Umsy) 
from model fts based on the plausible alternative productivity scenarios for wild Skeena 
and Nass Sockeye salmon stocks: Section 3.4 presents aggregate-level and stock-level 
estimates under alternative productivity assumptions. 

b. Review channel capacity and observed patterns in productivity for channel-enhanced 
Skeena Sockeye salmon stocks originating from the Babine Lake Development Project: 
Appendix H summarizes available production information for the Babine enhancement 
facilities. 

4. Compare alternative approaches for choosing aggregate-level biological reference points 
for Skeena and Nass Sockeye salmon, evaluate advantages and disadvantages for each 
approach, and compare uncertainties in aggregate reference points generated using different 
approaches: We illustrated building blocks for eight alternative aggregation approaches 
(Sections 3.4 to 3.9): aggregate model fts, simple sum of stock-level abundance benchmarks, 
comparison of aggregate and stock-level sustainable exploitation rates, stock-level equilibrium 
profles based on fxed spawner targets, aggregate equilibrium profles based on fxed 
exploitation rates, status-based aggregate limit reference points, aggregate reference points 
based on logistic regression, and forward simulations. The simulation results include two 
high-priority extensions identifed during the peer review (covariation in productivity, outcome 
uncertainty). We compare the results in Section 4.2.2. 

5. Identify priorities for future work to support the development of stock-specifc escapement 
goals and aggregate reference points: Priorities for future work are listed Section 4.3. 

6. Examine and identify uncertainties in stock-level benchmarks by comparing outputs generated 
using alternative spawner-recruit model forms and data sets, and compare uncertainties 
in aggregate reference points generated using alternative approaches: We completed 
extensive sensitivity tests of the spawner-recruit model fts, including alternative model forms 
and alternative prior assumptions (Section 3.1), and compared the results to estimates from 
a Hierarchical Bayesian model by McAllister and Challenger (Appendix D) on the same data 
set (Section 3.2). In addition, we tested alternative data treatment options (Appendix E.1), 
alternative calculation approaches for biological benchmarks (Appendix E.3), and the effect 
of including a lognormal bias correction on the productivity parameter ln.alpha (Appendix E.4). 
We compare aggregation approaches in Section 4.2.2. 
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2. METHODS 

This chapter describes the six steps of our analyses: 

• Review of spawner-recruit (SR) data: summarizes data review, run reconstruction, age 
composition assumptions, and available SR data by stock. 

• Enhanced production review : briefy describes the data sources and compilation of available 
information for the BLDP-enhanced stocks (Pinkut and Fulton). 

• SR model ftting: describes alternative model forms, Bayesian implementation, and criteria 
for identifying candidate models for each stock, depending on available data. 

• Productivity scenarios: describes how parameter sets were sampled from shortlisted SR 
model fts to represent long-term average, recent, high, and low productivity scenarios for 
each stock. 

• Biological benchmarks: describes how standard benchmarks (e.g., Smsy) were calculated 
for each stock, given alternative productivity assumptions. 

• Management reference points (MRP) (Section 1.3): describes alternative approaches for 
developing MRPs (e.g., equilibrium profles, forward simulations) given alternative productivity 
assumptions and various examples of management objectives, and rationale for the examples 
provided in this Research Document. 

2.1. DATA SOURCES 

2.1.1. Data Review 

The type and quality of available data shape the type and quality of scientifc advice that can be 
developed regarding salmon management strategies (e.g., Adkison 2022). The importance of 
developing an up-to-date and agreed-upon set of spawner-recruit data was a recurring topic in 
TWG discussions and the scoping workshop. Therefore, the TWG allocated a substantial part 
of project effort to an in-depth data review for Skeena and Nass Sockeye, which is documented 
in a stand-alone report (Pestal et al. 2025b) and briefy summarized here. The updated SR data 
has established a solid foundation for future work and the review process helped streamline the 
workfow for future data updates. 

The data review addressed the frst objective of the escapement goal review (Section 1.1.2) and 
covered key components of the spawner-recruit data: spawner estimates for indicator systems 
and associated expansions, in-river run reconstructions (incl. adult return timing assumptions), 
First Nations catch estimates, and age composition estimates. Several other relevant reviews 
and data set updates have been occurring concurrently, including a review of the Northern 
Boundary Sockeye Run Reconstruction (NBSRR) model and a comprehensive review of the 
Nass salmon abundance estimation programs. We used the latest available information from 
these reviews as of December 2021, up through the 2019 return year. 

The data review included six steps: (1) a review of stock structure for Skeena and Nass Sockeye 
populations, (2) updates to source data to incorporate all available information, (3) automated 
data processing, (4) automated data checks focused on contrast, changes over time, and potential 
outliers, (5) working with the TWG to generate data notes for each stock, and (6) extensive 
sensitivity testing (e.g., retrospective estimates of biological benchmarks using simple deterministic 
Ricker parameter estimates). 
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2.1.2. Spawner Estimates 

Estimates of spawner abundance for Skeena and Nass Sockeye come from a combination of 
assessment programs conducted throughout both watersheds. Stock assessment programs 
include fshwheels on the lower Nass and a test fshery on the lower Skeena, which generate 
estimates of abundance and age and stock composition for the two aggregates. High-accuracy 
census counts are conducted for the largest systems in each basin (Meziadin fshway for the 
Nass, Babine weir for the Skeena). Spawning ground enumeration programs, including weir 
counts, aerial surveys, mark-recapture programs, and stream walks, generate spawner counts 
for indicator systems, which are expanded to estimate the total escapement for each stock. 

Babine Sockeye have been counted at the Babine weir downstream of Nilkitkwa Lake annually 
since 1949. The Babine weir which is currently operated by Lake Babine Nation, under contract 
to Fisheries and Oceans Canada, provides daily counts for all salmon species from the middle 
of July until the end of September and encompasses most of the Sockeye return. The weir 
operation has been extended to the end of November in some years. The weir program is assumed 
to provide a complete count for most years, but adjusted in some years for estimated passage 
during times when the fence was not operational. 

Visual escapement estimates of up to 30 wild Babine Sockeye spawning tributaries are conducted 
annually by foot or aerial surveys led by DFO and Lake Babine Nation. Estimates from visual 
escapement surveys for wild Babine systems are adjusted to account for underestimation bias 
using methods described in Wood (1995). Annual stream counts for individual Babine systems 
are maintained in the Fisheries and Oceans Canada NuSEDS database. The raw spawner 
estimates for the different wild Babine systems are expanded and combined into adjusted estimates 
for the early, mid and wild run timing components using a run-reconstruction procedure described 
by Wood (1995). 

DFO completed an extensive review of spawner estimates for Skeena and Nass indicator streams. 
All available stream escapement information from local and regional data holdings were compiled 
and reviewed to assess whether any additional data were available for indicator streams and 
years that were identifed as missing in previous versions of the NCCDSB database, and to 
check the accuracy of published NuSEDS estimates. For years that individual stream count 
data were available (1998 onwards for most systems), escapement estimates were recalculated 
and compared with the NuSEDS data to identify any discrepancies. 
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2.1.3. Estimating Biological Surplus of Enhanced Pinkut and Fulton 

Enhanced Babine Sockeye spawners are counted through weirs below Pinkut Creek and Fulton 
River, and as they enter the spawning channels. Wild spawners are enumerated by visual counts 
which are conducted by foot and aerial surveys to generate Area-Under-the-Curve (AUC) estimates 
for the wild tributaries. Wild Babine Sockeye are assigned to three groups (early, mid, and late) 
based on adult run timing. 

The Babine fence count usually exceeds the sum of escapements to enhancement facilities 
and visual escapement estimates for wild systems, which are typically underestimated in visual 
surveys. The unaccounted difference between the fence count and escapement estimates is 
largely considered surplus production. The surplus may account for a large proportion of Babine 
Sockeye returns each year. Dive surveys in the 1990s confrmed that these additional fsh are 
not successful lake spawners missed by the stream surveys. 

Wood (1995) developed a reconstruction procedure to estimate the surplus production after 
correcting visual escapement estimates for wild tributaries groups for underestimation bias, 
which were updated in Wood et al. (1998) and Cox-Rogers and Spilsted (2012) and maintained 
in a DFO database. Wood et al. (1998) and Cox-Rogers and Spilsted (2012) describe the rationale 
for these adjustments. The equations are provided in Appendix Table 2 of Cox-Rogers and 
Spilsted (2012) and the calculations are summarized in Appendix C.3 of Pestal et al. (2025b). 
Briefy, the adjustments are calculated in the following steps: 

• Jacks (sub-adult males, age 3) are assumed to contribute very little to the spawning population, 
so jack counts at Babine fence are excluded from the estimates. However, jack Sockeye 
counts from the Babine weir are incorporated into estimates of the total Skeena aggregate 
return and estimates of age composition. 

• Spawner counts for the wild tributaries are combined by timing group (early, mid, and late) 
into unadjusted counts for the 3 wild stocks (early, mid and late). 

• Effective spawners for the enhanced systems are estimated as the sum of fsh that passed 
through the Pinkut and Fulton weirs, and the estimated capacity of natural spawning grounds 
below the channel (5,000 for Pinkut, 40,000 for Fulton). 

• The combined estimates for wild tributaries are expanded to account for the underestimation 
bias of visual counts. (Wood et al. 1998), and the adjusted estimate is apportioned by wild 
timing group based on their relative abundance in the visual surveys. 

• The Babine enhanced surplus is calculated as the difference between the Babine weir 
count, adjusted wild spawners, effective enhanced spawners, and harvest above the Babine 
weir. These additional adults, which do not spawn are considered a biological surplus 
which contribute nutrients to Babine Lake but are excluded from the estimates of spawner 
abundance. They are, however, included in estimates of run size. 

2.1.4. Catch Estimates 

Catch estimates are derived from numerous marine and in-river catch monitoring programs that 
record the number of fsh harvested in the different fsheries, some of which are sampled for age 
and stock composition, using variation in scale patterns or genetic allele frequencies. 

Estimates of catch in Canadian and Alaskan fsheries, exploitation rates, and total returns for the 
Skeena and Nass aggregate population have been estimated by the Pacifc Salmon Commission 
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Northern Boundary Technical Committee using the Northern Boundary Sockeye Run Reconstruction 
model since 1982. 

First Nations harvests, which are aggregated by fshing area, are incorporated into in-river models 
that estimate the total exploitation rate for aggregate and for component stocks. Indigenous 
groups harvest Sockeye throughout the Skeena and Nass watersheds. Their fsheries differ by 
area, timing, and gear type, and have different management and catch reporting requirements. 
TWG members worked with DFO fshery managers and Skeena and Nass First Nations groups 
to update catch estimates for each fshing area. 

2.1.5. Age Composition Estimates 

Age composition estimates, which are used to estimate recruitment by brood year, are available 
from scale and otolith sampling programs. Annual age composition estimates are available for 
both aggregates, but not for most of the individual Skeena and Nass stocks, which have been 
infrequently sampled. 

2.1.5.1. Aggregate age composition data 

Annual estimates of age composition for aggregate Skeena and Nass Sockeye stocks come 
from aggregate test fshery programs including Tyee Test Fishery (Skeena, 1955–present), the 
Nisga’a Fish Wheels (1992-present) and the Monkley Dump Test Fishery (Nass, prior to 1992), 
and from Canada and U.S. marine commercial fsheries (Skeena and Nass, until the late 1990s). 
Scale samples from commercial and test fsheries have been aged by Alaska Department of Fish 
and Game since 2000, and by Fisheries and Oceans Canada (for Canadian fsheries) in years 
prior. 

Adjustments are made to account for size selective fsheries at the test fsheries. For the Skeena, 
age samples are collected from large Sockeye at the Tyee Test Fishery to determine the proportion 
of the major age classes, which are applied to the total escapement of large fsh to apportion the 
return of large fsh into the major age classes. The return of Age–3 Sockeye from terminal fence 
counts are added to the total return, and the annual return for each age class are recalculated 
to estimate the proportions of all age classes in the total return. For the Nass aggregate, annual 
estimates for jack Sockeye are developed by expanding the total catch of jacks at the fshwheels 
using the annual adult mark rate that is adjusted to account for the assumption of a higher mark 
rate for the smaller fsh. 

2.1.5.2. Stock-specifc age composition data 

Annual age composition data are not available for most component Skeena and Nass Sockeye 
stocks, except for Meziadin Sockeye. Most of these samples with some exceptions (below) 
were aged at the DFO scale ageing lab at Pacifc Biological Station, and the data are stored 
in a regional database (PADS) in digitized records of individual age readings (1989-2019) or as 
scanned scale/otolith age cards (prior to 1989). 

We reviewed and updated available age data for all Skeena and Nass Sockeye stocks to ensure 
that all available data were incorporated into SR analyses. All available age records for Skeena 
and Nass Sockeye stocks were downloaded from PADS. For years prior to 1989, the number of 
fsh from each age class were tallied from scanned age cards for each stock/year for which data 
were available. Age proportions for each stream/year were calculated as the number of each age 
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class divided by the total number of samples for that year, excluding partial ages or unreadable 
samples. 

Given the available data, recruitment calculations for most stocks are currently based on an 
average age composition (Table 3). Stock-specifc age composition estimates were used for most 
Nass stocks, but for most Skeena stocks, including the fve Babine stocks, we relied on average 
aggregate Skeena age composition. Annual estimates of age composition were used for Lower 
Nass Sea/River types (Table 3). 

Using average age composition can introduce bias in spawner recruitment parameters (Zabel 
2002). In addition to our review of age data to ensure that all available age data were incorporated 
into spawner recruit analyses, we conducted sensitivity tests to assess the effect of using average 
rather than annual age composition were conducted as part of the data review (Pestal et al. 
2025b). For stocks where annual age data were available, including Meziadin, Kwinageese, 
and the Babine stocks, we recalculated recruitment estimates both annual and average age 
composition, and estimated the differences in the resulting spawner-recruitment parameters. For 
these stocks, the difference in Smsy that resulted from using average compared with annual age 
composition data varied, ranging from -2 to 31%. 
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Table 3. Stock-specifc age composition estimates used in the recruitment calculations. Tables 4 and 5 
show the full stock names and list the number of brood years with spawner-recruit data, based on the 
matched age compositions from this table. 

LHAZ Watershed Stock Type AgeComp 

Nass SRT Lower Nass Tribs LNassSRT Annual LowerNassSRT 

U Nass LT Bell-Irving Bowser Avg Bowser 
Oweege Avg Meziadin 

Damdochax Damdoch Avg Damdochax 

Kwinageese Kwinag Annual Kwinageese 

Meziadin Meziadin Annual Meziadin 

Nass RT Upper Nass Tribs UNassRT Avg UpperNassRT 

L Skeena LT Ecstall Ecstall Avg Skeena 
Johnston Avg Skeena 

Gitnadoix Alastair Avg Alastair 

Kitsumkalum Kitsumk Avg Skeena 

Lakelse Lakelse Avg Lakelse 

Zymoetz Mcdonell Avg Skeena 

M Skeena LT Babine Bab-EW Annual Skeena 
Bab-LW Annual Skeena 
Bab-MW Annual Skeena 
Fulton Annual Skeena 
Pinkut Annual Skeena 

Bulkley Morice Avg Morice 
UBulkLk Avg Skeena 

Kispiox SwanSteph Avg Stephens 

Kitwanga Kitwanga Avg Kitwanga 

U Skeena LT Kluatantan Kluant Avg Skeena 

Kluayaz Kluayaz Avg Skeena 

Motase Motase Avg Skeena 

Sicintine Sicintine Avg Skeena 

Slamgeesh Slamg Avg Slamgeesh 

Sustut Asitka Avg Skeena 
Bear Avg Bear 
Sustut Avg Sustut 

Skeena RT All Skeena RT Avg Skeena 
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2.1.6. Lake Surveys 

Rearing lakes for Skeena and Nass Sockeye are assessed regularly or periodically. Surveys 
include: 

• Juvenile surveys: Rotating juvenile surveys with hydroacoustic transects and biological 
sampling to assess fry abundance and biomass in Skeena and Nass Sockeye rearing lakes. 
Except for Babine Lake, all the major lakes have been surveyed multiple times since the 
late 1990s. Where available, fry abundance data provides a cross-check for reconstructed 
spawner escapement estimates derived from visual surveys (i.e., whether the estimated 
spawner abundance is realistic compared with the observed fry abundance for a given brood 
year). 

• Productivity assessments: Periodic assessments of lake productivity have been conducted 
for most Skeena and Nass Sockeye rearing lakes using photosynthetic rates to estimate 
freshwater rearing capacity for each lake (PR Capacity estimates). PR capacity estimates 
provide useful information about the limits of freshwater rearing capacity that can be used 
directly to estimate optimal spawner abundances for a given system, or incorporated in 
spawner recruitment modeling as priors on rearing capacity. Note that most PR-Capacity 
estimates for Skeena and Nass Sockeye rearing lakes have not been updated since the 
mid-2000s. 

2.1.7. Run Reconstructions 

Long-established and well-documented methods are used to combine catch and escapement 
data for Skeena and Nass Sockeye information into consistent estimates of spawner abundance, 
run size and exploitation rates for the two stock aggregates and for most of the component 
stocks. Skeena Sockeye production data, maintained by DFO-North Coast Stock Assessment 
Division, incorporate catch and escapement information from different sources. Total catches, 
exploitation rates and run sizes for Skeena and Nass Sockeye have been estimated annually 
since 1982 by the bilateral Northern Boundary Technical Committee using the Northern Boundary 
Sockeye Run Reconstruction Model (NBSRR) (Gazey 2000, English 2004). Further details are 
provided in Appendix C of Pestal et al. (2025b). Stock-specifc exploitation rates for component 
Skeena and Nass Sockeye stocks, including Babine Sockeye are derived from in-river models 
(i.e., English et al. 2017) which combine data from in-river harvests and stock-specifc run timing 
with NBSRR outputs to generate annual estimates of total returns for each stock, as summarized 
in Appendix C of Pestal et al. (2025b). 

Methods and assumptions for the run reconstruction models are documented in a series of 
technical reports (English et al. 2004; e.g., English et al. 2006, 2012, 2013; English et al. 2019). 

The key analytical steps for the Skeena and Nass Sockeye run reconstructions are: 

• Expansion of spawner estimates to estimate the total number of spawners based on the 
number observed in the surveys. These expansions account for fsh that were not counted 
(depends on survey method and annual implementation), as well as fsh from systems that 
were not surveyed. 

• For Babine stocks, additional spawner calculations are performed to account for (1) the 
difference between aggregate counts at the Babine fence and spawning ground estimates, 
and (2) effective capacity of the channels and natural spawning habitat. Effective spawner 
abundance for the enhanced systems is the number of spawners let into the enhanced 
channels and stream sections plus any gross escapement up to the estimated capacity 
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of natural spawning grounds downstream of the enhancement facilities. Additional adult 
returns that do not spawn in the wild Babine tributaries are considered a biological surplus, 
and are excluded from the estimates of spawner abundance, but are included in estimates 
of run size. 

• Run reconstructions for the two stock aggregates, which account for Canadian and U.S. 
marine catches in approach waters (Gazey and English 2000; English et al. 2004; Alexander 
2018). Aggregate run reconstructions are bilaterally developed each year through the PSC 
Northern Boundary Technical Committee (NBTC) process. 

• Run reconstructions for the component stocks in each basin, which account for in-river 
catches and stock-specifc run timing 

In-river harvests represent an important component of the total Canadian harvest for Skeena and 
Nass Sockeye. Estimates of in-river harvest, exploitation rates, and total run size for the different 
stocks are calculated using different approaches for Skeena Sockeye and Nass Sockeye. 

For Skeena River fsheries, the Skeena Sockeye In-river Run Reconstruction (SSIRR) model 
(English et al. 2013, 2017) combines information from in-river harvests (timing and abundance), 
escapement and run timing to apportion catches to stocks based on run timing and fshery 
location. The SSIRR model uses the same approach as the peer-reviewed run reconstruction 
model for Fraser River Chinook (English et al. 2018). The SSIRR model builds run size estimates 
forwards along the upriver migration through the fsheries, starting from the Tyee test fshery 
estimates. It models in-river harvests for 12 Aboriginal in-river fshing areas throughout the 
Skeena watershed in daily time steps derived from daily aggregate run size estimates for Skeena 
Sockeye from the Tyee Test fshery in the Lower Skeena. 

For Nass Sockeye, annual in-river harvest rates for the aggregate Nass stock (i.e., total in-river 
harvest divided by the run size entering the Nass River) were applied equally across all Nass 
Sockeye sub-stocks. This approach was considered appropriate for Nass Sockeye stocks because 
the vast majority of in-river harvest occurs in the lower Nass where all stocks are vulnerable. In-
river harvest rates are combined with marine exploitation rates from the NBSRR to estimate the 
total exploitation rate for the different substocks. 

In-river run reconstructions are done at the stock level. In some cases, stocks are modelled 
as a group, because current methods in genetic stock identifcation cannot differentiate the 
component stocks to estimate individual run timing curves. The model therefore assumes equal 
run timing for the components. At present, the SSIRR models 20 Skeena Sockeye stocks and 
the annual in-river harvest rates for the aggregrate Nass Sockeye stock are applied to each 
of 10 Nass sub-stocks. The same number of stocks were used by English et al. (2019), with 
some changes to stock groupings (e.g., Brown Bear/Cranberry, Gingit/Zolzap, and the addition of 
Strohn Creek). 

The NCCDSB was updated in 2021 to incorporate reviews of spawner estimates for indicator 
systems, age composition data for the aggregates and individual stocks and timing assumptions 
for Skeena and Nass substocks, using updated GSI data collected from 2000-2020 at the Tyee 
Test Fishery and Nass fsh wheel programs, marine and in-river harvests for Skeena First Nations; 
and additional years of data to the 2019 return year. 
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2.1.8. Recruitment Estimates 

We applied age composition estimates and calculated brood-year recruitment for each stock 
(aggregate and component stocks). We used recruitment estimates based on the major age 
classes (i.e., ages that have contributed more than 2% of the run at least once). 

Spawner recruit data for the wild component of the Skeena aggregate (Skeena Wild aggregate 
data) were derived by subtracting the calculated spawners and run sizes for Pinkut and Fulton 
Sockeye from the aggregate estimates, then using the annual aggregate age composition to 
recalculate recruits. 

Updates to the aggregate and stock-level recruit estimates were the result of updates to the run 
reconstructions and age composition estimates described above. 

2.1.9. Data Checks and Sensitivity Tests 

Data quality metrics were calculated for each stock looking at the entire time series and at individual 
observations (Pestal et al. 2025b). Potential data concerns were identifed if metric values fell 
below, above, or outside the range of user-specifed trigger values, depending on the metric. 
Trigger values were selected based on published guidance where available, or based on TWG 
consensus. 

The following metrics were used to conduct a systematic review of these considerations for the 
31 Skeena and Nass Sockeye stocks: 

• Contrast : low contrast in spawner data is fagged if Max(Spn)/Min(Spn) < 4, using the 
threshold from Clark et al. (2014). 

• Number of observations: insuffcient data for ftting SR models is fagged if the number of 
brood years with estimates of both spawners and recruits is less than 10. This trigger value 
was selected based on general experience with other Sockeye stocks. This is intended to 
identify stocks with “little” data using a consistent defnition. 

• Large/small estimates not in model ft : large estimates of spawners or recruits outside of 
the SR data set are fagged if the largest observed value is more than double the largest 
value for the brood years with estimates of both spawners and recruits. Small estimates of 
spawners or recruits outside of the SR data set are fagged if the smallest observed value 
is less than half the largest value for the brood years with estimates of both spawners and 
recruits. These trigger values were selected to identify extreme values. 

• Large expansion factor : the expansion from index spawners to total spawner estimate were 
fagged if the average expansion for the whole time series is larger than 3 (i.e., observations 
are multiplied by more than 3). 

Qualitative commentaries were compiled to describe spawner data, catch data, age composition 
data, recruitment estimates, and lake survey data, and included the following considerations for 
each of these categories: 

• Indicator quality : commentary on quality of spawner surveys (i.e., sum of estimates from 
indicator streams), based on survey types and coverage. Weirs and fshways were generally 
categorized as highly accurate, but if they capture multiple stocks then quality of stock 
composition estimates and relative abundance of the component stocks was also considered. 

• Expansions: categorizes the total expansion factor applied to the estimate from indicator 
streams into 4 categories. Expansion factors were taken from the previously published run 
reconstruction estimates (e.g., English et al. 2019). 
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• Total spawner estimate quality : Commentary on overall quality of the spawner estimate, 
considering the quality of the index estimate and the expansion factor. 

• Overall rating for spawner estimate: The quality of spawner estimates was assessed on a 
5-point scale from Very Good to Very Poor, based on the commentary for TotalSpn. 

Quality of catch estimates by stock: 

• Marine: commentary on whether the marine migration route for the stock is likely similar to 
the aggregate migration route used in the NBSRR model, considering life history (e.g., sea 
type vs. lake type) and stock size (i.e., the model better captures they dynamics of major 
stocks: Meziadin on Nass and Babine stocks on the Skeena); this in turn affects whether the 
proportion of aggregate marine catch in the major fsheries for this stock is likely similar to 
the stock composition in the lower river assessment project (i.e., Nass fshwheels, Tyee test 
fshery), considering migration behaviour and stock size. 

• In-river : commentary covering 2 considerations: (1) the quality of run timing and migration 
speed estimates; and (2) quality of catch estimates in different modelled river sections. 

• Total catch estimate quality : commentary on overall quality of the total catch estimates, 
considering the quality of the above components 

• Overall rating for catch estimate: The quality of catch estimates was assessed on a 5-point 
scale from Very Good to Very Poor, based on the commentary for TotalCt. 

Quality of recruitment estimates by stock: 

• Run rating: Describes the quality of run size estimates on a 5-point scale from Very Good 
to Very Poor, based on the commentary ratings for expanded spawner estimates and total 
catch estimates, and the relative magnitude of catch and spawner abundance (e.g., very 
poor catch estimate has little effect on quality of run size estimate if catches are very small). 

• Age structure: categorizes the age structure of the stock as either stable (very little change 
from one year to the next), variable (some change on relative proportions, but consistent 
dominant age class), or highly variable (dominant age class varies). 

• Age data: categorizes the age composition estimates as either Annual (estimates available 
for most years), Infll (estimates available for many years, and remaining years inflled with 
average), or Average (a few years of data, using average for all years). 

• Total recruitment estimate quality : commentary on overall quality of the recruitment estimates, 
considering the quality of the estimates for total run size and age composition. 

• Overall rating for recruitment estimate: The quality of recruitment estimates was assessed 
on a 5-point scale from Very Good to Very Poor, based on the commentary for TotalRec. 

Sensitivity tests were used to assess whether the potential data issues identifed in the previous 
section were likely to affect estimates of standard biological benchmarks (e.g., SMSY , SMAX ), in 
order to assist model scoping and to identify which priority areas of uncertainty that will need to 
be considered in subsequent analyses (Pestal et al. 2025b). 

We performed three sets of sensitivity tests: data variations, uncertainty in the data (bootstrap), 
and uncertainty in the model ft (Bayesian estimates). Sensitivity tests were implemented with the 
RapidRicker package (Pestal et al. 2025a), which iterates through a comprehensive set of data 
variations to calculate standard biological benchmarks. Model fts and benchmark calculations 
are generated using both a simple linear regression ft and a Bayesian ft using JAGS code 
adapted from Miller and Pestal (2020). 
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The results from these initial sensitivity tests of SR model ftting, documented in the data report 
(Pestal et al. 2025b), were used to identify analytical priorities for this Research Document 
(Section 1.1.2). 

2.1.10. Available Spawner-Recruit Data 

Complete time series of spawners and recruits are available for the Nass aggregate since 1982 
and for the Skeena aggregate since 1970. Stock-level run reconstructions for the Skeena are 
available back to 1960. 

Nass and Skeena Sockeye were organized into 31 stocks (Table 4), including 7 Nass and 24 
Skeena stocks (Pestal et al. 2025b). Stocks can be grouped together based on life history and 
adaptive zone (LHAZ ), as well as watershed. Life history variations include lake type (LT ), river-
type (RT ), and sea-type (ST ). Exploitation rates are estimated for indicator systems (stocks or 
stock groups with similar run timing and reliable estimates of catch and spawner abundance). 
Under the Wild Salmon Policy (DFO 2005), Canadian anadromous salmon are grouped into 
distinct conservation units (CU). For Nass and Skeena Sockeye, most of the stocks match up 
with a single CU. Some of the smaller stocks combine 2-3 CUs, either because they rear in 
cojoined lakes, or they are assessed together and data can’t be separated. Babine/Nilkitkwa, 
the largest Skeena CU, was divided into 5 distinct stocks based on enhancement and run timing. 

The length and quality of spawner-recruit time series vary across stocks (Table 5, Figure 2). 
Larger stocks generally have more years of higher quality data. The TWG developed a consistent 
quality rating for spawner, run size, and recruitment estimates based on the types of data and 
calculations Pestal et al. (2025b). Spawner estimate ratings incorporate the quality of the index 
survey as well as the expansion factor (e.g., a fence-based census of all spawners is rated as 
very good, but an aerial survey covering less than 1/5th of the stock is rated as poor). Run size 
estimates ratings consider whether a stock is well represented in the catch accounting and run 
reconstruction analyses (e.g., a major stock with reliable stock identifcation and resulting timing 
estimates is rated as good, but a small stock uncertain timing is rated as poor ). Recruitment 
estimate ratings combine quality of the run size estimate with considerations of the quality and 
amount of age composition data (e.g., stock-specifc annual age data vs. average age composition 
from a proxy stock). 

The 31 stocks were organized into three groups based on relative abundance and available data. 
Group 1 includes 14 larger stocks with long time series of spawner-recruit data which account 
for about 98% of the combined total returns for Nass and Skeena Sockeye, Group 2 includes 9 
smaller stocks with some spawner-recruit data which together account for about 2% of combined 
total returns, and Group 3 includes 8 stocks without any spawner-recruit data. 

We fltered out implausible spawner-recruit observations and inflled gaps to allow ftting model 
forms that require complete time series. Specifcally, we excluded brood years where estimated 
recruits/spawner exceeded 45, inflled 1-yr gaps in spawner estimates using the average of 
previous and subsequent estimates, inflled the corresponding run size using the year-specifc 
exploitation rate estimate from the run reconstruction models, and then used the inflled data 
in the recruit calculation. Filtering and inflling procedures were only applied to some stocks 
(Table 5, Figure 2). We tested the effect of these data treatment steps using the basic Ricker 
model: Removing outliers through fltering generally had a larger effect on the parameter estimates 
than the inflling step (Appendix E.1). 
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New information has recently become available for some stocks, which has not been incorporated 
into the current version of the analyses, but we consider these a high priority for updating in 
future work: 

• Bowser : Bowser Lake was likely a major contributor to the Nass aggregate Sockeye return 
in some years. Visual escapement estimates, which are confounded by high glacial turbidity, 
have not been regularly conducted for Bowser Lake Sockeye, which are primarily a lakeshore 
spawning population. Previous abundance estimates for Bowser Sockeye have been derived 
using different methods including stock identifcation using scale pattern analyses, and 
more recently, GSI applied to Nass aggregate escapements. The different methods have 
produced divergent estimates for some years, and further assessment is required to reconcile 
these estimates before spawner recruit time series can be developed. 

• Bear/Azuklotz: Preliminary results from a new assessment program (video weir installed in 
2021 on Bear River downstream of Bear Lake) suggest that the combined visual spawner 
escapements based on aerial surveys may underestimate the actual spawning population 
by a much larger factor than what has been accounted for in the expansion factors that are 
currently used in run reconstruction procedures. For our analyses, we used the existing 
time series of reconstructed abundances that do not account for new information from the 
camera weir program, with the understanding that these data may change in the near future. 

• Skeena river-type: This stock is currently considered data defcient, because there is not 
enough information about spawning abundance or distribution of Skeena river-type Sockeye 
to estimate total watershed abundance for these populations. While there are small persistent 
river-type spawning populations that are enumerated annually in the Kispiox watershed and 
Bulkley River, it is not known whether these populations account for most or only a small 
portion of river-type spawners in the Skeena watershed. Anecdotal information from historic 
and recent surveys suggest that persistent or ephemeral populations are also present in 
Upper Skeena tributaries. The population structure of river-type spawners in the Skeena 
watershed is unclear, with few samples in the genetic baseline and poor differentiation 
between some Skeena and Nass river-type populations. It is not known whether Skeena 
river-types represent one or multiple populations, or a single population for Skeena and 
Upper Nass river-types. 
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LHAZ Watershed Stock Label ERInd CU 

Nass SRT Lower Nass Tribs Lower Nass Sea & River Type LNassSRT Gingit+ 1 

U Nass LT Meziadin Meziadin Meziadin Meziadin 1 

Bell-Irving Bowser 
Oweegee 

Bowser 
Oweege 

NA 
NA 

1 
1 

Kwinageese Kwinageese Kwinag Kwinagees 2 

Damdochax Damdochax Damdoch Damdochax 1 

Nass RT Upper Nass Tribs Upper Nass River Type UNassRT BrownBear 1 

L Skeena LT Ecstall Johnston 
Ecstall 

Johnston 
Ecstall 

NA 
NA 

1 
1 

Gitnadoix Alastair Alastair Alastair 1 

Lakelse Lakelse Lakelse Lakelse 1 

Kitsumkalum Kitsumkalum Kitsumk Kalum 1 

Zymoetz Mcdonell Mcdonell Zymoetz 3 

M Skeena LT Kitwanga Kitwanga Kitwanga Kitwanga 1 

Bulkley Upper Bulkley Lakes 
Morice 

UBulkLk 
Morice 

NA 
Morice+ 

2 
2 

Kispiox Swan/Stephens SwanSteph Swan+ 3 

Babine Babine Early Wild 
Babine Late Wild 
Babine Mid Wild 
Pinkut 
Fulton 

Bab-EW 
Bab-LW 
Bab-MW 
Pinkut 
Fulton 

Babine-WE 
Babine-WL 
Babine-WM 
Babine-P 
Babine-F 

* 
* 
* 
* 
* 

U Skeena LT Sicintine Sicintine Sicintine NA 1 

Slamgeesh Slamgeesh Slamg Slamgeesh 2 

Motase Motase Motase Motase 1 

Sustut Bear 
Asitka 
Sustut 

Bear 
Asitka 
Sustut 

Bear+ 
Bear+ 
NA 

2 
1 
3 

Kluatantan Kluantantan Kluant NA 1 

Kluayaz Kluayaz Kluayaz NA 1 

Skeena RT All Skeena River Type Skeena RT Swan+ 2 

Table 4. Nass and Skeena Sockeye population structure. The 31 stocks fall into 7 distinct groups based on 
life history type and freshwater adaptive zone (LHAZ) and 21 watersheds. We use short stock labels 
(Stock) for tables and fgures throughout the Research Document. Exploitation rate indicators (ERInd) are 
available for most of the stocks. Stocks match up with one or more conservation units (CU). Babine is 
currently designated as a single CU, but assessed and analyzed as fve distinct stocks (marked with *). 
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Table 5. Summary of available spawner-recruit data by stock. Stocks are sorted based on relative size 
(pSpn), calculated as the the percent of cumulative spawner abundance since 2000 across both stock 
aggregates. Quality ratings for spawner (Spn), run (Run), and recruit (Rec) estimates on a 5-point scale 
from very poor (VP) to very good (VG) are based on TWG consensus using a set of qualitative criteria 
(Pestal et al. 2025b). nS is the number of spawner estimates. The number of brood years with 
spawner-recruit data varies based on data treatment for some stocks: Orig = original data set from Pestal 
et al. (2025b), Filter = number of brood years fltered due to R/S > 45, Infll = number of years for which a 
1-yr gap in estimates of spawners and run size could be inflled, Use = number of brood years with 
spawner and recruit estimates after fltering and inflling. 

Quality SR Data 

LHAZ Stock pSpn nS Spn Run Rec Orig Filter Infll Use 

M Skeena LT Fulton 37 60 VG G G 55 0 0 55 
M Skeena LT Bab-LW 15 60 G G G 55 0 0 55 
U Nass LT Meziadin 15 38 VG G G 32 0 0 32 
M Skeena LT Pinkut 11 60 VG G G 55 0 0 55 
M Skeena LT Bab-EW 4 60 G G G 55 0 0 55 
M Skeena LT Bab-MW 3 60 G G G 55 0 0 55 
L Skeena LT Alastair 2 60 M M M 54 0 0 54 
L Skeena LT Kitsumk 2 57 P P P 46 0 2 54 
Nass SRT LNassSRT 2 38 M M M 34 0 0 34 
M Skeena LT Morice 2 59 G M M 50 0 1 54 
L Skeena LT Lakelse 1 58 M M M 49 0 2 55 
M Skeena LT SwanSteph 1 57 M M M 46 2 4 54 
U Skeena LT Bear 1 54 P P P 36 0 4 49 
L Skeena LT Mcdonell <1 50 M M M 35 0 2 42 
U Nass LT Kwinag <1 35 G to VG M M 21 1 4 32 
M Skeena LT Kitwanga <1 32 VG M G 17 0 3 19 
U Nass LT Damdoch <1 37 G M M 29 0 1 32 
U Skeena LT Sustut <1 47 DD DD DD 27 1 2 27 
L Skeena LT Johnston <1 31 P P P 11 2 3 14 
U Skeena LT Asitka <1 34 M M M 11 0 7 24 
Nass RT UNassRT <1 20 G P P 11 2 0 4 
U Skeena LT Slamg <1 19 G M M 14 0 0 14 
U Skeena LT Motase <1 33 VP M VP 16 0 2 17 
Skeena RT Skeena RT <1 0 DD DD DD 0 0 0 0 
U Nass LT Bowser - 0 DD DD DD - - - -
U Nass LT Oweege - 0 DD DD DD - - - -
L Skeena LT Ecstall - 0 DD DD DD - - - -
M Skeena LT UBulkLk - 0 DD DD DD - - - -
U Skeena LT Sicintine - 0 DD DD DD - - - -
U Skeena LT Kluant - 0 DD DD DD - - - -
U Skeena LT Kluayaz - 0 DD DD DD - - - -
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Figure 2. Spawner-recruit data availability - By stock. Timeline of available data by brood year, with stocks 
grouped based on life history and adaptive zone. Dark blue circles are brood years with both spawner and 
recruit estimates. Light blue points are brood years with only spawner estimates. Light red diamonds mark 
brood years where a 1yr gap in spawner estimates was inflled. Dark red diamonds mark inflled brood 
years where a corresponding recruit estimate could be calculated. Red “x” mark fltered observations (R/S 
> 45) that could not be inflled. Numbers in brackets are the share of cumulative spawner abundance 
since 2000 across both stock aggregates. 
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2.2. SPAWNER-RECRUIT MODEL FITTING 

2.2.1. Ricker Model Forms 

Sockeye population dynamics are commonly modelled with the Ricker curve, which assumes 
that productivity, expressed as ln(Rec/Spn), decreases as the abundance of spawners increases, 
resulting in a dome-shaped relationship between spawners and total recruits. Key milestones in 
previous work on Skeena and Nass Sockeye (Table 2) all used the Ricker curve, but implementation 
details varied widely across these analyses: 

• Bocking et al. (2002) used a deterministic Ricker model for a single stock (Meziadin, the 
largest Nass stock). 

• Walters et al. (2008) and Hawkshaw (2018) developed state-space Ricker models for 9 
Skeena CUs. 

• Hawkshaw (2018) also modeled Skeena Sockeye as a single stock with Ricker dynamics in 
a multi-species simulation. 

• Cox-Rogers et al. (2010) used nursery lake capacity estimates based on photosynthetic rate 
to develop Ricker parameters for 28 nursery lakes, with Babine treated as a single stock. 

• Korman and English (2013) used hierarchical Bayesian Ricker fts for 17 Skeena conservation 
units, splitting Babine into one enhanced and three wild CUs, and using PR-based lake 
rearing capacity as priors for Smax for all CUs except for Babine-Nilkitkwa. 

• Pacifc Salmon Foundation (2021) updated the Korman and English (2013) analysis, but 
modifed the Babine split to one enhanced and two wild CUs, and added four Nass Sockeye 
CUs. 

• Atlas et al. (2021) used Hierarchical Bayesian Ricker model ft to SR data for 54 North Coast 
Sockeye CUs (1 model for each biogeoclimactic zone). 

Fleischman et al. (2013) observed that “The Ricker model is, by far, the most common choice for 
Pacifc salmon SR analyses, probably because (i) it can accommodate overcompensation, which 
is evident in many Pacifc salmon data sets, and (ii) it is conservative with respect to optimal 
escapement levels (for fxed values of the productivity parameter and carrying capacity, SMSY is 
always higher under the assumption of a Ricker model than under a Beverton–Holt model).” 

We used three alternative model forms for the Ricker SR relationship to assess the sensitivity of 
biological benchmark estimates to alternative assumptions about observed residuals. 

Basic Ricker (BR) 

A standard Bayesian Ricker ft, based on a fxed linear relationship between ln(R/S) (productivity) 
and S (spawner abundance). The basic Ricker model, like any basic linear regression, assumes 
that residuals have a random normal distribution N with mean 0 and sample-based variance, 
without any pattern in the deviations over time. The basic Ricker ft serves as a good baseline, 
even if the observed pattern in productivity violates that assumption (i.e., What would benchmark 
estimates look like if changes over time were disregarded?). For brood year i 

ln(Ri/Si) = ln(α) − β ∗ Si + εi (1) 

ϵi ∼ N(0, σ2) (2) 

Ricker with lag-1 autocorrelation (AR1) 

An extension to the Ricker model, which is again based on fxed linear relationship between 
ln(R/S) (productivity) and S (spawner abundance), but also looks for an underlying pattern in 
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the residuals (i.e., estimate a specifc residual for each brood year i) 

ln(Ri/Si) = ln(α) − β ∗ Si + εi (3) 

εi = ϕεi−1 + νi (4) 

νi ∼ N(0, σν 
2) (5) 

Ricker with Time Varying Productivity (TVP) 

An extension to the Ricker model, which is based on a time-varying linear relationship between 
ln(R/S) (productivity) and S (spawner abundance) (e.g., Peterman et al. 2000, 2003; DFO 2020; 
Freshwater et al. 2020; Holt and Michielsens 2020; Huang et al. 2021). For each brood year, the 
productivity parameter ln(α) is estimated based on the observed productivity for that year and 
the estimated ln(α) for the previous brood year, to generate a more or less smooth series of α 
parameters. 

ln(Ri/Si) = ln(α)i − β ∗ S + εi (6) 

ln(α)i = n(α)i−1 + ωi (7) 

ωi ∼ N(0, σω 
2 ) (8) 

ϵi ∼ N(0, σ2) (9) 

Two alternative approaches for ftting a time-varying productivity Ricker model have been applied 
for Pacifc salmon data, (1) Kalman Filter (Peterman et al. 2000, 2003) and (2) Recursive Bayes 
(DFO 2020; Freshwater et al. 2020; Holt and Michielsens 2020; Huang et al. 2021). While the 
mathematical structure of these models are the same (Eq. 6, 9), the computational implementation 
of the estimation step is very different. A key difference is that the Kalman Filter implementations 
included a smoothing step, whereas the Recursive Bayes implementations did not. 

The TVP model described here uses the Recursive Bayes version, consistent with recent work 
on Fraser Sockeye (DFO 2020; Huang et al. 2021). 

Summary 

The Basic Ricker and AR1 Ricker both ft a single spawner-recruit relationship which is assumed 
to describe inherent properties of the stock that remain constant over time. The AR1 model form 
has previously been used in escapement goal analyses for Alaskan and northern transboundary 
Sockeye stocks (e.g., Miller and Pestal 2020; Connors et al. 2023). The time-varying productivity 
version of the Ricker model assumes that there are real changes in productivity over time, and 
tries to extract a more-or-less smoothed pattern, identifying high and low productivity periods. 
The time-varying productivity model has been used for some northern transboundary salmon 
stocks (e.g., Pestal and Johnston 2015) and in several Fraser Sockeye applications (e.g., Grant 
et al. 2011; Peterman and Dorner 2011; Huang et al. 2021). 

2.2.2. Bayesian Parameter Estimation Using Markov Chain Monte Carlo (MCMC) 

We derived parameter estimates with Bayesian methods for candidate stock-level and aggregate-
level SR models with Markov chain Monte Carlo (MCMC) using the JAGS sampling engine 
(Plummer 2003) via the jags() function from the R2jags package (Su and Yajima 2020). Appendix C 
describes the code set-up and lists the JAGS code for the three model forms. 

MCMC estimation combines prior assumptions about each parameter with the likelihood of 
different parameter values based on the data to generate a posterior sample of parameter values. 
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Prior assumptions can be uninformative (e.g., productivity for the stocks can be anywhere from 
very high to very low, and we don’t specify a preference) or informative (e.g., we think productivity 
of the stock is similar to the average productivity from several near-by stocks with similar life 
history). 

The sampling engine starts with some random values sampled from the prior distribution, then 
searches through variations of all the parameters to identify values that plausibly link the observed 
data to the specifed relationship (e.g., a Ricker function). Sampling should be set up such that 
parameter values stabilize (convergence), and earlier parts of the sampling chain are discarded 
(burn-in). 

MCMC implementations require careful testing of prior assumptions and verifcation of sampling 
behaviour to assess the quality of resulting estimates. We compiled a checklist of MCMC diagnostics 
and used it to select a short-list of SR model fts for each stock (Sec. 2.3). 

2.2.3. Priors 

Bayesian fts for all three model forms (Basic Ricker, AR1 Ricker, and time-varying productivity 
Ricker) require prior distributions for the productivity parameter ln(α) and the capacity parameter 
Smax. 

We used uninformative productivity priors for all single-stock SR model fts, implemented as a 
normal distribution with a mean of 0 and a very wide spread: 

ln.alpha ∼ normal(0, 100) (10) 

For the capacity prior, we tested uniform and lognormal prior distributions for Smax, with either 
wide (Scalar = 3) or capped (Scalar = 1.5) upper bounds: 

Smax ∼ uniform(0, Spnref ∗ Scalar) (11) 

Smax ∼ lognormal(Spnref , CV )[0, Spnref ∗ Scalar] (12) 

Informative capacity priors based on the photosynthetic rate observed in rearing lakes can 
improve the precision of capacity estimates (i.e., narrower posterior distribution of Smax) for 
stocks where they are appropriate given the life history, lake properties, number of stocks rearing 
in a lake, and plausibility of the PR-based Smax estimate (e.g., Bodtker et al. 2007; Atlas et al. 
2020, 2021). We used lake-based capacity estimates as the initial stock-specifc values for 
Spnref where available and applicable, and used the largest observed spawner abundance as 
the reference value for the remaining stocks. 
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Pestal et al. (2025b) compiled published and unpublished PR-based Smax estimates for 26 
Sockeye rearing lakes in the Skeena and Nass basins (their Appendix B.4), and we used the 
estimates for 20 of the lakes to specify informative Spnref values for 15 stocks (Table 6), based 
on the following considerations: 

• Informative capacity priors using the sum of PR-based Smax estimates for major rearing 
lakes are not applicable for aggregate-level model fts, given the mixture of life histories and 
lake properties across the component stocks. 

• PR-based capacity priors are not applicable to river type or sea type Sockeye, which do not 
rear in a lake. 

• We did not use PR-based capacity priors for Babine stocks, due to (1) the size of the lake 
and (2) the challenge of allocating lake capacity estimates among fve stocks, including the 
two channel-enhanced stocks (Pinkut, Fulton). 

• For stocks with multiple rearing lakes, we generally summed the available PR-based Smax 

estimates for the main spawning lakes (Bear / Azuklotz, Fred Wright / Kwinageese, Swan / 
Stephens / Club, Sustut / Johansen). For Mcdonell, we used only the Mcdonell lake capacity 
estimate, but excluded Aldrich and Dennis, because all spawners observed surveys rear 
in Mcdonell Lake. The Slamgeesh stock includes Slamgeesh and Damshilgwit lakes, but 
PR-based estimates are only available for Slamgeesh. 

• For some stocks with PR-based capacity priors there is insuffcient data for ftting single-
stock SR models (Bowser). 

• Capacity priors for some stocks were adjusted based on a review of posterior distributions 
from preliminary model fts. 

Overall, we tested four alternative capacity priors (Table 7) and used the capped uniform prior as 
the base case for the model fts reported in this paper. 

Where PR-based capacity estimates were available, these were used to bound the SR model ft, 
but in a bounded uniform prior the lake-based estimate carries less weight than in a lognormal 
prior, unless the lognormal prior is used with a large CV, in which case it behaves almost like a 
uniform prior. We chose to downweight the lake-based information this way because (1) most of 
the available PR-based estimates are from 20 or more years ago, and (2) a consistent stock-by-
stock review of limiting factors has not been completed for Skeena and Nass Sockeye. 

The potential issues with using PR-based capacity estimates are illustrated by Kitwanga Sockeye: 
The PR-based estimate of Smax from 2003 is 36,984 (Table 6), but median observed spawner 
abundance since 1960 is 1,258. The largest observed spawner abundance was 20,804 in 2010, 
and the second largest was 13,699 in 2014. All other observations have been below 6,000 
spawners. There are several potential explanations for this discrepancy: Either the spawner-
recruit data is biased low, or the capacity estimate is biased high, or the stock has been severely 
depleted since before 1960, or Kitwanga production is not lake-limited. In addition, lake conditions 
have likely changed in the 20 years since the estimate was generated. In an escapement goal 
review focusing on one or two stocks, these alternative hypotheses could be explored and weighed 
to determine whether the PR-based capacity estimate is valid. However, this was not feasible 
here, given the number of stocks covered in the current analysis. 
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Table 6. PR-based Smax estimates used to specify informative capacity priors. Table lists the year of the 
last limnological survey (LastLim) used to derive the PR-based Smax (Est). 95% confdence intervals 
(Lower, Upper) were based on assumed 20% coeffcient of variation and a normal distribution 
(Cox-Rogers and Hume, pers. comm., DFO, 2012). Estimates for Skeena lakes are from Cox-Rogers and 
Hume (pers. comm., DFO, 2012, from datasets maintained by Cultus Lake Salmon Research Laboratory), 
which include lake-specifc adjustments for non-Sockeye competitors (e.g., stickleback) and juvenile 
competition. Estimates for Nass lakes are from Atlas et al. (2020), which do not include adjustments. 
However, adjustments would likely be small for the Nass nursery lakes. Updates or sensitivity tests of the 
PR-based Smax capacity estimates developed in the 1990s and early 2000s (e.g., the 20% CV 
assumption) were outside the scope of the current project. 

PR-based Smax 

Basin Stock Lake LastLim Est Lower Upper 

Nass Damdochax Damdochax 2008 4,862 2,956 6,768 

Kwinageese Total 39,269 23,876 54,662 
Fred Wright 1978 20,195 12,279 28,111 
Kwinageese 2008 19,074 11,597 26,551 

Meziadin Meziadin 2008 175,032 106,419 243,645 

Skeena Alastair Alastair 1996 23,437 14,250 32,624 

Bear Total 46,465 28,251 64,679 
Bear 2003 40,532 24,643 56,421 
Azuklotz 2003 5,933 3,607 8,259 

Johnston Johnston 2005 4,125 2,508 5,742 

Kitsumkalum Kitsumkalum 1996 20,531 12,483 28,579 

Kitwanga Kitwanga 2003 36,984 22,486 51,482 

Lakelse Lakelse 2003 35,916 21,837 49,995 

Mcdonell Mcdonell 2001 1,116 679 1,553 

Morice Morice 2002 191,362 116,348 266,376 

Motase Motase 2003 1,764 1,073 2,455 

Slamgeesh Slamgeesh 2001 423 257 589 

Sustut Total 5,498 3,343 7,653 
Sustut 2004 2,775 1,687 3,863 
Johanson 2004 2,723 1,656 3,790 

Swan/Stephens Total 29,090 17,687 40,493 
Swan 2002 21,432 13,031 29,833 
Stephens 2002 7,069 4,298 9,840 
Club 2002 589 358 820 
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Table 7. Alternative priors for the capacity parameter Smax. All four versions were tested with the Basic 
Ricker model ft, and the two versions of the uniform prior were tested with the AR1 and TVP Ricker model 
fts. The capped uniform prior (CU) was selected as the default for results presented in this paper. 

Type Label Description 

Capped Uniform CU All values between 0 and upper limit are equally likely. Upper limit 
generally set at 1.5 times the PR-based estimate or at 1.5 times the 
largest observed spawner abundance. Scalar adjusted for some 
stocks based on review of posterior distributions from preliminary 
model fts. 

Wide Uniform WU All values between 0 and upper limit are equally likely. Upper limit 
generally set at 3 times the PR-based estimate or at 3 times the 
largest observed spawner abundance. Scalar adjusted for some 
stocks based on review of posterior distributions from preliminary 
model fts. 

Capped Lognormal CL Values between 0 and upper limit follow a skewed distribution with a 
long upper tail and a mean set the PR-based estimate or the largest 
observed spawner abundance. Upper limit generally set at 3 times the 
mean. Mean and limit adjusted for some stocks based on review of 
posterior distributions from preliminary model fts. 

Wide Lognormal WL Values between 0 and upper limit follow a skewed distribution with a 
long upper tail and a mean set the PR-based estimate or the largest 
observed spawner abundance. Upper limit generally set at 5 times the 
mean. Mean and limit adjusted for some stocks based on review of 
posterior distributions from preliminary model fts. 

36 



2.2.4. Candidate Aggregate Spawner-Recruit Model Fits 

Key considerations for spawner-recruit modeling for the two aggregate stocks are time-varying 
productivity and the contribution of channel-enhanced stocks to Skeena Sockeye returns. Because 
long time series of continuous SR data are available for both the Skeena and Nass aggregates, 
all three candidate model forms (Section 2.2.1) can be applied, which allows for an explicit 
evaluation of changes in productivity over time. The main challenge for aggregate-level SR fts is 
determining whether the analysis method is appropriate at that scale. 

Nass aggregate 

For most of the available time series, Meziadin accounts for most of the total spawner abundance. 
The aggregate data set has good contrast overall, but the early part of the time series accounts 
for most of the contrast in the data. Since the mid-1990s contrast has been much lower (<4), but 
this is partly due to changing stock composition, specifcally the recent increase in the abundance 
and relative contribution of Lower Nass Sea and River Type Sockeye. Given their different life 
histories, we consider it more appropriate to ft SR models separately to these two main stocks, 
but included the aggregate model fts for comparison. 

Skeena aggregate 

Limited contrast in spawner data and noisy scatter of data points create large uncertainty in SR 
model fts, because a high proportion of the aggregate originates from the BLDP enhancement 
facilities. It is inappropriate to ft a density-dependent SR relationship to the resulting data, because 
the ft is highly sensitive to small changes in the data treatment choices (e.g., including or excluding 
a few earlier or recent brood years; Figure 3). Bayesian priors can used to force the model ft to 
a particular productivity or capacity considered plausible, but we have here chosen to exclude 
the enhanced stocks and ft SR models to the wild component of the aggregate (Section 2.1). An 
overview of available information on enhanced production is provided in Section H. 
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Figure 3. Simple deterministic Ricker fts for total Skeena aggregate, including enhanced Pinkut and 
Fulton, using all available brood years compared to various subsets of the data. The regression ft varies 
drastically and even reverses direction, depending on whether the 1994 and 2013 brood years are 
included in the analysis. Solid points are the data used for the model ft. Open circles are the excluded 
observations. Fits might be more stable if additional information can be incorporated, such as 
environmental covariates (e.g., ocean conditions during smolt outmigration) or covariation in productivity 
across river systems. However, this simple illustration shows that the SR data by themselves provide little 
information about a density-dependent relationship between spawners and productivity. 
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2.2.5. Candidate Single-Stock Spawner-Recruit Model Fits 

Key considerations for SR modeling for each of the Skeena and Nass Sockeye stocks include 
stock characteristics, available data, and observed changes over time (e.g., data quality, productivity). 
We developed a checklist of considerations to identify an initial set of candidate SR model variations 
for each stock (Figure 4). 

The minimum number of SR data points required for model ftting was discussed during the peer 
review process. If there are relatively few SR data points, then parameter estimates and resulting 
biological benchmarks can be highly uncertain and systematically biased, particularly where 
observation error is relatively high and there is strong year-to-year correlation in survival. A 
consensus was reached that the threshold should be at least 10, because it was participants’ 
experience that SR model fts to fewer than 10 observations are vulnerable to severe biases in 
parameter estimates and resulting benchmarks. Participants also considered a higher threshold 
based on unpublished work by Brendan Connors (pers. comm., DFO, 2022), who explored the 
amount of bias in estimates of Smsy for various numbers of data points included in the analysis 
and found that at least 13 years of stock-recruitment data pairs are needed, in general, to get 
unbiased Smsy estimates. Most concerning was that fewer than 13 points generally produced 
underestimates of Smsy, with the largest bias produced by the least productive populations. This 
bias in Smsy was generally smaller in an HBM analysis than in the single-CU analyses. 

We maintained the threshold of at least 10 data points as part of the checklist in Figure 4, but the 
higher threshold of at least 13 data points would not affect our analyses (Table 5). Upper Skeena 
RT with 4 brood years of data are excluded regardless, and all the other stocks have more than 
13 brood years of data. Slamgeesh and Johnston have 14 brood years through 2019 return data, 
and will have 16 as soon as the next update of the run reconstruction (up to the 2022 return year) 
is implemented. 

SR model fts were only applied to wild stocks with at least 10 brood years of SR data: 

• For eight stocks with gaps in the data series (after flter and infll, Section 2.1.10) only the 
Basic Ricker model was ftted. 

• For 12 stocks with at least 25 continuous brood years of SR data, all three model forms 
were ftted (Basic, AR1, TVP). 

• The two enhanced stocks (Pinkut, Fulton) were excluded because of ftting issues as illustrated 
in Figure 3 for the Skeena aggregate. 

• The eight data-defcient stocks were also excluded. Note that for one of the stocks that are 
here considered to be data defcient, Bowser (Nass), there is on-going discussion regarding 
the usability of available estimates, and it may be included in future updates to this analysis. 
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Figure 4. Checklist for identifying a base set of candidate models for single-stock SR model fts. We 
focused on Ricker model variations for wild stocks with at least 10 brood years of spawner-recruit data 
after inflling any 1-year gaps in spawner abundance or run size. For stocks with at least 25 continuous 
brood years of spawner-recruit data we tested three alternative model forms. For stocks not meeting that 
requirement we ftted only a basic Ricker model. 
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We completed two sets of sensitivity tests for the Basic Ricker ft: 

• Full vs. truncated data: Compare fts using all available data to fts with truncated data, 
excluding earlier brood years. The cut-off for the truncated data differed by stock, but we 
generally used the mid- to late 1990s. For example, Alastair has SR data back to to 1960, 
but the truncated model ft uses only brood years starting in 1998. Note that for Kitsumkalum 
we used SR data truncated at 1990 as the base case, and all years of data in a sensitivity 
test, due to the observed drastic changes in production dynamics since a spawning channel 
was built in the late 1980s. Note that the Kitsumkalum channel differs from Pinkut and 
Fulton because spawner abundances are not actively managed to a target, and data since 
1990 show a clear density-dependent pattern. 

• Alternative capacity priors: Compare benchmark estimates using four alternative capacity 
priors: capped uniform, wide uniform, capped lognormal, wide lognormal (Section 2.2.3. 
Where available and applicable we used capacity estimates based on lake photosynthetic 
rate to bound the capacity priors. 

2.2.6. Exploration of Hierarchical Spawner-Recruit Model Fit for Skeena Sockeye Stocks 

As part of the TWG process, McAllister and Challenger (Appendix D) updated the hierarchical 
Bayesian model (HBM) ftting approach for Skeena Sockeye stocks from Korman and English 
(2013) to provide a comparison of previous estimates generated using the same methodology 
but with an updated spawner-recruit data set. An advantage of hierarchical Bayesian models is 
that information can be shared between stocks, drawing on similarities in the available data to 
extract shared underlying patterns (e.g., similar intrinsic productivity across stocks with similar 
life history, common patterns in changing productivity), which may improve the precision of 
estimates for stocks with noisy or missing data. 

Details of the HBM methods, model fts, and results are provided in Appendix D. Briefy, the 
approach is to model stock-level productivity with two components: (1) a common underlying 
distribution with a shared central tendency across the stocks (called a hyperparameter ), and 
(2) a stock-specifc deviation from that shared distribution. For stocks with highly informative 
data, the resulting productivity estimates can shift further away from the common productivity 
parameter. For stocks with noisy or missing data, the parameter estimate will get pulled more 
strongly towards the overall centre of the distribution for the group of stocks. This shrinkage 
occurs for all stocks whose productivity parameters differ from the mean productivity of the group 
of stocks that was included in the HBM, but the level of shrinkage differs by stock depending on 
how strong the signal in the data is (Section D.4.1). 

Known challenges for hierarchical Bayesian fts include: 

• Model complexity : Many parameters are being estimated simultaneously. Parameter estimates 
may be highly sensitive to alternative settings and unexpected interactions could skew the 
results. While this is the case for all Bayesian model fts, the potential issue grows with the 
number of parameters. 

• Assumed similarities between stocks: In its simplest form, an HBM implementation estimates 
productivity for all component stocks relative to a single underlying hyperparameter, but 
more nuanced stock structures can be incorporated (e.g., group stocks to match the spatial 
structure of the basin). Given that information is exchanged between stocks, it is important 
to consider the life histories and observed productivity patterns of stocks linked together in a 
hierarchical model structure. 
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In addition to providing a comparison with estimates that were previously developed using a 
similar modeling framework for Skeena Sockeye, the updated HBM model results confrm the 
overall pattern of basin-wide declines in productivity for Skeena Sockeye in the shape of the 
shared year effect curve, and the HBM results reported in Appendix D also support other objectives 
for this Research Document, including: 

• Contributing a fully independent cross-check of the single-stock parameter estimates for 
Skeena Sockeye stocks (Objective 3) 

• Providing an opportunity to explore sources of observed differences (i.e., model form, prior 
assumptions) (Objective 6) 

To support these objectives, the HBM was implemented using the same data sets and incorporated 
some sensitivity tests designed to be similar to the single-stock implementation. The intent was 
that observed differences in results should be mostly due to the hierarchical structure, but it was 
challenging to clearly isolate the effect of the hierarchical assumption from other methodological 
nuances for the stocks where differences between single stock and HBM model outputs were 
observed. 

2.3. SINGLE-STOCK SR MODEL SELECTION AND PRODUCTIVITY SCENARIOS 

We ft a total number of 163 candidate model fts, due to the alternative model forms (Basic, 
AR1, TVP), sensitivity testing (i.e., alternative priors, full vs. truncated time series), and large 
number of stocks (20 wild, 2 enhanced, 3 versions of aggregate ft). To improve consistency, we 
developed guidelines for frst selecting a short list of model fts for each stock or aggregate and 
then developing alternative productivity scenarios based on the short-listed model fts (Figure 5). 

Given that “all models are wrong but some are useful” (Box 1979), the approach for short-listing 
model fts needs to be adapted to their purpose. For example, in applied SR analyses for the 
same stocks of Fraser River Sockeye, using the same data, the annual forecasting process 
(e.g., Grant and MacDonald 2013) uses a different set of candidate models and a different 
model selection approach than the simulation used for a recovery potential assessment (Huang 
et al. 2021). Both approaches combine quantitative criteria for model selection (e.g., MCMC 
convergence, mean absolute percent error from a retrospective test) with expert judgment regarding 
the plausibility and usefulness of the candidate SR model fts. 

For the Skeena and Nass Sockeye escapement goal review, the TWG and independent reviewers 
identifed changes in productivity over time, and differences in productivity between stocks, as 
the main analytical priorities (Section 1.1.3). Accordingly, we framed the fundamental question 
for model selection as “Of the SR model fts that converged on biologically plausible parameter 
estimates, which ones are useful for describing alternative productivity scenarios that are relevant 
to subsequent decision processes”, where we defne “useful” as “helping to demonstrate the 
magnitude of changes in biological benchmarks and subsequent analyses resulting from different 
productivity assumptions”. This emphasizes the contrast between productivity scenarios, and is 
a very different approach from looking for the single model with the “best” ft. These productivity 
scenarios are not predictions or recommendations for the best model ft per se. Upcoming 
decision processes will need to identify scenarios they consider plausible, and then evaluate 
the implications for the specifc building blocks they choose to focus on (e.g., status assessments 
vs. equilibrium profles vs. harvest strategy simulations). 

We used three steps to short-list candidate model fts for each stock (Figure 5): 
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1. Statistical considerations: Models that ft very poorly or didn’t converge, using the criteria 
listed in Table 8 were screened out. 

2. Capacity considerations: We compared capacity estimates across model fts to screen out 
any that were considered highly implausible. If the remaining plausible alternative were 
substantially different, we examined whether the difference was most likely explained by 
model form, choice of informative/uninformative capacity prior, data truncation, or scatter of 
data points, and made case-specifc choices. Where available, we generally selected model 
fts with uniform capacity priors capped based on lake photosynthetic rate. 

3. Productivity considerations: We compared productivity estimates across model fts for a 
stock, and across stocks, to screen out any that were considered implausible. Where AR1 
and TVP models could be ftted, we compared the time-varying parameter estimates to 
Basic Ricker estimates and made case-specifc choices. We generally selected model fts 
using all available data unless there were clear data issues. Where data and model fts 
indicated recent changes in population dynamics, we generally selected AR1 or TVP fts 
over Basic Ricker fts, and fts using all available data rather than truncated data. 

The following general guidelines were used to generate alternative productivity scenarios based 
on subsampling the posterior distributions from the short-listed model fts (Figure 5): 

• To describe long-term average productivity, we sampled from AR1 ft where available, and 
from Basic Ricker ft otherwise. Using the TVP ft would require averaging or subsampling 
across all brood years, and so we considered it more appropriate to just use the AR1 parameter 
estimates, if both AR1 and TVP were available. 

• To describe recent productivity and high/low productivity bookends, we sampled from the 
TVP ft where available, and from the Basic Ricker ft otherwise. 

• Where a TVP ft was available, we subsampled from the annual ln.alpha samples for a full 
generation, using the most recent generation for the recent productivity scenario, and the 
generation centred on the lowest/highest productivity for the bookends. As a sensitivity 
test, we also generated two alternative versions of the recent productivity scenario, using 
the last two or three full generations (i.e., 8 and 12 brood years for a stock with mainly age 
4 returns). 

• Where only a Basic Ricker ft was available, we checked the pattern of Ricker residuals 
and identifed a rough productivity adjustment in terms of a percentile of the posterior. 
Then we selected half the sample from above and below that percentile to generate a 
recent scenario. For high/low bookends, we subsampled such that the median ln.alpha 
corresponds to the 10th and 90th percentiles of the original posterior distribution. 
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Figure 5. Considerations for model selection and guidelines for generating productivity scenarios. 
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Table 8. Checklist of MCMC diagnostics. The following standard diagnostics were used to assess MCMC 
sampling and model ft. Table adapted and expanded from Pestal and Johnston (2015). 

Consideration Diagnostic Thresholds Examples 

Convergence Rhat statistic (Gelman 
and Rubin 1992) 

Largest Rhat across all tracked nodes 
(ln.alpha,beta, Smax) is less than 1.05 

-

Convergence Effective sample size Aiming for at least 1,000 on all tracked 
variables. 

-

Convergence Trace plot (sequence 
of sampled values) for 
ln.alpha and beta 
variables 

Visual assessment of overlaid pattern 
for the 2 chains (check for adequate 
mixing) 

-

Convergence Gelman-Rubin GR 
Statistic (Gelman and 
Rubin 1992) 

Check whether the 2 chains converge 
before the end of the burn-in, such 
that GR over the length of the retained 
sample is between 0.9 and 1.1. 

Grant et al. 
(2011) 

Convergence Geweke statistic G 
(Geweke 1992) 

Check whether G falls within the 
range [-2, 2]. If not, then the earlier 
part of the MCMC chain differs from 
the later part and the samples didn’t 
converge (G is a z score and values in 
this range indicate that early and late 
sample means fall within 2 standard 
deviations). 

Grant et al. 
(2011) 

Parameter 
Estimates 

Shape of posteriors Check whether posterior distributions 
are smooth and whether they bump 
up against the limits imposed by the 
priors (i.e. appear cut off) 

-

Parameter 
Estimates 

Standardized 
Interquartile Range 
(SIQR)= 
(p75-p25)/p50, which 
is the range that 
covers the middle half 
of the samples (i.e. 
the width of the box in 
standard boxplots), 
rescaled by median 

Relative comparison -

Relative model 
ft 

Deviance Information 
Criterion DIC 
(Spiegelhalter et al. 
2002; Gelman et al. 
2004) 

Check relative difference in DIC to 
compare alternative model fts. 
Lowest DIC indicates best ft among 
the models considered, but does not 
show whether any of the models ft 
well or poorly. Not applicable for 
comparing model fts to different data 
subsets (i.e., all years vs. truncated 
data). 

Grant et al. 
(2011), 
Korman 
and 
Tompkins 
(2014) 
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2.4. BIOLOGICAL BENCHMARKS AND STATUS BENCHMARKS 

We calculated four standard biological benchmarks and two related WSP status benchmarks 
(Table 9). Preliminary benchmark estimates were reviewed through the TWG process to identify 
potential errors and anomalies. During the frst pass through the TWG review process, Sgen 
values were fagged as seeming too low for several of the stocks. This triggered a detailed review 
and testing of all the benchmark calculation steps. 

Smax and Seq can be calculated directly from the SR parameters. Smsy and Sgen require 
a more complex solution, and we tested four alternative implementations for each. Based on 
the tests summarized in Appendix E.3, we decided to use (1) the Scheuerell (2016) method for 
Smsy, because it is the only exact solution, and (2) the Connors et al. (2023) version of the Sgen 
optimizer, because it was the only optimization approach that generated solutions for all tested 
combinations of parameters (Table 10). Appendix C.3 shows the corresponding R code. 

Some previous escapement goal analyses have used a log-normal bias correction on the productivity 
parameter (Table 10), but implementation has varied between agencies, regions, and projects. 
WSP status assessments used benchmarks without the bias correction (Grant and Pestal 2012; 
DFO 2015, 2016; Grant et al. 2020). Alaskan escapement goal analyses typically included the 
bias correction (Fleishman and Evenson 2010; McPherson et al. 2010; Eggers and Bernard 
2011; Fair et al. 2011). Escapement goal analyses for northern transboundary salmon stocks 
used to include both versions a few years ago (e.g., Pestal and Johnston 2015) but have recently 
shifted to only reporting the bias-corrected version (Miller and Pestal 2020; Connors et al. 2023). 

This is not unique to Pacifc salmon. In their review of stock-recruit modelling, Subbey et al. 
(2014) note that both versions have been widely used and that the choice for a particular applications 
should consider how the estimates are used afterwards. The general guidelines are: 

• Use values with bias correction when the management objective is defned in terms of mean 
values (e.g., mean Smsy). 

• Use values without bias correction when the management objective is defned in terms of 
median values (e.g., median Smsy) or when using the parameter estimates as inputs to 
other models (e.g., forward simulation). 

Systematic testing of Skeena and Nass Sockeye SR data (Appendix E.4) demonstrated that 
the effect of bias correction is generally small for productive stocks with good SR model fts 
(i.e., sigma is small relative to ln.alpha), but can be substantial for stocks with low productivity 
and poor SR model fts (i.e., sigma is larger relative to ln.alpha). The bias correction generally 
increases Smsy estimates and decreases Sgen estimates. 

Given these observed effects, and the differences in approach over recent years, we chose 
to report medians and percentiles of posterior parameter estimates without log-normal bias 
correction throughout this paper, but included the bias-corrected version in Appendix G. 
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Table 9. Defnition of standard biological benchmarks and Wild Salmon Policy status benchmarks for the 
relative abundance metric. Note that we defne benchmarks in terms of median recruits and median yield, 
and therefore present benchmark estimates without log-normal bias correction throughout most of the 
paper. Bias-corrected mean estimates of biological benchmarks are included as Appendix G. 

Type Benchmark Defnition 

Standard Smax Spawner abundance that maximizes median recruits. 

Smsy Spawner abundance that maximizes sustainable median yield 
(Rec-Spn), if managed to a fxed escapement target under 
equilibrium conditions. 

Seq Long-term equilibrium spawner abundance in the absence of 
harvest. 

Umsy Harvest mortality rate at median MSY. 

WSP 80% Smsy Used as the upper benchmark for the relative abundance metric in 
WSP status assessments. If generational average spawner 
abundance falls above 80% Smsy, the conservation unit is 
designated as Green status on this metric. 

Sgen Spawner abundance with a high probability of rebuilding to Smsy in 
1 generation in the absence of harvest. Used as the lower 
benchmark for the relative abundance metric in WSP status 
assessments. If generational average spawner abundance falls 
below Sgen, the conservation unit is designated as Red status on 
this metric. Note that Sgen is not applicable for stock aggregates. 

Table 10. Calculation approach for biological benchmarks. 

Benchmark Version Calculation 

Smax 
Seq 
Smsy 
Sgen 

Standard 
Standard 
Scheuerell (2016) 
Connors et al. (2023) 

Smax = 1/b 
Seq = ln.a/b 
Smsy = (1 − lambertW 0(exp(1 − ln.a)))/b 
Optimization 

Table 11. Log-normal bias correction for the productivity parameter by model form. 

ModelForm BiasCorrection Source 

Basic, Time-varying 
Productivity (TVP) 

ln(α ′ ) = ln(α) + σ
2 

2 Bernard et al. (2000), McPherson et al. 
(2010) 

AR1 σ2 
ln(α ′ ) = ln(α) + 2(1−ϕ2) Fleishman and Evenson (2010) 
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2.5. ALTERNATIVE APPROACHES FOR DEVELOPING MANAGEMENT REFERENCE 
POINTS FOR STOCK AGGREGATES 

2.5.1. Overview of Alternative Approaches 

This paper and the underlying R code were structured to clearly separate the steps of (1) biological 
analyses to ft SR models and generate alternative productivity scenarios, and (2) using the SR 
parameter sets to develop management reference points for the Skeena and Nass Sockeye stock 
aggregates. These steps are fundamentally different in terms of the information and process they 
require. Keeping the analyses modular has allowed us to set up a framework for future updates 
and collaborative processes. 

We provide worked examples of eight alternative aggregation approaches for the second step, 
and a rationale for why these examples are included in this paper in Section 1.3. These examples 
use the specifc SR fts and productivity scenarios described above, but can be quickly regenerated 
with alternative parameter sets (e.g., if participants in a planning workshop suggest a different 
productivity scenario, or contribute alternative SR parameter sets based on alternative analyses). 

Table 12 summarizes the alternative approaches and defnes the short labels we use throughout 
the rest of the paper. The approaches are presented in order of increasing complexity, where 
complexity can be due to analytical requirements, process requirements, or both. The simplest 
approaches directly use estimates of biological benchmarks like Smsy or Umsy (Agg Smsy, Sum 
Smsy, Umsy Comp). Next are approaches that can be calculated directly from SR parameters 
using assumptions about long-term equilibrium (Equ. Prof, Agg TradeOff). Aggregation approaches 
that explicitly consider stock status (Status, Log Reg), are computationally simple but require a 
collaborative process to agree on status criteria. Forward simulation (Sim) is the most complex 
approach, because in addition to the SR ftting, many iterations of scoping, prototyping, and 
review need to occur through a collaborative process. To provide worked examples for each 
approach, we assumed quantitative objectives, and used examples consistent with previous work 
(Table 13). 

Six of the eight alternative approaches have been previously used for Skeena or Nass Sockeye 
analyses (Table 2): 

• Agg Smsy : The current escapement goals for Skeena and Nass Sockeye are based on 
aggregate-level Smsy estimates developed in 1958 for the Skeena, prior to the implementation 
of Babine spawning channels, and in the 1990s for the Nass. 

• Sum Smsy : In 2016, the Skeena First Nations Technical Committee recommended increasing 
the limit reference point for aggregate Skeena Sockeye from 400,000 to 600,000 based on 
the sum of stock-level Smsy estimates and the observed stock composition (DFO 2019). 

• Umsy Comp: Walters et al. (2008) included a comparison of stock-specifc estimates of 
Fmax, the maximum exploitation rates (ER) that can be applied sustainably without causing 
extinction (their Figure 14). The worked example we include here compares stock-specifc 
estimates of an ER benchmark. 

• Equ. Prof : These have not been previously published for Skeena or Nass Sockeye, but are 
a standard output for the escapement goal reviews completed for northern transboundary 
stocks (e.g., Miller and Pestal 2020). 

• Agg Tradeoff : This was a key result of Walters et al. (2008), and triggered changes to the 
Canadian domestic harvest management approach. 

48 



• Status: Korman and English (2013) and Pacifc Salmon Foundation (2021) included synoptic, 
or “frst-cut”, status assessments taking a broad-brush and consistent approach based on 
a single status metric. While this approach does not cover all the considerations captured 
in the integrated multi-criteria status assessments completed under WSP (Grant and Pestal 
2012; DFO 2015, 2016; Grant et al. 2020), it uses the same benchmarks for the relative 
abundance metric (Sgen, 80% Smsy), and gives comparable results for those CUs where 
integrated status assessments were driven by that metric. 

• Log Reg: This is one of two candidate approaches described for developing limit reference 
points (LRP) for stock management units (SMU) under the modernized Fisheries Act (2019). 
DFO (2022b) summarizes three case studies and concludes that “Logistic regression LRPs’ 
have several limitations and should only be used when (i) supplemental aggregate abundance 
LRPs are required and (ii) all assumptions of the logistic regression model can be met”. We 
included a worked example for this method to check whether the challenges identifed by 
DFO (2022b) are encountered for Skeena and Nass Sockeye. 

• Sim: Cox-Rogers et al. (2010) tested the effect of different harvest rates (i.e., open loop) 
over 15 years (short simulation) and 100 years (long simulation). Hawkshaw (2018) used 
optimization techniques (long simulation) to compare alternative harvest strategy types 
(open and closed loop). The harvest rates in Cox-Rogers et al. (2010) were applied equally 
to all stocks. Hawkshaw (2018) explored alternative harvest control rules and fshing plans 
for multi-species mixed-stock fshery (i.e., 5 Pacifc salmon species and steelhead, each 
modeled as a single stock). 
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Table 12. Alternative Approaches for Developing Aggregate Biological Reference Points. 

Approach Label Description 

Aggregate Smsy 
Estimate 

Agg Smsy Calculate Smsy for aggregate data set (total Nass, Total Skeena Wild). 

Sum of 
stock-level Smsy 
Estimate 

Sum Smsy Calculate Smsy for each stock with SR data, and sum the estimates. 
Meeting participants emphasized that this approach does not produce 
aggregate biological reference points consistent with the defnition of 
MSY. Although this method is not recommended for developing 
aggregate reference points, it has been included here for completeness. 

Umsy 
Comparison 

Umsy Comp Calculate Umsy for each stock with SR data, and compare the 
estimates to Identify a target ER for the stock aggregate from available 
stock-level Umsy estimates from stocks with SR data (i.e., may choose 
to use the lowest stock-level Umsy or the Umsy for the largest stock, 
depending on management objectives). 

Spawner-based 
Single-stock 
Equilibrium 
Profle 

Equ. Prof For each stock, calculate the proportion of parameter samples that 
meets a specifed objective at increments of spawner abundance, such 
as prop(yield > 60% of MSY), under equilibrium conditions (i.e., on 
average over the long-term). 

ER-based 
Aggregate 
Equilibrium 
Trade-off Plots 

Agg TradeOff Calculate summary performance measures across stocks (e.g., 
proportion of stocks meeting an objective vs. aggregate harvest), under 
equilibrium conditions (i.e., on average over the long-term), using the 
simplifying assumption that all stocks are managed to the same fxed 
exploitation rate. 

Stock-level Status 
Considerations 

Status Calculate status for each stock with data, and then identify aggregate 
reference points (LRP, harvest triggers) based on number of 
red/amber/green stocks. 

Log-regression Log Reg Classify past years as success or failure based on-stock-level 
performance measure (e.g. 80% of stocks above median Sgen), then 
plot a logistic regression of success vs. aggregate abundance to identify 
an aggregate reference point from the ftted regression as the aggregate 
abundance associated with a required threshold of the stock-level 
performance measure. 

Forward 
simulation 

Sim Beginning with recent spawner abundances, simulate stocks forward 
under alternative assumptions about productivity, harvest, and other 
sources of mortality to identify aggregate abundances associated with 
appropriate levels of probability of meeting specifed objectives. If the 
forward simulation meets certain technical criteria and is developed in 
combination with a structured participatory process, then it can evolve 
into a formal Management Strategy Evaluation (MSE). 
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Table 13. Objectives used in the worked examples for each aggregation approach. 

Approach Objectives 

Agg Smsy Maximum sustainable yield (MSY), median over the long-term under stable conditions. 
Also implied choices: Fixed Esc strategy, manage to aggregate MSY, focus on largest 
stocks. 

Sum Smsy Maximum sustainable yield (MSY), median over the long term under stable conditions. 
Also implied choices: Fixed Esc strategy, manage to aggregate MSY, focus on largest 
stocks. 

Umsy Comp Sustainable exploitation rate (Umsy) under long-term and recent productivity scenario 
to compare stock productivities, to identify upper bounds on aggregate ER. 

Equ. Prof Implied: fxed Esc strategy, equilibrium conditions. Sample Objective: 80% prob of 
achieving 60% of MSY (yield-focused). 

Agg TradeOff CONSERVATION: Number of stocks harvested at or below their estimated 
sustainable rate (Umsy) , HARVEST: Maximize aggregate harvest under equilibrium 
conditions. 

Status Defne Red/Amber/Green status for relative abundance metric based on Sgen and 
80% Smsy from long-term average productivity scenario. Sample objectives: No more 
than x CUs in Red status zones. 

Log Reg Sample objective: 80% of stocks above Median Sgen from Long-term average 
productivity scenario. 

Sim CONSERVATION: Number of stocks with at least 80% probability of generational 
average spawner abundance exceeding a benchmark (Sgen and 80% Smsy from 
long-term average productivity scenario, 10th percentile of observed spawner 
abundance since 1990). HARVEST: Median total harvest over 3 generations. 
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2.5.2. Evaluation of Alternative Approaches 

There are advantages and disadvantages for each of the different approaches for developing 
management reference points described here. For example, calculating Smsy for aggregate 
stocks using the full time series of available data is the most computationally straightforward 
method to produce a single estimate and comparatively simple to implement in a management 
framework, but may not meet conservation objective for smaller, less productive stocks within 
each aggregate. A status-based approach, which may better address WSP or other Canadian 
legislative requirements, does not provide explicit target abundances as reference points and 
may not meet requirements for developing international harvest sharing agreements. Although 
simulation modeling is the most computationally intense approach, it may better address considerations 
about variability in future productivity than the sum of lower benchmarks developed assuming 
average long-term productivity for the different stocks. 

The initial version of this Research Document did not make a clear recommendation for which 
approach should be used to inform aggregate escapement goals for Skeena and Nass Sockeye. 
Likewise, the CSAS review committee did not reach a consensus during the Regional Peer 
Review. A subgroup of participants was convened in a follow-up process to develop this advice, 
which included (1) identifying criteria for evaluating the alternative approaches, (2) completing 
a detailed evaluation of each approach, and (3) generating a summary table of comparisons, 
along with an overview of practical challenges for the alternative approaches. This structured 
comparison of approaches is a key product of the peer review process. 

11 evaluation criteria were identifed and grouped into three types (Table 14). Five of the criteria 
relate to parameter estimation, four relate to the type of outcome the approach produces, and 
two refect practical considerations for implementation. In a virtual workshop, we scored each 
approach against all 11 criteria (Table 15) and drafted a brief rationale for each score (Appendix B). 
Key challenges for each approach were also identifed (Table 16). 

Appropriate aggregation approaches can be selected depending on which criteria are identifed 
as critical for a specifc application. For example: 

• If abundance-based aggregate escapement goals that consider stock level diversity are 
required, then the only approaches that meet these criteria are aggregate equilibrium tradeoff 
plots, logistic regression, and a forward simulation approach. 

• Logistic regression is not appropriate for Nass stocks, because past aggregate abundance 
was found to be not correlated with stock-level performance measures. 

• This leaves the aggregate equilibrium tradeoff plots and forward simulation as the only 
viable options within this example. 

• Of these, closed loop forward simulation within a Management Strategy Evaluation (MSE) 
framework is the only aggregation approach identifed that meets all of the criteria identifed 
by CSAS review committee, while the aggregate equilibrium trade-off approach can be 
implemented within a relatively short time frame. 

The aggregate equilibrium trade-off approach was recommended for evaluating alternative 
goals and harvest management rules for Skeena Sockeye in the report prepared by the 2008 
Skeena Independent Science Review Panel (ISRP) (Walters et al. 2008). At the time, the ISRP 
report and preliminary trade-off analyses led to changes in the harvest rule for Canadian marine 
commercial fsheries for Skeena Sockeye implemented in 2009, which substantially reduced the 
harvest rate in these fsheries. 
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A full simulation model and associated MSE framework and process would require a considerable 
investment of time to develop (1) agreed-upon objectives, (2) agreed-upon model scope, and (3) 
agreed-upon scenarios for testing through a structured process. Depending on the available 
time to select an escapement goal, evaluating aggregate tradeoff plots may be the best option 
for developing an aggregate escapement goal in the short term. If a full MSE is not feasible 
within the available time frame, a simplifed forward simulation can also be used to provide a 
complementary set of results for aggregate tradeoff considerations in a relatively short period of 
time. 
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Table 14. Description of criteria for evaluating the alternative approaches described in Table 12. An initial 
list of criteria was identifed during the peer review meeting, then modifed as the evaluations were being 
flled in during the follow-up process. Criteria can be grouped into three distinct types: Estimation criteria 
are relevant to SR model ftting or simulation model scoping. Outcome criteria relate to the type of 
end-product generated by the aggregation method. Implementation criteria relate to how the end-product 
can be used, and when it could be available. 

Type Label Description 

Estimation Time-varying parameters? Accounts for time-varying parameters (e.g., fecundity, capacity, 
variance, productivity). 

Estimation Uncertainty in SR model fts? Explicitly accounts for uncertainty in SR model fts that arises 
from natural process variation and observation (i.e., 
measurement) error. 

Estimation Outcome uncertainty? Can explicitly incorporate differences between target and 
actual escapement or exploitation rates? 

Estimation Productivity Covariation? Can explicitly incorporate observed or alternative future 
covariation in productivity between stocks? 

Estimation Bias in parameter estimates? How much bias is produced in estimates of Smsy, Umsy, the 
Ricker alpha, and the Ricker beta parameters, for example, as 
a function of number of data points, average stock productivity, 
time variation in productivity, and previous harvest rates (the 
last two variables affect contrast in data), etc.? 

Outcome Can get abundance-based 
Aggregate Refrence Points 
(RP)? 

Can produce an abundance-based aggregate reference point? 

Outcome Can test state dependent 
harvest control rules (HCR)? 

Can this method produce and test harvest control rules that 
respond to changing conditions? 

Outcome Data-defcient stocks? Appropriate to support stocks currently without SR data? 

Outcome Allows taking into account 
component stocks? 

Explicitly provides estimates of current or future [biological?] 
status of component populations and other stock-specifc 
information so that decision makers can evaluate trade-offs? 

Implement- Can be easily operationalized? 
ation 

Easily operationalized in bilateral and domestic management 
setting? 

Implement- Time requirements 
ation 

Implementation time frame *after data review and SR model 
ftting*. Short = short-term is possible (can calculate from SR 
parameters immediately), Medium = medium-term process 
required (at least 6 months), Long = multi-year process 
required. 
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Table 15. Summary of characteristics of 8 alternative methods for developing aggregate reference points. The peer-review process compared 
alternative approaches for developing aggregate reference points (Table 12) based on a set of 10 criteria (Table 14). A YES/NO/MAYBE rating was 
assigned for each criterion to provide a comparison of aggregation methods. YES identifes that the aggregation approach meets the criterion. 
MAYBE means that current approach could be modifed or expanded to meet the criterion, depending on time and resources. NO means that the 
criterion cannot be met with this aggregation approach. For the time requirement, SHORT means that it can be applied immediately to the SR 
parameter estimates. MEDIUM means that at least 6 months will be required for either process (e.g., choice of quantitative objectives) or method 
developments (e.g., pending publication of guidelines, followed by review of implementation). LONG means that a multi-year process is likely 
needed for full implementation. The Critical column values are provided by the review participants and identify criteria that are critical (Yes) or to be 
determined (TBD). Appendix B briefy summarizes the rationale for each rating. 

Criterion Crit? Agg 
Smsy 

Sum 
Smsy 

Umsy 
Comp 

Equ. 
Prof 

Agg 
Equ. 
Prof. 

Status Log 
Reg Sim 

Time-varying parameters? 

Uncertainty in SR model fts? 

Outcome uncertainty? 

YES 

TBD 

TBD 

MAYBE 

YES 

NO 

MAYBE 

YES 

NO 

MAYBE 

YES 

NO 

MAYBE 

YES 

NO 

MAYBE 

YES 

NO 

MAYBE 

YES 

NO 

MAYBE 

YES 

NO 

MAYBE 

YES 

YES 

Productivity Covariation? TBD NO NO NO NO NO NO MAYBE 

Bias in parameter estimates? TBD MAYBE MAYBE MAYBE MAYBE MAYBE MAYBE MAYBE YES 

Can get abundance-based Agg RP? TBD YES MAYBE NO NO YES NO MAYBE MAYBE 

Can test state-dependent HCR? TBD NO NO MAYBE NO NO NO NO YES 

Data-defcient stocks? TBD NO NO NO NO NO MAYBE MAYBE MAYBE 

Account for component stocks? YES NO NO MAYBE MAYBE YES YES YES YES 

Can be easily operationalized? TBD YES YES YES YES YES YES YES YES 

Time requirements TBD Short Short Short Short Med Med Med Long 
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Table 16. Key challenges for alternative aggregation approaches. Aggregation approaches are grouped 
into 4 types based on their fundamental ingredient (i.e., benchmarks, status, equilibrium profles, or 
forward simulations). 

Type Approach Key Challenges 

Use biological 
benchmarks 

Aggregate abundance-based 
benchmarks (Sgen, Smsy, Smax, 
Seq) 

Does not account for differences between 
component stocks. 

Stock-specifc abundance-based 
benchmarks (Sgen, Smsy, Smax, 
Seq) 

Can be calculated directly from SR 
parameters, but sum of stock-level 
benchmarks is not biologically meaningful. 

Rate-based benchmarks (Umsy) Does not give a spawning goal, but can be 
used to set upper ER limit. 

Use status 
considerations 

Defne aggregate reference 
points based on stock-level status 
(e.g. "No stock with Red Status") 

Does not give a spawning goal. 

Logistic regression (defne target 
based on agg abd that achieved 
most stock-level objectives in the 
past) 

Only works if aggregate abundance and 
stock-level statuses are correlated. 

Use equilibrium 
results 

Spawner-based (assume fxed 
spawning target implemented 
exactly forever, without annual 
variation) 

Generates stock-level trade-off profles, but 
does not give aggregate target. 

ER-based (assume fxed ER 
target implemented exactly 
forever, without annual variation) 

Can sum Spawners and Catch across stocks 
if plausible to assume that same (or at least 
similar) ER is applied to all stocks. 

Use forward 
simulation 

"Simple" Simulation Scoping out a model that is not overly 
complex but still captures the essential 
mechanisms. Appropriate scope depends on 
the specifc questions we are trying to 
answer with the model. 

Management Strategy Evaluation 
(MSE) 

Requires time to develop both a detailed 
model and implement a structured planning 
process. Recommended approach for future 
work, but not feasible on current timeline. 
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2.6. IMPLEMENTATION OF ALTERNATIVE APPROACHES FOR DEVELOPING MANAGEMENT 
REFERENCE POINTS FOR STOCK AGGREGATES 

This section briefy describes the implementation of the alternative approaches for developing 
management reference points that were discussed in the initial version of this Research Document 
and during the CSAS RPR. 

2.6.1. Aggregate Estimates of Biological Benchmarks (Agg Smsy) 

This approach simply calculates Smsy estimates for aggregate-level SR model fts (Sec. 2.2.4). 

2.6.2. Sum of Stock-Level Biological Benchmarks for Abundance (Sum Smsy) 

Calculate the sum of Smsy estimtes for wild stocks. For the example presented here, we compare 
the sum of mean and median Smsy and Smax estimates across modelled stocks to the corresponding 
estimates for aggregate-level SR model fts. Percentiles of the distributions are shown for the 
single-stock and aggregate fts. If percentiles for the sum of stock-level estimates are required, 
they can be calculated by summing the individual MCMC samples, then calculating the percentiles. 

2.6.3. Compare Stock-level Biological Benchmarks for Exploitation Rate (Umsy Comp) 

Estimates of Umsy cannot be summed across stocks, but it is informative to compare them 
across stocks in an aggregate. We include two types of comparison: 

• Visual comparison of posterior distributions for stock-level and aggregate-level Umsy estimates. 

• Frequency distribution of median Umsy across stocks, adapting the approach from Figure 
14 in Walters et al. (2008). 

2.6.4. Calculation of Spawner-based Equilibrium Profles (Equ. Prof) 

Recent escapement goal analyses for Alaskan salmon stocks have equilibrium probability profles 
as a standard part of the results. Initial applications focused on yield profles that capture the 
notion of “pretty good yield” (PGY) as defned by Hilborn (2010), but other types of profles have 
also been explored (e.g., recovery profles). While implementation methods continue to evolve, 
these profles were generated with the same basic approach. 

For example, the “80-60 range” for a yield profle is derived as follows: 

• specify a reference value Ref for yield at 60% of MSY. 

• for each spawner abundance Si, calculate the percent of MCMC samples for which the 
expected number of recruits is at least Si + Ref , which captures the expected yield under 
equilibrium conditions if the stock were managed to a fxed escapement goal at Si and all 
returns above Si were harvested. 

• Identify the range of Si for which the percent of samples meeting the criterion is at least 
80%. 

Examples include summer Chum Salmon in the East Fork of the Andreafksy River (Fleishman 
and Evenson 2010), Taku River Chinook Salmon (McPherson et al. 2010), Alsek River Sockeye 
(Eggers and Bernard 2011), and salmon stocks in the Copper and Bering rivers (Fair et al. 2011). 
Equilibrium probability profles have also been included in recent escapement goal analyses for 
northern transboundary salmon stocks (e.g., Pestal and Johnston 2015; Miller and Pestal 2020). 
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We implemented the yield profles as follows: at each increment of spawner abundance, we 
compare the distribution of yields (Rec-Spn) across parameter samples to the specifed % of 
the median yield at median Smsy, and count the proportion that are larger. The resulting profle 
shows the probability of meeting or exceeding this average target, which is an anchor point for 
subsequent planning processes tasked with choosing spawning goals. 

These yield profles differ from the version included in recent ADFG and transboundary analyses 
(e.g., Eggers and Bernard 2011; Miller and Pestal 2020), which plot the probability of meeting 
the implied target for each parameter set (i.e., at each spawner increment, compare yield to 
a chosen % of MSY for that parameter set). Pestal and Johnston (2015) compared the two 
approaches. Both have the same intent, and we consider them equally valid. They simply differ 
in the details of the calculation. We did not include a side-by-side comparison in this paper, but 
the alternate version can easily be calculated if a future planning process requests it. 

We included three alternative yield profles to illustrate the importance of specifying the exact 
objectives: 

• Probability that equilibrium yield > 80% MSY 

• Probability that equilibrium yield > 60% MSY 

• Probability that equilibrium yield > stock-specifc reference value (e.g., 1,000, 10,000, etc.) 

For each profle, we show two curves corresponding to the long-term average and recent productivity 
scenarios, using the same reference value (i.e., both are compared to the long-term average 
MSY). The intent is to highlight the difference in expected yield between the two productivity 
scenarios. 

2.6.5. Calculation of ER-based Equilibrium Profles (Agg Tradeoff) 

Using the approach by Walters et al. (2008), the equilibrium state for each component stock 
was calculated at different levels of fxed exploitation rate (i.e., what spawner abundance and 
catch would the stock eventually settle down to, if each ER were applied for many years, in 
the absence of inter-annual variation?). Equilibrium spawner abundances and catches were 
then summed across stocks to calculate aggregate equilibrium spawners and catch under the 
assumption that all component stocks are harvested at the same fxed ER, and all are at equilibrium. 
This simplifying assumption allows the aggregate trade-off profles to be calculated directly from 
the SR parameter estimates. This approach is described in Section 2.3 of Walters and Martell 
(2004), Walters et al. (2019), Staton et al. (2020), and Connors et al. (2020). 

At a fxed exploitation rate Uq the equilibrium calculation for spawner abundance Sq is: � � 
1−UMSY UMSY − ln 

Sq = SMSY 
1−Uq (13)

UMSY 

and for equilibrium harvest (Hq) is: 
UqSq

Hq = (14)
1 − Uq 

Appendix C.4 shows the corresponding R code. 

2.6.6. Status-based Aggregate Limit Reference Points (Status) 

Canada’s modernized Fisheries Act (2019) requires that limit reference points (LRP) are developed 
for stock management units (SMU). Pacifc salmon present a challenge due to their complex 
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population structure, and guidelines for developing aggregate salmon LRPs were just published 
(DFO 2022b). The recommended approach is to assess status of the CUs in the SMU according 
to WSP criteria, and then determine whether an SMU meets the LRP based on the CU statuses 
(i.e., number of CUs in the red status zone, changes in CU statuses over time). 

Status assessments under the WSP integrate multiple metrics, where available (Holt et al. 2009): 

• abundance relative to biological benchmarks (Sgen, 80% Smsy), where available 

• absolute abundance relative to a small population threshold of 1,000 spawners, for consistency 
with COSEWIC criteria (COSEWIC 2020) 

• long-term trend 

• short-term trend (probability of decline) 

• distribution of spawners across sites 

Integrated WSP status assessments have been completed for Fraser River Sockeye (Grant 
and Pestal 2012; Grant et al. 2020), Southern BC Chinook (DFO 2016), and Interior Fraser 
Coho (DFO 2015). Each of these status assessments was a multi-year process, culminating 
in a multi-day workshop where 30-40 experts reviewed available information (quality-controlled 
data, biological benchmarks, status metrics) and assigned a consensus status designation to 
each CU. This process has not been completed for Skeena and Nass Sockeye, but considering 
stock status in harvest management decisions is required under the WSP (DFO 2018). 

Ongoing work to develop an algorithm-based rapid approximation of the expert status designations 
will use the data and biological benchmarks generated through the Skeena and Nass Sockeye 
escapement goal review process. Pending completion of these multi-criteria status assessments 
for Skeena and Nass Sockeye, we illustrate the building blocks of the status-based approach 
using one of the status metrics, but we do not attempt to complete a comprehensive status 
assessment here. 

Specifcally, we compared the running generational geometric mean of spawner abundance to 
the lower benchmark at Sgen and the upper benchmark at 80% Smsy, then summarized the 
annual proportion of stocks in the red, amber, and green status zones on that single metric. 
We used the median Sgen and Smsy values for the long-term average productivity scenario 
(Section 2.3), which is consistent with the benchmarks used in past WSP status assessments 
(Section 2.4). 

2.6.7. Aggregate Abundance Reference Points Based on Logistic Regression (Log Reg) 

A candidate approach for developing aggregate abundance reference points is to defne a success/failure 
criterion, plot observed success/failure vs. observed aggregate abundance, ft a logistic regression, 
and select a reference point based on a chosen probability threshold (DFO 2022b). This approach 
is only applicable under certain conditions, and formal guidelines for its use in the development 
of limit reference points have not been fnalized. 

We include an example of this approach using a criterion linked to the lower WSP benchmark 
for the relative abundance metric, which is Sgen. Specifcally, we defned success as “At least 
80% of the stocks in the aggregate are above Sgen”. We used the median Sgen value for the 
long-term average productivity scenario, which is consistent with the benchmarks used in past 
WSP status assessments (Section 2.4). 
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2.6.8. Simulation-based Aggregate Abundance Reference Points (Sim) 

Forward simulation can be used to explore how different management actions perform over a 
range of alternative assumptions about future conditions, with risk quantifed using the resulting 
escapement trajectories as part of a formal decision analysis (e.g., Hilborn and Peterman 1996; 
deYoung et al. 1999; Punt et al. 2016). 

The key beneft of building forward simulation models is that they allow us to compare the expected 
performance of alternative strategies and identify strategies that are more robust to uncertainty 
(e.g., Punt et al. 2016), which has been characterized as searching for a “safe-fail” strategy that 
avoids catastrophic outcomes even when things go wrong, rather than identifying a strategy that 
is optimal under very specifc assumptions and conditions (Ann-Marie Huang, DFO, and Mike 
Staley, pers. comm, 2010). 

Building a fully functional simulation model to support Skeena and Nass Sockeye planning will 
require that many choices be made regarding model scope, biological assumptions, management 
assumptions, objectives, and performance measures. 

We include a worked example to illustrate potential benefts and expected challenges, and to 
initiate the development process for a more comprehensive model. We consider this an urgent 
frst step, because recently published guidelines (DFO 2022b) identify forward simulations as one 
of the candidate approaches for developing aggregate reference points for stock management 
units, and the on-going Canadian domestic consultation process has also focused on simulation 
results. In addition, the development of a formal management strategy evaluation (MSE) model 
was identifed as an important future step by the two independent reviewers for the escapement 
goal review process. We describe the current version of the simulation model in the next section. 

2.7. IMPLEMENTATION OF FORWARD SIMULATION APPROACH 

2.7.1. Model Structure 

This simulation example explores the range of near-term responses to alternative harvest strategies 
under alternative productivity assumptions, starting from recent spawner abundances (i.e., not 
simulating a long time into the future to explore equilibrium conditions). 

This simulation example includes only the 20 wild stocks for which spawner-recruit models were 
ftted in the current round of work (4 Nass stocks, 16 Skeena stocks). Simulations start with the 
last 8 years of spawner abundance (2012-2019). For a few stocks, missing estimates in this time 
window were inflled with the mean of available observations. 

Forward simulations generate one 20-yr trajectory for each parameter set sampled from the 
parameter distributions selected for each productivity scenario (Section 2.3). 

For each simulated year (Figure 6): 

• calculate stock run size based on recruits by age 

• apply the candidate harvest strategy to each aggregate 

• calculate the resulting spawner abundance by stock 

• calculate the total recruits for each stock based on SR parameter set for the candidate 
productivity scenario (includes a random error, and a cap on recruitment set at 20% larger 
than the largest observed recruitment) 

• distribute the recruits across return years based on median observed age composition 
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Total run size Run for each aggregate agg in year yr with parameter set par is the sum across 
ages and stocks, with age-specifc recruits for each stock from corresponding brood years (e.g., 
age 4 fsh from 4 years ago, age 5 fsh from 5 years ago): 

Runagg,yr,par Recage,stock,yr−age,par (15)=ΣΣ 
ages stocks 

Exploitation rate for each stock is a calculated based on the aggregate run, an aggregate harvest 
control rule HCR, aggregate-level outcome uncertainty AggOU , and stock-specifc outcome 
uncertainty StkOU : 

ERstock,yr,par = fn(Runagg,yr,arp, HCR, AggOU, StkOU) (16) 

Catch Ct and spawner abundance Spn for each stock are then calculated as: 

Ctstock,yr,par = Runstock,yr,par ∗ (ERstock,yr,par) (17) 

Spnstock,yr,par = Runstock,yr,par ∗ (1 − ERstock,yr,par) (18) 

Finally, total recruits Rec for each stock are calculated as: 

Recstock,yr,par = Spnstock,yr,par ∗ exp(ln.alphastock,par − betastock,par ∗ Spnstock,yr,par) (19) 

The same model structure and code base were used for the Recovery Potential Assessment 
(RPA) of Fraser River Sockeye (Huang et al. 2021). The code is designed for computing effciency 
in R, using array calculations and pre-flled arrays where possible. For example, age proportions 
are pre-generated as a 4- dimensional array (Stocks x MCMC parameter sets x Simulation 
Years x Age Classes), and for each simulated brood year the corresponding 3-dimensional sub-
array of age proportions is multiplied with a 2-dimensional slice of the recruitment array (Stock x 
MCMC parameter sets) to populate a subset of a 3-dimensional run size array (Stocks x MCMC 
parameter sets x [Brood Year + Min Age]:[Brood Year + Max Age]). The pre-generated arrays 
allow maximum fexibility for exploring alternative assumptions (e.g., variable or changing age 
composition). 
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Figure 6. Simulation model components. The biological submodel simulates stock-specifc population 
dynamics to generate adult returns for each stock for each brood year and resulting aggregate runs by 
calendar year. The harvest submodel then determines a target ER given a harvest rule and applies it with 
outcome uncertainty to calculate harvest and spawner abundance. One example of a harvest rule is a 
fxed escapement target of 300,000 combined with a minimum ER of 10% and a maximum ER of 65%. 
Alternative simulations can then test the effect of changing components of the harvest rule, such as 
varying the maximum ER from 20% to 80% in increments of 10%. 
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Three extensions of the Fraser Sockeye RPA model were implemented for Skeena and Nass 
Sockeye: 

• Aggregate harvest strategies: The purpose of the RPA model was to test different levels of 
fxed exploitation rate, but for Skeena and Nass Sockeye the focus is on testing alternative 
types of harvest strategies (i.e., fxed aggregate escapement goal, abundance-based rule). 

• Outcome uncertainty : This captures the difference between management targets and actual 
realized outcomes, caused by mechanisms like: (1) uncertain estimates of abundance and 
run timing, (2) physical and biological processes that change the availability of fsh to fshing 
gear within a season, (3) non-compliance with fshing regulations, (4) inappropriate choices 
of regulations, (5) errors in their implementation (e.g., Holt and Peterman 2006). We model 
outcome uncertainty in two steps, frst as the difference between the aggregate ER target 
and the actual aggregate ER, and then as the difference between actual aggregate ER and 
stock-specifc ER (Appendix F.1). 

• Covariation in productivity : This captures the observation that productivity is not independent 
across salmon stocks, because shared environmental factors affect their life cycle (e.g., 
Dorner et al. 2018a). While it is very hard to identify the specifc biological mechanisms at 
work on a specifc group of stocks, we can identify patterns in the resulting overall productivity 
(Recruits/Spawner) and refect that in the forward simulation by sampling the annual random 
error with covariation, such that better-than-expected recruitment for Stock A tends to happen 
in the same year as better-than-expected recruitment for Stock B. We model covariation 
in productivity based on simplifed correlations of log-residuals from the Basic Ricker ft 
within and between groups of stocks with similar life history spawning in a shared freshwater 
adaptive zone (Appendix F.2). 

Additional mechanisms could be added to the model, such as: 

• en-route or pre-spawn mortality (i.e., not all fsh that escape past the fsheries spawn successfully) 

• changes over time in productivity (for now, the productivity scenarios differ from each other, 
but each is assumed to persist over the 20-yr simulation) 

• changes over time in age composition of recruits for each stock 

Each of these additions has a potentially large effect on the simulation results, but addressing 
them properly is a complex challenge, and not purely a technical one. Participants in the planning 
process will have to consider which of them need to be explored, and how to bound the explorations, 
if the choice is made to pursue simulation-based aggregate reference points. 
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2.7.2. Types of Harvest Control Rules 

In the current model structure, two types of alternative harvest strategies can be specifed for 
each of the two aggregates (Nass, SkeenaWild): 

• FixedER: Apply a fxed exploitation rate from 0% to 90% in 10% increments to both aggregates, 
assuming that all component stocks are harvested at the same rate. 

• FixedEsc: Simple abundance-based harvest rule for each aggregate, where target exploitation 
rate is based on aggregate abundance above the escapement goal, with optional specifcations 
for a minimum ER at low abundance and upper cap on ER at larger abundances. Alternative 
escapement targets were set at 25% to 250% of the interim escapement goal for Nass at 
200,000 and the interim aggregate escapement goal for SkeenaWild at 300,000 (Table 17). 
These escapement targets were combined with lower bounds on ER of 0%, 10%, or 20%, 
and upper bounds of 60% or 80%. 

Table 17. Fixed Escapement Strategy: Alternative Scenarios. Scenarios were specifed relative to the 
interim escapement goals currently in use, so that Esc100 matches the interim goal, Esc50 is half the 
interim goal, and Esc200 is double the interim goal. Note that the interim goal for the SkeenaWild 
aggregate was set at 1/3 of total Skeena interim target of 900,000, based on average observed proportion 
of wild spawners in the total spawner abundance since 2000. 

Scenario Nass SkeenaWild 

Esc25 
Esc50 
Esc75 

50,000 
100,000 
150,000 

75,000 
150,000 
225,000 

Esc100 200,000 300,000 

Esc125 
Esc150 
Esc175 
Esc200 
Esc225 
Esc250 

250,000 
300,000 
350,000 
400,000 
450,000 
500,000 

375,000 
450,000 
525,000 
600,000 
675,000 
750,000 

2.7.3. Scenarios 

What makes forward simulations so powerful is the ability to test many different scenarios and 
bring the results into a collaborative planning process where plausible outcomes under alternative 
assumptions can be debated. However, this fexibility also creates the biggest challenge for using 
simulation models in a decision support setting: how to bound the explorations? 

With the current model structure, we have so far explored the following options for key model 
components: 

• Productivity : six alternative scenarios (Section 2.3) 

• Harvest Strategy : Two main types (Fixed ER vs. Fixed Esc), 10 different levels for each, 
plus alternative combinations of ER foor and cap for the Fixed Esc strategies (0-90% ER, 
10-80%, 20-80%, 20-60%), for a total of 50 alternative strategies 

• Aggregate outcome uncertainty : Three alternatives - none, narrow, wide (Appendix F.1) 

• Stock-specifc outcome uncertainty : Three alternatives - none, all years, 1995-2013 brood 
years (Appendix F.1) 
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• Covariation in productivity : Four alternatives - none, simplifed covariation 1984-2013 brood 
years, simplifed covariation 1999-2013 brood years, detailed pairwise covariation 1984-
2013 brood years (Appendix F.2) 

Just these model components already yield 6x50x3x3x4 = 10,800 alternative scenarios. Because 
these components interact (e.g., the effect of the covariation assumption may differ depending 
on the harvest strategy), we would ideally run and compare all of the alternative scenarios, but in 
practice this is usually an iterative process guided by participants in a broader planning exercise 
(e.g., Punt et al. 2016). 

In this paper we present examples of results for 40 of the alternative scenarios, as well as a 
high-level summary of sensitivity tests completed so far. The intent is to illustrate the type of 
information that can be generated by a full-scale implementation of a management strategy 
evaluation and set the stage for future rounds of model refnement and scenario exploration. The 
forty scenarios are: 

• 10 levels of fxed ER (0-90%) under long-term average productivity 

• 10 levels of fxed ER (0-90%) under recent productivity (1 generation) 

• 10 levels of fxed escapement, ranging from 1/4 to 2.5 times the interim EG, with a 10% ER 
foor and an 80% ER cap, under long-term average productivity 

• 10 levels of fxed escapement, ranging from 1/4 to 2.5 times the interim EG, with a 10% ER 
foor and an 80% ER cap, under recent productivity (1 generation) 

We ran these scenarios for 3 generations (15 years), starting with 2020 as the frst simulated 
year. All scenarios used the wide version of the aggregate outcome uncertainty, the 1995-2013 
version of the stock-specifc outcome uncertainty, and the simplifed productivity covariation 
observed over 1999-2013 brood years. These settings were used as the base case for model 
explorations following the peer review process in April 2022. 

2.7.4. Objectives, Performance Measures, and Diagnostic Plots 

To convert the simulation trajectories into meaningful summaries of expected outcomes, we 
need to identify aggregate-level and stock-level objectives and develop quantitative performance 
measures for them. For this illustration, we defned a general aggregate objective as “most 
stocks should meet their stock-specifc conservation objectives”, and translated this into a quantitative 
objective that “16 of the 20 modelled stocks (80%) should have at least 80% probability of spawner 
abundance exceeding the upper WSP benchmark for the relative abundance metric, which is set 
at 80% Smsy, after 3 generations (simulation years 11-15)“. These objectives are examples 
selected for this illustration, and are not intended as a recommendation of which management 
objectives should be evaluated by upcoming planning processes. 

We used the median Smsy value for the long-term average productivity scenario (Section 2.3) 
in this performance measure, which is consistent with the benchmarks used in past WSP status 
assessments (Section 2.4). Simulation trajectories based on the current productivity scenario 
and the high/low productivity bookend scenarios were also compared to the same benchmark, to 
make results comparable across scenarios and to emphasize how different the outcomes under 
the different scenarios are compared to expectations based long-term average properties. 

As with the other components of this simple illustration, the challenging work of developing an 
agreed-upon suite of objectives and performance measures specifcally for the current management 
context of Skeena and Nass Sockeye will start in the next phase of the project, which is an 
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engagement process with rights holders and stakeholders. Once this takes shape, additional 
performance measures can easily be calculated and presented for the simulation trajectories 
(e.g., probability that aggregate catch meets some minimum level, variability in catch associated 
with different types of harvest strategy). 

3. RESULTS 

This Research Document focuses on SR modelling for wild Sockeye stocks (16 Skeena, 4 Nass) 
and alternative approaches for developing management reference points for two aggregates 
(Skeena Wild, Nass). Enhanced Pinkut and Fulton Sockeye present a fundamentally different 
challenge in terms of population dynamics and management implications. We include a review 
of available information for Babine Sockeye enhancement facilities (Appendix H) and illustrate 
two candidate methods for expanding a management reference point for wild Skeena Sockeye to 
a management reference point for the whole Skeena aggregate including enhanced Pinkut and 
Fulton (Section 3.10). Section 1.3.4 explains the rationale for this approach within the scope of 
the current project. Appendix I includes the available SR data and parameter estimates for Pinkut 
and Fulton as a reference, but resulting benchmark estimates should not be used as they are, 
given SR model ftting issues and management challenges. 

3.1. SINGLE-STOCK SPAWNER-RECRUIT MODEL FITS (STOCK-LEVEL AND AGGREGATE-
LEVEL) 

3.1.1. Convergence 

We tested 163 alternative SR model fts for 22 stock-level SR data sets (including enhanced 
Pinkut and Fulton) and three aggregate-level SR data sets (Nass, Skeena, SkeenaWild). 

All of the candidate SR model fts met at least two of three convergence criteria, and most model 
fts met all three criteria (Table 18). Convergence varied depending on the amount of data used, 
the SR model form, and form of the capacity prior (Smax). Models ft to all available brood years 
of data converged more reliably than model fts to truncated data sets, but note that not all model 
forms could be ftted to all stocks, and that the number of available brood years varies across 
stocks (Table 5; Figure 2). More complex SR model forms were run with more intensive MCMC 
sampling (longer burn-in, larger samples), but still had a lower rate of meeting all three convergence 
criteria. Alternative capacity priors had little effect on convergence for the Basic Ricker model, 
with 88-89% of model fts meeting all three convergence criteria across four alternative capacity 
priors. 

3.1.2. Alternative SR Model Fits 

Posterior estimates of capacity (Smax) were much wider and more skewed than posterior estimates 
of productivity (ln.alpha) for most stocks using the Basic Ricker model (Figure 7). Four stock-level 
fts and one aggregate-level ft were notably more uncertain (i.e., wider posteriors) than the other 
fts: Lower Nass Sea and River Type, Kitwanga, Motase, and the SkeenaWild aggregate. 

For the Basic Ricker model, median Bayesian estimates of Smsy were similar to simple deterministic 
estimates for most cases (Figure 8). Differences between Bayesian and deterministic estimates 
were larger for cases where the Bayesian estimate was more uncertain (i.e., wider posterior, 
larger SIQR). The two stocks with the largest difference between the Bayesian and deterministic 
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Smsy estimate also had the most uncertain Bayesian estimates (Lower Nass Sea and River 
Type, Kitwanga). 

Table 18. Summary of convergence diagnostics for single-stock SR model fts. We considered three 
convergence diagnostics with quantitative thresholds (Table 8). Table shows the total number of 
stock-level and aggregate-level single-stock SR model fts tested (Total), the number that met each 
criterion (Rhat, Gelman, Geweke), the number and percent of fts that met at least two of the criteria 
(Met2, pMet2), and the number and percent of fts that met all three criteria (Met3, pMet3). Convergence 
thresholds were specifed as Rhat < 1.05, Gelman within [0.99,1.01], and Geweke within [-2,2]. For each 
criterion, the value compared to the threshold was the most extreme value across all estimated 
parameters. For the TVP model fts with time-varying productivity, this captures the poorest ft across all 
the brood-year-specifc ln.alpha posteriors. 

Criteria 

DataType ModelType CapPriorType Total Rhat Gelman Geweke Met2 Met3 pMet2 pMet3 

All All All 163 159 157 138 163 134 100 82 

all years Basic 
Basic 
Basic 
Basic 

capped uniform 
wide uniform 
capped lognormal 
wide lognormal 

25 
24 
19 
19 

25 
24 
19 
19 

25 
24 
19 
18 

22 
21 
17 
18 

25 
24 
19 
19 

22 
21 
17 
17 

100 
100 
100 
100 

88 
88 
89 
89 

AR1 
AR1 

capped uniform 
wide uniform 

17 
3 

17 
3 

17 
3 

14 
3 

17 
3 

14 
3 

100 
100 

82 
100 

TVP 
TVP 

capped uniform 
wide uniform 

15 
3 

12 
3 

13 
3 

6 
2 

15 
3 

6 
2 

100 
100 

40 
67 

truncated Basic 
Basic 
Basic 
Basic 

capped uniform 
wide uniform 
capped lognormal 
wide lognormal 

22 
3 
1 
1 

22 
3 
1 
1 

22 
3 
1 
1 

19 
3 
1 
1 

22 
3 
1 
1 

19 
3 
1 
1 

100 
100 
100 
100 

86 
100 
100 
100 

AR1 
AR1 

capped uniform 
wide uniform 

3 
2 

2 
2 

1 
1 

3 
2 

3 
2 

1 
1 

100 
100 

33 
50 

TVP 
TVP 

capped uniform 
wide uniform 

4 
2 

4 
2 

4 
2 

4 
2 

4 
2 

4 
2 

100 
100 

100 
100 

For the Basic Ricker model, the effect of alternative capacity priors was generally larger for 
cases where capacity estimates were more uncertain (Figure 9). Three stock-level fts and one 
aggregate-level ft were notably more sensitive (i.e., larger differences in median estimates) than 
the other fts: Lower Nass Sea and River Type, Kitwanga, Babine Late Wild, and the Skeena 
aggregate. Motase had the widest Smsy posterior across alternative capacity priors. 

Posterior parameter distributions were similar for Basic Ricker and AR1 model fts in most cases 
(Figures 10 and 11). The AR1 model had slightly wider ln.alpha posteriors for most fts and 
slightly narrower Smax posteriors for some fts. Estimates of ln.alpha that were more uncertain 
in the Basic Ricker ft did not improve with the AR1 model form. The AR1 ft for Swan/Stephens 
was even poorer than the Basic Ricker ft. Among the cases where AR1 models could be ftted, 
the posterior capacity estimates were most uncertain for the three aggregate-level fts and for 
Lower Nass Sea and River Type Sockeye, which also showed the largest improvement due to 
the change in model form (i.e., Smax posterior much narrower for the AR1 ft than the Basic 
Ricker ft). Median Smsy estimates were very similar for the two alternative model forms, except 
for Lower Nass Sea and River Type, where the AR1 estimate has a 26% lower median and a 
substantially narrower posterior. 
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A TVP model with time-varying productivity could be ftted to 12 stocks to identify stock-specifc 
changes over time in productivity (Figure 12). Most stocks showed recent declines in productivity, 
but the time trends differed between stocks. Five stocks showed a persistent decline in productivity 
since the 1990s, and these include the two largest wild stocks (Babine Early Wild, Babine Late 
Wild, Damdochax, Meziadin, and Swan/Stephens). Estimated productivity of Alastair gradually 
increased since the 1960s, until a drastic drop in the last few brood years. Babine Mid Wild has 
been mostly stable, with a slight decline. Bear has increased. Productivity is highly variable over 
time for three stocks (Lakelse, Lower Nass Sea and River Type, and Morice). 

The estimated productivity trends from the TVP model ft generally track the trends over time 
of residuals generated from a Basic Ricker ft (Figure 12 vs. Figure 13), and the TVP residuals 
therefore change less over time (Figure 14 vs. Figure 13). Note the trade-off between the time-
trends in time-varying ln.alpha from the TVP model and the TVP residuals (Figure 12 vs. Figure 14): 
For those stocks where the productivity parameter changes smoothly over time, the TVP residuals 
vary a lot from year to year (i.e., “spiky”), while for those stocks where the productivity parameter 
changes rapidly between years, the TVP residuals are much smoother. Depending on the stock, 
the observed variability in the data is allocated either to the time-varying productivity parameter 
or to the residual error. 

For stocks where all three model forms could be ftted, the median posterior estimates of the 
productivity parameter ln.alpha are very similar between the basic Ricker and AR1 model, but 
brood-year specifc ln.alpha estimates for the TVP model with time-varying productivity span a 
wide range, from much higher to much lower median estimates than the basic Ricker and AR1 
fts (Table 19). 

Figures 15 to 18 summarize the SR data and alternative model fts for the largest wild stock from 
each aggregate: Meziadin on the Nass and Babine Late Wild on the Skeena. 
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Table 19. Comparison of median ln.alpha estimates across SR model forms. Table lists the number of 
available brood years with SR data (n), the median estimate for the basic Ricker model (BR), and median 
estimates (Med) and percent difference to the basic Ricker (pDiff) for the AR1 model ft, and the 
year-specifc estimate for the brood years with lowest and highest median estimate from the time-varying 
productivity model (TVP Min, TVP Max). 

BR AR1 TVP Min TVP Max 

Basin Stock n Med Med pDiff Med pDiff Med pDiff 

Nass 

Skeena 

Damdoch 
Kwinag 
LNassSRT 
Meziadin 
Alastair 
Asitka 
Bab-EW 
Bab-LW 
Bab-MW 
Bear 
Johnston 
Kitsumk 
Kitwanga 
Lakelse 
Mcdonell 
Morice 
Motase 
Slamg 
Sustut 
SwanSteph 

32 
32 
34 
32 
54 
24 
55 
55 
55 
49 
11 
24 
19 
55 
42 
54 
17 
14 
27 
54 

1.75 
1.54 
1.09 
1.73 
1.34 
1.00 
1.04 
1.13 
1.41 
1.96 
1.28 
1.80 
0.97 
0.98 
1.64 
1.71 
1.31 
1.42 
2.35 
0.94 

1.78 
-

1.12 
1.71 
1.41 

-
1.08 
1.18 
1.42 
2.03 

-
1.65 

-
1.01 

-
1.72 

-
-
-

0.80 

2 
-
3 

-1 
5 
-
4 
5 
1 
4 
-

-8 
-
3 
-
0 
-
-
-

-14 

1.18 
-

-0.38 
0.59 
0.50 

-
0.43 
0.72 
1.23 
1.87 

-
1.37 

-
-0.13 

-
-1.12 

-
-
-

0.29 

-33 
-

-134 
-66 
-62 

-
-59 
-36 
-13 

-4 
-

-24 
-

-113 
-

-165 
-
-
-

-69 

2.99 
-

2.55 
3.06 
2.20 

-
1.49 
1.78 
1.53 
2.30 

-
2.14 

-
2.44 

-
3.73 

-
-
-

1.75 

70 
-

133 
77 
65 

-
43 
57 

8 
18 

-
19 

-
148 

-
118 

-
-
-

87 
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Figure 7. Comparison of Bayesian posterior distributions for productivity (ln.alpha) and capacity (Smax). 
Model fts shown are the Basic Ricker fts with capped uniform prior for Smax. Posterior distributions are 
summarized as the standardized interquartile range SIQR = (p75-p25)/p50. The reference line marks a 
slope of 2 (i.e., posterior for Smax is twice as wide relative to the median value as the posterior for 
ln.alpha). Model fts are fagged with red points if the SIQR for Smax is larger than 0.8 or the SIQR for 
ln.alpha is larger than 0.3. Johnston is labelled because it has the narrowest Smax posterior (lowest 
SIQR). 
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Figure 8. Comparison of Bayesian and deterministic estimates for Smsy. Both estimates use the basic 
Ricker model form. The Bayesian estimate is the version with the capped uniform prior on capacity. Model 
fts are fagged with red points if the difference is larger than 25%. Panel A compares estimates on a log 
scale to allow comparison across stocks with very different estimates, but stocks are fagged if the 
difference in original (i.e., unlogged) values is larger than 25%. Bayesian and deterministic fts are mostly 
similar. Panel B shows the relationship between the % difference and the width of the Bayesian posterior 
distribution, expressed as the standardized interquartile range (SIQR). The difference between estimates 
increases with larger uncertainty in the Bayesian estimates (i.e., larger SIQR). 
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Figure 9. Effect of alternative capacity priors on median Smsy estimates. We tested two to four alternative 
priors for Smax for the stock-level and aggregate-level fts of the Basic Ricker model (wide vs. capped, 
uniform vs. lognormal). The effect of alternative capacity priors is larger for more uncertain SR model fts 
(i.e., larger SIQR). SR model fts with red points are fagged if the difference between median estimates is 
larger than 25% or the standardized interquartile range for the most uncertain ft is larger than 1 (i.e., the 
range between the lower and upper quartiles is larger than the median value). 
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Figure 10. Comparison of posterior distributions for Basic Ricker and AR1 model fts - Parameters. Both 
model fts used the capped uniform capacity prior. Panels compare the width of posterior distributions 
(SIQR) between model forms for ln.alpha (A) and Smax (B). SR model fts are fagged with red points for 
n.alpha if either SIQR > 0.3 and fagged for Smax if either SIQR > 0.6. 
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Figure 11. Comparison of posterior distributions for Basic Ricker and AR1 model fts - Smsy. Figures 
compare median estimates (A) and width of the posteriors (B) of posterior Smsy distributions from the 
alternative model forms. Model fts are fagged with red points if the difference in median estimates is 
larger than 25%. Aggregate fts are also labelled in Panel B. Note that Panel A compares estimates on a 
log scale to allow comparison across stocks with very different estimates, but stocks are fagged if the 
difference in original (i.e., unlogged) values is larger than 25%. 
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Figure 12. Time-varying productivity for 12 stocks with complete time series. Each panel shows the 
median and 80% bounds of year-specifc posterior distributions of ln.alpha for the TVP model ft. 
Reference lines show the corresponding intrinsic productivity in terms of recruits per spawner (R/S) at 
very low spawner abundance (technically, at 0 spawners). 
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Figure 13. Log residuals from the Basic Ricker ft for 12 stocks where a time-varying productivity TVP 
model was also ftted. Each panel shows median and 80% bounds for annual residuals and a 4yr running 
average trend line. 
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Figure 14. Log residuals from the TVP model ft with time varying productivity for 12 stocks with complete 
time series. Each panel shows median and 80% bounds for annual residuals and a 4yr running average 
trend line. 
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Figure 15. Scatterplot of log productivity ln(R/S) vs. spawner abundance - Meziadin. Observations are 
colour-coded, with earlier data in fainter shading. The secondary axis illustrates the corresponding raw 
R/S values. 
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Figure 16. Joint posterior distributions for productivity parameter ln(alpha) and capacity parameter Smax 
(1/b): Meziadin, with PR-based capacity priors. Each panel shows the scatter of MCMC samples, contour 
lines for the joint distribution, and two depictions of the marginal distributions for each parameter: boxplot 
with median, quartiles, and 80% whiskers, and a kernel density plot. Dashed reference lines show the 
medians of the marginal distributions. Figure includes 1 panel for the Basic Ricker model ft (top left), one 
panel for the Ricker AR1 ft (top right), and two panels showing the brood years with the lowest and 
highest productivity (median ln.alpha) for the TVP model ft (bottom panels). The parameter samples for 
the TVP model have 1 set of posterior samples for Smax, and 1 set of ln.alpha posterior samples for each 
brood year. The bottom panels show the joint distribution of Smax and ln.alpha for 2 brood years, selected 
to capture the brood year with the lowest median ln.alpha and the highest median ln.alpha. 
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Figure 17. Scatterplot of log productivity ln(R/S) vs. spawner abundance - Babine Late Wild. Observations 
are colour-coded, with earlier data in fainter shading. The secondary axis illustrates the corresponding raw 
R/S values. 
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Figure 18. Joint posterior distributions for ln.a and b: Babine Late Wild. Each panel shows the scatter of 
MCMC samples, contour lines for the joint distribution, and two depictions of the marginal distributions for 
each parameter: boxplot with median, quartiles, and 80% whiskers, and a kernel density plot. Dashed 
reference lines show the medians of the marginal distributions. Figure includes 1 panel for the Basic 
Ricker model ft (top left), one panel for the Ricker AR1 ft (top right), and two panels showing the brood 
years with the lowest and highest productivity (median ln.alpha) for the TVP model ft (bottom panels). The 
parameter samples for the TVP model have 1 set of posterior samples for Smax, and 1 set of ln.alpha 
posterior samples for each brood year. The bottom panels show the joint distribution of Smax and ln.alpha 
for 2 brood years, selected to capture the brood year with the lowest median ln.alpha and the highest 
median ln.alpha. 

81 



3.2. HIERARCHICAL SPAWNER-RECRUIT MODEL FITS (STOCK-LEVEL) 

3.2.1. Model Versions Used for Comparison 

The purpose of including the HBM analyses by McAllister and Challenger in this paper is to 
explore the potential benefts of including the hierarchical structure and sharing information 
across stocks. For this comparison to single-stock fts, all other elements of the model fts should 
be kept as similar as possible, at least for the starting point of the comparison. McAllister and 
Challenger document sensitivity tests of the Hierarchical Bayesian Model (HBM) in Appendix D. 
Here we focus on comparing results between the single-stock fts and two versions of the HBM 
model fts: 

• HBM Base Case: Used all stocks with data, including enhanced Pinkut and Fulton, with a 
shared year effect of productivity across all stocks, and more informative lognormal priors on 
Smax for several of the stocks (CV = 0.3). 

• HBM Senstivity Run 26: Excluded Pinkut and Fulton, less informative lognormal priors for 
Bear, Kitwanga, and Sustut (CV = 2). 

3.2.2. Comparison of Biological Benchmark Estimates 

We compared HBM estimates of biological benchmarks to single stock fts with the Basic Ricker 
model (capped uniform Smax prior). This comparison covered the largest number of stocks, 
because single-stock AR1 and TVP model fts could only be applied to stocks with complete time 
series. 

For most stocks, median Smsy estimates from the HBM Base Case were similar to the single 
stock Basic Ricker estimates, but for six stocks the difference was more than 25% (Figure 19). 
After excluding the enhanced stocks and relaxing the HBM capacity prior on three stocks (Bear, 
Kitwanga, Sustut), all the estimates were similar between HBM and single-stock model fts 
(Figure 20). In fact, Smsy estimates for HBM Run 26 and the single-stock Basic Ricker with 
capped uniform prior (Model BRcu) were more similar to each other than the Bayesian single 
stock estimate was to the simple deterministic estimate (Figure 8). 

Widths of posterior Smsy distributions were similar between HBM and single-stock model fts for 
many stocks, tighter (i.e., more precise) in the HBM estimates for some stocks, and wider in the 
HBM estimates for a few stocks (Figure 21). Smsy estimates for three stocks stood out in both 
HBM and single-stock model fts as particularly uncertain (i.e., very wide posteriors): Kitwanga, 
Asitka, and Motase. 

While Smsy estimates were much more similar between HBM and single-stock model fts after 
the capacity prior was relaxed for some stocks (HBM Run 26), median estimates of Umsy remained 
quite different between the two types of model (Figure 22). Median Umsy differed by more than 
5% for seven stocks. HBM Run 26 estimated higher median Umsy (i.e., higher productivity) than 
the single stock Basic Ricker ft for Johnston, Asitka, Kitwanga, and Swan/Stephens. HBM Run 
26 estimated lower median Umsy for Sustut, Bear, and Kitsumkalum. The range of median Umsy 
estimates across stocks was narrower for HBM Run 26 (44%-72%) than for the single stock 
Basic Ricker ft (41%-79%). 
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Figure 19. Difference in median Smsy estimates for the HBM Base Case and the single stock Basic Ricker 
ft with capped uniform capacity priors. Stocks with differences larger than 25% are highlighted. 
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Figure 20. Difference in median Smsy estimates for HBM Run 26 and the single stock Basic Ricker ft with 
capped uniform capacity priors. Stocks with differences larger than 25% are highlighted. 

84 



Figure 21. Comparison of Smsy estimates for HBM Run 26 and the single stock Basic Ricker ft with 
capped uniform capacity priors. (A) Comparison of median estimates. Stocks with differences in median 
estimates larger than 25% are highlighted. Panel A compares estimates on a log scale to allow 
comparison across stocks with very different estimates, but stocks are fagged if the difference in original 
(i.e., unlogged) values is larger than 25%. (B) Comparison of the standardized interquartile range (SIQR), 
which captures half of the posterior samples. Stocks with SIQR > 0.4 in either estimate are highlighted. 
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Figure 22. Comparison of Umsy estimates for HBM Run 26 and the single stock Basic Ricker ft with 
capped uniform capacity priors. Sidebars identify the range of median estimates from each model type. 
Stocks are highlighted if median Umsy differ by more than 5%. Note that the difference in actual values is 
used here, not the relative % difference used for Smsy comparisons in previous plots. 
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3.2.3. Comparison of Estimated Productivity Changes Over Time (Single-stock vs. HBM 
Fits) 

We compared HBM estimates of productivity over time to single stock fts with the TVP model 
(capped uniform Smax prior) for the nine wild Skeena stocks where both estimates were available. 

The shared year effect identifed by the HBM model was very similar between the HBM Base 
Case, which included Pinkut and Fulton, and HBM Run 26, which excluded the enhanced stocks 
(Figure 23, Panel A). Both versions identifed a sharp productivity drop in 1994, followed by a 
spike in 1995. The 4-year running mean of the HBM Base Case shared year effect identifed a 
period of higher-than-average productivity in the 1980s and early 1990s, followed by a general 
decline since then (Panel B). Single stock TVP fts identifed a similar decline in productivity 
since the 1990s for Babine Late Wild, the largest wild Skeena stock, but other stocks had very 
different productivity trends over time (e.g., Panel D of Figure 23, Figure 24). The three wild 
Babine stocks had very similar productivity trend over time in the single stock TVP fts. 

Both the HBM shared year effect and the single-stock TVP estimates of changes in productivity 
over time link back to the residuals from the Basic Ricker ft. Based on the residuals, the 1994/1995 
dip and spike in the HBM shared year effect was driven by the residuals from the Babine stocks 
(Figure 24). In the HBM Base Case the change over time was very pronounced, because it 
included Pinkut and Fulton, which had the disease outbreak. In HBM Run 26, without the enhanced 
stocks, this was less pronounced, but it still picked up the same signal from the 3 wild Babine 
stock residuals, and assumed that all the non-Babine stocks experienced the same dramatic 
changes in those 2 years. The residual 1994/1995 signal from the three wild Babine stocks 
needs to be interpreted carefully, because spawner and recruit estimates for all fve Babine 
stocks are derived together from a total weir count, based on estimated stock proportions from 
tagging studies in the 1970s. 
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Figure 23. Comparison of estimated productivity trends over time from HBM and single stock TVP model 
fts. (A) Annual shared year effect from the HBM model fts. Blue line and shaded area show median and 
80% of the shared year effect from the HBM Base Case, the red overlayed line shows the shared year 
effect from HBM Run 26. (B) 4yr running mean of the shared year effect from the HBM Base Case. (C, D) 
Estimates of the time-varying productivity parameter ln.alpha from a single stock TVP model ft with 
capped uniform capacity prior for Babine Late Wild and Alastair. Medians and 80% bounds are shown. 
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Figure 24. Changes in productivity parameter ln.alpha over time for nine wild Skeena stocks with complete 
SR time series. Estimates of the time-varying productivity parameter ln.alpha from a single stock TVP 
model ft with capped uniform capacity prior. Medians and 80% bounds are shown. 
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3.3. PRODUCTIVITY SCENARIOS (STOCK-LEVEL AND AGGREGATE-LEVEL) 

3.3.1. Scenario Descriptions 

We worked through the considerations and steps outlined in Section 2.3 to select spawner-recruit 
parameter sets for four alternative productivity scenarios from the suite of candidate single-stock 
SR model fts. These scenarios were used for the remaining analyses in this report (Tables 20 
and 21). 

Key considerations were: 

• We wanted to highlight differences in productivity between stocks, so focused on single-
stock model fts, rather than the hierarchical model fts that start with the assumption of a 
similar underlying productivity across stocks. 

• Given that all candidate single-stock model fts converged for at least two of the three criteria 
(Section 3.1.1), we did not reject any of the fts based on statistical considerations. 

• We wanted to highlight the implications of alternative productivity assumptions for each 
stock, so we generated three alternatives to the base case with long-term average productivity. 

• Where available, we used the AR1 model ft for the long-term average scenario. Otherwise, 
we used the Basic Ricker ft. 

• Where available, we used year-specifc ln.alpha estimates from the time-varying productivity 
(TVP) model for the alternative productivity scenarios. Otherwise, we subsampled parameter 
sets from the Basic Ricker ft. 

• For stocks with time-varying productivity (TVP) model fts, we used the last available generation 
for the Recent productivity scenario. However, given discussions during the peer-review 
meeting (DFO 2022c, 2023), we also tested the effect of expanding the number of brood-
years included in the Recent scenario to either two generations or 3 generations. 

We anticipate that future processes, such as the on-going Canadian domestic engagement 
process, will identify additional candidate model fts, explore alternative parameter selection 
criteria, and request additional productivity scenarios. The analysis framework is set up to rapidly 
respond to these requests. All of the results shown in subsequent sections can be easily re-
generated with alternative MCMC parameter sets (e.g., different productivity assumptions, Hierarchical 
Bayesian Model fts), but we have decided to limit the number of examples included in this Research 
Document. 
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Table 20. Stock-level SR models selected for alternative scenarios. Model fts are BR = Basic Ricker, AR1 
= Ricker with lag-1 autoregression correction, TVP = Ricker model with time-varying productivity 
parameter alpha. All selected model fts used the capped uniform (cu) capacity prior. The range of brood 
years from which parameter sets were sampled is listed for TVP fts. For example, TVPcu2010-2014 
denotes that 1/5th of the parameter samples were taken from each year in the period 2010 to 2014. For 
BR and AR1 fts, alternative scenarios are identifed based on the percentile used for the adjusted median 
of the sample distribution. For example, BRcu(0.1) denotes that half the parameter samples for that 
scenario were taken from below the 10th percentile of the original distribution, and half from above. For 
stocks without TVP fts the recent productivity scenario matched the low productivity scenario if observed 
R/S clearly decreased in recent years, matched the high productivity scenarios if they increased, and 
matched the long-term average scenario if there was no clear trend in either direction. Note that three 
alternative versions of Recent productivity scenario for stocks with TVP fts were explored. All use the 
model ft, generation length, and end year specifed in this table, but they include either one, two, or three 
generations. Section 3.3.2 compares the parameter distributions. The examples in the rest of this 
Research Document are based on the 1-generation version of the Recent productivity scenario. 

Scenarios 

MU Stock LTAvg Recent Low High 

Nass LNassSRT 
Meziadin 
Bowser 
Oweege 
Kwinag 
Damdoch 
UNassRT 

AR1cu 
AR1cu 
-
-
BRcu 
AR1cu 
-

TVPcu2012-2015 
TVPcu2010-2013 
-
-
BRcu(0.1) 
TVPcu2006-2010 
-

TVPcu1982-1985 
TVPcu2010-2013 
-
-
BRcu(0.1) 
TVPcu1995-1999 
-

TVPcu1991-1994 
TVPcu1986-1989 
-
-
BRcu(0.9) 
TVPcu1982-1986 
-

Skeena Johnston 
Ecstall 

BRcu 
-

BRcu(0.9) 
-

BRcu(0.1) 
-

BRcu(0.9) 
-

Alastair 
Lakelse 
Kitsumk 
Mcdonell 
Kitwanga 
UBulkLk 
Morice 
SwanSteph 
Bab-EW 
Bab-LW 
Bab-MW 
Pinkut 
Fulton 
Sicintine 
Slamg 
Motase 
Bear 
Asitka 
Sustut 
Kluant 
Kluayaz 
Skeena RT 

AR1cu 
AR1cu 
AR1cu 
BRcu 
BR01cu 
-
AR1cu 
AR1cu 
AR1cu 
AR1cu 
AR1cu 
AR1cu 
AR1cu 
-
BRcu 
BRcu 
AR1cu 
BRcu 
BRcu 
-
-
-

TVPcu2009-2013 
TVPcu2010-2014 
TVPcu2009-2013 
BRcu 
BR01cu(0.1) 
-
TVPcu2010-2013 
TVPcu2010-2014 
TVPcu2010-2014 
TVPcu2010-2014 
TVPcu2010-2014 
TVPcu2010-2014 
TVPcu2010-2014 
-
BRcu(0.9) 
BRcu 
TVPcu2010-2014 
BRcu 
BRcu 
-
-
-

TVPcu2009-2013 
TVPcu1966-1970 
TVPcu1995-1999 
BRcu(0.1) 
BR01cu(0.1) 
-
TVPcu2004-2008 
TVPcu2006-2010 
TVPcu2010-2014 
TVPcu2010-2014 
TVPcu2010-2014 
TVPcu2010-2014 
TVPcu2010-2014 
-
BRcu(0.1) 
BRcu(0.1) 
TVPcu1999-2003 
BRcu(0.1) 
BRcu(0.1) 
-
-
-

TVPcu2006-2010 
TVPcu1960-1964 
TVPcu2000-2004 
BRcu(0.9) 
BR01cu(0.9) 
-
TVPcu1989-1993 
TVPcu1981-1985 
TVPcu1963-1967 
TVPcu1961-1965 
TVPcu1961-1965 
TVPcu1978-1982 
TVPcu1983-1987 
-
BRcu(0.9) 
BRcu(0.9) 
TVPcu2010-2014 
BRcu(0.9) 
BRcu(0.9) 
-
-
-
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Table 21. Aggregate-level SR models selected for alternative scenarios. Layout as per Table 20. 

Scenarios 

Aggregate LTAvg Recent Low High 

Nass AR1cu TVPcu2009-2013 TVPcu2009-2013 TVPcu1986-1990 
Skeena AR1cu TVPcu2010-2014 TVPcu2010-2014 TVPcu1979-1983 
SkeenaWild AR1cu TVPcu2010-2014 TVPcu2010-2014 TVPcu1981-1985 

3.3.2. Comparison of Parameter Distributions for Productivity Scenarios 

Productivity parameters for the recent scenario, generated as per Table 20, have lower median 
productivity for about 1/3 of the stocks, and wider distributions (i.e., larger uncertainty, lower 
confdence) for most of the stocks (Table 22, Figures 25 and 26). Stocks with lower productivity 
in the Recent scenario include Meziadin, the largest Nass stock, and all three wild Babine stocks 
(Early, Mid, and Late Wild). Four small stocks, each accounting for less than 2% of cumulative 
spawner abundance since 2000, have higher Recent productivity: Alastair, Bear, Slamgeesh, 
and Johnston. Three stocks are notable for having both much lower productivity, with a % difference 
in median ln.alpha between scenarios larger than -35%, and a distribution that is more than twice 
as wide (i.e., % difference in SIQR > 100): Babine Late Wild, Babine Early Wild, Meziadin, and 
Kitwanga (Figure 26). 

Alternative versions of the recent productivity scenario, using either two or three generations 
instead of only the last generation, have similar median productivity and similar spread for about 
1/2 of the stocks (Table 23, Figure 27 and 28). This includes two of the three wild Babine stocks 
(Mid and Late Wild). For 1/3 of the stocks, median productivity is higher, and the distribution is 
narrower if additional brood years are included in the defnition of the recent scenario. These 
include Meziadin, the largest Nass stock, and one of the wild Babine stocks (Babine Early Wild). 
For two stocks, median productivity is lower and more uncertain: Morice and Swan/Stephens. 
Corresponding Smsy estimates change similarly due to the alternative time windows used for the 
recent productivity scenario (Table 24). 
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Table 22. Estimated productivity parameters ln.alpha for the long-term average and recent productivity 
scenarios. For each scenario, the table lists median (Med) and standardized inter-quartile range (SIQR, 
range between p25 and p75) for the Bayesian posterior parameter subsamples generated as per Table 20. 
The last two columns show percent difference (PercDiff) between the scenarios. Stocks are sorted by 
PercDiff in median estimate. Horizontal lines separate the stocks into three groups based on percent 
difference in median ln.alpha: more than ~ 10% decrease (top), more than ~ 10% increase (bottom), or 
less than ~ 10% change in either direction (middle). Note that table includes only wild stocks. 

LTAvg Recent PercDiff 

Stock Med SIQR Med SIQR Med SIQR 

Kitwanga 
Babine Early Wild 

Meziadin 
Babine Late Wild 

Swan/Stephens 
Kwinageese 

Babine Mid Wild 
Damdochax 

0.83 
1.09 
1.71 
1.18 
0.81 
1.56 
1.43 
1.77 

0.71 
0.28 
0.17 
0.25 
0.39 
0.21 
0.21 
0.15 

0.24 
0.49 
1.05 
0.74 
0.57 
1.22 
1.26 
1.60 

3.49 
0.96 
0.66 
0.56 
0.75 
0.36 
0.35 
0.21 

-71.27 
-55.05 
-38.57 
-36.88 
-29.22 
-21.34 
-11.68 

-9.80 

390.55 
238.80 
276.88 
125.86 

89.29 
69.65 
66.29 
41.72 

Lakelse 
L Nass SRT 

Kitsumkalum 
Motase 
Sustut 

Mcdonell 
Morice 
Asitka 

1.01 
1.12 
1.65 
1.31 
2.35 
1.63 
1.72 
0.99 

0.26 
0.31 
0.13 
0.37 
0.16 
0.14 
0.16 
0.49 

0.97 
1.09 
1.62 
1.31 
2.35 
1.64 
1.73 
1.01 

0.61 
0.75 
0.25 
0.36 
0.17 
0.14 
0.26 
0.47 

-3.68 
-3.10 
-1.77 
-0.09 
-0.01 
0.37 
0.80 
2.06 

138.21 
137.67 

91.88 
-2.76 
5.05 

-0.57 
59.07 
-3.28 

Alastair 
Bear 

Slamgeesh 
Johnston 

1.41 
2.04 
1.42 
1.29 

0.19 
0.13 
0.25 
0.25 

1.55 
2.28 
1.77 
1.65 

0.58 
0.18 
0.29 
0.33 

10.02 
11.84 
25.05 
27.87 

200.10 
39.97 
14.44 
28.47 
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Figure 25. Estimated median productivity (ln.alpha) for the long-term average and recent productivity 
scenarios. Medians are for the Bayesian posterior parameter subsamples generated as per Table 20. 
Stocks falling on the solid red line have the same median for both scenarios. For stocks below the solid 
red line, recent productivity is lower than long-term average productivity. For stocks between the dashed 
red lines, the difference in productivity scenarios is less than 25%. Note that fgure includes only wild 
stocks. 
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Figure 26. Differences in median and spread of the productivity parameter (ln.alpha) for the long-term 
average and recent productivity scenarios. Points show the percent change in the standardized 
inter-quartile range (SIQR, range between p25 and p75) vs. the change in median ln.alpha. Horizontal 
and vertical red lines mark “no change”. Note that fgure includes only wild stocks. 
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Table 23. Estimated productivity parameters ln.alpha for three versions of the recent productivity scenario 
(1,2, or 3 generations). For each scenario, the table lists median (Med) and standardized inter-quartile 
range (SIQR, range between p25 and p75) for the Bayesian posterior parameter subsamples generated 
as per Table 20. Table also shows percent difference (PercDiff) between the alternative versions. Stocks 
are sorted by PercDiff in median estimate between the 2-generation and 1-generation versions. Horizontal 
lines separate the stocks into three groups based on percent difference in median ln.alpha between the 
2-generation and 1-generation versions: more than ~ 5% decrease (top), more than ~ 5% increase 
(bottom), or less than ~ 5% change in either direction (middle). Note that table includes only wild stocks. 
Table 24 compares the corresponding Smsy estimates. 

1 Gen 2 Gen PercDiff 
(2 Gen vs 1 Gen) 3 Gen PercDiff 

(3 Gen vs 1 Gen) 

Stock Med SIQR Med SIQR Med SIQR Med SIQR Med SIQR 

Swan/Stephens 
Morice 

0.57 
1.60 

0.74 
0.17 

0.45 
1.47 

0.97 
0.46 

-20.11 
-7.74 

30.93 
173.73 

0.53 
1.63 

0.82 
0.43 

-7.24 
1.74 

10.61 
153.07 

Bear 
Babine Late Wild 

Mcdonell 
Motase 

Johnston 
Kwinageese 
Slamgeesh 

Kitwanga 
Asitka 
Sustut 

Babine Mid Wild 
Kitsumkalum 

2.27 
0.75 
1.64 
1.31 
1.65 
1.22 
1.77 
0.24 
1.00 
2.35 
1.27 
1.62 

0.18 
0.56 
0.13 
0.35 
0.33 
0.35 
0.29 
3.38 
0.48 
0.16 
0.34 
0.25 

2.23 
0.75 
1.63 
1.31 
1.65 
1.22 
1.77 
0.24 
1.00 
2.36 
1.30 
1.70 

0.17 
0.55 
0.14 
0.37 
0.34 
0.36 
0.29 
3.43 
0.48 
0.16 
0.32 
0.21 

-1.68 
-0.94 
-0.54 
-0.05 
-0.04 
-0.02 
0.00 
0.00 
0.04 
0.37 
2.49 
4.75 

-6.35 
-1.29 
5.01 
3.58 
2.32 
1.19 
0.80 
1.55 
0.24 
0.76 

-6.39 
-18.50 

2.14 
0.80 
1.64 
1.31 
1.65 
1.22 
1.77 
0.24 
1.00 
2.35 
1.32 
1.65 

0.19 
0.54 
0.13 
0.36 
0.32 
0.35 
0.29 
3.44 
0.49 
0.16 
0.31 
0.23 

-5.65 
5.71 

-0.20 
0.03 
0.00 
0.00 
0.00 
0.00 
0.90 
0.13 
4.48 
1.81 

6.97 
-2.98 
2.43 
1.38 

-1.50 
-0.79 
0.18 
1.92 
3.90 
2.22 

-7.44 
-10.17 

Damdochax 
Alastair 

Babine Early Wild 
L Nass SRT 

Meziadin 
Lakelse 

1.61 
1.56 
0.49 
1.08 
1.06 
0.96 

0.22 
0.58 
0.96 
0.78 
0.64 
0.65 

1.70 
1.82 
0.58 
1.30 
1.39 
1.32 

0.23 
0.40 
0.75 
0.59 
0.41 
0.56 

5.48 
16.36 
17.42 
20.11 
30.93 
37.55 

7.07 
-29.73 
-22.01 
-24.13 
-35.81 
-13.50 

1.74 
1.71 
0.67 
1.49 
1.42 
1.07 

0.23 
0.41 
0.68 
0.54 
0.35 
0.91 

7.54 
9.25 

34.43 
37.73 
34.17 
11.25 

4.91 
-29.18 
-28.76 
-31.12 
-46.33 
39.45 

96 



Table 24. Comparison of Median Smsy estimates across productivity scenarios. Layout as per Table 23. 
Median Smsy estimates are in 1,000s (columns 2,4,and 8). 

1 Gen 2 Gen PercDiff 
(2 Gen vs 1 Gen) 3 Gen PercDiff 

(3 Gen vs 1 Gen) 

Stock Med SIQR Med SIQR Med SIQR Med SIQR Med SIQR 

Swan/Stephens 
Morice 

Kitwanga 

10.49 
9.88 
3.75 

0.66 
0.20 
1.36 

9.08 
9.12 
3.56 

0.75 
0.34 
1.34 

-13.44 
-7.75 
-5.06 

13.50 
73.59 
-1.61 

10.16 
9.80 
3.75 

0.71 
0.32 
1.33 

-3.10 
-0.87 
-0.19 

7.98 
63.73 
-2.27 

Motase 
Johnston 

Bear 
Slamgeesh 

Kwinageese 
Asitka 

Mcdonell 
Sustut 

Babine Late Wild 
Kitsumkalum 

Babine Mid Wild 
Damdochax 

0.52 
3.20 
4.58 
0.26 
8.77 
0.83 
2.17 
0.77 

123.68 
14.21 
15.90 

3.17 

0.40 
0.19 
0.14 
0.18 
0.71 
0.74 
0.12 
0.19 
0.54 
0.11 
0.28 
0.23 

0.51 
3.17 
4.53 
0.26 
8.79 
0.83 
2.18 
0.77 

124.67 
14.46 
16.25 

3.33 

0.41 
0.20 
0.15 
0.18 
0.71 
0.69 
0.12 
0.19 
0.52 
0.14 
0.26 
0.24 

-2.48 
-1.01 
-0.92 
-0.11 
0.31 
0.48 
0.58 
0.58 
0.80 
1.82 
2.20 
4.82 

2.03 
4.25 
7.87 

-0.79 
-0.23 
-7.11 
-1.37 
3.26 

-3.19 
29.48 
-5.94 
3.64 

0.51 
3.17 
4.42 
0.26 
8.66 
0.84 
2.17 
0.77 

132.56 
14.18 
16.44 

3.38 

0.40 
0.20 
0.15 
0.18 
0.72 
0.73 
0.11 
0.19 
0.48 
0.15 
0.26 
0.25 

-1.90 
-0.84 
-3.38 
0.27 

-1.25 
1.35 
0.27 
0.46 
7.18 

-0.17 
3.36 
6.40 

1.18 
2.06 

13.44 
-0.58 
1.81 

-1.73 
-2.19 
1.88 

-10.40 
30.18 
-5.44 
6.24 

Alastair 
Babine Early Wild 

L Nass SRT 
Meziadin 

Lakelse 

13.10 
21.41 
30.24 
94.32 

9.05 

0.33 
0.70 
1.08 
0.53 
0.50 

14.14 
24.27 
36.07 

115.81 
11.42 

0.27 
0.57 
1.13 
0.37 
0.44 

7.93 
13.35 
19.28 
22.79 
26.22 

-17.10 
-19.48 

4.13 
-30.62 
-11.99 

13.61 
27.46 
40.58 

119.46 
10.10 

0.27 
0.53 
1.13 
0.28 
0.61 

3.87 
28.21 
34.21 
26.66 
11.64 

-18.42 
-24.11 

4.71 
-46.92 
23.04 
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Figure 27. Estimated median productivity (ln.alpha) for the 1-generation and 2-generation versions of the 
recent productivity scenario. Medians are for the Bayesian posterior parameter subsamples generated as 
per Table 20. Stocks falling on the solid red line have the same median for both scenarios. For stocks 
below the solid red line, the 1-generation version has lower productivity than the 2-generation version. For 
stocks between the dashed red lines, the difference between alternative versions is less than 25%. Note 
that fgure includes only wild stocks. 
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Figure 28. Differences in median and spread of the productivity parameter (ln.alpha) for the 1-generation 
and 2-generation versions of the recent productivity scenario. Points show the percent change in the 
standardized inter-quartile range (SIQR, range between p25 and p75) vs. the change in median ln.alpha. 
Horizontal and vertical red lines mark “no change”. Note that fgure includes only wild stocks. 

99 



3.4. BIOLOGICAL BENCHMARK ESTIMATES (STOCK-LEVEL AND AGGREGATE-LEVEL) 

3.4.1. Illustration of Stock-level Results: Meziadin and Babine Late Wild 

Standard biological benchmarks for the largest wild stock from each aggregate differed substantially 
between alternative productivity scenarios. 

Comparing the recent productivity scenario to the long-term average productivity scenario for 
Meziadin (Figure 29) and Babine Late Wild (Figure 30): 

• The recent productivity scenario had lower and more uncertain estimates of productivity 
(ln.alpha) and lower estimates of capacity (Smax), which resulted in lower estimates of 
Smsy, Seq, and Umsy. 

• Estimates of Sgen, which is linked to both the productivity estimate and the value of Smsy, 
increased for Meziadin and decreased for Babine Late Wild, but note that in both cases 
Sgen increased as a relative proportion of Smsy (i.e., with lower productivity need more 
spawners to build back to Smsy in one generation, but if Smsy is much lower, then Sgen can 
actually drop relative to the long-term average scenario). 
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Figure 29. Posterior distributions of productivity parameter ln.alpha and biological benchmark estimates: 
Meziadin. Each panel shows the posterior distribution (median, quartiles, 80% bounds) for two productivity 
scenarios: long-term average (LTAvg) and recent productivity. Two versions of the parameter estimates 
are shown: regular (R) and with log-normal bias correction (C) on the productivity parameter ln.alpha. 
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Figure 30. Posterior distributions of biological benchmark estimates: Babine Late Wild. Layout as per 
Figure 29. 
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3.4.2. Stock-level and Aggregate-level Biological Benchmarks for Nass Sockeye 

Abundance benchmarks 

Comparing aggregate to stock-level Smsy estimates for Nass Sockeye under long-term average 
productivity (Table 25): 

• The aggregate-level Smsy estimate for Nass Sockeye was substantially larger than the sum 
of stock-level estimates for those stocks where SR models were ftted. The four stocks with 
stock-level estimates are assumed to account for most of the Sockeye production from the 
Nass, but see notes regarding Bowser in Section 4.3. 

Comparing aggregate to stock-level Smsy estimates for Nass Sockeye under recent productivity 
(Table 26): 

• The aggregate-level Smsy estimate was larger than the sum of stock-level estimates for 
four modelled stocks, but the difference was smaller than under the long-term average 
productivity scenario. 

Comparing aggregate and stock-level benchmark estimates under recent productivity to the 
long-term average productivity scenario (Table 25 vs. Table 26, Table 27 vs. Table 28, Table 29 
vs. Table 30): 

• The aggregate estimate, and the Meziadin Smsy estimate are much lower under recent 
productivity. 

• The Smsy estimate for the second-largest stock, Lower Nass Sea and River Type Sockeye, 
also dropped under recent productivity, but much less. 

• The same general differences were observed for estimates of Smax. 

• Under the recent productivity scenario, Sgen estimates increased for Meziadin and Kwinageese 
and decreased for the other two stocks with SR data, so that there was little change in the 
sum of Sgen estimates due to alternative productivity assumptions. 

Sgen is not applicable for stock aggregates, so we did not include a comparison between aggregate 
and stock-level Sgen estimates. 

Umsy 

Aggregate-level estimates of Umsy closely matched the median of stock-level median estimates 
under both productivity scenarios, but differed from the median Umsy estimate for Meziadin, the 
largest stock (Tables 31 and 32). Under the recent productivity scenario, Umsy for Meziadin is 
the lowest among the 4 modelled Nass stocks and about 10% lower than the aggregate ft (55% 
for the aggregate, 45% for Meziadin). 
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Table 25. Comparison of aggregate and stock-level Smsy estimates: Nass / Long-term average 
productivity. Stocks are sorted based on median estimate. Mean and median estimates were summed 
across stocks as a comparison to the aggregate ft. 

Label Mean Median p10 p25 p75 p90 

Agg Fit 334,705 274,342 200,742 229,576 373,467 591,450 

Sum 
Sum-Agg 

217,507 
-117,198 

211,709 
-62,633 

-
-

-
-

-
-

-
-

Meziadin 
LNassSRT 
Kwinag 
Damdoch 
Bowser 
Oweege 
UNassRT 

157,702 
46,430 

8,865 
4,510 

-
-
-

155,575 
44,109 

7,583 
4,442 

-
-
-

127,897 
18,188 

5,662 
3,505 

-
-
-

139,585 
26,567 

6,440 
3,881 

-
-
-

174,644 
61,899 

9,511 
5,098 

-
-
-

192,488 
80,606 
13,347 

5,634 
-
-
-

Table 26. Comparison of aggregate and stock-level Smsy estimates: Nass / Recent productivity. Stocks 
are sorted based on median estimate. 

Label Mean Median p10 p25 p75 p90 

Agg Fit 192,431 187,039 109,487 151,938 225,845 268,363 

Sum 
Sum-Agg 

144,988 
-47,443 

138,552 
-48,487 

-
-

-
-

-
-

-
-

Meziadin 
LNassSRT 
Kwinag 
Damdoch 
Bowser 
Oweege 
UNassRT 

92,381 
38,580 
10,773 

3,254 
-
-
-

94,927 
31,642 

8,789 
3,194 

-
-
-

49,814 
12,711 

5,978 
2,549 

-
-
-

65,701 
18,919 

7,014 
2,833 

-
-
-

117,347 
53,727 
13,056 

3,603 
-
-
-

132,628 
74,715 
17,719 

4,027 
-
-
-

104 



Table 27. Comparison of aggregate and stock-level Smax estimates: Nass / Long-term average 
productivity. Stocks are sorted based on median estimate. 

Label Mean Median p10 p25 p75 p90 

Agg Fit 581,190 444,139 287,707 350,828 657,601 1,137,954 

Sum 
Sum-Agg 

369,811 
-211,379 

361,787 
-82,352 

-
-

-
-

-
-

-
-

Meziadin 
LNassSRT 
Kwinag 
Damdoch 
Bowser 
Oweege 
UNassRT 

245,083 
102,626 

15,300 
6,802 

-
-
-

242,244 
100,284 

12,584 
6,675 

-
-
-

182,140 
36,516 

8,639 
5,084 

-
-
-

206,486 
58,510 
10,124 

5,716 
-
-
-

284,761 
142,793 

16,913 
7,848 

-
-
-

316,937 
177,486 

24,784 
8,820 

-
-
-

Table 28. Comparison of aggregate and stock-level Smax estimates: Nass / Recent productivity. Stocks 
are sorted based on median estimate. 

Label Mean Median p10 p25 p75 p90 

Agg Fit 384,379 351,185 261,972 298,885 421,557 556,157 

Sum 
Sum-Agg 

339,445 
-44,934 

322,093 
-29,092 

-
-

-
-

-
-

-
-

Meziadin 
LNassSRT 
Kwinag 
Damdoch 
Bowser 
Oweege 
UNassRT 

219,160 
93,917 
21,095 

5,273 
-
-
-

214,335 
85,581 
17,019 

5,158 
-
-
-

170,732 
27,650 

9,459 
4,302 

-
-
-

186,540 
42,555 
11,955 

4,642 
-
-
-

245,329 
138,815 

27,381 
5,732 

-
-
-

278,604 
176,103 

39,386 
6,468 

-
-
-
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Table 29. Comparison of aggregate and stock-level Sgen estimates: Nass / Long-term average 
productivity. Stocks are sorted based on median estimate. 

Label Mean Median p10 p25 p75 p90 

Agg Fit - - - - - -

Sum 
Sum-Agg 

55,805 
-

53,753 
-

-
-

-
-

-
-

-
-

Meziadin 
LNassSRT 
Kwinag 
Damdoch 
Bowser 

33,695 
18,809 

2,410 
891 

-

32,713 
18,270 

1,899 
871 

-

20,216 
6,368 
1,058 

563 
-

25,178 
10,519 

1,371 
683 

-

41,393 
26,637 

2,754 
1,080 

-

49,691 
32,850 

4,242 
1,250 

-
Oweege 
UNassRT 

-
-

-
-

-
-

-
-

-
-

-
-

Table 30. Comparison of aggregate and stock-level Sgen estimates: Nass / Recent productivity. Stocks 
are sorted based on median estimate. 

Label Mean Median p10 p25 p75 p90 

Agg Fit - - - - - -

Sum 
Sum-Agg 

56,618 
-

52,919 
-

-
-

-
-

-
-

-
-

Meziadin 
LNassSRT 14,804 12,522 2,867 6,056 22,645 30,180 

3,702 2,960 1,246 1,787 4,996 7,368 Kwinag 
Damdoch 
Bowser 

37,344 

768 
-

36,698 

739 
-

26,098 

534 
-

31,202 

627 
-

43,195 

885 
-

49,491 

1,031 
-

Oweege 
UNassRT 

-
-

-
-

-
-

-
-

-
-

-
-
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Table 31. Comparison of aggregate and stock-level Umsy estimates: Nass / Long-term average 
productivity. Table also lists the range and median across stock-level estimates. 

Label Mean Median p10 p25 p75 p90 

Agg Fit 61 62 51 56 67 71 

Min 
Med 
Max 

47 
62 
67 

47 
63 
67 

-
-
-

-
-
-

-
-
-

-
-
-

Damdoch 
Meziadin 
Kwinag 
LNassSRT 
Bowser 
Oweege 
UNassRT 

67 
65 
60 
47 

-
-
-

67 
65 
61 
47 

-
-
-

61 
58 
52 
34 

-
-
-

64 
61 
56 
41 

-
-
-

70 
69 
65 
53 

-
-
-

73 
73 
69 
58 

-
-
-

Table 32. Comparison of aggregate and stock-level Umsy estimates: Nass / Recent productivity. Table 
also lists the range and median across stock-level estimates. 

Label Mean Median p10 p25 p75 p90 

Agg Fit 52 55 31 44 62 68 

Min 
Med 
Max 

43 
50 
62 

45 
50 
63 

-
-
-

-
-
-

-
-
-

-
-
-

Damdoch 
Kwinag 
LNassSRT 
Meziadin 
Bowser 
Oweege 
UNassRT 

62 
54 
47 
43 

-
-
-

63 
51 
49 
45 

-
-
-

52 
44 
20 
22 

-
-
-

57 
48 
34 
32 

-
-
-

67 
62 
62 
56 

-
-
-

71 
67 
73 
61 

-
-
-
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3.4.3. Stock-level and Aggregate-level Biological Benchmarks for Skeena Wild Sockeye 

Abundance benchmarks 

Comparing aggregate to stock-level Smsy estimates for Skeena Sockeye under long-term average 
productivity (Table 33): 

• The aggregate-level Smsy estimate for Skeena Sockeye was lower than the sum of stock-
level estimates for those stocks where SR models were ftted. The 16 stocks with stock-level 
estimates are assumed to account for most of the Sockeye production from the Skeena. 

Comparing aggregate to stock-level Smsy estimates for Skeena Sockeye under recent productivity 
(Table 26): 

• The aggregate-level Smsy estimate was much lower than the sum of stock-level estimates 
for 16 modelled stocks, and the difference was larger than under the long-term average 
productivity scenario. 

Comparing aggregate and stock-level benchmark estimates under recent productivity to the 
long-term average productivity scenario (Table 33 vs. Table 34, Table 35 vs. Table 36, Table 37 
vs. Table 38): 

• The aggregate estimate, and the Babine Late Wild Smsy estimate, are much lower under 
recent productivity. 

• The same general differences were observed for estimates of Smax. 

• Under the recent productivity scenario, Sgen estimates decreased for most of the stocks, 
and the sum of Sgen estimates decreased substantially. 

Sgen is not applicable for stock aggregates, so we did not include a comparison between aggregate 
and stock-level Sgen estimates. 

Umsy 

Aggregate-level estimates of Umsy differed substantially from the median of stock-level median 
estimates under both productivity scenarios (Tables 39 and 40). The median of stock-level 
estimates was much higher, because large stocks and small stocks were weighted equally in 
the median calculcation. Aggregate Umsy estimates were closer to the Umsy estimates for the 
largest stocks (Babine Early, Mid, and Late Wild). 

108 



Table 33. Comparison of aggregate and stock-level Smsy estimates: SkeenaWild / Long-term average 
productivity. Stocks are sorted based on median estimate. Mean and median estimates were summed 
across stocks as a comparison to the aggregate ft, but percentiles can not be simply added. 

Label Mean Median p10 p25 p75 p90 

Agg Fit 344,583 300,112 223,324 249,412 388,979 546,638 

Sum 402,369 389,811 - - - -
Sum-Agg 57,786 89,699 - - - -

Bab-LW 251,751 245,179 177,650 206,592 290,610 336,510 
Bab-EW 45,408 42,938 34,412 38,055 49,877 60,072 
SwanSteph 21,193 20,934 14,550 17,492 24,439 28,327 
Bab-MW 17,796 17,246 14,477 15,726 19,113 21,881 
Kitsumk 14,739 14,624 13,128 13,767 15,581 16,499 
Alastair 11,722 11,559 10,135 10,817 12,537 13,465 
Morice 10,598 10,398 8,875 9,580 11,383 12,699 
Lakelse 9,070 8,951 7,570 8,226 9,821 10,724 
Kitwanga 7,647 5,954 2,398 3,418 10,546 15,935 
Bear 4,532 4,490 3,925 4,169 4,856 5,190 
Johnston 2,982 2,974 2,460 2,743 3,240 3,498 
Mcdonell 2,198 2,185 1,962 2,057 2,314 2,462 
Asitka 1,117 838 546 658 1,265 2,132 
Sustut 785 767 659 708 848 936 
Motase 562 508 382 433 645 814 
Slamg 269 266 230 246 291 312 
Ecstall - - - - - -
Kluant - - - - - -
Kluayaz - - - - - -
Sicintine - - - - - -
Skeena RT - - - - - -
UBulkLk - - - - - -
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Table 34. Comparison of aggregate and stock-level Smsy estimates: SkeenaWild / Recent productivity. 
Stocks are sorted based on median estimate. Mean and median estimates were summed across stocks 
as a comparison to the aggregate ft, but percentiles can not be simply added. 

Label Mean Median p10 p25 p75 p90 

Agg Fit 169,672 156,986 55,083 107,697 214,518 285,050 

Sum 244,017 234,226 - - - -
Sum-Agg 74,345 77,240 - - - -

Bab-LW 129,426 123,391 64,424 93,047 156,597 201,520 
Bab-EW 22,555 21,593 8,437 14,548 29,066 36,075 
Bab-MW 16,258 15,927 12,051 13,929 18,235 21,076 
Kitsumk 14,319 14,205 12,898 13,535 15,032 15,880 
Alastair 12,560 13,092 7,229 10,653 15,012 16,934 
SwanSteph 11,156 10,459 4,591 7,277 14,090 18,763 
Morice 10,595 10,429 8,399 9,391 11,598 12,946 
Lakelse 8,870 9,040 4,558 6,601 11,261 12,806 
Bear 4,623 4,585 4,044 4,289 4,895 5,268 
Kitwanga 5,590 3,775 959 2,320 6,825 12,881 
Johnston 3,176 3,169 2,606 2,872 3,485 3,820 
Mcdonell 2,192 2,177 1,960 2,052 2,303 2,442 
Asitka 1,090 844 540 656 1,228 2,045 
Sustut 782 766 659 704 846 928 
Motase 563 517 385 441 638 804 
Slamg 262 257 223 237 281 308 
Ecstall - - - - - -
Kluant - - - - - -
Kluayaz - - - - - -
Sicintine - - - - - -
Skeena RT - - - - - -
UBulkLk - - - - - -
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Table 35. Comparison of aggregate and stock-level Smax estimates: SkeenaWild / Long-term average 
productivity. Stocks are sorted based on median estimate. Mean and median estimates were summed 
across stocks as a comparison to the aggregate ft, but percentiles can not be simply added. 

Label Mean Median p10 p25 p75 p90 

Agg Fit 903,469 690,556 402,363 488,070 1,111,580 1,796,648 

Sum 
Sum-Agg 

848,137 
-55,332 

812,951 
122,395 

-
-

-
-

-
-

-
-

Bab-LW 
Bab-EW 
SwanSteph 
Bab-MW 
Kitsumk 
Lakelse 
Alastair 
Kitwanga 
Morice 
Bear 
Johnston 
Mcdonell 
Asitka 
Sustut 
Motase 
Slamg 
Ecstall 
Kluant 
Kluayaz 
Sicintine 
Skeena RT 
UBulkLk 

525,207 
104,258 

60,388 
32,014 
23,292 
21,341 
20,948 
23,189 
16,366 

6,267 
5,655 
3,516 
3,090 
1,006 
1,119 

481 
-
-
-
-
-
-

508,554 
95,071 
60,297 
29,842 
23,111 
20,808 
20,504 
18,918 
15,977 

6,167 
5,785 
3,456 
2,030 

982 
968 
481 

-
-
-
-
-
-

313,839 
65,871 
40,485 
23,389 
19,339 
17,134 
17,034 

6,893 
13,279 

5,175 
4,963 
2,935 
1,142 

800 
631 
367 

-
-
-
-
-
-

391,326 
77,484 
49,119 
26,048 
20,714 
18,594 
18,495 
10,332 
14,387 

5,601 
5,452 
3,145 
1,410 

876 
756 
420 

-
-
-
-
-
-

644,857 
119,411 

71,635 
35,611 
25,570 
23,437 
22,804 
35,291 
17,940 

6,836 
6,010 
3,794 
3,803 
1,112 
1,338 

552 
-
-
-
-
-
-

763,824 
156,018 

81,333 
42,979 
27,874 
26,228 
25,412 
46,495 
19,915 

7,529 
6,131 
4,205 
7,029 
1,255 
1,911 

596 
-
-
-
-
-
-
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Table 36. Comparison of aggregate and stock-level Smax estimates: SkeenaWild / Recent productivity. 
Stocks are sorted based on median estimate. Mean and median estimates were summed across stocks 
as a comparison to the aggregate ft, but percentiles can not be simply added. 

Label Mean Median p10 p25 p75 p90 

Agg Fit 891,859 698,856 421,366 518,738 1,039,419 1,762,839 

Sum 
Sum-Agg 

707,831 
-184,028 

653,077 
-45,779 

-
-

-
-

-
-

-
-

Bab-LW 
Bab-EW 
SwanSteph 
Bab-MW 
Kitwanga 
Kitsumk 
Lakelse 
Alastair 
Morice 
Bear 
Johnston 
Mcdonell 
Asitka 
Sustut 
Motase 
Slamg 
Ecstall 
Kluant 
Kluayaz 
Sicintine 
Skeena RT 
UBulkLk 

404,586 
95,569 
43,538 
33,141 
27,281 
23,255 
22,146 
21,617 
16,233 

6,047 
5,382 
3,500 
2,991 
1,000 
1,119 

426 
-
-
-
-
-
-

369,407 
87,099 
39,626 
30,736 
25,607 
23,009 
21,527 
21,081 
15,726 

5,972 
5,548 
3,425 
1,946 

982 
978 
408 

-
-
-
-
-
-

260,947 
63,689 
27,243 
23,587 

8,505 
18,772 
17,561 
17,351 
13,076 

5,055 
4,498 
2,936 
1,124 

794 
636 
324 

-
-
-
-
-
-

301,502 
73,867 
32,402 
26,589 
13,731 
20,488 
19,256 
19,118 
14,071 

5,418 
4,949 
3,148 
1,380 

874 
767 
350 

-
-
-
-
-
-

469,654 
106,109 

51,329 
37,031 
39,180 
25,807 
24,105 
23,641 
17,775 

6,529 
5,928 
3,777 
3,569 
1,105 
1,358 

493 
-
-
-
-
-
-

616,528 
141,178 

66,880 
44,880 
48,737 
28,282 
27,390 
26,404 
20,016 

7,172 
6,097 
4,121 
6,730 
1,243 
1,870 

568 
-
-
-
-
-
-
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Table 37. Comparison of aggregate and stock-level Sgen estimates: SkeenaWild / Long-term average 
productivity. Stocks are sorted based on median estimate. Mean and median estimates were summed 
across stocks as a comparison to the aggregate ft, but percentiles can not be simply added. 

Label Mean Median p10 p25 p75 p90 

Agg Fit - - - - - -

Sum 151,636 145,260 - - - -
Sum-Agg - - - - - -

Bab-LW 95,887 92,775 49,926 67,192 122,448 145,812 
Bab-EW 19,458 17,982 11,075 13,749 22,983 30,113 
SwanSteph 11,178 11,191 7,458 9,166 13,157 14,908 
Bab-MW 5,269 4,820 3,234 3,880 6,211 7,770 
Lakelse 4,034 3,960 3,115 3,468 4,467 5,029 
Alastair 3,431 3,324 2,401 2,801 3,919 4,600 
Kitsumk 3,294 3,241 2,317 2,682 3,842 4,401 
Kitwanga 3,795 2,957 1,083 1,670 5,500 7,963 
Morice 2,228 2,152 1,544 1,768 2,549 3,046 
Johnston 969 1,004 731 867 1,098 1,157 
Bear 679 656 451 543 793 938 
Mcdonell 508 496 352 423 572 680 
Asitka 538 366 189 258 672 1,174 
Motase 191 163 79 110 250 344 
Slamg 88 87 48 66 107 135 
Sustut 89 86 40 56 118 142 
Ecstall - - - - - -
Kluant - - - - - -
Kluayaz - - - - - -
Sicintine - - - - - -
Skeena RT - - - - - -
UBulkLk - - - - - -
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Table 38. Comparison of aggregate and stock-level Sgen estimates: SkeenaWild / Recent productivity. 
Stocks are sorted based on median estimate. Mean and median estimates were summed across stocks 
as a comparison to the aggregate ft, but percentiles can not be simply added. 

Label Mean Median p10 p25 p75 p90 

Agg Fit - - - - - -

Sum 114,535 106,655 - - - -
Sum-Agg - - - - - -

Bab-LW 69,857 64,408 43,554 52,175 82,253 104,437 
Bab-EW 14,188 13,584 7,487 10,920 16,833 21,110 
SwanSteph 6,756 6,336 3,770 5,082 8,127 10,572 
Bab-MW 5,706 5,304 3,536 4,244 6,771 8,330 
Lakelse 3,719 3,726 2,590 3,164 4,257 4,832 
Kitsumk 3,391 3,295 2,081 2,536 4,198 4,905 
Alastair 2,948 2,932 1,378 2,050 3,750 4,473 
Kitwanga 3,056 2,462 825 1,435 4,066 6,584 
Morice 2,166 2,093 1,383 1,668 2,558 3,088 
Johnston 820 814 520 653 1,032 1,125 
Bear 555 527 322 408 672 832 
Mcdonell 506 495 359 425 568 665 
Asitka 519 360 183 250 619 1,134 
Motase 192 164 78 116 249 348 
Sustut 87 86 37 56 115 139 
Slamg 69 69 24 46 89 112 
Ecstall - - - - - -
Kluant - - - - - -
Kluayaz - - - - - -
Sicintine - - - - - -
Skeena RT - - - - - -
UBulkLk - - - - - -
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Table 39. Comparison of aggregate and stock-level Umsy estimates: Skeena Wild / Long-term average 
productivity. Table also lists the range and median across stock-level estimates. 

Label Mean Median p10 p25 p75 p90 

Agg Fit 44 44 28 35 53 59 

Min 36 36 - - - -
Med 56 56 - - - -
Max 79 79 - - - -

Sustut 79 79 72 75 82 85 
Bear 73 73 67 70 76 78 
Morice 65 65 58 62 69 72 
Kitsumk 64 64 58 61 67 69 
Mcdonell 63 63 57 60 66 69 
Bab-MW 57 58 48 53 62 65 
Slamg 57 57 47 51 62 66 
Alastair 57 57 49 53 61 64 
Motase 54 55 39 47 62 67 
Johnston 53 53 43 48 59 64 
Bab-LW 50 49 40 44 55 59 
Bab-EW 46 46 36 40 51 57 
Lakelse 43 43 34 39 48 52 
Asitka 42 43 24 34 52 58 
Kitwanga 37 37 16 26 48 56 
SwanSteph 36 36 25 30 43 48 
Ecstall - - - - - -
Kluant - - - - - -
Kluayaz - - - - - -
Sicintine - - - - - -
Skeena RT - - - - - -
UBulkLk - - - - - -
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Table 40. Comparison of aggregate and stock-level Umsy estimates: Skeena Wild / Recent productivity. 
Table also lists the range and median across stock-level estimates. 

Label Mean Median p10 p25 p75 p90 

Agg Fit 24 24 6 14 34 43 

Min 25 25 - - - -
Med 56 58 - - - -
Max 79 79 - - - -

Sustut 79 79 73 76 82 85 
Bear 77 77 69 73 81 84 
Slamg 63 67 50 56 70 73 
Morice 66 67 56 61 71 75 
Johnston 60 64 46 52 67 71 
Mcdonell 63 63 57 60 66 69 
Kitsumk 63 63 52 57 68 72 
Alastair 59 63 32 50 73 80 
Motase 54 54 40 47 61 67 
Bab-MW 51 52 36 45 59 64 
Asitka 43 44 25 35 53 59 
Lakelse 41 42 20 30 53 61 
Bab-LW 33 34 17 26 42 49 
SwanSteph 27 27 11 18 35 43 
Kitwanga 27 26 4 8 42 54 
Bab-EW 25 25 9 16 34 42 
Ecstall - - - - - -
Kluant - - - - - -
Kluayaz - - - - - -
Sicintine - - - - - -
Skeena RT - - - - - -
UBulkLk - - - - - -
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3.5. COMPARISON OF SUSTAINABLE EXPLOITATION RATE ACROSS STOCKS AND 
SCENARIOS 

Observed differences in estimated productivity (ln.alpha) between stocks and between scenarios 
translate into large differences in estimates of Umsy, defned as the sustainable harvest mortality 
rate at MSY (Figure 31). Aggregate-level Umsy estimates were higher for the Nass aggregate 
than for the Skeena Wild aggregate, and Umsy under recent productivity was much lower than 
under long-term average productivity for both aggregates. Umsy estimates varied substantially 
between the component stocks for each aggregate. The SkeenaWild aggregate includes more 
stocks than the Nass aggregate, and median stock-level Umsy estimates spanned a wider range. 
Umsy under recent productivity was lower and more uncertain for most stocks. The ranking of 
stocks by productictivity also differed between the long-term average and recent productivity 
scenario. Tables 31, 32, 39, and 40 above list the corresponding estimates. Appendix G lists the 
bias-corrected versions of the estimates. 

Umsy distributions can be considered relative to different levels of target exploitation rate for a 
stock aggregate: 

• Figure 32 shows the Prop(ER < Umsy), the proportion of the posterior Umsy distribution 
for each stock which exceeds ERs from 0 to 100% (i.e., the probability that a particular 
aggregate ER is sustainable over the long run for each component stock). This is the same 
information as Figure 31, just expressed in a different way: this version shows how much 
of the boxplots in Figure 31 falls to the right of each ER level. At 40% ER applied over the 
long run, two wild stocks have less than 50% probability of being harvested sustainably (two 
lines below the horizontal red line) under the long-term average productivity scenario, which 
increases to four wild stocks under the recent productivity scenario. 

• Figure 33 summarizes this information across stocks. It shows how many stocks have 
at least 50% probability of being sustainably harvested at each ER. At 40% ER, two wild 
stocks don’t meet this objective under the long-term average productivity scenario (18 of 20 
stocks do meet it), which increases to four wild stocks under the recent productivity scenario 
(16 of 20 wild stocks = 80% of stocks meet the objective). 

• Figures 34 and 35 show the details by stock. At 40% ER, the two stocks with less than 50% 
probability of meeting this objective under the long-term average productivity scenario are 
Kitwanga and Swan/Stephens. Under the recent productivity scenario, the list of stocks not 
meeting this objective also includes Babine Early Wild and Babine Late Wild. 

• Figure 36 shows the frequency distribution of stock-specifc median Umsy estimates. This 
type of plot was presented by Walters et al. (2008) in their review of Skeena Sockeye (their 
Figure 14), so we’ve included it here for comparison. For Skeena Wild, the spread of median 
Umsy estimates across component stocks is wider under the recent productivity scenario 
(i.e., the mixed-stock fshery challenge is more pronounced). For Nass, there is an overall 
shift to lower median Umsy for the component stocks. 

The different types of plots in Figures 31 to 36 all show the same underlying information, just 
presented differently. However, these alternative displays capture alternative perspectives, and 
no single version will be informative for all participants in a planning process. 
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Figure 31. Comparison of aggregate and stock-level Umsy estimates across stocks and aggregates for 
two alternative productivity assumptions. Stocks within an aggregate are sorted based on median Umsy. 
The largest stock in each aggregate is highlighted with red horizontal lines. 
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Figure 32. Probability profles of sustainable ER. Proportion of Bayesian posterior Umsy estimates that 
exceeds different levels of ER for 20 wild stocks. Red horizontal line marks 50% probability. The ER where 
a line for a stock crosses the red line corresponds to the median estimate of Umsy. The largest stock from 
each aggregate is highlighted. 
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Figure 33. Summary of sustainable ER across 20 wild stocks. Number of stocks with at least 50% 
probability of being harvested sustainably. 
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Figure 34. Umsy comparison across stocks - Long-term average productivity. Each column shows 
estimates for a fxed aggregate ER rate. Each cell in the table shows the probability of that ER being 
sustainable over the long run (i.e., ER < Umsy). Probabilities are categorized using the Intergovernmental 
Panel on Climate Change (IPCC) Likelihood Scale to facilitate discussion of results (Table 41). Note that 
this fgure shows the same information as the top panel of Figure 32, just in more detail. Stocks are 
grouped by aggregate, and roughly sorted within aggregate from mouth of the river upstream. Grey 
shading indicates stocks that either lack SR data (e.g., Oweegee, Sicintine) or are enhanced (Pinkut, 
Fulton). 
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Table 41. IPCC Likelihood scale from Mastrandrea et al. (2011) and colour coding used in this paper. 

Term Likelihood Colour 

Virtually Certain 99-100% Dark Green 

Very Likely 90-100% Dark Green 

Likely 66-100% Light Green 

About As Likely As Not 33-66% White 

Unlikely 0-33% Light Pink 

Very Unlikely 0-10% Dark Pink 

Exceptionally Unlikely 0-1% Dark Pink 

122 



Figure 35. Umsy comparison across stocks - Recent productivity. Layout as per Figure 34. 
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Figure 36. Umsy frequency plot. Each panel shows the distribution of stock-specifc median Umsy 
estimates, rounded to the nearest 5%, with the 16 modelled stock in the Skeena Wild aggregate in the top 
row, and the 4 modelled stocks in the Nass aggregate in the bottom row. Adapted from Figure 14 in 
Walters et al. (2008). 
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3.6. EQUILIBRIUM PROFILES (STOCK-LEVEL AND AGGREGATE-LEVEL) 

3.6.1. Examples of Spawner-based Equilibrium Profles 

Equilibrium profles of expected yield or recruitment at different levels of spawner abundance 
(assumed to be a fxed escapement target) have been used as a building block for setting escapement 
goals in Alaskan and northern transboundary salmon fsheries (Section 2.6.4). 

We illustrate the approach for the largest stock in each aggregate, using three alternative versions 
of a yield profle, and then summarize the aggregate-level and stock-level results for one commonly 
used version, the “80-60 range”, which captures the range of spawner abundances with an 80% 
probability of achieving at least 60% of median MSY on average over the long term, if the stock 
were managed to a fxed escapement goal in that range. 

Meziadin: The all-year median spawner abundance is very close to the median estimate of 
Smsy under the long-term average productivity scenario, but most years since 2000 were at 
or below the long-term average Smsy (Figure 37, Panel A). Under long-term average productivity, 
spawner abundances near the median Smsy estimate had a roughly 80% probability of achieving 
at least 80% of long-term average MSY, but under the recent productivity scenario no spawner 
abundance was likely to achieve that objective (Panel B). For objectives with lower targets (achieve 
at least 60% of MSY, achieve an equilibrium yield of 100,000 fsh), the ranges of spawner abundances 
with an 80% probability of meeting the objective under long-term average productivity was wider 
(Panels C, D). Probabilities of achieving these lower objectives were higher under recent productivity, 
but still didn’t meet the 80% threshold we used for illustration. 

Babine Late Wild : The all-year median spawner abundance is below the median estimate of 
Smsy under the long-term average productivity scenario, and most years since 2000 were below 
the long-term average Smsy (Figure 38, Panel A). The observed differences in yield profles 
across alternative productivity scenarios and objectives for Babine Late Wild were similar to the 
Meziadin profles (Panels B-D). 

“80-60” yield ranges could be calculated for both aggregates and most of the stocks under the 
long-term average productivity, but only a few stocks met the 80% threshold under the recent 
productivity scenario (Tables 42 and 43). 
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Figure 37. Sample yield profles: Meziadin (Largest Nass stock). Observed spawner abundances (A) and 
three alternative equlibrium yield profles (B, C, D). Yield profles are shown for the long-term average 
productivity scenario (LtAvg) and the recent productivity scenario (Recent). Boxplots in panel A show 
distributions for either all years or by decade, with number of observations in brackets. Each boxplot 
shows median (vertical line), lower and upper quartiles (box) and the range between smallest and largest 
observations (x). 
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Figure 38. Sample Yield Profles: Babine Late Wild (Largest wild Skeena stock). Layout as per Figure 37. 
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Table 42. Summary of “80-60” yield profles - Nass. For the long-term average productivity scenario, the 
table lists median Smsy (Smsy), median yield at Smsy (MSY), 60% of MSY, the range of spawner 
abundances with 80% probability of achieving 60% MSY (Lower, Upper), as well as median recruits and 
median productivity in that spawner range (Rec, RpS). For the recent productivity scenario, spawner 
range, recruits, and productivity are also listed for those cases where there is at least an 80% of achieving 
60% of the long-term average MSY. 

LtAvg Recent 

Stock Smsy MSY 60% MSY Lower Upper Rec RpS Lower Upper Rec RpS 

Nass 274,342 451,900 271,140 122,373 413,857 719,222 2.7 - - - -

LNassSRT 
Meziadin 
Bowser 

44,109 
155,575 

-

-
295,237 

-

-
177,142 

-

-
67,570 

-

-
245,383 

-

-
452,061 

-

-
2.9 

-

-
-
-

-
-
-

-
-
-

-
-
-

Oweege 
Kwinag 
Damdoch 
UNassRT 

-
7,583 
4,442 

-

-
11,866 

8,907 
-

-
7,119 
5,344 

-

-
3,454 
1,875 

-

-
10,962 

6,757 
-

-
19,108 
13,202 

-

-
2.6 
3.1 

-

-
5,346 

-
-

-
10,992 

-
-

-
18,970 

-
-

-
2.3 

-
-

Table 43. Summary of sample yield profles - SkeenaWild. Layout as per Table 42. 

LtAvg Recent 

Stock Smsy MSY 60% MSY Lower Upper Rec RpS Lower Upper Rec RpS 

SkeenaWild 300,112 240,616 144,370 181,154 402,564 532,933 1.8 - - - -

Johnston 2,974 3,369 2,022 1,641 3,803 6,069 2.2 1,208 4,992 8,472 2.7 
Ecstall - - - - - - - - - - -
Alastair 11,559 15,264 9,159 5,316 18,128 26,970 2.3 - - - -
Lakelse 8,951 6,940 4,164 4,531 12,117 15,211 1.8 - - - -
Kitsumk 14,624 25,909 15,545 5,916 25,388 41,486 2.6 8,242 21,068 39,382 2.7 
Mcdonell 2,185 3,770 2,262 902 3,731 6,077 2.6 884 3,713 6,052 2.6 
Kitwanga 5,954 - - - - - - - - - -
UBulkLk - - - - - - - - - - -
Morice 10,398 19,825 11,895 4,680 16,148 30,242 2.9 5,536 14,094 31,070 3.2 
SwanSteph 20,934 11,870 7,122 15,222 20,066 29,334 1.7 - - - -
Bab-EW 42,938 37,264 22,359 22,093 61,522 78,985 1.9 - - - -
Bab-LW 245,179 237,427 142,456 115,364 341,597 466,508 2.0 - - - -
Bab-MW 17,246 23,422 14,053 7,991 27,268 41,043 2.3 - - - -
Sicintine - - - - - - - - - - -
Slamg 266 360 216 138 392 624 2.4 106 450 763 2.8 
Motase 508 622 373 311 635 1,094 2.3 311 664 1,111 2.3 
Bear 4,490 12,128 7,277 1,829 7,851 16,846 3.5 1,477 8,765 19,999 4.1 
Asitka 838 - - - - - - - - - -
Sustut 767 2,904 1,743 351 1,306 3,650 4.5 344 1,300 3,711 4.6 
Kluant - - - - - - - - - - -
Kluayaz - - - - - - - - - - -
Skeena RT - - - - - - - - - - -
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3.6.2. Examples of ER-based Equilibrium Profles 

Equilibrium yield and spawner abundance at different levels of exploitation rate (assumed to be 
a fxed ER target) have been used to develop aggregate trade-off plots for various salmon stock 
aggregates and mixed-stock fsheries, including Skeena Sockeye (Section 2.6.4). 

We illustrate the approach for the 16 modelled wild stocks in the Skeena aggregate and the 4 
modelled wild stocks in the Nass aggregate. 

Skeena Wild (Figure 39, Table 45) 

Aggregate equilibrium catch is largest for exploitation rate around 50% under the long-term 
average productivity scenario, and around 40% under the recent productivity scenario. The 
number of spawners and catch at equilibrium under these exploitation rates are very different 
depending on the productivity assumption. Under long-term average productivity and 50% ER 
every year, the aggregate is assumed to settle into a stable state of around 390,000 spawners 
and around 390,000 catch, with 6 stocks harvested above their sustainable harvest rate (Umsy), 
and one of these stocks extirpated. Under recent productivity and 41% ER every year, the aggregate 
is assumed to settle into a stable state of around 226,000 spawners and around 157,000 catch, 
with two stocks harvested above their stock-specifc Umsy, and two of those extirpated. 

If all stocks are at equilibrium, then managing to a fxed ER of 50% under long-term average 
productivity is the same as managing, on average, to an aggregate spawning target of 390,000. 
In practice, however, aggregate run sizes and stock composition vary from year to year, and 
parameter estimates are uncertain. In any given year, these two strategies can therefore have 
very different implications, both in terms of aggregate outcomes and stock-level outcomes. For 
example, consider a year with an aggregate run of 400,000. Though mathematically equivalent 
at equilibrium, in that year a fxed ER strategy of 50% implies a spawning target of 200,000 and 
a catch target of 200,000, while a fxed escapement strategy of 390,000 implies a spawning 
target of 390,000 and a catch target of 10,000 (ER = 0.25%). Now imagine another year with an 
aggregate run of 1 million. In that year a fxed ER strategy of 50% implies a spawning target of 
500,000 and a catch target of 500,000, while a fxed escapement strategy of 390,000 implies a 
spawning target of 390,000 and a catch target of 610,000 (ER = 61%). At 61% ER over many 
years, about 10 of the 16 stocks would be overfshed or extirpated. In that specifc year, however, 
the stock-level implications of a 61% ER depend on stock composition (i.e., similar to equilibrium 
stock composition, or disproportionate contribution of a few stocks?). Forward simulations can 
be used to explore the expected long-term effect of alternative strategies for these types of 
contingencies (Section 3.9). 

Nass (Figure 40, Table 45) 

Aggregate equilibrium catch is largest for exploitation rate around 60% under the long-term 
average productivity scenario, and around 50% under the recent productivity scenario. The 
number of spawners and catch at equilibrium under these exploitations are very different depending 
on the productivity assumption. Under long-term average productivity and 60% ER every year, 
the aggregate is assumed to settle into a stable state of around 220,000 spawners and around 
330,000 catch, with 2 stocks harvested above their sustainable harvest rate (Umsy), and none 
of the stocks extirpated. Under recent productivity and 50% ER every year, the aggregate is 
assumed to settle into a stable state of around 125,000 spawners and around 125,000 catch, 
with two stocks harvested above their stock-specifc Umsy, and none of the stocks extirpated. 
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Figure 39. Example of aggregate equilibrium trade off plots for the SkeenaWild aggregate with 16 
modelled stocks. For 5% increments of aggregate exploitation rate (ER; top axis), the fgure shows 
median estimates (points) and interquartile range along the vertical axes (shaded area, p25 to p75) for 
aggregate spawner abundance (bottom axis), aggregate catch (left axis), and number of stocks where 
aggregate ER exceeds stock-specifc median estimates of Umsy, the exploitation rate at maximum 
sustainable yield. Note that the ranges of spawner abundances and catch levels differ substantially 
between long-term average productivity (Panel A) and recent productivity (Panel B), but the ranges of ER 
and number of stocks are the same in both panels. 
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Table 44. Summary of aggregate equilibrium trade-offs under alternative exploitation rates - Skeena Wild. 
Table shows values from Figure 39 at 10% increments of fxed harvest rate (U). 

Median Num Stocks Spawners (1000s) Catch (1000s) 

Prod U (%) Above 
Umsy 

Below 
Sgen Ext p25 Med p75 p25 Med p75 

LTAvg 0 0 0 0 863.6 948.2 1,066.4 0.0 0.0 0.0 
LTAvg 10 0 0 0 784.0 858.6 963.9 87.1 95.4 107.1 
LTAvg 20 0 0 0 695.6 759.8 851.1 173.9 190.0 212.8 
LTAvg 30 1 0 0 595.8 650.4 729.1 255.3 278.7 312.5 
LTAvg 40 2 1 0 476.4 527.1 586.6 317.6 351.4 391.1 
LTAvg 50 6 2 1 333.4 387.4 432.8 333.4 387.4 432.8 
LTAvg 60 10 4 2 158.2 222.6 267.7 237.4 333.9 401.6 
LTAvg 70 14 8 6 39.9 51.1 95.4 93.2 119.3 222.7 
LTAvg 80 16 13 11 6.0 8.5 11.5 23.9 34.2 46.1 
LTAvg 90 16 16 15 0.0 0.1 0.3 0.0 0.8 2.3 
LTAvg 100 16 16 16 0.0 0.0 0.0 0.0 0.0 0.0 

Recent 0 0 0 0 462.8 549.4 638.1 0.0 0.0 0.0 
Recent 10 0 0 0 395.8 479.3 566.6 44.0 53.3 63.0 
Recent 20 1 1 0 322.8 404.5 490.8 80.7 101.1 122.7 
Recent 30 2 2 1 242.0 324.3 403.0 103.7 139.0 172.7 
Recent 40 4 3 2 165.1 235.7 309.4 110.1 157.1 206.3 
Recent 50 6 4 3 110.0 147.0 206.0 110.0 147.0 206.0 
Recent 60 9 5 4 66.5 87.6 110.5 99.8 131.3 165.8 
Recent 70 13 8 6 32.2 45.6 59.2 75.2 106.5 138.1 
Recent 80 15 11 10 8.5 14.2 21.2 33.9 56.6 84.7 
Recent 90 16 15 14 0.1 0.4 1.6 0.7 3.8 14.8 
Recent 100 16 16 16 0.0 0.0 0.0 0.0 0.0 0.0 
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Figure 40. Example of aggregate equilibrium trade off plots for the Nass aggregate with 4 modelled stocks. 
For 5% increments of aggregate exploitation rate (ER; top axis), the fgure shows median estimates 
(points) and interquartile range along the vertical axes (shaded area, p25 to p75) for aggregate spawner 
abundance (bottom axis), aggregate catch (left axis), and number of stocks where aggregate ER exceeds 
stock-specifc median estimates of Umsy, the exploitation rate at maximum sustainable yield. Note that the 
ranges of spawner abundances and catch levels differ substantially between long-term average 
productivity (Panel A) and recent productivity (Panel B), but the ranges of ER and number of stocks are 
the same in both panels. 
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Table 45. Summary of aggregate equilibrium trade-offs under alternative exploitation rates - Skeena Wild. 
Table shows values from Figure 40 at 10% increments of fxed harvest rate (U). 

Median Num Stocks Spawners (1000s) Catch (1000s) 

Prod U (%) Above 
Umsy 

Below 
Sgen Ext p25 Med p75 p25 Med p75 

LTAvg 0 0 0 0 496.6 551.1 614.4 0.0 0.0 0.0 
LTAvg 10 0 0 0 463.0 513.0 571.6 51.4 57.0 63.5 
LTAvg 20 0 0 0 424.7 470.8 522.4 106.2 117.7 130.6 
LTAvg 30 0 0 0 380.4 421.5 468.3 163.0 180.6 200.7 
LTAvg 40 0 0 0 329.4 365.1 405.1 219.6 243.4 270.1 
LTAvg 50 1 0 0 269.0 300.2 333.0 269.0 300.2 333.0 
LTAvg 60 2 1 0 195.5 222.1 248.8 293.3 333.2 373.2 
LTAvg 70 4 1 1 104.0 132.3 157.3 242.8 308.6 367.1 
LTAvg 80 4 3 2 2.7 24.4 55.0 10.6 97.6 220.2 
LTAvg 90 4 4 4 0.0 0.0 0.0 0.0 0.0 0.0 
LTAvg 100 4 4 4 0.0 0.0 0.0 0.0 0.0 0.0 

Recent 0 0 0 0 262.4 335.3 400.9 0.0 0.0 0.0 
Recent 10 0 0 0 228.9 301.3 365.8 25.4 33.5 40.6 
Recent 20 0 0 0 193.3 265.7 326.8 48.3 66.4 81.7 
Recent 30 0 0 0 154.1 224.6 284.5 66.0 96.2 121.9 
Recent 40 1 0 0 107.0 178.3 237.0 71.4 118.8 158.0 
Recent 50 2 1 0 63.5 124.9 183.9 63.5 124.9 183.9 
Recent 60 3 1 1 26.6 70.0 123.4 39.9 105.0 185.1 
Recent 70 4 2 2 3.9 21.1 52.7 9.1 49.2 122.9 
Recent 80 4 3 3 0.0 1.1 3.8 0.0 4.5 15.0 
Recent 90 4 4 4 0.0 0.0 0.0 0.0 0.0 0.0 
Recent 100 4 4 4 0.0 0.0 0.0 0.0 0.0 0.0 
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3.7. STATUS-BASED AGGREGATE LIMIT REFERENCE POINTS 

Status assessments under Canada’s Wild Salmon Policy combine multiple considerations into 
a single integrated status, including absolute abundance, relative abundance, long-term trend, 
short-term trend, probability of decline, and spatial distribution (Section 2.6.6). Relative abundance 
is assessed by comparing the generational average of spawner abundance (geometric mean) 
to a lower benchmark at Sgen and an upper benchmark at 80% Smsy. If abundance falls below 
Sgen, status on this one metric is Red, above 80% Smsy it is Green, and in-between it is Amber. 
WSP status has been recommended as the primary consideration for evaluating aggregate limit 
reference points under the 2019 update of the Fisheries Act (DFO 2022b). 

In a full integrated WSP status assessment (e.g., Grant et al. 2020), a group of experts would 
work through a case-by-case review of observed abundance against the full posterior distributions 
of alternative benchmark estimates, then decide how much weight to give this metric relative to 
other information, such as trends. A rapid approximation of the integrated assessments has 
been developed, using an algorithm derived from completed integrated expert assessments 
to combine median benchmark estimates, where deemed appropriate, with the other metrics 
(Pestal et al. 2023). Integrated or rapid status assessments have not been completed for Nass 
and Skeena Sockeye, but we illustrate potential uses of the status information with a single 
metric. We used benchmark estimates without lognormal bias correction for the long-term average 
productivity scenario to calculate the relative abundance metric for wild Nass and Skeena stocks. 

With data up to 2019, spawner abundances for the largest stock from each aggregate fell into the 
Amber status zone for the relative abundance metric (Figures 41 and 42). For Meziadin, annual 
abundances and running generational averages have been above 80% of the median long-term 
Smsy for most years since 1980, but dipped into the Amber zone in the last few years. Babine 
Late Wild abundances and running generational averages have been in the Amber zone for most 
years since the late 1990s, and even dipped into the Red zone for some years. 

Looking at the average abundance for the generation ending in 2019, 2 stocks were in the Red 
zone, 8 stocks were in the Amber zone, 10 stocks were in the Green zone, and 9 stocks could 
not be assessed for this metric (Table 46). Generational average for some stocks falls near the 
benchmark value (i.e., lower or upper ratio is near 1), and in these cases a small change in the 
median benchmark estimate could result in a switch of the status category (e.g., Meziadin). For 
other stocks, the generational average is so clearly in the Red zone (e.g., Kitwanga at less than 
20% of Sgen) or in the Green zone (e.g., Mcdonell at almost 4 times the upper benchmark), that 
the metric status wouldn’t change for any of the alternative benchmark estimates generated by 
the various candidate SR models. 

The proportion of stocks from each aggregate that fall into the Red, Amber, or Green status 
zone on the relative abundance metric has varied over time (Tables 47 and 48, Figure 43). Most 
of the modelled stocks for both aggregates were in the Amber or Green zones for the relative 
abundance metric for most years since the 1980s, but note the several of the largest stocks fell 
into the Amber zone in recent years (with data up to 2019), and that incorporating low returns in 
2020 and 2021 may push these stocks deeper into the Amber zone or even into the Red zone 
(e.g., Meziadin, Babine Late Wild, Babine Early Wild). If integrated status assessments were to 
result in a similar picture, then the proposed aggregate limit reference points would be triggered 
for most years on the Nass aggregate for both of the illustrated objectives (No Red, < 20% Red), 
and for most years on the Skeena aggregate for the stricter objective (No Red). 
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Figure 41. WSP metric for relative abundance: Meziadin (Largest Nass stock). Figure shows estimated 
spawner abundances (blue line with points) and running generational average (red line) compared to 
lower and upper benchmarks (boxplots). Each boxplot shows median (horizontal line), half of the posterior 
distribution (box, p25-p75), and 80% of the posterior distribution (whiskers, p10-p90). Benchmark 
estimates are shown without (R) and with (C) lognormal bias correction. Horizontal reference lines mark 
the median benchmark estimate without bias correction, which are the values used in Tables 46 to 48. 
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Figure 42. WSP metric for relative abundance: Babine Late Wild (Largest Skeena stock). Layout as per 
Figure 41. 
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Table 46. Single-metric statuses using data up to 2019: Relative abundance. Table lists the average 
generation (main age class, Gen), the number of observations in the generation ending in 2019 (Obs). 
The generational avg (geometric mean) is compared to median estimates of Sgen (Lower) and 80% Smsy 
(Upper) under the long-term average productivity scenario. Note that the resulting status category is only 
for the relative abundance metric, and a comprehensive status assessment would also consider absolute 
abundance (i.e., is it less than 1,000 adults?), short-term and long-term trends, probability of decline, and 
spatial distribution (Section 2.6.6). 

BM Value Ratio 

Aggregate Stock Gen Obs GenAvg Lower Upper Lower Upper Status 
Category 

SkeenaWild Kitwanga 4 4 515 2,957 4,764 0.17 0.11 Red 
SkeenaWild Johnston 5 2 810 1,004 2,380 0.81 0.34 Red 
SkeenaWild Motase 5 5 193 163 406 1.18 0.48 Amber 
SkeenaWild Babine Late Wild 5 5 126,456 92,775 196,144 1.36 0.64 Amber 
SkeenaWild Babine Early Wild 5 5 21,905 17,982 34,350 1.22 0.64 Amber 
Nass Kwinageese 4 4 3,975 1,899 6,066 2.09 0.66 Amber 
SkeenaWild Swan/Stephens 5 5 11,294 11,191 16,747 1.01 0.67 Amber 
Nass Lower Nass Sea & River Type 4 4 30,503 18,270 35,288 1.67 0.86 Amber 
Nass Meziadin 5 5 115,727 32,713 124,460 3.54 0.93 Amber 
Nass Damdochax 5 5 3,464 871 3,554 3.98 0.97 Amber 
SkeenaWild Babine Mid Wild 5 5 17,470 4,820 13,796 3.62 1.27 Green 
SkeenaWild Alastair 5 5 12,507 3,324 9,248 3.76 1.35 Green 
SkeenaWild Asitka 5 5 930 366 671 2.54 1.39 Green 
SkeenaWild Slamgeesh 4 3 319 87 213 3.67 1.50 Green 
SkeenaWild Kitsumkalum 5 4 27,542 3,241 11,699 8.50 2.35 Green 
SkeenaWild Lakelse 5 5 17,993 3,960 7,161 4.54 2.51 Green 
SkeenaWild Morice 5 5 23,841 2,152 8,318 11.08 2.87 Green 
SkeenaWild Sustut 5 5 1,911 86 614 22.22 3.11 Green 
SkeenaWild Bear 5 5 13,237 656 3,592 20.18 3.69 Green 
SkeenaWild Mcdonell 5 5 6,664 496 1,748 13.44 3.81 Green 
Nass Upper Nass River Type 4 4 200 - - NA NA Unk 
Nass Bowser 5 0 - - - NA NA Unk 
Nass Oweegee 5 0 - - - NA NA Unk 
SkeenaWild Ecstall 5 0 - - - NA NA Unk 
SkeenaWild Upper Bulkley Lakes 5 0 - - - NA NA Unk 
SkeenaWild Sicintine 5 0 - - - NA NA Unk 
SkeenaWild Kluantantan 5 0 - - - NA NA Unk 
SkeenaWild Kluayaz 5 0 - - - NA NA Unk 
SkeenaWild Skeena River Type 5 0 - - - NA NA Unk 
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Table 47. Retrospective changes over time in annual metric statuses for Nass: Relative abundance. Table 
summarizes status categories for the relative abundance metric as described in Table 46, listing the total 
number of stock (n), the number and proportion of stocks for which the metric could not be calculated 
(Unk, pUnk), the number of stock for which the metric could be calculated (nStatus), the number of stocks 
in each status ctegory (Red, Amber, Green), the proportion of Red or Green among the assessed stocks 
(pRed, pGreen), and proportion of all stocks not assessed as Green (pNotGreen; includes Red, Amber, 
and Unk). 

Year n Unk pUnk nStatus Red Amber Green pRed pGreen pNotGreen 

1982 7 3 0.43 4 1 0 3 0.25 0.75 0.57 
1983 7 3 0.43 4 1 1 2 0.25 0.50 0.71 
1984 7 3 0.43 4 1 1 2 0.25 0.50 0.71 
1985 7 3 0.43 4 1 1 2 0.25 0.50 0.71 
1986 7 3 0.43 4 1 1 2 0.25 0.50 0.71 
1987 7 3 0.43 4 1 1 2 0.25 0.50 0.71 
1988 7 3 0.43 4 1 0 3 0.25 0.75 0.57 
1989 7 3 0.43 4 1 1 2 0.25 0.50 0.71 
1990 7 3 0.43 4 1 1 2 0.25 0.50 0.71 
1991 7 3 0.43 4 1 3 0 0.25 0.00 1.00 
1992 7 3 0.43 4 1 1 2 0.25 0.50 0.71 
1993 7 3 0.43 4 1 0 3 0.25 0.75 0.57 
1994 7 3 0.43 4 1 1 2 0.25 0.50 0.71 
1995 7 3 0.43 4 1 2 1 0.25 0.25 0.86 
1996 7 3 0.43 4 1 2 1 0.25 0.25 0.86 
1997 7 3 0.43 4 1 2 1 0.25 0.25 0.86 
1998 7 3 0.43 4 1 2 1 0.25 0.25 0.86 
1999 7 3 0.43 4 1 2 1 0.25 0.25 0.86 
2000 7 3 0.43 4 1 2 1 0.25 0.25 0.86 
2001 7 3 0.43 4 1 2 1 0.25 0.25 0.86 
2002 7 3 0.43 4 1 2 1 0.25 0.25 0.86 
2003 7 3 0.43 4 1 2 1 0.25 0.25 0.86 
2004 7 3 0.43 4 2 1 1 0.50 0.25 0.86 
2005 7 3 0.43 4 2 1 1 0.50 0.25 0.86 
2006 7 3 0.43 4 2 1 1 0.50 0.25 0.86 
2007 7 3 0.43 4 1 2 1 0.25 0.25 0.86 
2008 7 3 0.43 4 1 2 1 0.25 0.25 0.86 
2009 7 3 0.43 4 2 1 1 0.50 0.25 0.86 
2010 7 3 0.43 4 2 1 1 0.50 0.25 0.86 
2011 7 3 0.43 4 1 2 1 0.25 0.25 0.86 
2012 7 3 0.43 4 1 2 1 0.25 0.25 0.86 
2013 7 3 0.43 4 0 3 1 0.00 0.25 0.86 
2014 7 3 0.43 4 1 2 1 0.25 0.25 0.86 
2015 7 3 0.43 4 1 2 1 0.25 0.25 0.86 
2016 7 3 0.43 4 0 3 1 0.00 0.25 0.86 
2017 7 3 0.43 4 0 2 2 0.00 0.50 0.71 
2018 7 3 0.43 4 0 2 2 0.00 0.50 0.71 
2019 7 3 0.43 4 0 4 0 0.00 0.00 1.00 
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1985

1990

1995

2000

2005

2010

2015

Table 48. Retrospective changes over time in annual metric statuses for Skeena Wild: Relative 
abundance. Layout as per Table 47. 

Year n Unk pUnk nStatus Red Amber Green pRed pGreen pNotGreen 

1982 22 8 0.36 14 4 5 5 0.29 0.36 0.77 
1983 22 8 0.36 14 3 6 5 0.21 0.36 0.77 
1984 22 9 0.41 13 2 6 5 0.15 0.38 0.77 

22 9 0.41 13 1 8 4 0.08 0.31 0.82 
1986 22 10 0.45 12 1 5 6 0.08 0.50 0.73 
1987 22 7 0.32 15 2 5 8 0.13 0.53 0.64 
1988 22 7 0.32 15 2 6 7 0.13 0.47 0.68 
1989 22 8 0.36 14 2 5 7 0.14 0.50 0.68 

22 7 0.32 15 3 9 3 0.20 0.20 0.86 
1991 22 7 0.32 15 2 6 7 0.13 0.47 0.68 
1992 22 7 0.32 15 2 4 9 0.13 0.60 0.59 
1993 22 7 0.32 15 2 5 8 0.13 0.53 0.64 
1994 22 8 0.36 14 0 6 8 0.00 0.57 0.64 

22 8 0.36 14 0 3 11 0.00 0.79 0.50 
1996 22 8 0.36 14 0 2 12 0.00 0.86 0.45 
1997 22 8 0.36 14 0 4 10 0.00 0.71 0.55 
1998 22 10 0.45 12 0 4 8 0.00 0.67 0.64 
1999 22 9 0.41 13 0 4 9 0.00 0.69 0.59 

22 8 0.36 14 1 4 9 0.07 0.64 0.59 
2001 22 7 0.32 15 1 3 11 0.07 0.73 0.50 
2002 22 6 0.27 16 1 3 12 0.06 0.75 0.45 
2003 22 6 0.27 16 1 1 14 0.06 0.88 0.36 
2004 22 6 0.27 16 1 2 13 0.06 0.81 0.41 

22 6 0.27 16 1 2 13 0.06 0.81 0.41 
2006 22 6 0.27 16 1 6 9 0.06 0.56 0.59 
2007 22 6 0.27 16 2 4 10 0.12 0.62 0.55 
2008 22 7 0.32 15 2 5 8 0.13 0.53 0.64 
2009 22 7 0.32 15 2 6 7 0.13 0.47 0.68 

22 7 0.32 15 2 6 7 0.13 0.47 0.68 
2011 22 7 0.32 15 0 6 9 0.00 0.60 0.59 
2012 22 7 0.32 15 0 3 12 0.00 0.80 0.45 
2013 22 7 0.32 15 2 2 11 0.13 0.73 0.50 
2014 22 7 0.32 15 1 3 11 0.07 0.73 0.50 

22 7 0.32 15 1 3 11 0.07 0.73 0.50 
2016 22 7 0.32 15 2 2 11 0.13 0.73 0.50 
2017 22 7 0.32 15 3 2 10 0.20 0.67 0.55 
2018 22 6 0.27 16 2 4 10 0.12 0.62 0.55 
2019 22 6 0.27 16 2 4 10 0.12 0.62 0.55 
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Figure 43. Changes over time of single-metric statuses: Relative abundance. The frst three panels show 
the retrospective changes over time in status categories for the relative abundance benchmark, which are 
listed in Tables 47 and 48. The fourth panel shows a timeline of years for which either none or only a few 
of the assessed stocks were in the Red zone on this metric. 
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3.8. LOGISTIC-REGRESSION-BASED AGGREGATE ABUNDANCE REFERENCE POINTS 

We explored whether the approach of developing aggregate abundance reference points based 
on logistic regressions would be potentially applicable to Nass or Skeena Sockeye. For the 
illustration, we defned a “success” as “At least 80% of the stocks in aggregate are above Sgen”, 
checked which past years met the criterion, and plotted success/failure vs. aggregate abundance. 

For the Skeena Wild aggregate, there was relationship between aggregate abundance and 
success (Figure 44). All past years where aggregate abundance exceeded about 350,000 spawners 
met the criterion, but many years with lower abundance also met the criterion. A logistic regression 
could be ftted to the resulting data, but the shape was highly sensitive to alternative defnitions of 
the success criterion we tested (variations not included in this paper). 

For the Skeena aggregate, any results from the logistic regression approach would also need to 
be carefully framed in the context of (1) wild stocks, (2) total effective spawners combining wild 
spawners and effective spawners from the channel stocks, and (3) total escapement including 
non-spawning biological surplus on the enhanced stocks (Figure 45). 

For the Nass aggregate, there was no link between aggregate abundance and success (Figure 46). 
The years with the two largest spawner abundances did not meet the criterion (1992 and 1993, 
both with more than 500,000 spawners). Most of the remaining years did not meet the criterion, 
and the success years spanned a wide range of abundances, from less than 200,000 to more 
than 400,000. 
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Figure 44. Illustration of log-regression approach for deriving aggregate abundance reference points: 
Skeena Wild. Panels show aggregate spawner abundance (A), the proportion of stocks in the aggregate 
that met the criterion “annual spawner abundance larger than than the lower benchmark set at Sgen” 
(pAnnualSpnLgLBM) by year (B) and by aggregate abundance (C), and overall success/failure on the 
aggregate criterion of “80% of stocks above the benchmark” (D). The interim escapement goal for the 
Skeena aggregate is 900,000 spawners, and the corresponding interim escapement goal for the Skeena 
Wild aggregate is 300,000 based on average stock composition (Section 1.1.1), which is marked in the 
plots. Wild spawner abundance has been at or above the interim EG for most years since the 1980s (A). 
The proportion of stocks meeting the success criterion has ranged from about 60%-100% (B). For most 
years where aggregate spawner abundance was at or above the interim goal, 80% or more of the stocks 
met the success criterion (C). The data points in panel C are then simplifed to whether they meet the 80% 
threshold (Yes/No) to ft a logistic regression (D). The ftted red regression line shows the increasing 
probability that at least 80% of stocks meet the success criterion as aggregate spawner abundance 
increases, with aggregate spawner abundance larger than 500,000 resulting in very little incremental 
increase in the probability of success for this specifc example of a success criterion. 
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Figure 45. Illustration of log-regression approach for deriving aggregate abundance reference points: 
Alternative aggregations. Skeena Wild are only a part of the total annual returns that are currently 
managed based on aggregate abundance. This fgure shows three versions of the aggregate spawner 
abundance (A): wild spawners (including only wild stocks), total effective spawners (wild plus channel 
loading plus Pinkut and Fulton spawners below the fence), and total escapement including biological 
surplus (i.e., run kept out of channels but beyond the capacity of spawning grounds below the fences). 
The time series of success/failure from Figure 44 can be plotted against either one of these aggregate 
abundance (B-D), and would lead to very different results for an aggregate abundance reference point. 
Interim EG of 900,000 for the total aggregate and 300,000 for the wild aggregate are marked. 
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Figure 46. Illustration of log-regression approach for deriving aggregate abundance reference points: 
Nass. Layout as per Figure 44. The interim escapement goal for the Nass aggregate at 200,000 spawners 
is marked. Aggregate spawner abundance has been at or above the interim EG for most years since the 
1980s (A). The proportion of stocks meeting the success criterion has ranged from about 25%-100%, but 
for most years it was less than 80% (B). For most years where aggregate spawner abundance was at or 
above the interim goal, less than 80% of the stocks met the success criterion (C). The data points in panel 
C are then simplifed to whether they meet the 80% threshold (Yes/No), but the observed scatter of points 
does not allow for a logistic regression ft, because even the largest aggregate spawner abundances failed 
to meet the success criterion (D). 
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3.9. SIMULATION-BASED AGGREGATE ABUNDANCE REFERENCE POINTS 

3.9.1. Example Results 

The example results shown here are for a small and very specifc subset of potential scenarios, 
as defned in Section 2.7.3, and for two specifc versions of more general objectives. 

We include two types of summaries for the simulation results: 

• Stock-specifc probabilities (Figures 47 to 50): These plots compare 10 different levels of a 
harvest strategy, showing for each modelled stock the probability of achieving one specifc 
objective. 

• Trade-off plots (Figures 51 to 54): These plots compare two objectives across 10 different 
levels of a harvest strategy. 

3.9.1.1. Probabilities - Fixed Exploitation Rates 

Under long-term productivity, almost all modelled stocks (19/20) met the objective when fxed 
ER was 10% or less, but over half the modelled stocks (11/20) met the objective for fxed ER 
greater than 50%. Most modelled stocks failed to meet the objective at fxed ER at 60% or 
higher (Figure 47). These proportions shifted dramatically under the recent productivity scenario: 
Even under 10% fxed ER a quarter (5/20) of the modelled stocks did not meet the objective 
(Figure 48). 

3.9.1.2. Probabilities - Fixed Escapement 

Under long-term productivity about half (11/20) of the modelled stocks met the objective for 
aggregate escapement goals set at least 75% above the current interim escapement goals, or 
target of 350,000 for Nass Sockeye compared to the interim EG of 200,000, and a 525,000 target 
for Skeena Wild compared to the assumed interim EG of 300,000 (Figure 49). Performance 
degraded rapidly for lower escapement goals, with only 6 of 20 modelled stock meeting the 
objective at the interim EG (4th column). The effect of lower fxed escapement goals was less 
pronounced under the recent productivity scenario, with twice the number of stocks (12/20) 
meeting the objective at the interim EG (Figure 50; 4th column). This is due to the interaction 
between aggregate abundance and target exploitation rate: under the recent productivity scenario, 
run sizes for the largest stocks are lower, leading to a lower aggregate abundance, and a lower 
target ER with a fxed escapement strategy. Under long-term average productivity, aggregate 
abundances and resulting target ERs are higher, and the component stocks are less likely to 
meet conservation objectives if they have lower productivity than the largest stocks. A key beneft 
of the forward simulation approach is that it allows us to identify and investigate these types of 
counter-intuitive interactions. 
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Figure 47. Simulation summary - Alternative fxed ER and long-term average productivity. Simulation 
results are summarized for different levels of fxed ER (0% to 90%; columns) and one productivity scenario 
across all stocks. The numbers in each cell of the grid show the probability of spawner abundance in the 
3rd generation exceeding a benchmark set at 80% of median Smsy under long-term average productivity 
for one stock under one specifc level of fxed ER. Probabilities are categorized using the 
Intergovernmental Panel on Climate Change (IPCC) Likelihood Scale to facilitate discussion of results 
(Table 41). Stocks are grouped by aggregate, and roughly sorted within aggregate from mouth of the river 
upstream. Grey shading indicates stocks that were not modelled in the current project. Bolded blue 
numbers above the grid show the number of stocks in each column with probability larger than 80%. 
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Figure 48. Simulation summary - Alternative fxed ER and recent productivity. Layout as per Figure 47. 
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Figure 49. Simulation summary - Alternative fxed escapement targets with 10% ER foor and 80% ER cap 
under long-term average productivity. Layout as per Figure 47, except that columns correspond to different 
levels of fxed escapement, set at increments of the interim escapement goal for each aggregate. The 
fourth column corresponds to the interim goal (200,000 for Nass, 300,000 for Skeena Wild), the frst 
column to 1/4 of the interim goal, and the last column to 2.5 times the interim goal. 
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Figure 50. Simulation summary - Alternative fxed escapement targets with 10% ER foor and 80% ER cap 
under recent productivity. Layout as per Figure 49. 
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3.9.1.3. Trade-off plots 

The basic trade-off is the same for both aggregates under both productivity assumptions: The 
number of stocks meeting the biological objective increases as the spawning target increases, up 
to a point, while the average annual catch over 3 generations peaks at some spawning level and 
then starts declining with further increases in spawning target. 

The spawning target with peak average catch is much lower under recent productivity (Figures 52,54) 
than under recent productivity (Figures 51, 53), and the amount of catch is much lower as well. 

The effect of the productivity assumption on the number of stocks meeting the biological objective 
differs by spawning target: 

• At larger spawning targets, more stocks meet the biological objective under long-term 
average productivity than under recent productivity, because more stocks are suffciently 
productive to withstand higher aggregate exploitation rates, even though those rates are 
higher than under recent productivity. Under recent productivity, several stocks fail to meet 
the biological objective even with a large spawning target, because their productivity is so 
low that even with the lower exploitation rates associated with larger spawning targets, they 
don’t reach their stock-specifc benchmark within 3 generations from recently observed 
spawner abundances. 

• At spawning targets around the interim EG, more stocks meet the biological objective under 
recent productivity than under long-term average productivity, because aggregate abundances 
are lower, resulting in lower exploitation rates for the same spawning target. This is another 
example of the counter-intuitive interactions discussed above for the probability plots. 
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Figure 51. Example of Trade off Plot - SkeenaWild - Long-term average productivity. Compares change for 
two different performance measures as aggregate spawning target is increased from 1/4 of the current 
escapement goal (left-most point) to 2.5 times the current goal (right-most point). Performance measures 
were selected to show the trade-off between an example biological objective (number of stocks for which 
the 3rd simulated generation exceeds 80% of Smsy with more than 80% probability; blue line with solid 
points, left axis) and an example harvest objective (trimmed average annual catch over 3 generations, 
orange line with open circles, right axis). Both performance measures improve as as the aggregate 
spawning target increases up to around 500,000, but average catch peaks around 500,000 spawning 
target (much above the interim EG of 300,000), while the number of stocks meeting 80% of Smsy 
continues to increase. 
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Figure 52. Example of Trade off Plot - SkeenaWild - Recent productivity. Layout as per Figure 51. The 
basic trade-off is the same as in Figure 51 for long-term average productivity, with average catch peaking 
at some spawning level while the number of stocks meeting the biological objective continues to increase. 
However, with this recent productivity scenario, the average catch peaks at a lower spawning target 
(around the interim goal of 300,000 vs. 500,000) and peak catch is much lower (around 175,000 
vs. almost 500,000). The number of stocks meeting the biological objective is higher at lower spawning 
targets (because large stock have reduced productivity under the recent scenario, so total run sizes and 
resulting aggregate ER are lower), but lower at higher spawner targets (because under recent productivity 
more stocks do not reach the biological objective in 3 generations). 
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Figure 53. Example of Trade off Plot - Nass - Long-term average productivity. Layout as per Figure 51. 
The basic trade-off is the same as in Figure 51 for Skeena Wild, with average catch peaking at some 
spawning level while the number of stocks meeting the biological objective continues to increase. For 
Nass Sockeye, under long-term productivity, the average catch peaks around the interim goal of 200,000 
and peak catch is around 325,000. The number of stocks meeting the biological objective ranges from 0 
for spawning targets below the interim EG of 200,000 to all 4 modelled stocks for spawning targets above 
about 400,000. 
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Figure 54. Example of Trade off Plot - Nass - Recent productivity. Layout as per Figure 51. Observed 
differences between recent and long-term average productivity for Nass are similar to the observed 
differences for Skeena Wild: average catch peaks at a lower spawning target (around 125,000 
vs. 200,000) and reaches a lower peak (about 110,000 vs. 325,000). Only 2 of the 4 stocks reach the 
biological objective under recent productivity over 3 generations, even for spawning targets more than 
double the interim EG. 
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3.9.2. Summary of Sensitivity Tests 

The example results in the previous section are for a small, and very specifc subset, of potential 
scenarios, as defned in Section 2.7.3, and for two very specifc versions of more general objectives. 
To support scoping discussions for future simulation work and collaborative planning processes, 
we summarize general observations from sensitivity tests described in Table 49. Figure 55 
illustrates the comment regarding ER foor and cap. 

Table 49. Observed effects of key model components. 

Model 
Component 

Observations 

Productivity 
Scenario 

Productivity assumptions were identifed as a key analytical priority for this project, and the 
alternative scenarios developed in this paper confrm it as one of the most infuential model 
components. This remains a key priority for future work. 

Harvest Rule 
Type 

Fixed escapement strategies aim to stabilize spawner abundance and shift most of the annual 
variation in run size towards harvest, resulting in highly variable harvest amounts. Fixed ER 
strategies aim to stabilize harvest rate, so that run size variation is split between variability in 
spawner abundance and variability in catch amount. These are well-known results from decades 
of fsheries modelling, and are observed in this model as well. 

ER foor and 
cap 

Adding these to a fxed escapement strategy tries to merge in some of the properties of a fxed 
ER strategy, at low and high run sizes. The closer the ER foor and ER cap are together, the less 
of a difference the specifc escapement goal makes (i.e., the more the strategy becomes like a 
fxed ER strategy). The ER foor has more of an effect when aggregate run sizes are low (i.e., a 
low productivity scenario), while the ER cap has more of an effect when aggregate run sizes are 
larger (i.e., long-term average productivity). The fgure on the next page shows some examples. 

Aggregate 
outcome 
uncertainty 

This is currently modelled as a random error with mean = 0, so larger aggregate outcome 
uncertainty just results in less of a difference between alternative harvest strategies. Put another 
way, the specifc target is less important when you have little chance of hitting the target. 

Stock-specifc 
outcome 
uncertainty 

This is modelled based on observed differences in ER, so several early migrating Skeena stocks 
are assumed to have lower ER than later migrating stocks, which increases the probability of 
meeting a biological objective for these early stocks. If we instead assume that all stocks in an 
aggregate are exposed to the same ER, then these stocks perform worse. 

Covariation in 
productivity 

In sensitivity tests so far, this had much less effect than the other model components we explored, 
but further exploration is needed, given that this is a key consideration identifed in previous work 
on other salmon stock aggregates. 

Biological and 
harvest 
objectives 

The exact defnition of biological objectives does not affect the actual simulation outcomes, but it 
determines how they are presented, and in turn infuences our interpretation. For example, a 
stock’s simulated spawner abundance after 3 generations may have a moderate probability of 
meeting an ambitious benchmark and a high probability of meeting a much lower benchmark. 
How we interpret the probability depends on how we think about the benchmark. For now, the 
simulation model generates results for many variations of objectives, but it is a priority for future 
planning processes to identify a short-list of agreed-upon quantitative objectives, so that 
consistent summaries of the simulation runs can be provided by analysts. 

Simulation The current round of simulations focused on 3 generations. With shorter simulations, the starting 
length conditions have more infuence on the outcome (i.e., a stock that is very depressed now may not 

rebuild in 3 generations even if ER is very low, but may rebuild over time). With longer 
simulations, the biological properties of the individual stocks have more infuence on the outcome 
(i.e., a productive stock will do well, no matter what the current spawner abundance is that we 
start with). 
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Figure 55. Variations of a fxed escapement goal strategy. Both panels compare a 300,000 escapement 
goal (A,C) and a 600,000 escapement goal (B,D), with the resulting ER at different aggregate run sizes 
shown in grey for strict fxed escapement policy (i.e., harvest every fsh above the goal, harvest is 0 below 
the goal). Top panel shows the corresponding harvest control rules (HCR) if ER foor is 10% (i.e., harvest 
10% of run regardless of run size, increase ER as run size increases) and ER cap is 80% (i.e., never 
harvest more than 80%, even at very large aggregate run size). Bottom panel shows the HCR for the 
same two escapement goals, but with ER foor at 25% and ER cap at 60%. Even though escapement 
goals of 300,000 and 600,000 are very different, with the higher foor and lower cap, the target ER for the 
two strategies is the same for a wide range of run sizes. Differences in simulated outcomes between the 
two strategies are even less pronounced if aggregate-level outcome uncertainty is added to the model 
(e.g., a difference of 5% in the ER target has little effect if the actual ER is modelled as target ± 15%). 
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3.10. EXPANDING AGGREGATE REFERENCE POINTS FOR WILD SKEENA SOCKEYE TO 
ACCOUNT FOR ENHANCED CONTRIBUTION 

3.10.1. Context 

Enhanced Pinkut and Fulton present two distinct challenges for managing the total Skeena stock 
aggregate: 

• Enhanced contribution to returns (Figure 56): The contributions of Sockeye originating from 
the enhanced Babine tributaries to the aggregate returns of Babine and Skeena Sockeye 
have increased over time. Pinkut and Fulton Sockeye together accounted for about 30% 
of Babine returns in the 1950s and 1960s, before the start of BLDP enhancement, but 
consistently contribute 80% or more in recent years. Enhanced contribution to total Skeena 
returns has ranged from about 40% to more than 80% since the 1980s, with a median of 
66%. 

• Biological surplus (Figure 57): Returning Pinkut and Fulton fsh that exceed the capacity of 
natural spawning habitat below the fence and are locked out of the channels are considered 
a non-spawning surplus. The method for estimating the annual surplus is described in 
Section 2.1.3. The surplus amount has declined from over 400,000 fsh in the 1980s and 
1990s to under 200,000 in the 2000s and 2010s. However, the proportion of the surplus 
relative to the total Skeena Sockeye abundance has increased with decreasing returns of 
wild Skeena Sockeye. From 2016-2019, the surplus represented around 20 percent of the 
total Sockeye return and up to 50% of total escapements for the Skeena aggregate. In 2 
recent years, the surplus matched or exceeded the total harvest. 
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Figure 56. Contribution of BLDP-enhanced Sockeye stocks (Pinkut and Fulton). Figure shows % 
contribution of Pinkut and Fulton to Babine returns (A) and total Skeena returns (B). Vertical red line 
indicates start of construction of BLDP enhancement facilities in 1965. Trend line shows the running 4-yr 
average. 
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Figure 57. Estimates of channel surplus over time - Total Skeena. Top left panel shows the time series of 
estimated surplus spawners from both channel-enhanced stocks, excluding ESSR harvests. The 
remaining panels show the magnitude of the surplus relative to total Skeena Sockeye run size, total 
escapement (i.e., effective spawner abundance), and total catch including ESSR harvest. 
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3.10.2. Alternative Expansion Approaches 

We tested two alternative approaches for expanding a wild Skeena management reference point 
to a total Skeena management reference point. Both used the observed composition of the total 
Skeena returns from 1982 to 2019, specifcally the % of wild spawners in the terminal return, 
and they both assume that future stock composition is similar to the range of stock compositions 
observed since the 1980s. 

However, they differ in how those data are used: 

• Simple expansion (Figure 58): Use the median or upper/lower quartiles for the % wild 
spawners as a direct scalar on the wild reference point. For example, with a median scalar 
of 3.58, a terminal run of a bit more than 1 million had a 50:50 chance of resulting in about 
300,000 wild spawners. To increase the probability of meeting 300,000 spawners to 75% 
(3/4 chance), the terminal run would need to be around 1.4 million. Similarly, for a 50:50 
chance of meeting a wild spawning goal of 400,000, the terminal run would need to be 
around 1.5 million. 

• Logistic regression (Figure 59): For each candidate terminal run target, calculate the probability 
of meeting alternative wild spawning goals. The logistic regression approach classifes 
the annual observations as a success (i.e., wild spawning goal was met) or failure (i.e., 
wild spawning goal was not met), then calculates the probability of success for different 
combinations of terminal return target and wild spawning goal. For example, in 1982 the 
terminal return was 1,447,330 and the wild spawner abundance was 303,954, so 1982 is 
classifed as a success for a wild goal of 300,000, and as a failure for a wild goal of 400,000. 
The current terminal run target of 1.05 million is as likely as not to meet the current interim 
EG for wild Skeena Sockeye. This result is similar to the 50:50 chance identifed with simple 
expansion in Figure 58. The current terminal run target of 1.05 million is unlikely to meet a 
wild spawning goal of 350,000 or larger. 

Both of these approaches could be applied using forecasted stock composition for a specifc year. 
Given pre-season forecasts for the enhanced stocks and largest wild stocks, in combination with 
target harvests, an in-season scalar could be approximated. However, this information is not 
currently part of the annual in-season planning process. 

Note that the % of wild spawners used for Figures 58 and 59 differs slightly from the % of wild 
returns plotted in Panel B of Figure 56, due to differential in-river harvest of wild and enhanced 
Sockeye (e.g., timing and location of in-river fsheries below Babine fence, ESSR fsheries targeting 
Pinkut and Fulton in Babine Lake). 
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Figure 58. Simple expansion of wild Skeena management reference points. Plot shows three alternative 
scalars applied to wild spawning goals ranging from 250,000 to 600,000. Current interim escapement goal 
and terminal run management target are shown for reference. Note that the scalars are estimated from 
observed historical stock composition, independent of alternative SR model fts or productivity 
assumptions. 
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Figure 59. Simple expansion of wild Skeena management reference points. Plot shows three alternative 
scalars applied to wild spawning goals ranging from 250,000 to 600,000. Current interim escapement goal 
and terminal run management target are shown for reference. Note that the scalars are estimated from 
observed historical stock composition, independent of alternative SR model fts or productivity 
assumptions. 
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4. DISCUSSION 

This chapter is organized into three sections. In Section 4.1 we discuss key considerations 
for the three analytical priorities that shaped the work presented in this paper: (1) enhanced 
production, (2) salmon population diversity, and (3) time-varying productivity. In Section 4.2 we 
highlight key conclusions from (1) spawner-recruit analyses, and (2) comparison of alternative 
approaches for developing aggregate management reference points. Section 4.3 discusses 
priorities for future work. 

4.1. KEY CONSIDERATIONS 

Key considerations for developing management targets for Skeena and Nass Sockeye include 
the high proportion of enhanced Sockeye within the Skeena aggregate, the large number of 
component stocks with different production dynamics within each aggregate, and the question 
of how to address temporal shifts in productivity which is becoming increasingly common for 
salmon stocks throughout the North Pacifc. 

4.1.1. Enhanced Production 

Enhanced Skeena Sockeye now account for a large proportion of the total Skeena Sockeye 
return in most years. From 1970-2020, the enhanced stocks (Pinkut and Fulton) accounted for 
an average of 67% of the total Skeena return (range 33-83%). We considered the wild (non-
Pinkut and Fulton) and enhanced Skeena Sockeye stocks separately in our analyses, which 
focused on developing biological benchmarks at the stock and aggregate level for wild Skeena 
and Nass Sockeye stocks. While total Skeena Sockeye returns have increased considerably 
since the implementation of the BLDP, the realized benefts to fsheries were less than predicted 
(Hilborn 1992). 

One fundamental challenge for managing Skeena Sockeye is the tradeoff between reducing 
mixed stock fsheries to protect smaller Skeena Sockeye stocks and increasing abundances of 
surplus enhanced fsh arriving in Babine Lake to be locked out of the spawning channels. The 
number of enhanced Sockeye that exceed spawning capacity has decreased since 2000 but still 
represents a sizable proportion of the annual Skeena Sockeye return (Figure 57). The estimated 
surplus in 2020 exceeded the total number of Skeena Sockeye harvested in all fsheries. A 
portion of the surplus may be harvested in commercial ESSR (Excess Sockeye to spawning 
requirements) fsheries that occur in Babine Lake, but these fsheries do not take place every 
year. 

Sockeye escapement to the spawning channels, Pinkut Creek and Fulton Rivers have been 
relatively constant since the start of the BLDP, while total returns for both wild and enhanced 
Babine stocks (including catch, escapement, and surplus production), and the number of recruits 
produced per spawner, have decreased in recent decades, raising concerns about density 
dependence in freshwater and/or marine environments. Density dependence can affect productivity 
at multiple life history stages in both freshwater and marine environments, and at different scales. 
Some effects may be unique to a single stock or shared between many stocks within a region. 
For example, freshwater rearing capacity in Babine Lake controls the production of wild and 
enhanced Babine Sockeye, while density dependence in the marine environment can affect 
recruitment for Skeena, Nass, and other Sockeye stocks (Peterman 1982). 

Babine smolt size has decreased continually over time, with the biggest decreases observed in 
the decades before the BLDP (Appendix H). Smolt size is positively correlated with smolt to adult 
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survival (SAS) (Henderson and Cass 1991), and size selective survival has been observed for 
Babine Sockeye (West and Larkin 1987). There is a weak positive relationship between SAS 
and the mean length of smolts exiting Babine Lake, and a decreasing trend for smolt weight with 
increasing abundance, which suggests that freshwater density dependence may affect the size 
and survival of Babine smolts, but we do not have suffcient information to assess this at the 
stock level. While previous studies have concluded that lake rearing capacity is not a limiting 
factor for Babine Sockeye (Shortreed et al. 2000), updated limnological studies have not taken 
place since 2013, and no reported data since 2000. 

The HBM results support a common shared year effect among Skeena Sockeye stocks, which 
suggests that limitations to recruitment occur on an aggregate scale. Covariation in productivity 
occurs at regional scales for different species and populations of Pacifc salmon throughout the 
Northeast Pacifc, (i.e., Pyper et al. 2001; Dorner et al. 2018b). Declines in Sockeye salmon 
populations in the Northeast Pacifc region have been linked to the unprecedented abundance 
of Pacifc salmon currently rearing in the Northeast Pacifc following decades of large-scale 
enhancement of Pink and Chum Salmon originating from Asia and North America (Ruggerone 
and Connors 2015). 

Enhanced Babine stocks represent the largest component of Skeena Sockeye and are a key 
consideration for developing management targets. While wild Skeena and Nass stocks were 
the focus of the biological benchmark analyses presented here, management reference points 
for Skeena Sockeye will need to consider the large contribution of enhanced Sockeye to the 
aggregate. From 1970-2020, the enhanced stocks (Pinkut and Fulton) accounted for an average 
of 67% of the total Skeena return (range 33-83%). Because loading targets for the spawning 
channels and managed sections of Pinkut Creek and Fulton River are set to achieve constant 
spawner densities that are maintained to maximize fry production, mathematical spawner-recruitment 
models such as the Ricker model, which require a range of spawner escapements (i.e., contrast 
in the data) may not produce useful parameter estimates. For stocks where spawning escapement 
is fxed, spawner recruit models and are not recommended for developing biological benchmarks 
or management targets for the enhanced stocks. Although the CSAS review committee generally 
acknowledged the challenges of conducting spawner recruit analyses for enhanced stocks with 
low contrast in the spawner escapement data, they recommended including spawner-recruit 
modelling results for the enhanced stocks in this Research Document. These results are presented 
in Appendix I. 

Our analyses considered the wild (non-Pinkut and Fulton) of Skeena Sockeye separately. In 
Sections 2.1.2 to 2.1.7, we summarized estimation methods and run-reconstructions specifc to 
Babine Sockeye, and assessed trends in surplus production. In Section 3.10, we examined the 
ratio of wild and enhanced Skeena Sockeye to develop advice for expanding abundance-based 
reference points for the Skeena Wild aggregate to account for the enhanced contribution. 

4.1.2. Salmon Population Diversity 

The different Skeena and Nass stocks considered here include dozens of distinct Conservation 
Units which spawn in tributaries throughout both watersheds. For Skeena Sockeye, non-Babine 
Sockeye, with run sizes ranging from hundreds to tens of thousands of spawners, represent a 
comparatively small proportion of the aggregate Skeena Sockeye return but account for most 
of the genetic diversity of the aggregate. From a conservation perspective, maintaining the 
evolutionary adaptive potential within a metapopulation is important for conserving resilience 
to future environmental changes (Kardos et al. 2021). Within a metapopulation, asynchronous 
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population dynamics among component populations confer resilience and stability of associated 
fsheries (e.g., Hilborn et al. 2003; Schindler et al. 2010), while more synchronous population 
dynamics increase variability in returns and for fsheries (Freshwater et al. 2019). For Skeena 
Sockeye, the loss of biodiversity since the start of the directed commercial fshery, characterized 
by decreased wild Skeena Sockeye returns combined with increased proportions of enhanced 
BLDP-origin Sockeye has been characterized as portfolio simplifcation (Price et al. 2021). 

Existing genetic variation may allow populations to adapt more quickly to rapid environmental 
change (Barrett and Schluter 2008). Among Skeena and Nass Sockeye stocks, there are numerous 
examples where stock-level variation in population characteristics is measurable and likely 
contributes to asynchronous population dynamics among stocks. These Sockeye populations 
exhibit stock-specifc diversity in life history patterns, smolt size, run timing, freshwater age and 
age-at-return. Diversity in freshwater age structure can buffer a population from poor marine 
conditions at different life history stages (Moore et al. 2014). Diversity in adult run timing may 
protect some stocks with different vulnerabilities to large-scale fsheries, while diversity in life 
history and smolt migration timing may attenuate year-class failures in years of reduced ocean 
survival (Beamish et al. 2012), or reduce the risk of mismatch between timing of ocean entry and 
prey availability (i.e., Satterthwaite et al. 2014; Carr-Harris et al. 2018). 

Direct links between population characteristics and conservation and/or fsheries benefts are 
diffcult to quantify, but there are numerous recent examples of population level changes that 
have helped to buffer Skeena and Nass Sockeye from low returns. In the Nass, the early-timed 
sea-type population accounted for up to 30% of the Nass Sockeye aggregate return in 2018 and 
2019, when Sockeye returns to Meziadin fell below its escapement goal. Within the Meziadin 
stock complex, a relatively new spawning population (Strohn Creek), which has appeared in 
recent decades, now accounts for a substantial proportion of the Sockeye return (M. Cleveland, 
Gitanyow Fisheries Authority, pers. comm., 2021). For the Skeena, extremely low Sockeye 
returns in 2013, 2017 and 2019, which were driven by poor returns to Pinkut and Fulton, were 
buffered to an extent by returns to non-Babine Skeena Sockeye systems, which accounted for 
up to 25% of the aggregate Sockeye return, compared to just 10% in a typical year (unpublished 
DFO data). 

If the relative abundance, or evenness of the different component populations is taken into 
account, there has been a substantial decrease in Sockeye diversity among Skeena and Nass 
Sockeye salmon since the start of large scale directed commercial fsheries at the beginning of 
the 20th century (Price et al. 2019). For many Skeena and Nass Sockeye populations, Indigenous 
history, early settler accounts and recent reconstructed historical abundances provide evidence 
of much larger returns than recent time series of escapements for these stocks. For instance, 
Sockeye escapements to the Kitwanga River, which likely exceeded tens of thousands at the 
start of the 20th century (Price et al. 2019), have recently seen returns as low as 230 spawners 
in 2018. Kitwanga Sockeye are now the focus of an intensive recovery effort (Cleveland 2019), 
and recovery planshave been initiated for other Skeena populations that have been considered 
conservation concerns at different times, including Lakelse Sockeye and Morice Sockeye. 

An aggregate escapement goal that assumes long-term average productivity and stable stock 
composition may not protect less productive populations from overexploitation. Reduced diversity 
and increased synchrony may introduce additional management challenges (Freshwater et al. 
2020). Maintaining genetic and within-population diversity for aggregate salmon populations 
may protect fsh populations and associated fsheries that depend on them may increase their 
resilience to environmental change (Anderson et al. 2015; Kardos et al. 2021). 
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The diversity of Sockeye populations has been a key consideration throughout the Skeena and 
Nass Sockeye escapement goal review, and was identifed as an important priority to address 
by the bilaterally agreed-upon Terms of Reference and by the TWG and independent reviewers. 
Some of the aggregation approaches described in Section 2.5, including status-based methods 
and forward simulation modelling, are more suitable than others, such as estimating the aggregate-
level MSY, for incorporating stock-level diversity into management targets. The ongoing management 
engagement process has focused on using forward simulation modelling, to explore tradeoffs 
between harvests and biological risks, and the simulation outputs can provide information about 
what spawner abundances are associated with the highest number of stocks achieving biological 
objectives. The simulations show that under recent productivity, harvests will peak at lower 
aggregate spawner targets than would maximize the number of healthy stocks. 

4.1.3. Time-varying Productivity 

Sockeye salmon populations are changing rapidly with the cumulative effects of stressors including 
fshing pressure and climate change. Skeena and Nass Sockeye stocks have seen declining 
productivity, together with increasing variability and increased frequency of low returns since 
2000. Skeena and Nass Sockeye are now among a growing list of major British Columbia Sockeye 
salmon populations (along with Rivers Inlet, Smith Inlet, and Fraser Sockeye), which once supported 
large scale Canadian commercial fsheries, that are now constrained by low returns and associated 
conservation efforts. The four lowest Nass Sockeye returns were recorded from 2017-2022. For 
Skeena Sockeye, the lowest escapements since the catastrophic Babine landslide in the 1950s 
occurred in 2013, 2017, and 2019. 

Although the temporal patterns of variation in productivity vary by stock, a general pattern of 
decline is evident across stocks: 

• Patterns in the spawner-recruit data for individual stocks as well as the Skeena and Nass 
aggregates (i.e., spawners, observed recruits per spawner). 

• Ricker residuals (i.e., observed productivity compared to productivity predicted by ftted 
models). 

• decline in the productivity parameter (alpha) for many of the stocks where suffcient data are 
available to ft stock-specifc Ricker models with time-varying productivity. 

• Consistent shared-year effect in the HBM model results across the Skeena Sockeye stocks, 
fnding a similar pattern of decline in productivity as for single-stock Ricker ft for the Skeena 
aggregate data set. 

Further, there is evidence that size-at-age, and fecundity for Skeena and Nass Sockeye have 
decreased in recent decades. Anecdotally, long time commercial fshermen targeting Skeena 
Sockeye report switching to smaller-mesh nets (from 5 1/2” to 4 ¾” beginning in the 1980s. 
Population-level changes in body size, age composition, or size-at-age have been observed 
in all species of salmon in different regions throughout North America (Schaul and Geiger 2016; 
Ohlberger et al. 2020; e.g., Oke et al. 2020). The patterns of decline in overall length and length-
at-age for Skeena and Nass Sockeye are consistent with decreases of similar magnitudes that 
have been observed for Sockeye salmon populations in Southeast Alaska (e.g., Oke et al. 2020). 

For Skeena Sockeye sampled at the Tyee Test Fishery, length at age decreased by 2-3% for 5, 
6 and 7 year old fsh and remained constant for 4 year old fsh between the 1980s and 2010s. 
The overall length of Nass Sockeye sampled at Meziadin Fishway since 2010 is substantially 
less than the historic average, indicating shifts in age composition combined with decreases in 
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body length of sampled fsh. The observed decreases in overall size for sampled populations of 
Skeena and Nass Sockeye, together with observed decreases in fecundity of approximately 
13% for fsh sampled at the Babine spawning channels, indicate a trend toward decreased 
reproductive with implications for both wild and enhanced Sockeye populations. Escapement 
goals that assume constant egg production over time may not account for these patterns of 
decline in escapement quality. 

Together with low returns and apparent declines in reproductive potential, Skeena and Nass 
Sockeye are facing increased frequencies of extreme environmental conditions. For example, 
Skeena Sockeye from the 2013 brood year, which was itself the lowest Skeena Sockeye return 
since the years immediately following the Babine slide, experienced extreme environmental 
conditions throughout their life history. The spawning channels did not meet their loading targets 
in 2017, 2017 and 2019, and smolts which migrated to sea in 2015 encountered a marine heatwave 
that persisted from 2014 to 2016 that was extreme in intensity, geographic range, and the unusual 
depth of anomalous temperatures (Ross et al. 2021). 4- and 5-year old Sockeye that returned 
in 2017 and 2018 encountered drought conditions and extreme temperatures during the return 
migration and on the spawning grounds. While each of these events are system specifc, and 
anecdotal examples of what were previously thought to be rare events, there is no question that 
extreme events are occurring at an increasing frequency. 

Maintaining healthy and diverse Sockeye salmon populations for Skeena and Nass Sockeye 
will require planning for these extreme events, which may include developing escapement goals 
and management strategies that can adapt and rapidly respond to changing conditions, such 
as mitigating for extreme temperatures as has been practiced for Fraser Sockeye (Dionne and 
Patterson 2021; Grant et al. 2021). Maintaining population diversity will also help to buffer for 
aggregate populations from the likelihood of future catastrophic events, which should be considered 
in fsheries management, including the development of escapement goals. While fsheries 
managers cannot predict climate-related or other catastrophic events on a year-to-year basis, 
the probability of bad outcomes can be reduced by introducing buffers to mitigate risk, and by 
maintaining stock-level diversity within the Skeena and Nass metapopulations (Anderson et al. 
2015). 

A key fnding of the data review was that many Skeena and Nass Sockeye stocks and both 
aggregates had dramatically lower recruitment productivity in recent years compared with the 
long-term average. Our subsequent analyses focused on exploring the performance of stocks 
under different productivity scenarios, and specifcally compared results generated using spawner 
recruitment parameters developed using long-term average productivity with recent productivity 
(Tables 23 and 24). While decision makers need to consider that lower productivities are likely to 
continue in the future, we included results based on long-term average productivity to illustrate 
the contrast and magnitudes of difference based on different productivity assumptions. More 
work needs to be done to incorporate different productivity variations, including different defnitions 
of “recent” productivity, into the current framework. Potential future work on alternative scenarios 
may include environment considerations and bound likely futures based on known relationships 
(potentially stock by stock relationship differences may be leveraged based on existing/ongoing 
work). 

167 



4.2. KEY CONCLUSIONS 

4.2.1. Alternative SR Model Fits and Productivity Scenarios 

4.2.1.1. Alternative SR Model Forms 

We explored three alternative SR model forms, which was informative because (1) the comparison 
between them helped with understanding the properties of each stock-specifc SR data set, and 
(2) parameter estimates from different model forms could be used for different purposes. 

For stocks with complete time series, where all three SR model forms could be ftted, the following 
observations are noteworthy: 

• given the strong temporal trends in residuals, the AR1 Ricker ft improved the statistical 
properties of the ft compared to the Basic Ricker ft. Therefore, we chose parameters from 
the AR1 ft to generate the long-term-average productivity scenario, where available. 

• productivity patterns identifed through the TVP model ft with time-varying productivity 
differed between stocks, and in some cases the productivity patterns tracked the residuals 
from the Basic Ricker ft very closely (i.e., did not identify a smooth underlying pattern). 
These highly variable productivity patterns need to be interpreted with caution, but can still 
serve as a useful source of parameter estimates for alternative productivity scenarios (i.e., 
give a high contrast to the high and low productivity bookend scenarios). Therefore, we used 
the TVP parameter estimates for different time periods to generate alternative productivity 
scenarios, where available. TVP fts generally resulted in more uncertain estimates of the 
productivity parameter (i.e., wider ln.alpha posteriors), but in more precise estimates of 
capacity (i.e., narrower Smax posteriors). 

4.2.1.2. Biological Benchmarks 

The Nass Sockeye aggregate includes 9 different CUs which were combined into 7 stocks for 
our analyses, while the Skeena aggregate includes 30 extant CUs, which were combined into 24 
stocks for our analyses. For both aggregates, spawner-recruitment based biological benchmarks 
were developed for each of the major contributing stocks. Productivity for the different Nass 
and Skeena stocks varies across time, with the aggregate stocks, and their largest components 
(Meziadin and Babine wild stocks) exhibiting near-continual declines in recruits per spawner, 
and the productivity parameter from single stock fts, since 2000 (Figures 12 and 13). Plausible 
alternative productivity scenarios were developed to characterize high, low, long-term average, 
and recent productivity scenarios by sampling from the posterior distributions for the Ricker-alpha 
parameter from the most appropriate available models for each scenario. 

Biological benchmarks were estimated for the different Skeena and Nass Sockeye stocks using 
the parameter distributions generated from the alternative productivity scenarios. These were 
used to build illustrations of equilibrium probability profles and aggregate reference points that 
can be used to inform choices for aggregate escapement goals, once management objectives 
have been clearly defned. 

Extensive testing showed that benchmark estimates for some stocks were highly sensitive to one 
or more of the following: 

• Data treatments (Appendix E.1): Filtering out brood years with R/S > 45 made a big difference 
in benchmark estimates for some stocks, and we consider this a necessary quality-control 
step. If this results in very different benchmark estimates, it indicates that 1 or 2 extreme 
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values had a big effect, and should be investigated carefully. In contrast, inflling missing 
values generally had little effect on benchmark estimates, because we inflled using average 
values, and the inflling did not generate any extreme points. For stocks where the inflling 
made a difference in the Basic Ricker estimate, this is due to the age structure of Sockeye 
salmon. A single missing year of spawner and run size estimates can exclude 3-5 brood 
years from the SR data set. For example, inflling two return year data points for Kitsumkalum 
added 8 brood years to the SR data set, but only changed the median Smsy estimate by 6%. 
Inflling fve return year data points for Asitka more than doubled the available SR data from 
11 brood years to 24 brood years, but also changed resulting estimates substantially (Smsy: 
-21%, ln.alpha: -41%). 

• Benchmark calculations (Appendix E.3): Estimates of biological benchmarks were insensitive 
to alternative formulations (<2%), but the success rate varied for alternative implementations 
of the Sgen optimizer. We used the Scheuerell (2016) method to calculate Smsy, because 
it is the only exact solution, and the Connors et al. (2023) version of the Sgen optimizer, 
because it was the only non-brute-force method that did not crash for any of the tested 
parameter combinations. 

• Bayesian estimation: Median Bayesian benchmark estimates from the Basic Ricker model 
fts were similar to the simple deterministic estimates for most stocks. Those stocks that 
were fagged as more than 25% different from the deterministic estimate (Figure 8) also had 
more uncertain Bayesian estimates (i.e., very wide posteriors), and were highly sensitive to 
alternative capacity priors (Figure 9). 

While estimates for smaller stocks with noisier and incomplete SR data were generally more 
sensitive than larger stocks with higher quality data, it was not always the same stocks that were 
fagged in different sensitivity tests. SR fts for the enhanced stocks and for aggregate-level SR 
data, in particular, were highly sensitive to alternative SR model assumptions, even though the 
quality of each individual spawner and recruit estimate was high. 

4.2.1.3. Comparing Single-stock and Aggregate Model Fits 

Although calculating SR model fts for aggregate data is computationally simple, the resulting 
parameters are not appropriate for developing management targets. 

For the Skeena aggregate, the majority of effective spawners, and most of the adult returns, 
are from the BLDP enhancement facilities on Pinkut and Fulton. We explored model fts for a 
SkeenaWild aggregate that excluded the enhanced stocks, but this level of analysis masked the 
diversity of stock-specifc productivity patterns identifed in the stock-level analyses, particularly 
the substantial recent decline in productivity for several of the wild Skeena stocks with complete 
(or inflled complete) time series. 

For the Nass aggregate, two stocks with very different life histories and production dynamics 
account for most of the abundance. Historically, the Nass run was mostly from Meziadin lake-
type Sockeye, but in recent years Lower Nass Sea and River Type Sockeye have increased both 
in absolute abundance and relative contribution. We consider it more appropriate, therefore, to 
model these two stocks separately, rather than in a combined SR data set. 

4.2.1.4. Comparing Single-stock and Hierarchical SR Model Fits 

At the beginning of their WinBUGS manual, Spiegelhalter et al. (2003) remind users in bold, red 
font: “Beware: MCMC sampling can be dangerous”. Computing power continues to increase 
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and MCMC software continues to evolve (e.g., from WinBUGS to JAGS to STAN), but the basic 
challenge remains the same: If estimates are highly sensitive to model structure and prior assumptions, 
which version is the most “correct”? 

Extensive sensitivity testing is standard practice in Bayesian estimation. However, in this project 
we had the rare opportunity of comparing two completely separate and fundamentally different 
implementations of the same type of SR model ft to the exact same original data set. Extensive 
sensitivity testing was conducted for both model implementations, but it was only through direct 
comparison between the two implementations that we were able to identify sources for the 
discrepancies. Most of the initial large differences in benchmark estimates were not due to the 
hierarchical structure, but resulted from alternative specifcations of the capacity prior (Smax). 
Differences were more pronounced for stocks where the data didn’t have a strong density-dependent 
signal (i.e., “noisy” scatterplot), which were fagged as highly sensitive in both sets of analyses. 

The ability to compare independent model implementations served as an important reminder 
that Bayesian estimation can be very sensitive to prior assumptions and structural differences. 
Resulting estimates need to be ground-truthed based on biological expertise, and the stock-
specifc uncertainty of the estimates needs to be considered in subsequent uses of the results. 

The implications of observed differences between estimates will differ depending on how the 
information is used. For example, if a subsequent decision process focuses on the sum of stock-
level Smsy estimates, then large relative differences in the Smsy estimates for a few small stocks 
will not substantially affect the decision. If, however, a decision process focuses on status assessments 
that incorporate relative abundance benchmarks, such as Sgen and 80% Smsy, then large 
differences in benchmark estimates can translate into a very different overall status picture, 
which could strongly infuence decisions that are made based on these assessments. 

Similarly, stock-specifc estimated patterns in productivity differed between single-stock and 
hierarchical model fts. Both sets of results can be useful, and a direct comparison is informative. 
The shared-year effect in the hierarchical model looks for a common pattern across stocks, and 
two types of sensitivity tests can be used to investigate the estimated patterns: 

• top-down: McAllister and Challenger (Appendix D) started with a hierarchical model form 
that included 18 modelled Skeena stocks, and then dropped one or more stocks from the 
analysis. In these tests, the common shared year effect was not sensitive to alternative 
combinations of 16-17 stocks. 

• bottom-up: An alternative approach might be to begin by ftting hierarchical models with 
smaller groups of stocks and explore how the shared year effect differs for these smaller 
groups. For example, hierarchical model fts could be tested for (1) just the three wild Babine 
stocks, (2) all fve Babine stocks, (3) all wild middle Skeena lake-type Sockeye stocks with 
SR data, (4) all lower Skeena lake-type stocks with SR data, and (5) all upper Skeena lake-
type stocks with SR data. Based on these explorations, a hierarchical model with a more 
nuanced spatial structure could then be developed. 

4.2.2. Alternative Approaches for Developing Aggregate Management Reference Points 

This Research Document presents alternative biological benchmarks for Skeena and Nass 
Sockeye stocks along with a number of different approaches for developing aggregate reference 
points. Specifc choices about how to use the information presented here, including the eventual 
choices for updated escapement goals for Skeena and Nass Sockeye will be made once management 
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objectives are defned in subsequent processes, including a multistakeholder evaluation process 
to select an escapement goal for Skeena and Nass Sockeye which is currently underway. 

While these processes will involve different individuals and will unfold at different timelines, 
they all rely on the same fundamental information: (1) agreed-upon spawner-recruit data, and 
(2) agreed-upon approach for ftting spawner-recruit models, and (3) agreed-upon approach 
for calculating the resulting biological benchmarks. How the data, model fts, and biological 
benchmarks are considered will also differ between the processes, so we focused on the fundamental 
information, but also illustrate how it could be used. The approaches presented here are intended 
to be fexible to incorporating new information if required by the decision-making process, for 
example it is expected that model fts and biological benchmarks will change as data sets are 
updated in the future. The data sets and tools, or building blocks, presented here, are intended to 
provide a starting point for the decision-making process, rather than prescriptive recommendations 
for the choices that will eventually be made. 

4.2.2.1. Requirements for the Escapement Goal Review 

Revised escapement goals for Skeena and Nass Sockeye are required for implementing Pacifc 
Salmon Treaty provisions. Following the evaluation of alternative approaches against selection 
criteria developed by a group of CSAS meeting participants, subsequent work focused on developing 
a refned version of the forward simulation model, along with equilibrium tradeoff profles to 
evaluate tradeoffs during the management engagement process. 

• Equilibrium tradeoff plots: Equilibrium probability profles estimate expected yield for a 
given stock under different productivity scenarios. For example, the equilibrium profles 
for Meziadin Sockeye illustrate the probabilities of attaining 60 or 80% of long-term average 
MSY, or an equilibrium yield greater than 100,000 under long-term average or recent productivity 
scenarios (Figure 37). These results suggest that for Meziadin Sockeye, there is a very low 
likelihood of attaining any of these objectives under current conditions. 

• Simulation-based reference points: Simulation models can be used to explore tradeoffs 
between aggregate catch and biological risks to individual populations within each river 
system, across a range of aggregate escapement goals, and identify aggregate spawning 
goals that maximize catch, stock health, or other specifed performance metrics. For the 
initial version of this Research Document, we built a simple simulation model to illustrate 
the type of information that can be incorporated in a management strategy evaluation. The 
simulation model was then refned following discussion at the CSAS peer review meeting 
and recommendations from some participants and independent reviewers to incorporate 
outcome uncertainty and covariation in productivity. These modifcations are described in 
Appendix F. 

In this paper we demonstrate the potential benefts of forward simulations that generate expected 
trajectories under alternative assumptions. A key fnding was that the responses to different 
harvest strategies were highly sensitive to the productivity assumption. Not surprisingly, projected 
abundances are lower under recent productivity scenarios than under long-term average productivity 
for most Skeena and Nass Sockeye stocks. The simulation also identifed counter-intuitive 
interactions between productivity scenarios and alternative harvest strategies. For escapement 
goals below the current interim escapement goals, more stocks achieve the 3-generation objective 
under the recent productivity scenario than under the long-term average productivity scenario. 
Under long-term average productivity, aggregate run sizes are larger due to productive large 
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stocks, and these run sizes translate into larger target ER, which in turn impacts less productive, 
smaller stocks (Figures 51 to 54). 

Future model extensions could address other considerations, such as area and time-specifc 
differences in harvest impacts, and future productivity. Such expansions need to be carefully 
bounded to focus on mechanisms that are relevant to the objectives of the analysis. 

4.2.2.2. Requirements for Regional Salmon Initiatives 

Regional salmon initiatives can also build on the examples of alternative aggregation approaches 
presented in this paper: 

• Aggregate limit reference points (LRP): New guidance (DFO 2022b) identifes two of the 
building blocks presented in this Research Document as candidate approaches for developing 
LRPs under the modernized Fisheries Act (2019). Specifcally, the logistic regression results 
and illustration of multi-criteria status assessments included here lay the groundwork for a 
formal LRP process for Skeena and Nass Sockeye. 

• Multi-criteria status assessment : We illustrated status considerations for a single metric, 
abundance relative to biological benchmarks (Sgen, 80% Smsy), but actual status assessments 
under the Wild Salmon Policy are based on a combination of multiple criteria (absolute 
abundance, long-term and short-term trends, distribution). Completing multi-criteria status 
assessments for Pacifc salmon conservation units is a key deliverable of Wild Salmon Policy 
implementation. 

4.3. PRIORITIES FOR FUTURE WORK 

Through the CSAS review process in April 2022, the follow-up process on comparing aggregation 
approaches, discussions with the independent reviewers, and feedback from the ongoing Canadian 
domestic engagement process, we have identifed several critical areas for future work. 

Each of these tasks presents considerable work, both in terms of analyses and process, and 
they cannot all be addressed at the same time, given their interconnectedness and requirement 
for input from many of the same people. For example: 

• Development of an aggregate LRP consistent with new guidelines requires multi-criteria 
status assessments of individual conservation units (DFO 2022b). 

• Exploring alternative strategies for managing the the non-spawning surplus of enhanced 
Sockeye would require developing an improved and expanded simulation model. 

• Both of these analyses would require substantial participation from the same core group of 
DFO staff, and would need to be completed while they continue supporting annual operational 
requirements (e.g., PSC technical committees). 

We anticipate that the ongoing Canadian domestic engagement process and bilateral Canada/U.S. 
discussions through the PSC will provide the next opportunities to develop guidance on priorities 
and scope for the next phases of work. We summarize potential tasks below to support the 
scoping discussions. 

4.3.1. Objectives 

Regardless of which approach is chosen for developing aggregate management reference 
points for Skeena and Nass Sockeye, the application of that approach requires clearly defned 
quantitative objectives. We used various examples of quantitative objectives throughout this 

172 



Research Document, but the larger escapement goal review process needs to develop four 
distinct types of agreed-upon objectives: 

• Quantitative objectives for individual wild stocks: We focused our analyses on simple stock-
level objectives linked to the lower and upper WSP benchmarks for relative abundance 
(Sgen, 80%Smy). However, other biological stock-level objectives should be explored, and 
stock-specifc harvest objectives should be identifed where possible (e.g., for specifc in-
river fsheries) 

• Quantitative aggregate-level objectives: Different aggregate-level objectives are either 
implicitly or explicitly required for applying the alternative approaches for developing aggregate 
management reference points. Several require an explicit defnition of what constitutes 
success for each component stock, and then an explicit defnition of what constitutes success 
for the aggregate. Focusing on wild stocks only, one example we used was “At least 80% 
of stocks in the aggregate should have at least 80% probability of spawner abundance 
exceeding the upper WSP benchmark for the relative abundance metric (80% Smsy under 
long-term average productivity) after 3 generations (simulation years 11-15)”. However, 
many variations of objectives like this could be considered and tested, and an agreed-upon 
shortlist should be developed. 

• Quantitative objectives for individual enhanced stocks: BLDP enhancement activities are 
currently managed under the general objective of maximizing smolt production under historical 
conditions, but this general goal should be reviewed given observed changes in the environment, 
in wild stocks, and in population dynamics of enhanced stocks. 

• Quantitative objectives for the total Skeena aggregate, including wild and enhanced stocks: 
There is currently no explicit policy guidance regarding the desired balance between biological 
objectives for wild stocks, production objectives for enhanced stocks, harvest objectives 
for combined wild and enhanced returns, and the unharvested, non-spawning surplus of 
enhanced returns. A formal management strategy evaluation (MSE), combining a simulation 
model and a structured participatory process, offers a comprehensive framework for identifying 
general objectives and key mechanisms, building a custom simulation model to test alternative 
scenarios, and refne both the analyses and objectives over time. 

4.3.2. Data 

The natural and social system in which we are collectively trying to manage Skeena and Nass 
Sockeye is rapidly changing and annual assessment programs are adapting to changes in stocks, 
fsheries, and available tools. As a result, the data foundation available for the Skeena and Nass 
Sockeye escapement goal review is continuously evolving, which affects the priorities for both 
analyses and process. For example, emerging DNA-based stock identifcation may provide better 
estimates of stock-specifc harvest impacts. Similarly, new information is being developed about 
the most appropriate methods for estimating spawner escapements for two stocks (Bowser, 
Bear). 

The analyses presented in this Research Document used SR data up to the 2019 returns, after 
an in-depth review of source data (Pestal et al. 2025b). Returns in 2020, 2021, and 2022, which 
are not incorporated in the current analysis, were unusual for many of the stocks, and may 
substantially affect parameter estimates. As data are updated and SR parameter estimates 
revisited, the specifc values of biological benchmarks, and the results of any chosen aggregation 
approach will also change. However, regular updates of run reconstructions, SR fts, status 
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assessments, and simulation reruns are a substantial task. Planning for regular updates needs 
to ft this task in the context of all the prioritized tasks. 

4.3.3. Spawner-recruit Modelling and Productivity Scenarios 

The SR analyses presented in this paper include extensive sensitivity testing (3 single-stock 
model forms, 4 alternative capacity priors, alternative data treatments, alternative benchmark 
estimation approaches, single-stock vs. hierarchical Bayesian fts). Discussions during the peer 
review process identifed several areas for further exploration: 

• Alternative capacity priors: We tested four combinations with either uniform or lognormal 
distributions and either wide or capped bounds on the distribution. The bounds were selected 
based on available information for each stock, including lake capacity estimates based 
on photosynthetic rate, largest observed spawner abundance, and Bayesian posterior 
distributions from an initial round of SR model fts. Alternative implementations of the log-
normal capacity prior and alternative bounds on the capacity prior could be tested to further 
explore the sensitivity of resulting SR parameter estimates for stocks with highly uncertain 
capacity estimates. This was identifed as a priority, because large initial differences between 
the single-stock and hierarchical Bayesian model fts were traced to differences in how the 
capacity priors were set up. 

• Stochastic simulations of bias: Potential biases in SR parameter estimates could arise 
from different implementation details (e.g., data treatment, model forms, capacity priors, 
Bayesian MCMC implementation). While we did extensive sensitivity testing, a more formal 
exploration of potential biases could generate many random data sets for hypothetical 
stocks with known population dynamics designed to be similar to the different Skeena and 
Nass Sockeye stocks, then apply the alternative SR model ftting variations to test which 
version produces estimates most similar to the “true” values. 

• Model Form switching: For stocks with complete SR data sets (i.e., no missing years) the 
current implementation of alternative productivity scenarios sampled parameters from the 
AR1 Ricker ft for the long-term average productivity scenario and from the most recent 
generation of the time-varying productivity (TVP) Ricker ft for the recent productivity scenario. 
Some peer review participants expressed concern over potential implications of using 
different model forms for the productivity scenarios. Alternative versions of the long-term 
average productivity scenario, based on the TVP model ft could be explored (e.g., sample 
from all brood years instead of just the most recent generations, or calculate the average 
ln.alpha across brood years for each MCMC parameter set). 

• Alternative hierarchical structure for the HBM model ft : As discussed in Section 4.2 above, 
different assumptions about the hierarchical structure of Skeena Sockeye could be tested 
within the estimation framework developed by McAllister and Challenger (Appendix D). 

4.3.4. Enhanced Pinkut and Fulton 

Priorities for future work relate to stock assessment, channel management, interactions with wild 
stocks, and alternative approaches for developing a combined enhanced-wild harvest strategy. 
Specifc tasks include: 

• Review of channel loading targets: We included an overview of egg, fry and smolt production 
data and trends in this report. An in-depth analysis of enhanced Babine Sockeye production, 
which is part of a larger review of the effectiveness of salmon hatcheries in the Pacifc 
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Region, led by Pacifc Salmon Foundation, is ongoing (Cam West, pers. comm., DFO Salmonid 
Enhancement Program (retired), 2021). However, this work only addresses technical components 
of channel production, with a focus on enhanced Babine Sockeye. A broader integrated 
review is needed to determine how channel management should respond to these observed 
biological changes. 

• Investigate biological interactions between enhanced and wild populations: Although egg, 
fry and smolt production data for Babine Lake suggest freshwater density dependence 
with reductions in smolt size associated with higher fry production, more work is needed 
to understand the longer term effects of BLDP enhancement on wild Babine and other 
Skeena Sockeye populations, including updated information about changes in freshwater 
rearing capacity for Babine Lake, and a detailed analysis of size selective marine survival 
and recruitment across a range of ocean conditions. Improvements to genetic resolution 
between the different Babine stocks may inform a better understanding of the potential for 
straying between populations. 

• Investigate indirect interactions between enhanced and wild populations through aggregate 
abundance, aggregate harvest rules, and mixed-stock fsheries: This would likely involve 
an expanded simulation model with a distinct component for population dynamics of the 
enhanced stocks and a fner resolution of simulated harvest (e.g., different wild and enhanced 
harvests based on fshery timing, location, and gear). 

• Review of surplus management : Our SR analyses and resulting building blocks for aggregate 
management reference points focused on the wild stocks. However, harvest management of 
Skeena Sockeye needs to fnd a balance between wild stock considerations, operational 
considerations for the enhanced stocks, and the interaction between biological surplus 
from the channel stocks with aggregate harvest rates on the combined returns of wild and 
enhanced stocks. These challenges, which are not new to Skeena Sockeye fsheries management, 
apply regardless of the chosen approach for setting aggregate targets (e.g., probability 
profles vs. forward simulation). 

4.3.5. Incorporating Biological Considerations in Aggregate Management Reference 
Points 

Changing productivity was identifed as the highest analytical priority by scoping workshop 
participants, technical WG members, and independent reviewers for the Skeena and Nass 
Sockeye escapement goal review. In this paper we present an approach for selecting SR model 
parameters that describe alternative productivity scenarios, and we show the implications for 
resulting estimates of biological benchmarks and any considerations based on these benchmarks. 
The importance of considering time-varying productivity is discussed in Section 4.1.3 above. 
Specifc priorities for future work include: 

• Identifying productivity regimes: Our analyses included an approach for generating alternative 
productivity scenarios (i.e., long-term average vs. recent), but we did not analyze observed 
time trends in productivity to look for evidence with discrete shifts in productivity (i.e., regimes). 
Analyses like Rodionov and Overland (2005) can identify shifting productivity regimes, and 
assist with bounding future productivity scenarios (e.g., for forward simulation). 

• Guidance for considering productivity changes in biological benchmarks and management 
reference points: Identifying past changes in productivity is an important step, but there are 
many conceptual challenges with incorporating this information into a management context. 
For example, if recent productivity is lower than average, then Smsy estimates under a 
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recent productivity assumption will generally also be lower. Should escapement goals 
be lowered in years of poor productivity, or should they stay the same to avoid ratcheting 
down abundance over the long-term, or should they increase to speed up rebuilding? A 
multi-year research initiative started in the summer of 2022 to develop formal guidance for 
management considerations under changing productivity (Carrie Holt and Brendan Connors, 
pers. comm., DFO, 2022). 

• Incorporating demographic changes into escapement goals: For populations that are undergoing 
changes in escapement quality such as reduction in body size, fecundity or sex ratio, escapement 
goals that assume constant egg production may underestimate the number of spawners 
required to achieve objectives such as maximum sustained yield, or targets for fry production 
(Staton et al. 2021). Some of these changes have been observed in Skeena and Nass 
Sockeye, and a more detailed analysis is needed to assess whether these changes are 
likely to represent signifcant shifts in recruitment that will need to be considered in management 
targets for these stocks. Alternative approaches for incorporating demographic changes into 
escapement may need to be considered, such as considering escapement goals based 
on egg production rather than spawner abundance, or incorporating demographic change 
explicitly into spawner recruitment modeling, like the alternative escapement goal adjustments 
explored in Connors et al. (2023) for Yukon Chinook. 
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APPENDIX A. TECHNICAL PROCESS PARTICIPANTS 

The TWG consists of members from Fisheries and Oceans Canada, North Coast Area First 
Nations, Pacifc Salmon Foundation, and consulting organizations (Table A.1). Two independent 
reviewers were appointed by Canada and Alaska (Table A.2). 

Table A.1. Members of the Technical Working Group (TWG). 

Name Affliation 

Addison, Angela North Coast Skeena First Nations Stewardship Society 

Alexander, Richard LGL Ltd. 

Carr-Harris, Charmaine Fisheries and Oceans Canada 

Challenger, Wendell LGL Ltd. 

Cleveland, Mark Gitanyow Fisheries Authority 

Cox-Rogers, Steve Fisheries and Oceans Canada 

Davies, Sandra Fisheries and Oceans Canada 

English, Karl LGL Ltd. 

Gordon, Jenn Fisheries and Oceans Canada 

Grout, Jeff Fisheries and Oceans Canada 

Hertz, Eric Pacifc Salmon Foundation 

Holt, Carrie Fisheries and Oceans Canada 

Holt, Kendra Fisheries and Oceans Canada 

Huang, Ann-Marie Fisheries and Oceans Canada 

McAllister, Murdoch University of British Columbia / United Fishermen and Allied Workers Union 

Nyce, Harry Nisga’a Lisims Government 

Pestal, Gottfried SOLV Consulting Ltd. 

Rosenberger, Andrew Coastland Research / Skeena Fisheries Commission 

Table A.2. Independent reviewers for the escapement goal review. 

Name Affliation 

Adkison, Milo University of Alaska Fairbanks / Alaska Dept. of Fish and Game 

Peterman, Randall Emeritus, Simon Fraser University 
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APPENDIX B. CHARACTERISTICS OF ALTERNATIVE APPROACHES FOR 
DEVELOPING AGGREGATE MANAGEMENT REFERENCE POINTS 

This appendix includes one table for each of the alternative aggregation methods. All tables have 
the same structure: for each criterion, there is a single rating in all capitals (YES/NO/MAYBE), 
followed by a brief rationale. Table 12 describes the aggregation methods. Table 14 describes 
the criteria. Table 15 summarizes the results across aggregation methods. 
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Table B.1. Rationale for criteria ratings – Aggregate Smsy estimate. Summary rating for each criterion is 
based on the current implementation of the example in this Research Document. YES means that the 
current example meets the criterion. MAYBE means that current eample could be modifed or expanded to 
meet the criterion, depending on time and resources. NO means that the criterion cannot be met with this 
aggregation approach. For the time requirement, SHORT means that it can be applied immediately to the 
SR parameter estimates. MEDIUM means that at least 6 months will be required for either process (e.g., 
choice of quantitative objectives) or method developments (e.g., pending publication of guidelines, 
followed by review of implementation). LONG means that a multi-year process is likely needed for full 
implementation. 

Criterion Comment 

Time-varying 
parameters? 

MAYBE. Depends on how the SR parameters are estimated and how results for 
alternative productivity scenarios are carried through to the fnal Smsy estimate 
used as a management target. 

Uncertainty in SR 
model fts? 

YES. Using Bayesian parameter estimates that quantify the uncertainty in model 
parameters. Alternative approaches could be implemented (e.g., state-space SR 
model with explicit CV for each observation, or an integrated RunRecon/SR 
state-space model that combines uncertainty in spawner and catch data, age 
composition, and SR model ftting). 

Outcome NO. Outcome uncertainty not part of the calculation. 
uncertainty? 

Productivity NO. Patterns in productivity for the aggregate can be accounted for in the SR model 
Covariation? ftting step (e.g., AR1 Ricker model, random-walk alpha model), but covariation 

between component stocks is not explicitly considered in the resulting aggregate 
reference points. 

Bias in parameter 
estimates? 

MAYBE. Depends on the situation. The magnitude and direction of bias is affected 
by the number of data points, average stock productivity, time variation in 
productivity, and previous harvest rates (the last two factors affect contrast in data). 

Can get YES. Aggregate goal can be selected directly based on posterior distribution (mean, 
abundance-based median, or percentile range). 
Agg RP? 

Can get harvest NO. Produces only a single reference point or range. 
control rule? 

Data-defcient NO. Component stocks not part of the calculation. 
stocks? 

Allows taking into NO. Stock or CU level information not used in SR model ftting or aggregation 
account component approach. 
stocks? 

Can be easily YES. Can be operationalized subject to considerations of timeline and type of mgmt 
operationalized? setting. 

Time requirements SHORT. Can be calculated directly from SR parameter set for each productivity 
scenario. 
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Table B.2. Rationale for criteria ratings – Sum of stock-level Smsy estimates. Summary rating for each 
criterion is based on the current implementation of the example in this Research Document. YES means 
that the current example meets the criterion. MAYBE means that current eample could be modifed or 
expanded to meet the criterion, depending on time and resources. NO means that the criterion cannot be 
met with this aggregation approach. For the time requirement, SHORT means that it can be applied 
immediately to the SR parameter estimates. MEDIUM means that at least 6 months will be required for 
either process (e.g., choice of quantitative objectives) or method developments (e.g., pending publication 
of guidelines, followed by review of implementation). LONG means that a multi-year process is likely 
needed for full implementation. 

Criterion Comment 

Time-varying 
parameters? 

MAYBE. Depends on how the SR parameters are estimated and how results for 
alternative productivity scenarios are carried through to the fnal result. 

Uncertainty in SR 
model fts? 

YES. Using Bayesian parameter estimates that quantify the uncertainty in model 
parameters. Alternative approaches could be implemented (e.g., state-space SR 
model with explicit CV for each observation, or an integrates RunRecon/SR 
state-space model that combines uncertainty in spawner and catch data, age 
composition, and SR model ftting). 

Outcome 
uncertainty? 

NO. Outcome uncertainty not part of the calculation. 

Productivity 
Covariation? 

NO. Patterns in productivity for each stock can be accounted for in the SR model 
ftting step (e.g., AR1 Ricker model), but covariation between stocks is not explicitly 
considered in the resulting aggregate reference points. 

Bias in parameter 
estimates? 

MAYBE. Depends on the situation. The magnitude and direction of bias is affected 
by the number of data points, average stock productivity, time variation in 
productivity, and previous harvest rates (the last two factors affect contrast in data). 

Can get 
abundance-based 
Agg RP? 

MAYBE. Aggregate goal is the sum of either median or mean stock-level estimates. 
This is not appropriate as an aggregate goal, but could be used as a lower bound 
on aggregate spawner abundance. Percentile bounds cannot be easily calculated 
for the sum. 

Can get harvest 
control rule? 

NO. Produces only a single refernce point. 

Data-defcient 
stocks? 

NO. Only uses available Smsy estimates. 

Allows taking into 
account component 
stocks? 

NO. Stock-level information used in SR model ftting, but aggregation approach 
excludes data defcient stocks and down-weights small stocks. Given stock 
composition of Nass and SkeenaWild aggregates, this approach is equivalent to 
managing for Smsy of the largest stock in each aggregate, with the implicit 
assumption that relative stock contribution will persist as it has been. 

Can be easily 
operationalized? 

YES. Can be operationalized subject to considerations of timeline and type of mgmt 
setting. 

Time requirements SHORT. Can be calculated directly from SR parameter set for each productivity 
scenario. 
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Table B.3. Rationale for criteria ratings – Comparison of stock-level Umsy estimates. Summary rating for 
each criterion is based on the current implementation of the example in this Research Document. YES 
means that the current example meets the criterion. MAYBE means that current eample could be modifed 
or expanded to meet the criterion, depending on time and resources. NO means that the criterion cannot 
be met with this aggregation approach. For the time requirement, SHORT means that it can be applied 
immediately to the SR parameter estimates. MEDIUM means that at least 6 months will be required for 
either process (e.g., choice of quantitative objectives) or method developments (e.g., pending publication 
of guidelines, followed by review of implementation). LONG means that a multi-year process is likely 
needed for full implementation. 

Criterion Comment 

Time-varying 
parameters? 

MAYBE. Depends on how the SR parameters are estimated and how results for 
alternative productivity scenarios are carried through to the fnal result. 

Uncertainty in SR 
model fts? 

YES. Using Bayesian parameter estimates that quantify the uncertainty in model 
parameters. Alternative approaches could be implemented (e.g., state-space SR 
model with explicit CV for each observation, or an integrates RunRecon/SR 
state-space model that combines uncertainty in spawner and catch data, age 
composition, and SR model ftting). 

Outcome 
uncertainty? 

NO. Outcome uncertainty not part of the calculation. 

Productivity 
Covariation? 

NO. Patterns in productivity for each stock can be accounted for in the SR model 
ftting step (e.g., AR1 Ricker model), but covariation between stocks is not explicitly 
considered in the resulting aggregate reference points. 

Bias in parameter 
estimates? 

MAYBE. Depends on the situation. The magnitude and direction of bias is affected 
by the number of data points, average stock productivity, time variation in 
productivity, and previous harvest rates (the last two factors affect contrast in data). 

Can get 
abundance-based 
Agg RP? 

NO. This approach looks at exploitation rate, not abundance. 

Can get harvest 
control rule? 

NO. Produces only a single reference point or range. 

Data-defcient 
stocks? 

NO. Only uses available Umsy estimates. 

Allows taking into 
account component 
stocks? 

MAYBE. Depending on how it is implemented. If an upper bound on aggregate ER 
is chosen based on lower (or lowest) Umsy under recent productivity across 
component stocks, then YES. If a target aggregate ER is chosen based on the 
most abundant stocks or based on long-term average productivity, then NO. 

Can be easily 
operationalized? 

YES. Can be operationalized subject to considerations of timeline and type of mgmt 
setting. 

Time requirements SHORT. Can be calculated directly from SR parameter set for each productivity 
scenario. 
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Table B.4. Rationale for criteria ratings – Stock-level equilibrium profles based on fxed escapement 
targets. Summary rating for each criterion is based on the current implementation of the example in this 
Research Document. YES means that the current example meets the criterion. MAYBE means that 
current eample could be modifed or expanded to meet the criterion, depending on time and resources. 
NO means that the criterion cannot be met with this aggregation approach. For the time requirement, 
SHORT means that it can be applied immediately to the SR parameter estimates. MEDIUM means that at 
least 6 months will be required for either process (e.g., choice of quantitative objectives) or method 
developments (e.g., pending publication of guidelines, followed by review of implementation). LONG 
means that a multi-year process is likely needed for full implementation. 

Criterion Comment 

Time-varying 
parameters? 

MAYBE. Depends on how the SR parameters are estimated and how results for 
alternative productivity scenarios are carried through to the fnal result. 

Uncertainty in SR 
model fts? 

YES. Using Bayesian parameter estimates that quantify the uncertainty in model 
parameters. Alternative approaches could be implemented (e.g., state-space SR 
model with explicit CV for each observation, or an integrates RunRecon/SR 
state-space model that combines uncertainty in spawner and catch data, age 
composition, and SR model ftting). 

Outcome 
uncertainty? 

NO. Outcome uncertainty not part of the calculation. 

Productivity 
Covariation? 

NO. Patterns in productivity for each stock can be accounted for in the SR model 
ftting step (e.g., AR1 Ricker model), but covariation between stocks is not explicitly 
considered in the resulting aggregate reference points. 

Bias in parameter 
estimates? 

MAYBE. Depends on the situation. The magnitude and direction of bias is affected 
by the number of data points, average stock productivity, time variation in 
productivity, and previous harvest rates (the last two factors affect contrast in data). 

Can get 
abundance-based 
Agg RP? 

NO. Not directly. This approach gives stock-level target ranges for spawner 
abundances, not aggregate ranges. 

Can get harvest 
control rule? 

NO. Produces only a range. 

Data-defcient 
stocks? 

NO. Only includes stocks with SR parameter estimates. 

Allows taking into 
account component 
stocks? 

MAYBE. Depending on how it is implemented. If stock-specifc goals are selected 
based on trade-offs indicated by stock-specifc equilibrium profles, then YES. 

Can be easily 
operationalized? 

YES. Can be operationalized subject to considerations of timeline and type of mgmt 
setting. 

Time requirements SHORT. Can be calculated directly from SR parameter set for each productivity 
scenario. 
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Table B.5. Rationale for criteria ratings – Aggregate-level equilibrium profles based on fxed exploitation 
rate targets. Summary rating for each criterion is based on the current implementation of the example in 
this Research Document. YES means that the current example meets the criterion. MAYBE means that 
current eample could be modifed or expanded to meet the criterion, depending on time and resources. 
NO means that the criterion cannot be met with this aggregation approach. For the time requirement, 
SHORT means that it can be applied immediately to the SR parameter estimates. MEDIUM means that at 
least 6 months will be required for either process (e.g., choice of quantitative objectives) or method 
developments (e.g., pending publication of guidelines, followed by review of implementation). LONG 
means that a multi-year process is likely needed for full implementation. 

Criterion Comment 

Time-varying 
parameters? 

MAYBE. Depends on how the SR parameters are estimated and how results for 
alternative productivity scenarios are carried through to the fnal result. 

Uncertainty in SR 
model fts? 

YES. Using Bayesian parameter estimates that quantify the uncertainty in model 
parameters. Alternative approaches could be implemented (e.g., state-space SR 
model with explicit CV for each observation, or an integrates RunRecon/SR 
state-space model that combines uncertainty in spawner and catch data, age 
composition, and SR model ftting). 

Outcome 
uncertainty? 

NO. Outcome uncertainty not part of the calculation. 

Productivity 
Covariation? 

NO. Patterns in productivity for each stock can be accounted for in the SR model 
ftting step (e.g., AR1 Ricker model), but covariation between stocks is not explicitly 
considered in the resulting aggregate reference points. 

Bias in parameter 
estimates? 

MAYBE. Depends on the situation. The magnitude and direction of bias is affected 
by the number of data points, average stock productivity, time variation in 
productivity, and previous harvest rates (the last two factors affect contrast in data). 

Can get 
abundance-based 
Agg RP? 

YES. Q: looking into the details. 

Can get harvest 
control rule? 

NO. Produces only a single reference point or range. 

Data-defcient 
stocks? 

NO. Only includes stocks with SR parameter estimates. 

Allows taking into 
account component 
stocks? 

YES. Explicitly compares alternative ER to Umsy for each stock. 

Can be easily 
operationalized? 

YES. Can be operationalized subject to considerations of timeline and type of mgmt 
setting. 

Time requirements MEDIUM. Requires input from management process regarding specifc objectives 
to compare, but examples based on previous work, such as the 2008 report from 
the Indepdendent Science Review Panel (Walters et al. 2008). 
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Table B.6. Rationale for criteria ratings – Stock-level status considerations. Summary rating for each 
criterion is based on the current implementation of the example in this Research Document. YES means 
that the current example meets the criterion. MAYBE means that current eample could be modifed or 
expanded to meet the criterion, depending on time and resources. NO means that the criterion cannot be 
met with this aggregation approach. For the time requirement, SHORT means that it can be applied 
immediately to the SR parameter estimates. MEDIUM means that at least 6 months will be required for 
either process (e.g., choice of quantitative objectives) or method developments (e.g., pending publication 
of guidelines, followed by review of implementation). LONG means that a multi-year process is likely 
needed for full implementation. 

Criterion Comment 

Time-varying 
parameters? 

MAYBE. Depends on how the SR parameters are estimated and how results for 
alternative productivity scenarios are carried through to the fnal result. 

Uncertainty in SR 
model fts? 

YES. Using Bayesian parameter estimates that quantify the uncertainty in model 
parameters. Alternative approaches could be implemented (e.g., state-space SR 
model with explicit CV for each observation, or an integrates RunRecon/SR 
state-space model that combines uncertainty in spawner and catch data, age 
composition, and SR model ftting). 

Outcome 
uncertainty? 

NO. Outcome uncertainty not part of the calculation. 

Productivity 
Covariation? 

NO. Patterns in productivity for each stock can be accounted for in the SR model 
ftting step (e.g., AR1 Ricker model), but covariation between stocks is not explicitly 
considered in the resulting aggregate reference points. 

Bias in parameter 
estimates? 

MAYBE. Depends on the situation. The magnitude and direction of bias is affected 
by the number of data points, average stock productivity, time variation in 
productivity, and previous harvest rates (the last two factors affect contrast in data). 

Can get 
abundance-based 
Agg RP? 

NO. Stock-level status assessments are combined (e.g. number of red), but not 
explicitly linked to stock-specifc or aggregate abundance. 

Can get harvest 
control rule? 

NO. 

Data-defcient 
stocks? 

MAYBE. Could develop a status-based rule that considers the proportion of data 
defcient stocks, or the likely status of data-defcient stocks based on expert 
judgment. 

Allows taking into 
account component 
stocks? 

YES. Multi-criteria status assessments for each stock (or CU) are completed and 
explicitly considered in the aggregate reference point. 

Can be easily 
operationalized? 

YES. Can be operationalized subject to considerations of timeline and type of mgmt 
setting. 

Time requirements MEDIUM. Requires completion of multi-criteria status assessment (rapid status 
assessments) expected by fall 2022. 
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Table B.7. Rationale for criteria ratings – Logistic Regression. Summary rating for each criterion is based 
on the current implementation of the example in this Research Document. YES means that the current 
example meets the criterion. MAYBE means that current eample could be modifed or expanded to meet 
the criterion, depending on time and resources. NO means that the criterion cannot be met with this 
aggregation approach. For the time requirement, SHORT means that it can be applied immediately to the 
SR parameter estimates. MEDIUM means that at least 6 months will be required for either process (e.g., 
choice of quantitative objectives) or method developments (e.g., pending publication of guidelines, 
followed by review of implementation). LONG means that a multi-year process is likely needed for full 
implementation. 

Criterion Comment 

Time-varying 
parameters? 

MAYBE. Depends on how the SR parameters are estimated and how results for 
alternative productivity scenarios are carried through to the fnal result. 

Uncertainty in SR 
model fts? 

YES. Using Bayesian parameter estimates that quantify the uncertainty in model 
parameters. Alternative approaches could be implemented (e.g., state-space SR 
model with explicit CV for each observation, or an integrates RunRecon/SR 
state-space model that combines uncertainty in spawner and catch data, age 
composition, and SR model ftting). 

Outcome 
uncertainty? 

NO. Outcome uncertainty not part of the calculation. 

Productivity 
Covariation? 

MAYBE. This approach assumes covariation in abundance (i.e., years with larger 
aggregate abundance generally have larger abundance for the component stocks). 
This was observed for Skeena Wild stocks, but not for Nass stocks in a preliminary 
exploration. 

Bias in parameter 
estimates? 

MAYBE. Depends on the situation. The magnitude and direction of bias is affected 
by the number of data points, average stock productivity, time variation in 
productivity, and previous harvest rates (the last two factors affect contrast in data). 

Can get 
abundance-based 
Agg RP? 

MAYBE. Can produce aggregate abundance reference points, but only under 
specifc conditions. Preliminary illustrations show it may be possible for SkeenaWild, 
but not for Nass (no past relationship between aggregate abundance and 
stock-level status). 

Can get harvest 
control rule? 

NO. Produces only a single reference point or range. 

Data-defcient 
stocks? 

NO. Only includes stocks with spawner data and benchmark estimates for scoring 
the objectives. 

Allows taking into 
account component 
stocks? 

YES. Stock-specifc criteria for success (e.g., Spn > median Sgen under long-term 
avg productivity) are explicitly combined into an aggregate criterion for success 
(e.g., at least x% of stocks meet the their stock-specifc obj). 

Can be easily 
operationalized? 

YES. Can be operationalized subject to considerations of timeline and type of mgmt 
setting. 

Time requirements MEDIUM. Requires fnal guidelines on methods, which were peer-reviewed through 
CSAS in the spring of 2022 and are expected to be published by the fall of 2022. 
Once these are available, then some time wil; be required to implement the 
calculations consistent with the guidelines. 

197 



Table B.8. Rationale for criteria ratings – Forward Simulation. Summary rating for each criterion is based 
on the current implementation of the example in this Research Document. YES means that the current 
example meets the criterion. MAYBE means that current eample could be modifed or expanded to meet 
the criterion, depending on time and resources. NO means that the criterion cannot be met with this 
aggregation approach. For the time requirement, SHORT means that it can be applied immediately to the 
SR parameter estimates. MEDIUM means that at least 6 months will be required for either process (e.g., 
choice of quantitative objectives) or method developments (e.g., pending publication of guidelines, 
followed by review of implementation). LONG means that a multi-year process is likely needed for full 
implementation. 

Criterion Comment 

Time-varying 
parameters? 

MAYBE. Depends on how the SR parameters are estimated and how results for 
alternative productivity scenarios are carried through to the fnal result. 

Uncertainty in 
SR model fts? 

YES. Using Bayesian parameter estimates that quantify the uncertainty in model 
parameters. Alternative approaches could be implemented (e.g., state-space SR model 
with explicit CV for each observation, or an integrates RunRecon/SR state-space model 
that combines uncertainty in spawner and catch data, age composition, and SR model 
ftting). 

Outcome 
uncertainty? 

YES. Alternative assumptions regarding outcome uncertainty can be explicitly modelled, 
but may be diffcult to parameterize from past observation given changing structure of 
fsheries, evolving in-season assessment (e.g., stock ID) and evolving management 
approach. Need to plan for extensive sensitivity testing. 

Productivity 
Covariation? 

YES. Alternative assumptions regarding covariation can be explicitly modelled, but may be 
diffcult to parameterize from past observation given different covariation observed through 
different time periods (e.g., different 20yr time windows) and changing stock 
characteristics (e.g., shifts in run timing, fecundity, different lake responses to 
environmental changes). Need to plan for extensive sensitivity testing. 

Bias in 
parameter 
estimates? 

YES. Alternative harvest control rules can be evaluated to determine which ones best 
meet management objectives across the variety of situations that affect magnitude and 
direction of bias. This can be done my simulating various scenarios that include different 
numbers of data points, average stock productivity, time variation in productivity, and 
previous harvest rates. 

Can get 
abundance-
based Agg 
RP? 

MAYBE. Can produce aggregate abundance reference points, but Fixed Escapement is 
only one of the alternative types of harvest control rule that can be evaluated by forward 
simulation. Other types may outperform a Fixed Escapement policy based on chosen 
objectives. 

Can get 
harvest control 
rule? 

YES. Alternative harvest control rules can be explicitly tested from simplifed aggregate 
rules (fxed ER, fxed esc, ER that changes with abundance) to fshery-specifc in-season 
harvest rules. Level of detail that can be tested depends on model structure. More 
detailed questions require more complex models. 

Data-defcient 
stocks? 

MAYBE. Could add proxies for data defcient stocks to the simulation. 

Allows taking 
into account 
component 
stocks? 

YES. Simulation trajectories for each stock and for the aggregate, under different 
assumptions, are evaluated against alternative objectives (e.g., % of stocks with Spn > 
80% Smsy after 3 generations, median aggregate catch over 3 generations, variability in 
annual catch). 

Can be easily 
operationalized? 

YES. Can be operationalized subject to considerations of timeline and type of mgmt 
setting. 
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Criterion Comment 

Time 
requirements 

LONG. Full implementation requires a formal, iterative process for model scoping, 
scenario development, and interpretation of outputs (i.e., Management Strategy 
Evaluation, MSE). Simpler simulations, evaluated against "typical" objectives, can be 
developed faster. The main results presented in the Research Document are based on 
simple simulations, but include some examples of additional considerations as well (e.g., 
covariation in productivity, differential exploitation rate for stocks based on timing). 
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APPENDIX C. CUSTOM R PACKAGES AND FUNCTIONS 

C.1. RAPIDRICKER PACKAGE 

C.1.1. PURPOSE 

As part of this project, we started developing the R package RapidRicker, which runs spawner-
recruit data quality checks, tests the sensitivity of standard biological benchmarks using simple 
Ricker fts, and implements Bayesian SR fts using the JAGS sampling engine (Plummer 2003) 
via the jags() function from the R2jags package (Su and Yajima 2020). 

The motivation for building this package was the large number of stocks covered by the Skeena 
and Nass Sockeye escapement goal review. Routine aspects of data review, such as checking 
for potential outliers or concerns regarding contrast, presented a non-trivial challenge in an 
analysis covering dozens of stocks within 2 aggregates, with data continuously being updated 
as the data reviews progressed. With the large number of stocks, we also faced the challenge of 
being consistent across stocks with data treatment choices (e.g., criteria for identifying outliers). 

Most of the analyses in this report were implemented using the RapidRicker package. A basic 
worked example and the JAGS code follow. Functions for version 1.1 of the package are available 
on Zenodo. 

C.1.2. SETTING UP 

# Install 

install.packages("de

library(devtools) # 

vtool

Load 

s") 

the 

# Install the devtools 

devtools package. 

package 

install_github("SOLV-Code/RapidRicker", dependencies = TRUE, 

build_vignettes = FALSE) 

# Load 

library(RapidRicker) 

library(tidyverse) 

# check the built in data set 

?SR_Sample # opens help file 

head(SR_Sample) # shows the first few rows 

# check the function help files 

?checkSRData 

?calcDetModelFit 

?calcDetRickerBM 

?calcMCMCModelFit 

?calcMCMCRickerBM 

C.1.3. RUN THE DATA CHECK 

# look at the default criteria for the data check 

flags_default 
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# apply the data check to data for 1 stock 

data.chk <- checkSRData(SR_Sample[SR_Sample$Stock == "Stock1",]) 

names(data.chk) 

print(data.chk$Summary) 

print(head(data.chk$Data)) 

C.1.4. TEST THE SIMPLE DETERMINISTIC RICKER FITS 

det.fit <- calcDetModelFit(sr_obj = SR_Sample[SR_Sample$Stock == "Stock1",], 

sr.scale = 10�6, min.obs=15) 

det.fit 

det.bm <- calcDetRickerBM(fit_obj = det.fit,sr.scale = 10�6, 

Smsy.method = "Scheuerell2016", 

Sgen.method = "Connorsetal2022") 

det.bm 

C.1.5. TEST THE BAYESIAN FITS 

sr.use <- SR_Sample[SR_Sample$Stock == "Stock1",] %>% select(Year, Spn, Rec,logRpS) 

head(sr.use) 

sr.scale.use <- 10�6 

#default priors and inits 

priors.up <- generatePriors(sr_obj = sr.use , sr.scale=10�6, model_type = "Basic", 

capacity.prior.type = "uniform") 

inits.up <- generateInits(priors.up) 

test.basic.up <- calcMCMCModelFit( 

sr_obj = sr.use, sr.scale = sr.scale.use , 

model.type = "Basic", 

model.file = "BUILT_IN_MODEL_Ricker_UniformCapPrior.txt", 

min.obs = 15, 

mcmc.settings = list(n.chains = 2, n.burnin = 20000, 

n.thin = 60, n.samples = 80000), 

mcmc.inits = inits.up, 

mcmc.priors = priors.up, 

mcmc.output = "post", 

mcmc.out.path = "MCMC_Out", 

mcmc.out.label = "MCMC", 

mcmc.seed = "default", 

tracing = FALSE 

) 

names(test.basic.up) 

head(test.basic.up$Summary) 
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C.2. JAGS CODE FOR SINGLE-STOCK SR MODEL FITS 

C.2.1. JAGS CODE FOR BASIC RICKER MODEL 

model{ 

# adapted from code originally developed by Catherine Michielsens, Sue Grant, 

# and Bronwyn MacDonald. Modifications based on comments and code samples 

# from Ann-Marie Huang, Brendan Connors, Charmaine Carr-Harris, and 

# Wendell Challenger. 

for (i in 1:N) { #loop over N sample points 

R_Obs[i] ~ dlnorm(logR[i],tau_R) #likelihood 

logR[i] <- RS[i] +log(S[i]) # calc log(R) fitted values 

RS[i] <- ln.alpha - beta * S[i] # ricker model 

log.resid[i] <- log(R_Obs[i]) - logR[i] 

} 

ln.alpha ~ dnorm(p.alpha,tau_alpha) #prior for ln.alpha 

beta <- 1/ S.max # prior for beta 

# capacity prior: uniform OR lognormal. Use only one!!!!! 

S.max ~ dunif(1/10�6, max.scalar * smax.in ) # data is in millions 

S.max ~ dlnorm(log(smax.in), tau_smax) T(0,smax.limit) 

smax.limit <- max.scalar * smax.in # typical default 3 * (Max Obs) 

# non-updating samples (so can plot priors) 

S.max.prior ~ dunif(1/10�6, max.scalar * smax.in) 

ln.alpha.prior ~ dnorm(p.alpha,tau_alpha) 

#prior for precision parameter 

tau_R ~ dgamma(shape.tau_R,lambda_tau_R) 

sigma <- 1/sqrt(tau_R) 

# bias correction for lognormal skewness 

ln.alpha.c <- ln.alpha + (sigma * sigma / 2) 

} 
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C.2.2. JAGS CODE FOR AR1 RICKER MODEL 

model{ 

# This is a JAGS version of the Ricker model fit with lag-1 autoregression 

# correction (AR1). Adapted from code originally developed by Catherine 

# Michielsens, Sue Grant, and Bronwyn MacDonald. Modifications based on comments 

# and code samples from Ann-Marie Huang, Brendan Connors, Charmaine Carr-Harris, 

# and Wendell Challenger. The code is expanded for AR1 based on Eq21 and 22 of 

# Fleischman and Evenson (2010; ADFG FMS10-04). 

# do first year 

R_Obs[1] ~ dlnorm(logR[1],tau_R) 

logR[1] <- log(S[1]) + RS[1] 

RS[1] <- ln.alpha - beta * S[1] + phi * log.resid.0 

# do second year 

R_Obs[2] ~ dlnorm(logR[2],tau_R) 

logR[2] <- log(S[2]) + RS[2] 

RS[2] <- ln.alpha - beta * S[2] + phi * log.resid[1] 

log.resid[1] <- log(R_Obs[1]) - logR[1] 

#loop over rext of N sample points (starting with the third) 

for (i in 2:N) { 
log.resid[i] <- log(R_Obs[i]) - logR[i] 

} 

for (i in 3:N) { 
R_Obs[i] ~ dlnorm(logR[i],tau_R) # likelihood 

logR[i] <- log(S[i]) + RS[i] 

RS[i] <- ln.alpha - beta * S[i] + phi * log.resid[i-1] 

} 

ln.alpha ~ dnorm(p.alpha,tau_alpha) #prior for ln.alpha 

beta <-1/S.max # prior for beta 

# capacity prior: uniform OR lognormal. Use only one!!!!! 

S.max ~ dunif(1/10�6, max.scalar * smax.in ) # data is in millions 

S.max ~ dlnorm(smax.in, tau_smax) T(0,smax.limit) 

smax.limit <- max.scalar * smax.in # typical default 3 * (Max Obs) 

# non-updating samples (so can plot priors) 

S.max.prior ~ dunif(1/10�6, max.scalar * smax.in) 

ln.alpha.prior ~ dnorm(p.alpha,tau_alpha) 

tau_R ~ dgamma(shape.tau_R,lambda_tau_R) #prior for precision parameter 
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model{ 

# adapted from code by Ann-Marie Huang, which was originally contributed by 

# Catherine Michielsens. Modifications based on comments and code samples 

# from Ann-Marie Huang, Brendan Connors, Charmaine Carr-Harris, and Wendell 

# Challenger. 

for (i in 1:N) { #loop over N sample points 

R_Obs[i] ~ dlnorm(logR[i],tau_R) #likelihood 

logR[i] <- RS[i] +log(S[i]) # calc log(R) 

RS[i] <- ln.alpha[i] - beta * S[i] # ricker model 

year[i]<-i 

log.resid[i] <- log(R_Obs[i]) - logR[i] 

} 

for (i in 2:N){ 
ln.alpha[i] <- ln.alpha[i-1] + w[i] 

w[i]~ dnorm(0,tauw) 

} 

#prior for alpha (actually ln.alpha!) 

ln.alpha[1] ~ dnorm(p.alpha,tau_alpha) 

# prior for beta 

beta <-1/ S.max 

# capacity prior: uniform OR lognormal. Use only one!!!!! 

S.max ~ dunif(1/10�6, max.scalar * smax.in ) # data is in millions 

# non-updating samples (so can plot priors) 

S.max.prior ~ dunif(1/10�6, max.scalar * smax.in) 

ln.alpha.prior ~ dnorm(p.alpha,tau_alpha) 

sigma <- 1/sqrt(tau_R) # based on Fleishman and Evenson (2010; ADFG FMS10-04) 

phi ~ dnorm(0.5,0.0001) #T(0.0001,0.9999) 

log.resid.0 ~ dnorm(0,tau.red) #T(-3,3) 

tau.red <- tau.white * (1-phi*phi) 

tau.white ~ dgamma(shape.tauw,lambda_tauw) 

# bias correction for lognormal skewness 

ln.alpha.c <- ln.alpha + ((sigma * sigma) / (2 * (1-phi*phi)) ) 

} 

C.2.3. JAGS CODE FOR RECURSIVE BAYES RICKER MODEL WITH TIME-VARYING 
PRODUCTIVITY 
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S.max ~ dlnorm(log(smax.in), tau_smax) T(0,smax.limit) 

smax.limit <- max.scalar * smax.in # typical default 3 * (Max Obs) 

tau_R ~ dgamma(shape.tau_R,lambda_tau_R) #prior for precision parameter 

sigma <- 1/sqrt(tau_R) # based on Fleishman and Evenson 

tauw~ dgamma(shape.tauw,lambda_tauw) 

varw<- 1/tauw 

sigw<- 1/sqrt(tauw) 

# bias correction for lognormal skewness 

for (i in 1:N) { 
ln.alpha.c[i] <- ln.alpha[i] + (sigma * sigma / 2) 

} 

} 

C.3. BENCHMARK CALCULATION FUNCTIONS 

C.3.1. R CODE FOR SMSY CALCULATION 

Rapid Ricker includes four alternative options for calculating Smsy: (1) approximation from 
Hilborn (1985), (2) approximation from Peterman et al. (2000), (3) explicit solution from Scheuerell 
(2016), using code from the samSim Package (Freshwater et al. 2025), and (4) a brute force 
approximation. 

The main function handles inputs and specifcations, and includes three of the four alternative 
calculation approaches: 

#' calcRickerSmsy 
#' 
#' This function calculates Smsy for a Ricker a,b parameters. Note: This function 
#' DOES NOT apply bias correction on alpha. Whether the output is bias-corrected 
#' estimates or not depends on the par set provided by the user. This keeps the 
#' parameter estimation and benchmark calculation steps clearly separated. 
#' 
#' @param X a data frame with columns ln.alpha, beta 

#' @param method one of "Hilborn1985","Petermanetal2000","Scheuerell2016", or 

#' "BruteForce" 

#' @param sr.scale scalar applied to SR data in the model fitting step, 
#' need it here to scale up the Sgen values 

#' @param out.type either "BMOnly" or "Full" 
#' @keywords Smsy 
#' @export 

calcRickerSmsy <- function (X, method = "Scheuerell2016",sr.scale =1, 
out.type = "Full"){ 
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if (!(method %in% c("Hilborn1985","Petermanetal2000","Scheuerell2016", 
"BruteForce") )){ 

warning("Method must be one of Hilborn1985,Petermanetal2000, 

Scheuerell2016, BruteForce") 

stop()} 

X.orig <- X 

# check for negative ln.a or b pars 

X$ln.alpha[X$ln.alpha < 0] <- NA 

X$beta[X$beta < 0] <- NA 

do.idx <- !is.na(X$ln.alpha) & !is.na(X$beta) 

smsy.est <- rep(NA, dim(X)[1] ) 

if (sum(do.idx)>0){ 

if (method == "Hilborn1985") { 
smsy.est[do.idx] <- X$ln.alpha[do.idx]/X$beta[do.idx] * 

(0.5-0.07*X$ln.alpha[do.idx]) * sr.scale } 

if (method == "Petermanetal2000") { 
peterman.approx <- (0.5 - 0.65 * X$ln.alpha[do.idx]�1.27 / 

(8.7 + X$ln.alpha[do.idx]�1.27)) 

smsy.est[do.idx] <- X$ln.alpha[do.idx] * peterman.approx[do.idx] / 

X$beta[do.idx] * sr.scale } 

if (method == "Scheuerell2016") { 
# adapted from samSim package (https://github.com/Pacific-salmon-assess/samSim) 

smsy.est[do.idx] <- (1 - gsl::lambert_W0(exp(1 - X$ln.alpha[do.idx]))) / 

X$beta[do.idx] * sr.scale } 

if (method == "BruteForce") { 
smsy.est[do.idx] <- mapply(smsy.proxy, ln.a = X$ln.alpha[do.idx] , 

b = X$beta[do.idx], sr.scale = sr.scale )} 

} # end if any do.idx 

umsy.est <- X$beta * smsy.est/sr.scale 

if (out.type == "Full"){return(bind_cols(X.orig,SmsyCalc = method, 
Smsy = smsy.est, Umsy = umsy.est)) } 

if (out.type == "BMOnly"){return(bind_cols(Smsy = smsy.est, Umsy = umsy.est)) } 

} # end calcRickerSmsy 
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#' calcRickerSgen 
#' 
#' This function calculates Sgen for a set of Ricker ln.a,b,sigma parameters, 
#' and optionally Smsy. NOTE: If method is "HoltOgden2013", then Smsy is always 
#' calculated based on Hilborn (1985) approximation, and if Smsy is provided, 

#' it will give a warning that it was ignored. Note: This function DOES NOT 

#' apply bias correction on alpha. Whether the output is bias-corrected 

#' estimates or not depends on the par set provided by the user. This keeps 

#' the parameter estimation and benchark calculation steps clearly separated. 

#' 
#' @param X a data frame with columns ln.alpha, beta, sigma, and optionally Smsy 

#' @param method one of "HoltOgden2013", "samSim", "Connorsetal2022","BruteForce" 

#' @param sr.scale scalar applied to SR data in the model fitting step, 
#' need it here to scale up the Sgen values 

#' @param out.type either "BMOnly" or "Full" 
#' @keywords Sgen 
#' @export 

calcRickerSgen <- function (X, method = "Connorsetal2022",sr.scale = 1, 
out.type = "Full",tracing = FALSE){ 

if (!(method %in% c("HoltOgden2013", "samSim", "Connorsetal2022", 

The brute-force approximation is implemented as a sub-routine: 

smsy.proxy <- function (ln.a,b,sr.scale){ 

if (!is.na(ln.a) & !is.na(b)){ 
spn.check <- seq((1/sr.scale), 1/b ,length.out = 3000) 

rec.check <- ricker.rec(S = spn.check,ricker.lna = ln.a, ricker.b = b) 

test.df <- data.frame(Spn = spn.check, Rec = rec.check) %>% 

mutate(Yield = Rec-Spn) %>% arrange(-Rec) 

s.msy <- spn.check[which.max(rec.check - spn.check) ] * sr.scale 

} 

if (is.na(ln.a) | is.na(b)){s.msy <- NA} 

return(s.msy) 

} 

C.3.2. R CODE FOR SGEN CALCULATION 

Rapid Ricker includes four alternative options for calculating Sgen: (1) solver function extracted 
from Holt and Ogden (2013), (2) solver function extracted from the samSim Package (Freshwater 
et al. 2025), (3) solver function used in Connors et al. (2023) and generously shared by the lead 
author, and (4) a brute force approximation. 

The main function handles inputs and specifcations, and includes three of the four alternative 
calculation approaches: 
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"BruteForce") )){ 

warning("Method must be one of HoltOgden2013, SamSim, Connorsetal2022, 

BruteForce") 

stop()} 

X.orig <- X 

# check for negative ln.a or b pars 

X$ln.alpha[X$ln.alpha < 0] <- NA 

X$beta[X$beta < 0] <- NA 

do.idx <- !is.na(X$ln.alpha) & !is.na(X$beta) 

sgen.est <- rep(NA, dim(X)[1] ) 

if (sum(do.idx)>0){ 

#---------------------------------------------

if (method == "HoltOgden2013") { 

if (!is.null(X$Smsy[do.idx]) & sum(is.na(X$Smsy[do.idx])) == 0){ 
warning("Smsy provided as input, but not used for this method! ")} 

if (is.null(X$sigma)){X$sigma <- 1} 

sgen.est[do.idx] <- unlist(mapply(Sgen.solver.HO, 

a = exp(X$ln.alpha[do.idx]), 

b = X$beta[do.idx], 

sig = X$sigma[do.idx])) * sr.scale 

} # end if HoltOgden2013 

#--------------------------------------------

if (method == "samSim") { 

if (is.null(X$Smsy[do.idx]) | sum(is.na(X$Smsy[do.idx])) > 0){ 
warning("Need to provide Smsy column in input data frame for this method! ") 

stop()} 

if (is.null(X$sigma)){X$sigma <- 1} 

samsim.out <- mapply(sGenSolver.samSim.wrapper, ln.a = X$ln.alpha[do.idx], 

b = X$beta[do.idx], 

sigma = X$sigma[do.idx], 

SMSY = X$Smsy[do.idx]) 

sgen.est[do.idx] <- samsim.out * sr.scale 

} # end if samSim 

#---------------------------------------------

if (method == "Connorsetal2022") { 
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if (is.null(X$Smsy[do.idx]) | sum(is.na(X$Smsy[do.idx])) > 0){ 
warning("Need to provide Smsy column in input data frame for this method! ") 

stop()} 

# https://stackoverflow.com/questions/38961221/uniroot-solution-in-r 

bc.out<- mapply(get_Sgen.bc, a = exp(X$ln.alpha[do.idx]),b = X$beta[do.idx], 

int_lower = -1, int_upper = 1/X$b[do.idx]*2, 

SMSY = X$Smsy[do.idx]/sr.scale) 

sgen.est[do.idx] <- bc.out * sr.scale 

} # end if "Connorsetal2022" 

if (method == "BruteForce") { 

if (is.null(X$Smsy[do.idx]) | sum(is.na(X$Smsy[do.idx])) > 0){ 
warning("Need to provide Smsy column in input data frame for this method! ") 

stop()} 

sgen.est[do.idx] <- mapply(sgen.proxy, ln.a = X$ln.alpha[do.idx] , 

b = X$beta[do.idx], 

Smsy = X$Smsy[do.idx], 

sr.scale = sr.scale ) 

} 

} # end if any do.idx 

if (out.type == "Full"){ 
return(bind_cols(X.orig,SgenCalc = method,Sgen = sgen.est) %>% 

mutate(Ratio = round(Smsy/Sgen,2) )) } 

if (out.type == "BMOnly"){return(sgen.est) } 

} # end calcRickerSgen 

Solver subroutine for the Holt and Ogden (2013) implementation 

Sgen.model.HO <-function (S,a,b,sig,trace = FALSE){ 
PR<-a*S*exp(-b*S) 

SMSY<-(log(a)/b)*(0.5-0.07*log(a)) 

epsilon.wna=log(SMSY)-log(PR) #residuals 

epsilon=as.numeric(na.omit(epsilon.wna)) 

nloglike=sum(dnorm(epsilon,0,sig, log=T)) 

if (is.na(sum(dnorm(epsilon,0,sig, log=T)))==TRUE) print(c(a,b,sig)) 
return(list(PR=PR, epsilon=epsilon, nloglike=nloglike)) 

#actually returns postive loglikelihood (CH note) 

} 

Sgen.fn.HO <- function (S,a,b,sig){ -1.0*Sgen.model.HO(S,a,b,sig)$nloglike} 
#gives the min Ricker LL 
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Sgen.solver.HO <- function (a,b,sig) { 
SMSY<-(log(a)/b)*(0.5-0.07*log(a)) 

SRfit=optimize(f=Sgen.fn.HO,interval=c(0, SMSY), a=a, b=b, sig=sig) 

# nb: not optim() !! 

return(list(SRfit=SRfit$minimum)) # returns the minimum S 

} 

Solver subroutines for the samSim implementation 

sGenSolver.samSim.wrapper <- function (ln.a, b, sigma,SMSY){ 
sgen.val <- sGenSolver.samSim( theta = c(ln.a, b, sigma), sMSY = SMSY) 

sgen.out <- as.numeric(sgen.val) 

return(sgen.out) 

} 

sGenOptimum.samSim <- function (S, theta, sMSY) { 
a = theta[1] 

b = theta[2] 

sig = exp(theta[3]) 

prt <- S * exp(a - b * S) 

epsilon <- log(sMSY) - log(prt) 

nLogLike <- sum(dnorm(epsilon, 0, sig, log = T)) 

return(list(prt = prt, epsilon = epsilon, nLogLike = nLogLike, S = S)) 

} 

sGenSolver.samSim <- function (theta, sMSY) { 
#gives the min Ricker log-likelihood 

fnSGen <- function (S, theta, sMSY) -1.0 * 
sGenOptimum.samSim(S, theta, sMSY)$nLogLike 

fit <- optimize(f = fnSGen, interval = c(0, ((theta[1] / theta[2]) * 

(0.5 - 0.07 * theta[1]))), 

theta = theta, sMSY = sMSY) 

return(list(fit = fit$minimum)) 

} 

Solver subroutines for the Connors et al. (2023) implementation 

get_Sgen.bc <- function (a, b, int_lower, int_upper, SMSY) { 
fun_Sgen.bc <- function (Sgen, a, b, SMSY) {Sgen * a * exp( - b* Sgen) - SMSY} 

Sgen <- uniroot(fun_Sgen.bc, interval=c(int_lower, int_upper), 

a=a, b=b, SMSY=SMSY)$root 

} 

The brute-force approximation is implemented as a sub-routine: 

ricker.rec <- function (S,ricker.lna,ricker.b) { 
exp( (ricker.lna - ricker.b * S) + log(S) )} 
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#' calcAggEqProf 
#' 
#' This function calculates equilibrium profiles using eq_ricker_us() for 
#' each MCMC sample in the input file, then generates stock-level and 
#' aggregate-level summaries across MCMC samples. 
#' #' @param data.use a data frame with columns SampleID, Aggregate, StkID, 
#' Stock , Umsy,Smsy, and Sgen 

#' @export 

calcAggEqProf <- function (data.use){ 

for (u.do in seq(0, 1, 0.01)){ 

print(paste("doing U =",u.do)) 

#u.do <- 0.7 

out.raw <- bind_cols( 

data.use %>% select(SampleID,Aggregate,StkID,Stock), 

eq_ricker_us(U_msy = data.use$Umsy, S_msy = data.use$Smsy, 

S_gen = data.use$Sgen , U.check = u.do) 

) 

tmp.out.bystk <- out.raw %>% group_by(Aggregate, StkID, Stock) %>% 

summarize(U = median(U), 

sgen.proxy <- function (ln.a,b,Smsy, sr.scale){ 

if (!is.na(ln.a) & !is.na(b)){ 

spn.check <- seq((1/sr.scale),1.5*Smsy/sr.scale,length.out = 3000) 

rec.check <- ricker.rec(S = spn.check,ricker.lna = ln.a, ricker.b = b) 

s.gen <- min(spn.check[rec.check > Smsy/sr.scale],na.rm=TRUE) *sr.scale 

return(s.gen) 

}} 

C.4. ER-BASED EQULIBRIUM PROFILE FUNCTIONS 

This function calculates equilibrium spawner abundance and equilibrium catch under the following 
assumptions: (1) There is no recruitment or age-at-return process variability (all v_{y,j} are 0); 
(2) All populations are fshed at equal exploitation rates; (3) The same exploitation rate is used 
year after year; (4) Productivity of component stocks is stable over time; (5) there are no other 
signifcant sources of mortality (e.g., no en-route mortality, no pre-spawn mortality). Function 
developed from code shared by Brendan Connors (DFO), implementing the approach from 
Schnute and Kronlund (1996). 

The main functions handles inputs, settings for the calculations, and outputs: 
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NumSamples = n(), 

NumNA = sum(is.na(S)), 

ProbOverfished = sum(overfished,na.rm=TRUE)/n(), 

ProbExtirpated = sum(extirpated,na.rm=TRUE)/n(), 

ProbBelowSgen = sum(belowSgen,na.rm=TRUE)/n(), 

EqSpn_p10 = quantile(S,probs=0.1,na.rm=TRUE), 

EqSpn_p25 = quantile(S,probs=0.25,na.rm=TRUE), 

EqSpn_Med = median(S,na.rm=TRUE), 

EqSpn_p75 = quantile(S,probs=0.75,na.rm=TRUE), 

EqSpn_p90 = quantile(S,probs=0.9,na.rm=TRUE), 

EqCt_p10 = quantile(C,probs=0.1,na.rm=TRUE), 

EqCt_p25 = quantile(C,probs=0.25,na.rm=TRUE), 

EqCt_Med = median(C,na.rm=TRUE), 

EqCt_p75 = quantile(C,probs=0.75,na.rm=TRUE), 

EqCt_p90 = quantile(C,probs=0.9,na.rm=TRUE), 

.groups = "keep" 

) 

tmp.agg.sums <- out.raw %>% group_by(Aggregate,SampleID) %>% 

summarize(U = median(U),AggSpn = sum(S,na.rm=TRUE), 

AggCt = sum(C,na.rm=TRUE), 

NumStks = n(), 

NumStksOverfished = sum(overfished,na.rm=TRUE), 

NumStksExtirpated = sum(extirpated,na.rm=TRUE), 

NumStksBelowSgen = sum(belowSgen,na.rm=TRUE), 

.groups = "keep" 

) 

tmp.out.byagg <- tmp.agg.sums %>% group_by(Aggregate) %>% 

summarize(U = median(U), 

NumSamples = n(), 

NumNA = sum(is.na(AggSpn)), 

NumStksOverfished_p10 = quantile(NumStksOverfished, 

probs=0.1,na.rm=TRUE), 

NumStksOverfished_p25 = quantile(NumStksOverfished, 

probs=0.25,na.rm=TRUE), 

NumStksOverfished_Med = median(NumStksOverfished,na.rm=TRUE), 

NumStksOverfished_p75 = quantile(NumStksOverfished, 

probs=0.75,na.rm=TRUE), 

NumStksOverfished_p90 = quantile(NumStksOverfished, 

probs=0.9,na.rm=TRUE), 

NumStksExtirpated_p10 = quantile(NumStksExtirpated, 

probs=0.1,na.rm=TRUE), 

NumStksExtirpated_p25 = quantile(NumStksExtirpated, 

probs=0.25,na.rm=TRUE), 

NumStksExtirpated_Med = median(NumStksExtirpated,na.rm=TRUE), 

NumStksExtirpated_p75 = quantile(NumStksExtirpated, 
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probs=0.75,na.rm=TRUE), 

NumStksExtirpated_p90 = quantile(NumStksExtirpated, 

probs=0.9,na.rm=TRUE), 

NumStksBelowSgen_p10 = quantile(NumStksBelowSgen, 

probs=0.1,na.rm=TRUE), 

NumStksBelowSgen_p25 = quantile(NumStksBelowSgen, 

probs=0.25,na.rm=TRUE), 

NumStksBelowSgen_Med = median(NumStksBelowSgen,na.rm=TRUE), 

NumStksBelowSgen_p75 = quantile(NumStksBelowSgen, 

probs=0.75,na.rm=TRUE), 

NumStksBelowSgen_p90 = quantile(NumStksBelowSgen, 

probs=0.9,na.rm=TRUE), 

EqSpn_p10 = quantile(AggSpn,probs=0.1,na.rm=TRUE), 

EqSpn_p25 = quantile(AggSpn,probs=0.25,na.rm=TRUE), 

EqSpn_Med = median(AggSpn,na.rm=TRUE), 

EqSpn_p75 = quantile(AggSpn,probs=0.75,na.rm=TRUE), 

EqSpn_p90 = quantile(AggSpn,probs=0.9,na.rm=TRUE), 

EqCt_p10 = quantile(AggCt,probs=0.1,na.rm=TRUE), 

EqCt_p25 = quantile(AggCt,probs=0.25,na.rm=TRUE), 

EqCt_Med = median(AggCt,na.rm=TRUE), 

EqCt_p75 = quantile(AggCt,probs=0.75,na.rm=TRUE), 

EqCt_p90 = quantile(AggCt,probs=0.9,na.rm=TRUE), 

.groups = "keep" 

) 

if (exists("out.summary.stk")){ out.summary.stk <-
bind_rows(out.summary.stk,tmp.out.bystk) } 

if (!exists("out.summary.stk")){ out.summary.stk <- tmp.out.bystk } 

if (exists("out.summary.agg")){ out.summary.agg <-
bind_rows(out.summary.agg,tmp.out.byagg) } 

if (!exists("out.summary.agg")){ out.summary.agg <- tmp.out.byagg } 

out.summary.stk <- out.summary.stk %>% arrange(Aggregate, StkID) 

out.summary.agg <- out.summary.agg %>% arrange(Aggregate) 

} # end looping through U values 

# alternate aggregation calc 

out.summary.agg.stk.pm <- out.summary.stk %>% group_by(Aggregate,U) %>% 

summarize(NumStksOverfishedv2p20 = sum(ProbOverfished >= 0.2), 

NumStksExtirpatedv2p20 = sum(ProbExtirpated >= 0.2), 

NumStksBelowSgenv2p20 = sum(ProbBelowSgen >= 0.2), 

NumStksOverfishedv2p40 = sum(ProbOverfished >= 0.4), 

NumStksExtirpatedv2p40 = sum(ProbExtirpated >= 0.4), 

NumStksBelowSgenv2p40 = sum(ProbBelowSgen >= 0.4), 

.groups = "keep" 
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) 

out.summary.agg <- out.summary.agg %>% left_join(out.summary.agg.stk.pm, 

by = c("Aggregate","U")) 

return(list(summary.stk = out.summary.stk, summary.agg = out.summary.agg)) 

} 

The core calculations are done in subroutine: 

#' eq_ricker_us 
#' 

#' @param U_msy point estimate of exploitation rate at MSY, typically 

#' one MCMC sample. This version uses S_msy and U_msy as inputs. 

#' eq_ricker_ab() does the comparative calculation using ln.alpha and 

#' beta inputs. 

#' @param S_msy point estimate of exploitation rate at MSY, typically one 
#' MCMC sample 

#' @param S_gen point estimate of Sgen, the spawner abundance that allows 
#' rebuilding to Smsy in 1 generation in absence of fishing 

#' @param U.check vector with ER increments to evaluate, default is 0.5 
#' @export 
#' @examples 

eq_ricker_us <- function (U_msy, S_msy, S_gen, U.check = 0.5) { 
Seq <- ((U_msy - log((1 - U_msy)/(1 - U.check)))/U_msy) * S_msy 

Seq[Seq < 0] <- 0 

Ceq <- (U.check * Seq)/(1 - U.check) 

Ceq[is.na(Ceq)] <- 0 

Ceq[Ceq < 0] <- 0 

overfished <- ifelse(U.check > U_msy, 1, 0) 

extirpated <- ifelse(Seq == 0, 1, 0) 

belowSgen <- ifelse(Seq < S_gen, 1, 0) 

return(data.frame(U = U.check, S = Seq, C = Ceq, 

overfished = overfished, extirpated= extirpated, 

belowSgen = belowSgen)) 

} 
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APPENDIX D. HIERARCHICAL BAYESIAN MODEL (HBM) OF SOCKEYE SALMON 
STOCK-RECRUIT DATA IN THE SKEENA RIVER SYSTEMS 

This appendix contributed by Murdoch McAllister and Wendell Challenger 

Note: This appendix is a stand-alone contribution to the Research Document. It has been included 
as a cross-check on key results (e.g., productivity scenarios), and to establish a link between the 
single-stock SR analyses present in the main report and previous work by Korman and English 
(2013) which used a hierarchical Bayesian approach. This appendix applies the approach of 
Korman and English (2013) to the updated SR data and includes extensive sensitivity testing to 
allow more direct comparisons with the single-stock model fts. 

A hierarchical Bayesian model (HBM) that was developed for the estimation of Ricker stock-
recruit model parameters for Sockeye salmon stocks in the Skeena river system. There was 
insuffcient time to complete an HBM for the Nass River basin. This structuring was used because 
it was assumed the exchangeability in the stock productivity parameter was restricted to stocks 
within each basin. Differences in the frequency distribution of life history attributes of stocks such 
as age composition of spawners, the relative frequency of lake rearing and non-lake rearing life 
history types and differences in run timings and marine migration routes exist between Sockeye 
salmon stocks in these two watersheds. 

D.1. MATHEMATICAL AND STATISTICAL FORMULATION OF THE HBM 

The Skeena HBM models use a linearized form of the Ricker stock-recruit model: � � 

log 
Rs,y 

= as−βs · Ss,y + ϵs,y (D.1) 
Ss,y 

where Rs,y is the observed abundance of recruits produced in stock s in brood year y by the 
corresponding abundance of spawners brood year Ss,y. The parameter as is the natural logarithm 
of the maximum rate of population increase, βs is the stock-specifc coeffcient for the density-
dependent effect of spawner abundance on stock productivity and ϵs,y represents stock by year 
error term that is assumed to be Normally distributed. 

The HBM framework presented is based on that formulated by Korman and English (2013) who 
estimated stock-recruit parameters for numerous salmon stocks in the Skeena River system. The 
HBM presumes, as Korman and English (2013) did, that the Ricker a parameter is exchangeable 
between stocks within a river system with a hyper prior mean and hyper prior standard deviation: 

as ∼ ln Normal (µa, τa) (D.2) 

where µa is the natural logarithm of the hyper prior median of the Ricker a parameter, and τa is 
the hyperprior precision of the Ricker a parameter. The following hyperpriors were assigned for 
µa and τa: � � 

µa ∼ Normal 0.5, 10−6 , and τa ∼ Gamma (0.5, 0.5) . (D.3) 

Korman and English (2013) choose these priors as vague priors and the same hyperpriors were 
retained in the current formulation. 

A informative log-normal prior was also assumed for density-dependency parameter βs which 
follows the formulation used in Korman and English (2013): 

βs ∼ ln Normal (µβ,s, τβ,s) (D.4) 
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where µβ,s was obtained based on results from previous limnological lake productivity analyses 
that assessed the spawner abundance (i.e., Smax,s) which could generate on average the maximum 
number of recruits for each stock. The values µβ,s and τβ,s were determined as: � � � �21 1 

µβ,s = log , and τβ,s = . (D.5) 
Smax,s σmax,s 

where σmax,s is the prior standard deviation in the natural logarithm of Smax,s. Note that values 
for σmax,s are nearly identical to the coeffcient of variation (CV) for smaller values of σmax,s 

(i.e., about 0.5 and lower) and as such we use CV and σmax,s interchangeably when describing 
precision of the prior. That said, the ratio of CV to σmax,s increases to noticeably larger than 1 
(i.e., CV is larger than σmax,s) at larger values of σmax,s meaning the true CV is larger than stated 
and the prior will be more diffuse. The values of Smax,s and σmax,s for each stock in the Skeena 
watershed are provided in Table D.1. 

Table D.1. Prior median values for stock-specifc Smax and the prior standard deviation in the natural 
logarithm of Smax (i.e., σmax,s) based on results from previous lake productivity analyses. The two 
instances where three stocks are listed in the same line, the available mean Smax values were added 
since the individual rearing lakes for these stocks were geographically very close together and the 
stock-recruit data for these stocks were thus combined into a single time series of stock-recruit data for 
stock-recruit parameter estimation. 

Basin Stock Lake Smax,s CV/σmax,s 

Skeena Alastair Alastair 23,437 0.3 
Skeena Asitka Asitka 877 2.0 
Skeena Babine Early Wild Babine 361,649 2.0 
Skeena Babine Late Wild Babine 361,649 2.0 
Skeena Babine Mid Wild Babine 361,649 2.0 
Skeena Bear Bear 40,532 0.3 
Skeena Fulton Babine 361,649 2.0 
Skeena Johnston Johnston 4,125 0.3 
Skeena Kitsumkalum Kitsumkalum 20,531 0.3 
Skeena Kitwanga Kitwanga 36,984 0.3 
Skeena Lakelse Lakelse 35,916 0.3 
Skeena Mcdonell Mcdonell/Dennis/Aldrich 6,279 0.3 
Skeena Morice Morice 191,362 2.0 
Skeena Motase Motase 1,764 0.3 
Skeena Pinkut Babine 361,649 2.0 
Skeena Slamgeesh Slamgeesh 423 0.3 
Skeena Sustut Sustut 2,775 0.3 
Skeena Swan/Stephens Swan/Stephens/Club 29,090 0.3 

The values for σmax,s were obtained for most of the Skeena Sockeye salmon stocks from Korman 
and English (2013). It should be noted that a value for σmax,s of 2.00 makes the corresponding 
prior for Smax,s vague and diffuse. For example, relative to the median, the lower and upper 95% 
credible intervals would be about ffty times lower and ffty times higher than the median. In 
cases where σmax,s was set at 2.00, at least some members of the Working Group had raised 
concerns about the empirical basis for the values for Smax,s that could be obtained for those 
stocks. The Babine stocks represented a stock aggregate that was divided fve ways, the Asitka 

216 



was based on an approximation and Morice was a two lake system where only the larger lake 
was measured. Due to these issues diffuse priors were used for these stocks. 

At the time of analysis no lake productivity estimate was available for Asitka. As a result a crude 
approximation of the prior median Smax,s for Asitka was obtained from the product of the lake 
surface area for Asitka and the average Smax,s per unit lake area for Skeena watershed lakes for 
which Smax,s estimates for Sockeye salmon were available. Due the large uncertainty associated 
with Smax,s for Asitka, a value of 2.00 was assumed for σmax,s for Askita which makes this into a 
vague prior. 

For the fve Babine Lake stocks there was admittedly highly uncertain over the appropriate stock-
specifc lake capacity due to uncertainty over how the common resource is shared between the 
fve stocks as juveniles for at least fve of the recognized Babine stocks rear in Babine Lake. The 
prior median for Smax,s for each of the fve Babine Lake stocks were obtained by dividing the total 
Babine lake productivity estimate by fve, providing an equal allocation of the shared resource to 
each Babine stock. Because the true proportion of lake productivity used by each stock remains 
unknown a high level of uncertainty (i.e., a σmax,s value 2.00) was assigned for each for each 
Babine Lake stock. 

As in Korman and English (2013) a Normal likelihood function was applied in the HBM and 
the same prior was applied to the standard deviation in the deviations between predicted and 
observed productivity: � � � �Rs,y RS log ∼ Normal µ , τs (D.6) s,ySs,y 

where log(Rs,y/Ss,y) is the observed natural logarithm of the ratio of recruits produced by spawners 
RS (i.e., productivity) in brood year y for stock s, µ is the stock-specifc productivity predicted by s,y 

the Ricker stock-recruit model (see equation D.1), conditioned on parameters as and βs, and τs is 
the stock-specifc precision used in the likelihood function and is given by: 

τs =
1 

(D.7) 
σ2 
s 

where σs is the stock-specifc standard deviation in the deviates between observed and predicted 
productivity. The prior for σs is the same as that applied by Korman and English (2013): 

σs ∼ Uniform(0.05, 10). (D.8) 

The original Korman and English (2013) HBM did not consider time varying changes in productivity; 
because this was of interest in the current investigation, the Korman and English (2013) HBM 
was extended to include a common shared year effect on stock productivity (i.e., log(Rs,y/Ss,y)). 
It is hypothesized that due to the spatial proximity of the Sockeye salmon stocks within a basin 
(i.e., Skeena basin) and overlap between stocks in migration pathways in freshwater and the 
marine environment that the annual productivity of different stocks will deviate from Ricker model 
predictions in the same direction and with similar magnitude in each year. Therefore, in addition 
to a stock-specifc deviate between the Ricker model prediction of productivity and the observed 
productivity, a common shared deviate or year effect was also included in the HBM. The linearized 
form of the Ricker model that includes the common shared year effect Ty in year y is thus given 
by: 

RS µs,y = as − βs · Ss,y + Ty (D.9) 

The prior for Ty is given by, 
Ty ∼ Normal (0, τT ) (D.10) 
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where τT is the prior precision in the common shared year effect that is computed as τT = 1/σ
2 
T 

with σT representing the standard deviation in common shared year effects. The hyperprior for 
σT was determined as: � � 

σT ∼ ln Normal log (0.8) , 
1 

. (D.11) 
0.72 

The prior for σT was chosen to be mildly informative with the prior central tendency and prior 
precision set at values to allow the data to inform a large range of values and accommodate 
potentially large interannual variation in common shared year effects. 

The estimated common shared year effects are expected to represent average deviations from 
Ricker model stock-productivity predictions across stocks in a given year. The common shared 
year effect could potentially result from better than average or worse than average survival 
rates from natural mortality within a given year experienced by the stocks in either freshwater or 
saltwater. However, it could also result from run reconstruction errors, for example, underestimation 
or overestimation of the total catch. 

D.2. MODEL FITTING 

The MCMC algorithms applied for posterior integration of the HBM included WinBUGS 1.4.3 and 
JAGS and practically identical parameter estimates were obtained between the two software 
packages. Under the initial WinBUGS implementations the burn-in was achieved within about 
10,000 iterations and well-pronounced posterior density functions were obtained for parameter 
estimates. However, under both software packages, for some of the stocks, the MCMC chains 
could stray very rarely to extreme low values for the Ricker β parameter or extreme high values 
for the Ricker a parameter. Extreme low values for the Ricker β parameter map out to extreme 
high values, e.g., ten times the value of the posterior mode, for derived parameters such as 
the average unfshed spawner abundance, S0, or spawning stock abundance associated with 
the maximum sustainable yield, Smsy. Such extreme outlier values were considered to be well 
outside of the support of the data and may be artifacts of the operation of the MCMC algorithms 
applied. 

To prevent the inclusion of extreme outlier values, a minimum boundary was applied to the prior 
for the Ricker β parameter. The prior minimum value for the Ricker β parameter was established 
as follows. An upper bound on the value for Smax was obtained for each stock as fve times the 
prior central tendency specifed for Smax : 

Smax,max,s = 5 × Smax,s and βmin,s =
1 

. (D.12) 
Smax,max,s 

The adjusted prior for βs that was applied was thus: 

max (βs ∼ ln Normal (µβ,s, τβ,s) , βmin,s) (D.13) 

The application of this modifed prior for βs thus prevented anomalously low values for βs and 
anomalously large MCMC values for abundance reference points such as Smax, Smsy, and S0. 

The posterior predictive distribution for the Ricker a parameter for an unsampled population, ap, 
is given by: 

ap ∼ ln Normal (µa, τa) (D.14) 

This distribution refects the effective prior density function for the Ricker a parameter that was 
applied to estimate this parameter for each stock. 
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To provide approximations of how productivity could be varying systematically over years, representations 
of time varying productivity were obtained by adding the running n = 4 or 5 year averages of the 
common shared year effects to the a parameter for each stock: 

y 

as,y,n = as +
1 · Ti (D.15) Σn 

i=y−n+1 

Final estimates of the posterior distributions were derive in JAGS by running six independent 
chains with differen starting points for 100,000 MCMC iterations after a burn-in of 20,000. Posterior 
samples were thinned keeping every 10th sample in order to reduce auto-correlation in both 
fundamental and derived parameters. Convergence was assess through a combination of diagnostic 
plots (e.g., traceplots, posterior distributions and Gelman-Rubin-Brooks plots) and criterion 
such as Rhat, Gelman and Rubin’s potential scale reduction factor (Gelman and Rubin 1992), 
including the multivariate version (Brooks and Gelman 1998), and Geweke’s diagnostic (Geweke 
1992). In all cases plots showed goods sampling from the posterior with little to no autocorrelation 
and all diagnostic criterion were within ranges that are generally associated with convergence 
(i.e., Rhat < 1.05, Gelman-Rubin within [0.99, 1.01], and Geweke within [-2,2]). 

D.3. SENSITIVITY ANALYSES 

Some additional model runs were implemented to evaluate some different features of the HBM. 
See Table D.2 for brief descriptions of these additional model runs. We term the model run using 
above described specifcations for the HBM the ‘’base case’ ’. Note that the results reported 
below were obtained from earlier WinBUGS 1.4.3 code versions of the HBM which included a 
simpler approximation for computing SMSY (i.e., from Table 7.2 of Hilborn and Walters 1992) than 
was used in the main body of the report. The results from these additional runs are summarized 
further below. 

Table D.2. Description of sensitivity runs to evalute the sensitivity of estimation results to model structure 
and some key inputs. 

1 HBM base case but including Korman and English’s (2013) coding in 
computing precision in the likelihood function from σ 

2 Same as HBM base case but with no prior lower bounds on β. 

3 Same as HBM base case but leaving out common shared year effects. 

4 Non-hierarchical model run with no common shared year effect but including 
the same Smax prior information as in the base case HBM. 

5 Same as HBM base case but normal priors on Smax instead of the base case 
lognormal prior on Ricker β. 

6 Same as HBM base case but with vague Ricker β priors, but including the 
prior lower bound on Ricker β. 

7-24 Leave out stock-recruit data in the HBM, one stock at a time. 

25 Leave out stock-recruit data for the Babine Enhanced stocks in the HBM (i.e., 
Pinkut and Fulton). 

26 Same as HBM base case but leave out Babine Enhanced stocks (i.e., Pinkut 
and Fulton) and apply vague Smax priors to Bear, Kitwanga, and Sustut. 

Run Description 
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D.4. RESULTS 

D.4.1. SHRINKAGE IN THE RICKER a PARAMETER IN GOING FROM A NON-HBM TO AN 
HBM 

In both the non-HBM and HBM models a common shared year effect was estimated to make the 
shrinkage analysis valid. Under the non-HBM the prior for the Ricker a parameter for each stock 
was similarly lognormal, had a prior median of log(0.5) and precision of 1. Compared to the non-
HBM a moderate amount of shrinkage can be seen seen for the HBM estimates (Figure D.1). 
For example the Asitka stock which had the highest posterior median value for the Ricker a 
parameter under both models showed a 12% decrease in the Ricker a parameter (Table D.3). 
This was the largest percentage decrease among the Skeena Sockeye salmon stocks included 
in the HBM. In contrast the Kitwanga stock which had the second lowest posterior median for the 
Ricker a parameter under the non-HBM showed the largest increase of 17% when going from 
the non-HBM to the HBM. In contrast the Pinkut and Fulton stocks which had posterior medians 
for Ricker a under the non-HBM close to the middle range of the Posterior median estimates 
showed very little shrinkage, i.e., 0% and -3%, respectively (Figure D.1, Table D.3). For all of the 
18 Skeena Sockeye salmon stocks the posterior standard deviation (SD) for Ricker a parameter 
estimates were all smaller, i.e., 3% to 19.9% smaller, under the HBM than under the non-HBM 
(Table D.3). 

Figure D.1. Shrinkage plot for posterior median values for the Ricker a parameter obtained under 
non-HBM and HBM models of stock-recruit data for 18 Skeena River Sockeye salmon stocks. 
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Table D.3. Posterior median estimates and standard deviations (SD) for the Ricker a parameter for the 18 
Skeena River Sockeye salmon stocks under non-HBM and HBM models The percentage change shows 
the percentage change in the parameter estimate in going from the non-HBM to the HBM implementation. 

Stock nonHBM HBM nonHBM HBM SD Shrinkage SD % 
Median Median SD Diff 

Alastair 1.291 1.300 0.195 0.184 0.7% -5.4% 
Asitka 2.079 1.822 0.478 0.420 -12.4% -12.3% 
Babine Early Wild 0.944 1.004 0.170 0.157 6.3% -7.9% 
Babine Late Wild 1.148 1.179 0.181 0.171 2.7% -5.6% 
Babine Mid Wild 1.225 1.246 0.184 0.172 1.7% -6.6% 
Bear 1.084 1.123 0.184 0.171 3.6% -7.1% 
Fulton 1.637 1.594 0.226 0.213 -2.6% -6.1% 
Johnston 1.922 1.728 0.449 0.383 -10.1% -14.7% 
Kitsumkalum 1.174 1.194 0.154 0.147 1.7% -4.6% 
Kitwanga 0.910 1.068 0.320 0.256 17.4% -19.9% 
Lakelse 0.899 0.983 0.192 0.173 9.3% -10.3% 
Mcdonell 1.568 1.548 0.192 0.186 -1.2% -3% 
Morice 1.574 1.550 0.213 0.207 -1.5% -3.2% 
Motase 1.051 1.120 0.239 0.206 6.6% -13.6% 
Pinkut 1.317 1.318 0.205 0.194 0.1% -5.5% 
Slamgeesh 1.780 1.694 0.310 0.287 -4.8% -7.5% 
Sustut 1.744 1.655 0.308 0.285 -5.1% -7.3% 
Swan/Stephens 1.106 1.146 0.219 0.199 3.6% -9.1% 

D.4.2. COMMON SHARED YEAR EFFECT 

The common shared year effects represent average deviations from Ricker model stock-productivity 
predictions across stocks in a given year (Figure D.2). Estimates varied from year to year with 
many years being close to the Ricker model predictions, while other years showing notable 
positive and negative deviations The 1994 common shared year effect represented the largest 
deviation from Ricker stock-productivity predictions, with a strong reduction in productivity. The 
4-year and 5-year rolling means provide smoothed representations of estimated common shared 
year effects within four and fve year blocks and make it easier to visualize potential common 
shared trends in stock productivity than plots of annual estimates. The common shared year 
effects derive from the average of stock productivity deviates across the stocks where stock-
recruit data are available in a given year and acquire credibility through commonality in annual 
productivity deviates across several of the stocks. In contrast, Kalman flter representations of 
time varying productivity rely on apparent time series of deviates from Ricker-model predictions 
of long-term average productivity based on data from a single stock. The Kalman flter approach 
does not allow any potential statistical representation of common patterns in productivity deviates 
between stocks in larger watershed. Also in contrast to the common-shared year effect approach 
the Kalman flter approach cannot be applied to stock-recruit data time series where there are 
one or more missing years of data within a time series. While these yearly deviations, whether 
from common shared year effects or Kalman flter, could represent improved or diminished 
survival in the fresh or saltwater system, they could also represent an under or overestimation in 
total catch, and there is currently no way to distinguish between authentic shared survival rate 
effects and run reconstruction error effects. As such, negative or positive year effects cannot 
be directly attributed to either an environmental or run reconstruction effect as the two will be 
confounded. 
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Figure D.2. Estimated common shared year effect shared across the 18 Skeena stocks with a 4-year 
rolling mean (A) and a 5-year rolling mean (B) overlaid. Points indicate mean with error bars indicating the 
95% credible intervals, while line and shading indicates the mean and 95% credible intervals for the rolling 
mean. 

As such, time varying productivity should be viewed as a method to improve model ftting, but 
does not provide objective criteria that can be used to set or judge management responses. For 
example, where there were runs of strongly positive or negative common shared year effects in 
recent years, this could refect either runs of either high or low stock productivity shared between 
stocks. Alternatively, it could refect a run of years in which fshery catches for all or most stocks 
were systematically under-reported or over-reported. If the latter hypothesis were correct, then 
any adjustments to harvest control rules, e.g., adjustments to escapement targets, to attempt to 
respond to apparent productivity changes, could have unintended consequences in achieving 
fshery and salmon population conservation objectives. 
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To evaluate the sensitivity of reference points to estimated changes in productivity, high and 
low productivity periods were identifed and the posterior predictive distributions for Smsy and 
UMSY were computed based on the common shared year effects in these blocks of years based 
on estimates of time varying productivity by stock (see equation D.15). The years showing 
the largest mostly positive common shared year effects included 1980-1992 (Fig. D.2). The 
years showing the lowest mostly negative common shared year effects included 1999-2014 
(Fig. D.2). Smsy and UMSY estimates were signifcantly lower in the latter block of years with 
the posterior means for SMSY and also UMSY ranging between 21% and 50% lower than those 
estimates in the high productivity period from 1980-1992 (Tables D.4 and D.5). The 95% credible 
intervals for the percentage differences for both SMSY and UMSY included only negative values 
(Tables D.4 and D.5). These results suggest that systematic reductions in stock productivity 
could result in estimates of both UMSY and SMSY being lowered. Should SMSY be used in forming 
escapement targets and reference points for fshery management and conservation, lowered 
productivity could result in lower escapement targets. Because the UMSY estimates are highly 
correlated with the SMSY estimates, the UMSY estimates could also be expected to decrease 
with decreases in SMSY estimates and it would be appropriate also to reduce harvest rates 
to accommodate lowered productivity. However, if only changes in estimates of SMSY were 
considered in responses to apparent changes in stock productivity and reductions in harvest 
rates were not implemented, this could also lead to unintended consequences in meeting stock 
conservation and fshery objectives. 

Table D.4. Comparison of stock-specifc SMSY in high (i.e., 1980-1992) and low (i.e., 1999-2014) periods 
of productivity and the percentage differnce between periods. 

Basin Stock High Low % Diff Lower CI Upper CI 

Skeena Alastair 14,246 10,930 -31% -52% -16% 
Skeena Asitka NA 993 NA NA NA 
Skeena Babine 58,669 39,885 -47% -82% -25% 

Early 
Wild 

Skeena Babine 289,751 211,050 -37% -60% -20% 
Late Wild 

Skeena Babine 24,127 17,926 -34% -58% -18% 
Mid Wild 

Skeena Bear 18,566 13,467 -38% -66% -20% 
Skeena Fulton 478,368 385,574 -23% -38% -12% 
Skeena Johnston 3,381 NA NA NA NA 
Skeena Kitsumkalum 17,592 12,624 -40% -66% -22% 
Skeena Kitwanga NA 13,544 NA NA NA 
Skeena Lakelse 13,219 8,877 -50% -93% -25% 
Skeena Mcdonell 2,778 2,238 -24% -42% -12% 
Skeena Morice 11,410 9,389 -21% -37% -11% 
Skeena Motase 730 493 -49% -93% -23% 
Skeena Pinkut 264,665 199,438 -31% -51% -17% 
Skeena Slamgeesh NA 256 NA NA NA 
Skeena Sustut 1,504 1,191 -26% -51% -12% 
Skeena Swan/Stephens18,620 13,372 -40% -71% -21% 
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Table D.5. Comparison of stock-specifc UMSY in high (i.e., 1980-1992) and low (i.e., 1999-2014) periods 
of productivity and the percentage differnce between periods. 

Basin Stock High Low % Diff Lower CI Upper CI 

Skeena Alastair 1 0 -30% -52% -16% 
Skeena Asitka NA 1 NA NA NA 
Skeena Babine 1 0 -47% -81% -24% 

Early 
Wild 

Skeena Babine 1 0 -36% -60% -20% 
Late Wild 

Skeena Babine 1 0 -34% -58% -18% 
Mid Wild 

Skeena Bear 1 0 -38% -66% -19% 
Skeena Fulton 1 1 -22% -37% -12% 
Skeena Johnston 1 NA NA NA NA 
Skeena Kitsumkalum 1 0 -39% -65% -21% 
Skeena Kitwanga NA 0 NA NA NA 
Skeena Lakelse 1 0 -50% -93% -25% 
Skeena Mcdonell 1 1 -24% -41% -12% 
Skeena Morice 1 1 -21% -36% -11% 
Skeena Motase 1 0 -48% -92% -23% 
Skeena Pinkut 1 0 -30% -51% -16% 
Skeena Slamgeesh NA 1 NA NA NA 
Skeena Sustut 1 1 -26% -50% -12% 
Skeena Swan/Stephens 1 0 -40% -71% -20% 
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D.4.3. SENSITIVITY RUN 1: EFFECT OF KORMAN AND ENGLISH’S (2013) CODING ERROR 
FOR THEIR HBM 

There was a coding error in the model used by Korman and English (2013); their code incorrectly 
transformed the parameter σi to τi using the incorrect code: tau[i]<-pow(sd[i],-0.5) which 
instead should have been tau[i]<-pow(sd[i],-2). This coding error changed very little the 
HBM posterior results for the Ricker a and β parameters for the 18 stocks (Table D.6). However, 
the estimates of the σi parameter were between -72% and 229% of those obtained under the 
HBM base case. The posterior SDs for σi ranged between 24% and 889% larger than those 
obtained under the base case. Either the lower or upper boundary point on the prior for σi was 
hit for some of the stocks. If the coding error had persisted, any simulations of stock-recruit data 
using the estimated values for σi may have led to results with excessive variability. It is thus 
essential for this coding error to be corrected in any further implementations of Korman and 
English’s (2013) HBM. 

Table D.6. Posterior means and posterior standard deviations for σ from the base case (coding error 
removed) and model run that included Korman and English’s (2013) coding error. 

Stock Base Code % Diff Base Code % Diff 
Case Error Case Error 

mean σ mean σ SD(σ) SD(σ) 

Alastair 0.895 0.787 -12% 0.097 0.381 292% 
Asitka 1.160 3.447 197% 0.341 2.490 631% 
Babine Early Wild 0.616 0.174 -72% 0.074 0.092 24% 
Babine Late Wild 0.634 0.198 -69% 0.074 0.103 39% 
Babine Mid Wild 0.746 0.377 -50% 0.083 0.187 125% 
Bear 0.919 1.008 10% 0.124 0.645 422% 
Fulton 0.649 0.215 -67% 0.077 0.114 49% 
Johnston 1.019 2.869 182% 0.342 2.467 622% 
Kitsumkalum 0.799 0.530 -34% 0.095 0.284 200% 
Kitwanga 1.396 4.591 229% 0.277 2.341 747% 
Lakelse 0.929 0.944 2% 0.107 0.500 366% 
Mcdonell 0.575 0.180 -69% 0.091 0.131 44% 
Morice 1.001 1.271 27% 0.112 0.644 475% 
Motase 0.684 0.698 2% 0.164 0.931 469% 
Pinkut 0.727 0.333 -54% 0.083 0.168 103% 
Slamgeesh 0.671 0.733 9% 0.173 1.021 492% 
Sustut 1.206 3.255 170% 0.201 1.987 889% 
Swan/Stephens 1.007 1.322 31% 0.116 0.699 501% 
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D.4.4. SENSITIVITY RUN 2: SAME AS HBM BASE CASE BUT WITH NO PRIOR LOWER 
BOUND ON THE RICKER β PARAMETER 

When there was no prior lower bound included the Ricker β parameter by stock, the estimates of 
Smax and MSY-based reference points included some extremely high MCMC chain values that 
were way out in the tails of the Markov chains and very far removed from the range of values with 
support from the data; for these stocks, posterior means, medians, and probability interval values 
were highly sensitive to the inclusion of these extreme outlier values in the chains (see Table D.7 
for some example results for SMSY). It is common in implementations of MCMC implementations 
such as WinBUGS to set bounds on key variables in the model to prevent extreme outlier values 
in the chains from affecting the posterior calculations (e.g., Meyer and Millar 1999; Michielsens 
and McAllister 2004). It is thus recommended that prior lower bounds on the Ricker β parameter 
be implemented for each stock to eliminate this source of bias. 

The UMSY estimates from the HBM were relatively insensitive to lifting the prior maximum bound 
on Smax (Table D.8). While posterior means differed by less than a few percent for all stocks, 
posterior standard deviation values were up to 13% larger when the prior maximum bound on 
Smax was lifted. 

Table D.7. Posterior means and posterior standard deviations for SMSY from the HBM base case and 
model run where no prior upper bounds were placed on Smax. 

Stock Base No % Diff Base No % Diff 
Case Bound Case Bound 
mean mean SD(SMSY) SD(SMSY) 
SMSY SMSY 

Alastair 11,957 11,949 -0.1% 1,482 1,484 0.2% 
Asitka 1,075 1,611 49.9% 368 8,252 2142.2% 
Babine Early Wild 46,029 46,404 0.8% 10,046 52,519 422.8% 
Babine Late Wild 236,765 245,538 3.7% 62,191 532,627 756.4% 
Babine Mid Wild 19,984 20,086 0.5% 5,795 26,880 363.9% 
Bear 15,211 15,192 -0.1% 5,032 5,013 -0.4% 
Fulton 416,978 661,234 58.6% 153,357 2,406,913 1469.5% 
Johnston 3,204 3,201 -0.1% 633 624 -1.3% 
Kitsumkalum 14,496 14,496 0% 2,713 2,726 0.5% 
Kitwanga 15,718 15,736 0.1% 5,899 5,886 -0.2% 
Lakelse 10,350 10,348 0% 1,708 1,701 -0.4% 
Mcdonell 2,472 2,473 0% 275 275 0.1% 
Morice 10,073 10,099 0.3% 1,869 2,397 28.2% 
Motase 572 572 0% 151 151 0% 
Pinkut 221,168 422,100 90.9% 123,885 3,018,889 2336.9% 
Slamgeesh 276 275 0% 40 40 -0.5% 
Sustut 1,292 1,290 -0.1% 334 331 -0.8% 
Swan/Stephens 15,133 15,148 0.1% 2,349 2,354 0.2% 

Sum Smsy across stocks 1,042,753 1,497,751 43.6% 378,125 6,069,062 1505% 
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Table D.8. Posterior means and posterior standard deviations for UMSY from the HBM base case and 
model run where no prior upper bounds were placed on Smax. 

Stock Base No % Diff Base No % Diff 
Case Bound Case Bound 
mean mean SD(UMSY) SD(UMSY) 
UMSY UMSY 

Alastair 0.534 0.534 0% 0.058 0.058 0.4% 
Asitka 0.670 0.659 -1.6% 0.102 0.109 6.6% 
Babine Early Wild 0.434 0.434 -0.1% 0.057 0.057 0.6% 
Babine Late Wild 0.495 0.493 -0.3% 0.057 0.058 2.1% 
Babine Mid Wild 0.516 0.516 -0.1% 0.056 0.056 0.4% 
Bear 0.476 0.476 0% 0.058 0.059 0.3% 
Fulton 0.622 0.612 -1.6% 0.057 0.065 13.3% 
Johnston 0.649 0.649 0% 0.097 0.097 -0.1% 
Kitsumkalum 0.501 0.500 -0.1% 0.049 0.049 0.8% 
Kitwanga 0.458 0.458 -0.1% 0.088 0.089 0.4% 
Lakelse 0.427 0.427 0% 0.063 0.063 -0.1% 
Mcdonell 0.607 0.607 -0.1% 0.052 0.053 0.4% 
Morice 0.607 0.607 -0.1% 0.058 0.058 0.6% 
Motase 0.474 0.474 0% 0.071 0.071 0% 
Pinkut 0.541 0.534 -1.3% 0.060 0.064 6.4% 
Slamgeesh 0.645 0.644 0% 0.074 0.074 -0.9% 
Sustut 0.634 0.633 -0.1% 0.076 0.077 1.5% 
Swan/Stephens 0.485 0.485 0% 0.067 0.067 -0.3% 
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D.4.5. SENSITIVITY RUN 3: SAME AS HBM BASE CASE BUT LEAVING OUT COMMON 
SHARED YEAR EFFECTS 

Signifcant, strong common shared year effects were estimated for numerous years in the 1960-
2014 brood year time series. Separating out this effect provided more precise estimates of Ricker 
stock recruit parameters for several of the stocks and more precise estimates of management 
quantities of interest. This also allowed for common shared systematic change in stock productivity 
to be estimated. The posterior means for the Smsy reference point by stock for example were 
between about -11% and 45% different between runs when common shared year effects were 
excluded versus accounted for (Table D.9). When no common shared year effect was included in 
the HBM, estimates of Ricker stock-recruit parameters and associated management parameters 
for several of the stocks were on average less precisely estimated with posterior SDs being up to 
about 68% larger for Smsy for several of the stocks. 

The UMSY estimates from the HBM were relatively insensitive to removing common shared year 
effects from the HBM (Table D.10). 

Table D.9. Posterior means and posterior standard deviations for SMSY from the HBM base case and 
model run where no prior upper bounds were placed on Smax. 

Stock Base No % Diff Base No % Diff 
Case Ty Case Ty 

mean mean SD(SMSY) SD(SMSY) 
SMSY SMSY 

Alastair 11,957 12,296 3% 1,482 1,346 -9% 
Asitka 1,075 995 -7% 368 355 -4% 
Babine Early Wild 46,029 46,267 1% 10,046 16,876 68% 
Babine Late Wild 236,765 278,041 17% 62,191 101,414 63% 
Babine Mid Wild 19,984 18,079 -10% 5,795 5,044 -13% 
Bear 15,211 13,689 -10% 5,032 4,871 -3% 
Fulton 416,978 388,972 -7% 153,357 166,311 8% 
Johnston 3,204 3,041 -5% 633 633 0% 
Kitsumkalum 14,496 13,814 -5% 2,713 2,369 -13% 
Kitwanga 15,718 15,420 -2% 5,899 5,854 -1% 
Lakelse 10,350 10,183 -2% 1,708 1,331 -22% 
Mcdonell 2,472 2,328 -6% 275 202 -26% 
Morice 10,073 10,948 9% 1,869 2,472 32% 
Motase 572 602 5% 151 182 20% 
Pinkut 221,168 320,928 45% 123,885 179,279 45% 
Slamgeesh 276 266 -4% 40 37 -8% 
Sustut 1,292 1,156 -11% 334 296 -11% 
Swan/Stephens 15,133 17,032 13% 2,349 2,828 20% 

Sum Smsy across stocks 1,042,753 1,154,056 11% 378,125 491,700 30% 
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Table D.10. Posterior means and posterior standard deviations for UMSY from the HBM base case and 
model run where no prior upper bounds were placed on Smax. 

Stock Base No % Diff Base No % Diff 
Case Ty Case Ty 

mean mean SD(UMSY) SD(UMSY) 
UMSY UMSY 

Alastair 0.534 0.544 2% 0.058 0.050 -14% 
Asitka 0.670 0.615 -8% 0.102 0.104 2% 
Babine Early Wild 0.434 0.467 7% 0.057 0.065 16% 
Babine Late Wild 0.495 0.490 -1% 0.057 0.065 14% 
Babine Mid Wild 0.516 0.560 8% 0.056 0.060 7% 
Bear 0.476 0.508 7% 0.058 0.055 -6% 
Fulton 0.622 0.646 4% 0.057 0.067 18% 
Johnston 0.649 0.641 -1% 0.097 0.102 5% 
Kitsumkalum 0.501 0.545 9% 0.049 0.042 -15% 
Kitwanga 0.458 0.438 -4% 0.088 0.088 0% 
Lakelse 0.427 0.436 2% 0.063 0.053 -16% 
Mcdonell 0.607 0.638 5% 0.052 0.042 -20% 
Morice 0.607 0.602 -1% 0.058 0.056 -4% 
Motase 0.474 0.483 2% 0.071 0.077 8% 
Pinkut 0.541 0.521 -4% 0.060 0.060 0% 
Slamgeesh 0.645 0.564 -13% 0.074 0.070 -6% 
Sustut 0.634 0.629 -1% 0.076 0.076 0% 
Swan/Stephens 0.485 0.467 -4% 0.067 0.063 -6% 
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D.4.6. SENSITIVITY RUN 4: NON-HIERARCHICAL MODEL RUN WITH NO COMMON 
SHARED YEAR EFFECT BUT INCLUDING THE SAME Smax PRIOR INFORMATION 
AS IN THE BASE CASE HBM 

When a nonhierarchical Bayesian model(nonHBM) with no common shared year effects was run, 
estimates of Ricker stock-recruit parameters and associated management parameters for several 
of the stocks were on average less precisely estimated with posterior SD in Smsy for example on 
average being about -28% to 174% different between the nonHBM and HBM runs (Table D.11). 
Percentage differences between the nonHBM and HBM for posterior mean estimates for Smsy 
parameters ranged by stock between -21% and 45%. These results indicate that on average 
Ricker and msy-based parameter estimates are more precisely estimated with the HBM and 
results for some quantities for some stocks can differ considerably. However, the sum of the 
SMSY estimates across stocks was only about 8% larger under the non-hierarchical model but 
the posterior SD in the SMSY values summed over the Skeena River stocks was 31% larger than 
that for the HBM (Table D.11). 

The posterior means for UMSY were relatively insensitive to ftting a nonHBM, but the posterior 
SDs for UMSY mostly increased by up to 40% larger than those under the HBM (Table D.12). 

Table D.11. Posterior means and posterior standard deviations for SMSY from the base case HBM and 
nonHBM run. 

Stock Base nonHBM % Diff Base nonHBM % Diff 
Case mean Case SD(SMSY) 
mean SMSY SD(SMSY) 
SMSY 

Alastair 11,957 12,288 3% 1,482 1,337 -10% 
Asitka 1,075 961 -11% 368 344 -7% 
Babine Early Wild 46,029 50,373 9% 10,046 27,511 174% 
Babine Late Wild 236,765 287,503 21% 62,191 107,897 73% 
Babine Mid Wild 19,984 18,125 -9% 5,795 6,877 19% 
Bear 15,211 13,740 -10% 5,032 4,871 -3% 
Fulton 416,978 348,146 -17% 153,357 152,402 -1% 
Johnston 3,204 3,066 -4% 633 642 1% 
Kitsumkalum 14,496 13,807 -5% 2,713 2,369 -13% 
Kitwanga 15,718 12,396 -21% 5,899 5,869 -1% 
Lakelse 10,350 10,089 -3% 1,708 1,401 -18% 
Mcdonell 2,472 2,311 -7% 275 197 -28% 
Morice 10,073 10,849 8% 1,869 3,491 87% 
Motase 572 585 2% 151 182 20% 
Pinkut 221,168 320,340 45% 123,885 178,124 44% 
Slamgeesh 276 265 -4% 40 37 -8% 
Sustut 1,292 1,131 -12% 334 287 -14% 
Swan/Stephens 15,133 16,790 11% 2,349 2,891 23% 

Sum Smsy across stocks 1,042,753 1,122,765 8% 378,125 496,727 31% 
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Table D.12. Posterior means and posterior standard deviations for UMSY from the base case HBM and 
nonHBM run. 

Stock Base nonHBM % Diff Base nonHBM % Diff 
Case mean Case SD(UMSY) 
mean UMSY SD(UMSY) 
UMSY 

Alastair 0.534 0.545 2% 0.058 0.053 -9% 
Asitka 0.670 0.650 -3% 0.102 0.130 27% 
Babine Early Wild 0.434 0.441 2% 0.057 0.080 40% 
Babine Late Wild 0.495 0.477 -4% 0.057 0.073 28% 
Babine Mid Wild 0.516 0.564 9% 0.056 0.065 16% 
Bear 0.476 0.501 5% 0.058 0.060 3% 
Fulton 0.622 0.671 8% 0.057 0.072 26% 
Johnston 0.649 0.690 6% 0.097 0.118 22% 
Kitsumkalum 0.501 0.546 9% 0.049 0.043 -11% 
Kitwanga 0.458 0.347 -24% 0.088 0.121 37% 
Lakelse 0.427 0.415 -3% 0.063 0.061 -3% 
Mcdonell 0.607 0.646 6% 0.052 0.042 -19% 
Morice 0.607 0.612 1% 0.058 0.058 0% 
Motase 0.474 0.451 -5% 0.071 0.098 39% 
Pinkut 0.541 0.520 -4% 0.060 0.066 9% 
Slamgeesh 0.645 0.570 -12% 0.074 0.079 7% 
Sustut 0.634 0.653 3% 0.076 0.080 6% 
Swan/Stephens 0.485 0.446 -8% 0.067 0.072 8% 
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D.4.7. SENSITIVITY RUN 5: NORMAL PRIORS ON SMAX IN THE HBM INSTEAD OF THE 
LOGNORMAL PRIOR ON RICKER β 

When a normal prior for Smax was applied instead of a lognormal prior on the Ricker β parameter 
in the HBM, but otherwise using the same input information from the lake productivity analyses, 
the posterior estimates for several of the quantities became less precise and posterior estimates 
differed markedly for some of the quantities. Posterior SDs for SMSY were for example much 
larger on average, e.g., between about -24% and 62% larger (Table D.13). Posterior mean 
estimates for SMSY differed between the two model runs by -36% to 20%. Though it appears 
the same information is used in a normal prior for Smax, this prior on average loses information 
about the Ricker β parameter compared to a prior for the Ricker β parameter that uses the same 
Smax information. 

The UMSY estimates from the HBM were relatively insensitive to replacing the lognormal prior for 
the Ricker β parameter with a normal prior for Smax (Table D.14). 

Table D.13. Posterior means and posterior standard deviations for SMSY from the HBM base case and 
model run with a Normal priors on Smax. 

Stock Base Normal % Diff Base Normal % Diff 
Case Prior Case Prior 
mean mean SD(SMSY) SD(SMSY) 
SMSY SMSY 

Alastair 11,957 12,007 0% 1,482 1,450 -2% 
Asitka 1,075 1,106 3% 368 358 -3% 
Babine Early Wild 46,029 48,974 6% 10,046 16,261 62% 
Babine Late Wild 236,765 255,681 8% 62,191 70,560 13% 
Babine Mid Wild 19,984 20,377 2% 5,795 5,929 2% 
Bear 15,211 9,783 -36% 5,032 5,366 7% 
Fulton 416,978 435,255 4% 153,357 147,800 -4% 
Johnston 3,204 3,178 -1% 633 558 -12% 
Kitsumkalum 14,496 13,752 -5% 2,713 2,074 -24% 
Kitwanga 15,718 13,711 -13% 5,899 6,383 8% 
Lakelse 10,350 10,172 -2% 1,708 1,695 -1% 
Mcdonell 2,472 2,405 -3% 275 271 -1% 
Morice 10,073 10,259 2% 1,869 2,271 21% 
Motase 572 511 -11% 151 147 -3% 
Pinkut 221,168 266,226 20% 123,885 139,576 13% 
Slamgeesh 276 276 0% 40 37 -7% 
Sustut 1,292 1,180 -9% 334 344 3% 
Swan/Stephens 15,133 15,223 1% 2,349 2,255 -4% 

Sum Smsy across stocks 1,042,753 1,120,074 7% 378,125 403,336 7% 
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Table D.14. Posterior means and posterior standard deviations for UMSY from the HBM base case and 
model run with a Normal priors on Smax. 

Stock Base Normal % Diff Base Normal % Diff 
Case Prior Case Prior 
mean mean SD(UMSY) SD(UMSY) 
UMSY UMSY 

Alastair 0.534 0.534 0% 0.058 0.058 -1% 
Asitka 0.670 0.657 -2% 0.102 0.102 -1% 
Babine Early Wild 0.434 0.425 -2% 0.057 0.059 5% 
Babine Late Wild 0.495 0.481 -3% 0.057 0.058 1% 
Babine Mid Wild 0.516 0.514 0% 0.056 0.057 3% 
Bear 0.476 0.541 14% 0.058 0.080 37% 
Fulton 0.622 0.615 -1% 0.057 0.055 -3% 
Johnston 0.649 0.656 1% 0.097 0.093 -5% 
Kitsumkalum 0.501 0.509 2% 0.049 0.048 -3% 
Kitwanga 0.458 0.468 2% 0.088 0.090 2% 
Lakelse 0.427 0.436 2% 0.063 0.065 4% 
Mcdonell 0.607 0.620 2% 0.052 0.053 1% 
Morice 0.607 0.606 0% 0.058 0.059 1% 
Motase 0.474 0.504 6% 0.071 0.077 9% 
Pinkut 0.541 0.523 -3% 0.060 0.059 -2% 
Slamgeesh 0.645 0.640 -1% 0.074 0.071 -4% 
Sustut 0.634 0.657 4% 0.076 0.081 8% 
Swan/Stephens 0.485 0.483 0% 0.067 0.065 -3% 
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D.4.8. SENSITIVITY RUN 6: APPLICATION OF VAGUE RICKER β PRIORS IN THE HBM, 
BUT INCLUDING THE PRIOR LOWER BOUND ON β 

When a vague prior was applied for the Ricker β prior for all 18 Skeena Sockeye salmon stocks 
in the HBM, posterior estimates for the abundance-based management quantities were less 
precise on average with posterior SDs, e.g., for SMSY ranging between -58% to 167% larger 
under the vague priors (Table D.15). Posterior means for SMSY estimates in the HBM that used 
vague priors for the Ricker β parameter were between about -63% and 41% different from those 
obtained under the mixture of informed and vague priors in the base case HBM. The use of 
informative priors for the Ricker β parameter based on prior information on Smax via the lake 
productivity analyses thus combined with the data to provide more precise stock-recruit parameter 
estimates that in some cases differed from the less precise estimates given by the stock-recruit 
data. 

The UMSY estimates from the HBM were relatively insensitive to prior for all Ricker β parameter 
vague priors though for a few of the stocks the posterior means were up to 30% larger (Table D.16). 

Table D.15. Posterior means and posterior standard deviations for SMSY from the HBM base case and 
model run with a Normal priors on Smax. 

Stock Base Vague β % Diff Base Vague β % Diff 
Case Prior Case Prior 
mean mean SD(SMSY) SD(SMSY) 
SMSY SMSY 

Alastair 11,957 11,862 -1% 1,482 1,610 9% 
Asitka 1,075 1,043 -3% 368 357 -3% 
Babine Early Wild 46,029 46,814 2% 10,046 12,035 20% 
Babine Late Wild 236,765 245,603 4% 62,191 68,123 10% 
Babine Mid Wild 19,984 19,648 -2% 5,795 4,891 -16% 
Bear 15,211 5,560 -63% 5,032 2,131 -58% 
Fulton 416,978 405,959 -3% 153,357 150,705 -2% 
Johnston 3,204 4,159 30% 633 1,615 155% 
Kitsumkalum 14,496 20,480 41% 2,713 7,239 167% 
Kitwanga 15,718 6,479 -59% 5,899 8,730 48% 
Lakelse 10,350 9,569 -8% 1,708 1,423 -17% 
Mcdonell 2,472 2,284 -8% 275 224 -18% 
Morice 10,073 10,042 0% 1,869 1,781 -5% 
Motase 572 418 -27% 151 105 -30% 
Pinkut 221,168 219,892 -1% 123,885 124,357 0% 
Slamgeesh 276 286 4% 40 67 67% 
Sustut 1,292 934 -28% 334 311 -7% 
Swan/Stephens 15,133 16,206 7% 2,349 3,628 54% 

Sum Smsy across stocks 1,042,753 1,027,236 -1% 378,125 389,332 3% 
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Table D.16. Posterior means and posterior standard deviations for UMSY from the HBM base case and 
model run with a Normal priors on Smax. 

Stock Base Vague β % Diff Base Vague β % Diff 
Case Prior Case Prior 
mean mean SD(UMSY) SD(UMSY) 
UMSY UMSY 

Alastair 0.534 0.547 2% 0.058 0.062 6% 
Asitka 0.670 0.672 0% 0.102 0.100 -2% 
Babine Early Wild 0.434 0.437 1% 0.057 0.057 1% 
Babine Late Wild 0.495 0.492 -1% 0.057 0.057 0% 
Babine Mid Wild 0.516 0.525 2% 0.056 0.056 -1% 
Bear 0.476 0.618 30% 0.058 0.063 7% 
Fulton 0.622 0.629 1% 0.057 0.058 1% 
Johnston 0.649 0.614 -5% 0.097 0.108 11% 
Kitsumkalum 0.501 0.479 -4% 0.049 0.052 6% 
Kitwanga 0.458 0.528 15% 0.088 0.093 5% 
Lakelse 0.427 0.465 9% 0.063 0.064 2% 
Mcdonell 0.607 0.644 6% 0.052 0.049 -7% 
Morice 0.607 0.613 1% 0.058 0.056 -3% 
Motase 0.474 0.557 18% 0.071 0.070 -1% 
Pinkut 0.541 0.546 1% 0.060 0.060 0% 
Slamgeesh 0.645 0.637 -1% 0.074 0.086 15% 
Sustut 0.634 0.714 13% 0.076 0.073 -4% 
Swan/Stephens 0.485 0.475 -2% 0.067 0.074 11% 
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D.4.9. SENSITIVITY RUNS 7-25. LEAVE OUT STOCK-RECRUIT DATA IN THE HBM, ONE 
STOCK AT A TIME 

To evaluate the relative infuence of each stock-recruit data set from each stock, the HBM was 
run dropping out the stock-recruit data for one stock at a time. In run 25 the stock-recruit data 
for both of the Babine Enhanced stocks (i.e., Fulton and Pinkut) were left out of the HBM. The 
posterior predictive distribution for the Ricker a parameter for an “unsampled” stock was computed 
for each of these runs (see equation D.14). The posterior predictive distributions were plotted 
under each of the HBM runs 7-25 and under the base case HBM shows that the posterior predictive 
distributions were very similar between all HBM runs 7-25 and the base case HBM run (Figure D.3). 
The posterior mean estimates of the time series of common shared year effects also did not 
change their sign or markedly change in magnitude when the stock-recruit data from one of 
the stocks or both of the Babine enhanced stocks were removed from the HBM (Figure D.4). 
These results indicate that no one stock, nor the enhanced Babine Sockeye salmon stocks, 
had a substantive infuence on the HBM results. Furthermore results indicate that regardless 
of whether Pinkut and Fulton channel data were included or excluded, very similar among stocks 
posterior distribution of the Ricker a parameter (Figure D.3) and shared year-effects on productivity 
(Figure D.4) were produced. 

The temporal variation in shared year effect estimates represent the combined effects of potential 
changes in both freshwater and marine processes (Figure D.4). The combined effects of spawning 
channels on recruits/spawner are clearly similar to those of nearby natural spawning streams 
(Figure D.4). However, by providing more spawning gravel, the channels have increased the 
total abundance of adult recruits and spawners in the Skeena system (Randall Peterman, pers. 
comm.). 
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Figure D.3. Posterior predictive distributions for the Ricker a parameter when the Sockeye salmon 
stock-recruit data from one stock at a time was dropped from the HBM for the Skeena watershed (runs 
7-24) and the stock-recruit data were dropped for both of the Babine Enhanced Sockeye salmon stocks, 
i.e., both Pinkut and Fulton (run 25). Base case posterior predictive distribution is coloured dark grey, with 
colours used for runs 7-25. 
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Figure D.4. Posterior mean estimates for the common shared year effect when the Sockeye salmon 
stock-recruit data from one stock at a time was dropped from the HBM for the Skeena watershed (runs 
7-24) and the stock-recruit data were dropped for both of the Babine Enhanced Sockeye salmon stocks,
i.e., both Pinkut and Fulton (run 25). Base case posterior predictive distribution is coloured dark grey, with
colours used for runs 7-25.
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D.4.10. SENSITIVITY RUN 26: REMOVAL OF ENHANCED STOCKS AND VAGUE RICKER β 
PRIORS FOR SELECT STOCKS 

For the fnal sensitivity run (hereafter, ‘run 26’) the enhanced stocks were removed and vague 
priors were applied to the Ricker β prior for Bear, Kitwanga and Sustut, which were stocks highlighted 
as stocks of interest when the HBM results were compared to results form single stock models. 
Estimates of the posterior mean for the abundance-based management quantity SMSY were 
generally similar to the base case (i.e., less than 10% change) for stocks where the Smax prior 
was not changed relative to the base case. The exception was Babine Late Wild, which had a 
20% reduction in the SMSY estimate, however Babine Late Wild also had the highest posterior 
SD estimate of all stocks with a CV of 26% and 34% for base case and run 26 respectively. For 
Bear, Kitwanga, and Sustut applying a vague prior resulted in declines in the posterior mean 
of SMSY from -30% to -66% relative to the base case. Precision in SMSY estimates varied from 
stock to stock ranging from a 74% reduction in the posterior SD to an increase of 88% relative 
to the base case (Table D.17). For Bear, and Sustut the posterior SD was reduced (74%, and 
20% respectively), while for Kitwanga the Posterior SD was increased by 60%. For stocks where 
changes were not applied to the Smax prior changes to the posterior SD ranged from -26% to 
88%. 

The UMSY posterior estimates were relatively insensitive to these changes implemented in run 26 
(i.e., under 10% change in the posterior mean), the exceptions were Bear, and Sustut which had 
posterior means that were 33%, and 12% larger (Table D.18). 

Table D.17. Posterior means and posterior standard deviations for SMSY from the HBM base case and 
model run where enhanced stocks were removed and vague Smax priors were used for Bear, Kitwanga, 
and Sustut. 

Stock Base Run 26 % Diff Base Run 26 % Diff 
Case mean Case SD(SMSY) 
mean SMSY SD(SMSY) 
SMSY 

Alastair 11,957 11,964 0% 1,482 1,326 -11% 
Asitka 1,075 1,035 -4% 368 351 -5% 
Babine Early Wild 46,029 49,451 7% 10,046 18,854 88% 
Babine Late Wild 236,765 284,532 20% 62,191 96,515 55% 
Babine Mid Wild 19,984 19,283 -4% 5,795 6,247 8% 
Bear 15,211 5,119 -66% 5,032 1,284 -74% 
Johnston 3,204 3,290 3% 633 645 2% 
Kitsumkalum 14,496 14,370 -1% 2,713 2,572 -5% 
Kitwanga 15,718 7,048 -55% 5,899 9,430 60% 
Lakelse 10,350 10,202 -1% 1,708 1,421 -17% 
Mcdonell 2,472 2,375 -4% 275 204 -26% 
Morice 10,073 10,328 3% 1,869 1,873 0% 
Motase 572 536 -6% 151 144 -5% 
Slamgeesh 276 271 -2% 40 32 -20% 
Sustut 1,292 908 -30% 334 268 -20% 
Swan/Stephens 15,133 16,068 6% 2,349 2,511 7% 
Sum Smsy across stocks 404,607 436,779 8% 100,884 143,678 42% 
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Table D.18. Posterior means and posterior standard deviations for UMSY from the HBM base case and 
model run where enhanced stocks were removed and vague Smax priors were used for Bear, Kitwanga, 
and Sustut. 

Stock Base Run 26 % Diff Base Run 26 % Diff 
Case mean Case SD(UMSY) 
mean UMSY SD(UMSY) 
UMSY 

Alastair 0.534 0.547 3% 0.058 0.053 -10% 
Asitka 0.670 0.643 -4% 0.102 0.102 -1% 
Babine Early Wild 0.434 0.439 1% 0.057 0.064 12% 
Babine Late Wild 0.495 0.475 -4% 0.057 0.062 8% 
Babine Mid Wild 0.516 0.537 4% 0.056 0.058 3% 
Bear 0.476 0.634 33% 0.058 0.057 -3% 
Johnston 0.649 0.674 4% 0.097 0.097 0% 
Kitsumkalum 0.501 0.527 5% 0.049 0.045 -8% 
Kitwanga 0.458 0.501 9% 0.088 0.095 7% 
Lakelse 0.427 0.435 2% 0.063 0.057 -9% 
Mcdonell 0.607 0.626 3% 0.052 0.042 -19% 
Morice 0.607 0.615 1% 0.058 0.055 -5% 
Motase 0.474 0.492 4% 0.071 0.072 2% 
Slamgeesh 0.645 0.616 -4% 0.074 0.063 -15% 
Sustut 0.634 0.709 12% 0.076 0.071 -6% 
Swan/Stephens 0.485 0.478 -1% 0.067 0.064 -4% 

D.5. SUMMARY 

HBM analysis provides an effective approach to formulating priors for key parameters in Bayesian 
ecological models and has often been applied to estimate productivity parameters for Pacifc and 
Atlantic salmon and other fsh species populations (Prévost et al. 2003; Clark 2004; Michielsens 
and McAllister 2004; Su et al. 2004; Forrest et al. 2010; Pulkkinen et al. 2011). The diagnostics 
shown in this appendix which are routine to HBM analysis (e.g., Gelman et al. 2004; Michielsens 
and McAllister 2004; Forrest et al. 2010) support the basic HBM assumption of exchangeability 
of the datasets from all 18 stocks with regards to the Ricker a parameter. We did not fnd evidence 
to support the notion that the two enhanced stocks have consistently different productivity than 
the non-enhanced stocks. This is for example based on results (1) from both HBM and non-
HBM runs shown in Table D.3 where the posterior means for the Ricker a parameter for the two 
enhanced stocks were neither consistently higher nor lower than estimates from the 16 non-
enhanced stocks, and (2) from the jackknife analysis which showed that the posterior predictive 
distribution for Ricker a was highly insensitive to leaving out the two enhanced stocks, either one 
at a time or both at the same time (Figure D.3). 

Comparisons from the non-HBM and HBM also show that there was a moderate but not extreme 
amount of shrinkage in Ricker a parameter estimates, where the maximum percentage change 
in Ricker a was no more than 20% and less than 10% in 13 of the 18 stocks when going from the 
non-HBM to the HBM. Shrinkage is to be expected in HBM analysis and the amount of shrinkage 
found here was not excessive and not so for the two enhanced stocks. The posterior SDs of the 
Ricker a parameter for the two enhanced stocks from the non-HBM and HBM (Table D.3) were 
also neither consistently larger nor smaller than the posterior SDs for this parameter for the 16 
wild stocks. The estimates of derived parameters such as SMSY for the two enhanced stocks 
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were also not excessively imprecise with posterior CVs for SMSY being 0.56 for Pinkut and 0.37 
for Fulton (Table D.7). These posterior CVs are well within the range of posterior CVs for fsh 
stock parameters commonly estimated using Bayesian methods. 

Estimation of common shared year effects showed that the estimated effects were statistically 
signifcant with 95% PIs not overlapping with zero for 18 of the 55 years. The estimated effects 
were highly pronounced in some years, and could change abruptly and considerably in relatively 
few years. For example, the estimated effects went from the absolute minimum to the absolute 
maximum extreme in three years, i.e., -1.37 in 1994 to +1.02 in 1997. And the most pronounced 
year effect of all could be linked to epizootic disease event, e.g., in 1994, indicating that at least 
some of the estimated effects could be attributed to ecological events and the notion that the 
estimated effects were all due to stock assessment errors is unlikely. 

The above results on common shared year effects suggest that caution is needed should it be 
of interest to implement random walk models for the Ricker a parameter. Random walk models 
typically assume that there exists positive correlation between adjacent years, e.g., for the Ricker 
a parameter, and tend to provide smoothed trajectories of parameter estimates. When estimates 
of common shared year effects from models that exclude random walk jump abruptly been years 
and shift from minimum to maximum value in only a few years, bias in annual estimates of the 
Ricker a parameter could thus be expected from random walk models for this parameter. The 
common shared year effect also suggested, despite frequent extreme variation between years, 
extended periods of on average potentially higher productivity in the 1980s to early 1990s and 
lower than average productivity from 2003-2014. Estimates of quantities of interest such as SMSY 

were also moderately sensitive to the inclusion and exclusion of common shared year effects in 
the HBM (Table D.9)). 

Careful attention to how the prior for Smax was applied in MCMC was also an important consideration 
in the analysis. In MCMC integration, values for estimated parameters in Markov Chains even 
after burn in can wander considerably and occasionally jump to extreme values well outside 
of the area of support of the data when no constraints are imposed. The presence of extreme 
values in approximations of posteriors from MCMC can potentially cause pronounced bias in 
the estimated parameters. We found that this was the case in the application of the non-HBM 
and HBM and extreme parameter values and the incidence in MCMC chains of quantities of 
interest such as Smsy could be eliminated by implementation of upper and lower bounds for key 
parameters such as Smax or Ricker β. It is thus appropriate to apply upper and lower bounds 
for key parameters in MCMC code to prevent these rare but extreme values from occurring and 
biasing posterior results. 
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APPENDIX E. SENSITIVITY TESTS: DATA TREATMENT AND BENCHMARK 
CALCULATIONS 

E.1. SPAWNER-RECRUIT DATA FILTERING AND INFILLING 

E.1.1. PURPOSE 

We fltered out implausible spawner-recruit observations and inflled gaps to allow ftting model 
forms that require complete time series (Section 2.1.10). We tested the effect of alternative data 
treatments on benchmark estimates from the basic Ricker model. 

Inflling a few return years can drastically increase the number of brood years available for spawner-
recruit analyses. For example, if a single spawner estimate is missing from the time series, then 
recruits cannot be calculated for 3-6 earlier brood years, depending on the age composition for 
the stock. If there are several gaps, many brood years may have incomplete cohort information 
and can’t be used in the analyses. 

E.1.2. METHODS 

We applied two alternative data flter options and then either inflled or didn’t infll 1-yr gaps in 
spawner estimates. Inflled spawner values were calculated as the average of previous and 
subsequent estimates, and then the corresponding run size was calculated using the year-
specifc exploitation rate estimate from the run reconstruction models. The inflled spawner 
and run size estimates were then used in the recruit calculation based on on available age 
composition data. 

This generated six alternative versions of the spawner-recruit time series: 

• Main: original data set generated by the data review documented in Pestal et al. (2025b) 

• Filter1k : exclude brood years where R/S > 1,000 

• Filter45: exclude brood years where R/S > 45 

• Main_Infll : original data with inflls where possible 

• Filter1k_Infll : Filter1k data with inflls where possible 

• Filter45_Infll : Filter45 data with inflls where possible 

This sensitivity test applied the Basic Ricker model (Section 2.2.1) with capped uniform capacity 
priors (Section 2.2.3) to all stocks where any fltering or inflling occurred. The Basic Ricker 
model is the only one that can be applied to all stocks, because it does not require a continuous 
time series. 

E.1.3. RESULTS 

There were very few cases where a fltered year could be inflled afterwards (Table E.1). The 
number of inflled return years and resulting additional brood year estimates varied between 
stocks. In some cases, a few inflls allowed for many additional brood year estimates. For example, 
inflling spawner and run size estimates for Bear made it possible to complete recruit estimates 
for another 13 brood years (from 36 to 49 data points). 

Benchmark and parameter estimates were quite stable across data variations for some stocks 
(e.g., Bear, Johnston, Sustut, Kitsumkalum, Mcdonell), but very sensitive for others (e.g., Kwinageese, 
Swan/Stephens). 
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E.1.4. CONCLUSIONS 

We chose to use the Filter45_Infll version of the data for the analyses presented in this Research 
Document, because it excluded several extreme outliers and it completed the time series for 
several stocks, allowing AR1 and TVP models to be applied. 

Table E.1. Summary of Filtering and Inflling Test. For each data version, table lists the number of 
spawner-recruit data points (BrYr), the number of fltered years that were inflled and included (Filter), the 
number of years the were inflled (Infll), and the resulting % change in median posterior estimates of 
Ricker parameters and standard benchmarks. All SR model fts used the Bayesian Basic Ricker (BR) with 
capped uniform prior (cu), with the same MCMC settings (as described in Section 2.2). 

Data Change in median estimates (%) 

Stock Version BrYr Filter Infll beta ln.alpha Seq Smsy Sgen 

Asitka Main 
Main_Infll 

11 
24 

0 
0 

0 
5 -13.96 -41.31 -31.07 -20.52 57.79 

Bear Main 
Main_Infll 

36 
49 

0 
0 

0 
3 10.52 2.39 -7.48 -8.35 -12.45 

Johnston Main 
Main_Infll 

6 
11 

0 
0 

0 
2 -5.29 5.2 10.96 10.89 4.87 

Kitsumkalum Main 
Main_Infll 

16 
24 

0 
0 

0 
2 -9.09 -5.6 4.04 5.96 18.91 

Kitwanga Main 
Main_Infll 

17 
19 

0 
0 

0 
1 8.71 3.9 -1.08 -1.05 -6.27 

Kwinageese Main 
Main_Infll 
Filter45 
Filter45_Infll 

21 
32 
19 
32 

0 
0 
0 
1 

0 
3 
0 
4 

2.67 
-23.7 
-1.26 

-11.24 
-15.25 

-16.7 

-13.51 
8.51 

-16.92 

-9.82 
14.84 

-10.98 

12.24 
62.12 
22.68 

Lakelse Main 
Main_Infll 

49 
55 

0 
0 

0 
2 -0.89 -6.28 -5.12 -4.3 2.47 

Mcdonell Main 
Main_Infll 

35 
42 

0 
0 

0 
1 -5.26 -8.73 -3.66 -0.65 17.19 

Morice Main 
Main_Infll 

50 
54 

0 
0 

0 
1 6.24 7.66 1.88 -0.25 -12.94 

Sustut Main 
Main_Infll 
Filter45 
Filter45_Infll 

27 
32 
25 
27 

0 
0 
0 
0 

0 
1 
0 
1 

6.74 
-6.21 
-3.74 

-9.06 
-6.7 

-1.09 

-14.52 
1.12 
3.27 

-10.94 
3.76 
3.62 

10.65 
28.45 
12.89 

Swan/Stephens Main 
Main_Infll 
Filter1k 
Filter45 
Filter1k_Infll 
Filter45_Infll 

46 
55 
45 
45 
55 
54 

0 
0 
0 
0 
1 
1 

0 
3 
0 
0 
4 
4 

17.36 
-28.19 
-28.19 

-6.54 
-21.66 

11.05 
-31.97 
-31.97 
-11.28 
-24.83 

-2.16 
-4.25 
-4.25 
-1.43 
-1.01 

-4.76 
2.31 
2.31 

1.2 
4.45 

-19.51 
52.02 
52.02 
14.29 

40.9 
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E.2. INFILLING WITH A GENERIC STATE-SPACE MODEL 

E.2.1. PURPOSE 

The inflling approach and sensitivity test summarized in Section E.1 were debated at the peer 
review meeting in April 2022, and further sensitivity testing of the infll approach was requested. 

Rather than setting up a bootstrap test to evaluate sensitivity, we decided to test a Bayesian 
approach that has been commonly used for Alaskan and northern transboundary salmon escapement 
goal analyses: a Bayesian state-space model that integrates the run reconstruction and spawner-
recruit parameter estimation steps into a single model ft (e.g., Bernard and Jones 2010; Hamazaki 
et al. 2012; Fleischman et al. 2013; Fleischman and McKinley 2013; Miller and Pestal 2020; 
Connors et al. 2023). 

In this type of model we don’t need to infll missing brood years up front to ft AR1 or TVP model 
forms, but instead the model searches for SR parameters and annual estimates of run reconstruction 
components (e.g., spawners, harvest, age composition) that together give the best ft. Any 
missing brood years are flled in as part of the Bayesian run reconstruction. 

Previous applications have been highly case-specifc in terms of the run reconstruction components 
and their prior distributions. For example: 

• Fleischman et al. (2013) modelled the Karluk River Chinook run based on a weir count in 
the lower river, three different fsheries below the weir (subsistence, recreational, commercial), 
and a recreational fshery above the weir. Observation errors were specifed based on the 
estimate type: weir counts and commercial harvest estimates based on fsh sales slips 
were considered precise, but recreational harvest estimates based on mail-in surveys were 
considered more uncertain. 

• Fleischman and McKinley (2013) modelled the late run of Kenai River Chinook using eight 
components covering various time periods and locations: multi-beam sonar, in-river test 
fshery, split-beam sonar, lower river sport fshery, commercial set-net fshery, sonar echo-
length, radio-telemetry capture-recapture estimates, and genetic capture-recapture estimates. 

• Miller and Pestal (2020) modelled the Taku Sockeye run reconstruction based on three 
components: in-river mark-recapture estimates at the border, below-border harvests, and 
above border harvests. 

This level of detail is prohibitive for our project covering 20 stocks in two aggregates. However, a 
generic version of an integrated run reconstruction and spawner-recruit model could be applied 
effciently across multiple stocks while providing some fexibility for stock-specifc considerations. 
Such a generic state-space model is being developed by Toshihide Hamazaki (ADF&G), who 
generously shared an interactive online prototype implemented in Shiny-R (Hamazaki 2025). We 
refer to this tool as the Hamazaki App throughout the paper. 

The Hamazaki App allows users to ft alternative SR models, explore standard probability profles 
based on the SR parameters (e.g., probability of achieving at least 75% of MSY at different 
fxed escapement targets), and even generate simple forward simulations with different types of 
harvest strategy. The state-space option in the Hamazaki App implements the methods described 
in Hamazaki et al. (2012), but simplifes the run reconstruction to three components: Harvest 
estimates, either escapement or run, and run age composition. For each annual abundance 
observation, users can specify a level of uncertainty, expressed as a CV, and for run age composition 
a weight to be used, expressed as an effective sample size (efn). With a structure like this, users 
can capture changes in assessment approach over time (e.g., earlier data based on aerial 
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surveys can be assigned a larger CV than more recent estimates from a capture-recapture 
program). Individual run age composition observations that are considered very poor can be 
down weighted by assigning higher CV (e.g., if the weir was washed out partway through the 
season and the estimate was expanded to account for it) or lower efn (e.g., if a year has fewer 
completed age readings). 

E.2.2. METHODS 

We used the Hamazaki App to test 10 alternative versions of SR model ft, covering three Ricker 
model forms (Basic, AR1, and TVP; Section 2.2.1), two estimate types (regular, state-space), 
and two data sets (with or without inflling). Only the Basic Ricker model could be applied to data 
without inflling with the regular estimation approach, but in the state-space approach all three 
model forms could be applied. 

We tested these alternatives on two stocks: Kwinageese, which has a shorter time series and 
four missing brood years, and Lakelse, which has a longer time series and two missing brood 
years (Figure 2). For both stocks, we assigned moderate uncertainty to the spawner and run 
data (CV = 0.2) and large effective sample size (efn = 100). The “no infll” version of the data for 
the state-space estimates used the inflled numbers in order to populate all the felds in the data 
fle, but assigned much larger uncertainty (CV = 0.6) and a very low effective sample size (efn 
= 0), so that the state-space model puts very little weight on the inflled values in the estimation 
step. The “infll” version of the data for the state-space estimates used the inflled numbers and 
assigned a large effective sample size (efn = 100), so that the model treats the inflled values just 
like observed values. 

Note that results for the time-varying productivity model (TVP) are not directly comparable to 
our results. The Hamazaki App reports average parameter and benchmark estimates across 
all brood years as the default, and those estimates are reported here. However, in our analyses 
we subsampled from various time windows (Section 2.3) to generate alternative productivity 
scenarios (e.g., last 2 generations). The Hamazaki App also identifes shifts in productivity 
regimes and generates benchmark estimates for each regime, but we did not fully explore this 
feature, and do not report the results here. 

E.2.3. RESULTS 

For both stocks, Bayesian parameter estimates for all 10 alternative fts converged and generated 
median posterior estimates of biological benchmarks (Figure E.1, Tables E.2 and E.3). However, 
the sensitivity of estimates differed between stocks and varied between benchmarks: (1) Benchmark 
estimates were less sensitive than abundance estimates for individual brood years, (2) Smax 
and Seq estimates were more sensitive than Smsy estimates; (3) Lakelse estimates were more 
sensitive than Kwinageese estimates, even though Kwinageese has fewer brood years of SR 
data and has more missing years in the time series. 

For all state-space model fts, the posterior distribution of spawner estimates was more uncertain 
(i.e., wider) with the “no infll” version of the data (with larger CV on the input values) and the 
median estimate differed depending on the SR model form (Figure E.1). The difference in posterior 
median abundance estimates was larger for Lakelse than for Kwinageese. 

Median posterior benchmark estimates for Kwinageese are so similar across the 10 alternative 
fts that they are identical for practical purposes (Table E.2). A more in-depth comparison may 
show differences in the shape of the posteriors (i.e., wider or narrower, more or less skewed), but 
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this would require more thorough testing of the model settings (i.e., the CV and efn values) and 
the MCMC specifcations (i.e., sample size, burn-in, thinning), which falls outside the scope of 
this example. 

Median posterior benchmark estimates for Lakelse differ more between model forms and estimate 
types than between data versions with or without inflling (Table E.3). State-space estimates are 
lower than the regular Bayesian estimates for all model forms and data versions. 

E.2.4. CONCLUSIONS 

For the two stocks tested in this example, the effect of inflling depends more on stock-specifc 
details (e.g., what the scatter of SR data points looks like, and where the infll values fall) and 
model ftting approach than the specifc details of the inflling step itself. This result supports 
our current inflling approach for this round of work, and sets the stage for future work to more 
fully explore the strengths and limitations of applying generic state-space models across all 20 
modelled Skeena and Nass Sockeye stocks. 
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Figure E.1. State-space posterior estimates of spawner abundance for missing brood years. Each panel 
shows six alternative estimates of spawner abundance for a stock and brood year, comparing three SR 
model forms (Basic, AR1, TVP) and two alternative data sets ( Infll = assign inflled values the same 
uncertainty and weight as observed values, No Infll = assign larger uncertainty and lower weight to inflled 
values). Top panels show two of four missing brood years for Kwinageese, bottom panels show both 
missing brood years for Lakelse. 

247 



Table E.2. Kwinageese: Posterior median estimates of biological benchmarks for alternative model forms, 
estimate types, and data versions. 

Model Form Est Type Data Version Smsy Smax Seq 

Basic Regular Infll 6,626 10,692 17,132 
Regular NoInfll 6,909 10,426 18,588 

StateSpace Infll 6,310 9,749 16,566 
StateSpace NoInfll 6,332 9,941 16,568 

AR1 Regular Infll 6,375 10,199 16,583 

StateSpace Infll 6,146 9,498 16,238 
StateSpace NoInfll 6,139 9,591 16,114 

TVP Regular Infll 6,686 10,811 17,369 

StateSpace Infll 6,309 9,741 16,641 
StateSpace NoInfll 6,383 10,082 16,676 

Table E.3. Lakelse: Posterior median estimates of biological benchmarks for alternative model forms, 
estimate types, and data versions. 

Model Form Est Type Data Version Smsy Smax Seq 

Basic Regular Infll 9,034 20,857 21,128 
Regular NoInfll 9,752 20,233 23,342 

StateSpace Infll 8,291 18,364 19,547 
StateSpace NoInfll 8,289 18,441 19,500 

AR1 Regular Infll 8,358 20,227 19,380 

StateSpace Infll 7,447 16,366 17,659 
StateSpace NoInfll 7,452 16,490 17,654 

TVP Regular Infll 9,086 20,462 21,307 

StateSpace Infll 7,709 15,622 18,553 
StateSpace NoInfll 7,716 15,636 18,547 
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E.3. TEST OF ALTERNATIVE BENCHMARK CALCULATION APPROACHES 

E.3.1. PURPOSE 

This appendix summarizes results for the following tests: (1) alternative benchmark calculation 
approaches for a single set of ln.a and b parameters (e.g. Hilborn 1985 vs. Scheuerell 2016 
Smsy calculations), (2) alternative benchmark calculation approaches across a grid of ln.a and b 
parameter values, (3) speed test for the alternative implementations. 

Appendix E.4 summarizes tests related to the bias correction on ln.a. 

E.3.2. ALTERNATIVE SMSY CALCULATIONS 

We implemented four alternative Smsy calculation approaches (Table E.4) as part of the RapidRicker 
package (Pestal et al. 2025a), including the approximations from Hilborn (1985) and Peterman et 
al. (2000), the explicit solution from Scheuerell (2016), and a brute force calculation (i.e., for each 
parameter set [ln.a, b] calculate recruits for 3,000 increments of spawner abundance, then select 
the increment with the largest difference between recruits and spawners) . The R code for all four 
versions is included in Appendix C.3.1. 

Table E.4. Alternative Smsy Calculation Approaches. 

Version Calculation 

Hilborn1985 Smsy = ln.a/b ∗ (0.5 − 0.07 ∗ ln.a) 
Petermanetal2000 Smsy = ln.a ∗ (0.5 − 0.65 ∗ ln.a1.27/(8.7 + ln.a1.27))/b 
Scheuerell2016 Smsy = (1 − lambertW 0(exp(1 − ln.a)))/b 
BruteForce Smsy = spn.vec[which.max(rec.vec − spn.vec)] for 3000 spn from 1 to 1/b 

E.3.3. ALTERNATIVE SGEN CALCULATIONS 

We implemented four alternative Sgen calculation approaches as part of the RapidRicker package 
(Pestal et al. 2025a), including three versions of optimization code (Holt and Ogden 2013; Holt et 
al. 2018; Connors et al. 2023) and a brute force calculation (i.e., for each parameter set [ln.a, b] 
calculate recruits for 3,000 increments of spawner abundance, then select the increment with the 
smallest spawner abundance for which Rec ≥ Smsy). The R code for all four versions is included 
in Appendix C.3.2. 

Note that the Holt et al. (2018) version has been incorporated in the samSim package (Freshwater 
et al. 2025) and we label that option samSim in the RapidRicker functions. 
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E.3.4. TESTS 

• Test 1: Sample Parameter Set : Applied the alternative calculation approaches to a sample 
parameter set with ln.a = 1.3 and b = 5e − 4. Sgen calculations are relative to Smsy values, 
so this gives 16 total variations: 4 alternative Smsy calculations, and then 4 alternative Sgen 
calculations for each Smsy value. 

• Test 2: Grid of ln.a and b parameters: Applied the alternative calculation approaches to a 
set with all possible combinations of 100 ln.a values from ln(1.1) to ln(10) and 100 b values 
from 100 to 1 Mill capacity (b = 1/Smax, b values from 1/100 to 1/106), resulting in 16 
estimates for each of 10,000 alternative sets of [ln.a, b]. 

• Test 3: Computing Speed : Applied the 4 Smsy calculation methods and 4 Sgen calculation 
methods to 10,000 parameter sets. 

E.3.5. RESULTS 

All the alternative calculation methods (4 for Smsy, 4 for Sgen) generated benchmarks values 
that are essentially identical for a sample parameter set (Table E.5). 

For 10,000 alternative combinations of ln.a and b, Smsy values varied by a maximum of 1.17% 
across 4 alternative calculation methods. Sgen values varied by a maximum of 1.45% across 16 
alternative calculation methods (4 alternative Smsy calculations by 4 alternative Sgen calculations). 

Computing speed differed between calculation implementations, with brute force calculations 
much slower than the approximate Smsy calculations (Hilborn 1985, Peterman et al. 2000), the 
exact solution for Smsy (Scheuerell 2016), and the three alternative Sgen solver implementations 
(Table E.6). 

E.3.6. CONCLUSIONS 

Based on these results, we decided to use in this report: 

• the Scheuerell (2016) method for Smsy, because it is the only exact solution 

• the Connors et al. (2023) version of the Sgen optimizer, because it is the only non-brute-
force method that did not crash for any of the [ln.a, b, sd] combinations in the bias correction 
tests (Appendix E.4). 
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Table E.5. Benchmark Calculation Test 1. Estimates of biological benchmarks for ln.a = 1.3 and b = 5e − 4 
using 4 alternative Smsy calculations and 4 alternative Sgen calculations. Note that the Holt and Ogden 
(2013) version of the Sgen optimizer has a built-in Smsy calculation using the Hilborn (1985) 
approximation, and therefore generates the same result for the four alternative Smsy inputs. 

ln.alpha beta SmsyCalc Smsy Seq Smax SgenCalc Sgen Ratio 

1.3 5e-04 BruteForce 1069.5 2600 2000 BruteForce 346.9 3.08 
1.3 5e-04 Scheuerell2016 1069.5 2600 2000 BruteForce 346.9 3.08 
1.3 5e-04 Hilborn1985 1063.4 2600 2000 BruteForce 344.4 3.09 
1.3 5e-04 Petermanetal2000 1066.4 2600 2000 BruteForce 345.9 3.08 

1.3 5e-04 BruteForce 1069.5 2600 2000 HoltOgden2013 344.2 3.11 
1.3 5e-04 Scheuerell2016 1069.5 2600 2000 HoltOgden2013 344.2 3.11 
1.3 5e-04 Hilborn1985 1063.4 2600 2000 HoltOgden2013 344.2 3.09 
1.3 5e-04 Petermanetal2000 1066.4 2600 2000 HoltOgden2013 344.2 3.1 

1.3 5e-04 BruteForce 1069.5 2600 2000 samSim 346.6 3.09 
1.3 5e-04 Scheuerell2016 1069.5 2600 2000 samSim 346.6 3.09 
1.3 5e-04 Hilborn1985 1063.4 2600 2000 samSim 344.2 3.09 
1.3 5e-04 Petermanetal2000 1066.4 2600 2000 samSim 345.4 3.09 

1.3 5e-04 BruteForce 1069.5 2600 2000 Connorsetal2023 346.6 3.09 
1.3 5e-04 Scheuerell2016 1069.5 2600 2000 Connorsetal2023 346.6 3.09 
1.3 5e-04 Hilborn1985 1063.4 2600 2000 Connorsetal2023 344.2 3.09 
1.3 5e-04 Petermanetal2000 1066.4 2600 2000 Connorsetal2023 345.4 3.09 

Table E.6. Benchmark Calculation Test 3. Computing time for alternative benchmark calculation 
approaches over 10,000 sample values. 

Benchmark Method Time(s) 

Smsy BruteForce 41.13 
Smsy Scheuerell2016 0 
Smsy Hilborn1985 0 
Smsy Petermanetal2000 0 
Sgen BruteForce 2.97 
Sgen HoltOgden2013 1.52 
Sgen samSim 0.76 
Sgen Connorsetal2023 0.5 
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E.4. EFFECT OF BIAS CORRECTION ON BENCHMARK ESTIMATES 

E.4.1. PURPOSE 

Preliminary benchmark estimates were fagged as potentially erroneous during the TWG process. 
Sgen values in particular seemed too low for several of the stocks. Once we verifed the benchmark 
calculation code (Appendix E.3), we explored the effect of the log-normal bias correction for the 
productivity parameter alpha (Table 11) on estimates of Smsy and Sgen. Note that this section 
refers to both the alpha parameter and the its natural log, ln.alpha, depending on the context. 

E.4.2. APPROACH 

• Generated combinations of [alpha,sigma] that spanned the range of preliminary estimates 
for Skeena and Nass Sockeye stocks: 

• alpha parameters from 1.4 to 20 (ln.alpha from 0.336 to 3) 

• sigma parameters from 0.2 to 1.6 

• beta parameter does not affect the relative values, only the absolute scale, so fxed at 
0.0005. 

• Used Scheuerell (2016) method for Smsy, because it is the only exact solution. 

• Used Connors et al. (2023) method for Sgen, because it was the only non-brute-force 
method that did not crash for any of the [ln.alpha, b, s] combinations tested. 

• Calculated Smsy and Sgen using either ln.alpha or ln.alpha’ = ln.alpha + (sigmaˆ2)/2 

• Calculated the % differences due to bias correction for Smsy, Sgen, and the Ratio of Smsy/Sgen 

• Repeated the calculation with the simple deterministic parameter estimates (ln.alpha, beta, 
sigma) for those Skeena and Nass Sockeye stocks included in our analyses (i.e., wild stocks 
with at least 5 brood years of spawner-recruit data). 

E.4.3. RESULTS 

Larger sigmas resulted in small Smsy increases for stocks with higher intrinsic productivity (alpha 
>5, ln.alpha > 1.6), but resulted in substantial Smsy increases for lower productivity (alpha < 3, 
ln.alpha < 1.1). For example, Smsy roughly doubles (Perc diff = 100%) due to the bias correction 
for alpha = 1.5 and sigma = 1 (ln.alpha = 0.405, ln.alpha’ = 0.905). Skeena and Nass Sockeye 
stocks fall on different gradients, with % difference due to bias correction ranging from ~5% 
to ~60% (Figure E.2). Bias correction increased or decreased Sgen values, depending on the 
combination of ln.alpha and sigma (Figure E.3). Sgen decreases for all but one of the Skeena 
and Nass Sockeye stocks. For many stocks, Sgen decreased by more than 20%. The bias 
correction increased the distance between Smsy and Sgen as sigma increased (Figure E.4). 
For 3 stocks, the ratio of Smsy/Sgen more than doubled due to the bias correction. 

Table E.7 lists results by stock. 

E.4.4. CONCLUSIONS 

Given these observed effects, we chose to report medians and percentiles without bias correction 
throughout this Research Document, but included the bias-corrected version in Appendix G. 
Section 2.4 describes how the bias correction is linked to how management objectives are 
defned. 
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Figure E.2. Effect of Bias Correction on Smsy. Each line shows how, for a specifc value of the alpha 
parameter, the difference between original and bias-corrected estimate changes as the sigma parameter 
increases. Uncertainty in the model ft increases from left to right, as sigma increases, resulting in a larger 
difference between estimates (i.e., lines curve upward). The effect of bias correction is larger at lower 
productivity (i.e., lower alpha parameter). Points show where each stock falls on the gradients of 
uncertainty and productivity, using a simple deterministic Ricker ft to all available data. The red horizontal 
line separates the results into the range where bias corrected estimates are larger than the original 
estimates (top) or lower than original estimates (bottom). 
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Figure E.3. Effect of Bias Correction on Sgen. Layout as per Figure E.2. 
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Figure E.4. Effect of Bias Correction on Ratio of Smsy/Sgen. Layout as per Figure E.2. 
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Table E.7. Effect of bias correction on estimates of Smsy, Sgen, and the ratio of Smsy/Sgen. Stocks 
sorted from lowest to highest productivity (ln.alpha). All results for a simple deterministic Ricker ft to all 
available data. 

% Difference 

Stock ln.alpha sigma Smsy Sgen Ratio 

Johnston 0.53 0.50 21 9 11 
Lakelse 1.01 0.79 24 -11 40 
SwanSteph 1.02 1.00 37 -20 71 
Bab-EW 1.13 0.88 25 -18 52 
Kitwanga 1.16 1.25 45 -38 134 
Bab-LW 1.21 0.91 25 -21 57 
Asitka 1.23 1.19 39 -36 118 
LNassSRT 1.28 1.18 36 -37 115 
Alastair 1.38 0.82 17 -19 44 
Slamg 1.44 0.60 9 -11 21 
Pinkut 1.45 1.01 23 -30 75 
Bab-MW 1.49 0.94 19 -27 63 
Motase 1.50 0.89 17 -24 54 
Mcdonell 1.67 0.60 7 -12 22 
Kwinag 1.69 0.91 15 -27 57 
Damdoch 1.76 0.68 8 -16 29 
Morice 1.76 1.04 17 -35 79 
Meziadin 1.79 0.68 8 -16 29 
Kitsumk 1.82 0.30 2 -3 5 
Bear 1.99 0.73 7 -19 33 
Fulton 2.27 0.95 9 -33 62 
Sustut 2.41 1.04 9 -38 76 

256 



APPENDIX F. SIMULATION MODEL EXTENSIONS 

Outcome uncertainty and covariation in productivity were identifed as key revisions during the 
peer review meeting in April 2022, and then developed with feedback from the independent 
reviewers for the overall escapement goal review process (Sec. 1.1.2). The specifc implementations 
summarized in the appendices have not been formally peer-reviewed through the CSAS process, 
but helped show the potential magnitude of effects on simulation results for the worked examples. 

F.1. OUTCOME UNCERTAINTY 

F.1.1. INTRODUCTION 

Within a simulation model, all the variables can be known exactly, and harvest strategies can 
be implemented perfectly. In practice, however, perfect control of the outcome is not possible. 
Target harvest and ER for the aggregate can differ from what the target should be, if run size 
were known perfectly. Actual harvest and ER will also differ from target ER due to factors such 
as physical and biological variables that affect the vulnerability of fsh to fshing gear (e.g., river 
conditions, depth of fsh in the water column, migration routes, migration timing), enroute mortality, 
and non-compliance with fshing regulations. Finally, ER for component stocks differ from the 
aggregate ER, depending on timing and area of fsheries relative to migration routes and timing. 

Outcome uncertainty was not included in the simulation model described in initial version of this 
Research Document which was presented for peer review in April 2022, but was subsequently 
approximated in the current model implementation based on historical ER patterns. More complex 
mechanisms could be implemented in the future, which would bring this model closer to a full 
management strategy evaluation (MSE). 

F.1.2. HISTORICAL PATTERNS IN AGGREGATE EXPLOITATION RATE AND HARVEST 

To investigate historical patterns, we generated time series of aggregate run size (catch plus 
number of spawners), spawner abundance, harvest, and ER by summing the estimates from the 
run reconstructions for component stocks. 

The total amount harvested and the percent of the run that were harvested (ER) have declined 
for both aggregates since the mid-1990s (Figure F.1). The time series can be split into three 
distinct periods: 

• Pre-1995: For both aggregates, harvest amounts were highly variable, but ER was fairly 
stable in the range of 50%-70%. 

• 1995-2009: For the Skeena Wild aggregate, the mid-1990s are a clear breakpoint, with 
lower harvests and ER following (1) a large-scale feet reduction in 1996 (the Miffin Plan), 
(2) the introduction of gear restrictions to reduce interceptions of non-target species such 
as Coho and Steelhead (i.e., limiting fshing activity to daylight hours, mandatory weed 
lines and shorter length and set times for gillnets), and (3) the implementation of the 1999 
PST Chapter 2 Annex, which introduced the Week 30/31 provisions for the District 104 
purse seine fshery to reduce U.S. interceptions of Skeena Sockeye in July. For the Nass 
aggregate, ER stayed similar to the earlier time period until 2007, and harvest amounts were 
at or above the 1980s harvests. 

• 2010+: For both aggregates, ER and harvest amount were much reduced compared to 
earlier years. Reasons for this change include (1) the implementation around 2009/2010 of 
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the current Canadian domestic harvest rule for Skeena Sockeye following the work of the 
Independent Science Review Panel (Walters et al. 2008), (2) shifting of Canadian fshing 
effort later to avoid early-timed stocks, and (3) low returns for many years during the recent 
time period. 

By comparing annual ER and harvest to run size, we can approximate the overall harvest approach 
across all fsheries (Figure F.2, Figure F.1). This is the overall outcome at the end of the fshing 
season, which refects environmental conditions, all the fshery-specifc pre-season planning, 
in-season decision-making based on uncertain and rapidly changing information, and actual 
behaviour of fsh and harvesters. Clear abundance-based patterns emerge for both aggregates: 

• SkeenaWild : Aggregate ER tended to be lower for years with run size near or below the 
current assumed interim escapement goal of 500,000 (Figure F.2, Panel A). However, even 
at run sizes below the assumed current interim goal, the aggregate ER was highly variable, 
and as high as 60% for some early years with low run size. The aggregate harvest amount 
has declined with run size, and annual harvests cluster tightly around a ftted regression 
line for each time period (Figure F.2, Panel B). The slope for the most recent time period is 
shallower (i.e., amount of additional harvest for each incremental increase in run size is less 
in recent years than it was in earlier years). 

• Nass: Aggregate ER tended to be lower for years with run size near the current assumed 
interim escapement goal of 200,000 (Figure F.2, Panel C), and aggregate run size in the 
reconstructions from 1982-2009 has never fallen below the interim goal. The aggregate 
harvest amount has declined with run size, and annual harvests cluster tightly around a 
ftted regression line for each time period (Figure F.2, Panel D). The slope for the recent time 
periods is shallower than in earlier years. 

F.1.3. ESTIMATING AGGREGATE-LEVEL OUTCOME UNCERTAINTY FROM HISTORICAL 
PATTERNS 

Using the approach by Collie et al. (2012) we can use the ftted regression lines in Panels B and 
D of Figure F.2 to estimate two properties of the historical harvest outcomes (Table F.1): 

1. No Fishing Point : Extrapolate the harvest amounts to the lower run sizes lower than any 
observed and identify the implied run size below which there would have been no harvest 
(i.e., point of no fshing or the lower management reference point, which is the x intercept of 
the ftted line). Note that these empirically derived estimates of the implied no-fshing point 
refect the net outcome of all sources of variation in catch for a given run size, and hence are 
not the same as the limit reference points that managers may have had in mind at the time. 

2. Outcome Uncertainty : Use the scatter of points around the ftted line to estimate the overall 
outcome uncertainty (i.e., assuming that the ftted line represents the actual strategy, how 
far off was the outcome in each year?). Statistically, this is estimated as the coeffcient of 
variation (CV) based on the Root Mean Square Error (RMSE) scaled by Mean Harvest. 
A lower CV means that actual outcomes are closer to the estimated strategy (i.e., lower 
outcome uncertainty). 

Skeena Wild Aggregate 

Mean run size and harvest have declined over time, from a run size of over 1 million and 650,000 
harvested in the years before 1995, to 470,000 run size and 150,000 harvested for 2010-2019 
(Figure F.1). The implied no fshing point is basically the same for all three time periods, at a run 
size of about 150,000. Outcome uncertainty was lower in earlier years (CV = 11%), then almost 
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doubled in recent years (CV= 18%), but still much lower than the 30-50% CV for four Alaskan 
Chum stocks analyzed by Collie et al. (2012). 

Based on the implied no-fshing point of 150,000 fsh for Skeena Wild, we can infer a lower 
reference point that was used for the total Skeena aggregate in the past. Total Skeena Sockeye 
escapement (wild plus enhanced) has averaged about 3 times larger than the wild-stock escapement 
alone, ranging from 2 to 5 times larger. This roughly translates into an average historical lower 
reference point (i.e., no fshing point) of about 450,000 total Skeena run size, with a range from 
300,000 to 750,000 total Skeena run size. 

Nass Aggregate 

Mean run size and harvest have declined in recent years, from more than 600,000 run size and 
more than 400,000 harvest in the two earlier time periods, to 350,000 run size and 170,000 
harvest for 2010-2019 (Figure F.1). The implied no fshing point has roughly doubled over time, 
from about 59,000 before 1995 to about 116,000 since 2010. Outcome uncertainty was similar to 
Skeena Wild in earlier years (CV = 11%), then dropped (CV= 7-8%), again much lower than the 
30-50% CV for four Alaskan Chum stocks analyzed by Collie et al. (2012). 

Magnitude of observed aggregate-level outcome uncertainty 

The outcome uncertainty described by the CVs for the linear fts in parts B and D of Figure F.2 
appears small, but when translated into variation in ER across years for a given run size (Figure F.2, 
panels A and C), the result is a very large range in % ER. For instance, for the Skeena, a run 
size of roughly 0.5 million resulted in anywhere from a 25% to 50% ER in the 1995-2009 period 
and over 60% pre-1995. For low-productivity stocks, the high end of this ER range is potentially 
detrimental. 
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Figure F.1. Time series of aggregate exploitation rate (ER) and harvest for two aggregates. Aggregate 
spawners, harvest, and run size were calculated as the sum of stock-specifc run reconstructions. The 
time series are split into three time periods that roughly line up with major changes in the management 
approach. 
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Figure F.2. Annual aggregate exploitation rate and harvest as a function of run size. These plots 
summarize the overall outcome of annual stock-specifc and fshery-specifc management actions and 
physical/biological conditions, and can be used to approximate the underlying harvest strategy that was in 
place. In Panels A and C, various shapes of harvest control rule could be ftted to the observed data (e.g., 
a curvilinear function like Eqtn. 1 in Holt and Peterman (2006), a hockey stick, or a step function with 
incremental increases in ER), but this would require either specifying or estimating various shape 
parameters for the functions (e.g., slopes, infection points, breakpoints). In panels B and D, however, 

2strong linear relationships between total harvest and total run size emerge (coeffcient of determination r , 
adjusted for the number of observations and number of parameters is larger than 0.9 for all time periods 
for both aggregates; Table F.1). 
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Table F.1. Summary of estimated historical harvest strategy. For each aggregate and time period, table 
shows the mean run, mean harvest, estimated no fshing point (i.e., x-intercept for linear regression ft in 
Figure F.2 ), estimated exploitation rate (i.e., slope of the ftted line), and associated adjusted r2 and CV. 

Agg Time Window Run Harvest No Fishing ER 2Adj r CV 

SkeenaWild Up to 1994 1,079,541 649,217 153,382 70 0.965 11 

1995 to 2009 763,918 399,253 153,798 65 0.949 18 

Since 2010 468,166 148,017 147,076 46 0.897 18 

All years 897,480 502,125 189,653 71 0.964 15 

Nass Up to 1994 667,899 433,018 59,279 71 0.979 11 

1995 to 2009 634,083 451,762 92,610 83 0.976 7 

Since 2010 353,560 173,537 115,943 73 0.972 8 

All years 571,342 371,820 84,328 76 0.968 13 
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F.1.4. HISTORICAL DIFFERENCES BETWEEN AGGREGATE-LEVEL AND STOCK-LEVEL 
ER 

To investigate observed differences in annual ER between stocks, we generated various diagnostic 
plots of stock-level ER and aggregate-level ER, where aggregate-level ER was calculated from 
the sum of stock-level run reconstructions. Specifcally, we examined the ratio of stock and 
aggregate-level ERs and their differences over time and relative to aggregate ER. Ratios of stock-
level ER and aggregate ER have changed substantially for many stocks since the mid-1990s, 
consistent with the observed changes in aggregate ER and harvest highlighted above. 

Figure F.3 shows one example for Morice Sockeye in the SkeenaWild aggregate. Figure F.4 
summarizes the mean and spread of ratios across stocks, for two different time periods. Tables F.2 
and F.3 list the corresponding values. Some notable observations: 

• Nass stocks tend to return earlier than the bulk of the Skeena run. 

• Nass stocks tend to have very similar ER, with a mean ratio near 1 and a narrower spread 
than observed for the Skeena stocks. 

• The latest-timed Skeena stocks (i.e., Babine LW) generally have higher ER (due to Week 
31 provision and later-timed Canadian fsheries), while the earlier-timed stocks generally 
have lower ER. This difference is more pronounced when looking at more recent data only 
(starting 1995) than for all years of data. 

• Lakelse and Mcdonell : These are the earliest SkeenaWild stocks, and they have the lowest 
ER. 

• Babine stocks: Mean ER is similar for the three component wild stocks, but the link between 
run timing and estimated ER is still clear. Babine Early Wild has the lowest mean ER, which 
almost matches the aggregate ER. Babine Mid Wild migrate later and have a slightly higher 
mean ER than the aggregate. Babine Late Wild have the latest migration among the wild 
Skeena stocks, and have the highest mean ER (except for Sustut, see below). 

• Sustut : Estimated exploitation rates for Sustut are a clear outlier among the SkeenaWild 
stocks. While escapement data for the Sustut stock comes from a weir count and is considered 
to be reliable, there is a terminal FSC fshery just downstream of the weir facility with an 
average reported harvest of 682 (min = 135, max = 1,954) since 1994, when the current 
fshery started (road access to the site was only established in the early 1990s). This terminal 
harvest, which is additional to the harvests in mixed stock fsheries in the mainstem Skeena 
and marine fsheries that affect all other Skeena stocks, may explain the higher and more 
variable ERs observed for this stock. 
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Figure F.3. Example of ER diagnostics – Morice Sockeye (Middle Skeena Lake Type). Plot shows ratios 
and differences, both over time and relative to aggregate ER. For many stocks, these patterns show a 
break point in the mid-1990s, so data are split into earlier years up through 1994, and more recent years 
starting in 1995. Before 1995, Morice ER and aggregate SkeenaWild ER are very similar (ratio around 1, 
differences around 0), but have increasingly diverged in recent years. ER values in the panels on the right 
are in %. For example, if aggregate ER was 45% and Morice ER was 32%, then the ratio was 0.71 and 
the difference was -13. 
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Figure F.4. Stock-specifc scalars for exploitation rate (ER) estimated for two alternative time periods. 
Estimates are based on the observed ratio of stock-specifc ER and aggregate ER. Points and whiskers 
show the mean ± 2 SD. Stocks are grouped by aggregate, and sorted based on spawning location within 
each aggregate, from the mouth of the river to upstream locations. Stocks are also assigned to one of fve 
timing groups, from 1 = earliest to 5 = latest. Peak timing and run duration of stocks relative to each other 
vary by year and differ by area (e.g., Alaskan fsheries, Canadian marine fsheries, in-river fsheries). 
Timing assignments are rough groupings based on long-term average peak migration through lower river 
assessment projects (Tyee test fshery for the Skeena, and Nass fsh wheels). Tables F.2 and F.3 list the 
corresponding values. 
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Table F.2. Distribution parameters for stock-level ER scalars based on observed differences to aggregate 
ER using data since 1995. n is the number of years with stock-specifc ER estimates from the run 
reconstruction. Mean values larger than 1.1 or smaller than 0.9 are highlighted and marked with an 
asterisk (i.e., stocks where the mean ER differs by more than 10% from the aggregate ER). Note that 
these scalars are relative to the aggregate ER, so that a scalar of 1.1 (a 10% difference) means an Agg 
ER of 30% becomes a stock-level ER of 33%, not a stock-level ER of 40%. Stocks are grouped by life 
history and adaptive zone (LHAZ). 

Agg LHAZ Stock n mean sd p10 p25 p50 p75 p90 

Nass Nass Sea/River Type LNassSRT 25 0.97 0.08 0.87 0.91 0.97 1.02 1.07 

Upper Nass Lake Type Damdoch 25 1.02 0.08 0.92 0.96 1.02 1.07 1.12 

Kwinag 25 1.00 0.09 0.89 0.94 1.00 1.06 1.12 

Meziadin 25 1.00 0.01 0.99 1.00 1.00 1.01 1.02 

SkeenaWild Lower Skeena Lake Type Alastair 25 *0.53 0.13 0.36 0.44 0.53 0.62 0.70 

Johnston 11 *0.67 0.31 0.27 0.46 0.67 0.88 1.07 

Kitsumk 24 *0.79 0.12 0.64 0.71 0.79 0.87 0.94 

Lakelse 25 *0.36 0.16 0.15 0.25 0.36 0.47 0.57 

Mcdonell 18 *0.36 0.14 0.18 0.26 0.36 0.46 0.55 

Middle Skeena Lake Type Bab-EW 25 1.00 0.16 0.79 0.89 1.00 1.11 1.21 

Bab-LW 25 *1.23 0.16 1.02 1.12 1.23 1.33 1.43 

Bab-MW 25 *1.10 0.12 0.95 1.02 1.10 1.18 1.25 

Kitwanga 20 *0.78 0.22 0.50 0.63 0.78 0.93 1.06 

Morice 25 *0.76 0.25 0.45 0.60 0.76 0.93 1.08 

SwanSteph 25 *0.65 0.21 0.38 0.51 0.65 0.79 0.91 

Upper Skeena Lake Type Asitka 21 *0.88 0.19 0.64 0.76 0.88 1.01 1.12 

Bear 25 0.90 0.18 0.67 0.78 0.90 1.02 1.13 

Motase 22 0.98 0.12 0.83 0.90 0.98 1.06 1.13 

Slamg 19 1.01 0.16 0.80 0.90 1.01 1.12 1.22 

Sustut 20 *1.59 0.72 0.67 1.10 1.59 2.07 2.51 
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Table F.3. Distribution parameters for stock-level ER scalars based on observed differences to aggregate 
ER using all available data. n is the number of years with stock-specifc ER estimates from the run 
reconstruction. Mean values larger than 1.1 or smaller than 0.9 are highlighted (i.e., stocks where the 
mean ER differs by more than 10% from the aggregate ER). Note that these scalars are relative to the 
aggregate ER, so that a scalar of 1.1 (a 10% difference) means an Agg ER of 30% becomes a stock-level 
ER of 33%, not a stock-level ER of 40%. 

Agg LHAZ Stock n mean sd p10 p25 p50 p75 p90 

Nass Nass Sea/River Type LNassSRT 38 0.88 0.15 0.69 0.78 0.88 0.98 1.08 

Upper Nass Lake Type Damdoch 38 1.07 0.10 0.94 1.00 1.07 1.14 1.20 

Kwinag 38 1.02 0.08 0.92 0.97 1.02 1.08 1.13 

Meziadin 38 1.00 0.01 0.98 0.99 1.00 1.01 1.01 

SkeenaWild Lower Skeena Lake Type Alastair 60 0.56 0.09 0.44 0.50 0.56 0.63 0.68 

Johnston 32 0.80 0.20 0.54 0.66 0.80 0.93 1.06 

Kitsumk 59 0.86 0.10 0.73 0.79 0.86 0.92 0.98 

Lakelse 60 0.34 0.11 0.19 0.26 0.34 0.42 0.49 

Mcdonell 52 0.43 0.12 0.28 0.35 0.43 0.51 0.59 

Middle Skeena Lake Type Bab-EW 60 0.94 0.12 0.78 0.86 0.94 1.02 1.09 

Bab-LW 60 1.14 0.13 0.98 1.06 1.14 1.23 1.30 

Bab-MW 60 1.04 0.09 0.92 0.98 1.04 1.10 1.16 

Kitwanga 35 0.87 0.19 0.62 0.74 0.87 1.00 1.12 

Morice 60 0.92 0.21 0.65 0.78 0.92 1.07 1.20 

SwanSteph 59 0.67 0.14 0.48 0.57 0.67 0.76 0.85 

Upper Skeena Lake Type Asitka 41 0.92 0.14 0.74 0.82 0.92 1.01 1.09 

Bear 58 0.93 0.12 0.78 0.85 0.93 1.01 1.09 

Motase 35 0.97 0.09 0.86 0.91 0.97 1.04 1.09 

Slamg 19 1.01 0.16 0.80 0.90 1.01 1.12 1.22 

Sustut 48 1.17 0.58 0.43 0.78 1.17 1.56 1.91 
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F.1.5. MODEL IMPLEMENTATION OF AGGREGATE AND STOCK-LEVEL ER SCALARS 

Given the observed patterns summarized above, we decided to simulate outcome uncertainty in 
the current model as 2 multiplicative scalars, rather than additive variation. Specifcally, for Stock 
i in aggregate j, for year k in simulated trajectory l : 

Stk.ERi,j,k,l = T arget.ERj,k,l ∗ Agg.Scalarj,k,l ∗ Stk.Scalari,j,k,l (F.1) 

For example: 

• If the ER Target for the Skeena Wild aggregate is 10% and the randomly sampled aggregate 
scalar for Skeena Wild is 0.94, then the actual ER for the Skeena Wild aggregate is 9.4%. 

• If the randomly sampled scalar for Alastair is 0.51, then the actual ER for Alastair is 4.8% 
(10 * 0.94 * 0.51). 

This approach for the aggregate scalar is analogous to the approach by Holt and Peterman 
(2006), who estimated aggregate-level multiplicative scalars for each component of an abundance-
based harvest rule that had three inputs (maximum ER, Run size below which the ER is 0, and a 
shape parameter). 

The second step of also applying a stock-specifc scalar captures two important properties. 
Simulated outcomes in terms ER will differ between stocks, but they will be correlated with each 
other, and with the aggregate (i.e., there is random variation around each ER value, but for a 
simulated year with larger target ER for the aggregate, all the component stocks will also tend to 
have larger ER). 

The parameterization of these distributions of scalars is critical. To be useful, the modeling 
approach needs to approximately refect the mean magnitude of the scalar, as well as variation 
around that mean. Even if the specifcs are wrong, but the overall properties are right, the model 
will give useful guidance. We created the following alternative scenarios for sensitivity testing: 

• Aggregate Scalars: Three variations that cover the observed range (Table F.1). None = 
no difference between aggregate target ER and aggregate ER outcome; Narrow = normal 
distribution with CV= 5%; Wide = normal distribution with CV= 15%. 

• Stock-level Scalars: Three variations. None = no difference between aggregate ER and 
stock-level ER; All year and Starting 1995 = use the sample distributions (Figure F.4, Tables F.2 
and F.3). 

Together this gives 3 x 3 = 9 alternative scenarios of outcome uncertainty to be tested against 
alternative productivity assumptions, alternative harvest strategies, and alternative assumptions 
about covariation in productivity. 

Three fundamental questions need to be considered: 

1. How does the model specify the target ER for the aggregate? The aggregate target ER in 
the simulation will depend on the user-specifed type and specifc values for the harvest 
rule. The current priority is to test alternative levels of a fxed escapement strategy. We 
are also testing alternative levels of a fxed ER strategy to show the contrast in expected 
performance, and provide support for the recommendation to explore various types of 
abundance-based rules in the future. 

2. How can we capture additional properties of the aggregate scalars? The Skeena data 
(Figure F.2, Panel A) show not only variation around some target nonlinear ER function, 
but also a bias upward in the harvest rate at low run size compared to the optimal nonlinear 
function that is associated with an interim escapement goal of 300,000. That bias is important 
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to capture in order to fully refect the conservation consequences of outcome uncertainty. 
However, it cannot be easily implemented and tested in the current model structure. We 
consider this extra level of complexity a high priority for future work, but beyond the scope of 
the current worked example of the simulation model. 

3. How can we capture additional properties of the stock-specifc scalars? Outcome uncertainty 
is likely correlated between stocks (e.g., ER for all the early migrating stocks in a simulated 
year will tend to differ from the aggregate ER in the same direction, because they pass 
through the same gauntlet of fsheries at the same time). This could be implemented in the 
current model structure, similar to the covariation in productivity, which is the second major 
model extension in response to the science review. However, it would take considerable 
effort to replicate the productivity covariation analyses with the ER differences to generate 
the parameters for this. We consider this extra level of complexity a high priority for future 
work, but beyond the scope of the current worked example of the simulation model. 
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F.2. MODELLING COVARIATION IN PRODUCTIVITY 

F.2.1. CONCEPTS 

The current simulation model simulates 20 stocks in two aggregates: Nass aggregate (4 stocks), 
SkeenaWild aggregate (16 modelled stocks). Simulated recruits are based on spawner numbers 
for the brood year, the ftted relationship between spawners and productivity (i.e., recruits/spawner), 
with randomly sampled noise to refect natural variability and uncertainty. The initial model results 
presented in the CSAS science review process assumed a stock-specifc amount of variability 
around the underlying spawner-recruit relationship, but the randomly sampled variability for 
an individual stock was independent of the variability in other stocks (e.g., in a simulated year, 
Babine Late Wild could have worse-than-expected recruitment and Babine Early wild could have 
better-than-expected recruitment). However, the spawner recruit data suggest that covariation 
in recruitment productivity occurs for some nearby stocks (e.g., positive covariation would mean 
that in a year with a good productivity for one stock, other stocks would also tend to have good 
productivity). Covariation in salmon productivity has been documented at different scales, from 
stocks in an aggregate to coastwide patterns by species (e.g., Dorner et al. 2018a). 

Depending on the type of harvest strategy, the level of covariation can strongly infuence the 
aggregate and individual trajectories of run size, harvest, and spawner abundance. Participants 
in the science review therefore identifed covariation in productivity as a high-priority extension of 
the simulation model. 

F.2.2. ESTIMATING HISTORICAL COVARIATION IN PRODUCTIVITY 

To estimate historical covariation in productivity, we estimated the log residuals from the basic 
Ricker model ft (i.e., the one without a time-varying productivity parameter), and then estimated 
the correlation between each pair of productivity time series for modelled stocks. We then averaged 
the correlations for groups of stocks (Figure F.5). Stocks were grouped based on life history and 
freshwater adaptive zone (LHAZ). There are two LHAZ with modelled stocks on the Nass (Lower 
Nass Sea & River Type, Upper Nass Lake Type) and three LHAZ with modelled stocks on the 
Skeena (Lower, Middle, and Upper Skeena Lake Type). 

Notable observations included: 

• longer time period : Positive correlations were observed within and between stocks in the 
Skeena LHAZ, but the correlation is weaker between Middle Skeena stocks and others. 
Specifcally, correlations are larger than 0.4 within all three Skeena LHAZ, and between 
lower and upper Skeena stocks. Correlations between middle Skeena stocks and the other 
Skeena stocks are lower, around 0.175. We observed negative correlations between Lower 
Nass SRT and all other Skeena and Nass stocks (strongest negative for correlation with 
Upper Skeena). 

• shorter time period : We observed stronger correlations than for the longer time period 
within 2 of the 3 Skeena LHAZ stocks, similar correlations between lower and upper Skeena 
stocks, and no correlation between middle Skeena LHAZ and other Skeena stocks. There is 
a stronger negative correlation between Nass Lake Type and Skeena Lake Type stocks. 

• Very weak correlation was observed within Upper Nass Lake Type for either time period, so 
set to 0 in both time periods. 

• No correlation was calculated within Lower Nass SRT, because it consists of only a single 
stock. 
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Figure F.5. Observed correlation in productivity within and between groups of Skeena and Nass Sockeye 
stocks. Estimates are based on residuals, ln(recruits/spawner), from Ricker fts for the long-term average 
productivity scenario (i.e., no time-varying productivity parameter). Missing brood years for some stocks 
were either left as NA or inflled based on mean residual for other stocks with the same life history and in 
the same adaptive zone (LHAZ). Note that diagonal cells with bold font are the correlations among stocks 
within the LHAZ, not the correlation of the LHAZ with itself, which would be 1. Estimates only cover 20 
modelled wild stocks. Numbers in brackets show the number of stocks in each LHAZ. 
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F.2.3. MODEL IMPLEMENTATION OF COVARIATION IN PRODUCTIVITY 

We incorporated covariation in productivity into the simulaton model by generating correlated 
time series of standardized residuals, which are then scaled up based on each stock’s observed 
magnitude of variability. 

We created four alternative covariation scenarios for sensitivity testing: 

• No covariation: productivity for each stock is independent of the other stocks. 

• Simplifed correlations – 1984 to 2013 Brood Years: Using the values from Panel A of Figure 
1 for each stock in a group. 

• Simplifed correlations – 1999 to 2013 Brood Years: Using the values from Panel B of Figure 
1 for each stock in a group. 

• Detailed pairwise correlations – 1984 to 2013 Brood Years: Using the observed correlations 
between individual stocks (i.e., the numbers that were averaged to generate Figure F.5). For 
example, in this version the productivity correlation between Babine Late Wild and Johnston 
is a bit less than the correlation between Babine Mid Wild and Johnston. In the simplifed 
versions above, these two correlations are the same. 
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APPENDIX G. BIAS-CORRECTED BENCHMARK ESTIMATES 

G.1. NASS SUMMARY TABLES - BIAS CORRECTED 

G.1.1. NASS SMSY 

Table G.1. Comparison of bias-corrected aggregate and stock-level Smsy estimates: Nass / Long-term 
average productivity. Stocks are sorted based on median estimate. Mean and median estimates were 
summed across stocks as a comparison to the aggregate ft, but percentiles can not be simply added. 

Label Mean Median p10 p25 p75 p90 

Agg Fit 365,896 296,745 211,440 245,522 413,608 664,390 

Sum 
Sum-Agg 

257,416 
-108,480 

251,143 
-45,602 

-
-

-
-

-
-

-
-

Meziadin 
LNassSRT 
Kwinag 
Damdoch 
Bowser 
Oweege 
UNassRT 

172,647 
69,149 
10,706 

4,914 
-
-
-

169,666 
67,709 

8,957 
4,811 

-
-
-

137,442 
25,567 

6,522 
3,795 

-
-
-

150,984 
39,834 

7,409 
4,199 

-
-
-

193,804 
95,664 
11,499 

5,580 
-
-
-

212,503 
117,387 

16,721 
6,212 

-
-
-

Table G.2. Comparison of bias-corrected aggregate and stock-level Smsy estimates: Nass / Recent 
productivity. Stocks are sorted based on median estimate. Mean and median estimates were summed 
across stocks as a comparison to the aggregate ft, but percentiles can not be simply added. 

Label Mean Median p10 p25 p75 p90 

Agg Fit 195,232 189,696 112,735 153,833 228,174 270,369 

Sum 
Sum-Agg 

159,034 
-36,198 

150,796 
-38,900 

-
-

-
-

-
-

-
-

Meziadin 
LNassSRT 
Kwinag 
Damdoch 
Bowser 
Oweege 
UNassRT 

95,217 
46,614 
13,832 

3,371 
-
-
-

98,257 
38,245 
10,990 

3,304 
-
-
-

51,880 
16,005 

6,998 
2,631 

-
-
-

68,691 
22,872 

8,336 
2,926 

-
-
-

119,689 
64,904 
17,436 

3,729 
-
-
-

134,882 
89,296 
25,123 

4,188 
-
-
-
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G.1.2. NASS SGEN 

Table G.3. Comparison of bias-corrected aggregate and stock-level Sgen estimates: Nass / Long-term 
average productivity. Stocks are sorted based on median estimate. Mean and median estimates were 
summed across stocks as a comparison to the aggregate ft, but percentiles can not be simply added. 

Label Mean Median p10 p25 p75 p90 

Agg Fit - - - - - -

Sum 
Sum-Agg 

43,666 
-

41,371 
-

-
-

-
-

-
-

-
-

Meziadin 
LNassSRT 
Kwinag 
Damdoch 
Bowser 

28,220 
12,922 

1,786 
738 

-

27,377 
11,867 

1,407 
720 

-

16,498 
3,853 

741 
449 

-

20,590 
6,554 

997 
558 

-

34,912 
18,064 

2,068 
894 

-

41,846 
23,735 

3,110 
1,059 

-
Oweege 
UNassRT 

-
-

-
-

-
-

-
-

-
-

-
-

Table G.4. Comparison of bias-corrected aggregate and stock-level Sgen estimates: Nass / Recent 
productivity. Stocks are sorted based on median estimate. Mean and median estimates were summed 
across stocks as a comparison to the aggregate ft, but percentiles can not be simply added. 

Label Mean Median p10 p25 p75 p90 

Agg Fit - - - - - -

Sum 
Sum-Agg 

55,028 
-

51,522 
-

-
-

-
-

-
-

-
-

Meziadin 
LNassSRT 
Kwinag 
Damdoch 

37,261 
14,231 

2,807 
729 

36,534 
12,070 

2,211 
707 

25,796 
2,378 

901 
503 

31,047 
5,315 
1,335 

591 

43,243 
21,714 

3,943 
840 

49,323 
30,048 

5,904 
975 

Bowser - - - - - -
Oweege 
UNassRT 

-
-

-
-

-
-

-
-

-
-

-
-
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G.1.3. NASS UMSY 

Table G.5. Comparison of bias-corrected aggregate and stock-level Umsy estimates: Nass / Long-term 
average productivity. Table also lists the range and median across stock-level estimates. 

Label Mean Median p10 p25 p75 p90 

Agg Fit 66 67 57 61 71 75 

Min 
Med 
Max 

68 
72 
73 

68 
72 
72 

-
-
-

-
-
-

-
-
-

-
-
-

Damdoch 
Kwinag 
Meziadin 
LNassSRT 
Bowser 
Oweege 
UNassRT 

73 
72 
71 
68 

-
-
-

72 
72 
71 
68 

-
-
-

67 
64 
65 
59 

-
-
-

69 
68 
67 
63 

-
-
-

76 
76 
75 
74 

-
-
-

78 
79 
78 
79 

-
-
-

Table G.6. Comparison of bias-corrected aggregate and stock-level Umsy estimates: Nass / Recent 
productivity. Table also lists the range and median across stock-level estimates. 

Label Mean Median p10 p25 p75 p90 

Agg Fit 53 56 32 45 63 68 

Min 
Med 
Max 

44 
60 
68 

47 
61 
67 

-
-
-

-
-
-

-
-
-

-
-
-

Kwinag 
Damdoch 
LNassSRT 
Meziadin 
Bowser 
Oweege 
UNassRT 

68 
64 
55 
44 

-
-
-

67 
65 
57 
47 

-
-
-

59 
54 
27 
23 

-
-
-

62 
60 
43 
33 

-
-
-

72 
69 
71 
57 

-
-
-

76 
73 
81 
62 

-
-
-
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G.2. SKEENA WILD SUMMARY TABLES - BIAS CORRECTED 

G.2.1. SKEENA WILD SMSY 

Table G.7. Comparison of bias-corrected aggregate and stock-level Smsy estimates: Skeena Wild / 
Long-term average productivity. Stocks are sorted based on median estimate. Mean and median 
estimates were summed across stocks as a comparison to the aggregate ft, but percentiles can not be 
simply added. 

Label Mean Median p10 p25 p75 p90 

Agg Fit 486,977 399,054 273,104 314,316 561,691 875,814 

Sum 518,661 500,110 - - - -
Sum-Agg 31,684 101,056 - - - -

Bab-LW 322,689 315,497 218,996 257,198 381,938 445,147 
Bab-EW 59,635 55,229 42,802 47,976 65,702 82,710 
SwanSteph 30,785 29,984 22,481 25,341 35,141 40,783 
Bab-MW 22,006 20,855 17,204 18,699 23,901 28,241 
Kitsumk 15,205 14,966 13,373 14,038 16,080 17,241 
Alastair 13,820 13,576 11,951 12,596 14,754 15,971 
Kitwanga 16,188 13,097 4,994 7,295 23,049 32,769 
Morice 12,514 12,246 10,357 11,141 13,526 14,986 
Lakelse 11,325 11,064 9,573 10,232 12,115 13,346 
Bear 4,777 4,708 4,110 4,363 5,127 5,543 
Johnston 3,459 3,415 2,965 3,175 3,713 3,987 
Mcdonell 2,375 2,352 2,096 2,200 2,502 2,697 
Asitka 1,990 1,343 811 970 2,290 4,419 
Sustut 870 849 712 772 947 1,058 
Motase 726 635 463 527 849 1,146 
Slamg 297 294 249 267 320 349 
Ecstall - - - - - -
Kluant - - - - - -
Kluayaz - - - - - -
Sicintine - - - - - -
Skeena RT - - - - - -
UBulkLk - - - - - -
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Table G.8. Comparison of bias-corrected aggregate and stock-level Smsy estimates: Skeena Wild / 
Recent productivity. Stocks are sorted based on median estimate. Mean and median estimates were 
summed across stocks as a comparison to the aggregate ft, but percentiles can not be simply added. 

Label Mean Median p10 p25 p75 p90 

Agg Fit 264,384 234,245 121,567 173,977 315,902 444,184 

Sum 327,575 309,238 - - - -
Sum-Agg 63,191 74,993 - - - -

Bab-LW 178,372 165,820 103,856 132,208 212,106 270,902 
Bab-EW 33,600 31,403 17,425 24,059 40,336 52,688 
Bab-MW 20,785 19,920 15,508 17,513 23,017 27,050 
Kitwanga 17,297 15,896 5,565 8,354 23,709 32,098 
Kitsumk 14,473 14,379 13,039 13,661 15,198 16,000 
Alastair 13,556 14,237 7,908 11,774 16,068 17,917 
SwanSteph 14,792 13,733 7,839 10,462 17,997 23,575 
Morice 10,695 10,496 8,506 9,469 11,693 13,014 
Lakelse 9,407 9,589 5,145 7,157 11,705 13,350 
Bear 4,790 4,749 4,181 4,427 5,078 5,511 
Johnston 3,637 3,582 3,060 3,279 3,944 4,356 
Mcdonell 2,367 2,343 2,102 2,200 2,489 2,661 
Asitka 1,927 1,330 794 944 2,193 4,292 
Sustut 866 849 713 770 944 1,050 
Motase 726 635 464 533 849 1,112 
Slamg 285 277 241 255 309 341 
Ecstall - - - - - -
Kluant - - - - - -
Kluayaz - - - - - -
Sicintine - - - - - -
Skeena RT - - - - - -
UBulkLk - - - - - -
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G.2.2. SKEENA WILD SGEN 

Table G.9. Comparison of bias-corrected aggregate and stock-level Sgen estimates: Skeena Wild / 
Long-term average productivity. Stocks are sorted based on median estimate. Mean and median 
estimates were summed across stocks as a comparison to the aggregate ft, but percentiles can not be 
simply added. 

Label Mean Median p10 p25 p75 p90 

Agg Fit - - - - - -

Sum 124,826 117,924 - - - -
Sum-Agg - - - - - -

Bab-LW 77,466 73,801 36,365 52,057 100,078 123,586 
Bab-EW 16,703 14,949 8,400 10,986 20,208 27,518 
SwanSteph 10,512 10,589 6,089 8,013 13,028 14,936 
Lakelse 3,662 3,554 2,609 2,994 4,169 4,823 
Bab-MW 3,890 3,506 2,252 2,735 4,639 6,109 
Kitsumk 3,127 3,077 2,198 2,554 3,652 4,197 
Alastair 2,752 2,624 1,788 2,182 3,239 3,820 
Kitwanga 2,645 1,995 528 984 3,815 5,950 
Morice 1,501 1,460 956 1,154 1,743 2,133 
Johnston 835 863 536 707 993 1,069 
Bear 583 557 381 460 681 813 
Mcdonell 445 434 311 367 502 598 
Asitka 417 249 112 165 510 1,010 
Motase 151 127 54 84 198 287 
Slamg 80 80 40 59 98 123 
Sustut 57 59 15 30 78 96 
Ecstall - - - - - -
Kluant - - - - - -
Kluayaz - - - - - -
Sicintine - - - - - -
Skeena RT - - - - - -
UBulkLk - - - - - -
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Table G.10. Comparison of bias-corrected aggregate and stock-level Sgen estimates: Skeena Wild / 
Recent productivity. Stocks are sorted based on median estimate. Mean and median estimates were 
summed across stocks as a comparison to the aggregate ft, but percentiles can not be simply added. 

Label Mean Median p10 p25 p75 p90 

Agg Fit - - - - - -

Sum 119,052 109,244 - - - -
Sum-Agg - - - - - -

Bab-LW 72,300 65,816 44,252 52,575 84,150 112,328 
Bab-EW 16,700 15,561 10,675 12,752 19,125 24,896 
SwanSteph 7,669 7,062 4,656 5,719 9,180 11,619 
Bab-MW 4,634 4,199 2,559 3,143 5,609 7,307 
Lakelse 3,726 3,728 2,522 3,147 4,285 4,859 
Kitsumk 3,339 3,244 2,016 2,467 4,140 4,868 
Kitwanga 3,603 2,944 670 1,434 5,259 7,541 
Alastair 2,676 2,600 1,183 1,715 3,560 4,272 
Morice 2,132 2,060 1,348 1,634 2,519 3,059 
Johnston 668 639 333 470 900 1,026 
Bear 490 467 281 359 596 732 
Mcdonell 443 432 310 368 500 576 
Asitka 403 248 107 162 485 956 
Motase 151 126 54 87 199 282 
Slamg 62 60 18 39 81 104 
Sustut 56 58 15 30 78 95 
Ecstall - - - - - -
Kluant - - - - - -
Kluayaz - - - - - -
Sicintine - - - - - -
Skeena RT - - - - - -
UBulkLk - - - - - -

279 



G.2.3. SKEENA WILD UMSY 

Table G.11. Comparison of bias-corrected aggregate and stock-level Umsy estimates: Skeena Wild / 
Long-term average productivity. Table also lists the range and median across stock-level estimates. 

Label Mean Median p10 p25 p75 p90 Stock 

Agg Fit 58 58 45 51 66 71 NA 

Min 52 52 - - - - NA 
Med 67 67 - - - - NA 
Max 87 87 - - - - NA 

Sustut 87 87 82 85 89 92 Sustut 
Morice 77 77 71 74 80 82 Morice 
Bear 77 77 72 74 79 81 Bear 
Kitwanga 71 72 54 62 80 87 Kitwanga 
Bab-MW 70 70 63 66 74 76 Babine Mid Wild 
Mcdonell 68 68 63 65 71 73 Mcdonell 
Asitka 67 68 54 61 74 80 Asitka 
Motase 67 67 56 61 73 79 Motase 
Alastair 67 67 60 63 70 74 Alastair 
Kitsumk 66 66 60 63 68 71 Kitsumkalum 
Slamg 63 62 53 58 67 72 Slamgeesh 
Bab-LW 63 62 55 58 67 71 Babine Late Wild 
Johnston 62 61 51 55 67 73 Johnston 
Bab-EW 59 59 50 54 64 68 Babine Early Wild 
Lakelse 54 54 46 49 58 62 Lakelse 
SwanSteph 52 52 40 46 58 64 Swan/Stephens 
Ecstall - - - - - - Ecstall 
Kluant - - - - - - Kluantantan 
Kluayaz - - - - - - Kluayaz 
Sicintine - - - - - - Sicintine 
Skeena RT - - - - - - Skeena River Type 
UBulkLk - - - - - - Upper Bulkley Lakes 
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Table G.12. Comparison of bias-corrected aggregate and stock-level Umsy estimates: Skeena Wild / 
Recent productivity. Table also lists the range and median across stock-level estimates. 

Label Mean Median p10 p25 p75 p90 Stock 

Agg Fit 34 35 15 24 44 53 NA 

Min 35 35 - - - - NA 
Med 66 67 - - - - NA 
Max 87 87 - - - - NA 

Sustut 87 87 82 85 89 92 Sustut 
Bear 80 80 73 77 83 86 Bear 
Slamg 68 71 55 62 75 78 Slamgeesh 
Johnston 68 70 54 60 77 82 Johnston 
Mcdonell 68 68 63 65 71 73 Mcdonell 
Alastair 64 68 36 56 77 83 Alastair 
Asitka 67 68 54 61 74 80 Asitka 
Morice 66 67 56 61 72 75 Morice 
Motase 67 67 55 61 73 78 Motase 
Kitwanga 65 66 43 54 77 85 Kitwanga 
Bab-MW 64 65 52 59 70 75 Babine Mid Wild 
Kitsumk 63 64 53 58 69 73 Kitsumkalum 
Bab-LW 45 46 30 38 53 59 Babine Late Wild 
Lakelse 44 45 22 33 56 63 Lakelse 
Bab-EW 36 37 20 27 46 53 Babine Early Wild 
SwanSteph 35 35 19 27 43 50 Swan/Stephens 
Ecstall - - - - - - Ecstall 
Kluant - - - - - - Kluantantan 
Kluayaz - - - - - - Kluayaz 
Sicintine - - - - - - Sicintine 
Skeena RT - - - - - - Skeena River Type 
UBulkLk - - - - - - Upper Bulkley Lakes 
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APPENDIX H. REVIEW OF WILD AND BLDP-ENHANCED BABINE SOCKEYE 
PRODUCTION 

H.1. CONTEXT 

Considerations for developing management reference points for wild and enhanced Skeena 
Sockeye include potential interactions between the enhanced and wild Babine stocks, which 
have distinctive run timing and geographic separation between spawning areas. We reviewed 
production data for wild and enhanced Babine Sockeye to assess general trends in adult returns, 
escapement quality (size, sex ratio and fecundity), egg production, and fry and smolt outputs. 
This was not intended to be a comprehensive assessment of Babine Sockeye production, or 
a detailed analysis of the effects of the BLDP enhancement program on wild Babine and other 
Skeena Sockeye stocks. Rather, we provide a high-level overview of observed trends in freshwater 
production based on available information. An integrated review of BLDP production and updated 
recommendations for loading targets and operational procedures is a major undertaking that will 
require input and advice from the facility operator (Fisheries and Oceans Canada - Salmonid 
Enhancement Program) and is outside the scope of the current review of Skeena and Nass 
Sockeye escapement goals. 

H.2. BABINE SOCKEYE STOCKS 

Babine Lake is the largest natural freshwater lake in British Columbia, encompassing an area of 
nearly 500 km2 which drains a watershed of approximately 10,000 km2. Morrison Lake and Tahlo 
Lake, which drain through Morrison River into Morrison Arm upstream of Babine Lake. The North 
Arm, upstream of Harrison Narrows on the northwest side of Babine Lake, fows through a short 
section of the Upper Babine River into Nilkitkwa Lake, then into the Lower Babine River, a 5th 
order tributary of the middle Skeena. 

Babine Sockeye have been counted at the Babine weir downstream of Nilkitkwa Lake annually 
since 1949. The Babine weir which is currently operated by Lake Babine Nation, under contract 
to Fisheries and Oceans Canada, provides daily counts for all salmon species from the middle 
of July until the end of September and encompasses most of the Sockeye return. The weir 
operation has been extended to the end of November in some years. The weir program is assumed 
to provide a complete count for most years, but adjusted in some years for estimated passage 
during times when the fence was not operational. 

Sockeye salmon escapements to Babine Lake have ranged from 71,000 to 2.1 million past the 
Babine weir. Very low returns were observed after a catastrophic landslide in Babine River in 
1951 that restricted fsh passage in 1951 and 1952, and until repairs were completed in 1953 
(Godfry et al. 1954). The lowest Sockeye return of just over 71,000 was recorded in 1955 following 
the 1950 brood year of 141,000 (Figure H.1). 

Wild Babine Sockeye are assigned to three groups based on adult run timing: an early timed 
group which primarily spawn in tributaries that drain into the main basin of Babine Lake; a mid-
timed group which spawn in Morrison Creek, Morrison Lake, and Tahlo Creek, and a late-timed 
group of Babine Sockeye includes Sockeye that spawn in sections of the Upper Babine River 
between Babine Lake and Nilkitkwa Lake, and downstream of Nilkitkwa Lake. The progeny 
of early and mid-timed wild Babine spawners rear in the main basin of Babine Lake with the 
exception of Sockeye returning to spawn in Morrison River, Morrison Lake and Tahlo Creek, 
which rear in Morrison Lake (Wood 1995). The late-timed group exhibits an upstream migration 
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pattern for fry which migrate upstream following emergence and rear in Nilkitkwa Lake and the 
North Arm of Babine Lake. 

Visual escapement estimates of up to 30 wild Babine Sockeye spawning tributaries are conducted 
annually by foot or aerial surveys led by DFO and Lake Babine Nation. Estimates from visual 
escapement surveys for wild Babine systems are adjusted to account for underestimation bias 
using methods described in Wood (1995). Annual stream counts for individual Babine systems 
are maintained in the Fisheries and Oceans Canada NUSEDS database. The raw spawner 
estimates for the different wild Babine systems are expanded and combined into adjusted estimates 
for the early, mid and wild run timing components using a run-reconstruction procedure described 
by Wood (1995). 

Fulton River and Pinkut Creek were, along with Babine River, the most abundant Babine Sockeye 
stocks and largest contributor to Babine Lake Sockeye before the start of the BLDP. In the post-
BLDP period, Sockeye salmon returns to the enhanced systems increased following while returns 
wild Babine systems have declined. The pattern of declines has varied between stocks over time. 
Early and late-timed Babine wild stocks have seen steady declines in spawner abundances. The 
numbers of recruits produced per spawner (recruits per spawner) since the late 1990s, while 
mid-timed wild stocks appear to have recovered from low returns in the late 1990s but have been 
in a state of decline since the mid-2000s. 

The asynchrounous population dynamics between wild and enhanced Babine Sockeye, and 
among the different wild stocks, suggest that straying of enhanced surplus spawners into wild 
systems is not likely given that there have been large surpluses and low observed spawner 
escapement to wild Babine tributaries have been observed in some years, and the reverse in 
others (Figures H.2 and H.3). 
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Figure H.1. Babine weir counts 1950 – 2021. Figure shows estimated wild (light grey) and enhanced (dark 
grey) components of the run. 
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Figure H.2. Observed productivity of Babine Sockeye stocks. Panels show productivity in terms of 
recruits/spawner (R/S), log-transformed to adjust for the commonly observed skewed distribution and 
smoothed as a 4-yr running average to highlight the underlying pattern. Spawners exclude the channel 
surplus. Red horizontal lines mark the corresponding raw numbers that can be more directly interpreted: 
At 1 R/S (Repl), the stock replaces itself in the absence of any harvest. At 2 R/S, the stock could sustain 
50% exploitation rate while maintaining the same spawner abundance (under theoretical stable long-term 
conditions, i.e., equilibrium). For each stock, the largest observed productivity, Max(R/S), and the stock’s 
contribution to the total Skeena spawner abundance since 2000 (%Spn) are listed. Figure H.3 shows 
changes in productivity after accounting for density dependence. 
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Figure H.3. Productivity residuals for Babine Sockeye stocks. Panels show productivity patterns as 
deviations from the expected log(R/S) based on a simple deterministic Ricker ft, smoothed as 4-yr 
running average to highlight the underlying pattern. The Ricker residuals residuals, in units of ln(R/S), 
account for within-stock density effects, so that the pattern is a better refection of fundamental, underlying 
productivity changes as spawner abundance naturally varies from year to year. With these residuals, the 
pattern can be directly interpreted, but the specifc values are not as biologically meaningful as the 
observed productivity series in Figure H.2. 
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H.3. BABINE LAKE DEVELOPMENT PROJECT 

H.3.1. HISTORY 

The BLDP spawning channels, adult control weirs, and fow control structures were built in 
stages starting with construction of Fulton Channel 1 in 1965, and the Fulton weir and Pinkut 
fow-control structures in 1966. Pinkut Channel and weir, and the Fulton fow-control structures 
were installed in 1968, followed by Fulton Channel #2, which was completed in two phases, 
in 1969 and 1971. For the frst two years of operation, only the top half of Fulton Channel #2, 
representing 55% of its eventual capacity, was loaded. Pinkut Channel, which was initially built in 
1968, experienced high egg mortality in the frst two years of operation as a result of anchor ice 
formation in the channel bed. In 1970, an auxillary water system was installed to supply warm 
lake water to the channel. In subsequent years, spawning habitat quality in Pinkut Channel was 
affected by heavy siltation caused by erosion of the unarmoured banks, and the channel was 
entirely rebuilt in 1976-77 (West and Mason 1987). Starting in 1973, an airlift operation was used 
to transport spawners to an inaccessible section of the creek above Pinkut Falls in some years of 
high returns. 

The BLDP spawning channels increased available spawning habitat by 116,000 m2 to accommodate 
approximately 190,000 additional spawners, and fow control provides stable spawning and 
incubation habitat in Pinkut Creek and Fulton River (West 1987, Table 1). Sockeye returning 
to Pinkut Creek and Fulton River also spawn in natural stream sections downstream of the 
respective weirs, which have an estimated capacity for 5,000 and 45,000 effective spawners. 
The current combined spawning capacity for Pinkut and Fulton Sockeye, including spawning 
channels, fow-controlled river sections, inaccessible spawning habitat serviced by the Pinkut 
Airlift program, (which has not operated since 2007), and downstream areas, is 509,000 spawners. 
The area of available spawning habitat, year of implementation, and current loading targets for 
BLDP enhanced channel, river and creek sections are provided in Table H.1. 

Table H.1. Area, loading capacity and date of construction for BLDP components. The original target 
density of one female per 1.25 m2 was increased in the early 1990s for components marked by *. 

Component Area 
(1000m 2) 

1st year 
operated 

Target 
spawners 

1000 

Fulton Channel 1 10 1965 20,000* 
Fulton Channel 2 (top half) 40 1969 63,800 
Fulton Channel 2 (completed) 73.1 1971 116,000 
Fulton River fow control - 1968 NA 
Fulton River above weir 62.7 1968 200,000* 
Fulton River below weir 12.5 - 45,000 

Fulton total - - 381,000 

Pinkut Channel 33.4 1968 58,000 
Pinkut Creek fow control - 1966 NA 
Pinkut Creek falls to weir 10 1966 25,000* 
Upper Pinkut Creek (airlift above falls) 26.7 1973 40,000 
Pinkut Creek below weir 3.1 - 5,000 

Pinkut total - - 128,000 

Total - - 509,000 
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H.3.2. CHANNEL LOADING 

Sockeye escapements, or loading, of spawning channels and Pinkut Creek and Fulton Rivers 
are managed to maintain target densities of spawners to maximize fry production and reduce 
risks of over-escapement including redd superimposition following wave spawning events, and 
disease outbreaks. The channels are loaded by female counts, and the target loading density 
of about 1.25 females/m2 of available spawning gravel is designed to achieve an optimal egg 
density of 2000-2500 eggs/m2. Loading targets for Fulton River were adjusted upwards in the 
2000s to mitigate for pre-spawn mortality (PSM) caused by parasites and warmer temperatures. 
The actual number of eggs deposited in a given year depends on a number of factors including 
fecundity, egg retention, PSM and the ability to reload spawners, if available, in the event of high 
PSM. Current loading targets are provided in Table H.1. 

Loading events for the BLDP spawning channels ideally occur in a single event for each channel 
to avoid wave spawning. Sockeye spawners are enumerated as they pass through weirs located 
near the mouths of Pinkut Creek and Fulton Rivers. Once the spawning channels and river 
sections upstream of the weir have reached capacity, any Sockeye remaining holding below 
the fence are locked out. Visual estimates of the number of Sockeye holding below the BLDP 
facilities are conducted regularly during the spawning season in most years. If signifcant pre-
spawn mortality is detected in the spawning channels, they may be reloaded with the Sockeye 
that remain holding below the fences. 

The loading target for Fulton River upstream of the counting fence was increased from 100,000 
to 200,000 in the early 2000s to offset potential PSM related to parasite infection, and because it 
was thought that additional fry could be produced, albeit at a lower egg-to-fry survival rate, from 
the lower quality, more marginal spawning habitats that are not included in the estimated area of 
good quality spawning habitat for Fulton River above the counting fence (67,000 m2). 

A disease outbreak (the parasite Ichthyophthirius multiflis) caused high pre-spawn mortality in 
the Fulton and Pinkut spawning channels in 1994 and 1995 (Traxler et al. 1998) and resulted 
in low spawner escapements to the enhanced facilities in subsequent return years starting in 
1998. Although escapements for both systems rebounded somewhat in the early 2000s, it has 
remained lower than the pre-outbreak period), with further declines observed for Pinkut Sockeye 
since 2010. 

Loading targets for the Pinkut and Fulton spawning channels and managed river sections have 
been maintained at full capacity in most years except for years of exceptionally poor returns, 
including 1998 and 1999 (following the disease outbreak that affected the 1994 and 1995 brood 
years), and more recently in 2013 and 2019 when spawning targets were not attained for Fulton 
Channel #2, and for Pinkut Channel in 2013. Fulton River did not attain its loading targets in 
1969, 1991 and 2013. 

H.4. AVAILABLE BIOLOGICAL INFORMATION FOR WILD AND ENHANCED BABINE 
SOCKEYE 

H.4.1. AGE SAMPLING 

Babine Sockeye primarily rear for 1 year in freshwater following emergence as fry, migrate to sea 
in their second year of life and return to spawn after 1-3 years at sea, for a total ages ranging 
from 3 (“jack” Sockeye which spend 1 winter at sea) or 4-5 (“adult” or “large” Sockeye, which 
spend 2-3 winters at sea). Age sampling has not been regularly conducted at the Babine weir or 
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BLDP facilities since the mid-1990s. Age composition estimates for Babine Sockeye are derived 
from the aggregate Skeena Sockeye return, which is sampled at the Tyee Test Fishery, of which 
Babine Sockeye typically account for about 90% of the total return. 

Age-3 Sockeye, which are not effectively sampled at the Tyee Test Fishery are counted at the 
Babine weir. The estimated returns of “large”, or 4- and 5-year old Sockeye arriving at the Babine 
fence, which are based on the sampled proportions of Sockeye with a single freshwater year at 
the Tyee Test Fishery (age 42 and 52 in Gilbert-Rich notation), are added to the counts of age-3 
Sockeye from the Babine fence to calculate the proportions for all age classes. 

The proportions of age 3-, 4-, and 5-year old Skeena and thus Babine Sockeye varies across 
years. Since 1970, the annual proportion of age-3 Sockeye returns to Babine Lake has ranged 
from 0 – 40%. The proportions of age 4 and age 5 age classes have both ranged between 3 – 
92%. Exceptionally low returns of one age class can signal a brood year failure related to poor 
marine survival for the siblings of a cohort that went to sea in a common year. For example, a 
poor return of age 3 Sockeye may signal a poor return of age 4 the next year, followed by age 5 
in the following year. Because the dominant age class (42 or 52) of spawning females varies by 
year, there is no clear trend in declining total age at return for Babine Sockeye. 

H.4.2. BODY SIZE 

Length-at-age and overall body length have decreased over time for Skeena Sockeye, which 
are sampled at the Tyee Test Fishery. For Sockeye sampled at the Tyee Test Fishery, length at 
age decreased by 2-3% for 5-, 6- and 7-year old fsh and remained constant for 4 year old fsh 
between the 1980s and 2010s (decadal averages). The pattern of observed changes in overall 
length and length-at-age for Skeena and Nass Sockeye, which are consistent with decreases 
observed for Sockeye salmon populations in Southeast Alaska (e.g., Oke et al. 2020), are not 
linear, with less pronounced declines in older age classes and steeper declines observed since 
2010. 

The magnitude of the observed declines in body length for Skeena and Nass Sockeye are consistent 
with those observed for other Sockeye populations in the North Pacifc, and are related to decreases 
in fecundity (Ohlberger et al. 2020; Oke et al. 2020). 

H.4.3. FECUNDITY 

Fisheries and Oceans Canada, Salmon Enhancement Program collects and maintains production 
datasets for Pinkut and Fulton Sockeye. BLDP Production data to 1985 are reported in West 
and Mason (1987), and are currently being updated by Pacifc Salmon Foundation. The data 
presented here are preliminary, and availabilty by year varies by project and channel. 

DFO-Salmon Enhancement Program (DFO-SEP) personnel collect biological data at the Pinkut 
and Fulton facilities, including sex ratio and estimated percentage of prespawn mortality (PSM). 
Biosampling is conducted at both spawning channels to assess body size, fecundity, and egg 
retention for spawners, which are incorporated into estimates of total egg deposition and density 
for each BLDP component. Potential fecundity, or the average number of eggs carried by spawning 
females, is measured from sacrifced samples collected across the observed size spectrum of 
spawning females at the Pinkut and Fulton spawning channels. Average potential fecundity is 
estimated by regressing egg counts to body length of sampled fsh, and applying the regression 
equation to the average length of female spawners for each channel, river or creek. 
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Apparent fecundity, or the actual average number of eggs deposited, which accounts for egg 
retention (estimated from sampling spawned-out carcasses), is combined the number of effective 
females after accounting for prespawn mortality to estimate the actual deposition of eggs deposited 
in each river, creek or section of channel. While potential fecundity is an indicator of the condition 
of female spawners entering the channels, apparent fecundity is required to estimate total egg 
deposition and egg to fry survival for a given year. 

Estimates of potential fecundity, which are available for the spawning channels, Pinkut Creek and 
Fulton Rivers from 1998 onward show a decreasing trend, likely related to a trend in decreasing 
body size during that time period (Figure H.4). Estimates of apparent fecundity (potential fecundity 
minus egg retention), which are available for longer time series, show a decreasing and nonlinear 
trend since the 1970s which are likely related to overall declines in average body length that have 
been observed during the same time period (Figures H.4 and H.5). 

Figure H.4. Calculated potential fecundity for Sockeye sampled at Pinkut and Fulton spawning channels, 
1960-2020. Estimates cover 1998-2020 for Fulton systems and 2000-2020 for Pinkut systems. 

H.4.4. EGG DEPOSITION AND FRY PRODUCTION 

From 1973 to 1984, hydraulic sampling was used to assess egg survival in the channels, river 
and creek. Hydraulic sampling was then discontinued because it does not assess all mortality 
prior to hatch and was not considered a replacement for the downstream fry enumeration program 
(West and Mason 1987). 

Fry production for Pinkut Creek and Fulton River is assessed annually during the spring outmigration 
period after emergence, using fan or converging throat traps operated during the spring migration 
period to generate an estimate of the total abundance of fry entering the lake from both projects. 
In recent years (2015-2019), Fulton Channel 1 has been operated as part of the river and the fry 
counts have been combined. 

Fry production is not assessed directly for wild Babine systems. A biostandard of 233 fry/spawner, 
derived from average egg to fry survival in the natural sections of Pinkut Creek and Fulton River 
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Figure H.5. Trends in average apparent fecundity for Babine Sockeye sampled at Fulton Channel 2, 
1985-2020. 

is applied to estimate fry production for the early, mid and late-timed wild Babine Sockeye groups 
(MacDonald and Hume 1984), which are added to reported BLDP fry production to estimate total 
combined fry abundances for Babine Lake (e.g., Wood et al. 1998; Cox-Rogers and Spilsted 
2012). 

Egg deposition and fry production have remained relatively constant over time for Fulton River 
and Pinkut Creek. The three channels have seen decreasing trends in egg deposition since 
the 1970s which may be related to lower fecundity for spawning females. Fry production has 
decreased somewhat for Fulton Channel two during this time period, but there is no clear pattern 
of reduced fry production for Fulton Channel #2 or Pinkut Channel. 

Egg to fry survival rates are higher in the spawning channels than in the natural river sections 
with regulated fow. This is not surprising, because the channels have been designed and managed 
for ideal spawning conditions, including water depth, fow, and substrate. For the post-BLDP 
period between 1970-2020, the average egg to fry survival rates for Pinkut Channel, Fulton 
Channel 1 and Fulton Channel 2 were 49%, 35%, and 48% respectively compared with 25% 
for Pinkut Creek and 18% for Fulton River. Egg to fry survival has not changed from pre-BLDP 
conditions since fow control structures were installed in Fulton River. There is no clear relationship 
between egg density and egg to fry survival for the spawning channels. Although there is evidence 
of decreasing egg to fry survival rates with increasing egg densities in Pinkut Creek and Fulton 
River, fry production increases with increasing egg densities in both systems, but the rates of 
increase are slower at higher densities than 2000-2500 eggs/m2, which are considered ideal for 
maximum fry production without a decrease in egg-to-fry survival (C. West, unpublished data). 
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Figure H.6. Total estimated egg deposition (x 10 million) for BLDP enhanced river, stream and channels, 
1960-2020. Here, the upper and lower sections of Pinkut Creek (including the Pinkut Airlift) are combined, 
as are Fulton Channel 1 and Fulton River, which are assessed together in spring fry enumeration 
programs. 

H.4.5. SMOLTS 

Babine Sockeye smolts are assessed annually at the outlet of Nilkitkwa Lake during the spring 
migration. Annual smolt abundance estimates are produced by mark and recapture estimation 
using a parsimonious model reported in MacDonald and Smith (1980). Smolts are sampled for 
length, weight, age, and prevalence of the parasite Eubothrim salvelini. The smolt migration is 
bimodal, which allows for separate for a smaller frst peak, consisting of smolts leaving Nilkitwka 
lake and the North Arm of Babine Lake, which are likely the progeny of late-timed Babine River 
spawners, and a second larger peak consisting of main-basin populations, including smolts 
originating from BLDP facilities. The smolt program, which did not operate from 2002-2012 due 
to budgetary restrictions, resumed in 2013 and is currently operated by Lake Babine Nation. 

Smolt production from the BLDP has increased linearly with increasing fry production since 
the start of the BLDP. The average weight of sampled smolts in the pre and post BLDP periods 
were 5.4 g (SD 0.5 g) prior to 1975 and 4.8 g (SD 0.4 g) since 1976. The signifcant decrease in 
mean weight occurred in the pre BLDP period, and it has remained relatively constant since the 
production of BLDP smolts began. 
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Figure H.7. Estimated egg to fry survival for BLDP enhanced river, stream and channel, 1960-2020. Here, 
the upper and lower sections of Pinkut Creek (including the Pinkut Airlift) are combined, as are Fulton 
Channel 1 and Fulton River, which are assessed together in the spring fry enumeration programs. 

Although there is a clear positive relationship between fry production and seaward migrating 
smolts from Babine Lake, the benefts of increased smolt production to adult returns are less 
clear, with high variability in smolt to adult survival. From 1960-2000 (the years prior to the 
closure of the Babine smolt fence), smolt-to-adult survival ranged from 0.71 – 13.8 adult returns 
per smolt, with the highest survival rate observed for the 1995 brood year, following disease and 
associated prespawn mortality in 1994 and 1995 and associated prespawn mortality, and low 
fry production from BLDP facilities. There are no clear trends in smolt to adult survival, which 
is highly variable, however there is a weak positive relationship between smolt to adult survival 
(SAS) and smolt weight and a negative relationship between SAS and smolt abundance. 

H.4.6. LIMNOLOGY OF BABINE LAKE 

Limnological assessments conducted in the 1950s and 1960s found that the Sockeye rearing 
capacity of Babine Lake was underutilized (i.e., Brett 1951; Johnson 1956) and estimated that 
Babine Lake could support up to 300 million fry. The initial target for increased fry production for 
the BLDP of an additional 100 million fry was exceeded, with BLDP facilities estimated to have 
contributed an average of 125 million fry (range: 37 – 212 million) to Babine Lake since 1971, 
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Figure H.8. Estimated fry production (x 10 million) for BLDP facilities, 1960-2020. Here, the upper and 
lower sections of Pinkut Creek (including the Pinkut Airlift) are combined, as are Fulton Channel 1 and 
Fulton River, which are assessed together in the spring fry enumeration programs. 

which together with the estimated fry production from wild spawning populations (1950-2021 
average 68.0 million, range 9.4 – 209.2 million) is less than the estimated capacity of 300 million. 

A more recent limnological assessment in 2000 used the PR (phtotosynthetic rate) capacity 
model estimated the rearing capacity of the main basin of Babine Lake to be 219 million (Hume 
and Maclellan 2000), which combined with unsampled habitats in North Arm, Morrison Arm and 
Hagen Arm would likely approach 300 million fry, with additional rearing capacity in Nilkitkwa 
Lake. Hydroacoustic fall fry estimates carried out in Nilkitkwa Lake in 2013 and 2016 observed 
0.99 and 0.67 million fry, respectively (Carr-Harris and Doire 2017). 

Updated limnological assessments are needed to identify any large-scale changes that have 
occurred during the last two decades, during which Babine Lake has experienced higher temperatures 
and lower Sockeye returns than in the previous decades, which potentially affect nutrient loading. 
The results from relatively recent limnological surveys that were carried out at Babine Lake in 
2013 and 2015, are not available at this time (D. Selbie, pers. comm., DFO Cultus Lake Salmon 
Research Laboratory, 2021). 
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Figure H.9. Exploratory data analysis (EDA) plots of smolt abundance and weight. (A) Annual abundance 
of smolts in the main Babine basin, with construction start of enhancement facilities marked by the red 
vertical line; (B) Changes in smolt weight over time, with simple linear regressions ftted to two time 
periods: 1950-1968, 1969-2013; (C) Relationship between fry abundance and smolt abundance in the 
main basin; (D) Relationship between smolt weight and abundance in the main basin; (E) Relationship 
between smolt survival and smolt weight; (F) Relationship between adult returns and smolt abundance, 
with simple linear trendline as a visual reference. More recent observations are shaded darker red in all 
six panels. Panels C-F include a simple linear trend line as a visual reference. 
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APPENDIX I. SR MODEL FITTING RESULTS AND BIOLOGICAL BENCHMARK 
ESTIMATES FOR ENHANCED PINKUT AND FULTON 

This Research Document focuses on SR modelling for wild Sockeye stocks (16 Skeena, 4 Nass), 
but corresponding SR data, parameter estimates and benchmark estimates for Pinkut and Fulton 
are included here as a reference. Note, however, that these should not be used given SR model 
ftting issues and management differences discussed in Section 1.3.4. 

Observed productivity, in terms of ln(R/S), does not show a clear density-dependent pattern 
(Figures I.1 and I.2). This is due to a combination of spawning channel development, annual 
channel management, natural variation in productivity, density-dependence, and uncertain 
estimates of spawners and recruits, especially linked to estimating the non-spawning surplus 
(Section 2.1.3). Given this noisy data, Bayesian estimates of Ricker model parameters are highly 
sensitive to alternative data treatment assumptions (as illustrated for the Skeena aggregate in 
Figure 3) as well as alternative priors on productivity and capacity (i.e., the y-intercept and slope 
of a line ftted through the scatterplot in Figures I.1 and I.2 is strongly affected by what we set as 
a plausible starting point). 

Biological benchmarks for Pinkut are substantially lower under the recent productivity scenario 
(Table I.1) than under the long-term average productivity scenario (Table I.2). For Fulton, the 
benchmarks are quite similar, with Smax, Smsy, and Seq a bit lower under recent productivity 
than under long-term average productivity, and Sgen a bit higher (Table I.3 vs. Table I.4). 

296 



Figure I.1. Ln(R/S) Plot - Pinkut. Scatter plot of log productivity ln(R/S) vs. spawner abundance. 
Observations are colour-coded, with earlier data in fainter shading. The secondary axis illustrates the 
corresponding raw R/S values. Variations of the Ricker model attempt to ft a straight line through this 
scatter of points. The y axis intercept of the ftted line captures intrinsic productivity (i.e., R/S at very low 
spawner abundance) and the slope refects the capacity (i.e., a steeper slope means more of a 
density-dependent reduction for each additional spawner, indicating lower capacity). 
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Figure I.2. Ln(R/S) Plot - Fulton. Scatter plot of log productivity ln(R/S) vs. spawner abundance. 
Observations are colour-coded, with earlier data in fainter shading. The secondary axis illustrates the 
corresponding raw R/S values. Variations of the Ricker model attempt to ft a straight line through this 
scatter of points. The y axis intercept of the ftted line captures intrinsic productivity (i.e., R/S at very low 
spawner abundance) and the slope refects the capacity (i.e., a steeper slope means more of a 
density-dependent reduction for each additional spawner, indicating lower capacity). 
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Table I.1. Posterior distributions for selected SR parameters and resulting biological benchmarks - Pinkut 
with long-term average productivity scenario. This table shows estimates using parameters sampled from 
the AR1 model ft with capped uniform capacity prior. Variables with the “.c” suffx are the bias corrected 
version (e.g., Smsy vs. Smsy.c). 

Percentiles 

Variable Mean Median CV n percNA p10 p25 p75 p90 

beta 2.59e+00 2.19e+00 0.53 2000 0 1.27e+00 1.51e+00 3.30e+00 4.56e+00 
sigma 
phi 
ln.alpha 
ln.alpha.c 

1.00 
0.19 
1.30 
1.84 

0.99 
0.19 
1.28 
1.81 

0.11 
0.62 
0.18 
0.15 

2000 
2000 
2000 
2000 

0 
0 
0 
0 

0.87 
0.03 
1.02 
1.53 

0.93 
0.11 
1.16 
1.64 

1.05 
0.28 
1.43 
1.98 

1.13 
0.35 
1.62 
2.19 

Smax 485,626 457,596 0.43 2000 0 219,304 302,634 662,507 790,481 

Seq 
Smsy 
Sgen 

602,368 
248,856 

85,471 

576,217 
234,752 

79,425 

0.37 
0.38 
0.49 

2000 
2000 
2000 

0 
0 
0 

331,252 
129,873 

32,154 

406,779 
165,660 

50,937 

768,949 
321,940 
120,185 

916,920 
382,893 
144,843 

Seq.c 
Smsy.c 
Sgen.c 

859,240 
322,250 

63,264 

811,800 
308,369 

58,378 

0.39 
0.40 
0.53 

2000 
2000 
2000 

0 
0 
0 

455,340 
160,768 

21,965 

569,749 
209,507 

35,315 

1,126,310 
425,338 

89,676 

1,330,826 
505,572 
112,075 

Umsy 
Umsy.c 

0.53 
0.68 

0.53 
0.68 

0.14 
0.09 

2000 
2000 

0 
0 

0.44 
0.60 

0.49 
0.64 

0.57 
0.72 

0.63 
0.76 

SgenRatio 
SgenRatio.c 

3.21 
5.80 

3.02 
5.39 

0.28 
0.34 

2000 
2000 

0 
0 

2.29 
3.97 

2.64 
4.50 

3.55 
6.50 

4.37 
8.11 

Table I.2. Posterior distributions for selected SR parameters and resulting biological benchmarks - Pinkut 
with recent productivity. This table shows estimates using parameters sampled from the most recent 
generation (i.e., last 4 brood years) of the time-varying productivity (TVP) model ft with capped uniform 
capacity prior. Variables with the “.c” suffx are the bias corrected version (e.g., Smsy vs. Smsy.c). 

Percentiles 

Variable Mean Median CV n percNA p10 p25 p75 p90 

beta 3.48e+00 2.99e+00 0.57 2000 0 1.35e+00 1.85e+00 4.70e+00 6.44e+00 
sigma 
phi 
ln.alpha 
ln.alpha.c 

0.85 
NA 

0.86 
1.23 

0.84 
NA 

0.86 
1.22 

0.12 
NA 

0.47 
0.34 

2000 
NA 

2000 
2000 

0 
NA 

0 
0 

0.73 
NA 

0.35 
0.71 

0.78 
NA 

0.60 
0.96 

0.91 
NA 

1.13 
1.51 

0.98 
NA 

1.36 
1.75 

Smax 393,497 334,049 0.55 2000 0 155,348 212,614 540,162 739,489 

Seq 
Smsy 
Sgen 

314,921 
136,966 

67,136 

259,048 
112,304 

56,736 

0.63 
0.61 
0.59 

2000 
2000 
2000 

1.9 
1.9 
1.9 

125,858 
57,631 
25,759 

179,727 
78,049 
35,589 

403,103 
176,103 

90,603 

596,319 
260,442 
132,340 

Seq.c 
Smsy.c 
Sgen.c 

455,556 
187,484 

67,097 

374,624 
155,287 

57,283 

0.60 
0.58 
0.60 

2000 
2000 
2000 

0.2 
0.2 
0.2 

194,766 
81,212 
23,130 

258,098 
106,349 

34,495 

592,815 
245,465 

93,987 

847,950 
347,994 
128,281 

Umsy 
Umsy.c 

0.38 
0.50 

0.39 
0.51 

0.38 2000 
0.27 2000 

1.9 
0.2 

0.19 
0.32 

0.28 
0.42 

0.48 
0.60 

0.56 
0.66 

SgenRatio 
SgenRatio.c 

2.19 
3.19 

1.97 
2.84 

0.44 
0.48 

2000 
2000 

1.9 
0.2 

1.28 
1.68 

1.54 
2.14 

2.58 
3.89 

3.32 
5.04 
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Table I.3. Posterior distributions for selected SR parameters and resulting biological benchmarks - Fulton 
with long-term average productivity. This table shows estimates using the AR1 model ft with capped 
uniform capacity prior. Variables with the “.c” suffx are the bias corrected version (e.g., Smsy vs. Smsy.c). 

Percentiles 

Variable Mean Median CV n percNA p10 p25 p75 p90 

beta 1.88e+00 1.74e+00 0.49 2000 0 7.87e-01 1.11e+00 2.50e+00 3.13e+00 
sigma 
phi 
ln.alpha 
ln.alpha.c 

0.94 
0.06 
1.70 
2.16 

0.94 
0.06 
1.68 
2.14 

0.10 
2.22 
0.17 
0.14 

2000 
2000 
2000 
2000 

0 
0 
0 
0 

0.83 
-0.11 
1.34 
1.79 

0.88 
-0.02 
1.48 
1.93 

1.00 
0.16 
1.89 
2.36 

1.07 
0.24 
2.09 
2.55 

Smax 689,114 573,985 0.53 2000 0 319,189 400,122 903,800 1,270,018 

Seq 
Smsy 
Sgen 

1,088,560 
422,389 
101,683 

958,261 
366,559 

80,867 

0.41 
0.44 
0.67 

2000 
2000 
2000 

0 
0 
0 

637,603 
230,360 

32,754 

742,600 
275,903 

48,470 

1,323,629 
523,032 
138,934 

1,807,078 
729,586 
210,135 

Seq.c 
Smsy.c 
Sgen.c 

1,410,862 
501,055 

73,322 

1,234,764 
430,049 

57,260 

0.44 
0.48 
0.70 

2000 
2000 
2000 

0 
0 
0 

784,805 
256,583 

22,400 

928,588 
315,196 

33,674 

1,729,552 
636,330 

99,527 

2,418,922 
907,361 
155,993 

Umsy 
Umsy.c 

0.64 
0.75 

0.64 
0.75 

0.11 
0.08 

2000 
2000 

0 
0 

0.55 
0.67 

0.59 
0.71 

0.70 
0.79 

0.74 
0.82 

SgenRatio 
SgenRatio.c 

5.03 
8.30 

4.66 
7.72 

0.35 
0.35 

2000 
2000 

0 
0 

3.23 
5.28 

3.74 
6.17 

5.86 
9.77 

7.28 
11.97 

Table I.4. Posterior distributions for selected SR parameters and resulting biological benchmarks - Fulton 
with recent productivity. This table shows estimates using parameters sampled from the most recent 
generation (i.e., last 4 brood years) of the time-varying productivity (TVP) model ft with capped uniform 
capacity prior. Variables with the “.c” suffx are the bias corrected version (e.g., Smsy vs. Smsy.c). 

Percentiles 

Variable Mean Median CV n percNA p10 p25 p75 p90 

beta 1.99e+00 1.71e+00 0.59 2000 0 7.04e-01 9.99e-01 2.69e+00 3.63e+00 
sigma 
phi 
ln.alpha 
ln.alpha.c 

0.97 
NA 

1.59 
2.06 

0.96 
NA 

1.54 
2.03 

0.11 
NA 

0.32 
0.25 

2000 
NA 

2000 
2000 

0 
NA 

0 
0 

0.83 
NA 

0.98 
1.42 

0.89 
NA 

1.24 
1.72 

1.03 
NA 

1.90 
2.37 

1.10 
NA 

2.27 
2.77 

Smax 715,498 584,608 0.59 2000 0 275,329 371,484 1,000,726 1,421,226 

Seq 
Smsy 
Sgen 

992,352 
392,226 
113,973 

851,406 
333,876 

89,502 

0.47 
0.50 
0.73 

2000 
2000 
2000 

0 
0 
0 

556,797 
200,359 

24,278 

647,736 
243,129 

42,474 

1,200,043 
492,743 
171,701 

1,658,976 
683,468 
244,288 

Seq.c 
Smsy.c 
Sgen.c 

1,332,661 
484,335 

88,114 

1,119,380 
405,258 

64,974 

0.49 
0.52 
0.81 

2000 
2000 
2000 

0 
0 
0 

694,370 
224,166 

16,315 

827,550 
283,896 

30,286 

1,653,900 
629,189 
131,556 

2,332,172 
889,509 
196,905 

Umsy 
Umsy.c 

0.60 
0.72 

0.61 
0.73 

0.23 
0.15 

2000 
2000 

0 
0 

0.43 
0.57 

0.51 
0.66 

0.70 
0.79 

0.78 
0.85 

SgenRatio 
SgenRatio.c 

5.00 
8.34 

4.00 
6.84 

0.65 
0.66 

2000 
2000 

0 
0 

2.19 
3.53 

2.88 
4.88 

5.96 
9.89 

8.90 
15.01 
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