

Fisheries and Oceans Pê Canada Ca

Pêches et Océans Canada

Ecosystems and Oceans Science Sciences des écosystèmes et des océans

Canadian Science Advisory Secretariat (CSAS)

Research Document 2024/068

Maritimes Region

Maritimes Regional Application of the National Framework for Assessing the Vulnerability of Biological Components to Ship-Source Oil Spills in the Marine Environment

Terralynn Lander, Adrian Hamer, Vicky Merritt, Owen Jones, and Cara Harvey

St. Andrews Biological Station Fisheries and Oceans Canada 125 Marine Science Drive St. Andrews, N.B. E5B 0E4

Foreword

This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Published by:

Fisheries and Oceans Canada Canadian Science Advisory Secretariat 200 Kent Street Ottawa ON K1A 0E6

http://www.dfo-mpo.gc.ca/csas-sccs/ csas-sccs@dfo-mpo.gc.ca

© His Majesty the King in Right of Canada, as represented by the Minister of the Department of Fisheries and Oceans, 2024 ISSN 1919-5044 ISBN 978-0-660-73581-8 Cat. No. Fs70-5/2024-068E-PDF

Correct citation for this publication:

Lander, T., Hamer, A., Merritt, V., Jones, O. and Harvey, C. 2024. Maritimes Regional Application of the National Framework for Assessing the Vulnerability of Biological Components to Ship-Source Oil Spills in the Marine Environment. DFO Can. Sci. Advis. Sec. Res. Doc. 2024/068. vii + 230 p.

Aussi disponible en français :

Lander, T., Hamer, A., Merritt, V., Jones, O., et Harvey, C. 2024. Application régionale, dans les Maritimes, du cadre national d'évaluation de la vulnérabilité des composantes biologiques du milieu marin aux déversements d'hydrocarbures provenant de navires. Secr. can. des avis sci. du MPO. Doc. de rech. 2024/068. viii + 270 p.

TABLE OF CONTENTS

1.ABSTRACT	vii
2. INTRODUCTION	1
2.1. OIL FATE AND BEHAVIOUR IN THE MARINE ENVIRONMENT	1
2.2. OIL TOXICITY AND EFFECTS ON MARINE FLORA AND FAUNA	1
2.3. MARITIMES REGION AND OIL	2
2.3.1. Oil Transport and Handling in the Maritimes	2
2.3.2. Past Oil Spills in the Maritimes Region	3
2.4. CANADIAN OIL SPILL RESPONSE REGIME	4
2.4.1. Area and Regional Response Planning	5
2.4.2. National Vulnerability Framework	5
2.5. OBJECTIVES	6
3. FRAMEWORK	7
3.1. SCOPE	7
3.2. OVERVIEW	7
3.3. GROUPING BIOLOGICAL COMPONENTS	8
3.3.1. General Modifications to the National Framework	8
3.3.2. General Sub-grouping Modifications	9
3.4. ECOLOGICAL VULNERABILITY CRITERIA	24
3.4.1. Exposure Category Criteria	25
3.4.2. Sensitivity Category Criteria	29
3.4.3. Recovery Category Criteria	31
4. SCORING AND RANKING	36
5. RESULTS	37
5.1. FINAL RANK TABLES	38
5.2. VULNERABILITY TRENDS	49
5.2.1. High-level Group Vulnerability	50
5.2.2. Marine Plants and Algae Group	50
5.2.3. Marine Invertebrates Group	52
5.2.4. Marine Fishes Group	53
5.2.5. Marine Mammals Group	53
5.3. PRECAUTIONARY SCORING OVERVIEW	54
5.4. DUPLICATE SPECIES AND VULNERABILITY	55
6. DISCUSSION	58
6.1. VULNERABLE SUB-GROUPS	58
6.1.1. Marine Plants and Algae	58
6.1.2. Marine Invertebrates	59
6.1.3. Marine Fishes	60
6.1.4. Marine Mammals	60

6.1.5. Marine Reptiles6	;1
6.2. BOTTOM UP APPROACH6	;1
6.3. UNCERTAINTY, PRECAUTIONARY SCORING AND KNOWLEDGE GAPS	2
7. CONCLUSIONS AND RECOMMENDATIONS	63
8. REFERENCES	64
APPENDIX 1. DETAILED SCORING TABLES WITH JUSTIFICATIONS FOR MARINE PLANTS AND ALGAE	S 66
REFERENCES FOR MARINE PLANTS AND ALGAE SCORING TABLES	4
APPENDIX 2. DETAILED SCORING TABLES WITH JUSTIFICATIONS FOR MARINE INVERTEBRATES	88
REFERENCES FOR MARINE INVERTEBRATES SCORING TABLES14	4
APPENDIX 3. DETAILED SCORING TABLES WITH JUSTIFICATIONS FOR MARINE FISH 15	0
REFERENCES FOR MARINE FISH SCORING TABLES	3
APPENDIX 4. DETAILED SCORING TABLES WITH JUSTIFICATIONS FOR MARINE MAMMALS	0
REFERENCES FOR MARINE MAMMALS SCORING TABLES	5
APPENDIX 5. DETAILED SCORING TABLES WITH JUSTIFICATIONS FOR MARINE REPTILES	8
REFERENCES FOR MARINE REPTILES SCORING TABLES	0
APPENDIX 6. LIST OF VERIFIED SPECIES FOR THE MARITIMES REGION APPLICATION SUB-GROUP CREATION	1

LIST OF TABLES

Table 1. Proposed National sub-group breakdown for marine plants and algae (N/A = notapplicable)
Table 2. Maritimes Region sub-group breakdown for marine plants and algae with examplespecies (N/A = not applicable).13
Table 3. Proposed National sub-group breakdown for marine invertebrates (N/A = notapplicable)
Table 4. Maritimes Region sub-group breakdown for marine invertebrates with example species(CL = class, N/A = not applicable).16
Table 5. Proposed National sub-group breakdown for marine fishes. 19
Table 6. Maritimes Region sub-group breakdown for marine fishes with example species (N/A = not applicable)
Table 7. Proposed National sub-group breakdown for marine mammals (- = not applicable)23
Table 8. Maritimes Region sub-group level breakdown for marine mammals with examplespecies (N/A = not applicable).23
Table 9. Maritimes Region sub-group breakdown for marine reptiles with example species (N/A= not applicable)
Table 10. National framework proposed Exposure criteria and guidance for scoring25
Table 11. Detailed guidance used for scoring criteria within the Exposure category for eachbiological group in the Maritimes Region application (CL = class)
Table 12. National framework proposed Sensitivity criteria and guidance for scoring
Table 13. Detailed guidance used for scoring criteria within the Sensitivity category for eachbiological group in the Maritimes Region application
Table 14. National framework proposed Recovery criteria and guidance for scoring
Table 15. Detailed guidance used for scoring criteria within the Recovery category for eachbiological group in the Maritimes Region application
Table 16. Final ranked list of sub-groups for the Maritimes Region application of the National vulnerability framework produced by scoring sub-groups against EXPOSURE, SENSITIVITY, and RECOVERY criteria (N/A = not applicable)
Table 17. Showing that plant species that span different sub-groups may receive differentvulnerability scores
Table 18. Showing that plant species spanning different sub-groups many not always receivedifferent scores.55
Table 19. Showing that fish species that span different sub-groups (Estuarine and Marine) mayreceive different vulnerability scores (N/A = not applicable).56
Table 20. Showing that fish species spanning different sub-groups many not always receivedifferent total scores (N/A = not applicable).57

LIST OF FIGURES

Figure 1. DFO Maritimes Region administrative boundary. Port Saint John and the Strait of Canso Superport locations are shown in red
Figure 2. Overview of how the vulnerability framework fits in with the overall model for oil spill planning and response ("ecological" Resources at Risk)
Figure 3. Overview of National vulnerability framework process (Thornborough et al. 2017)10
Figure 4. Maritimes Region modification to the National framework process
Figure 5. Summary vulnerability scoring results showing; A) total vulnerability score frequency; B) Exposure category score frequency; C) Sensitivity category score frequency; and D) Recovery score frequency across all sub-groups
Figure 6. Mean total Vulnerability Score across all categories for each high-level biological group. Note that Marine Reptiles are not represented here
Figure 7. Mean score for each Vulnerability Category (Exposure, Sensitivity, Recovery) across sub-groups by high level biological group. Dashed line represents the maximum vulnerability score for Sensitivity
Figure 8. Mean Exposure, Sensitivity and Recovery category score for A) Marine Plants and Algae sub-group level 1; B) Marine Invertebrate sub-group level 1; C) Marine Fishes sub-group level 1; and C) Marine Mammals sub-group level 2. Dashed line represents the maximum vulnerability score for Sensitivity
Figure 9. Proportion of assigned scores (0 = not fulfilled, 1 = fulfilled, 1P = fulfilled (precautionary)) A) by vulnerability category across all sub-groups; and by high-level biological grouping for B) Exposure; C) Sensitivity; and D) Recovery

1. ABSTRACT

An important contribution to fulfilling Fisheries and Oceans Canada (DFO) commitment in oil– spill response planning was the development of a framework for the rapid assessment of vulnerability of marine biological components to ship-source oil spills that fall under the DFO mandate, contributing to the ecological aspects of the 'Resources at Risk' component of oil spill planning and response. A National framework, developed in 2017 (Thornborough et al. 2017) – uses a structured approach for assessing and screening biological components expected to be most affected by a ship-source oil spill, utilizing a suite of criteria to assess vulnerability.

The framework identified two key phases for assessing vulnerabilities of marine components:

- 1. Grouping of biological components (sub-groups) based upon shared characteristics related to oil vulnerability; and
- 2. Scoring of biological sub-groups against ecological vulnerability criteria (Exposure, Sensitivity, and Recovery) to identify those most vulnerable to oil using a binary scoring system.

For validation purposes, the National framework stressed the need to apply and test the framework in a variety of marine aquatic environments across Canada. This research document describes how the National framework was used in the Maritimes Region, to:

- 1. Adapt the National framework to create appropriate sub-groups for Maritimes Region biota;
- 2. Apply the National scoring criteria to Maritimes Region sub-groups, adapting scoring criteria where necessary; and
- 3. Develop a rank list of sub-groups most vulnerable to a ship-source oil spill in the Maritimes Region.

The vulnerability results from the application of the National framework in the Maritimes Region will help identify marine sub-groups that are most vulnerable to oil and will be used to inform oil spill response strategies in an effort to manage and limit the impacts of oil spills in the Region.

2. INTRODUCTION

2.1. OIL FATE AND BEHAVIOUR IN THE MARINE ENVIRONMENT

Oil is composed of organic hydrocarbons and inorganic molecules that arise from the anaerobic breakdown of biological material. While all petroleum products have related chemical compositions, they vary according to the molecular weight of the hydrocarbons they contain. Light refined products (e.g., gasoline) contain a larger proportion of low molecular weight hydrocarbons in comparison to heavy oils, such as crude, which are primarily made up of high molecular weight hydrocarbons. Molecular weight differences influence the particular properties and characteristics of the petroleum product (e.g., density, viscosity, and flash point), as well as the fate and behaviour of the product when released into the aquatic environment (Wang and Fingas 2003). In general, lighter hydrocarbons are more volatile, have higher solubility in water and vaporize faster than their heavier counterparts.

Oil spills can be disastrous to the marine environment. The severity of impacts of oil spills depend on a number of factors: the chemical properties of the oil product spilled, environmental parameters of the spill area, spill size and time of year, mitigation measures used, among others (Fingas 2011).

In the event of a spill, light oils will evaporated more quickly than heavy oils. In fact, up to 75% of light oil mass can be lost to the evaporative process compared to only 10% for heavier oils (Fingas 1999). However, evaporation of the lighter oils will result in an increased proportion of heavier oils in the slick, which can persist in the marine environment.

Once an oil product is spilled at sea, a complex series of factors such as oil weathering rate, spill location, hydrodynamic conditions, spill site geography, substrate type, dispersion, and dilution rate will determine the nature and complexity of the spill and its effects on the marine biota living in the intertidal and subtidal marine environments.

2.2. OIL TOXICITY AND EFFECTS ON MARINE FLORA AND FAUNA

Toxicity has been defined as negative effects (lethal and/or sub lethal) on organisms caused by exposure (acute or chronic) to a chemical or substance. The toxicity and effects of petroleum products on marine species is a complex issue, given the sheer number of petroleum products, changing environmental conditions impacting the bioavailability of oil, the differences in life history strategies between species, and more.

Impacts to marine species from exposure to oil products in the environment can be broadly categorized into physical/mechanical and chemical toxicological impacts.

Physical/mechanical impacts can generally occur when an organism, exposed to a petroleum product, exhibits a physical impairment such as a reduction in feeding caused by the obstruction of feeding structures (baleen, gill rakers, etc.), reduction in photosynthesis through physical coating of plants, or the loss of thermoregulation capacity resulting from coating of fur in oil.

Chemical toxicological impacts to marine species can be further categorized into lethal and sublethal impacts from either acute or chronic exposure. Common approaches for measure acute lethal toxicity in laboratory settings include the determination of an LC50 (concentration at which 50% of the test population exhibits mortality). When considering sub-lethal impacts, there are a variety of endpoints that can be examined including behavioral changes, embryo toxicity and early stage developmental abnormalities, individual effects (deformities, heart-related impacts), endocrine disruption effects on reproductive physiology, growth rate depression, metabolic function, genotoxicity and more (Dupuis and Ucan-Marin 2015). When considering marine organisms in a broad sense, laboratory studies and field observations have generally shown that lethal and sub-lethal impacts can occur following exposure to petroleum products, whether by physical or chemical sensitivity. However, it should be noted that the Environment and Climate Change Canada (ECCC) Crude Oil and Petroleum Product Database (ECCC 2021) lists 351 different crude and refined petroleum products. With the sheer number of oil products, their associated weathering patterns in a dynamic environment, the number marine species in the region, work on biological effects of petroleum product exposure is far from conclusive, requiring additional consideration.

While a great deal of research and a number of comprehensive literature reviews (e.g., O'Brien and Dixon 1976, Dupuis and Ucan-Marin 2015) have been conducted on the impacts of oil spills on marine biota, studies are not equal across taxa. Furthermore, within taxa research results are often not comparable due to differences in oil type tested, dose administered, exposure length and endpoints used in the studies. A lack of pre-spill baseline data, sampling method differences and the fact that impacts of oil may take years to be fully realized in organisms, further complicate definitive conclusions.

For this application, it is assumed that all organisms will experience some degree of impairment or toxic effect when exposed to an oil spill. The framework was used to determine the 'degree' to which inherent ecological and biological traits predispose some groups to be more vulnerable to oil than others.

2.3. MARITIMES REGION AND OIL

The DFO Maritimes Region (Figure 1) is home to a shoreline that is approximately 10,000 km long. The shoreline contains a variety of sediment types, from consolidated (e.g., bedrock, boulder, cobble beaches) to unconsolidated substrates such as sand beaches and muddy tidal flats (ECCC 2015). The region is also home to several major shipping ports and oil handling facilities, and experiences high-levels of marine vessel traffic.

2.3.1. Oil Transport and Handling in the Maritimes

The Maritimes Region features two of the main petroleum shipping ports in Eastern Canada – Saint John, New Brunswick in the Bay of Fundy, and Port Hawkesbury–Canso Strait, Nova Scotia (Figure 1).

Tankers of 200,000 deadweight tonnage and larger transit the lower Bay of Fundy bringing crude oil from various foreign sources into the Port of Saint John, New Brunswick (Figure 1), one of the busiest Canadian ports for oil tanker traffic. The Saint John Port Authority has noted that 12,382,874 metric tons (MT) of crude oil, 11,770,564 MT of petroleum, 656,556 MT of refined petroleum products, and 239,640 MT of natural gas passed through the port in 2016 (Somerville 2017 as cited in Ryan et al. 2019). With respect to the volume of oil products being transported through the Port of Saint John, it is considered to have the highest risk of an oil spill of any port in Canada (SL Ross Environmental Research 1999). Port Hawkesbury and Point Tupper are the main petroleum shipping centres for the Strait of Canso (Prouse 1994) (Figure 1).

In the Strait of Canso, the refinery at Point Tupper, NS became a terminal for supertankers in 1993, with facilities to store, blend, and transfer crude and refined oils to smaller vessels. With depths greater than 60 m, the Strait of Canso can accommodate vessels of up to 500,000 deadweight tonnes (DWT) and provides the deepest harbour on the North American east coast (Gardner Pinfold 2010). In addition to the two public harbours, Port Hawkesbury and Mulgrave, there are also five private terminals in the Strait (Invest Cape Breton 2018 as cited in Ryan et al. 2019). The whole area is known as the Strait of Canso Superport, and has handled over

30 million tonnes of cargo annually from 2005 to 2010 (Strait of Canso Superport 2018). Of the 31.6 million metric tonnes of cargo in 2006, 21.6 million tonnes were crude petroleum (Statistics Canada 2011). In 2009, two-thirds of all cargo in Nova Scotia was handled by Port Hawkesbury, although in 2010 tonnage decreased 10.5% to 26.3 million tonnes, largely as a result of a 12.1% decline in the tonnage of crude petroleum (Government of Nova Scotia 2010).

Port Hawkesbury handles both crude oil and refined products (Gardner Pinfold 2010). Increasing amounts of foreign oil are being trans-shipped to the northeastern United States, bringing in crude oil from Europe in tankers of 250,000 DWT (20 shipments from Norway in 1998) and transferring it to smaller tankers in the 80,000 DWT range, because many foreign tankers are too large to be accommodated by the U.S. ports (SL Ross Environmental Research 1999).

This trans-shipment activity has more than doubled since 1994, amounting to about 11 million tonnes in 1998, which is 14% of all oil moved by ocean vessel in Canada, representing a large spill risk (SL Ross Environmental Research 1999).

Figure 1. DFO Maritimes Region administrative boundary. Port Saint John and the Strait of Canso Superport locations are shown in red.

2.3.2. Past Oil Spills in the Maritimes Region

The largest oil spill in Canada occurred off the East Coast in 1970. The tanker *M/T Arrow* spilled over 10,000 tonnes of oil off Nova Scotia. This is about one quarter the amount spilled in US waters by the *Exxon Valdez* in 1989. About 2000 m³ of Bunker C was spilled, covering 300 km

of shoreline. Rakes, peat moss, and shovels were used on the shorelines, but despite efforts, less than 50 km were cleaned up and oil persisted for several years on the shores of Chedabucto Bay. Remaining oil in the tanker was transferred to the Irving Whale Barge (Ryan et al. 2019).

Thirty years after the spill, sediments and interstitial waters were collected from a sheltered lagoon in Black Duck Cove, an area that had been heavily oiled and left to recover naturally. Chemical analysis of the sediments confirmed that the remaining oil had undergone significant weathering, including photo-oxidation, abrasion by ice scour, dissolution, dispersion with mineral fines, evaporation of volatile components, and biodegradation. In the fall of 2015, 33,000 litres of oil and oily water were suctioned from the *Arrow* wreck by divers contracted by Canadian Coast Guard (Ryan et al. 2019).

Marine pollution incidents are generally reported to the Canadian Coast Guard and/or the Environment and Climate Change Canada (ECCC) National Environmental Emergencies Centre (NEEC) for assessment. While the Maritimes Region has not experienced a spill as large as the *M/T Arrow* since 1970, other marine incidents occur in the region every year. Many such incidents are small, with amounts ranging from 0.0001 L to 2 L, sometimes occurring via fueling mishaps (over-fueling a vessel, a small leak from a fueling hose, etc.). Some incident reports can be considered 'potential' pollution for a variety of reasons (e.g., vessel loses then regains steerage; vessel aground with no visible pollution), while others can range from grounding incidents to sunken vessels – involving a range of vessel types, from small pleasure crafts, fishing vessels, tanker and transports.

Data on past spills in the Maritimes Region is scarce, as a coordinated effort to digitize past pollution reports has only recently begun. The ECCC National Environmental Emergencies Operation Center (NEEOC) has been actively registering all spill data from across the country since mid-2018, and is in the process of engaging the environmental response community to further developing a consistent reporting method. Currently, the ECCC NEEOC data is organized at a provincial level and is not yet suited to querying by DFO administrative boundary.

Using previous pollution reports summarized by the Canadian Coast Guard, an average of 463 incidents have been reported annually between 2017 and 2020 in the Maritimes Region. Many of these incidents represent potential pollution, but a number of them are actual pollution events, highlighting the need for continued efforts in marine spill response in the region.

2.4. CANADIAN OIL SPILL RESPONSE REGIME

Since 1995, Canada's Ship-Source Oil Spill Preparedness and Response Regime has provided the framework for readiness to respond to ship-source oils spills in the Canadian marine environment. Since its implementation, there have been few major ship-source oil spills in Canadian waters. While the Regime has been effective in minimizing marine oil spills, there has been a steady increase in the volume of oil transported within Canadian waters, as well as the number and size of vessels transporting oil products (Ryan et al. 2019). As tanker traffic increases so does the risk of accidental oil spills. In 2013, recognizing the risks and increasing public concern around oil transport safety, as well as the growing awareness and progressive developments in oil spill preparedness and response internationally, the Government of Canada announced the creation of a Tanker Safety Expert Panel (TSEP) and a World-class Tanker Safety System (WCTSS) program.

Established with a goal to analyze and strengthen Canada's oil tanker safety and oil spill response preparedness, the TSEP released its initial report in November 2013, *A Review of Canada's Ship-Source Oil Spill Preparedness and Response Regime – Setting the Course for the Future* (Houston et al. 2013), which offers a comprehensive analysis of Canada's existing oil

spill response systems south of 60°N latitude. The panel indicated that, in general, the foundational principals of the 1995 regime have stood the test of time, but also made several recommendations to improve preparedness and response to ship-source oil spills in Canada, to reflect a more modern and comprehensive response approach.

One of the recommendations from the TSEP was that, in lieu of a single overarching National response program, regional response plans should be developed based on addressing specific regional risks, taking into account distinct geographic and climate variables. Furthermore, the respective regional response plans should be indicative of differences in industrialization and environmental parameters, the most probable types of oil spills, and worst case impacts (Houston et al. 2013).

2.4.1. Area and Regional Response Planning

Following TSEP recommendations, in 2014, the Government of Canada stood-up the Area Response Planning (ARP) initiative, co-led by Transport Canada (TC) and the Canadian Coast Guard (CCG), in partnership with other Federal Departments, with the goal of furthering the development of specific oil-spill response plans in the following pilot areas:

- Saint John and the Bay of Fundy, New Brunswick (Maritimes Region)
- Port Hawkesbury–Canso Strait, Nova Scotia (Maritimes Region)
- St. Lawrence Seaway, Montreal to Anticosti, Québec (Quebec Region)
- Strait of Georgia and the Juan de Fuca Strait, British Columbia (Pacific Region)

In 2017 the ARP initiative expanded to become the Regional Response Planning initiative (RRP), which included greater collaboration with indigenous and coastal communities, and increased integration with existing planning processes in the existing ARP areas. In 2019, Planning for Integrated Environmental Response (PIER) began, expanding the scope in the Maritimes beyond the existing ARP/RRP areas to the whole of the Department of Fisheries and Oceans (DFO) Maritimes Region (Figure 1).

Under these initiatives, one of the directives of the Department of Fisheries and Oceans (DFO) Science Branch was to provide science based information to better understand the impacts of ship-sourced oil spills on marine biological components.

2.4.2. National Vulnerability Framework

An important contribution to fulfilling DFO's commitment in oil-spill response planning was the development of a framework for the rapid assessment of vulnerability of marine biological components to ship-source oil spills that fall under the DFO mandate, and which contributes to the ecological aspects of the 'Resources at Risk' component of oil spill planning and response (Figure 2).

Figure 2. Overview of how the vulnerability framework fits in with the overall model for oil spill planning and response ("ecological" Resources at Risk).

The National framework, developed in 2017 – A Framework to Assess Vulnerability of Biological Components to Ship-source Oil Spills in the Marine Environment (Thornborough et al. 2017) – uses a structured approach for assessing and screening biological components expected to be most affected by a ship-source oil spill, utilizing a suite of criteria to assess vulnerability. While often used interchangeably with sensitivity, vulnerability is generally defined as the degree to which a system is susceptible to, and unable to cope with, injury, damage, or harm (De Lange et al. 2010). As such, sensitivity is a nested factor of vulnerability, where vulnerability is a function of: exposure to a stressor, sensitivity, and recovery potential.

Building on this approach, the National framework divided vulnerability into three categories: Exposure, Sensitivity and Recovery, each encompassing a number of criteria which were envisaged to be consistent yet broad enough to be applicable in a variety of aquatic environments (Thornborough et al. 2017). The authors intended that the framework should not be limited by data availability or heavily influenced by, or dependent on, expert opinion and be adaptable for application in any aquatic environment in Canada. Vulnerabilities, once determined, should be used by stakeholders when selecting appropriate response strategies to manage and limit the impact of oil spills.

For validation purposes, the National framework stressed the need to apply and test the framework in a variety of marine aquatic environments across Canada.

2.5. OBJECTIVES

This research document describes how the National framework was adapted, modified and applied in the Maritimes Region. The specific objectives of the Maritimes application are:

1. Adaptation of the National framework to create appropriate sub-groups for Maritimes Region biota;

- 2. Application of the National scoring criteria to Maritimes Region sub-groups, adapting scoring criteria where necessary; and
- 3. Development of a rank list of sub-groups most vulnerable to a ship-source oil spill in the Maritimes Region.

3. FRAMEWORK

3.1. SCOPE

The National framework (as outlined in Thornborough et al. 2017):

- Assesses vulnerability on acute effects from direct contact with oil and does not consider the effects of chronic exposure to spilled oil;
- Does not consider secondary impacts (higher level trophic dynamics), (e.g., the ingestion of contaminated food sources); or cumulative effects from multiple stressors;
- Focuses on generalized impacts from the initial stages of a ship-source oils spill and does not differentiate between oil types;
- Does not consider mitigation measures such as the use of chemical dispersants;
- Is focused on marine biological components that fall within DFO's mandate; those at and below means high water springs, including plants, invertebrates, fish, mammals, and reptiles;
- Does not assess species based on socio-economic or cultural value; species with conservation status (i.e., listed under Species at Risk Act (SARA)) are captured within the assessment;
- Does not assess habitat directly. Habitat is included when associated with vulnerable biological components such as areas supporting high concentrations or aggregations of vulnerable species groups/sub-groups, and are assumed to be an underlying reason for aggregations or for seasonal movements;
- Assesses biogenic habitats (e.g., eelgrass beds, glass sponge reefs) on a species subgroup level (e.g., eelgrass, Porifera), rather than as separate habitats;
- Does not consider shoreline type due to the pre-existing shoreline classification system that ranks shoreline types by sensitivity to spilled oil (Howes et al.1994);
- Does not assess Ecologically and Biologically Significant Areas (EBSAs), Marine Protected Areas (MPAs), or other planning areas. These are considered as sources of supplementary information for oil spill planning and response purposes;
- Was developed for marine environments.

3.2. OVERVIEW

A flowchart developed for the National framework working process (as published in Thornborough et al. 2017), can be seen in Figure 3. The framework identified two key phases for assessing vulnerabilities of marine components:

1. Grouping of biological components (sub-groups) based upon shared characteristics related to oil vulnerability; and

 Scoring of biological sub-groups against ecological vulnerability criteria (Exposure, Sensitivity, and Recovery) to identify those most vulnerable to oil using a binary scoring system.

The framework was developed to be:

- 1. Nationally consistent;
- 2. Regionally flexible;
- 3. Grounded in science;
- 4. Rapid and simple to implement;
- 5. Able to provide a concise list of biological components most vulnerable to oil.

The framework is considered rapid and easy to use based on the use of sub-groups and not individual species for scoring, as well as the use of a binary scoring system to score the sub-groups against three categories of vulnerability criteria; to generate a rank list of the vulnerability of biological components to oil in any region. The framework is meant to be grounded in science as scientific justification would be used to rationalize all scores given to sub-groups in each scoring category.

For validation purposes (and to test the regional flexibility of the National model), the National framework stressed the need to apply and test the framework in a variety of marine aquatic environments across Canada. This research document describes how the National framework was adapted, modified and applied to the Maritimes Region.

3.3. GROUPING BIOLOGICAL COMPONENTS

Determining vulnerabilities using the National framework is considered to be simple to implement and quick to use based on the premise that the use of species sub-groups eliminates the need to assemble lists of all available species for a geographic area at the study outset. In the National framework, sub-groupings were developed for five high-level biological groups: Marine Plants and Algae; Marine Invertebrates; Marine Fish; Marine Reptiles, and Marine Mammals. Sub-groups were organized using characteristics and shared biological and ecological traits among its members pertaining to their vulnerability to oil. Within these five broader groups, the framework proposed seventy-five sub-groups, and only the sub-groups identified as most vulnerable would be populated with species (i.e., after scoring).

3.3.1. General Modifications to the National Framework

The National vulnerability framework application is built on a top-down in approach, whereby all species groupings are assumed to be present in the application area regardless of data availability, with groupings populated with appropriate species only at the end of the process. In the National framework (Figure 3), only sub-groups identified as most vulnerable to oil are populated with species. However, the framework allows flexibility in the development of sub-groupings that account for regional differences.

In contrast, sub-group development was completed using a bottom up approach in the Maritimes Region, with the initial development of lists of verified regional species at the high-level biological groups (Marine Plants and Algae, Marine Invertebrates, Marine Fishes, Marine Mammals, and Marine Reptiles) (Figure 4).

In order for a species to be considered a "verified input" for sub-group consideration, its existence in the Maritimes Region was confirmed by a minimum of two sources (primary literature, DFO survey data, databases, museum holdings, field guides, textbooks and trusted

web sources (e.g., Smithsonian collections; World Register of Marine Species, 'WoRMs'; Canadian Register of Marine Species, 'CaRMs')). This first verification step, while time consuming was considered necessary as a foundational building block to build the Maritimes sub-groups, increasing the confidence around sub-group inclusiveness and subsequent subgroup scoring and vulnerability rankings. Species lists, while not exhaustive, are considered to be inclusive of a high proportion of Maritimes species in each group, and highly representative of the differences in ecological and biological traits used in the development of sub-groups (species lists for each higher-level group can be seen in <u>Appendix 6</u>, Tables A16 to A20).

Information on the biological and ecological traits for each species was collected concurrently with species verification, and was used to develop regional sub-groups. Sub-group levels were structured with increasing levels of specificity and finer detail with regard to shared biological and ecological characteristics related to vulnerability to oil, enabling them to be distinguished from one another and to be effectively assessed by the scoring criteria.

Upon sub-group completion, all scoring and ranking was applied at the sub-group level, using the scoring criteria broadly outlined in the National framework. There were no screened out sub-groups during scoring Maritimes sub-groups against the Exposure and Sensitivity vulnerability criteria so the 'screened out sub-groups' component was dropped from the Maritimes application. A flowchart developed for the Maritimes Region application, illustrating modifications from the National model is detailed in Figure 4.

3.3.2. General Sub-grouping Modifications

- The base nomenclature for organizing the sub-groups within the high-level biological groups was changed from 'sub-group 1, 2, 3...' (e.g., Table 1) as presented in the National framework, to 'sub-group <u>level</u> 1,2,3...', (e.g., Table 2) to simplify the process and to avoid confusion, as scoring is done for only the last sub-groups created from the culmination of applying all previous levels (i.e., highest order distinction).
- In some cases, reorganization of sub-groups where deemed necessary to allow for clearer differentiation in scoring (e.g., Marine Fishes group).
- In some cases, additional levels added to further break down sub-groups. For example, location and habitat descriptors was included where needed to further differentiate sub-groups in the Marine Plants and Algae group.
- In a few instances, sub-groups were added to account for species that were not captured in the groupings outlined in the National model (e.g., lophophorates in Marine Invertebrates group).

The following sections illustrate the modifications made to the National framework for all 5 highlevel biological groups. A total of 116 sub-groups were developed for the Maritimes Region application at the highest level of detail and distinction (i.e., final sub-groupings at level 3, 4 or 5 – depending on group).

Figure 3. Overview of National vulnerability framework process (Thornborough et al. 2017).

Figure 4. Maritimes Region modification to the National framework process.

3.3.2.1. Marine Plants and Algae Grouping

The National framework proposed 8 sub-groups in the marine plants and algae group (Table 1). Substantial changes were made to the sub-group levels within the marine plants and algae group for the Maritimes Region application.

Table 1	Proposed	National su	ih-aroun	breakdown	for marine	plants and	l algae	(N/A =	not applic	able)
rubic r.	11000000	Nutional of	in group	breakaown		più no une	uigue	(10/)	not appno	ubicj.

Sub-group breakdown					
Sub-group 1 Sub-group 2 Sub-group 3					
Pelagic	N/A	Phytoplankton			
		Eelgrasses			
	Vascular	Surf grasses			
		Saltmarsh grasses			
Benthic	Non-vascular	Canopy forming kelps			
		Understory			
		Turf			
		Encrusting			

With modifications, an extra 6 sub-groups were added in the Maritimes application, creating a total of 14 sub-groups (Table 2).

The changes made were as follows:

Sub-group level 1: was modified from 'pelagic' and 'benthic' to 'intertidal', 'subtidal' and 'epipelagic' to address the difference between intertidal and subtidal plant and algae species with regard to tidal exposure and zonation. Epipelagic was used to distinguish phytoplankton from the other sub-group levels.

Sub-group level 2: maintained 'vascular' and 'non-vascular' and applied them to both the intertidal and subtidal in sub-group level 1. Both vascular and non-vascular plants are present in the intertidal sub-group level, with only non-vascular being present in the subtidal sub-group level. This breakdown helps tease out those species which have broad ranges across both the intertidal and subtidal zones and whether there are scoring differences in the same species due to location.

Sub-group level 3: further breaks down the non-vascular component into more specific algal growth forms: 'canopy', 'understory and turf', and 'encrusting'. These components, not present in the National framework, provide more separation of the non-vascular plant types and allows the examination of morphological impacts on scoring with regard to vulnerability to oil.

Sub-group level 4: added a combined habitat feature based on substrate and wave exposure.

Sub-group level 5: delves into more detail in the vascular plants, considering more specific plant types (seagrasses, saltmarsh grass, salt-marsh-non-grass, and saltmarsh succulent). This allows the examination of morphological, zonation, and tidal flux impacts on scoring with regard to vulnerability to oil, and allows clearer separation of high marsh and low marsh plant species.

Additional changes: Phytoplankton is presented as a single epipelagic sub-group, representative of all regional species. Breaking phytoplankton into further sub-groups would be unmanageable in the current application, and likely would render few to no difference in scoring with regard to vulnerability to oil.

Table 2. Maritimes Region sub-group breakdown for marine plants and algae with example species (N/A = not applicable).

Sub-group Level 1	Sub- group Level 2	Sub-group Level 3	Sub-group Level 4	Sub-group Level 5	Examples of Maritime species within the sub-group	
		N/A	High energy unconsolidated habitat	None found		
				Seagrasses	Ruppia maritima, Zostera marina	
Intertidal	Vascular		Moderate to	Saltmarsh grass	Carex paleacea, Juncus gerardii, Juncus caesariensis, Puccinellia maritima, Spartina alterniflora	
			unconsolidated habitat	Saltmarsh non- grass	Achillea millefolium, Plantago maritima, Limonium carolinianum, Triglochin maritimum	
				Saltmarsh succulent	Crassula aquatica, Honckenya peploides, Salicornia europae/ S. depressa	
	Non- vascular	Canopy	High energy consolidated habitat	N/A	Alaria esculenta, Laminaria digitata, Saccharina latissima	
		Understory and turf	High energy consolidated habitat	N/A	Chondrus crispus, Fucus endentatus, Fucus spiralis, Porphyra purpurea, Corallina officinalis	
			Moderate to low energy consolidated habitat	N/A	Chorda tomentosa, Polysiphonia stricta, Ptilota elegans, Ulva intestinalis, Ulva lactuca, Corallina officinalis	
		Encrusting	Consolidated habitat	N/A	Coralline encrusting algae, e.g., <i>Lithothamnion glaciale</i>	
	Non		High energy consolidated habitat	N/A	Alaria esculenta, Laminaria digitata, Saccharina latissima	
Subtidal	vascular	Canopy	Moderate to low energy consolidated habitat	N/A	Agarum clathratum, Halosiphon tomentosus, Laminaria digitata, Saccharina latissima	
Subtidal	Non- vascular	Understory and turf	High energy consolidated habitat	N/A	Chondrus crispus, Chorda tomentosa, Desmarestia viridis, Euthora cristata, Furcellaria lumbricalis	

Sub-group Level 1	Sub- group Level 2	Sub-group Level 3	Sub-group Level 4	Sub-group Level 5	Examples of Maritime species within the sub-group
Subtidal Epipelagic	Non- vascular	Understory and turf Encrusting	Moderate to low energy consolidated habitat	N/A	Desmarestia aculeata, Desmarestia viridis, Euthora cristata, Petalonia fascia, Ulva intestinalis, Spongomorpha arcta (Acrosiphonia arcta)
			Consolidated habitat	N/A	Coralline encrusting algae, e.g., <i>Lithothamnion glaciale</i>
		PHYTOPLANKTON	N/A	N/A	N/A

3.3.2.2. Marine Invertebrates Grouping

The National framework proposed 37 sub-groups in the marine invertebrates group (Table 3). Only a few changes were made to the marine invertebrates sub-groups (Table 4) for the Maritimes Region application.

Table 3.	Proposed	National sub-grou	o breakdown f	for marine i	invertebrates	(N/A = nc)	ot applicable).
10010 01		rtational outo group		e:e.		(

Sub-group breakdown						
Sub-group 1	Sub-group 2	Sub-group 3	Sub-group 4			
			Crustacea (e.g., barnacles)			
			Mollusca (<i>e.g., oysters</i>)			
		Sessile (attached to	Cnidaria (e.g., sea anemones)			
		hard substrate)	Porifera (e.g., demosponges)			
	Deals and multiple		Worms (e.g., tube worms)			
	dwellers		Ascidia (e.g., sea squirts)			
Intertidal	divension		Worms (e.g., annelids)			
		Low mobility	Echinoderms (e.g., sea urchins)			
			Mollusca (e.g., gastropods)			
		High mobility	Crustacea (e.g., crabs)			
		r ligh mobility	Mollusca (e.g., octopus)			
	Sediment infauna	Low mobility	Mollusca (e.g., clams)			
		Low mobility	Worms (e.g., annelids)			
	Sediment epifauna		Mollusca (e.g., gastropods)			
		Low mobility	Cnidaria (e.g., sea pens)			
			Echinoderms (e.g., sea stars)			
		High mobility	Crustacea (e.g., crabs)			
			Crustacea (e.g., barnacles)			
			Mollusca (e.g., mussels)			
Subtidal bonthic	Rock and rubble	Sessile (attached to	Cnidaria (e.g., coral)			
	dwellers	hard substrate)	Porifera (e.g., glass sponges)			
			Worms (e.g., tube worms)			
			Ascidia (e.g., sea squirts)			

Sub-group breakdown						
Sub-group 1	Sub-group 1 Sub-group 2 Sub-group 3 Sub-group 4					
			Worms (e.g., annelids)			
		Low mobility	Echinoderms (e.g., sea urchins)			
			Mollusca (e.g., gastropods)			
		High mobility	Crustacea (e.g., crabs)			
		Figh mobility	Mollusca (e.g., octopus)			
	Sediment infauna Sediment epifauna	Low mobility	Mollusca (e.g., clams)			
		Low mobility	Worms (e.g., annelids)			
			Mollusca (e.g., gastropods)			
		Low mobility	Cnidaria (e.g., <i>sea pens</i>)			
			Echinoderms (e.g., sea stars)			
		High mobility	Crustacea (e.g., crabs)			
		Low mobility	Zooplankton			
Pelagic	N/A	Low mobility	Cnidaria (e.g., jellyfish)			
		High mobility	Mollusca (e.g., squid)			

With modifications, an extra 21 sub-groups were added in the Maritimes application, creating a total of 58 invertebrate sub-groups (Table 4).

The changes made were as follows:

Sub-group level 1: separates marine invertebrates by location (intertidal/subtidal/pelagic) to address differences in exposure. No changes made to this level for the Maritimes application.

Sub-group level 2: uses a substrate habitat factor (rock and rubble dwellers/sediment infauna/sediment epifauna) to differentiate habitat role in exposure and recovery. In the Maritimes application, sub-groups for pelagic larval forms were added at this level.

Sub-group level 3: addresses mobility (sessile/low mobility/high mobility) to identify sub-groups with the ability/inability to move in the event of an oil-spill. No changes made to this level for the Maritimes application.

Sub-group level 4: is based on taxonomic divisions, mostly at the phyla level. Several changes were made at this level for consistency.

A reorganization of this sub-group level was performed to ensure consistency at the phylum level. The National framework includes a mixture of phyla and classes in sub-group 4. In the Maritimes application, only phyla (or an amalgamation of phyla) are used in sub-group level 4, with classes being used only as examples within phyla (e.g., sea squirts and others members of Class Ascidacea, were used as an example class for the new Phylum - 'hemichordates').

There were two sub-groups created in sub-group level 4 via an amalgamation of phyla:

- 1. 'Worms' include the Phyla Acanthocephala, Annelida, Chaetognatha, Gastrotricha, Gnathostomulida, Nemadoda, Nematomorpha, Nemertea, Onychophora, Platyhelminthes, Priapulida, Sipuncula and Xenacoelomorpha.
- 2. Lophophorates include the Phyla Entoprocta, Ectoprocta, Brachiopoda and Phoronida.

Additional changes: Non-larval zooplankton, was presented as a single sub-group, representative of all regional species. As with phytoplankton, breaking non-larval zooplankton into further sub-groups would be unmanageable in the current application, and likely would render few to no difference in scoring with regard to vulnerability to oil.

Table 4. Maritimes Region sub-group breakdown for marine invertebrates with example species (CL = class, N/A = not applicable).

Sub- group Level 1	Sub-group Level 2	Sub-group Level 3	Sub-group Level 4	Examples of Maritime species within the sub-group
			Porifera	Sponges [CL. Demospongiae, Calcarea]
			Cnidaria	Colonial hydroids [Hydrozoa]; Stalked jellyfish [Staurozoa]
		a "	Worms	Tube worms [Polychaeta]
		Sessile (attached to hard substrate)	Lophophorates	Marine bryozoans [Bryozoa]; Lampshells [Branchiopoda]
			Mollusca	Oysters, Mussels [Bivalvia]; Snails [Gastropoda]
	Rock and		Hemichordata	Sea peaches, Sea squirts [Ascidiacea]
	dwellers		Arthropoda	Barnacles [CL. Hexanauplia]
Intertidal			Cnidaria	Anemones [Anthozoa]
		Low mobility	Worms	Bloodworms [Polychaeta]; Flatworms [Platyhelminthes]; Nemertean worms
			Mollusca	Chitons [Polyplacophora]; Whelks, Limpets, Snails [Gastropoda]
			Echinodermata	Sea stars [Asteroidea]; Sea urchins [Echinoidea]; Sea cucumbers [Holothuroidea]
			Arthropoda	Amphipods [Amphipoda]; Isopods [Isopoda]
		High mobility	Arthropoda	Crabs, Lobsters [Decapoda]
	Sediment infauna	Low mobility	Worms	Sandworms, Lugworms, other burrowers [Polychaeta]; Nemertean worms [Paleonemertea]; Sipuncula worms [Sipunculidea]; Flatworms [Platyhelminthes]
	Sediment	ment una	Mollusca	Clams, Astartes [Bivalvia]; Moonsnails [Gastropoda]
	infauna		Arthropoda	Mud crab [Decapoda, Panopeidae]; Tube- building gammarid amphipods [Amphipoda]
			Cnidaria	Starlet anemones, Sand anemones [Anthozoa]
Intertidal		Low mobility	Mollusca	Nudibranchs [Gastropoda, Nudibranchia]; Snails [Gastropoda], Scallops [Bivalvia]
	Sediment epifauna		Echinodermata	Brittle stars [Ophiuroidea]; Sea stars [Asteroidea]; Sea cucumbers [Holothuroidea]
			Arthropoda	Hermit crabs [Decapoda]; Sand fleas and other Amphipods [Amphipoda]; Sea spiders [Pycnogonida]; Isopods [Isopoda]
		High mobility	Arthropoda	Crabs, Lobsters [Decapoda]

Sub- group Level 1	Sub-group Level 2	Sub-group Level 3	Sub-group Level 4	Examples of Maritime species within the sub-group
			Porifera	Boring sponges, breadcrumb sponges, encrusting sponges [CL. Demospongiae, Calcarea]
			Cnidaria	Colonial hydroids [Hydrozoa], Soft corals [Anthozoa] Stalked jellyfish [Staurozoa]
		Sessile	Worms	Tube worms [Polychaeta]
		(attached to hard substrate)	Lophophorates	Marine bryozoans [Bryozoa]; Lampshells [Branchiopoda]
			Mollusca	Slipper limpets [Gastropoda]; Mussels, Oysters, Comb bathyarks [Bivalvia]
			Hemichordata	Ascidians (Tunicates, Sea squirts, Sea grapes) [Ascidiacea]
Subtidal	Rock and		Arthropoda	Barnacles [CL. Hexanauplia]
benthic	rubble dwellers		Cnidaria	Anemones [Anthozoa]; Colonial hydroids [Hydrozoa]
		Low mobility	Worms	Ribbon worms [Hoplonemertea]; Polychaete worms [Polychaeta]; Flatworms [Platyhelminthes]
			Mollusca	Nudibranchs, Whelks, Periwinkles [Gastropoda]; Scallops [Bivalvia]
			Echinodermata	Sea stars [Asteroidea]; Sea cucumbers [Holothuroidea]; Basket stars, Brittle stars [Ophiuroidea], Sea urchins [Echinoidea]
		High mobility	Mollusca	North Atlantic octopus [Cephalopoda]
			Arthropoda	Crabs, Lobsters [Decapoda]
			Cnidaria	Burrowing anemones [Anthozoa]
			Worms	Polychaete worms [Polychaeta]; Flatworms [Platyhelmintes]; Nemertean worms [Pilidiophora]; Peanut worms [Sipunculidea]
	Sediment		Mollusca	Clams [Bivalvia]
Subtidal	infauna		Echinodermata	Sea cucumbers (e.g., <i>Caudina arenata</i>), [Holothuroidea]
benthic		Low mobility	Arthropoda	Amphipods [Amphipoda, Cumacea]
			Lophophorates	Marine bryozoans [Bryozoa]; Lampshells [Branchiopoda]
			Cnidaria	Anemones [Anthozoa]
	Sediment		Worms	Sea mouse [Polychaeta]
	epiiauna		Mollusca	Nudibranchs, Whelks, Moonsnails [Gastropoda], Quahogs, Scallops [Bivalvia]

Sub- group Level 1	Sub-group Level 2	Sub-group Level 3	Sub-group Level 4	Examples of Maritime species within the sub-group	
			Echinodermata	Sand dollars [Echinoidea]; Cushion stars, Mud stars [Asteroidea]; Sea cucumbers [Holothuroidea]	
		High mobility	Arthropoda	Crabs, Lobsters [Decapoda]	
			Cnidaria	Moon jellies [Scyphozoa]; Hydromesusae [Hydrozoa]; Jellyfish [Scyphozoa]	
	N/A	Low mobility	Ctenophora	Comb jellies [CL. Nuda, Tentaculata]	
			Zooplankton	Copepods, Mysids	
		High mobility	Mollusca	Squid [Cephalopoda]	
		Porifera			
		Ctenophora			
Pelagic		Cnidaria			
		Worms			
	LARVAE	Lophophorates			
		Mollusca			
		Echinodermata			
		Hemichordata			
				Arthropoda	

3.3.2.3. Marine Fishes Grouping

The National framework proposed 30 sub-groups in the marine fishes group (Table 5). Substantial changes were made to the marine fishes sub-groups for the Maritimes Region application (Table 6).

	Sub-group breakdown						
	Sub-group 1	Sub-group 2	Sub-group 3				
			Lampreys				
			Acipenseridae				
	Diadromous	Anadromous	Clupeidae				
	Diadromous		Osmeridae				
			Salmonidae				
		Catadromous	Anguillidae				
			Roundfish				
	Estuarine (excluding migrating	Domorcal/Somi domorcal	Rockfish/Redfish				
	groups)	Demersal/ Semi-demersal	Flatfish				
			Elasmobranchs				
			Roundfish				
	Intertidal	Demorrael/ Comi demorrael	Rockfish/Redfish				
	menudar	Demersal/ Semi-demersal	Flatfish				
Ę			Elasmobranchs				
Fisl			Roundfish				
ne		Demersal/ Semi-demersal	Rockfish/Redfish				
lari			Flatfish				
2			Elasmobranchs				
	On shalf		Ammodytidae (<i>e.g.,</i> sandlance)				
	On shell	Small pelagics/ Forage	Embiotocidae (e.g., perch)				
		fish	Clupeidae (e.g., herring)				
			Osmeridae (e.g., smelt, eulachon)				
			Elasmobranchs				
			Scombrids				
			Roundfish				
		Demersal/Semi demersal	Rockfish/Redfish				
		Demersal/ Semi-demersal	Flatfish				
	Off shelf		Elasmobranchs				
		Small pelagics/ Forage fish	Clupeidae (e.g., sardines)				
		Large pelagics	Elasmobranchs				

Table 5. Proposed National sub-group breakdown for marine fishes.

With modifications, an extra 6 sub-groups were added in the Maritimes application, creating a total of 36 marine fishes sub-groups (Table 6).

The changes made were as follows:

Overall, the National framework sub-group 1 was significantly reorganized for the Maritimes application, with several components removed and others distributed across 3 further sub-group levels based on exposure, vertical location and benthic association.

Sub-group level 1: separates fishes into marine and estuarine divisions. Diadromous and off shelf fish groupings were not used. On-shelf fish groups are represented in the 'subtidal' division in sub-group level 2.

Sub-group level 2: further development of sub-group level 1 separates marine fish into intertidal and subtidal components to examine differences in exposure potentials. The estuarine group was further subdivided into estuarine resident and estuarine transient.

Estuarine transient species will encompass all diadromous species (both anadromous and catadromous) that have a freshwater and marine life stage, and are assumed to spend only short durations in estuaries. All estuarine anadromous and catadromous species represented in estuarine transient are subsequently represented in the marine sub-group to reflect their dual life history stages, and the effect that habitat changes might have on their vulnerability to oil (e.g., an anadromous species passing from freshwater to the marine environment is expected to interact with the sea surface in an estuary, but not in the marine environment).

Sub-group level 3: separates marine and estuarine fish species into 'benthic' and 'non-benthic' (pelagic and demersal) to consider vertical distribution.

Sub-group level 4: was added to address habitat characteristics for the benthic sub-groups and their associations with consolidated and unconsolidated substrates. Non-benthic groups were not included in this sub-group level.

Sub-group level 5: based on high-level fish taxonomic divisions, usually at the family level of differentiation. Some families are repeated in sub-group level 5 due to their habitat range (e.g., species that are present in both intertidal and subtidal habitats), or dual life history stage (i.e., diadromous species).

Sub-group Level 1	Sub- group Level 2	Sub-group Level 3	Sub-group Level 4	Sub-group Level 5	Examples of Maritime Species within the sub-group
			Associated with unconsolidated substrates	Snailfishes (Liparidae)	Atlantic Snailfish
				Pout (Zoarcidae)	Ocean Pout
	Intertidal Nor bent (pela an deme	Benthic	(siit/muu/sanu/graver)	Cryptacanthodidae	Wrymouth
			Associated with consolidated substrates (cobble/boulder/bedrock)	Snailfishes (Liparidae)	Atlantic Snailfish
Marine				Pout (Zoarcidae)	Ocean Pout
				Pholidae	Rock Gunnel
		Non- benthic (pelagic and demersal)	N/A	Sticklebacks (Gasterosteidae)	Blackspotted Stickleback, Fourspine Stickleback, Threespine Stickleback

Table 6. Maritimes Region sub-group breakdown for marine fishes with example species (N/A = not applicable).

Sub-group Level 1	Sub- group Level 2	Sub-group Level 3	Sub-group Level 4	Sub-group Level 5	Examples of Maritime Species within the sub-group
	Subtidal	Benthic	Associated with unconsolidated substrates (silt/mud/sand/gravel)	Skates (Rajidae)	Little Skate, Thorny Skate, Smooth Skate
				Flatfishes (Pleuronectidae)	Winter Flounder, Yellowtail Flounder, Atlantic Halibut, Windowpane, American Plaice
				Sculpins (Cottidae)	Shorthorn Sculpin, Longhorn Sculpin, Moustache Sculpin
				Pout (Zoarcidae)	Ocean Pout
			Associated with unconsolidated substrates (silt/mud/sand/gravel)	Redfish (Sebastidae)	Acadian Redfish
				Lophiidae	Monkfish
Marine				Myxinidae	Atlantic Hagfish
				Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon
			Associated with consolidated substrates (cobble/boulder/bedrock)	Sculpins (Cottidae)	Snowflake Hookear Sculpin, Longhorn Sculpin, Shorthorn Sculpin
				Lumpfishes (Cyclopteridae)	Atlantic Spiny Lumpsucker, Lumpfish
				Wolffishes (Anarhichadidae)	Atlantic Wolffish, Spotted Wolffish, Northern Wolffish
				Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon

Sub-group Level 1	Sub- group Level 2	Sub-group Level 3	Sub-group Level 4	Sub-group Level 5	Examples of Maritime Species within the sub-group
				Cod (Gadidae)	Atlantic Cod, Arctic Cod, Tomcod, Pollock
				Elasmobranchs	Shortfin Mako, Porbeagle, Blue Shark
		Non-		Osmeridae	Rainbow Smelt, Capelin
	Subtidal	benthic (pelagic and	N/A	Salmon (Salmonidae)	Atlantic Salmon
Marine		demersal)		Scombridae	Atlantic Mackerel, Atlantic Bluefin Tuna
				Clupeidae	Atlantic Herring, American Shad, Blueback Herring, Alewife
				Eels (Anguillidae)	American Eel
	Estuarine transient	Benthic	Associated with unconsolidated substrates	Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon
			(silt/mud/sand/gravel)	Eels (Anguillidae)	American Eel
			Associated with consolidated substrates (cobble/boulder/bedrock)	Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon
		Non- benthic (pelagic and demersal		Clupeidae	American Shad, Blueback Herring, Alewife
Estuarine				Salmon (Salmonidae)	Atlantic Salmon
			N/A	Silversides (Atherinopsidae)	Atlantic Silverside
				Sticklebacks (Gasterosteidae)	Threespine Stickleback
				Petromyzontidae	Sea Lamprey
	Estuarine			Fundulidae	Mummichog
	resident			Syngnathidae	Northern Pipefish

3.3.2.4. Marine Mammals Grouping

The National framework proposed 9 sub-groups in the marine mammals group (Table 7). Minor changes were made to the marine mammal sub-groups for the Maritimes Region application.

Table 7. Proposed National sub-group breakdown for marine mammals (- = not applicable).

Sub-group breakdown					
Sub-group 1	Sub-group 2	Sub-group 3			
	Teethod	Discrete			
Cotocopo	rootned	Dispersed			
Celaceans	Palaan	Discrete			
	Daleen	Dispersed			
	Thermorequiete with fur	Discrete			
Dinninada	Thermoregulate with fur	Dispersed			
Pinnipeds	Other ninning de	Discrete			
	Other pinnipeds	Dispersed			
Mustelids	-	_			

With modifications, 2 sub-groups were removed in the Maritimes application, creating a total of 7 marine mammal sub-groups (Table 8).

The changes made were as follows:

Sub-group level 1: separates marine mammals into cetaceans (whales and dolphins), pinnipeds (seals and sea lions). Mustelids were not evaluated in the Maritimes application and were removed from the tables.

Sub-group level 2: separates out physical characteristics of species related to an increased vulnerability to oil (e.g., baleen for whales, fur for pinnipeds that rely on fur for thermoregulation There are no pinniped species in the Maritimes Region that rely solely on their fur for thermoregulation.

Sub-group level 3: separates out species/populations with regard to whether they are discrete or dispersed in the Maritimes Region. Sub-groups considered to be 'dispersed' do not tend to aggregate, whereas 'discrete' sub-groups are considered to occur in concentrations due to behavior or for a certain purpose (e.g., feeding, reproduction).

Table 8. Maritimes Region sub-group level breakdown for marine mammals with example species (N/A = not applicable).

Sub-group Level 1	Sub-group Level 2	Sub-group Level 3	Examples of Maritime species within the sub-group
Cetaceans		Discrete	Killer Whale, Long-finned Pilot Whale, Northern Bottlenose Whale, Atlantic White-sided Dolphin
	Toothed	Dispersed	Harbour Porpoise, Sperm Whale, Cuvier's Beaked Whale, Sowerby's Whale, True's Beaked Whale, Blainville's Beaked Whale
Cetaceans	Baleen	Discrete	Fin Whale, Humpback Whale, North Atlantic Right Whale
		Dispersed	Minke Whale, Blue Whale, Sei Whale

Sub-group Level 1	Sub-group Level 2	Sub-group Level 3	Examples of Maritime species within the sub-group
Pinnipeds	Thermoregulate with fur	None	N/A
	Other simplinede	Discrete	Harbour Seal, Harp Seal
	Other pinnipeds	Dispersed	Grey Seal, Ringed Seal, Bearded Seal, Hooded Seal

3.3.2.5. Marine Reptiles Grouping

Sea turtles such as the migratory loggerhead and leatherback sea turtles, which use Canada's Atlantic and Pacific waters for foraging (Gregr et al. 2015), are the only representatives in this group in Canada. All sea turtles are expected to be impacted in similar ways when exposed to oil and hence, this is the only sub-group identified by the National framework, and is carried over for the Maritimes application. Table 9 shows the Maritimes Region sub-group breakdown for marine reptiles.

Table 9. Maritimes Region sub-group breakdown for marine reptiles with example species (N/A = not applicable).

Sub-group	Sub-group	Sub-group	Examples of Maritime Species
Level 1	Level 2	Level 3	within the sub-group
Sea turtles	N/A	N/A	Leatherback Sea Turtle, Loggerhead Sea Turtle, Kemp's Ridley

3.4. ECOLOGICAL VULNERABILITY CRITERIA

While all marine biological components are assumed to be vulnerable to oil to some extent, a vulnerability framework, can provide guidance to response coordinators on the 'degree' of vulnerability, allowing for rapid assessment decisions pertaining to the prioritizing of marine biological components, via a comprehensive regional list of sub-groups that are ranked according to their vulnerability to oil.

The use of a standard set of vulnerability selection criteria, when applied to regional sub-groups, makes scoring consistent and renders results that are comparable across regions. Sub-groups are comparable to one another as well, as they are scored against identical criteria in a relative manner.

The National framework lays out a detailed approach to scoring vulnerability based on three overarching categories:

- 1. potential **Exposure** to spilled oil;
- 2. **Sensitivity** to oil; and,
- 3. **Recovery** potential.

In some cases criteria may appear to be biased toward certain groups, but those groups have characteristics that make them more vulnerable to oil than other groups (e.g., mammals lost the ability to thermoregulate when their fur becomes oiled; sessile invertebrates that cannot move to avoid spilled oil) (Thornborough et al. 2017). The framework attempts to capture those characteristics.

Criteria were developed to be applicable to sub-group levels and relevant to any region in Canada. The criteria identify vulnerable sub-groups based on direct contact with spilled oil;

secondary (food web) impacts resulting from contact with oil is not addressed in the framework (Thornborough et al. 2017).

While the National framework recommended that vulnerability criteria not be changed (in order to make direct comparisons across regions straightforward), during this application there were a number of general, and sub-group specific modifications, expounding on the vulnerability criteria as they were specifically applied. These small changes were necessary to improve understanding of the Maritimes application in general and did not affect the National criteria as proposed.

3.4.1. Exposure Category Criteria

Marine biological components that are more likely to encounter spilled oil are assumed to be more vulnerable (Reich et al. 2014). Exposure criteria developed by the National framework identify characteristics that increase the likelihood of exposure to oil, including: concentration/aggregation and/or site fidelity; sessile/low mobility; surface interaction; and sediment interaction criteria.

The following general modifications were made to the Exposure criteria:

- **Concentration (aggregation) and/or site fidelity:** 'site fidelity' was moved to the 'mobility' criterion.
- **Mobility:** mobility criteria changed to 'mobility and/or site fidelity', as site fidelity is used to score organisms that may have the ability to move, yet they may not move due to a limited home range.
- Sea surface interacting: quantification was deemed necessary for this criteria. Surface layer was defined as 0 to -1m to better capture the 'sea surface interacting' criteria.
- **Sediment interacting:** was changed to 'seafloor or vegetation interacting' to include interactions with all sediment types and vegetation. Oil may persist on rocks and vegetation, as well as those subsurface sediment types more commonly known to retain oil (e.g., silt and sand). This change was used to score all benthic substrate habitats equally.

3.4.1.1. Scoring Guidance

Scoring was performed using both general guidance from the National framework (Table 10) and specific guidance developed for the Maritimes application (Table 11) to ensure consistency.

Exposure criteria and scoring guidance					
Concentration (aggregation)	Concentration (aggregation) and/or site fidelity				
Question	Does the sub-group contain species that concentrate or aggregate in areas linked to fixed/transient habitat within the study area and/or exhibit site fidelity?				
Justification	Organisms that live in high concentrations or aggregate in large numbers in fixed/transient locations have an increased likelihood of exposure to oil. Organisms exhibiting site fidelity may try to remain in, or return to a specific area, even if they were to become exposed to oil.				

Table 10. National framework proposed Exposure criteria and guidance for scoring.

	Exposure criteria and scoring guidance
Scoring guidance	Sub-groups containing species that concentrate in fixed/transient locations for habitat, feeding, or breeding; Sub-groups containing species that exhibit site fidelity.
Mobility	
Question	Does the sub-group contain species with low or no mobility?
Justification	Organisms that are unable to, or have limited ability to move away from spilled oil, or are known to be attracted to spilled oil are likely to have higher exposure to spilled oil.
Scoring guidance	Sub-groups containing species with sessile life-stages (e.g., sponges, corals, kelp, sea grass, etc.); sub-groups containing species with low mobility (e.g., echinoderms); sub- groups containing species with evidence of attraction to spilled oil.
Sea surface interacting	
Question	Does the sub-group contain species that are reliant on or have regular interaction with the air/near sea surface, including intertidal areas?
Justification	The sea surface is the first point of contact in a ship-sourced spill. Therefore, organisms reliant on or with regular interaction with the sea surface have an increased likelihood of exposure to spilled oil. The intertidal zone is likely to experience significant exposure from floating oil spills as tidal movements bring species in direct contact with oil (Chang et al. 2014).
Scoring guidance	Sub-groups containing species that are reliant on or have regular interaction with the near- surface of the ocean (e.g., marine mammals, basking sharks). This includes intertidal species as intertidal areas regularly interact with the surface. The depth of the surface layer (e.g., sea-air interface or -10 m) should be defined by regional conditions (i.e., localized hydrodynamics).
Sediment interacting	
Question	Does the sub-group contain species closely associated with types of sediment that can retain oil for long periods?
Justification	Reoccurring direct exposure due to persistence of oil in sediments. Contaminated sediments can expose individuals in a population repeatedly. This is still considered an acute impact since it is not due to chronic (or multiple exposures) to a single individual. Rather this type of reoccurring exposure impacts a greater proportion of the population through direct contact.
Scoring guidance	Sub-groups containing species that inhabit sediment such as eelgrass and other sediment dwellers such as clams; Sub-groups containing species which spend a significant proportion of time in close association with sediment (e.g., grey whales feeding within sediments).

The following table (Table 11) outlines the detailed scoring guidance applied to the Exposure criteria in the Maritimes Region.

Table 11. Detailed guidance used for scoring criteria within the Exposure category for each biological group in the Maritimes Region application (CL = class).

Criterion	Group	Scoring Guidance
Concentration (aggregation)	Marine Plants and Algae	Vascular plants were considered aggregated if they formed concentrated monospecific beds or were the dominant plant type in dense mixed species stands. Non-vascular plants were considered aggregated if they form dense beds (e.g., canopy kelp bed); thick mats (e.g., turf algae) or were considered abundant across the intertidal and/or subtidal zones.
		Region, occurring in mixed species populations and discrete single species blooms.
	Marine Invertebrates	Marine invertebrates were considered aggregated if they were colony, bed, or reef forming (e.g., colonial hydroids, tube worms); if they exhibit gregarious settlement (e.g., oysters, mussels, barnacles); or if they aggregate for distinct purposes, such as feeding or reproduction (e.g., gastropods form breeding aggregations).
	Marine Fishes	Fish were considered aggregated if they were a schooling species (e.g., Silversides [Atherinopsidae]); a shoaling species (e.g., Cod [Gadidae]); formed feeding aggregations (e.g., Hagfish [Myxinidae]); exhibited mass spawning (e.g., Capelin [Osmeridae]; or congregate for seasonal spawning migrations (e.g., American Eel [Anguillidae]).
	Marine Mammals	Marine mammals were considered aggregated if concentrated for social, feeding, reproduction or migration purposes.
	Marine Reptiles	Marine reptiles were considered aggregated if concentrated for social, feeding, reproduction or other purposes.
Mobility and/or Site Fidelity	Marine Plants and Algae	Vascular plants were considered immobile.
		Non-vascular plants were considered immobile.
		Epipelagic phytoplankton were considered immobile and subject to oceanographic currents.
	Marine Invertebrates	The mobility criterion was a relative measure within the marine invertebrates group.
		Low mobility and sessile invertebrates were considered to exhibit limited (e.g., anemones [Anthozoa]); or no ability to move (e.g., barnacles [CL. Hexanauplia]); while high mobility invertebrates (e.g., North Atlantic Octopus [Cephalopoda]), were considered highly mobile in relation to low mobility sub-groups.

Criterion	Group	Scoring Guidance
		Highly mobile invertebrates (i.e., lobsters [Decapoda]) were considered to exhibit site fidelity if they demonstrated annual migrations for mating and spawning.
	Marine Fishes	Fish were considered to fulfill the mobility criterion if they: were a small-bodied species (< 15 cm); exhibited short migrations (i.e., from shallow water to intertidal areas, and reverse); exhibited slow swimming behaviour (e.g., sculpins [Cottidae]); or were considered deep water sedentary (e.g., Redfish [Sebastidae]).
		Fish were considered not fulfill the mobility criterion if they: undertook long migrations (e.g., inshore to offshore, and reverse); travelled long distances (e.g., Cod [Gadidae]); or were proven to be "fast" swimmers (e.g., Elasmobranchs).
		Fish were considered to fulfill the site fidelity criterion if they: demonstrated homing behaviours; or have specific breeding or feeding grounds.
	Marine Mammals	All marine mammals were considered highly mobile.
	Marine Reptiles	All marine reptiles were considered highly mobile.
	Marine Plants and Algae	Intertidal marine plant and algae sub-groups were expected to interact with the sea surface.
Sea Surface Interacting		Subtidal algal species were not expected to interact with the sea surface unless exhibiting morphological characteristics enabling them to do so.
	Marine Invertebrates	Intertidal marine invertebrate sub-groups were expected to interact with the sea surface.
		Subtidal benthic marine invertebrate sub-groups were not expected to interact with the sea surface
		Pelagic marine invertebrate sub-groups (including larvae) were expected to interact with the sea surface.
Surface acting	Marine Fishes	Marine fish sub-groups that live in the intertidal zone, or pass through intertidal or estuarine zones enroute to spawning grounds, were expected to have interaction with the sea surface, compared to strictly marine subtidal fish sub-groups.
Sea	Marine Mammals	Marine mammals regularly interact with the sea surface to breathe.
0)	Marine Reptiles	Marine reptiles regularly interact with the sea surface to breathe.
Seafloor or Vegetation Interacting	Marine Plants and Algae	Vascular plants have root or rhizome systems that are anchored in the sediment.
		Non-vascular plants are attached to the seafloor via holdfasts or grow directly on substrate (e.g., encrusting algal species).
		Phytoplankton would not be expected to have any interaction with the seafloor.
	Marine Invertebrates	All intertidal and subtidal marine invertebrate sub-groups were expected to have interaction with the seafloor.

Criterion	Group	Scoring Guidance
		Pelagic invertebrate sub-groups will generally not interact with the seafloor.
		All benthic fish sub-groups would be expected to maintain constant contact with the seafloor.
	Marine Fishes	Some non-benthic fish sub-groups were expected to interact with the seafloor for feeding or reproduction purposes (e.g., Capelin, Cod), or use aquatic vegetation for cover (e.g., Northern Pipefish [Syngnathidae]).
	Marine Mammals	Marine mammals are generally expected to interact with the seafloor via feeding behaviour.
	Marine Reptiles	Marine reptiles are generally expected to interact with the seafloor via feeding behaviour.

3.4.2. Sensitivity Category Criteria

The criteria in this category examine both mechanical and chemical sensitivities, based on physiological characteristics that may increase the degree of impairment experienced by an organism from exposure to oil (Thornborough et al. 2017).

As described in the National framework, the mechanical sensitivity criterion outlines three physiological characteristics that make an organism mechanically vulnerable to oil: reduction in feeding (i.e., blocking of filter feeding structures); reduction in photosynthesis; and reduction of insulation due to oiled fur (in some marine mammals).

Chemical sensitivity is identified as the physiological characteristics that make organisms more vulnerable to oil (e.g., pathologies developed as a result of contact with oil), where the pathways of exposure to oil are considered as adhesion, ingestion, absorption and/or inhalation (Thornborough et al. 2017).

The following general modifications were made to the sensitivity criteria:

- **Mechanical sensitivity**: 'reduction of feeding/photosynthesis/thermoregulation' wording was added to this criterion for clarity and to indicate that the definition of mechanical sensitivity differs among high-level biological groups.
- **Chemical sensitivity:** 'impairment due to toxicity' wording was added to this criterion for clarity and to indicate that a broad range of impairments and toxic effects can occur across high-level biological groups.

3.4.2.1. Scoring Guidance

Scoring was performed using both general guidance from the National framework (Table 12) and specific guidance developed for the Maritimes application (Table 13) to ensure consistency.
Table 12. National framework proposed	Sensitivity criteria and guidance for scoring.
	containing and and guidance for coornig.

Sensitivity criteria and scoring guidance		
MECHANICAL SENSITIVITY		
Loss of insulation		
Question	Does contact with oil result in a loss of insulation/ability to thermoregulate for species in the sub-group?	
Justification	Oil causes a substantial decrease in the insulative value of fur, inhibiting the ability of affected organisms to thermoregulate (Reich et al. 2014).	
Scoring guidance	Sub-groups containing species reliant on fur as their primary means of thermoregulation.	
Reduction of feeding/photosynthes	sis	
Question	Does direct contact with oil result in the mechanical impairment of feeding structures for species in the sub-group?	
Justification	Fouling of feeding structures by oil may reduce the ability of organisms to feed, reducing their condition and reproductive capacity and increasing time spent feeding (Reich et al. 2014).	
Scoring guidance	Sub-groups that contain species that feed by filtering water through their systems and removing particles (filter-feeders); sub- groups containing species that photosynthesize (smothering effects reducing photosynthesis).	
CHEMICAL SENSITIVITY		
Impairment due to toxicity		
Question	Does direct contact with oil result in severe, irreversible effects or death for species in the sub-group?	
Justification	Organisms that are more sensitive to toxic effects of oil are more likely to experience irreversible effects or death.	
Scoring guidance	Sub-groups containing species that display severe, irreversible effects or death due to oil toxicity. Acute effects from direct contact include: the inability of animals to digest and absorb foods; reproductive failure; respiratory failure; lesions; hemorrhaging; neurological impairment; and mortality.	

The following table (Table 13) outlines the detailed scoring guidance applied to the sensitivity criteria in the Maritimes Region.

Table 13. Detailed guidance used for scoring criteria within the Sensitivity category for each biological group in the Maritimes Region application.

Criterion	Group	Rationale
nical ivity on in hotosy	Marine Plants and Algae	All marine plants and algae were considered to have a reduction in photosynthesis due smothering by oil.
Mecha Sensit (reducti feeding/p	Marine Invertebrates	Marine invertebrate sub-groups that have feeding structures that can become clogged with oil (e.g., filter or suspension feeders) fulfill this criterion.

Criterion	Group	Rationale
	Marine Fishes	Marine fish sub-groups that have filter feeding structures (e.g., gill rakers) that can become clogged with oil fulfill this criterion (e.g., American Shad [Clupeidae], Atlantic Mackerel [Scombridae]).
	Marine Mammals	Marine mammal sub-groups that have filter feeding structures (e.g., baleen), or thermoregulate with fur fulfill this criterion.
	Marine Reptiles	Marine reptiles are not expected to fulfill this criterion.
ity)	Marine Plants and Algae	
e to toxic	Marine Invertebrates	All sub-groups that exhibit impairment due to toxic impacts of oil on
iical Se	Marine Fishes	physiological characteristics specific to the high-level group, as demonstrated in the literature, will fulfill this criterion.
Chem (impairme	Marine Mammals	
)	Marine Reptiles	

3.4.3. Recovery Category Criteria

The recovery criteria (often referred to as adaptive capacity), identifies the life history traits that impact the ability of a population to recover after an oil spill. Recovery criteria address the long-term recovery from a single spill event only and do not account for repeated exposures. The National framework lists four criteria: 'population status'; 'reproductive capacity'; 'endemism or isolation'; and 'close association with sediments', to be scored in the Recovery category.

Within the framework, 'population' is defined as a Designatable Unit (DU) by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) as a species, sub-species, variety, or geographically or genetically distinct population that is both discrete and evolutionarily significant.

The following general modifications were made to the Recovery criteria:

- Population status: no changes
- Reproductive capacity: was expanded to include life history traits that can affect reproductive potential; as well as low reproductive capacity.
- Endemism or isolation: no changes
- Close association to sediments: was changed to 'close association with unconsolidated substrates'. Although oil can be retained on rocks/boulders, unconsolidated substrates (such as sand, clay, silt) typically retain oil for longer periods of time. This change allows the criterion to capture the influence of sediment type on vulnerability.

3.4.3.1. Scoring Guidance

Scoring was performed using both general guidance from the National framework (Table 14) and specific guidance developed for the Maritimes application (Table 15) to ensure consistency.

Table 14, Nati	onal framework	proposed l	Recoverv criteria	and guidance for	scorina.
rabio i n. ruan		p. op 000 a 1		ana galaanoo loi	000/m/g.

Recovery criteria and scoring guidance			
Population Status	Population Status		
Question	Does the sub-group contain species with reduced or declining population levels?		
Justification	Sub-groups containing species with greatly reduced or declining population numbers (in particular breeding population numbers) are compromised in their ability to recover from an impact, in contrast to those with healthy population levels which are most capable of recovering (Reich et al. 2014). Conservation status can be used as a proxy for reduced or declining population levels.		
Scoring guidance	Sub-groups containing species with: low population levels relative to historic levels (incorporates groups underrepresented/not assessed in conservation indices) (e.g., stock assessment zones – healthy/cautious/critical); greatly reduced breeding population numbers relative to historic levels; special conservation status (a proxy for a low population status), e.g., Committee on the Status of Endangered Wildlife in Canada (COSEWIC) recommended, Species at Risk Act (SARA) listed, International Union for Conservation of Nature (IUCN) listed; Provincially listed.		
Reproductive capacity	Reproductive capacity		
Question	Does the sub-group contain species with low reproductive capacity?		
Justification	Reproductive capacity of a species is a key contributor to population recovery. Sub-groups containing species with low reproductive capacity can be slow to recover from impact even with high population levels, whereas species with relatively high reproductive capacity are inherently more capable of population recovery from oil spill impacts (Reich et al. 2014).		
Scoring guidance	Sub-groups that contain K-strategist species (i.e., have a longer life expectancy, grow and mature more slowly, and have fewer progeny with higher reproductive investment); Sub-groups that contain species with sporadic, infrequent, or density dependent recruitment success.		
Endemism or isolation			
Question	Does the sub-group contain endemic species or isolated populations that have limited distribution within the region?		
Justification	Sub-groups that contain species or populations endemic or isolated in the area are more likely to have a greater proportion of the population impacted by an oil spill, as well as decreased ability of the population to recolonize an area (Reich et al. 2014).		

	Recovery criteria and scoring guidance		
Scoring guidance	Sub-groups containing endemic or isolated populations with limited distribution within the region. Assessed only for the period the species was present in the area of interest (e.g., seasonal abundances of species at certain times of the year).		
Close association with	Close association with sediments		
Question	Does the sub-group contain species that are closely associated with sediments types that can retain oil for long periods of time?		
Justification	Sediments retaining oil can expose associated organisms for decades after a spill hindering their recovery. Aliphatic and polycyclic aromatic hydrocarbon fractions of dissolved petroleum accumulate in sediments and can affect benthic organisms long after spill events (Gunster et al. 1993, Kennish 1996).		
Scoring guidance	Sub-groups containing species that inhabit sediment such as eelgrass and other sediment dwellers such as clams, worms; sub-groups containing species which spend a significant proportion of time in close association with sediment (e.g., grey whales feeding within sediments).		

The following table outlines the detailed scoring guidance applied to the Recovery criteria in the Maritimes Region.

Table 15. Detailed guidance used for scoring crit	eria within the Recovery category for each biological
group in the Maritimes Region application.	

	Group	Rationale
	Marine Plants and Algae	Marine plants and algae sub-groups that have a conservation status listed by: Species at Risk Act (SARA); the Committee on the Status of Endangered Wildlife in Canada (COSEWIC); on the International Union for Conservation of Nature (IUCN) Red List; or the Endangered Species Act (ESA) Threatened and Endangered lists.
ulation Status		An added post CSAS population status state of literature analysis was conducted for this group to ascertain whether there were recent (2015 to present), population status declines (e.g., abundance and/or distribution shifts in response to anthropogenic stressors), which would be significant but not yet included on the above lists. Where literature supported a population status change, the scoring for this group was updated to reflect these changes.
Рор		Marine invertebrate sub-groups that have a conservation status listed by: Species at Risk Act (SARA); the Committee on the Status of Endangered Wildlife in Canada (COSEWIC); or on the International Union for Conservation of Nature (IUCN) Red List.
	Invertebrates	An added post CSAS population status state of literature analysis was conducted for this group to ascertain whether there were recent (2015 to present), population status declines (e.g., abundance and/or distribution shifts in response to anthropogenic stressors), which would be significant but not yet included on the above lists. Where

	Group	Rationale
		literature supported a population status change, the scoring for this group was updated to reflect these changes.
		Marine fish sub-groups that have a conservation status listed by: Species at Risk Act (SARA); the Committee on the Status of Endangered Wildlife in Canada (COSEWIC); or on the International Union for Conservation of Nature (IUCN) Red List.
	Marine Fishes	An added post CSAS population status state of literature analysis was conducted for this group to ascertain whether there were recent (2015 to present), population status declines (e.g., abundance and/or distribution shifts in response to anthropogenic stressors), which would be significant but not yet included on the above lists. Where literature supported a population status change, the scoring for this group was updated to reflect these changes.
		Marine mammal sub-groups that have a conservation status listed by: Species at Risk Act (SARA); the Committee on the Status of Endangered Wildlife in Canada (COSEWIC); or on the International Union for Conservation of Nature (IUCN) Red List.
	Marine Mammals	An added post CSAS population status state of literature analysis was conducted for this group to ascertain whether there were recent (2015 to present), population status declines (e.g., abundance and/or distribution shifts in response to anthropogenic stressors), which would be significant but not yet included on the above lists. Where literature supported a population status change, the scoring for this group was updated to reflect these changes.
		Marine reptiles that have a conservation status listed by: Species at Risk Act (SARA); the Committee on the Status of Endangered Wildlife in Canada (COSEWIC); or on the International Union for Conservation of Nature (IUCN) Red List.
	Marine Reptiles	An added post CSAS population status state of literature analysis was conducted for this group to ascertain whether there were recent (2015 to present), population status declines (e.g., abundance and/or distribution shifts in response to anthropogenic stressors), which would be significant but not yet included on the above lists. Where literature supported a population status change, the scoring for this group was updated to reflect these changes.
/e Capacity	Marine Plants and Algae	Vascular plants were considered to have low reproductive capacity if they: rely heavily on vegetative (asexual) propagation as opposed to sexual reproduction; or are considered long lived perennial species.
		Non-vascular plants sub-groups were generally considered to have high reproductive capacity, unless reproduction was easy disturbed.
producti		Epipelagic phytoplankton were considered to have a rapid reproduction rate.
Rep	Marine Invertebrates	Marine invertebrate sub-groups that exhibit lower reproductive capacity due to: asexual or clonal reproduction; higher parental

	Group	Rationale
		investment relative to other invertebrate sub-groups fulfill this criterion.
	Marine Fishes	Marine fishes sub-groups that exhibit lower reproductive capacity due to: low fecundity; delayed maturity; long gestation period; brooding species; irregular spawning patterns.
	Marine Mammals	All marine mammals are K-strategists with high parental investment and long gestation times.
	Marine Reptiles	Marine reptiles were considered to have low reproductive capacity.
	Marine Plants and Algae	Marine plants sub-groups that contain species or Designatable Units (DU) whose distribution does not extend beyond the Maritimes Regional boundary, or have isolated populations in the region, fulfill this criterion.
ation	Marine Invertebrates	Marine invertebrate sub-groups that contain species or Designatable Units (DU) whose distribution does not extend beyond the Maritimes Regional boundary, or have isolated populations in the region, fulfill this criterion.
emism or Isola	Marine Fishes	Marine fish sub-groups that contain species or Designatable Units (DU) whose distribution does not extend beyond the Maritimes Regional boundary, or have isolated populations in the region, fulfill this criterion.
Ende	Marine Mammals	Marine mammal sub-groups that contain species or Designatable Units (DU) whose distribution does not extend beyond the Maritimes Regional boundary, or have isolated populations in the region, fulfill this criterion.
	Marine Reptiles	Marine reptile sub-groups that contain species or Designatable Units (DU) whose distribution does not extend beyond the Maritimes Regional boundary, or have isolated populations in the region, fulfill this criterion.
ated	Marine Plants and	Vascular plant sub-groups have root or rhizome systems that are anchored in unconsolidated substrates.
onsolid	Algae	Some intertidal non-vascular plant sub-groups can interact with unconsolidated substrates when exposed at low tide.
n with unc bstrates	Marine Invertebrates	Marine invertebrate infaunal and epifaunal sub-groups fulfill this criterion as they spend the majority of their lives in close association with unconsolidated substrates.
e associatic su	Marine Fishes	Marine fish sub-groups that have a close association with unconsolidated substrates as a function of: reproductive behaviour, feeding, burrowing or resting.
Close	Marine Mammals	Marine mammal sub-groups that interact with unconsolidated substrates via feeding behaviour.

Group	Rationale
Marine Reptiles	Marine reptiles that interact with unconsolidated substrates via feeding behaviour.

4. SCORING AND RANKING

A binary system was used to score 116 Maritimes Region sub-groups against 10 criteria that comprise the Exposure, Sensitivity, and Recovery vulnerability categories. A score of one (1) indicated that the criterion was fulfilled for that sub-group, while a score of zero (0) denoted a sub-group that did not fulfill the criterion. Each criterion was scored against the final sub-group level for each of the high-level biological groups (i.e., sub-group level 5 for Marine Plants and Algae; sub-group level 5 for Marine Invertebrates; sub-group level 5 for Marine Fishes; sub-group level 3 for Marine Mammals; and sub-group level 1 for Marine Reptiles). Scoring decisions were made based on the general guidance tables provided by the National framework for each group (Tables 10, 12, and 14) as well as the more specific guidance developed in the Maritimes Region (Tables 11, 13, and 15).

A referenced justification for each score was included to support decisions that were not intuitive (i.e., based on general biological knowledge; e.g., 'all vascular plants are rooted in substrate'), to ensure scientific integrity of decision making, and to maintain confidence in scoring consistency across the application. The number of supporting references needed varied across categories and sub-groups, and differed in accordance with the availability of definitive conclusions in the scientific literature (e.g., there are few conclusive and comparable studies on chemical toxicity for most sub-groups).

A precautionary approach was taken with regard to scoring sub-groups in the following ways:

- 1. If at least one species within a sub-group was known to fulfill the criterion the entire subgroup fulfilled the criterion.
- 2. Sub-groups were scored based on the life stages most vulnerable to oil (e.g., juveniles compared to adult) where information was available.
- 3. Where literature was lacking to support a definitive score (0 or 1), a precautionary score of "1P" was assigned for the criterion.

The scoring process as outlined in the National framework can be seen in Figure 3. The modified scoring process for the Maritimes Region is shown in Figure 4.

Exposure criteria were scored first. There were no screened out sub-groups during scoring for Maritimes Region, as all sub-groups received a score of 1–4 in the exposure category.

Sensitivity criteria were scored next. The 'impairment due to toxicity' criterion proved the most difficult to score. For many sub-groups, there was limited peer-reviewed research on oil toxicity. While for others, conflicting results made it challenging to make a definitive decision. The lack of standardization in experimental methods confounded this problem further. Therefore, the approach taken was to score all sub-groups in this criterion using precautionary scoring (1P), citing as many available sources as possible to illustrate the state of knowledge.

There were no screened out sub-groups during the sensitivity scoring for Maritimes Region, as all sub-groups received a score of 1–2 in the Sensitivity category.

Four criteria in the Recovery category were then assessed, providing an additional score of 0–4 for each sub-group. Exposure, Sensitivity, and Recovery scores for each sub-group were tallied

(/10) and then ranked to produce a list of sub-groups most vulnerable to ship-sourced oil spills in the Maritimes Region (Table 16).

5. RESULTS

The following sections provide a summary of Maritimes Region application vulnerability scoring results. Detailed vulnerability category criteria scoring results, including in-depth justifications and precautionary scoring rational for all sub-groups in each high-level biological group can be found in the Appendices to this document. Note that an attempt was made to follow a similar format for each justification, providing general information related to the assigned score for the sub-group, followed by more in depth supporting information where available.

- Marine Plants and Algae <u>APPENDIX 1</u>
- Marine Invertebrates <u>APPENDIX 2</u>
- Marine Fishes <u>APPENDIX 3</u>
- Marine Mammals <u>APPENDIX 4</u>
- Marine Reptiles <u>APPENDIX 5</u>

The Final Rank Table (Table 16) shown below lists sub-groups in order from highest to lowest vulnerability regardless of high-level biological group. For each sub-group, criteria that received a precautionary score (1P) were considered fulfilled for the purposes of ranking by total vulnerability score.

Tables 17–20 and Figures 5–9 were developed using the final rank tables to further explain overall vulnerability results: across and within groups (Figure 6); the relative influences of Exposure, Sensitivity and Recovery categories (Figure 6 and 7); some sub-group level differences within the groups (Figure 8); as well as an overview of how the precautionary approach was used across groups (Figure 9).

5.1. FINAL RANK TABLES

Table 16. Final ranked list of sub-groups for the Maritimes Region application of the National vulnerability framework produced by scoring subgroups against EXPOSURE, SENSITIVITY, and RECOVERY criteria (N/A = not applicable).

			FRAMEV	ORK SUB-GROUPS			Exposure	Sensitivity	Recovery	Total
Biological Group	Sub- group Level 1	Sub- group Level 2	Sub- group Level 3	Sub-group Level 4	Sub-group Level 5	Maritime example species	Score (/4)	Score (/2)	Score (/4)	Vulnerability Score (/10)
MARINE PLANTS AND ALGAE	Intertidal	Vascular	N/A	Moderate to low energy unconsolidated habitat	Saltmarsh grass	Carex paleacea, Juncus gerardii, Juncus caesariensis, Puccinellia maritima, Spartina alterniflora	4	2	3	9
MARINE PLANTS AND ALGAE	Intertidal	Vascular	N/A	Moderate to low energy unconsolidated habitat	Seagrasses	Ruppia maritima, Zostera marina	4	2	3	9
MARINE PLANTS AND ALGAE	Intertidal	Non- vascular	Understory and turf	High energy consolidated habitat	N/A	Chondrus crispus, Fucus endentatus, Fucus spiralis, Porphyra purpurea, Corallina officinalis	4	2	3	9
MARINE PLANTS AND ALGAE	Intertidal	Non- vascular	Understory and turf	Moderate to low energy consolidated habitat	N/A	Chorda tomentosa, Polysiphonia stricta, Ptilota elegans, Ulva intestinalis, Ulva lactuca, Corallina officinalis	4	2	3	9
MARINE INVERTEBRATES	Intertidal	Sediment infauna	Low mobility	N/A	Mollusca	Clams, Astartes [Bivalvia]; Moonsnails [Gastropoda]	4	2	3	9
MARINE INVERTEBRATES	Pelagic	LAF	RVAE		Mollusca		4	2	3	9
MARINE FISHES	Estuarine	Estuarine transient	Benthic	Associated with unconsolidated substrates (silt/mud/sand/gravel)	Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon	4	1	4	9
MARINE FISHES	Estuarine	Estuarine transient	Benthic	Associated with consolidated substrates (cobble/boulder/bedrock)	Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon	4	1	4	9
MARINE MAMMALS	Pinnipeds	Other pinnipeds	Dispersed	N/A	N/A	Grey Seal, Ringed Seal, Bearded Seal, Hooded Seal	4	2	3	9
MARINE PLANTS AND ALGAE	Intertidal	Vascular	N/A	Moderate to low energy unconsolidated habitat	Saltmarsh non- grass	Achillea millefolium, Plantago maritima, Limonium carolinianum, Triglochin maritimum	4	2	2	8

			FRAMEW	ORK SUB-GROUPS			Exposure	Sensitivity	Recoverv	Total
Biological Group	Sub- group Level 1	Sub- group Level 2	Sub- group Level 3	Sub-group Level 4	Sub-group Level 5	species	Score (/4)	Score (/2)	Score (/4)	Score (/10)
MARINE PLANTS AND ALGAE	Intertidal	Vascular	N/A	Moderate to low energy unconsolidated habitat	Saltmarsh succulent	Crassula aquatic, Honckenya peploides, Salicornia europae/S. depressa	4	2	2	8
MARINE PLANTS AND ALGAE	Intertidal	Non- vascular	Canopy	High energy consolidated habitat	N/A	Alaria esculenta, Laminaria digitata, Saccharina latissima	3	2	3	8
MARINE PLANTS AND ALGAE	Subtidal	Non- vascular	Canopy	High energy consolidated habitat	N/A	Alaria esculenta, Laminaria digitata, Saccharina latissima	4	2	2	8
MARINE PLANTS AND ALGAE	Subtidal	Non- vascular	Canopy	Moderate to low energy consolidated habitat	N/A	Agarum clathratum, Halosiphon tomentosus, Laminaria digitata, Saccharina latissima	4	2	2	8
MARINE PLANTS AND ALGAE	Subtidal	Non- vascular	Understory and turf	High energy consolidated habitat	N/A	Chondrus crispus, Chorda tomentosa, Desmarestia viridis, Euthora cristata, Furcellaria lumbricalis	4	2	2	8
MARINE FISHES	Marine	Subtidal	Benthic	Associated with unconsolidated substrates (silt/mud/sand/gravel)	Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon	3	1	4	8
MARINE FISHES	Marine	Subtidal	Benthic	Associated with consolidated substrates (cobble/boulder/bedrock)	Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon	3	1	4	8
MARINE FISHES	Marine	Subtidal	Non- benthic (pelagic and demersal)	N/A	Eels (Anguillidae)	American Eel	4	1	3	8
MARINE FISHES	Estuarine	Estuarine transient	Benthic	Associated with unconsolidated substrates (silt/mud/sand/gravel)	Eels (Anguillidae)	American Eel	4	1	3	8
MARINE FISHES	Estuarine	Estuarine transient	Non- benthic (pelagic and demersal	N/A	Salmon (Salmonidae)	Atlantic Salmon	4	1	3	8
MARINE FISHES	Estuarine	Estuarine transient	Non- benthic (pelagic and demersal	N/A	Clupeidae	American Shad, Blueback Herring, Alewife	4	2	2	8

			FRAMEW	ORK SUB-GROUPS		.	Exposure	Sensitivity	Recovery	Total
Biological Group	Sub- group Level 1	Sub- group Level 2	Sub- group Level 3	Sub-group Level 4	Sub-group Level 5	Maritime example species	Score (/4)	Score (/2)	Score (/4)	Vulnerability Score (/10)
MARINE MAMMALS	Cetaceans	Toothed	Discrete	N/A	N/A	Killer Whale, Long- finned Pilot Whale, Northern Bottlenose Whale, Atlantic White- sided Dolphin	3	1	4	8
MARINE MAMMALS	Cetaceans	Baleen	Discrete	N/A	N/A	Fin Whale, Humpback Whale, North Atlantic Right Whale	3	2	3	8
MARINE MAMMALS	Cetaceans	Baleen	Dispersed	N/A	N/A	Minke Whale, Blue Whale, Sei Whale	3	2	3	8
MARINE REPTILES	Sea turtles	N/A	N/A	N/A	N/A	Leatherback Sea Turtle, Loggerhead Sea Turtle, Kemp's Ridley	4	1	3	8
MARINE FISHES	Marine	Intertidal	Non- benthic (pelagic and demersal)	N/A	Sticklebacks (Gasterosteidae)	Blackspotted Stickleback, Fourspine Stickleback, Threespine Stickleback	4	2	2	8
MARINE INVERTEBRATES	Intertidal	Sediment epifauna	Low mobility	N/A	Echinodermata	Brittle stars [Ophiuroidea]; Sea stars [Asteroidea]; Sea cucumbers [Holothuroidea]	4	2	2	8
MARINE PLANTS AND ALGAE	Intertidal	Non- vascular	Encrusting	Consolidated habitat	N/A	Coralline encrusting algae, e.g., <i>Lithothamnion glaciale</i>	3	2	2	7
MARINE PLANTS AND ALGAE	Subtidal	Non- vascular	Understory and turf	Moderate to low energy consolidated habitat	N/A	Desmarestia aculeata, Desmarestia viridis, Euthora cristata, Petalonia fascia, Ulva intestinalis, Spongomorpha arcta (Acrosiphonia arcta)	3	2	2	7
MARINE PLANTS AND ALGAE	Subtidal	Non- vascular	Encrusting	Consolidated habitat	N/A	Coralline encrusting algae, e.g., <i>Lithothamnion glaciale</i>	3	2	2	7
MARINE INVERTEBRATES	Intertidal	Rock and rubble dwellers	Sessile (attached to hard substrate)	N/A	Porifera	Sponges [CL. Demospongiae, Calcarea]	4	2	1	7

			FRAMEW	ORK SUB-GROUPS			Exposure	Sensitivity	Recoverv	Total
Biological Group	Sub- group Level 1	Sub- group Level 2	Sub- group Level 3	Sub-group Level 4	Sub-group Level 5	species	Score (/4)	Score (/2)	Score (/4)	Vuinerability Score (/10)
MARINE INVERTEBRATES	Intertidal	Rock and rubble dwellers	Sessile (attached to hard substrate)	N/A	Cnidaria	Colonial hydroids [Hydrozoa]; Stalked jellyfish [Staurozoa]	4	2	1	7
MARINE INVERTEBRATES	Intertidal	Sediment infauna	Low mobility	N/A	Arthropoda	Mud crab [Decapoda, Panopeidae]; Tube- building gammarid amphipods [Amphipoda]	4	2	1	7
MARINE INVERTEBRATES	Intertidal	Sediment epifauna	High mobility	N/A	Arthropoda	Crabs, Lobsters [Decapoda]	4	1	2	7
MARINE INVERTEBRATES	Intertidal	Sediment epifauna	Low mobility	N/A	Cnidaria	Starlet anemones, Sand anemones [Anthozoa]	4	2	1	7
MARINE INVERTEBRATES	Subtidal benthic	Sediment epifauna	Low mobility	N/A	Echinodermata	Sand dollars [Echinoidea]; Cushion stars, Mud stars [Asteroidea]; Sea cucumbers [Holothuroidea]	3	2	2	7
MARINE INVERTEBRATES	Subtidal benthic	Sediment infauna	Low mobility	N/A	Echinodermata	Sea cucumbers (e.g., <i>Caudina arenata</i>) [Holothuroidea]	3	2	2	7
MARINE INVERTEBRATES	Intertidal	Rock and rubble dwellers	Low mobility	N/A	Echinodermata	Sea stars [Asteroidea]; Sea urchins [Echinoidea]; Sea cucumbers [Holothuroidea]	4	2	1	7
MARINE INVERTEBRATES	Intertidal	Sediment epifauna	Low mobility	N/A	Mollusca	Nudibranchs [Gastropoda, Nudibranchia]; Snails [Gastropoda]; Scallops [Bivalvia]	4	2	1	7
MARINE INVERTEBRATES	Pelagic	LAF	RVAE		Cnidaria		4	2	1	7
MARINE INVERTEBRATES	Pelagic	LAF	RVAE		Worms		4	2	1	7
MARINE INVERTEBRATES	Pelagic	LAF	RVAE		Lophophorates		4	2	1	7
MARINE INVERTEBRATES	Pelagic	LAF	RVAE		Echinodermata		4	2	1	7
MARINE INVERTEBRATES	Pelagic	LAF	RVAE		Hemichordata		4	2	1	7

			FRAMEW	ORK SUB-GROUPS		Maritima	Exposure	Sensitivity	Recovery	Total
Biological Group	Sub- group Level 1	Sub- group Level 2	Sub- group Level 3	Sub-group Level 4	Sub-group Level 5	Maritime example species	Score (/4)	Score (/2)	Score (/4)	Vulnerability Score (/10)
MARINE INVERTEBRATES	Pelagic	LAF	RVAE		Arthropoda		4	2	1	7
MARINE FISHES	Marine	Subtidal	Benthic	Associated with unconsolidated substrates (silt/mud/sand/gravel)	Redfish (Sebastidae)	Acadian Redfish	3	1	3	7
MARINE FISHES	Marine	Subtidal	Non- benthic (pelagic and demersal)	N/A	Clupeidae	Atlantic Herring, American Shad, Blueback Herring, Alewife	3	2	2	7
MARINE FISHES	Estuarine	Estuarine transient	Non- benthic (pelagic and demersal	N/A	Sticklebacks (Gasterosteidae)	Threespine Stickleback	4	1	2	7
MARINE MAMMALS	Cetaceans	Toothed	Dispersed	N/A	N/A	Harbour Porpoise, Sperm Whale, Cuvier's Beaked Whale, Sowerby's Whale, True's Beaked Whale, Blainville's Beaked Whale	3	1	3	7
MARINE PLANTS AND ALGAE	Epipelagic	Non- vascular		PHYTOF	PLANKTON		3	2	1	6
MARINE FISHES	Marine	Subtidal	Benthic	Associated with consolidated substrates (cobble/boulder/bedrock)	Wolffishes (Anarhichadidae)	Atlantic Wolffish, Spotted Wolffish, Northern Wolffish	2	1	3	6
MARINE INVERTEBRATES	Intertidal	Rock and rubble dwellers	Sessile (attached to hard substrate)	N/A	Worms	Tube worms [Polychaeta]	4	2	0	6
MARINE INVERTEBRATES	Intertidal	Rock and rubble dwellers	Sessile (attached to hard substrate)	N/A	Lophophorates	Marine bryozoans [Bryozoa]; Lampshells [Branchiopoda]	4	2	0	6
MARINE INVERTEBRATES	Intertidal	Rock and rubble dwellers	Sessile (attached to hard substrate)	N/A	Mollusca	Oysters, Mussels [Bivalvia]; Snails [Gastropoda]	4	2	0	6
MARINE INVERTEBRATES	Intertidal	Rock and rubble dwellers	Sessile (attached to hard substrate)	N/A	Hemichordata	Sea peaches, Sea squirts [Ascidiacea]	4	2	0	6

			FRAMEW	ORK SUB-GROUPS			Exposure	Sensitivity	Recoverv	Total
Biological Group	Sub- group Level 1	Sub- group Level 2	Sub- group Level 3	Sub-group Level 4	Sub-group Level 5	Maritime example species	Score (/4)	Score (/2)	Score (/4)	Vulnerability Score (/10)
MARINE INVERTEBRATES	Intertidal	Rock and rubble dwellers	Sessile (attached to hard substrate)	N/A	Arthropoda	Barnacles [CL. Hexanauplia]	4	2	0	6
MARINE INVERTEBRATES	Intertidal	Rock and rubble dwellers	Low mobility	N/A	Cnidaria	Anemones [Anthozoa]	4	2	0	6
MARINE INVERTEBRATES	Intertidal	Rock and rubble dwellers	High mobility	N/A	Arthropoda	Crabs, Lobsters [Decapoda]	4	1	1	6
MARINE INVERTEBRATES	Intertidal	Sediment infauna	Low mobility	N/A	Worms	Sandworms, Lugworms, other burrowers [Polychaeta]; Nemertean worms [Paleonemertea]; Sipuncula worms [Sipunculidea]; Flatworms [Platyhelminthes]	4	1	1	6
MARINE INVERTEBRATES	Intertidal	Sediment epifauna	Low mobility	N/A	Arthropoda	Hermit crabs [Decapoda]; Sand fleas and other amphipods [Amphipoda]; Sea spiders [Pycnogonida]; Isopods [Isopoda]	4	1	1	6
MARINE INVERTEBRATES	Subtidal benthic	Rock and rubble dwellers	Sessile (attached to hard substrate)	N/A	Porifera	Boring sponges, Breadcrumb sponges, Encrusting sponges [CL. Demospongiae, Calcarea]	3	2	1	6
MARINE INVERTEBRATES	Subtidal benthic	Rock and rubble dwellers	Sessile (attached to hard substrate)	N/A	Cnidaria	Colonial hydroids [Hydrozoa]; Soft corals [Anthozoa]; Stalked jellyfish [Staurozoa]	3	2	1	6
MARINE INVERTEBRATES	Subtidal benthic	Rock and rubble dwellers	Low mobility	N/A	Echinodermata	Sea stars [Asteroidea]; Sea cucumbers [Holothuroidea]; Basket stars, Brittle stars [Ophiuroidea]; Sea urchins [Echinoidea]	3	2	1	6

			FRAMEV	ORK SUB-GROUPS			Exposure	Sensitivity	Recoverv	Total
Biological Group	Sub- group Level 1	Sub- group Level 2	Sub- group Level 3	Sub-group Level 4	Sub-group Level 5	Maritime example species	Score (/4)	Score (/2)	Score (/4)	Score (/10)
MARINE INVERTEBRATES	Subtidal benthic	Rock and rubble dwellers	Low mobility	N/A	Cnidaria	Anemones [Anthozoa]; Colonial hydroids [Hydrozoa]	3	2	1	6
MARINE INVERTEBRATES	Subtidal benthic	Sediment infauna	Low mobility	N/A	Cnidaria	Burrowing anemones [Anthozoa]	3	2	1	6
MARINE INVERTEBRATES	Subtidal benthic	Sediment infauna	Low mobility	N/A	Worms	Polychaete worms [Polychaeta]; Flatworms [Platyhelmintes]; Nemertean worms [Pilidiophora]; Peanut worms [Sipunculidea]	3	2	1	6
MARINE INVERTEBRATES	Subtidal benthic	Sediment infauna	Low mobility	N/A	Mollusca	Clams [Bivalvia]	3	2	1	6
MARINE INVERTEBRATES	Subtidal benthic	Sediment infauna	Low mobility	N/A	Arthropoda	Amphipods [Amphipoda, Cumacea]	3	2	1	6
MARINE INVERTEBRATES	Subtidal benthic	Sediment infauna	Low mobility	N/A	Lophophorates	Marine bryozoans [Bryozoa]; Lampshells [Branchiopoda]	3	2	1	6
MARINE INVERTEBRATES	Subtidal benthic	Sediment epifauna	Low mobility	N/A	Cnidaria	Anemones [Anthozoa]	3	2	1	6
MARINE INVERTEBRATES	Subtidal benthic	Sediment epifauna	Low mobility	N/A	Mollusca	Nudibranchs, Whelks, Moonsnails [Gastropoda]; Quahogs, Scallops [Bivalvia]	3	2	1	6
MARINE INVERTEBRATES	Subtidal benthic	Sediment epifauna	High mobility	N/A	Arthropoda	Crabs, Lobsters [Decapoda]	3	1	2	6
MARINE INVERTEBRATES	Pelagic	N/A	High mobility	N/A	Mollusca	Squid [Cephalopoda]	4	1	1	6
MARINE INVERTEBRATES	Pelagic	LAF	RVAE		Porifera		4	1	1	6
MARINE FISHES	Marine	Intertidal	Benthic	Associated with unconsolidated substrates (silt/mud/sand/gravel)	Snailfishes (Liparidae)	Atlantic Snailfish	3	1	2	6
MARINE FISHES	Marine	Intertidal	Benthic	Associated with unconsolidated substrates (silt/mud/sand/gravel)	Cryptacanthodidae	Wrymouth	3	1	2	6
MARINE FISHES	Marine	Intertidal	Benthic	Associated with consolidated substrates (cobble/boulder/bedrock)	Snailfishes (Liparidae)	Atlantic Snailfish	3	1	2	6

			FRAMEW	ORK SUB-GROUPS			Exposure	Sensitivity	Recovery	Total
Biological Group	Sub- group Level 1	Sub- group Level 2	Sub- group Level 3	Sub-group Level 4	Sub-group Level 5	Maritime example species	Score (/4)	Score (/2)	Score (/4)	Vulnerability Score (/10)
MARINE FISHES	Marine	Intertidal	Non- benthic (pelagic and demersal)	N/A	Silversides (Atherinopsidae)	Atlantic Silverside	4	1	1	6
MARINE FISHES	Marine	Subtidal	Benthic	Associated with unconsolidated substrates (silt/mud/sand/gravel)	Flatfishes (Pleuronectidae)	Winter Flounder, Yellowtail Flounder, Atlantic Halibut, Windowpane, American Plaice	1	1	4	6
MARINE FISHES	Marine	Subtidal	Benthic	Associated with unconsolidated substrates (silt/mud/sand/gravel)	Myxinidae	Atlantic Hagfish	3	1	2	6
MARINE FISHES	Marine	Subtidal	Benthic	Associated with unconsolidated substrates (silt/mud/sand/gravel)	Lophiidae	Monkfish	2	1	3	6
MARINE FISHES	Marine	Subtidal	Benthic	Associated with consolidated substrates (cobble/boulder/bedrock)	Lumpfishes (Cyclopteridae)	Atlantic Spiny Lumpsucker, Lumpfish	3	1	2	6
MARINE FISHES	Estuarine	Estuarine transient	Non- benthic (pelagic and demersal	N/A	Silversides (Atherinopsidae)	Atlantic Silverside	4	1	1	6
MARINE FISHES	Estuarine	Estuarine resident	Non- benthic (pelagic and demersal	N/A	Fundulidae	Mummichog	3	1	2	6
MARINE FISHES	Estuarine	Estuarine resident	Non- benthic (pelagic and demersal	N/A	Syngnathidae	Northern Pipefish	3	1	2	6
MARINE MAMMALS	Pinnipeds	Other pinnipeds	Discrete	N/A	N/A	Harbour Seal, Harp Seal	3	1	2	6
MARINE INVERTEBRATES	Intertidal	Rock and rubble dwellers	Low mobility	N/A	Worms	Bloodworms [Polychaeta]; Flatworms [Platyhelminthes]; Nemertean worms	4	1	0	5

			FRAMEW	ORK SUB-GROUPS			Exposure	Sensitivity	Recoverv	Total
Biological Group	Sub- group Level 1	Sub- group Level 2	Sub- group Level 3	Sub-group Level 4	Sub-group Level 5	Maritime example species	Score (/4)	Score (/2)	Score (/4)	Vulnerability Score (/10)
MARINE INVERTEBRATES	Intertidal	Rock and rubble dwellers	Low mobility	N/A	Mollusca	Chitons [Polyplacophora]; Whelks, Limpets, Snails [Gastropoda]	4	1	0	5
MARINE INVERTEBRATES	Intertidal	Rock and rubble dwellers	Low mobility	N/A	Arthropoda	Amphipods [Amphipoda]; Isopods [Isopoda]	4	1	0	5
MARINE INVERTEBRATES	Subtidal benthic	Rock and rubble dwellers	Sessile (attached to hard substrate)	N/A	Worms	Tube worms [Polychaeta]	3	2	0	5
MARINE INVERTEBRATES	Subtidal benthic	Rock and rubble dwellers	Sessile (attached to hard substrate)	N/A	Lophophorates	Marine bryozoans [Bryozoa]; Lampshells [Branchiopoda]	3	2	0	5
MARINE INVERTEBRATES	Subtidal benthic	Rock and rubble dwellers	Sessile (attached to hard substrate)	N/A	Mollusca	Slipper limpets [Gastropoda]; Mussels, Oysters, Comb bathyarks [Bivalvia]	3	2	0	5
MARINE INVERTEBRATES	Subtidal benthic	Rock and rubble dwellers	Sessile (attached to hard substrate)	N/A	Hemichordata	Ascidians (Tunicates, Sea squirts, Sea grapes) [Ascidiacea]	3	2	0	5
MARINE INVERTEBRATES	Subtidal benthic	Rock and rubble dwellers	Sessile (attached to hard substrate)	N/A	Arthropoda	Barnacles [CL. Hexanauplia]	3	2	0	5
MARINE INVERTEBRATES	Subtidal benthic	Rock and rubble dwellers	Low mobility	N/A	Worms	Ribbon worms [Hoplonemertea]; Polychaete worms [Polychaeta]; Flatworms [Platyhelminthes]	3	2	0	5
MARINE INVERTEBRATES	Subtidal benthic	Rock and rubble dwellers	Low mobility	N/A	Mollusca	Nudibranchs, Whelks, Periwinkles [Gastropoda]; Scallops [Bivalvia]	3	2	0	5
MARINE INVERTEBRATES	Subtidal benthic	Rock and rubble dwellers	High mobility	N/A	Arthropoda	Crabs, Lobsters [Decapoda]	3	1	1	5

			FRAMEW	ORK SUB-GROUPS			Exposure	Sensitivity	Recoverv	Total
Biological Group	Sub- group Level 1	Sub- group Level 2	Sub- group Level 3	Sub-group Level 4	Sub-group Level 5	Maritime example species	Score (/4)	Score (/2)	Score (/4)	Vulnerability Score (/10)
MARINE INVERTEBRATES	Pelagic	N/A	Low mobility	N/A	Cnidaria	Moon jellies [Scyphozoa]; Hydromesusae [Hydrozoa]; Jelly fish [Scyphozoa]	3	2	0	5
MARINE INVERTEBRATES	Pelagic	N/A	Low mobility	N/A	Ctenophora	Comb jellies [CL. Nuda, Tentaculata]	3	2	0	5
MARINE INVERTEBRATES	Pelagic	N/A	Low mobility	N/A	Zooplankton	Copepods, Mysids	3	2	0	5
MARINE INVERTEBRATES	Pelagic	LAF	RVAE		Ctenophora		3	2	0	5
MARINE FISHES	Marine	Intertidal	Benthic	Associated with unconsolidated substrates (silt/mud/sand/gravel)	Pout (Zoarcidae)	Ocean Pout	2	1	2	5
MARINE FISHES	Marine	Intertidal	Benthic	Associated with consolidated substrates (cobble/boulder/bedrock)	Pout (Zoarcidae)	Ocean Pout	2	1	2	5
MARINE FISHES	Marine	Intertidal	Benthic	Associated with consolidated substrates (cobble/boulder/bedrock)	Pholidae	Rock Gunnel	2	1	2	5
MARINE FISHES	Marine	Subtidal	Benthic	Associated with unconsolidated substrates (silt/mud/sand/gravel)	Skates (Rajidae)	Little Skate, Thorny Skate, Smooth Skate	1	1	3	5
MARINE FISHES	Marine	Subtidal	Benthic	Associated with unconsolidated substrates (silt/mud/sand/gravel)	Sculpins (Cottidae)	Shorthorn Sculpin, Longhorn Sculpin, Moustache Sculpin	2	1	2	5
MARINE FISHES	Marine	Subtidal	Benthic	Associated with consolidated substrates (cobble/boulder/bedrock)	Sculpins (Cottidae)	Snowflake Hookear Sculpin, Longhorn Sculpin, Shorthorn Sculpin	2	1	2	5
MARINE FISHES	Marine	Subtidal	Non- benthic (pelagic and demersal)	N/A	Cod (Gadidae)	Atlantic Cod, Arctic Cod, Tomcod, Pollock	2	1	2	5
MARINE FISHES	Marine	Subtidal	Non- benthic (pelagic and demersal)	N/A	Elasmobranchs	Shortfin Mako, Porbeagle, Blue Shark	2	1	2	5

			FRAMEW	ORK SUB-GROUPS		Maritime example	Exposure	Sensitivity	Recovery	Total
Biological Group	Sub- group Level 1	Sub- group Level 2	Sub- group Level 3	Sub-group Level 4	Sub-group Level 5	Maritime example species	Score (/4)	Score (/2)	Score (/4)	Vulnerability Score (/10)
MARINE FISHES	Marine	Subtidal	Non- benthic (pelagic and demersal)	N/A	Salmon (Salmonidae)	Atlantic Salmon	1	1	3	5
MARINE FISHES	Marine	Subtidal	Non- benthic (pelagic and demersal)	N/A	Scombridae	Atlantic Mackerel, Atlantic Bluefin Tuna	2	2	1	5
MARINE FISHES	Marine	Subtidal	Non- benthic (pelagic and demersal)	N/A	Osmeridae	Rainbow Smelt, Capelin	3	1	1	5
MARINE INVERTEBRATES	Subtidal benthic	Rock and rubble dwellers	High mobility	N/A	Mollusca	North Atlantic Octopus [Cephalopoda]	2	1	1	4
MARINE INVERTEBRATES	Subtidal benthic	Sediment epifauna	Low mobility	N/A	Worms	Sea Mouse [Polychaeta]	2	1	1	4
MARINE FISHES	Marine	Subtidal	Benthic	Associated with unconsolidated substrates (silt/mud/sand/gravel)	Pout (Zoarcidae)	Ocean Pout	1	1	2	4
MARINE FISHES	Estuarine	Estuarine transient	Non- benthic (pelagic and demersal	N/A	Petromyzontidae	Sea Lamprey	3	1	0	4

5.2. VULNERABILITY TRENDS

Shown in Figure 5A, total vulnerability scores across all sub-groups ranged from 3 (1 sub-group) to 9 (9 sub-groups), with a mode vulnerability score of 6 (37 sub-groups). In all, 54.3% of sub-groups received a total vulnerability score of 5 or 6.

Figure 5. Summary vulnerability scoring results showing; A) total vulnerability score frequency; B) Exposure category score frequency; C) Sensitivity category score frequency; and D) Recovery score frequency across all sub-groups.

When considering the Exposure category and the distribution of Exposure scores across all sub-groups (Figure 5B), 86% sub-groups scored 3 or 4 in this category (100/116), with four sub-groups scoring a 1. Note that no sub-groups received a 0 in this category, hence there were no screened out sub-groups.

The distribution of Sensitivity category scores across all sub-groups (Figure 5C) shows that 50 sub-groups (43%) scored a 1 in this criterion, while 66 (57%) scored a 2, where a 2 indicates that both the mechanical and chemical toxicity criterion were fulfilled in this category. Note that no sub-groups received a 0 in this category, meaning that no sub-groups were screened out at this level.

The distribution of Recovery category scores across all sub-groups (Figure 5D) illustrates that of 116 sub-groups; 21 (18.1%) scored a 0; 37 (31.9%) scored a 1; 32 (27.6%) scored a 2; 20 (17.2%) scored a 3; and 6 (5.2%) scored a 4.

5.2.1. High-level Group Vulnerability

Of the high-level biological groups, Marine Plants and Algae shows the highest (7.9) mean vulnerability score, followed by Marine Mammals (7.67), Marine Fishes (6.19), and Marine Invertebrates (6.07) (Figure 6). Note that Marine Reptiles, which contained only a one sub-group (received an 8), is not comparable to the mean of others, and is not shown in Figure 6.

Figure 6. Mean total Vulnerability Score across all categories for each high-level biological group. Note that Marine Reptiles are not represented here.

5.2.2. Marine Plants and Algae Group

The Marine Plants and Algae grouping received a mean total vulnerability score of 7.9 (Figure 6). When individual vulnerability criteria scores were averaged across all sub-groups, Marine Plants and Algae received a mean score of 3.64 (of 4), 2.0 (of 2.0), and 2.28 (of 4) in Exposure, Sensitivity, and Recovery categories, respectively (Figure 7).

Figure 7. Mean score for each Vulnerability Category (Exposure, Sensitivity, Recovery) across subgroups by high level biological group. Dashed line represents the maximum vulnerability score for Sensitivity.

When examining the mean vulnerability score by category at sub-group level 1, the Exposure category contributes the most to the total vulnerability score in each Epipelagic (Phytoplankton) (3), Intertidal (3.75), and Subtidal (3.6) sub-groups (Figure 8A). All sub-groups in the Marine Plants and Algae high level group received a 2 in the Sensitivity category. In the Recovery category, the Epipelagic sub-group (Phytoplankton) received a 1, the Intertidal sub-group received a 2.63, and the Subtidal sub-group received a 2.

Figure 8. Mean Exposure, Sensitivity and Recovery category score for A) Marine Plants and Algae subgroup level 1; B) Marine Invertebrate sub-group level 1; C) Marine Fishes sub-group level 1; and C) Marine Mammals sub-group level 2. Dashed line represents the maximum vulnerability score for Sensitivity.

5.2.3. Marine Invertebrates Group

The Marine Invertebrates grouping received a mean total vulnerability score of 6.07 (Figure 6). When individual vulnerability criteria scores were averaged across all sub-groups, Marine Invertebrates received a mean score of 3.5 (of 4), 1.8 (of 2.0), and 0.81 (of 4) in Exposure, Sensitivity, and Recovery categories, respectively (Figure 7).

When examining the mean vulnerability score by category at sub-group level 1, the Exposure category contributes the most to the total vulnerability score in each Intertidal (4), Pelagic (3.7), and Subtidal benthic (2.9) sub-groups (Figure 8B). The Marine Invertebrates sub-groups (Level 1), received a 1.6 (Intertidal), 1.8 (Pelagic) and 1.8 (Subtidal benthic) in the Sensitivity category. In the Recovery category, the Intertidal sub-group received a 0.76, the pelagic sub-group received a 0.85, and the Subtidal benthic sub-group received a 0.83.

5.2.4. Marine Fishes Group

The Marine Fishes grouping received a mean total vulnerability score of 6.19 (Figure 6). When individual vulnerability criteria scores were averaged across all sub-groups, Marine Fishes received a mean score of 2.8 (of 4), 1.1 (of 2.0), and 2.3 (of 4) in Exposure, Sensitivity, and Recovery categories, respectively (Figure 7).

When examining the mean vulnerability score by category at sub-group level 1, the Exposure category contributes the most to the total vulnerability score in each Estuarine (3.7) and Marine (2.4) sub-groups (Figure 8C). The Marine Fishes sub-groups (Level 1), received a 1.1 (Estuarine) and 1.1 (Marine) in the Sensitivity category. In the Recovery category, the estuarine sub-group received a 2.3 and the Marine sub-group received a 2.3.

5.2.5. Marine Mammals Group

The Marine Mammals grouping received a mean total vulnerability score of 7.67 (Figure 6). When individual vulnerability criteria scores were averaged across all sub-groups, Marine Mammals received a mean score of 3.2 (of 4), 1.5 (of 2.0), and 3 (of 4) in Exposure, Sensitivity, and Recovery categories, respectively (Figure 7).

In the Marine Mammals, the mean vulnerability score by category was examined at sub-group level 2 (Figure 8D). The Marine Mammals sub-groups (Level 2), received a mean Exposure score of 3 ('Cetaceans – Baleen'), 3 ('Cetaceans – Toothed'), and 3.5 ('Pinnipeds'). The Marine Mammals sub-groups (Level 2), received a mean Sensitivity score of 2 ('Cetaceans – Baleen'), 1 ('Cetaceans – Toothed'). In the Recovery category, the 'Cetaceans – Baleen' sub-group received a 3, the 'Cetaceans – Toothed' sub-group received a 3.5, and the 'Pinnipeds' sub-group received a 2.5.

5.3. PRECAUTIONARY SCORING OVERVIEW

Figure 9. Proportion of assigned scores (0 = not fulfilled, 1 = fulfilled, 1P = fulfilled (precautionary)) A) by vulnerability category across all sub-groups; and by high-level biological grouping for B) Exposure; C) Sensitivity; and D) Recovery.

An overview of the use of precautionary scoring (1P) as applied in the Maritimes application can be seen in Figure 9. A precautionary approach was used when there was an increased level of uncertainty, or limited or conflicting information to support a binary score (1 or 0) for the subgroup. Overall, across the entire application, a precautionary score was used 19% of the time, with 81% of the scoring being supported by definitive justifications and grounded in science (Figure 9A 'Total'). Degree of use of precautionary scoring differed among scoring criteria and between high-level groups. While there was limited use of the 1P score in the Exposure and Recovery categories (10% and 11%, respectively), the proportion of use in the Sensitivity category was 55% (Figure 9A). A precautionary score in the Sensitivity category was used between 50% (Marine Invertebrates, Marine Fish), and 82% of the time (Marine Plants and Algae, Figure 9C); while the Exposure and Recovery between 0% (Marine Plants and Algae: Exposure category, Figure 9B), and 29% (Marine Plants and Algae: Recovery category, Figure 9D).

5.4. DUPLICATE SPECIES AND VULNERABILITY

In some cases, sub-groups exhibited physiological characteristics enabling them to span differing habitats. It was important to determine the vulnerability score for the same sub-group in **all** habitats to ascertain the effect of a large habitat range on overall scoring. Some may consider this a "duplication", though it provides some interesting nuance to the vulnerability of a species.

The following tables illustrate examples of how a change in habitat can change vulnerability score for the same sub-group in Marine Plants and Algae Group (Table 17), while having no effect on other sub-groups (Table 18). The same is illustrated for the Marine Fishes Group in Table 19 and Table 20.

Table 17.	Showing that plant species that sp	oan different sub-g	groups may receive	different vulnerability
scores.				

Sub- group Level 1	Sub- group Level 2	Sub- group Level 3	Sub-group Level 4	Maritime example species	EXPOSURE	SENSITIVITY	RECOVERY	Total Vulnerability Score
Intertidal	Non- vascular	Canopy	High energy consolidated habitat	Alaria esculenta, Laminaria	3	2	3	8
Subtidal	Non- vascular	Canopy	High energy consolidated habitat	digitata, Saccharina latissima	4	2	2	8
Subtidal	Non- vascular	Understory and turf	High energy consolidated habitat	Chondrus crispus, Chorda tomentosa	4	2	2	8
Intertidal	Non- vascular	Understory and turf	High energy consolidated habitat	Desmarestia viridis, Euthora cristata, Furcellaria lumbricalis	4	2	3	9

Table 18. Showing that plant species spanning different sub-groups many not always receive different scores.

Sub- group Level 1	Sub- group Level 2	Sub- group Level 3	Sub-group Level 4	Maritime example species	EXPOSURE	SENSITIVITY	RECOVERY	Total Vulnerability Score
Intertidal	Non- vascular	Encrusting	Consolidated habitat	Coralline encrusting	3	2	2	7
Subtidal	Non- vascular	Encrusting	Consolidated habitat	Lithothamnion glaciale	3	2	2	7

Sub- group Level 1	Sub- group Level 2	Sub-group Level 3	Sub-group Level 4	Sub-group Level 5	Maritime example species	EXPOSURE	SENSITIVITY	RECOVERY	Total Vulnerability Score
Estuarine	Estuarine transient	Non-benthic (pelagic and demersal	N/A	Salmon (Salmonidae)	Atlantic Salmon	4	1	3	8
Marine	Subtidal	Non-benthic (pelagic and demersal)	N/A	Salmon (Salmonidae)	Atlantic Salmon	1	1	3	5
Marine	Subtidal	Non-benthic (pelagic and demersal)	N/A	Clupeidae	Atlantic Herring, American Shad, Blueback Herring, Alewife	3	2	2	7
Estuarine	Estuarine transient	Non-benthic (pelagic and demersal	N/A	Clupeidae	American Shad, Blueback Herring, Alewife	4	2	2	8
Estuarine	Estuarine transient	Benthic	Associated with unconsolidated substrates (silt/mud/ sand/gravel)	Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon	4	1	4	9
Marine	Subtidal	Benthic	Associated with unconsolidated substrates (silt/mud/ sand/gravel)	Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon	3	1	4	8

Table 19. Showing that fish species that span different sub-groups (Estuarine and Marine) may receive different vulnerability scores (N/A = not applicable).

Sub- group Level 1	Sub- group Level 2	Sub-group Level 3	Sub-group Level 4	Sub-group Level 5	Maritime example species	EXPOSURE	SENSITIVITY	RECOVERY	Total Vulnerability Score
Marine	Intertidal	Non-benthic (pelagic and demersal)	N/A	Silversides (Atherinopsidae)	Atlantic Silverside	4	1	1	6
Estuarine	Estuarine transient	Non-benthic (pelagic and demersal	N/A	Silversides (Atherinopsidae)	Atlantic Silverside	4	1	1	6
Marine	Subtidal	Non-benthic (pelagic and demersal)	N/A	Eels (Anguillidae)	American Eel	4	1	3	8
Estuarine	Estuarine transient	Benthic	Associated with unconsolidated substrates (silt/mud/ sand/gravel)	Eels (Anguillidae)	American Eel	4	1	4	9

Table 20. Showing that fish species spanning different sub-groups many not always receive different total scores (N/A = not applicable).

6. DISCUSSION

A National framework to assess the vulnerability of marine biological components to ship-source oil spills in Canada, was developed in 2017. For validation purposes, the National model required testing in a variety of marine aquatic environments across Canada. Applications of the National model were previously completed for the Pacific Region (Hannah, et al. 2017), as well as in the Quebec Region (Desjardins, et al. 2018). This research document describes how the National framework was applied to marine biological components in the Maritimes Region.

The framework identified two key phases for assessing vulnerabilities of marine biological components: 1) grouping the biological components into related sub-groups based on shared characteristics; and 2) subsequently scoring the sub-groups against ecological vulnerability criteria. While the architecture of the main framework was generally used in the Maritimes application, some modifications were made to enhance sub-group differentiation and criteria application as previously discussed.

6.1. VULNERABLE SUB-GROUPS

6.1.1. Marine Plants and Algae

Marine plants an algae had a mean vulnerability score of 7.93 in the Maritimes application.

Results indicate that within the Marine Plants and Algae group, the most vulnerable sub-groups to oil are the intertidal vascular plants that comprise saltmarshes. All non-vascular plant sub-groups ranked in the top 10 of all sub-groups (116) in overall vulnerability rankings, with saltmarsh grasses ranking the highest at a 9 (Table 16). Seagrasses, saltmarsh-non grasses and saltmarsh succulents scored 8.

These findings are consistent with other studies examining the effect of oil-spills on saltmarsh plant communities. The *Deepwater Horizon* oil spill in 2010, induced nearly 100% plant mortality in heavily oiled coastal marshes dominated by saltmarsh grasses, including *Spartina alterniflora*, with plants dying as a direct result of smothering, the alteration of the soil, and toxic effects (Fleeger et al. 2018). Saltmarshes can also be slow to recover after a spill, as destruction of salt marsh communities by oil can result in increased erosion, which can impede the recolonization and recovery of the saltmarsh plants in general (Hester et al. 2016). Additionally, *Spartina alterniflora* mortality has been shown to have negative effects on the recovery of other species (such as macroalgae and meiofauna) after an oil spill (Fleeger et al. 2015). This is not surprising considering the ecological services provided by saltmarshes for other species including the provision of habitat and nutrients.

While many short-term studies on the effects of oil have been conducted, the overall and longterm impacts to vascular plants likely depend on a number of factors including the severity of fouling and the extent of damage to underground structures (roots and rhizomes).

The physiological characteristics that enable them to span different habitats can drive differences in vulnerability scores for non-vascular plant sub-groups. In this application, intertidal sub-groups located on rocky consolidated habitats scored higher than subtidal components in overall vulnerability. Understory and turf species in the intertidal zone (e.g., *Chondrus crispus*), were the most vulnerable sub-groups therein. This score is driven by the fact that these species can be aggregated in the intertidal zone, and have regular interaction with both the sea surface and seafloor as the tide changes, while subtidal species would not be expected to have such interactions.

Relatedly, *Alaria esculenta* can be found in both the intertidal and subtidal zones (Table 17). In the intertidal, *Alaria esculenta* receives a vulnerability score of 3, rather than a 4 in the Exposure category, because when found in the intertidal, it is not generally found in aggregations, as it is in the subtidal. Additionally, *Alaria esculenta* can be found in close association with unconsolidated substrate in the intertidal, as it may come into frequent contact with sand/mud/silt/gravel when the tide goes out whereas in the subtidal zone, this is not the case. Studies on the effects of oil spills on subtidal algae, have found some instances of rapid recovery or lessened effects of oil on some subtidal macroalgae species (e.g., kelps) (Pecko et al. 1990).

Phytoplankton is presented as a single epipelagic sub-group, representative of all regional species. While acknowledging that phytoplankton are taxonomically diverse and the limitations of this approach, breaking phytoplankton into further sub-groups would be unmanageable in the current application. All phytoplankton subsequently have a total vulnerability score of 6. This moderate vulnerability score was primarily driven by the higher reproductive capacity exhibited by this sub-group as a whole. Perhaps further iterations of the framework could be expanded to include phytoplankton taxonomic breakdowns.

For detailed justifications on scoring decisions for this high-level biological group, see <u>Appendix 1</u>, Tables <u>A1</u>, <u>A2</u>, and <u>A3</u>.

6.1.2. Marine Invertebrates

Marine invertebrates had a mean vulnerability score of 6.07 in the Maritimes application.

A relatively high overall vulnerability score for invertebrate groups in general is aligned with other work examining the post oil-spill impacts on marine invertebrate biota. Dupuis and Ucan-Marin (2015) state that bivalves and other filter feeders are very sensitive to crude oil as they ingest oil droplets as they feed. Clam and mussel communities were found to be still recovering 20 years after the *Exxon Valdez* oil spill, and intertidal invertebrate meiofauna are one of the slowest groups to recover after a spill (Fleeger et al. 2015).

For marine invertebrates, sediment infaunal Mollusca with low mobility (e.g., clams and other bivalves, gastropods) had a total vulnerability score of 9 in this application. Mollusca larvae were also considered more vulnerable than other larval types (also at a 9) (Table 16). Both scores were likely elevated because the Marine Invertebrates group contained a species at risk that is isolated in the Maritimes Region (Mud piddock).

Intertidal, sessile and low mobility groups (including Mollusca, Echinodermata and Cnidaria) all scored a 7 for vulnerability. This aligns with scientific evidence that intertidal invertebrate communities are highly affected by, and are slow to recover from the impacts of oil spills (Duval et al. 1989).

Most subtidal benthic invertebrates scored a 6, which was likely related to the decrease in exposure compared to intertidal species in the same group. Highly mobile and pelagic invertebrates (e.g., squid, octopus, lobsters) had lower vulnerability scores of between 4 and 6, due to the fact they are assumed to be more mobile, and hence can escape an oil spill.

Besides Mollusca previously described, most invertebrate larvae scored a 7, higher than its adult life stage, revealing that the larval forms represent a more vulnerable life stage in those groups (Ctenophore and Porifera larvae scored the same as their adult stages).

For detailed justifications on scoring decisions for this high-level biological group, see <u>Appendix 2</u>, Tables <u>A4</u>, <u>A5</u>, and <u>A6</u>.

6.1.3. Marine Fishes

The Marine Fishes group had a mean vulnerability score of 6.19 in the Maritimes application.

In the Maritimes Regional application of the framework, estuarine sub-groups were more vulnerable on average than marine sub-groups, receiving an average total vulnerability score of 7.1 and 5.85 respectively. This difference was primarily driven by differences in the Exposure category, with estuarine sub-groups receiving a mean score of 3.7, and marine sub-groups receiving a mean score of 2.4. Estuarine sub groups were generally considered to interact more with the sea surface than marine sub-groups, and were more likely (on average) to concentrate or aggregate for a purpose (e.g., spawning).

Eleven sub-groups in the Marine Fishes scored between a 7 and 9 for overall vulnerability to oil (Table 6). Six of these sub-groups were estuarine while 5 were Marine. The two sub-groups with the highest vulnerability to oil (9) were the estuarine life stage of Sturgeon (Acipenseridae), associated with both consolidated and unconsolidated substrates.

All but four sub-groups in the Marine Fishes scored a 1 in sensitivity. This low number of subgroups receiving a 2 in sensitivity was expected as the mechanical sensitivity criterion only measures mechanical impairment or fouling of feeding structures, and few marine fish species have structures that may be easily fouled. The sub-groups receiving a 2 in sensitivity were 'Sticklebacks (Gasterosteidae) (Marine-Intertidal)', 'Clupeidae (Marine and Estuarine)' and 'Scombridae (Marine)', all of which contain species that feed using gill-rakers.

The Marine Fishes biological grouping illustrates the importance of considering different life stages of diadromous fish and their associated sub-groups, as many received a higher score for the estuarine life-stage than the marine (Table 19). For example, the estuarine transient sub-group 'Salmon (Salmonidae)' received a total vulnerability score of 8, while the marine sub-group 'Salmon (Salmonidae)' received a 5. This particular instance was driven by differences in the Exposure category, as the marine life-stage of Atlantic Salmon are not expected to aggregate for a specific reason, are expected to have higher mobility and are not expected to interact with the seafloor.

However, life-stage and habitat factors may not be driving vulnerability differences in all diadromous fishes, as other diadromous sub-groups can have the same total score (and same category score), such as the 'Silversides (Atherinopsidae)' in marine and estuarine sub-groups (total vulnerability score of 6) (Table 20).

For detailed justifications on scoring decisions for this high-level biological group, see <u>Appendix 3</u>, Tables <u>A7</u>, <u>A8</u>, and <u>A9</u>.

6.1.4. Marine Mammals

The Marine Mammals group had a mean vulnerability score of 7.67 in the Maritimes application (the highest mean score for any group).

While the habits and life histories of marine mammals make them vulnerable to the effects of ship-source oil spills, specific research is lacking for this group overall.

Mammals can be impaired by oil in different ways. Contact with oils can lead to long-term coating of the body surface, which may interfere with swimming ability in seals, with filtering capabilities by baleen whales, and with thermoregulation in the furred marine mammals. Pathways to exposure in seals can include absorption of oil through their skin and gastrointestinal tract and inhalation (Englehardt 1983).

Five of six Marine Mammal sub-groups scored between 7 and 9 for overall vulnerability to oil in this application (Table 16). Ranking the highest was the dispersed pinnipeds (Grey seal, Ringed seal, Bearded seal, Hooded seal) sub-group, with cetaceans (toothed and baleen) scoring just below them, at 7–8.

Dispersed pinnipeds were considered more vulnerable in this application because they have an on-land component to their behaviour (e.g., haul out areas for resting and reproduction); are known bottom feeders who will interact with benthic sediments; and have a species listed as "special Concern' by COSEWIC (Ringed seal). Discrete pinnipeds, while sharing the on-land component, are primarily pelagic feeders, and do not have any COSEWIC listing in the Maritimes Region and hence scored lower.

Some toothed whales scored higher than baleen counterparts for vulnerability. This was unexpected and was driven by both the fact that there are endangered/special concern species (e.g., Northern bottlenose whale, Sowerby's beaked whale) and endemic/isolated populations (e.g., Northern bottlenose whale) in this group.

All cetaceans were considered highly mobile and therefore scored a 0 in the mobility criterion. However, this criterion may be slightly simplified in the current framework. In Marine Mammals, vulnerability to oil can be complicated by the assumption that they may not have the ability to avoid or detect oil on water or in food, despite being highly mobile. Seals have not been shown to consistently avoid oil (Englehardt 1983); and Goodale et al., (1982) indicated that a broad range of cetacean species (humpback whales, fin whales, white-sided dolphins) did not actively avoid a slick of Bunker C and No. 2 fuel oil from the *Regal Sword* spill. Marine mammals were therefore likely underscored in the Exposure category in this application.

For detailed justifications on scoring decisions for this high-level biological group, see <u>Appendix 4</u>, Tables <u>A10</u>, <u>A11</u>, and <u>A12</u>.

6.1.5. Marine Reptiles

Three sea turtle species comprise the Marine Reptiles group in the Maritimes Region. Marine Reptiles scored high in the Exposure and Recovery categories, producing an overall vulnerability score of 8 (Table 16).

Although Sea turtles are migratory visitors to offshore waters in the Atlantic, Dodge et al. (2014) determined that Leatherbacks were highly aggregated in temperate shelf and slope waters during summer, early fall, and late spring in the Northwest Atlantic. Also, this sub-group will have regular surface and sediment interactions for breathing and feeding. Combined with a COSEWIC endangered status for both the Loggerhead and Leatherback sea turtles, and low reproductive capacity, the sea turtle sub-group was defined by the framework as being very vulnerable to oil spills in the Maritimes Region.

For detailed justifications on scoring decisions for this high-level biological group, see <u>Appendix 5</u>, Tables <u>A13</u>, <u>A14</u>, and <u>A15</u>.

6.2. BOTTOM UP APPROACH

The National vulnerability framework recommended that sub-groups be populated with species after scoring was completed. However, inherent in this approach is uncertainty around the assumption that the species assigned to a sub-group in a rapid application are truly representative of the defined sub-group. This uncertainty is further compounded by assuming that the assigned score is applicable to all species in the sub-group.

From the outset, the Maritimes Region application utilized a bottom up approach to populating sub-groups. This approach lessened uncertainty while increasing confidence that the sub-groups contained appropriate species; and that species biological and ecological traits were used to develop the sub-group levels used.

Sub-groups were pre-populated with as many species as could be verified using a wide variety of sources. This approach increased confidence that the species scored had characteristics that were representative of the majority of other species within their sub-group, and decreased the likelihood that a score was based on a species that was the exception to the rule.

6.3. UNCERTAINTY, PRECAUTIONARY SCORING AND KNOWLEDGE GAPS

A key result of the Maritimes application of the National vulnerability framework, was the identification of sources of scoring uncertainty that created knowledge gaps.

Lack of knowledge or conflicting information arose during the two main stages of the application process:

- 1. Creation of sub-groups
- 2. Scoring sub-groups against vulnerability criteria

One of the goals of the Maritimes Region application was to minimize sources of uncertainty. This was accomplished by using a bottom up approach to sub-group creation (previously discussed), and by performing in-depth literature searches for justifications to lessen the reliance on precautionary scoring. By employing these principles, the Maritimes Region assigned a precautionary score only 19% of the time (across all 116 sub-groups).

Where the literature did not support a binary score (0, 1) directly, a deeper review into difficult to score sub-groups was undertaken with a synthesized 'state of knowledge', provided as a justification to explain why a precautionary score was warranted.

While this approach took time to develop, the Maritimes Regional application of the National framework to assess the vulnerability of biological components to ship source oil spills provides responders with an objective list of vulnerable sub-groups, allowing them to make rapid and accurate decisions that are grounded in science.

Despite the comprehensive approach to sub-group creation and scoring that was used in the Maritimes Region application, some knowledge gaps were uncovered during its development.

Major gaps included:

- Lacking or conflicting information on chemical toxicity across all sub-groups limited the ability to adequately score this criterion. Since oil is believed to be toxic to all organisms at some level, all sub-groups were scored a 1P for this criterion, meaning that chemical toxicity cannot be used to distinguish between sub-group vulnerabilities as the criterion is defined.
- There was a dearth of specific biological information (e.g., life history, habitat types) for some groups. This was especially evident for some invertebrate and fishes sub-groups.
- Some scoring criteria were too narrow to score sub-groups adequately. This was evident in the mechanical sensitivity scoring. While the approach was needed to differentiate between sub-groups, its definition may be too limited in scope and likely caused some groups to be underscored (e.g., fish without gill rakers for feeding were scored a 1 but have other structures that could become clogged with oil (e.g., gills)).

• There is limited information on the effect of developmental life stage on vulnerability to oil. In this application, results were reported on the most vulnerable life stage where possible, but an overall lack of information was evident.

7. CONCLUSIONS AND RECOMMENDATIONS

- In the Maritimes application, sub-groups were created in a bottom-up manner using verified species lists prior to scoring (unlike the National framework where sub-groups would be populated after scoring).
- Some sub-groups required significant changes in the Maritimes application (e.g., Marine Plants and Algae and Marine Fishes) while other groups were changed very little from the National framework (e.g., Marine Invertebrates).
- Sub-groups created in the Maritimes application were sufficient to represent the suite of Maritimes Region biota and provided the necessary delineation for effective scoring against vulnerability criteria in most cases.
- While the National framework recommended that vulnerability criteria not be changed (in order to make direct comparisons across regions straightforward), during this application there were a number of general, and sub-group specific modifications, expounding on the vulnerability criteria as they were specifically applied. These small changes were necessary to improve understanding of the Maritimes application in general and did not affect the National criteria as proposed.
- At present the sensitivity criterion 'impairment due to toxicity' is not effective to differentiate between sub-groups; and while the mechanical sensitivity criterion allows for further breakdown, the three conditions it presents may be too narrow, increasing the potential for underscoring. Further development of the Sensitivity category is needed.
- The binary screening method described in the National application was retained in the Maritimes application, but scores were based on a total across all criteria and not just their recovery score as was presented in the National model.
- The Maritimes application did not screen out any sub-groups.
- Phytoplankton, zooplankton and most vulnerable life stages were not adequately assessed in sufficient resolution in this application and need further development.
- The application provided a valid list for all Maritimes Region sub-groups ranked by total vulnerability to ship-source oil spills, which will be use to inform response efforts.

8. REFERENCES

- Chang, S.E., Stone, J., Demes, K., and Piscitelli, M. 2104. Consequences of oil spills: a review and framework for informing planning. Ecol. Soc. **19**(2): 26.
- Desjardins, C., Hamel, D., Landry, L., Scallon-Chouinard, P.-M., and Chalut, K. 2018. <u>Vulnerability assessment of biological components of the St. Lawerence to ship-source oil</u> <u>spills</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2018/003. ix + 75p.
- De Lange, H.J., Sala, S., Vighi, M., and Faber, J.H. 2010. Ecological vulnerability in risk assessment a review and perspectives. Sci. Total Environ. 408: 3871–3879.
- Dodge, K.L., Galuardi, B, Miller, T.J, and Lutcavage, M.E. 2014. Leatherback turtle movements, dive behavior, and habitat characteristics in ecoregions of the Northwest Atlantic Ocean. PLoS one 9(3): e91726–e9172.
- Dupuis, A., and Ucan-Marin, F. 2015. <u>A literature review on the aquatic toxicology of petroleum</u> <u>oil: An overview of oil properties and effects to aquatic biota</u> DFO Can. Sci. Advis. Sec. Res. Doc. 2015/007. vi + 52 p.
- Duval, W., Hopkinson, S., Olmstead, R., and Kashino, R. 1989. The Nestucca oil spill: preliminary evaluation of impacts on the west coast of Vancouver Island. Prepared by ESL Environmental Sciences Ltd. for Environment Canada.
- Engelhardt, R. F. 1983. Petroleum effects on marine mammals. Aquat. Toxicol. 4: 199–217.
- Environment and Climate Change Canada, Environment Canada Crude Oil and Petroleum Product Database, Environment and Climate Change Canada, 2021.
- Environment and Climate Change Canada (ECCC). 2015 Shoreline Classification Dataset. 2015. (OpenData).
- Fingas, M.F. 2011. Introduction to oil chemistry and properties. *In* Handbook of oil spill science and technology. *Edited by* M. Fingas. Gulf Professional Publishing, Boston, MA. pp 51–59.
- Fingas, M.F. 1999. The evaporation of oil spills: development and implementation of new prediction methodology. *In* Proceedings of the International Oil Spill Conference, Washington, D.C.. pp. 281–287.
- Fleeger, J.W., Riggio, M.R., Mendelssohn, I.A., Lin, Q.X., Hou, A, Deis, D.R. 2018. Recovery of saltmarsh meiofauna six years after the *Deepwater Horizon* oil spill. J. Exp. Mar. Biol. Ecol. 502: 182–190.
- Fleeger, J.W., Carman, K.R., Riggio, M.R., Mendelssohn, I.A., Lin, Q.X., Hou, A, Deis, D.R., and Zengel, S. 2015. Recovery of saltmarsh benthic microalgae and meiofauna following the *Deepwater Horizon* oil spill linker to recovery of *Spartina alterniflora*. Mar. Ecol. Pro, Ser. 536: 39–54.
- Gardner Pinfold. 2010. Economic impact study of independent marine ports in Atlantic Canada. Gardner Pinfold Consulting Economics, Halifax, NS.
- Goodale, D.R., Hyman, M.A.M., and Winn, H.E. 1981. Cetacean responses in association with *Regal Sword* oil spill, ch. XI. *In*: A characterization of marine mammals and turtles in the Mid- and North Atlantic areas of the U.S. outer continental shelf. *Edited by* R.K. Edel, M.A. Hyman and M.F. Tyrell, Cetacean and Turtle Assessment Program, Annual Report 1979, University of Rhode Island, pp. XI–I to XI–15.

Government of Nova Scotia. 2010. Selected Daily Stats.

- Gregr, E.J., Gryba, R., James, M.C., Brotz, L., and Thorton, S.J. 2015. <u>Information relevant to</u> <u>the identification of critical habitat for Leatherback Sea Turtles (*Dermochelys coriacea*) in <u>Canadian Pacific waters</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2015/079. vii + 32p.</u>
- Gunster, D.G., Gilles, C.A., Bonnevie, N.L., Abel, T.B., and Wenning, R.J. 1993. Petroleum and hazardous chemical spills in Newark Bay, New Jersey, U.S.A. from 1982 to 1991. Environ. Pollut. 82: 245.
- Hannah, L., St. Germain, C., Jeffery, S., and O, M. 2017. <u>Application of a framework to assess</u> <u>vulnerability of biological components to ship-source oil spills in the marine environment in</u> <u>the Pacific Region</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/057. ix + 145 p.
- Hester, M.W., Willis, J.M., Rouhani, S., Steinhoff, M.A., and Baker, M.C. 2016. Impacts of the *Deepwater Horizon* oil spill on the salt marsh vegetation of Louisiana. Environ. Poll. 216: 361–370.
- Houston, G., Gaudreau, R., and Sinclair, M. 2013. A review of Canada's ship-source oil spill preparedness and response regime: setting the course for the future. Tanker Safety Panel Secretariat 978-1-100-54627-8, Ottawa, ON.
- Howes, D., Harper, J.R., and Owens, E.H. 1994. Physical shore-zone mapping system for British Columbia. B.C. Resources Inventory Committee, Victoria, B.C. 70 p.
- Kennish, M.J. 1996. Practical handbook of estuarine and marine pollution. CRC Press, Boca Raton, FL. 554 p.
- O'Brien, P.Y., and Dixon, P.S. 1976. The effects of oils and oil components on algae: a review. Brit. Phycol. J. **11**(2): 115–142.
- Pecko, P., Levings, S.C, and Garrity, S.D. 1990. Kelp response following the World Prodigy oil spill. Mar. Poll. Bull. **21**: 473–476.
- Prouse, N.J. 1994. Ranking harbours in the Maritime Provinces of Canada for Potential to contaminate American Lobster (*Homarus americanus*) with polycyclic aromatic hydrocarbons. Can. Tech. Rep. Fish. Aquat. Sci. 1960.
- Ryan, S.A., Wohlgeschaffen, G.D., Jahan, N., Niu, H., Ortmann, A.C., Brown, T.N., King, T.L., Clyburne, J., 2019. State of knowledge on fate and behaviour of ship-source petroleum product spills: Volume 1, Introduction. Can. Manuscr. Rep. Fish. Aquat. Sci. 3176: viii + 25 p.
- SL Ross Environmental Research. 1999. *Probability of Oil Spills from Tankers in Canadian Waters*. Retrieved from Ottawa, ON.
- Standing Senate Committee. 2013. Moving energy safely: a study of the safe transport of hydrocarbons by pipelines, tankers, and railways in Canada. Standing Senate Committee on Energy, the Environment and Natural Resources, Ottawa, ON.

Statistics Canada. 2011. Shipping in Canada. Statistics Canada, Ottawa, ON.

Strait of Canso Superport. 2018. Statistics. Strait of Canso Superport Corporation.

Thornborough, K., Hannah, L., St. Germain, C., and O, M. 2017. <u>A framework to assess</u> <u>vulnerability of biological components to ship-source oil spills in the marine environment</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/038. vi + 24 p.

Wang, Z., and Fingas, M.F. 2003. Development of oil hydrocarbon fingerprinting and identification techniques. Mar. Pollut. Bull. 47: 423–452.
APPENDIX 1. DETAILED SCORING TABLES WITH JUSTIFICATIONS FOR MARINE PLANTS AND ALGAE

Table A1. Marine plants and algae sub-group scores for EXPOSURE scoring criteria, the column labelled "S" indicates the score assigned (note: species lists are not exhaustive; scores with a "P" indicate a precautionary score due to knowledge gaps).

									EXPOS	URE	Criteria		
		SUB-G	ROUP LEVEL		Maritime example species	c	Concentration (aggregation)		Mobility and/or site fidelity		Sea surface interacting		Seafloor interacting
1	2	3	4	5	species	s	Justification	s	Justification	s	Justification	s	Justification
				Seagrasses	Ruppia maritima, Zostera marina	1	Seagrasses can form extensive beds which support high-levels of biodiversity (Short et al. 2007). Zostera marina will frequently grow in concentrated single species stands as well as in large beds with <i>Ruppia maritima</i> (Green and Short 2003).	1	All plants are immobile.	1	By definition, intertidal species will interact with the sea surface. Primary habitat for <i>Zostera marina</i> is mid-low intertidal and shallow subtidal, down to depths of 1–2 meters (Green and Short 2003), and would be expected to interact with the sea surface.	1	Seagrasses have underground root and rhizome systems that are rooted in unconsolidated substrates (Hemminga 1998).
Intertidal	Vascular	N/A	Moderate to low energy unconsolidated habitat	Saltmarsh grass	Carex paleacea, Juncus gerardii, Juncus caesariensis, Puccinellia maritima, Spartina alterniflora	1	Members of this sub-group form dense mixed colonies along shoreline salt marshes and brackish meadows (Hinds 2000). Spartina alterniflora (Long and Mason 1983) and Puccinellia maritima (Roman 2001) often dominate the lower salt marsh zone, while Carex paleacea, is commonly the dominant species in the high marsh (Roberts and Robertson 1986, Hatcher and Patriquin 1981).	1	All plants are immobile.	1	By definition, intertidal species will interact with the sea surface.	1	Vascular plants are rooted in unconsolidated substrates.
				Saltmarsh non-grass	Achillea millefolium, Plantago maritima, Limonium carolinianum, Triglochin maritimum	1	Members of this sub-group contain genera very common in saltmarshes as well as saline or brackish areas in the Maritimes Region, often forming dense hummocks (Achillea millefolium – Warwick and Black 1982, Plantago maritima – Hinds 2000, Limonium carolinianum – Long and Mason 1983).	1	All plants are immobile.	1	By definition, intertidal species will interact with the sea surface.	1	Vascular plants are rooted in unconsolidated substrates.

									EXPOS	URE	Criteria		
		SUB-G	ROUP LEVEL		Maritime example	c	concentration (aggregation)		Mobility and/or site fidelity		Sea surface interacting		Seafloor interacting
1	2	3	4	5	opooloo	s	Justification	s	Justification	s	Justification	s	Justification
	Vascular	N/A	Moderate to low energy unconsolidated habitat	Saltmarsh succulent	Crassula aquatica, Honckenya peploides, Salicornia europae/ S.depressa	1	Members of this sub-group can grow in dense mats. <i>Salicornia europaea</i> dominated communities occur near low tide level in Bay of Fundy (Roberts and Robertson 1986).	1	All plants are immobile.	1	By definition, intertidal species will interact with the sea surface. Species in this group are present in the high marsh and are reached by very high tides (Roberts and Robertson 1986).	1	Vascular plants are rooted in unconsolidated substrates.
		Canopy		N/A	Alaria esculenta, Laminaria digitata, Saccharina latissima	0	Members of this sub-group are common to abundant in localized tide pools (Wilson 1978) but not considered abundant across the intertidal range.	1	All algae are immobile.	1	By definition, intertidal species will interact with the sea surface.	1	Species in this sub-group attach to consolidated substrates via holdfasts so will always interact with the seafloor. Blades will likely also interact with the seafloor during the low tide periods.
Intertidal	Non-vascular	Understory and turf	High energy consolidated habitat	N/A	Chondrus crispus, Fucus endentatus, Fucus spiralis, Porphyra purpurea, Corallina officinalis	1	<i>Chondrus crispus</i> forms a thick dense mat over rocks and ledges (Rayment and Pizzola 2008). <i>Fucus</i> sp. grow in abundance and cover rocks throughout the intertidal zone (Lee 1986). <i>Porphyra purpurea</i> often forms dense colonies in the intertidal and shallow sublittoral zones (Lee 1986).	1	All algae are immobile.	1	By definition, intertidal species will interact with the sea surface. <i>Chondrus crispus</i> occurs both in the lower intertidal and shallow subtidal ranges (Rayment and Pizzola 2008). <i>Fucus</i> sp. and <i>Porphyra purpurea</i> occur extensively in the intertidal zone (Lee 1986); <i>Corallina</i> <i>officinalis</i> occurs in intertidal areas that are not exposed to extensive drying (Lee 1989).	1	Species in this sub-group attach to consolidated substrates via holdfasts so will always interact with the seafloor. Blades will likely also interact with the seafloor during the low tide periods.
			Moderate to low energy consolidated habitat	N/A	Chorda tomentosa, Polysiphonia stricta, Ptilota elegans, Ulva intestinalis, Ulva lactuca, Corallina officinalis	1	<i>Ulva intestinalis</i> is often found in high densities (Budd and Pizzola 2008). <i>Polysiphonia and Ptilota</i> species often form dense epiphytic layers on larger intertidal algal species (Lee 1986).	1	All algae are immobile.	1	By definition, intertidal species will interact with the sea surface. <i>Ulva intestinalis</i> is found in the intertidal zone, and may become detached from the substratum, and buoyed up by gas, rises to the surface, where it continues to grow in floating masses (Budd and Pizzola 2008).	1	Species in this sub-group attach to consolidated substrates via holdfasts so will always interact with the seafloor. Blades will likely also interact with the seafloor during the low tide periods.

									EXPOS	URE	Criteria		
		SUB-G	ROUP LEVEL		Maritime example species	c	Concentration (aggregation)		Mobility and/or site fidelity		Sea surface interacting		Seafloor interacting
1	2	3	4	5	opolice	s	Justification	s	Justification	s	Justification	s	Justification
Intertidal		Encrusting	Consolidated habitat	N/A	Coralline encrusting algae e.g., <i>Lithothamnion</i> glaciale	0	Abundant in small low littoral tidal pools on rocky surfaces (Wilson 1978), but not considered abundant across the intertidal range.	1	All algae are immobile.	1	By definition, intertidal species will interact with the sea surface.	1	Encrusting algae species grow directly on rocks, therefore interacting with the seafloor.
	Ŀ	Canopy	High energy consolidated habitat	N/A	Alaria esculenta, Laminaria digitata, Saccharina latissima	1	Members of this sub-group form dense kelp beds and are the dominant algae of the sublittoral zone starting at ~10 ft. depth (Lee 1986). <i>Alaria esculenta</i> generally grows on rocky substrate in high energy locations, often forming a dense band at low water (Lee 1986).	1	All algae are immobile.	1	Tall species of canopy algae grow attached to rocky substrates and may be tall enough to interact with the sea surface. (e.g., <i>Alaria esculenta</i> interacts with the sea surface in the subtidal to approximately 8 m depth on exposed rocky shores) (Hurd et al. 2014).	1	Species in this sub-group attach to consolidated substrates via holdfasts so will always be in contact with the sea floor.
Subtidal	Non-vascula		Moderate to low energy consolidated habitat	N/A	Agarum clathratum, Halosiphon tomentosus, Laminaria digitata, Saccharina latissima	1	Members of this sub-group grow in high densities forming kelp beds. <i>Agarum</i> <i>clathratum</i> grows in small, single species stands (1–10 m ²) in the sublittoral zone (Gagnon et al. 2005).	1	All algae are immobile.	1	Tall species of canopy algae grow attached to rocky substrates and may be tall enough to interact with the sea surface.	1	Species in this sub-group attach to consolidated substrates via holdfasts so will always be in contact with the sea floor.
		Understory and turf	High energy consolidated habitat	N/A	Chondrus crispus, Chorda tomentosa, Desmarestia viridis, Euthora cristata, Furcellaria lumbricalis	1	Members of this sub-group grow in concentrations. <i>Chondrus crispus</i> forms a thick dense mat over rocks and ledges (Rayment and Pizzola 2008). <i>Desmarestia</i> <i>viridis</i> can form extensive beds on stones down to depths of 50 feet (Lee 1986).	1	All algae are immobile.	1	Understory and turf species are generally not expected to interact with the sea surface when living in the subtidal zone. However, some species in this sub-group (e.g., <i>Chondrus crispus</i>) can straddle the lower intertidal and shallow subtidal ranges (Rayment and Pizzola 2008), and would be expected to interact with the sea surface at low tide.	1	Species in this sub-group attach to consolidated substrates via holdfasts so will always be in contact with the sea floor.

									EXPOS	URE	Criteria		
		SUB-G	ROUP LEVEL		Maritime example	c	Concentration (aggregation)		Mobility and/or site fidelity		Sea surface interacting		Seafloor interacting
1	2	3	4	5	species	s	Justification	s	Justification	s	Justification	s	Justification
Subtidal		Understory and turf	Moderate to low energy consolidated habitat	N/A	Desmarestia aculeata, Desmarestia viridis, Euthora cristata, Petalonia fascia, Ulva intestinalis, Spongomorpha arcta (Acrosiphonia arcta)	1	Although some members of this sub-group are considered solitary (e.g., <i>Desmarestia viridis</i> grows solitary up to 2 m long); other members are found in high concentrations (e.g., <i>Ulva</i> <i>intestinalis</i> and <i>Spongomorpha arcta</i> can be found in high densities in quiet bays and salt marshes) (Lee 1986).	1	All algae are immobile.	0	Understory and turf species are generally not expected to interact with the sea surface when living in the subtidal zone.	1	Species in this sub–group attach to consolidated substrates via holdfasts so will always be in contact with the sea floor.
	Non-vascula	Encrusting	Consolidated habitat	N/A	Coralline encrusting algae, e.g., <i>Lithothamnion</i> glaciale	1	Encrusting algal species are abundant in the shallow to deep sublittoral zone throughout the region. <i>Lithothamnion glaciale</i> is a very abundant species of crustose coralline algae in Atlantic Canada (South 1984).	1	All algae are immobile.	0	Encrusting algae in the subtidal zone will not interact with the sea surface.	1	Encrusting algae species grow directly on rocks, therefore interacting with the seafloor.
Epipelagic			PHYTOPL	ANKTON		1	Phytoplankton are ubiquitous throughout the Maritimes Region, occurring in mixed species populations and discrete single species blooms.	1	Phytoplankton are immobile and subject to oceanographic currents.	1	Phytoplankton are found throughout the water column and would interact with the sea surface.	0	This is a pelagic sub- group that is not expected to interact with the seafloor.

Table A2. Marine plants and algae sub-group scores for SENSITIVITY scoring criteria, the column labelled "S" indicates the score assigned (note: species lists are not exhaustive; scores with a "P" indicate a precautionary score due to knowledge gaps).

							SENSIT	Ινιτγ	Criteria
		SUB-GR	OUP LEVEL		Maritime example species	(r	Mechanical sensitivity reduction in feeding/photosynthesis/thermoregulation)		Chemical sensitivity (impairment due to toxicity)
1	2	3	4	5	-	s	Justification	s	Justification
Intertidal	Vascular	N/A	Moderate to low energy unconsolidated habitat	Seagrasses	Ruppia maritima, Zostera marina	1	Impairment of photosynthesis can be caused by direct coating by oil of marine plant and soil surfaces (Pezeshki and DeLaune 2015). Studies suggest the seagrasses experience blade and shoot mortality when covered with oil (Jackson et al. 1989, Marshall 1990). Some eelgrass beds recover quickly after losing blades due to oiling (Dean et al. 1998), yet recovery is slower if rhizomes are damaged by oil (Zieman et al. 1984).	1P	Precautionary scoring for vascular plants. In addition to direct coating and suffocation, oils can cause a variety of sub-lethal effects on enzyme systems, photosynthesis, respiration, transpiration and protein and nucleic acid synthesis leading to impairment and death (Lewis and Pryor 2013). There are few oil-specific standardized phytotoxicity tests designed to determine toxic effect (acute and chronic) concentration thresholds for the above parameters. (Lewis and Pryor 2013). There are very few multiple dose toxicity tests and first effect, EC ₅₀ and LC ₅₀ concentrations for wetland plants. Studies involving chemical sensitivities of seagrasses to oil have used differing response parameters (1–15) and Exposure periods (12 h to 20 mo.), and LC ₅₀ /EC ₅₀ is are very uncommon (Lewis and Pryor 2013). Scarlett et al. (2005) found the 96 h LC ₅₀ for <i>Zostera marina</i> to be 202.4 mg/L for crude oil. Dispersed oils have been reported to be less toxic on <i>Zostera</i> sp. (Thorhaug et al. 1986, Macinnis- Ny and Ralph 2003, Wilson and Ralph 2008).
				Saltmarsh grass	Carex paleacea, Juncus gerardii, Juncus caesariensis, Puccinellia maritima, Spartina alterniflora	1	Impairment of photosynthesis in marsh plants can be caused by coating of marine plant and soil surfaces by oil (Pezeshki and DeLaune 2015). <i>Spartina alterniflora</i> subjected to oiling with Bunker C oil did not produce any new leaves and the plants died due to impaired photosynthesis (Pezeshki et al. 1995).	1P	Precautionary scoring for vascular plants. In addition to direct coating and suffocation, oils can cause a variety of sub-lethal effects on enzyme systems, photosynthesis, respiration, transpiration and protein and nucleic acid synthesis leading to impairment and death (Lewis and Pryor 2013). There are few oil-specific standardized phytotoxicity tests designed to determine toxic effect (acute and chronic) concentration thresholds for the above parameters. (Lewis and Pryor 2013). There are very few multiple dose toxicity tests and first effect, EC ₅₀ and LC ₅₀ concentrations for wetland plants.

							SENSITI	IVITY	Criteria
		SUB-GR	OUP LEVEL		Maritime example species	(r	Mechanical sensitivity eduction in feeding/photosynthesis/thermoregulation)		Chemical sensitivity (impairment due to toxicity)
1	2	3	4	5		s	Justification	s	Justification
Intertidal	Vascular	N/A	Moderate to low energy unconsolidated habitat	Saltmarsh non-grass	Achillea millefolium, Plantago maritima, Limonium carolinianum, Triglochin maritimum	1	Impairment of photosynthesis can be caused by coating of marine plant and soil surfaces by oil (Pezeshki and DeLaune 2015). <i>Triglochin maritima</i> demonstrates more resistance to smothering due to underground storage organs, however, they are still vulnerable to heavy oil types (Baker 1971).	1P	Precautionary scoring for vascular plants. In addition to direct coating and suffocation, oils can cause a variety of sub-lethal effects on enzyme systems, photosynthesis, respiration, transpiration and protein and nucleic acid synthesis leading to impairment and death (Lewis and Pryor 2013). There are no oil-specific standardized phytotoxicity tests designed to determine toxic effect (acute and chronic) concentration thresholds for the above parameters. (Lewis and Pryor 2013). There are very few multiple dose toxicity tests and first effect, EC_{50} and LC_{50} concentrations for wetland plants. Oiling can cause a decrease in flowering if <i>Plantago maritima</i> plants are oiled during budding; developed flowers will rarely produce seeds if oiled; and a reduction in germination in the spring can be caused by oiling of seeds over winter (Baker 1971).
				Saltmarsh succulent	Crassula aquatica, Honckenya peploides, Salicornia europae/S. depressa	1	Impairment of photosynthesis can be caused by coating of marine plant and soil surfaces by oil (Pezeshki and DeLaune 2015). Members of this sub-group are considered very susceptible to oil and can be quickly killed by a single oil spill due to lack of underground storage organs and shallow root systems (Baker 1979). <i>Salicornia</i> sp. are typically killed with one oiling (Baker 1979).	1P	Precautionary scoring for vascular plants. In addition to direct coating and suffocation, oils can cause a variety of sub-lethal effects on enzyme systems, photosynthesis, respiration, transpiration and protein and nucleic acid synthesis leading to impairment and death (Lewis and Pryor 2013). There are few oil-specific standardized phytotoxicity tests designed to determine toxic effect (acute and chronic) concentration thresholds for the above parameters. (Lewis and Pryor 2013). There are very few multiple dose toxicity tests and first effect, EC_{50} and LC_{50} concentrations for wetland plants.
	Non-vascular	Canopy	High energy consolidated habitat	N/A	Alaria esculenta, Laminaria digitata, Saccharina Iatissima	1P	Impairment of photosynthesis in non-vascular plants can result from both the mechanical covering (smothering) of the plant and soil surfaces with oil, as well as the chemical disruption of photosynthetic pathways due to oil toxicity (Hurd et al. 2014). The mechanisms of photosynthetic inhibition are rarely investigated and results in difficulty differentiating between mechanical smothering and toxicity effects.	1P	In general, the mucilaginous coating on brown algae is thought to protect members of this sub-group from damage by oil (Hurd et al. 2014). However, precautionary scoring applied as <i>Laminaria digitata</i> has exhibited a 50% reduction in growth over 2 years when exposed to diesel oil at 130 μg/L, while no growth reduction was noted at 30 μg/L, and plants completely recovered in oil- free conditions (Steele and Hanisak 1979).

							SENSITI	VITY	Criteria
		SUB-GR	OUP LEVEL		Maritime example species	(r	Mechanical sensitivity eduction in feeding/photosynthesis/thermoregulation)		Chemical sensitivity (impairment due to toxicity)
1	2	3	4	5		s	Justification	s	Justification
Intertidal	Intertidal Non-vascular	Understory and turf	High energy consolidated habitat	N/A	Chondrus crispus, Fucus endentatus, Fucus spiralis, Porphyra purpurea, Corallina officinalis	1P	Impairment of photosynthesis in non-vascular plants can result from both the mechanical covering (smothering) of the plant and soil surfaces with oil, as well as the chemical disruption of photosynthetic pathways due to oil toxicity (Hurd et al. 2014). The mechanisms of photosynthetic inhibition are rarely investigated and results in difficulty differentiating between mechanical smothering and toxicity effects. Mechanical damage can occur when emulsified oil in sufficient thickness coats the thalli of algae, causing breakage (Hurd et al. 2014). The loss of too many photosynthetic blades to oiling during growing season, when metabolic products are stored, can impact a seaweeds regenerative ability (O'Brien and Dixon 1976). Many high intertidal brown and red algal species in this sub-group become oleophilic as they dry out when exposed by tides. This increased capacity for oil adsorption can increase the species susceptibility to thallic breakage, especially those species that grow between neap and spring high tide marks (Hurd et al. 2014). However, increased wave energy in a high energy consolidated habitat might cause rapid dissipation of oil (Peckol et al. 1990). <i>Porphyra</i> sp. experienced decreased photosynthesis when coated with oil (O'Brien and Dixon 1976).	1P	 Toxic effect concentrations for algae vary greatly. Reproductive response parameters are more sensitive to oil in some species. <i>Chondrus crispus</i> plants reproduced normally after the Amoco Cadiz oil spill. However, young stages developed slower than expected, and a reduction in biomass for 2 years post-Exposure (Hurd et al. 2014). <i>Fucus endentatus</i> reproductive stage is particularly sensitive to oil, especially during gamete or spore release, at concentrations of crude or fuel oil as low as 2 µg/L (Steele and Hanisak 1979). After the <i>Exxon Valdez</i> oil spill in 1989, mature <i>Fucus</i> sp. were covered with oil but did not die (Driskell et al. 2001). Bleaching is commonly seen among red algae (e.g., <i>Porphyra purpurea, Corallina officinalis</i>), and is caused by the breakdown of phycoerythrin by kerosene-related compounds (Hurd et al. 2014). <i>Porphyra</i> sp. experienced bleaching and decrease in physiological activity after being in contact with oil from spills (O'Brien and Dixon 1976).
			Moderate to low energy consolidated habitat	N/A	Chorda tomentosa, Polysiphonia stricta, Ptilota elegans, Ulva intestinalis, Ulva lactuca, Corallina officinalis	1P	Impairment of photosynthesis in non-vascular plants can result from both the mechanical covering (smothering) of the plant and soil surfaces with oil, as well as the chemical disruption of photosynthetic pathways due to oil toxicity (Hurd et al. 2014). The mechanisms of photosynthetic inhibition are rarely investigated and results in difficulty differentiating between mechanical smothering and toxicity effects.	1P	Budd and Pizzola (2008) found that hydrocarbon contamination leads to bleaching and interference with reproduction in the green alga <i>Ulva intestinalis</i> . Bleaching is also commonly seen among red algae (e.g., <i>Polysiphonia stricta, Ptilota elegans</i> and <i>Corallina officianalis</i>), and is caused by the breakdown of phycoerythrin by kerosene- related compounds (Hurd et al. 2014). Additionally, lipid soluble pigments such as chlorophylls may be leached from cells by oil (O'Brien and Dixon 1976). Aromatics and other toxic hydrocarbons appear to exert their toxic effects by entering the lipophilic layer of the cell membrane. As a result, the membrane ceases to properly control the transport of ions into and out of cells (O'Brien and Dixon 1976).

							SENSIT	IVITY	Criteria
		SUB-GR	OUP LEVEL		Maritime example species	(r	Mechanical sensitivity eduction in feeding/photosynthesis/thermoregulation)		Chemical sensitivity (impairment due to toxicity)
1	2	3	4	5		s	Justification	s	Justification
Intertidal		Encrusting	Consolidated habitat	N/A	Coralline encrusting algae e.g., <i>Lithothamnion</i> glaciale	1P	Impairment of photosynthesis in non-vascular plants can result from both the mechanical covering (smothering) of the plant and soil surfaces with oil, as well as the chemical disruption of photosynthetic pathways due to oil toxicity (Hurd et al. 2014). The mechanisms of photosynthetic inhibition are rarely investigated and results in difficulty differentiating between mechanical smothering and toxicity effects.	1P	Precautionary scoring due to lack of research on chemical impairment due to toxicity of oil in this sub-group. The response of coralline algae to oil pollution is not well documented although bleaching of these forms as a result of oiling has been reported (O'Brien and Dixon 1976).
Subtidal	Von-vascular	Сапору	High energy consolidated habitat	N/A	Alaria esculenta, Laminaria digitata, Saccharina latissima	1P	Impairment of photosynthesis in non-vascular plants can result from both the mechanical covering (smothering) of the plant and soil surfaces with oil, as well as the chemical disruption of photosynthetic pathways due to oil toxicity (Hurd et al. 2014). The mechanisms of photosynthetic inhibition are rarely investigated and results in difficulty differentiating between mechanical smothering and toxicity effects. Holt et al. (1995) concluded that because of dispersion in the water column and high-levels of dilution, <i>Saccharina latissima</i> did not show any discernible effects from oil spills.	1P	In general, the mucilaginous coating on brown algae is thought to protect members of this sub-group from damage by oil (Hurd et al. 2014). However, precautionary scoring applied as <i>Laminaria digitata</i> has exhibited a 50% reduction in growth over 2 years when exposed to diesel oil at 130 μg/L, while no growth reduction was noted at 30 μg/L, and plants completely recovered in oil- free conditions (Steele and Hanisak 1979).
	2		Moderate to low energy consolidated habitat	N/A	Agarum clathratum, Halosiphon tomentosus, Laminaria digitata, Saccharina latissima	1P	Impairment of photosynthesis can be caused by coating of the marine plant with oil (Pezeshki and DeLaune 2015). However, due to its preference for exposed locations where wave action dissipates oil more quickly, <i>Laminaria</i> <i>digitata</i> was less likely to become coated that other plant species (Hill 2008). All brown algae have some resistance to oil coating as their blades are partially protected initially due to their mucilaginous coating. Their thalli are still susceptible to coating, and adsorption there can result in breakage as well (Hurd et al. 2014).	1P	Precautionary scoring due to lack of research on chemical impairment due to toxicity of oil in this sub-group. Chronic low level pollution of diesel oil (25 µg/L) caused reduced growth rates of <i>Laminaria digitata</i> in the second and third years of growth (Bokn 1987).
		Understory and turf	High energy consolidated habitat	N/A	Chondrus crispus, Chorda tomentosa, Desmarestia viridis, Euthora cristata, Furcellaria Iumbricalis	1P	Impairment of photosynthesis can be caused by coating of the marine plant with oil (Pezeshki and DeLaune 2015). However, high wave energy in this habitat might cause rapid dissipation (Peckol et al. 1990). Plants found growing underneath a taller species may benefit from reduced smothering (O'Brien and Dixon 1976).	1P	According to Kaas (1980), as cited in Rayment and Pizzola (2008), adult <i>Chondrus crispus</i> plants reproduced normally after the <i>Amoco Cadiz</i> oil spill. However, young stages developed slower than expected, and there was a related reduction in algal biomass for 2 years post-exposure.

							SENSITI	VITY	Criteria
		SUB-GR	OUP LEVEL		Maritime example species	(r	Mechanical sensitivity eduction in feeding/photosynthesis/thermoregulation)		Chemical sensitivity (impairment due to toxicity)
1	2	3	4	5		S	Justification	S	Justification
Subtidal Non-vascular	Understory and turf	Moderate to low energy consolidated habitat	N/A	Desmarestia aculeata, Desmarestia viridis, Euthora cristata, Petalonia fascia, Ulva intestinalis, Spongomorpha arcta (Acrosiphonia arcta)	1P	Impairment of photosynthesis can be caused by coating of the marine plant with oil (Pezeshki and DeLaune 2015). Plants found growing underneath a taller species may benefit from reduced smothering (O'Brien and Dixon 1976).	1P	Precautionary scoring due to lack of research on chemical impairment due to toxicity of oil in this group. Budd and Pizzola (2008) found that hydrocarbon contamination led to bleaching and interference with reproduction in <i>Ulva intestinalis</i> .	
	Non-vascular	Encrusting	Consolidated habitat	N/A	Coralline encrusting algae, e.g., <i>Lithothamnion</i> glaciale	1P	Impairment of photosynthesis can be caused by coating of marine algae with oil (Pezeshki and DeLaune 2015).	1P	Precautionary scoring due to lack of research on chemical impairment due to toxicity of oil in this group. The response of coralline algae to oil pollution is not well documented although bleaching of these forms as a result of oiling has been reported (O'Brien and Dixon 1976).
		Phytoplankton	N/A	A	N/A	1P	Phytoplankton are assumed to be a low risk from oil contamination (O'Brien and Dixon 1976, Hyland and Schneider 1979), based on rapid reproduction rates that can compensate temporarily for population declines (Lewis and Pryor 2013). However, precautionary scoring was applied as there are few experimental studies conducted with phytoplankton communities exposed to oil.	1P	Marine phytoplankton was found to be suppressed by petroleum hydrocarbons exceeding 1.5 mg/L (Yu et al. 1987). Fuel oil was found to increase marine phytoplankton abundance post Exposure, although this may have been an effect of lessened zooplankton (Vargo et al. 1982).

Table A3. Marine plants and algae sub-group scores for RECOVERY scoring criteria, the column labelled "S" indicates the score assigned (note: species lists are not exhaustive; scores with a "P" indicate a precautionary score due to lack of knowledge).

								RECOVER	(Criter	ia		
	SUB-G	ROUP LEVEL		Maritime example		Population status		Reproductive capacity	E	Indemism or isolation	C unc	lose association with onsolidated substrates
1 2	3	4	5	species	s	Justification	s	Justification	s	Justification	s	Justification
			Seagrasses	Ruppia maritima, Zostera marina	1P	Not listed on SARA, COSEWIC or ESA Threatened and Endangered lists. Precautionary scoring applied for this sub- group as eelgrass (<i>Zostera marina</i>) population estimates show a decreasing trend worldwide in the second half of the twentieth century (Lopez-Calderon et al. 2016).	1P	Seagrasses reproduce sexually via seeds (e.g., Zostera marina can produce large quantities of seeds, at times numbering several thousand seeds per square meter); or via asexual clonal growth – sending out rhizome roots to sprout new growth (Phillips et al. 1983). However, damaged rhizomes affect reproduction and slow recovery after an oil Exposure (Zieman et al. 1984).	0	No evidence of endemic/isolated populations in this sub- group. <i>Zostera marina</i> and <i>Ruppia maritima</i> are widely distributed in the Maritimes Region (Hinds 2000).	1	Seagrasses have underground root and rhizome systems that are rooted in unconsolidated substrates (Hemminga 1998).
Vascular	N/A	energy unconsolidated habitat	Saltmarsh grass	Carex paleacea, Juncus gerardii, Juncus caesariensis, Puccinellia maritima, Spartina alterniflora	1	Juncus caesariensis listed by SARA as Special Concern in Nova Scotia. (assessed May 2004). Juncus caesariensis listed as Special Concern (COSEWIC 2004).	1P	Saltmarsh plant communities are often dominated by long-lived perennial species that rely heavily on vegetative reproduction compared to sexual reproduction, especially in aquatic or stressful habitats (Grace 1993, Silvertown 2008). For example, <i>Spartina</i> <i>alterniflora</i> saltmarsh communities do not have a viable seed bank (Hartman 1988) as seeds are only viable for a single year and rely heavily on vegetative reproduction for survival (Mooring et al. 1971).	0	No evidence of endemic/isolated populations in this sub- group. <i>Spartina alterniflora</i> and <i>Juncus gerardii</i> are widely distributed in the Maritimes Region (Hinds 2000).	1	Vascular plants are rooted in unconsolidated substrates.

									RECOVERY	Crite	ria		
		SUB-GI	ROUP LEVEL		Maritime example species		Population status		Reproductive capacity	E	Endemism or isolation	C unc	lose association with onsolidated substrates
1	2	3	4	5	species	s	Justification	s	Justification	S	Justification	s	Justification
ertidal	scular	N/A	Moderate to low energy unconsolidated	Saltmarsh non-grass	Achillea millefolium, Plantago maritima, Limonium carolinianum, Triglochin maritimum, Symphyotrichum subulatum	0	Not listed on SARA, COSEWIC or ESA Threatened and Endangered lists for the Maritimes Region. The sub-population of the Saltmarsh Aster, the Bathurst Aster (<i>Symphyotrichum</i> <i>subulatum</i>), was Designated Special Concern in April 1992 Status re-examined and designated Not at Risk in April 2017 (COSEWIC 2017).	1P	Saltmarsh plant communities are often dominated by long-lived perennial species that rely heavily on vegetative reproduction compared to sexual reproduction, especially in aquatic or stressful habitats (Grace 1993, Silvertown 2008).	0	No evidence of endemic/isolated populations in this sub- group Species in this sub- group (Achillea millefolium, Plantago maritima, Limonium carolinianum, and Triglochin maritima) are widely distributed in the Maritimes Region (Hinds 2000).	1	Vascular plants are rooted in unconsolidated substrates.
<u> </u>	^/		habitat	Saltmarsh succulent	Crassula aquatica, Honckenya peploides, Salicornia europae/ S.depressa	0	Not listed on SARA, COSEWIC or ESA Threatened and Endangered lists for the Maritimes Region. <i>Crassula aquatica</i> listed as vulnerable by the Province of Newfoundland (Maunder 2008), not in the Maritimes Region.	1P	Saltmarsh plant communities are often dominated by long-lived perennial species that rely heavily on vegetative reproduction compared to sexual reproduction, especially in aquatic or stressful habitats (Grace 1993, Silvertown 2008).	0	No evidence of endemic/isolated populations in this sub- group. <i>Crassula aquatica</i> is uncommon but often overlooked in salt marshes. <i>Honckenya</i> <i>peploides, Salicornia</i> <i>europae and Salicornia</i> <i>europae/S.depressa</i> are commonly distributed in the Maritimes Region (Hinds 2000).	1	Vascular plants are rooted in unconsolidated substrates.

									RECOVER	Criter	ria		
		SUB-GI	ROUP LEVEL		Maritime example species		Population status		Reproductive capacity	E	Endemism or isolation	Cl unc	ose association with onsolidated substrates
1	2	3	4	5	opooloo	s	Justification	s	Justification	S	Justification	s	Justification
Intertidal	Non-vascular	Canopy	High energy consolidated habitat	N/A	Alaria esculenta, Laminaria digitata, Saccharina latissima	1	Not listed on SARA, COSEWIC or ESA Threatened and Endangered lists. In the Northeast Atlantic, some cold-adapted canopy forming seaweeds have been decreasing in abundance in recent years as a function of ocean warming (Piñeiro- Corbeira et al. 2018).	1P	All algae use the same basic pattern of alteration of sporophyte and gametophyte generations, with many variations on this reproductive strategy being employed. Overall most algae are characterized as having high reproductive capacity (Hurd et al. 2014). However, precautionary scoring was used for this criteria given that in some algal species reproduction is easily disrupted by disturbance (e.g., <i>Fucus</i> sp. communities can recover 5–7 years post oil spill but oscillations in reproduction and population are common [Driskell et al. 2001]).	0	In the Maritimes Region there is no evidence of endemic/isolated populations in this sub- group.	1P	All algae are non- vascular and have no root systems. Therefore, not expected to have close association with unconsolidated substrates. However, species in the intertidal zone could interact with the unconsolidated substrate when they are exposed during low tides.

									RECOVER	Criter	ia		
		SUB-GI	ROUP LEVEL		Maritime example		Population status		Reproductive capacity	E	ndemism or isolation	C unc	lose association with onsolidated substrates
1	2	3	4	5	aheciea	S	Justification	s	Justification	S	Justification	s	Justification
		Understory and turf		N/A	Chondrus crispus, Fucus endentatus, Fucus spiralis, Porphyra purpurea, Corallina officinalis	1Р	Not listed on SARA, COSEWIC or ESA Threatened and Endangered lists. Precautionary scoring was applied for this criteria as current data suggests macroalgae species including Irish Moss (<i>Chondrus crispus</i>) are particularly susceptible to substantial abundance and distribution in Atlantic Canada, as a function of anthropogenic stressors (Wilson et al. 2018).	1P	All algae use the same basic pattern of alteration of sporophyte and gametophyte generations, with many variations on this reproductive strategy being employed. Overall most algae are characterized as having high reproductive capacity (Hurd et al. 2014). However, precautionary scoring was used for this criteria given that in some algal species reproduction is easily disrupted by disturbance (e.g., <i>Fucus</i> sp. communities can recover 5–7 years post oil spill but oscillations in reproduction and population are common (Driskell et al. 2001).	0	No evidence of endemic/isolated populations in this sub- group. Members of this sub- group are common to abundantly distributed throughout the Maritimes Region: <i>Chondrus</i> <i>crispus</i> (Wilson 1978), <i>Fucus</i> sp. (White 2008), <i>Corallina officinalis</i> , <i>Porphyra purpurea</i> (Wilson 1978).	1Р	All algae are non- vascular and have no root systems. Therefore, not expected to have close association with unconsolidated substrates. However, species in the intertidal zone could interact with the unconsolidated substrate when they are exposed during low tides.

									RECOVER	Criter	ria		
		SUB-GI	ROUP LEVEL		Maritime example species		Population status		Reproductive capacity	E	Endemism or isolation	Cl unc	ose association with onsolidated substrates
1	2	3	4	5	species	S	Justification	S	Justification	S	Justification	s	Justification
Intertidal	Non-vascular	Understory and turf	Moderate to low energy consolidated habitat	N/A	Chorda tomentosa, Polysiphonia stricta, Ptilota elegans, Ulva intestinalis, Ulva lactuca, Corallina officinalis	1P	Not listed on SARA, COSEWIC or ESA Threatened and Endangered lists. Precautionary scoring was applied for this criteria as current data suggests macroalgae species are particularly susceptible to substantial abundance and distribution shifts in Atlantic Canada, as a function of anthropogenic stressors (Wilson et al. 2018).	1P	All algae use the same basic pattern of alteration of sporophyte and gametophyte generations, with many variations on this reproductive strategy being employed. Overall most algae are characterized as having high reproductive capacity (Hurd et al. 2014). However, precautionary scoring was used for this criteria given that in some algal species reproduction is easily disrupted by disturbance (e.g., <i>Fucus</i> sp. communities can recover 5–7 years post oil spill but oscillations in reproduction and population are common [Driskell et al. 2001]).	0	No evidence of endemic/isolated populations in this sub- group.	1P	All algae are non- vascular and have no root systems. Therefore, not expected to have close association with unconsolidated substrates. However, species in the intertidal zone could interact with the unconsolidated substrate when they are exposed during low tides.

									RECOVER	/ Crite	ia		
		SUB-G	ROUP LEVEL		Maritime example species		Population status		Reproductive capacity	E	ndemism or isolation	C unc	lose association with onsolidated substrates
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
		Encrusting	Consolidated habitat	N/A	Coralline encrusting algae e.g., <i>Lithothamnion</i> glaciale	1P	Not listed on SARA, COSEWIC or ESA Threatened and Endangered lists. Precautionary scoring was applied for this criteria as current data suggests macroalgae species are particularly susceptible to substantial abundance and distribution shifts in Atlantic Canada, as a function of anthropogenic stressors (Wilson et al. 2018).	1P	All algae use the same basic pattern of alteration of sporophyte and gametophyte generations, with many variations on this reproductive strategy being employed. Overall most algae are characterized as having high reproductive capacity (Hurd et al. 2014). However, precautionary scoring was used for this criteria given that in some algal species reproduction is easily disrupted by disturbance (e.g., <i>Fucus</i> sp. communities can recover 5–7 years post oil spill but oscillations in reproduction and population are common (Driskell et al. 2001).	0	No evidence of endemic/isolated populations in this sub- group.	0	Encrusting on consolidated substrates.
Subtidal	Non-vascular	Canopy	High energy consolidated habitat	N/A	Alaria esculenta, Laminaria digitata, Saccharina latissima	1	Not listed on SARA, COSEWIC or ESA Threatened and Endangered lists. In the Northeast Atlantic, some cold-adapted canopy forming seaweeds have been decreasing in abundance in recent years as a function of ocean warming (Piñeiro- Corbeira et al. 2018)	1P	All algae use the same basic pattern of alteration of sporophyte and gametophyte generations, with many variations on this reproductive strategy being employed. Overall most algae are characterized as having high reproductive capacity (Hurd et al. 2014). However, precautionary scoring was used for this criteria given that in some algal species reproduction is easily disrupted by disturbance (e.g., <i>Fucus</i> sp. communities can recover 5–7 years post oil spill but oscillations in reproduction and population are common (Driskell et al. 2001).	0	No evidence of endemic/isolated populations in this sub- group.	0	All algae are non- vascular and have no root systems. Therefore, not expected to have close association with unconsolidated substrates.

									RECOVER	/ Crite	ia		
		SUB-G	ROUP LEVEL		Maritime example species		Population status		Reproductive capacity	E	Indemism or isolation	C unc	lose association with onsolidated substrates
1	2	3	4	5		s	Justification	s	Justification	S	Justification	S	Justification
			Moderate to low energy consolidated habitat	N/A	Agarum clathratum, Halosiphon tomentosus, Laminaria digitata, Saccharina latissima	1	Not listed on SARA, COSEWIC or ESA Threatened and Endangered lists. In the Northeast Atlantic, some cold-adapted canopy forming seaweeds have been decreasing in abundance in recent years as a function of ocean warming (Piñeiro- Corbeira et al. 2018).	1P	All algae use the same basic pattern of alteration of sporophyte and gametophyte generations, with many variations on this reproductive strategy being employed. Overall most algae are characterized as having high reproductive capacity (Hurd et al. 2014). However, precautionary scoring was used for this criteria given that in some algal species reproduction is easily disrupted by disturbance (e.g., <i>Fucus</i> sp. communities can recover 5–7 years post oil spill but oscillations in reproduction and population are common (Driskell et al. 2001).	0	No evidence of endemic/isolated populations in this sub- group.	0	All algae are non- vascular and have no root systems. Therefore, not expected to have close association with unconsolidated substrates.
Subtidal	Non-vascular	Understory and turf	High energy consolidated habitat	N/A	Chondrus crispus, Chorda tomentosa, Desmarestia viridis, Euthora cristata, Furcellaria lumbricalis	1P	Not listed on SARA, COSEWIC or ESA Threatened and Endangered lists. Precautionary scoring was applied for this criteria as current data suggests macroalgae species including Irish moss (<i>Chondrus crispus</i>) are particularly susceptible to substantial abundance and distribution shifts in Atlantic Canada, as a function of anthropogenic stressors (Wilson et al. 2018).	1Р	All algae use the same basic pattern of alteration of sporophyte and gametophyte generations, with many variations on this reproductive strategy being employed. Overall most algae are characterized as having high reproductive capacity (Hurd et al. 2014). However, precautionary scoring was used for this criteria given that in some algal species reproduction is easily disrupted by disturbance (e.g., <i>Fucus</i> sp. communities can recover 5–7 years post oil spill but oscillations in reproduction and population are common (Driskell et al. 2001).	0	No evidence of endemic/isolated populations in this sub- group.	0	All algae are non- vascular and have no root systems. Therefore, not expected to have close association with unconsolidated substrates.

									RECOVER	/ Crite	ia		
		SUB-GI	ROUP LEVEL		Maritime example species		Population status		Reproductive capacity	E	Indemism or isolation	C unc	lose association with onsolidated substrates
1	2	3	4	5		s	Justification	S	Justification	S	Justification	S	Justification
			Moderate to low energy consolidated habitat	N/A	Desmarestia aculeata, Desmarestia viridis, Euthora cristata, Petalonia fascia, Ulva intestinalis, Spongomorpha arcta (Acrosiphonia arcta)	1P	Not listed on SARA, COSEWIC or ESA Threatened and Endangered lists. Precautionary scoring was applied for this criteria as current data suggests macroalgae species are particularly susceptible to substantial abundance and distribution shifts in Atlantic Canada, as a function of anthropogenic stressors (Wilson et al. 2018).	1Р	All algae use the same basic pattern of alteration of sporophyte and gametophyte generations, with many variations on this reproductive strategy being employed. Overall most algae are characterized as having high reproductive capacity (Hurd et al. 2014). However, precautionary scoring was used for this criteria given that in some algal species reproduction is easily disrupted by disturbance (e.g., <i>Fucus</i> sp. communities can recover 5–7 years post oil spill but oscillations in reproduction and population are common (Driskell et al. 2001).	0	No evidence of endemic/isolated populations in this sub- group.	0	All algae are non- vascular and have no root systems. Therefore, not expected to have close association with unconsolidated substrates.
Subtidal	Non-vascular	Encrusting	Consolidated habitat	N/A	Coralline encrusting algae, e.g., <i>Lithothamnion</i> glaciale	1P	Not listed on SARA, COSEWIC or ESA Threatened and Endangered lists. Precautionary scoring was applied for this criteria as current data suggests macroalgae species are particularly susceptible to substantial abundance and distribution shifts in Atlantic Canada, as a function of anthropogenic stressors (Wilson et al. 2018).	1Р	All algae use the same basic pattern of alteration of sporophyte and gametophyte generations, with many variations on this reproductive strategy being employed. Overall most algae are characterized as having high reproductive capacity (Hurd et al. 2014). However, precautionary scoring was used for this criteria given that in some algal species reproduction is easily disrupted by disturbance (e.g., <i>Fucus</i> sp. communities can recover 5–7 years post oil spill but oscillations in reproduction and population are common (Driskell et al. 2001).	0	No evidence of endemic/isolated populations in this sub- group.	0	All algae are non- vascular and have no root systems. Therefore, not expected to have close association with unconsolidated substrates. Encrusting algae species grow directly on consolidated substrate (e.g., rocks) only.

									RECOVERY	Crite	ria		
		SUB-G	ROUP LEVEL		Maritime example		Population status		Reproductive capacity	E	Endemism or isolation	Ci unc	lose association with onsolidated substrates
1	2	3	4	5	species	s	Justification	s	Justification	S	Justification	s	Justification
Epipelagic			PHYTOPL	ANTON		1P	Not listed on SARA, COSEWIC or ESA Threatened and Endangered lists. However, precautionary scoring was used for this criteria given that phytoplankton populations are particularly sensitive to anthropogenic stressors on both local and global scales (Salmaso and Tolotti 2021).	0	Phytoplankton have rapid reproduction rates that can compensate temporarily for population declines (Lewis and Pryor 2013)	0	No evidence of endemic/isolated populations in this sub- group.	0	Phytoplankton are pelagic and do not have close association with unconsolidated substrates.

REFERENCES FOR MARINE PLANTS AND ALGAE SCORING TABLES

- Baker, J.M. 1971. The effects of oil on plant physiology. *In* The ecological effects of oil pollution on littoral communities. *Edited by* E.B. Cromwell, Essex, England.
- Baker, J.M. 1979. Responses of salt marsh vegetation to oil spills and refinery effluents. *In* Ecological processes in coastal environments. *Edited by* R.L. Jefferies and A.J. Davies, Blackwell Scientific Publications, Oxford, England.
- Bokn, T. 1987. Effects of diesel oil and subsequent recovery of commercial benthic algae. Hydrobiologia. **151/152**: 277–284.
- Budd, G., and Pizzola, P. 2008. <u>Gut weed (*Ulva intestinalis*)</u>. *In* Marine life information network: biology and sensitivity key information reviews, [on-line] *Edited by* H. Tyler-Walters, and K. Hiscock. Marine Biological Association of the United Kingdom, Plymouth.
- COSEWIC. 2004. <u>COSEWIC assessment and update status report on the New Jersey rush</u> <u>Juncus caesariensis in Canada</u>. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 21 pp.
- COSEWIC. 2017. COSEWIC assessment and status report on the annual saltmarsh aster, *Symphyotrichum subulatum*, in Canada. Ottawa. xii + 52 pp.
- Dean, T.D., Stekoll, M.S., Jewett, S.C., Smith, R.O., and Hoses, J.E. 1998. Eelgrass (*Zostera marina*) in Prince William Sound, Alaska: Effects of the *Exxon Valdez* oil spill. Mar. Poll. Bull. 36: 201–210.
- Driskell, W.B., Ruesink, J.L., Lees, D.C., Houghton, J.P., and Lindstrom, S.C. 2001. Long term signal of disturbance: *Fucus gardneri* after the *Exxon Valdez* oil spill. Ecol. Applic. **11**: 815–827.
- Gagnon, P., Johnson, L.E., and Himmelman, J.H. 2005. Kelp patch dynamics in the face of intense herbivory: stability of *Agarum clathratum* (Phaeophyta) stands and associated flora on urchin barrens. J. Phycol. **41**: 498–505.
- Grace, J.B. 1993. The adaptive significance of clonal reproduction in angiosperms: an aquatic perspective. Aquat. Bot. **44**(2–3): 159–180.
- Green, E.P., and Short, F.T. 2003. World atlas of seagrasses. Prepared by the UNEP World Conservation Monitoring Center. University of California Press. Berkeley, CA.
- Hartman, J.M. 1988. Recolonization of small disturbance patches in a New England saltmarsh. Am. J. Bot. **75**(11): 1625–1631.
- Hatcher, A., and Patriquin, D.G. (*Eds.*) 1981. Salt marshes in Nova Scotia: a status report of the salt marsh working group. Institute for Resource and Environmental Studies and Department of Biology, Dalhousie University. 70 pp.
- Hemminga, M.A. 1998. The root/rhizome system of seagrasses: an asset and a burden. J. Sea Res. **39**: 183–196.
- Hill, J.M. 2008. <u>Oarweed (Laminaria digitata)</u>. In Marine life information network: biology and sensitivity key information reviews, [on-line]. *Edited by* H. Tyler-Walters and K. Hiscock, Plymouth, Marine Biological Association of the United Kingdom.
- Hinds, H.R. 2000. Flora of New Brunswick: a manual for identification of the vascular plants of New Brunswick. Dept. of Biology, University of New Brunswick, Fredericton, NB.

- Holt, T.J., Jones, D.R., Hawkins, S.J. and Hartnoll, R.G. 1995. The sensitivity of marine communities to man induced change a scoping report. Countryside Council for Wales, Bangor, Contract Science Report, no. 65.
- Hurd, C.L., Harrison, P.J., Bischof, K., and Lobban, C.S. 2014. Seaweed ecology and physiology. Cambridge University Press. Cambridge.
- Hyland, J. L, and Schneider, E. D. 1979. Petroleum hydrocarbons and their effects on marine organisms, populations, communities, and ecosystems. *In* Sources, effects and sinks of hydrocarbons in the aquatic environments. Proceedings of the symposium, Washington, D. C., 9–11 August, 1976. American Institute of Biological Sciences, Arlington, Virginia. pp. 464–506.
- Jackson, J.B.C., Cubit, J.D., Keller, B.D., Batista, V., Burns, K., Caffey, H.M., Caldwell, R.L., Garrity, S.D., Getter, C.D., Gonzalez, C., Guzman, H.M., Kaufmann, K.W., Knap, A.H., Levings, S.C., Marshall, M.J., Steger, R., Thompson, R.C., and Weil, E. 1989. Ecological effects of a major oil spill on Panamanian coastal marine communities. Science, **243**: 37–44.
- Lee, R.E. 1989. Phycology. Cambridge University Press, Cambridge.
- Lee, T.F. 1986. The seaweed handbook: and illustrated guide to seaweeds for North Carolina to the Arctic. Dover Publishers, New York.
- Lewis, M., and Pryor, R. 2013. Toxicities of oils, dispersants and dispersed oils to aquatic plants: review and database value to resource sustainability. Environ. Pollut. **180**: 345–367.
- Long, S.P., and Mason, C.F. 1983. Saltmarsh ecology. Blackie and Sons Ltd., Glasgow.
- Lopez-Calderon, J.M., Riosmena-Rodríguez, R., Torre, J., Meling, A., and Basurto, X. 2016. <u>Zostera marina meadows from the Gulf of California: conservation status</u>. Biodivers. Conserv. **25**(2): 261–273.
- Macinnis-Ny, C.M.O., and Ralph, P.J. 2003. In-situ impacts of petrochemicals on the photosynthesis of the seagrass *Zostera capricorni*. Mar. Pollut. Bull. **46**(11): 1395–1407.
- Marshall, M.J. 1990. Subtidal seagrass communities. Long-term assessment of the oil spill at Bahia las Minas, Panama: Interim report Vol. II. U.S. Department of the Interior, Minerals Management Service, publication number MMS 90–0031, Gulf of Mexico OSC Region. New Orleans. pp. 261–286.
- Maunder, J. E. 2008. The status of water pygmyweed (*Tillaea aquatica*) in Newfoundland and Labrador. The Species Status Advisory Committee Report No. 15.
- Mooring, M.T., Cooper, A. W. and Seneca, E.D. 1971. Seed germination response and evidence for height ecophenes in *Spartina alterniflora* from North Carolina. Am. J. Bot. **58**(1): 48–55.
- O'Brien, P.Y., and Dixon, P.S. 1976. The effects of oils and oil components on algae: a review. Brit. Phycol. J. **11**(2): 115–142.
- Peckol, P., Levings, S.C., and Garrity, S.D. 1990. Kelp responses following the World Prodigy oil spill. Mar. Pollut. Bull. **21**(10): 473–476.
- Pezeshki, S.R., and DeLaune, R.D. 2015. United States Gulf of Mexico coastal marsh vegetation responses and sensitivities to oil spill: a review. Environments, **2**: 586–607.
- Pezeshki, S.R., DeLaune, R.D., Nyman, J.A., Lessard, R.R. and Canevari, G.P. 1995. Removing oil and saving oiled saltmarsh grass using a shoreline cleaner. American Petroleum Institute, Washington. pp. 203–209.

- Phillips, R.C., Grant, W.S., and McRoy, C.P. 1983. Reproductive strategies of eelgrass (*Zostera marina* L.). Aquat. Bot. **16**: 1–20.
- Pineiro-Corbeira, C., Barreiro, R., Cremades, J., and Arenas, F. 2018. Seaweed assemblages under a climate change scenario: Functional responses to temperature of eight intertidal seaweeds match recent abundance shifts. Sci. Rep. **8**(1): 12978–12979.
- Rayment, W.J. and Pizzola, P.F. 2008. <u>Carrageen (Chondrus crispus)</u>. In Marine life information network: biology and sensitivity key information reviews, [on-line]. *Edited by* H. Tyler-Walters, and K. Hiscock, Marine Biological Association of the United Kingdom, Plymouth.
- Roberts, B.A., and Robertson, A. 1986. Saltmarshes of Atlantic Canada: their ecology and distribution. Can. J. Bot. **64**: 455–467.
- Roman, C.T. 2001. Saltmarsh vegetation. *In* Encyclopedia of ocean sciences. *Edited by* J.H. Steel, Academic Press, Oxford. pp. 39–42.
- Salmaso, N., and Tolotti, M. 2020. Phytoplankton and anthropogenic changes in pelagic environments. Hydrobiologia **848**(1): 251–284.
- Scarlett, A., Galloway, S., Canty, M., Smith, E.L., Nilsson, J., and Rowland, S.J. 2005. Comparative toxicity of two dispersants, superdispersent-25 and Corexit® 9527, to a range of coastal species. Environ. Toxicol. Chem. **24**(5): 1219–1227.
- Short, F., Carruthers, T., Dennison, W., and Waycott, M. 2007. Global seagrass distribution and diversity: a bioregional model. J. Exp. Mar. Biol. Ecol. **350**: 3–20.
- Silvertown. J. 2008. The evolutionary maintenance of sexual reproduction: evidence from the ecological distribution of asexual reproduction in clonal plants. Int. J. Plant Sci. **169**(1): 157–168.
- South, G.R. 1984. A checklist of marine algae of Eastern Canada. Can. J. Bot. 62(4): 680–704.
- Steele, R.L, and Hanisak, M.D. 1979. Sensitivity of some brown algal reproductive stages to oil pollution. Proc. Intl. Seaweed Symp. **9**: 181–191.
- Thorhaug, A., Marcus, J., and Booker, F. 1986. Oil and dispersed oil on subtropical tropical seagrasses in laboratory studies. Mar. Pollut. Bull. **17**(8): 357–361.
- Vargo, G.A., Hutchins, M., and Almquist, G. 1982. The effects of low, chronic levels of No. 2 fuel oil on natural phytoplankton assemblages in microcosms: 1. Species composition and seasonal succession. Mar. Environ. Res. **6**: 245–264.
- Warwick, S. I., and Black, L. 1982. The biology of Canadian weeds. *52. Achillea millefolium L. s. I. In* Can. J. Plant Sci. Bd. **62**: 163–182.
- White, N. 2008<u>. Bladder wrack (*Fucus vesiculosus*)</u>. *In* Marine life information network: biology and sensitivity key information reviews, [on-line]. *Edited by* H. Tyler-Walters H. and K. Hiscock. Marine Biological Association of the United Kingdom. Plymouth.
- Wilson, J.S. 1978. The benthic marine algae of the Bay of Fundy, Canada. Department of Biology, Dalhousie University, Halifax, N.S.
- Wilson, K.G., and Ralph, P.J. 2008. A comparison of the effects of Tapis crude oil and dispersed crude oil on subtidal *Zostera capricorni*. *In:* Proceedings interNational oil spill conference. pp. 859–864.
- Wilson, K.L., Kay, L.M., Schmidt, A.L., and Lotze, H.K. 2015. Effects of increasing water temperatures on survival and growth of ecologically and economically important seaweeds in Atlantic Canada: implications for climate change. Mar. Biol. **162**(12): 2431–2444.

- Yu, L., Dongfa, Z., and Shengsan, W. 1987. Effects of chemically dispersed crude oil on marine phytoplankton: a comparison between two marine ecosystems enclosed experiments. *In* Marine ecosystem enclosed experiments: proceedings of a symposium held in Beijing, People's Republic of China, 9–14 May 1987. *Edited by* C. S. Wong and P. J. Harrison. pp. 343–352.
- Zieman, J.C., Orth, R.J., Phillips, R.C., Thayer, G., and Thorburg, A. 1984. The effects of oil on seagrass ecosystems. *In* Restoration of habitats impacts by oil spills. *Edited by* J. Cairns and L. Buikema, Butterworth Publishers, Stoneham, MA. pp. 37–64.

APPENDIX 2. DETAILED SCORING TABLES WITH JUSTIFICATIONS FOR MARINE INVERTEBRATES

Table A4. Marine invertebrates sub-group scores for EXPOSURE scoring criteria, the column labelled "S" indicates the score assigned (note: species lists are not exhaustive; scores with a "P" indicate a precautionary score due to knowledge gaps).

								EXPOSURE C	riteri	a		
	50B-G		L	Maritime example species	Co	oncentration (aggregation)	N	lobility and/or site fidelity	s	ea surface interacting	<i></i>	Seafloor or vegetation interacting
1	2	3	4		s	Justification	S	Justification	s	Justification	s	Justification
			Porifera	Sponges [CL. Demospongiae, Calcarea]	1	Sponges form aggregations (Brusca and Brusca 1990).	1	By definition, sessile sub- groups are immobile.	1	Intertidal sessile organisms will have regular contact with the sea surface as the tide moves in and out.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.
			Cnidaria	Colonial hydroids [Hydrozoa]; Stalked jellyfish [Staurozoa]	1	Initial settled polyps may undergo a period of asexual reproduction which forms colonies (Gosner 1971). Hydroids form clumps (Hughes 1977).	1	By definition, sessile sub- groups are immobile.	1	Intertidal sessile organisms will have regular contact with the sea surface as the tide moves in and out.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.
Intertidal	Rock and rubble dwellers	Sessile (attached to hard substrate)	Worms	Tube worms [Polychaeta]	1	Some are gregarious (e.g., Eunicidae) and others form extensive shelves and reefs (e.g., Sabellariidae) (Brusca and Brusca 1990).	1	By definition, sessile sub- groups are immobile.	1	Intertidal sessile organisms will have regular contact with the sea surface as the tide moves in and out.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.
			Lophophorates	Marine bryozoans [Bryozoa]; Lampshells [Branchiopoda]	1	Bryozoans are colonial (Gosner 1971). Branchiopods tend to aggregate (Gosner 1971).	1	By definition, sessile sub- groups are immobile.	1	Intertidal sessile organisms will have regular contact with the sea surface as the tide moves in and out.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.
			Mollusca	Oysters, Mussels [Bivalvia]	1	Oysters and mussels form beds (Brusca and Brusca 1990).	1	By definition, sessile sub- groups are immobile.	1	Intertidal sessile organisms will have regular contact with the sea surface as the tide moves in and out.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.

								EXPOSURE C	riteria	a		
	SOB-G		-	Maritime example species	Co	oncentration (aggregation)	N	lobility and/or site fidelity	S	ea surface interacting	5	Seafloor or vegetation interacting
1	2	3	4		s	Justification	S	Justification	s	Justification	S	Justification
		Sessile (attached to hard substrate)	Hemichordata	Sea peaches, Sea squirts [Ascidiacea]	1	Ascidians may be solitary or colonial. In the order Aplousobranchia all species are colonial (e.g., <i>Didemnum vexillum</i>). The order Stolidobranchia includes solitary (e.g., <i>Molgula manhattensis</i>) and colonial species (e.g., <i>Botryllus schlosseri</i>) (Shenkar and Swalla 2011).	1	By definition, sessile sub- groups are immobile.	1	Intertidal sessile organisms will have regular contact with the sea surface as the tide moves in and out.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.
Intertidal	Rock and rubble dwellers		Arthropoda	Barnacles [CL. Hexanauplia]	1	Encrusts in aggregations on hard substrates (Gosner 1971). Gregarious recruitment (Burke 1986).	1	By definition, sessile sub- groups are immobile.	1	Intertidal sessile organisms will have regular contact with the sea surface as the tide moves in and out.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.
		Low mobility	Cnidaria	Anemones [Anthozoa]	1	Solitary or colonial (Brusca and Brusca 1990).	1	Species in this sub-group exhibit low mobility. Anemones move at a slow pace (Gosner 1971). Adults move very little, juveniles move more often to find suitable habitat. Anemones often persist even while habitat conditions change and once situated near a prey source, have the potential to occupy the site for many years (Sebens 1983).	1	Intertidal organisms will have regular contact with the sea surface as the tide moves in and out. Anemones may live in the littoral zone so will have interaction with the sea surface as the tide moves in and out (Gosner 1971).	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.

	SUB							EXPOSURE C	riteria	a		
	50B-0		L	Maritime example species	Co	oncentration (aggregation)	N	lobility and/or site fidelity	S	ea surface interacting	\$	Seafloor or vegetation interacting
1	2	3	4		S	Justification	S	Justification	s	Justification	s	Justification
			Worms	Bloodworms [Polychaeta]; Flatworms [Platyhelminthes]; Nemertean worms	1	Bloodworms can occur in high densities. Polychaetes form breeding aggregations (Heip 1975). Turbellarian flatworms aggregate (Boaden 1995). Nemerteans are gregarious, which may be related to reproduction events, or the focus on a suitable microhabitat (Gonzalez- Cueto et al. 2014).	1	Species in this sub-group exhibit low mobility. Polychaetes tend to show fidelity to the same habitat types rather than geographic fidelity (Kupriyanova and Badyaev 1998). Some turbellarian flatworms migrate vertically with the seasons and the tide (Boaden 1995).	1	Intertidal organisms will have regular contact with the sea surface as the tide moves in and out.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.
Intertidal	Rock and rubble dwellers	Low mobility	Mollusca	Chitons [Polyplacophora]; Whelks, Limpets, Snails [Gastropoda]	1	Dog Whelks (<i>Nucella lapillus</i>) form aggregations on open rocks. They also form breeding aggregations (Feare 1971). <i>Leptochiton</i> sp. are solitary. Limpets have gregarious settlement (Brusca et al. 2003). Gastropods can be highly aggregated particularly during breeding (Spight 1974, Heip 1975).	1	Species in this sub-group exhibit low mobility. Some chitons exhibit site fidelity, however site fidelity decreases as food availability decreases (Montecinos et al. 2020). Some gastropods return to the same breeding site and a juvenile breeding for the first time is likely to return to near where it hatched (Spight 1974). Some limpets travel as much as 5 feet at night or at high tide and return to their original position (Brusca et al. 2003).	1	Intertidal organisms will have regular contact with the sea surface as the tide moves in and out.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.
Intertidal	Rock and rubble dwellers	Low mobility	Echinodermata	Sea stars, [Asteroidea]; Sea urchins [Echinoidea]; Sea cucumbers [Holothuroidea]	1	Sea urchins aggregate for feeding and defense (Vadas 1986). Sea stars form feeding aggregations (Scheibling and Lauzon-Guay 2007). Sea cucumbers form beds to improve reproductive success (Fisheries and Oceans Canada 2019).	1	Species in this sub-group exhibit low mobility. Sea urchins form migrating feeding aggregations, grazing on macrophytes and sea stars will follow them, feeding on mussels exposed from the grazed kelp (Scheibling and Lauzon-Guay 2007).	1	Intertidal organisms will have regular contact with the sea surface as the tide moves in and out.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation. All echinoderms will be in constant interaction with the sea floor (Brusca and Brusca 1990).

								EXPOSURE C	riteria	a		
	50B-G		L	Maritime example species	Co	oncentration (aggregation)	M	obility and/or site fidelity	S	ea surface interacting	s	Seafloor or vegetation interacting
1	2	3	4		S	Justification	S	Justification	s	Justification	S	Justification
			Arthropoda	Amphipods [Amphipoda]; Isopods [Isopoda]	1	Most amphipods and isopods are gregarious (Brusca and Brusca 1990).	1	Some amphipod species are highly mobile relative to others, when searching for food and mates, but overall species in this sub-group exhibit low mobility. Scavenging amphipods constantly search for food, and herbivorous amphipods move between living macrophytes and plant detritus (Beermann et al. 2015).	1	Intertidal organisms will have regular contact with the sea surface as the tide moves in and out.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation. Amphipods and isopods interact regularly with the sea floor and vegetation (Brusca and Brusca 1990).
		High mobility	Arthropoda	Crabs, Lobsters [Decapoda]	1	Most decapods live singly, but aggregate during mating season (Brusca and Brusca 1990). Berried Lobsters off the coast of Grand Manan, NB have been observed aggregating in the warmer, shallower waters (Campbell 1990).	1P	Despite being a highly mobile species, in some areas, female Lobsters exhibit site fidelity by migrating seasonally for mating and spawning (Campbell 1990).	1	Intertidal organisms will have regular contact with the sea surface as the tide moves in and out.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.
Intertidal	Sediment infauna	Low mobility	Worms	Sandworms, Lugworms, other burrowers [Polychaeta]; Nemertean worms [Paleonemertea]; Sipuncula worms [Sipunculidea]; Flatworms [Platyhelminthes]	1	Juvenile lugworms tend to aggregate away from adults, and have a higher survival rate in areas not dominated by adults (Hardege et al. 1998). Nemertean worms often aggregate before fertilization occurs (Thiel and Junoy 2006). Sipunculidea are usually reclusive (Brusca and Brusca 1990). Turbellarian flatworms form aggregations (Boaden 1995).	1	Species in this sub-group exhibit low mobility. Polychaetes tend to show fidelity to the same habitat types rather than geographic fidelity (Kupriyanova and Badyaev 1998).	1	Intertidal organisms will have regular contact with the sea surface as the tide moves in and out. Sediment infauna can maintain burrows at the sediment-water interface for respiration, feeding, and to ventilate/flush out their burrows (Hull 2019).	1	By definition, sediment infauna will interact with the seafloor/vegetation. Sipunculeans burrow into the sediments or beneath stones or in algal holdfasts so will have constant contact with the seafloor/vegetation (Brusca and Brusca 1990).

								EXPOSURE C	riteria	a		
	SOB-G	ROUPLEVE	L	Maritime example species	Co	oncentration (aggregation)	N	obility and/or site fidelity	S	ea surface interacting	5	Seafloor or vegetation interacting
1	2	3	4		s	Justification	S	Justification	s	Justification	S	Justification
			Mollusca	Clams, Astartes [Bivalvia]; Moonsnails [Gastropoda]	1	Gastropods can be highly aggregated particularly during breeding (Spight 1974). Clams aggregate in dense beds (Bowen and Hunt 2009).	1	Species in this sub-group exhibit low mobility. Some gastropods return to the same breeding site and a juvenile breeding for the first time is likely to return to near where it hatched (Spight 1974). Infaunal clams move up and down vertically in the sediment related to seasonal and tidal cues. Horizontal movement does occur for some species (<i>Mercenaria mercenaria</i>), but triggers for this movement aren't fully known (Tettelbach et al. 2017).	1	Intertidal organisms will have regular contact with the sea surface as the tide moves in and out. Sediment infauna can maintain burrows at the sediment-water interface for respiration, feeding, and to ventilate/flush out their burrows (Hull 2019).	1	By definition, sediment infauna will interact with the seafloor/vegetation.
Intertidal	Sediment infauna	Low mobility	Arthropoda	Mud Crab [Decapoda, Panopeidae]; Tube- building gammarid amphipods [Amphipoda]	1	Tube building amphipods usually only co-habitate with mate or offspring in their tube, but in favourable feeding locations, there may be high densities of tubes resulting in frequent intraspecific interactions (Beermann et al. 2015). Most decapods live singly, except during mating season (Brusca and Brusca 1990).	1	Species in this sub-group exhibit low mobility. Tube-building amphipods are semi-sessile, and usually have distinct feeding territories around their tube openings (Beermann et al. 2015). Mud Crabs exhibit habitat selectivity for muddy substrates (Gehrels et al. 2016) and exhibit limited (< 2 km) alongshore movement (Bonine et al. 2008).	1	Intertidal organisms will have regular contact with the sea surface as the tide moves in and out. Sediment infauna can maintain burrows at the sediment-water interface for respiration, feeding, and to ventilate/flush out their burrows (Hull 2019).	1	By definition, sediment infauna will interact with the seafloor/vegetation.

								EXPOSURE C	riteria	a		
	SOB-G		L	Maritime example species	Co	oncentration (aggregation)	M	obility and/or site fidelity	S	ea surface interacting	s	eafloor or vegetation interacting
1	2	3	4		s	Justification	s	Justification	s	Justification	s	Justification
	Sediment epifauna		Cnidaria	Starlet Anemones, Sand Anemones [Anthozoa]	1	Solitary or colonial (Brusca and Brusca 1990).	1	Species in this sub-group exhibit low mobility. Anemones move at a slow pace (Gosner 1971). Adults move very little; juveniles move more often to find suitable habitat (Gosner 1971). Anemones often persist even while habitat conditions change and once situated near a prey source, have the potential to occupy the site for many years (Sebens 1983).	1	Intertidal organisms will have regular contact with the sea surface as the tide moves in and out. Anemones may live in the littoral zone so will have interaction with the sea surface as the tide moves in and out (Gosner 1971).	1	By definition, sediment epifauna will interact with the seafloor/vegetation.
Intertidal	Sediment epifauna	Low mobility	Mollusca	Nudibranchs [Gastropoda, Nudibranchia]; Snails [Gastropoda]; Scallops [Bivalvia]	1	Gastropods can be highly aggregated particularly during breeding (Spight 1974). Scallops form aggregations and have gregarious recruitment (Carey and Stokesbury 2011). Nudibranchs form breeding aggregations (Claverie and Kamenos 2008).	1	Species in this sub–group exhibit low mobility. Some gastropods return to the same breeding site and a juvenile breeding for the first time is likely to return to near where it hatched (Spight 1974). There is limited evidence that nudibranchs may form spawning migrations (Claverie and Kamenos 2008).	1	Intertidal organisms will have regular contact with the sea surface as the tide moves in and out.	1	By definition, sediment epifauna will interact with the seafloor/vegetation.
			Echinodermata	Brittle stars [Ophiuroidea]; Sea stars [Asteroidea]; Sea cucumbers [Holothuroidea]	1	Sea cucumbers gather in beds for improved reproductive success (Fisheries and Oceans Canada 2019). Ophiuroidea and Asteroidea form feeding aggregations (Scheibling and Lauzon- Guay 2007).	1	Species in this sub-group exhibit low mobility. Some sea stars are opportunistic predators and will detect prey at a distance via chemoreception and move to those locations (Scheibling and Lauzon- Guay 2007).	1	Intertidal organisms will have regular contact with the sea surface as the tide moves in and out.	1	By definition, sediment epifauna will interact with the seafloor/vegetation.

	SUB-GROUP LEVEL				EXPOSURE Criteria										
	50B-G		-	Maritime example species	Co	oncentration (aggregation)	M	lobility and/or site fidelity	S	ea surface interacting	Seafloor or vegetation interacting				
1	2	3	4		S	Justification	S	Justification	s	Justification	S	Justification			
			Arthropoda	Hermit crabs [Decapoda]; Sand fleas and other amphipods [Amphipoda]; Sea spiders [Pycnogonida]; Isopods [Isopoda]	1	Most decapods live singly, except during mating season (Brusca and Brusca 1990). Most amphipods and isopods are gregarious (Brusca and Brusca 1990). Pycnogonida can be abundant in small patches and may form masses of several hundred where they are crawling over each other (Brescia and Tunnicliffe 1998).	1	Some amphipod species are highly mobile relative to others, when searching for food and mates, but overall species in this sub-group exhibit low mobility. Scavenging amphipods constantly search for food, and herbivorous amphipods move between living macrophytes and plant detritus (Beermann et al. 2015).	1	Intertidal organisms will have regular contact with the sea surface as the tide moves in and out.	1	By definition, sediment epifauna will interact with the seafloor/vegetation.			
Intertidal	Sediment epifauna	High mobility	Arthropoda	Crabs, Lobsters [Decapoda]	1	Most decapods live singly, except during mating season (Brusca and Brusca 1990). Berried, female Lobsters off the coast of Grand Manan, NB have been observed aggregating in the warmer, shallower waters (Campbell 1990).	1P	Despite being a highly mobile species, in some areas, female Lobsters exhibit site fidelity by migrating seasonally for mating and spawning (Campbell 1990).	1	Intertidal organisms will have regular contact with the sea surface as the tide moves in and out.	1	By definition, sediment epifauna will interact with the seafloor/vegetation.			
Subtidal	Rock and	Sessile (attached	Porifera	Boring sponges, Breadcrumb sponges, Encrusting sponges [CL. Demospongiae, Calcarea]	1	Sponges form aggregations (Brusca and Brusca 1990).	1	By definition, sessile sub– groups are immobile.	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.			
benthic	Rock and rubble dwellers	to hard substrate)	Cnidaria	Colonial hydroids [Hydrozoa]; Soft corals [Anthozoa]; Stalked jellyfish [Staurozoa]	1	Initial settled polyps may undergo a period of asexual reproduction which forms colonies (Gosner 1971). Hydroids form clumps (Hughes 1977).	1	By definition, sessile sub- groups are immobile.	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.			

					EXPOSURE Criteria									
	SOB-G		L	Maritime example species	Co	oncentration (aggregation)	Mobility and/or site fidelity		Sea surface interacting		Seafloor or vegetation interacting			
1	2	3	4		S	Justification	S	Justification	s	Justification	S	Justification		
			Worms	Tube worms [Polychaeta]	1	Some are gregarious (e.g., Eunicidae) and others form extensive shelves and reefs (e.g., Sabellariidae) (Brusca and Brusca 1990).	1	By definition, sessile sub- groups are immobile.	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.		
			Lophophorates	Marine bryozoans [Bryozoa]; Lampshells [Branchiopoda]	1	Bryozoans are colonial (Gosner 1971). Branchiopods tend to aggregate (Gosner 1971).	1	By definition, sessile sub- groups are immobile.	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.		
Subtidal benthic	Rock and	Sessile (attached	Mollusca	Slipper Limpets [Gastropoda]; Mussels, Oysters, Comb bathyarks [Bivalvia]	1	Many bivalve species form beds that create areas of high biodiversity (Craeymeersch and Jansen 2019). Oysters and mussels form beds (Brusca and Brusca 1990). Slipper Limpets (<i>Crepidula</i> sp.) have gregarious settlement (McGee and Targett 1989).	1	By definition, sessile sub- groups are immobile.	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.		
	Rock and rubble dwellers	to hard substrate)	Hemichordata	Ascidians (Tunicates, Sea squirts, Sea grapes) [Ascidiacea]	1	Ascidians may be solitary or colonial. In the order Aplousobranchia all species are colonial (e.g., <i>Didemnum vexillum</i>). The order Stolidobranchia includes solitary (e.g., <i>Molgula manhattensis</i>) and colonial species (e.g., <i>Botryllus schlosseri</i>) (Shenkar and Swalla 2011).	1	By definition, sessile sub- groups are immobile.	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.		

	SUB C				EXPOSURE Criteria								
	308-0		L	Maritime example species	Co	oncentration (aggregation)	Mobility and/or site fidelity		S	ea surface interacting	Seafloor or vegetation interacting		
1	2	3	4		s	Justification	S	Justification	s	Justification	s	Justification	
			Arthropoda	Barnacles [CL. Hexanauplia]	1	Encrusts hard substrates (Gosner 1971). Gregarious recruitment (Burke 1986).	1	By definition, sessile sub- groups are immobile.	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.	
			Cnidaria	Anemones [Anthozoa]; Colonial hydroids [Hydrozoa]	1	Species in this sub-group are solitary or colonial (Brusca and Brusca 1990). Hydroids form clumps (Hughes 1977).	1	Species in this sub-group exhibit low mobility. Anemones move at a slow pace (Gosner 1971). Adults move very little, juveniles move more often to find suitable habitat. Anemones often persist even while habitat conditions change and once situated near a prey source, have the potential to occupy the site for many years (Sebens 1983).	Sea surface interactingSJustificationSSubtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.OSubtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.OSubtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.OSubtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.OSubtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.OSubtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.OSubtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.		
Subtidal benthic	Rock and rubble dwellers	Low mobility	Worms	Ribbon worms [Hoplonemertea]; Polychaete worms [Polychaeta]; Flatworms [Platyhelminthes]	1	Worms exhibit gregarious recruitment (Burke 1986). Turbellarian flatworms form aggregations (Boaden 1995).	1	Species in this sub-group exhibit low mobility. Polychaetes tend to show fidelity to the same habitat types rather than geographic fidelity (Kupriyanova and Badyaev 1998).	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.	
			Mollusca	Nudibranchs, Whelks, Periwinkles [Gastropoda]; Scallops [Bivalvia]	1	Gastropods can be highly aggregated particularly during breeding (Spight 1974). Scallops form aggregations and have gregarious recruitment (Carey and Stokesbury 2011). Nudibranchs form breeding aggregations (Claverie and Kamenos 2008).	1	Species in this sub-group exhibit low mobility. Some gastropods return to the same breeding site and a juvenile breeding for the first time is likely to return to near where it hatched (Spight 1974). There is limited evidence that nudibranchs may form spawning migrations (Claverie and Kamenos 2008).	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.	

					EXPOSURE Criteria								
	SUB-G		L	Maritime example species	Co	oncentration (aggregation)	N	lobility and/or site fidelity	Se	ea surface interacting	Seafloor or vegetation interacting		
1	2	3	4		S	Justification	s	Justification	s	Justification	S	Justification	
		Low mobility	Echinodermata	Sea stars [Asteroidea]; Sea cucumbers [Holothuroidea]; Basket stars, Brittle stars [Ophiuroidea]; Sea urchins [Echinoidea]	1	Sea cucumbers gather in beds for improved reproductive success (Fisheries and Oceans Canada 2019). Ophiuroidea and Asteroidea form feeding aggregations (Scheibling and Lauzon- Guay 2007).	tificationSJustificationSJustificationbers gather in proved e success ind Oceans 19).Species in this sub-group exhibit low mobility.Sea urchins form migrating feeding aggregations, grazing on macrophytes and sea stars will follow them, feeding on mussels exposed from the grazed kelp (Scheibling and Lauzon-Guay 2007).0Subtidal benthic species are not expected to inter only intertidal or predators and will detect prey at a distance via chemoreception (Scheibling and Lauzon-Guay 2007).0Subtidal benthic species or fulfill this criterion only intertidal or pelagic species or fulfill this criterionare typically sner 1971). do not n response to s unless mating gregate around Hofmeister and .0Subtidal benthic species of octopus says that home range is difficult to determine because of their highly mobile nature and it is difficult to discern if00Attantic Octopus sers of octopus says that home range is difficult to determine because of their highly mobile nature and it is difficult to discern if0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.			
Subtidal benthic	Rock and rubble dwellers	High mobility	Mollusca	North Atlantic Octopus [Cephalopoda]	1P	Octopuses are typically solitary (Gosner 1971). Octopuses do not aggregate in response to conspecifics unless mating but may aggregate around resources (Hofmeister and Voss 2017).	0	High mobility sub-group. No site fidelity information found for the specific octopuses in this framework. Octopuses may occupy the same shelter for a long period. Movement may be related to food scarcity and females may move to find better shelters (Mereu et al. 2015). Another study on a different species of octopus says that home range is difficult to determine because of their highly mobile nature and it is difficult to discern if moving to another shelter is part of a larger home range (Hofmeister and Voss 2017).	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion. Atlantic Octopus is a benthic deep water species, and adults of this species will not interact with the sea surface (Gosner 1971).	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation. Adult octopuses are benthic deep water species, interacting with the seafloor (Gosner 1971).	

					EXPOSURE Criteria									
	SOB-G	ROUP LEVEL	-	Maritime example species	Co	oncentration (aggregation)	Mobility and/or site fidelity		Sea surface interacting		Seafloor or vegetation interacting			
1	2	3	4		s	Justification	s	Justification	s	Justification	s	Justification		
Subtidal benthic	Rock and rubble dwellers	High mobility	Arthropoda	Crabs, Lobsters [Decapoda]	1	Most decapods live singly, except during mating season (Brusca and Brusca 1990). Berried Lobsters off the coast of Grand Manan, NB have been observed aggregating in the warmer, shallower waters (Campbell 1990).	1P	Despite being a highly mobile species, in some areas, female Lobsters exhibit site fidelity by migrating seasonally for mating and spawning (Campbell 1990).	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	Rock and rubble dwellers live in close association with the seafloor and/or vegetation.		
	Sadimant	Low	Cnidaria	Burrowing anemones [Anthozoa]	1	Solitary or colonial (Brusca and Brusca 1990).	1	Species in this sub-group exhibit low mobility. Anemones move at a slow pace (Gosner 1971). Adults move very little, juveniles move more often to find suitable habitat. Anemones often persist even while habitat conditions change and once situated near a prey source, have the potential to occupy the site for many years (Sebens 1983).	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	By definition, sediment infauna will interact with the seafloor/vegetation.		
	infauna	mobility	Worms	Polychaete worms [Polychaeta]; Flatworms [Platyhelminthes]; Nemertean worms [Pilidiophora]; Peanut worms [Sipunculidea]	1	Worms exhibit gregarious recruitment (Burke 1986). Nemertean worms often aggregate before fertilization occurs (Thiel and Junoy 2006). Sipunculidea are usually reclusive (Brusca and Brusca 1990). Turbellarian flatworms form aggregations (Boaden 1995).	1	Species in this sub-group exhibit low mobility. Polychaetes tend to show fidelity to the same habitat types rather than geographic fidelity (Kupriyanova and Badyaev 1998).	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	By definition, sediment infauna will interact with the seafloor/vegetation.		

	SUB-GROUP LEVEL				EXPOSURE Criteria							
	SOB-G		L	Maritime example species	Co	oncentration (aggregation)	Μ	obility and/or site fidelity	S	ea surface interacting	Seafloor or vegetation interacting	
1	2	3	4		S	Justification	s	Justification	s	Justification	s	Justification
Subtidal benthic			Mollusca	Clams [Bivalvia]	1	Clams aggregate in dense beds (Bowen and Hunt 2009).	1	Species in this sub-group exhibit low mobility. Infaunal clams move up and down in the sediment related to seasonal and tidal cues. Horizontal movement does occur for some species (<i>Mercenaria</i> <i>mercenaria</i>), but triggers for this movement aren't fully known (Tettelbach et al. 2017).	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	By definition, sediment infauna will interact with the seafloor/vegetation.
	Sediment	Low	Echinodermata	Sea cucumbers (e.g., <i>Caudina arenata</i>), [Holothuroidea]	1	Echinoderms commonly form aggregations (Warner 1979).	1	Species in this sub-group exhibit low mobility. Holothurians move through the use of tube feet (locomotor podia) (Brusca and Brusca 1990, Hyman et al. 1955).	Justification Sea surface interacting Seafloor or vegetation interacting on S Justification S -group - Subtidal benthic species are not expected to interact; only intertidal or pelagic species will fulfill this criterion. 1 By definition, sediment infauna will interact with the sea surface; only intertidal or pelagic species will fulfill this criterion. -group 0 Subtidal benthic species are not expected to interact; with the sea surface; only intertidal or pelagic species will fulfill this criterion. 1 By definition, sediment infauna will interact with the seafloor/vegetation. -group 0 Subtidal benthic species are not expected to interact; with the sea surface; only intertidal or pelagic species will fulfill this criterion. 1 By definition, sediment infauna will interact with the sea floor/vegetation. -group 0 Subtidal benthic species are not expected to interact; with the sea surface; only intertidal or pelagic species will fulfill this criterion. 1 By definition, sediment infauna will interact with the sea floor/vegetation. -group 0 Subtidal benthic species are not expected to interact with the sea floor/vegetation. 1 -group 0 Subtidal benthic species will fulfill this criterion. 1 -group 0 Subtidal benthic species will fulfill this criterion. 1 -group 0 Subtidal benthic species will fulfill this criterion. 1			
	infauna	mobility	Arthropoda	Amphipods [Amphipoda, Cumacea]	1	Most amphipods are gregarious (Brusca and Brusca 1990).	1	Some amphipod species are highly mobile relative to others, when searching for food and mates, but overall species in this sub-group exhibit low mobility. Scavenging amphipods constantly search for food, and herbivorous amphipods move between living macrophytes and plant detritus (Beermann et al. 2015).	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	By definition, sediment infauna will interact with the seafloor/vegetation.
			Lophophorates	Marine bryozoans [Bryozoa]; Lampshells [Branchiopoda]	1	Bryozoans are colonial (Gosner 1971). Branchiopods tend to aggregate (Gosner 1971).	1	Species in this sub-group exhibit low mobility.	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	By definition, sediment infauna will interact with the seafloor/vegetation.

					EXPOSURE Criteria							
	50B-G		-	Maritime example species	Co	oncentration (aggregation)	N	lobility and/or site fidelity	Sea surface interacting		Seafloor or vegetation interacting	
1	2	3	4		s	Justification	s	Justification	s	Justification	s	Justification
Subtidal benthic			Cnidaria	Anemones (Anthozoa]	1	Solitary or colonial (Brusca and Brusca 1990).	1	Species in this sub-group exhibit low mobility. Anemones move at a slow pace (Gosner 1971). Adults move very little, juveniles move more often to find suitable habitat. Anemones often persist even while habitat conditions change and once situated near a prey source, have the potential to occupy the site for many years (Sebens 1983).	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	By definition, sediment epifauna will interact with the seafloor/vegetation.
	Sediment epifauna	Low mobility	Worms	Sea mouse [Polychaeta]	0	Solitary (Tyler-Walters and Hughes 2007).	1P	Species in this sub-group exhibit low mobility. Polychaetes tend to show site fidelity to the same habitat types rather than geographic fidelity (Kupriyanova and Badyaev 1998). Sea mouse are scavengers and predators, so expected to move in relation to food (Brusca and Brusca 1990).	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	By definition, sediment epifauna will interact with the seafloor/vegetation.
			Mollusca	Nudibranchs, Whelks, Moonsnails [Gastropoda]; Quahogs, Scallops [Bivalvia]	1	Nudibranchs form breeding aggregations (Claverie and Kamenos 2008). Gastropods can be highly aggregated particularly during breeding (Spight 1974). Scallops form aggregations and have gregarious recruitment (Carey and Stokesbury 2011).	1	Species in this sub-group exhibit low mobility. Some gastropods return to the same breeding site and a juvenile breeding for the first time is likely to return to near where it hatched (Spight 1974). There is limited evidence that nudibranchs may form spawning migrations (Claverie and Kamenos 2008).	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	By definition, sediment epifauna will interact with the seafloor/vegetation.

	SUB-GROUP LEVEL				EXPOSURE Criteria									
	SOB-G		L	Maritime example species	Co	oncentration (aggregation)	N	lobility and/or site fidelity	S	ea surface interacting	Seafloor or vegetation interacting			
1	2	3	4		S	Justification	s	Justification	s	Justification	s	Justification		
Subtidal benthic		Low mobility	Echinodermata	Sand Dollars [Echinoidea]; Cushion stars, Mud stars [Asteroidea]; Sea cucumbers [Holothuroidea]	1	Sea cucumbers gather in beds for improved reproductive success (Fisheries and Oceans Canada 2019). Asteroidea form feeding aggregations (Scheibling and Lauzon-Guay 2007).	1	Species in this sub-group exhibit low mobility.	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	By definition, sediment epifauna will interact with the seafloor/vegetation.		
	Sediment epifauna	High mobility	Arthropoda	Crabs, Lobsters [Decapoda]	1	Most decapods live singly, except during mating season (Brusca and Brusca 1990). Berried, female Lobsters off the coast of Grand Manan, NB have been observed aggregating in the warmer, shallower waters (Campbell 1990).	1P Despite being a highly mobile species, in som areas, female Lobsters exhibit site fidelity by migrating seasonally for mating and spawning (Campbell 1990).	Despite being a highly mobile species, in some areas, female Lobsters exhibit site fidelity by migrating seasonally for mating and spawning (Campbell 1990).	0	Subtidal benthic species are not expected to interact with the sea surface; only intertidal or pelagic species will fulfill this criterion.	1	By definition, sediment epifauna will interact with the seafloor/vegetation.		
Pologic	NI/A	Low	Cnidaria	Moon jellies [Scyphozoa]; Hydromedusae [Hydrozoa]; Jellyfish [Scyphozoa]	1	Some Scyphozoa do form swarms e.g., <i>Cyanea</i> and <i>Chrysaora</i> (Gosner 1971). Jellyfish form spawning aggregations (Hamner et al. 1994).	1	Species in this sub-group exhibit low mobility. Jellyfish (e.g., <i>Aurelia</i> <i>aurita</i>) drift on current (Hamner et al. 1994). Since jellyfish drift passively, they are not expected to exhibit site fidelity.	1	Pelagic species can interact with the sea surface. Medusoid stages of Cnidarians are pelagic, and can interact with the sea surface (Brusca and Brusca 1990).	0	Pelagic species will not interact with the seafloor/vegetation.		
Pelagic		mobility	Ctenophora	Comb jellies [CL. Nuda, Tentaculata]	1	Often occur in dense swarms (Gosner 1971).	1	Species in this sub-group exhibit low mobility. Comb jellies drift with ocean currents, though ctenes provide modest locomotion up and down the water column and to locate richer feeding grounds (Brusca and Brusca 1990).	1	Pelagic species can interact with the sea surface; Ctenophores are found at the ocean surface to depths of 3,000 m (Brusca and Brusca 1990).	0	Pelagic species will generally not interact with the seafloor/vegetation. Ctenophores have no attached, sessile stage (Brusca and Brusca 1990).		
							a							
---------	--------	------------------	-------------	-----------------------------	----	--	----	---	---	---	----	--		
	SUB-G	GROUP LEVE	L	Maritime example species	Co	oncentration (aggregation)	M	lobility and/or site fidelity	S	ea surface interacting	s	Seafloor or vegetation interacting		
1	2	3	4		s	Justification	s	Justification	s	Justification	s	Justification		
Pelagic	N/A	Low mobility	Zooplankton	Copepods, Mysids	1	Zooplankton can be patchy and have aggregations (Folt and Burns 1999).	1P	Species in this sub-group exhibit low mobility. Some studies have shown that copepods may be able to sense oil and actively avoid it (Dupuis and Ucan- Marin 2015).	1	Pelagic species can interact with the sea surface.	0	Species in the pelagic sub-group will generally not interact with the seafloor.		
	N/A	High mobility	Mollusca	Squid [Cephalopoda]	1	Squid are gregarious (Arnold 1962).	1P	Considered a highly mobile species. However, squid migrate to inshore areas to spawn in the spring and winter in deeper, more temperature-stable waters (Brusca and Brusca 1990). Research isn't clear if some populations demonstrate homing behavior when returning to spawn or if it due to sub-population recognition (Buresch et al. 2006).	1	Pelagic species can interact with the sea surface. Squid move up and down in the water column for feeding and spawning (Brusca and Brusca 1990).	1	Fertilized eggs are deposited on the substratum (Brusca and Brusca 1990).		
Pelagic	LARVAE			Porifera		Most invertebrates have pelagic larvae that could form aggregations.	1	Limited ability to swim. Some pelagic larvae can control diel movements up and down in the water column (Miliekovsky 1973).	1	Larvae in the pelagic sub-group can be found interacting with the sea surface.	1P	Precautionary scoring applied to this sub-group. While early pelagic larval stages are not expected to interact with the seafloor, late larval settlement stages will interact with the seafloor/vegetation.		
				enophora		Most invertebrates have pelagic larvae that could form aggregations.	1	Limited ability to swim. Some pelagic larvae can control diel movements up and down in the water column (Miliekovsky 1973).	1	Larvae in the pelagic sub-group can be found interacting with the sea surface.	0	Most members of this sub-group have an entirely pelagic life cycle and larvae are not expected to interact with the seafloor/vegetation.		

					EXPOSURE Criteria										
	SOB-G		-	Maritime example species	Co	oncentration (aggregation)	M	lobility and/or site fidelity	S	ea surface interacting	S	Seafloor or vegetation interacting			
1	2	3	4		s	Justification	s	Justification	s	Justification	s	Justification			
	Pelagic LARVAE			Cnidaria	1	Most invertebrates have pelagic larvae that could form aggregations.	1	Limited ability to swim. Some pelagic larvae can control diel movements up and down in the water column (Miliekovsky 1973).	1	Larvae in the pelagic sub-group can be found interacting with the sea surface.	1P	Precautionary scoring applied to this sub-group. While early pelagic larval stages are not expected to interact with the seafloor, late larval settlement stages will interact with the seafloor/vegetation.			
Delesia				Worms	Most invertebrates have pelagic larvae that could form aggregations.		1	Limited ability to swim. Some pelagic larvae can control diel movements up and down in the water column (Miliekovsky 1973).	1	Larvae in the pelagic sub-group can be found interacting with the sea surface.	1P	Precautionary scoring applied to this sub-group. While early pelagic larval stages are not expected to interact with the seafloor, late larval settlement stages will interact with the seafloor/vegetation.			
Pelagic			Lophophorates		1	Most invertebrates have pelagic larvae that could form aggregations.	1	Limited ability to swim. Some pelagic larvae can control diel movements up and down in the water column (Miliekovsky 1973).	1	Larvae in the pelagic sub-group can be found interacting with the sea surface.	1P	Precautionary scoring applied to this sub-group. While early pelagic larval stages are not expected to interact with the seafloor, late larval settlement stages will interact with the seafloor/vegetation.			
			N	Mollusca	1	Most invertebrates have pelagic larvae that could form aggregations.	1	Limited ability to swim. Some pelagic larvae can control diel movements up and down in the water column (Miliekovsky 1973).	1	Larvae in the pelagic sub-group can be found interacting with the sea surface.	1P	Precautionary scoring applied to this sub-group. While early pelagic larval stages are not expected to interact with the seafloor, late larval settlement stages will interact with the seafloor/vegetation.			

					EXPOSURE Criteria								
	S0B-	GROUP LEVE	L	Maritime example species	Co	oncentration (aggregation)	Μ	obility and/or site fidelity	S	ea surface interacting	Seafloor or vegetation interacting		
1	2	3	4		S	Justification	s	Justification	s	Justification	s	Justification	
	Pelagic LARVAE		Ect	inodermata	1	Most invertebrates have pelagic larvae that could form aggregations.	1	Limited ability to swim. Some pelagic larvae can control diel movements up and down in the water column (Miliekovsky 1973).	1	Larvae in the pelagic sub-group can be found interacting with the sea surface.	1P	Precautionary scoring applied to this sub-group. While early pelagic larval stages are not expected to interact with the seafloor, late larval settlement stages will interact with the seafloor/vegetation.	
Pelagic			He	Hemichordata		Most invertebrates have pelagic larvae that could form aggregations.	1	Limited ability to swim. Some pelagic larvae can control diel movements up and down in the water column (Miliekovsky 1973).	1	Larvae in the pelagic sub-group can be found interacting with the sea surface.	1P	Precautionary scoring applied to this sub-group. While early pelagic larval stages are not expected to interact with the seafloor, late larval settlement stages will interact with the seafloor/vegetation.	
			A	rthropoda	1	Most invertebrates have pelagic larvae that could form aggregations.	1	Limited ability to swim. Some pelagic larvae can control diel movements up and down in the water column (Miliekovsky 1973).	1	Larvae in the pelagic sub-group can be found interacting with the sea surface.	1P	Precautionary scoring applied to this sub-group. While early pelagic larval stages are not expected to interact with the seafloor, late larval settlement stages will interact with the seafloor/vegetation.	

Table A5. Marine invertebrates sub-group scores for SENSITIVITY scoring criteria, the column labelled "S" indicates the score assigned (note: species lists are not exhaustive; scores with a "P" indicate a precautionary score due to knowledge gaps).

	SUB-GROUP LEVEL		_		SENSITIVITY Criteria					
	30B-G			Maritime example species		Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation	Chemical Sensitivity Impairment due to toxicity			
1	2	3	4		s	Justification	s	Justification		
			Porifera	Sponges [CL. Demospongiae, Calcarea]	1	Filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Sponges can accumulate hydrocarbons which may affect growth and overall health (Vad et al. 2018).		
		Cnidari	Cnidaria	Colonial hydroids [Hydrozoa]; Stalked jellyfish [Staurozoa]	1	Filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil. Dahlia anemone may be susceptible to smothering effects and, in the case of thick oil, mortality seems likely (Jackson and Hiscock 2008).	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. The water soluble fractions of Monterey crude oil and drilling muds were reported to cause polyp shedding and other sub-lethal effects in the athecate hydrozoan <i>Tubularia crocea</i> in laboratory tests (Michel and Case 1984, Michel et al. 1986). The athecate hydrozoan <i>Cordylophora caspia</i> may show similar sublethal effects assuming similar physiology.		
Intertidal	Rock and rubble dwellers	Sessile (attached to hard substrate)	Worms	Tube worms [Polychaeta]	1	Some species of polychaete tube worms are filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied as there is little research on this sub-group as a whole. Figuerola et al. (2019) found no significant difference in the ability of marine calcifiers (<i>Spirobis</i> sp.) to build their exoskeleton/shell when comparing a control group to a group growing in sediment contaminated with polycyclic aromatic hydrocarbons (PAHs) and heavy metals. Dorgan et al. (2020) found no significant impact to the feeding behaviour of <i>Owenia fusiformis</i> when exposed to sub-lethal concentrations of the water accommodated fraction (WAF) of oil.		
			Lophophorates	Marine bryozoans [Bryozoa]; Lampshells [Branchiopoda]	1	Filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Although they may tolerate some hydrocarbon pollution, it is likely that <i>Bugula</i> species (Bryozoa) will be adversely affected by oil spills (Tyler-Walters 2005).		

	SUB-GROUP LEVEL					SENSITIVITY Criteria					
	SUB-G	ROUP LEVEL		Maritime example species		Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation	Chemical Sensitivity Impairment due to toxicity				
1	2	3	4		s	Justification	s	Justification			
			Mollusca	Oysters, Mussels [Bivalvia]; Snails [Gastropoda]	1	Bivalves are filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil. Bivalves reduced feeding rates and/or food detection probably as a result of direct ciliary inhibition (Suchanek 1993). Gastropods overweighted with oil may be washed from the substratum where there is increased likelihood of predation or if washed into the supratidal zone, desiccation. Reduced speed and movement may affect ability to elicit an effective predatory response (Suchanek 1993).	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Bayne et al. (1982) reported that sublethal concentrations of petroleum hydrocarbons depressed the rate of feeding in gastropods and bivalves and increased the rates of oxygen consumption. An 11-month monitoring study with mussels from two beaches impacted by the T/V Prestige oil spill found significantly higher DNA damage in mussel gills compared to reference animals. The damage was positively correlated with PAH concentrations in the seawater (Laffon et al. 2006 as cited in Bejarano and Michel 2016).			
Intertidal	Rock and rubble dwellers	Sessile (attached to hard substrate)	Hemichordata	Sea peaches, Sea squirts [Ascidiacea]	1	Most ascidians are filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Styela plicata, a sea squirt, exposed to an acute, low dose (5% and 10%) of marine water-soluble fraction of diesel oil (WFDO) showed slower siphon closure and an inflammatory response (Barbosa et al. 2018).			
			Arthropoda	Barnacles [CL. Hexanauplia]	1	Barnacles are filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Unless directly covered and die from smothering, this sub group appears tolerant to oil (Suchanek 1993). Goose-neck barnacles often seen attached to tar balls (Suchanek 1993). However, Johnson (1977), found that <i>Balanus balanoides</i> had reduced cirral sweeping rates after 6 hours of oil exposure, by 30 hours cirral activity stopped with the valves open and the cirri partially extended, and by 70 hours were dead.			

	SUB-GROUP LEVEL				SENSITIVITY Criteria					
	SUB-G	ROUP LEVEL		Maritime example species		Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity		
1	2	3	4		s	Justification	S	Justification		
			Cnidaria	Anemones [Anthozoa]	1	All cnidaria are carnivorous (Brusca and Brusca 1990), and anemones are typically microphagous suspension feeders with structures that can become clogged with oil. Anemones can be smothered as oil is washed in with the tide (Blackburn et al. 2014).	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. The anemone <i>Actinia equina</i> under chronic oil exposure (2.5 ml/L crude oil), ejected young prematurely, affecting their survival. Ovaries of these adults appear abnormal with few, if any, ova. Chronic treatment also resulted in anemones with mouths and tentacles expanded more, but with a slower response to food (Ormand and Caldwell 1982). <i>Actinia</i> sp. after the Torrey Canyon spill were discoloured, flaccid, easy to detach, and some showed protruding gut structures (Clark and Finley 1977). <i>Anthopleura elegantissima</i> survived an hour of Bunker C oil exposure, possibly due to its wet tissues and mucous coating (Wicksten 1984).		
Intertidal	Rock and rubble dwellers	Low mobility	y Worms	Bloodworms [Polychaeta]; Flatworms [Platyhelminthes]; Nemertean worms	0	Bloodworms, flatworms and nemerteans are not filter or suspension feeders (Brusca and Brusca 1990) so their feeding structures are not expected to become fouled.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. No information on the effects of pollution on bloodworms could be found. There has been very little work on the effects of pollution on turbellaria flatworms (Boaden 1995). In a Monteiro et al. (2018) study on effects of oil-water soluble fraction (WSF) contamination on nematodes, most species experienced a moderate to high-level of mortality. They also found that closely related species had varied responses.		
			Mollusca	Chitons [Polyplacophora]; Whelks, Limpets, Snails [Gastropoda]	0	Most species in this group are herbivory or predatory (macrophagous) feeders (Brusca and Brusca 1990) so their feeding structures are not expected to become fouled. Gastropods overweighted with oil may be washed from the substratum where there is increased likelihood of predation or if washed into the supratidal zone, desiccation. Reduced speed and movement may affect ability to elicit an effective predatory response (Suchanek 1993).	1P	 Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Bayne et al. (1982) reported that sublethal concentrations of petroleum hydrocarbons depressed the rate of feeding in gastropods and bivalves and increased the rates of oxygen consumption. Chitons, limpets and other gastropods experienced die offs after the 1967 Torrey Canyon spill, and the 1987 Nella Dan spill (Suchanek 1993). 		

	SUB-GROUP LEVEL				SENSITIVITY Criteria					
	SUB-G	ROUP LEVEL		Maritime example species		Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity		
1	2	3	4		s	Justification	s	Justification		
		low	Echinodermata	Sea stars [Asteroidea]; Sea urchins [Echinoidea]; Sea cucumbers [Holothuroidea]	1	Most species of sea cucumber are filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Bokn et al. (1993) examined the long-term effects of continuous doses (average hydrocarbon concentrations 129.4 μ g/L and 30.1 μ g/L) of the water accommodated fraction (WAF) of diesel oil on rocky shore populations. The number of <i>Asterias rubens</i> decreased at all tidal levels and <i>Asterias rubens</i> disappeared entirely from upper sublittoral samples in the mesocosm receiving a high dose of WAF diesel oil suggesting a negative effect upon this species caused by exposure to high dose hydrocarbons.		
Intertidal	Rock and rubble dwellers	mobility	Arthropoda	Amphipods [Amphipoda]; Isopods [Isopoda]	0	 Many decapods, amphipods, and isopods are scavengers and herbivores (Brusca and Brusca 1990), and as such have feeding structures that are not expected to become mechanically fouled. Oil deposits on the strand line and amongst seaweed would probably incapacitate and kill, (e.g., by smothering), small crustaceans such as the isopod <i>Talitrus saltator</i> (Budd 2005). Following the Torrey Canyon oil tanker spill in 1967 quantities of <i>Talitrus saltator</i> were found dead at Sennen, Cornwall, as were other scavengers of the strandline, e.g., <i>Ligia</i> and <i>Orchestia</i> (Budd 2005). 	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. In the 1977 Tsesis spill of No. 5 fuel oil and bunker oil, amphipods experienced over 90% mortality, and the few remaining amphipods showed approximately 10% abnormal or undifferentiated embryos, compared with typical levels of 1% (Suchanek 1993).		
		High mobility	Arthropoda	Crabs, Lobsters [Decapoda]	0	Most decapods are scavengers or macrophagous feeders (Brusca and Brusca 1990) and as such do not have feeding structures that are not expected to become fouled by oil. Crabs may be impacted by oil spills by smothering (Blackburn et al. 2014).	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Negative changes in normal feeding behaviour of lobsters have been observed when exposed to 10 μL/L of crude oil (Bejarano and Michel 2016). Crabs and lobsters have significantly reduced populations after oil spills, and many may be stranded on shore. Many crustaceans also burrow into the sediment, where oil can remained buried for decades, and this chronic exposure can lead to impaired feeding, mobility, development, and reproduction (Blackburn et al. 2014).		

				_		SENSITIVITY Criteria					
	SUB-G	ROUP LEVEL		Maritime example species		Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity			
1	2	3	4		s	Justification	s	Justification			
Intertidal	Sediment	Low	Worms	Sandworms, Lugworms, other burrowers [Polychaeta]; Nemertean worms [Paleonemertea]; Sipuncula worms [Sipunculidea]; Flatworms [Platyhelminthes]	0	Many species in this group are direct deposit feeders (Brusca and Brusca 1990) and as such have feeding structures that are not expected to become mechanically fouled.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Hailey (1995) cited substantial kills of <i>Nereis</i> , <i>Cerastoderma, Macoma, Arenicola</i> and <i>Hydrobia</i> as a result of the Sivand oil spill in the Humber estuary in 1983. Chemical sensitivity of polychaetes to oil can vary by species and by oil type. Bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) has been recorded in individuals of <i>Arenicola marina</i> when exposed to the PAH pyrene, however individuals also showed a capacity to metabolize PAHs when returned to uncontaminated environments (Christensen et al. 2002). Lewis et al. (2008) found exposure to crude oil water accommodated fraction (WAF) (equivalent to 0.38 mgL ⁻¹) resulted in reproductive toxicity in <i>A. marina</i> and <i>Nereis</i> <i>virens</i> , which show a reduction in fertilization success to 26.8% and 76% respectively. In both species, the authors also noted reduced post-fertilization development.			
			Mollusca	Clams, Astartes [Bivalvia]; Moonsnails [Gastropoda]	1	Most bivalves are filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil. Bivalves exhibit reduced feeding rates and/or food detection probably as a result of direct ciliary inhibition (Suchanek 1993). Gastropods overweighted with oil may be washed from the substratum where there is increased likelihood of predation or if washed into the supratidal zone (Suchanek 1993).	1Р	 Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Bayne et al. (1982) reported that sublethal concentrations of petroleum hydrocarbons depressed the rate of feeding in gastropods and bivalves and increased the rates of oxygen consumption. In mesocosm studies, <i>Mercenaria mercenaria</i> exposed to 7 ppm to 0.06 ppm water soluble fraction (WSF) crude oil exhibited increased energy expenditure coupled with decreased feeding rates resulting in less energy available for growth and reproduction. All clams in the most polluted condition (7 ppm) died (Keck et al. 1978). Increased energy expenditure coupled with decreased feeding rates results in less energy available for growth and reproduction and has been demonstrated to translate to reduced growth rates in juveniles of the bivalve <i>Mercenaria mercenaria</i> (Keck et al. 1978). 			

	SUB C					SENSITIVI	IY Criteria			
	308-8			Maritime example species	Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation			Chemical Sensitivity Impairment due to toxicity		
1	2	3	4		s	Justification	S	Justification		
	Sediment infauna	Low mobility	Arthropoda	Mud Crab [Decapoda, Panopeidae]; Tube-building gammarid amphipods [Amphipoda]	1	Although some members of this sub group are scavengers or predators, many small crustaceans may be selective deposit feeders (Brusca and Brusca 1990), and would have mouth parts that could become clogged with oil. Tube building amphipods can be suspension/detritus feeders with feeding structures possibly fouled by oil (Brusca and Brusca 1990).	1Р	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Ponat (1975) observed the narcotic effect of crude oil on <i>Gammarus salinus</i> , which reduced the species' oxygen consumption to 40% of normal levels. Juvenile <i>Rhithropanopeus harrisii</i> , an estuarine mud crab, were exposed to non-dispersed and chemically dispersed water accommodated fraction (WAF) of crude oil using Louisiana sweet crude and Corexit® 9500A. In the non- dispersed treatments, the authors were unable to establish LD50, as after 96 h exposure, there was no mortality in any of the WAF treatments (Anderson et al. 2014).		
Intertidal	Sediment epifauna	Low mobility	Cnidaria	Starlet Anemones, Sand anemones [Anthozoa]	1	Anemones are filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil. Dahlia anemone may be susceptible to smothering effects and, in the case of thick oil, mortality seems likely (Jackson and Hiscock 2008).	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Actinia equina under chronic oil exposure (2.5 ml/L crude oil), ejected young prematurely, affecting their survival. Ovaries of these adults appear abnormal with few, if any, ova. Chronic treatment also resulted in anemones with mouths and tentacles expanded more, but with a slower response to food (Ormand and Caldwell 1982). Actinia sp. after the Torrey Canyon spill were discoloured, flaccid, easy to detach, and some showed protruding gut structures (Clark and Finley 1977). Anthopleura elegantissima survived an hour of Bunker C oil exposure, possibly due to its wet tissues and mucous coating (Wicksten 1984). There is not specific information for Starlet and Sand anemones.		

	SUB-GROUP LEVEL				SENSITIVITY Criteria					
	SUB-G	ROUP LEVEL		Maritime example species		Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation	Chemical Sensitivity Impairment due to toxicity			
1	2	3	4		s	Justification	s	Justification		
Intertidal	Sediment epifauna	Low mobility	Mollusca	Nudibranchs [Gastropoda, Nudibranchia]; Snails [Gastropoda]; Scallops [Bivalvia]	1	Bivalves are filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil. Bivalves exhibit reduced feeding rates and/or food detection probably as a result of direct ciliary inhibition (Suchanek 1993). Gastropods overweighted with oil may be washed from the substratum where there is increased likelihood of predation or if washed into the supratidal zone, desiccation (Suchanek 1993).	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Bayne et al. (1982) reported that sublethal concentrations of petroleum hydrocarbons depressed the rate of feeding in gastropods and bivalves and increased the rates of oxygen consumption. An 11-month monitoring study with mussels from two beaches impacted by the T/V Prestige oil spill found significantly higher DNA damage in mussel gills compared to reference animals. The damage was positively correlated with PAH concentrations in the seawater (Laffon et al. 2006 as cited in Bejarano and Michel 2016). The dorid nudibranch, <i>Onchidoris bilamellata</i> , exposed to sea water soluble fraction of Prudhoe Bay crude oil (13–420 ppb) didn't move towards other non-oil exposed aggregated mating nudibranchs, indicating that chemotactic behavior was affected. In another study, the eggs of <i>Onchidoris bilamellata</i> were exposed to sea water soluble fractions of Prudhoe Bay crude oil (0, 8, 27, or 278 ppb), and displayed delayed development at the highest concentration, with close to 50% of the eggs showing abnormalities. All severe abnormalities involved non-encapsulation of the eggs (Hodgins 1978).		
			Echinodermata	Brittle stars [Ophiuroidea]; Sea stars [Asteroidea]; Sea cucumbers [Holothuroidea]	1	Most species of sea cucumber are filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Bokn et al. (1993) examined the long-term effects of diesel water accommodated fraction (WAF) on rocky shore populations. The numbers of <i>Asterias rubens</i> decreased at all tidal levels (even in the control mesocosms during the study) and <i>Asterias rubens</i> disappeared entirely from upper sublittoral samples in the mesocosm receiving high doses of WAF diesel, suggesting a negative effect upon this species caused by the high dose treatment.		

						SENSITIVI	TY Crit	teria
	50B-G	ROUPLEVEL		Maritime example species		Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity
1	2	3	4		s	Justification	s	Justification
Intertidal	Sediment	Low Arthropoda mobility		Hermit crabs [Decapoda]; Sand fleas and other amphipods [Amphipoda]; Sea spiders [Pycnogonida]; Isopods [Isopoda]	0	 Many decapods, amphipods, and isopods are scavengers and herbivores (Brusca and Brusca 1990) with feeding structures that are not expected to become mechanically fouled. Oil deposits on the strand line and amongst seaweed would probably incapacitate and kill, e.g., by smothering, small crustaceans such as [isopod] <i>Talitrus saltator</i>. Following the Torrey Canyon oil tanker spill in 1967 quantities of <i>Talitrus saltator</i> were found dead at Sennen, Cornwall, as were other scavengers of the strandline, e.g., <i>Ligia</i> and Orchestia (Budd 2005). 	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Amphipods and crabs were no longer found in oiled grass and oil-soaked sands after a 1975 spill of crude oil emulsion in the Florida Keys (Bejarano and Michel 2016). Amphipods associated with wrack experienced mass mortality after the T/B Peck Slip bunker C spill in Peurto Rico (Bejarano and Michel 2016).
	epifauna	High mobility	Arthropoda	opoda Crabs, Lobsters [Decapoda]		Most decapods are scavengers or macrophagous feeders (Brusca and Brusca 1990) with feeding structures that are not expected to become mechanically fouled.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Negative changes in normal feeding behaviour of lobsters have been observed when exposed to 10 µL/L of crude oil (Bejarano and Michel 2016). Crabs and lobsters have significantly reduced populations after oil spills, and many may be stranded on shore. Many crustaceans also burrow into the sediment, where oil can remain buried for decades, and this chronic exposure can lead to impaired feeding, mobility, development, and reproduction (Blackburn et al. 2014).
Subtidal benthic	Rock and rubble dwellers	Sessile (attached to hard substrate)	Porifera	Boring sponges, Breadcrumb sponges, Encrusting sponges [CL. Demospongiae, Calcarea]	1	Sponges are filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	 Precautionary scoring applied due to limited research on oil toxicity in this sub-group. In shallow water sponges, polycyclic aromatic hydrocarbons (PAHs) have been shown to disturb sponge larval settlement and development. Oil and dispersants can persist in sediments, which may be a concern for deep sea sponges. Deep sea sponges can be slow to recover from anthropogenic activities. Knowledge is lacking for more specific effects of oil on deep sea sponges (Vad et al. 2018).
Subtidal benthic	Rock and rubble dwellers	Sessile (attached to hard substrate)	Cnidaria	Colonial hydroids [Hydrozoa]; Soft corals [Anthozoa]; Stalked jellyfish [Staurozoa]	1	Filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. The water soluble fractions of Monterey crude oil and drilling muds were reported to cause polyp shedding and other sub-lethal effects in the athecate <i>Tubularia crocea</i> in laboratory tests (Michel and Case 1984, Michel et al. 1986). The athecate <i>Cordylophora caspia</i> may show similar sublethal effects assuming similar physiology.

						SENSITIVI	TY Crit	teria
	SUB-G	ROUP LEVEL		Maritime example species		Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity
1	2	3	4		s	Justification	s	Justification
			Worms	Tube worms [Polychaeta]	1	Many species of tube building polychaete are suspension or filter feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied as there is little research on this sub-group as a whole. Figuerola et al. (2019) found no significant difference in the ability of marine calcifiers (<i>Spirobis</i> sp.) to build their exoskeleton/shell when comparing a control group to a group growing in sediment contaminated with polycyclic aromatic hydrocarbons (PAHs) and heavy metals. Dorgan et al. (2020) found no significant impact to the feeding behaviour of <i>Owenia fusiformis</i> when exposed to sub-lethal concentrations of the water accommodated fraction (WAF) of oil.
			Lophophorates	Marine bryozoans [Bryozoa]; Lampshells [Branchiopoda]	1	Lampshells are filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Although they may tolerate some hydrocarbon pollution, it is likely that <i>Bugula</i> species will be adversely affected by oil spills (Tyler-Walters 2005).
			Mollusca	Slipper limpets [Gastropoda]; Mussels, Oysters, Comb bathyarks [Bivalvia]	1	Bivalves are filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil. Bivalves exhibit reduced feeding rates and/or food detection probably as a result of direct ciliary inhibition (Suchanek 1993). Gastropods overweighted with oil may be washed from the substratum where there is increased likelihood of predation or if washed into the supratidal zone, desiccation. Reduced speed and movement may affect ability to elicit an effective predatory response (Suchanek 1993).	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Bayne et al. (1982) reported that sublethal concentrations of petroleum hydrocarbons depressed the rate of feeding in gastropods and bivalves and increased the rates of oxygen consumption. An 11-month monitoring study with mussels from two beaches impacted by the T/V Prestige oil spill found significantly higher DNA damage in mussel gills compared to reference animals. The damage was positively correlated with PAH concentrations in the seawater (Laffon et al. 2006 as cited in Bejarano and Michel 2016).
Subtidal benthic	Rock and rubble dwellers	Sessile (attached to hard substrate)	Hemichordata	Ascidians (tunicates, sea squirts, sea grapes) [Ascidiacea]	1	Most ascidians are filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Styela plicata, a sea squirt, exposed to an acute, low dose (5% and 10%) of marine water-soluble fraction of diesel oil (WFDO) showed slower siphon closure and an inflammatory response (Barbosa et al. 2018).

	SUB-GROUP LEVEL				SENSITIVITY Criteria					
	SUB-G	ROUP LEVEL		Maritime example species		Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation	Chemical Sensitivity Impairment due to toxicity			
1	2	3	4		s	S Justification		Justification		
			Arthropoda	Barnacles [CL. Hexanauplia]	1	Barnacles are filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied as conflicting information present in literature. Unless directly covered and die from smothering, tolerant to oil (Suchanek 1993). Goose barnacles often seen attached to tar balls (Suchanek 1993). However, Johnson (1977), found that <i>Balanus balanoides</i> had reduced cirral sweeping rates after 6 hours of oil exposure, by 30 hours cirral activity stopped with the valves open and the cirri partially extended, and by 70 hours were dead.		
		Low mobility	Cnidaria	Anemones [Anthozoa]; Colonial hydroids [Hydrozoa]	1	Most species of cnidaria are suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.		Precautionary scoring applied due to limited research on oil toxicity in this sub-group. <i>Actinia equina</i> under chronic oil exposure (2.5 ml/L crude oil), ejected young prematurely, affecting their survival. Ovaries of these adults appear abnormal with few, if any, ova. Chronic treatment also resulted in anemones with mouths and tentacles expanded more, but with a slower response to food (Ormand and Caldwell 1982). <i>Actinia</i> sp. after the Torrey Canyon spill were discoloured, flaccid, easy to detach, and some showed protruding gut structures (Clark and Finley 1977). <i>Anthopleura elegantissima</i> survived an hour of Bunker C oil exposure, possibly due to its wet tissues and mucous coating (Wicksten 1984).		
Subtidal benthic	Rock and rubble dwellers	Low mobility	Worms	Ribbon worms [Hoplonemertea]; Polychaete worms [Polychaeta]; Flatworms [Platyhelminthes]	1	Ribbon worms are opportunists/scavengers or predators (Brusca and Brusca 1990). Polychaetes have a variety of feeding strategies (surface deposit feeders, subsurface deposit feeders, filter/suspension feeders, opportunists/scavengers, predators) (Brusca and Brusca 1990). Filter or suspension feeding polychaetes may have feeding structures that can become clogged by oil. Plathyhelminths are opportunists/scavengers or predators (Degan and Faulwetter 2019).		Precautionary scoring applied due to limited research on oil toxicity in this sub-group. There has been very little work on the effects of pollution on turbellaria flatworms (Boaden 1995). In a Monteiro et al. (2018) study on effects of oil-water soluble fraction (WSF) contamination on nematodes, most species experienced a moderate to high-level of mortality. They also found that closely related species had varied responses. No information on the effects of oil on ribbon worms could be found.		

	SUB-GROUP LEVEL					SENSITIVITY Criteria					
	SOB-G	ROUP LEVEL		Maritime example species		Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity			
1	2	3	4		s	Justification		Justification			
			Mollusca	Nudibranchs, Whelks, Periwinkles [Gastropoda]; Scallops [Bivalvia]	1	Scallops are filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil. Bivalves exhibit reduced feeding rates and/or food detection probably as a result of direct ciliary inhibition (Suchanek 1993). Gastropods overweighted with oil may be washed from the substratum where there is increased likelihood of predation or if washed into the supratidal zone, desiccation. Reduced speed and movement may affect ability to elicit an effective predatory response (Suchanek 1993).	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Bayne et al. (1982) reported that sublethal concentrations of petroleum hydrocarbons depressed the rate of feeding in gastropods and bivalves and increased the rates of oxygen consumption. Increased energy expenditure coupled with decreased feeding rates results in less energy available for growth and reproduction and has been demonstrated to translate to reduced growth rates in juveniles of the bivalve <i>Mercenaria mercenaria</i> (Keck et al. 1978). The dorid nudibranch, <i>Onchidoris bilamellata</i> , exposed to sea water soluble fraction of Prudhoe Bay crude oil (13–420 ppb) did not move towards other non-oil exposed aggregated mating nudibranchs, indicating that chemotactic behavior was affected. In another study, the eggs of <i>Onchidoris bilamellata</i> were exposed to sea water soluble fractions of Prudhoe Bay crude oil (0, 8, 27, or 278 ppb), and displayed delayed development at the highest concentration, with close to 50% of the eggs showing abnormalities. All severe abnormalities involved non-encapsulation of the eggs (Hodgins 1978).			
Subtidal	Rock and rubble	Low mobility	Echinodermata	Sea stars [Asteroidea]; Sea cucumbers [Holothuroidea]; Basket stars, Brittle stars [Ophiuroidea]; Sea urchins [Echinoidea]	1	Most species are filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Sea stars have exhibited reduction in feeding rates, as well as reduced growth rates when exposed to concentrations of crude oil greater than 0.12 ppm. Additionally, sea urchins have showed embryological abnormalities (delayed embryogenesis, asynchronism and production of non-viable larvae) when exposed to hydrocarbon concentrations of 10–30 mg / L (Suchanek 1993).			
	uwellers	High mobility	Mollusca	North Atlantic octopus [Cephalopoda]	0	This sub-group does not feed using filter or suspension feeding structures (Brusca and Brusca 1990).	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. As referred to in Lacoue-Labarthe et al. (2016), there are very few toxicological studies examining the effect of oil on cephalopods. Of these, Long and Holdway (2002) found that after exposing <i>Octopus pallidus</i> hatchlings to crude water accommodated fraction (WAF), LC ₅₀ was 1.8 ppm in a 48 h exposure test.			

	SUB-GROUP LEVEL					SENSITIVITY Criteria					
	SOB-G			Maritime example species		Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity			
1	2	3	4		s	Justification	s	Justification			
			Arthropoda	Crabs, Lobsters, [Decapoda]	0	Most decapods are scavengers or macrophagous feeders with feeding structures that are not expected to become clogged with oil (Brusca and Brusca 1990).	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Negative changes in normal feeding behaviour of Lobsters have been observed when exposed to 10µL/L of crude oil (Bejarano and Michel 2016). Crabs and Lobsters have significantly reduced populations after oil spills, and many may be stranded on shore. Many crustaceans also burrow into the sediment, where oil can remained buried for decades, and this chronic exposure can lead to impaired feeding, mobility, development, and reproduction (Blackburn et al. 2014).			
			Cnidaria	Burrowing anemones [Anthozoa]	1	Filter or suspension feeders (Brusca and Brusca 1990), with feeding structures that can become clogged by oil. Dahlia anemone may be susceptible to smothering effects and, in the case of thick oil, mortality seems likely (Jackson and Hiscock 2008).	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. The anemone, <i>Actinia equine</i> , under chronic oil exposure (2.5 ml/L crude oil), ejected young prematurely, affecting their survival. Ovaries of these adults appear abnormal with few, if any, ova. Chronic treatment also resulted in anemones with mouths and tentacles expanded more, but with a slower response to food (Ormand and Caldwell 1982). <i>Actinia</i> sp. after the Torrey Canyon spill were discoloured, flaccid, easy to detach, and some showed protruding gut structures (Clark and Finley 1977). The aggregating anemone, <i>Anthopleura elegantissima</i> survived an hour of Bunker C oil exposure, possibly due to its wet tissues and mucous coating (Wicksten 1984).			
Subtidal benthic	Sediment infauna	Low mobility	Worms	Polychaete worms [Polychaeta]; Flatworms [Platyhelminthes]; Nemertean worms [Pilidiophora]; Peanut worms [Sipunculidea]	1	Tube building polychaete worms such as Sabellidae are suspension feeders (Brusca and Brusca1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Hailey (1995) cited substantial kills of <i>Nereis</i> , <i>Cerastoderma</i> , <i>Macoma</i> , <i>Arenicola</i> and <i>Hydrobia</i> as a result of the Sivand oil spill in the Humber estuary in 1983.			
			Mollusca	Clams [Bivalvia]	1	Filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Clams exhibit slower burrowing rates, disorientation, and reduced activity when exposed to oil (Bejarano and Michel 2016). Most species of clams were depleted following the 1978 Amoco Cadiz spill of light crude oil in France (Bejarano and Michel 2016).			

					SENSITIVITY Criteria					
	SUB-G	ROUP LEVEL		Maritime example species		Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation	Chemical Sensitivity Impairment due to toxicity			
1	2	3	4		s	Justification	s	Justification		
			Echinodermata	Sea cucumbers (e.g., <i>Caudina arenata</i>), [Holothuroidea]	1	Most species are filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Sea cucumbers remain understudied. In general, studies on echinoderms show consistent, acute impacts on benthic community's responses to oil spills, likely due to absorbing toxins through large areas of exposed epidermis (Blackburn et al. 2014, Suchanek 1993).		
Subtidal benthic	Sediment infauna	Low mobility	Arthropoda	Amphipods [Amphipoda, Cumacea]	1	Some species of amphipod (e.g., <i>Coropium volutator</i>) are suspension feeders (Neal and Avant 2006) and have feeding structures that can become clogged with oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Mean acute 96 h LC ₅₀ values for exposure of the amphipod, <i>Allorchestes compressa</i> , to a water accommodated fraction (WAF) of crude oil was 311,000 ppm (Gulec et al. 1997). Lowest observable effect concentration (LOEC) of WAF of crude oil for the amphipod was 31,250 ppm, and the authors stipulate that the concentration of oil (crude) below the surface in a spill would likely be below the LOEC shown above (Gulec et al. 1997). Ho et al. (1999) performed a 96 h static mortality sediment toxicity test using the amphipod <i>Ampellisca abdita</i> exposed to polycyclic aromatic hydrocarbon (PAH) laden sediment collected following a spill of over 3 million liters of No. 2 fuel oil. Sediment was collected on days 6, 13, 33, 62, 132, 189, and 270 post spill. Mortality as high as 95% was recorded up to 132 days following the spill. Toxicity was correlated with concentrations of PAHs in the sediment (Ho et al. 1999).		
			Lophophorates	Marine bryozoans [Bryozoa]; Lampshells [Branchiopoda]	1	Filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Little toxicological information has been found relating to bryozoans and oil. Bryozoans are rarely reported when considering the impacts of oil spills (Keesing et al. 2018) and toxicological studies seem to focus primarily on antifouling paint rather than oil. Burns et al. (1993) found that bryozoans were among the species groups that recovered most quickly after being impacted by oil (mangrove roots covered by oil).		

					SENSITIVITY Criteria					
	50B-G			Maritime example species		Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity		
1	2	3	4		s	Justification	s	Justification		
Subtidal benthic			Cnidaria	Anemones [Anthozoa]	1	Filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil. Dahlia anemone may be susceptible to smothering effects and, in the case of thick oil, mortality seems likely (Jackson and Hiscock 2008).	1P	 Precautionary scoring applied due to limited research on oil toxicity in this sub-group. The anemone, <i>Actinia equine</i>, under chronic oil exposure (2.5 ml/L crude oil), ejected young prematurely, affecting their survival. Ovaries of these adults appear abnormal with few, if any, ova. Chronic treatment also resulted in anemones with mouths and tentacles expanded more, but with a slower response to food (Ormand and Caldwell 1982). After the Torrey Canyon spill, <i>Actinia</i> sp. were discoloured, flaccid, easy to detach, and some showed protruding gut structures (Clark and Finley 1977). <i>Anthopleura elegantissima</i> survived an hour of Bunker C oil exposure, possibly due to its wet tissues and mucous coating (Wicksten 1984). 		
			Worms	Sea mouse [Polychaeta]	0	Do not have filter or suspension feeding structures that are expected to be clogged by oil (Tyler-Walters and Hughes 2007).	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group.		
	Sediment epifauna	Low Mobility	Mollusca	Nudibranchs, Whelks, Moonsnails [Gastropoda]; Quahogs, Scallops [Bivalvia]	1	Scallops are filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil. Bivalves exhibit reduced feeding rates and/or food detection probably as a result of direct ciliary inhibition (Suchanek 1993). Gastropods overweighted with oil may be washed from the substratum where there is increased likelihood of predation or if washed into the supratidal zone, desiccation (Suchanek 1993).	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Bayne et al. (1982) reported that sublethal concentrations of petroleum hydrocarbons depressed the rate of feeding in gastropods and bivalves and increased the rates of oxygen consumption. Increased energy expenditure coupled with decreased feeding rates results in less energy available for growth and reproduction and has been demonstrated to translate to reduced growth rates in juveniles of the bivalve <i>Mercenaria mercenaria</i> (Keck et al. 1978). The dorid nudibranch, <i>Onchidoris bilamellata</i> , exposed to sea water soluble fraction of Prudhoe Bay crude oil (13–420 ppb) did not move towards other non-oil exposed aggregated mating nudibranchs, indicating that chemotactic behavior was affected. In another study, the eggs of <i>Onchidoris bilamellata</i> were exposed to sea water soluble fractions of Prudhoe Bay crude oil (0, 8, 27, or 278 ppb), and displayed delayed development at the highest concentration, with close to 50% of the eggs showing abnormalities. All severe abnormalities involved non-encapsulation of the eggs (Hodgins 1978).		

						SENSITIVI	TY Criteria			
	SUB-G	ROUP LEVEL		Maritime example species		Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation	Chemical Sensitivity Impairment due to toxicity			
1	2	3	4		s	Justification	s	Justification		
Subtidal benthic	Sediment epifauna	Low mobility	Echinodermata	Sand dollars [Echinoidea]; Cushion stars, Mud stars [Asteroidea]; Sea cucumbers [Holothuroidea]		Most species are filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Bokn et al. (1993) examined the long-term effects of the water-accommodated fraction (WAF) of diesel oil on rocky shore populations. The numbers of <i>Asterias rubens</i> decreased at all tidal levels (even in the control mesocosms during the study) and <i>Asterias rubens</i> disappeared entirely from upper sublittoral samples in the mesocosm receiving a high dose of WAF diesel oil suggesting a negative effect upon this species caused by the high dose treatment.		
		High mobility	Arthropoda	Crabs, Lobsters [Decapoda]	0	Most decapods are scavengers or macrophagous feeders (Brusca and Brusca 1990) that do not have feeding structures expected to become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Negative changes in normal feeding behaviour of lobsters have been observed when exposed to 10 μL/L of crude oil (Bejarano and Michel 2016). Crabs and lobsters have significantly reduced populations after oil spills, and many may be stranded on shore. Many crustaceans also burrow into the sediment, where oil can remained buried for decades, and this chronic exposure can lead to impaired feeding, mobility, development, and reproduction (Blackburn et al. 2014).		

	SUB-GROUP LEVEL				SENSITIVITY Criteria					
	50B-G	ROUPLEVEL		Maritime example species		Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation	Chemical Sensitivity Impairment due to toxicity			
1	2	3	4		s	S Justification		Justification		
Pelagic	N/A	Low mobility	Cnidaria	Moon jellies [Scyphozoa]; Hydromedusae [Hydrozoa]; Jellyfish [Scyphozoa]	1	Filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Swimming and predator avoidance impaired by oil (Suchanek 1993). Echols et al. (2016), in a 96 h acute toxicity test for lethal response to crude oil, found that ephyrae of the <i>Aurelia aurita</i> (Schyphozoa) showed no acute toxic response ($LC_{50} > 100\%$ water accommodated fraction (WAF). The authors measured the total polycyclic aromatic hydrocarbons (TPAHs) as the sum of 46 PAHs, which averaged out to be 21.1 and 152 µg TPAH/L for WAFs of weathered and unweathered oil, respectively (Echols et al. 2016). Almeda et al. (2013) exposed adult and larval stages of the two Scyphozoans, <i>Pelagia noctiluca</i> and <i>Aurelia aurita</i> to crude oil emulsions, testing lethal effects. At concentrations of 20–40 µL/L, <i>P. noctiluca</i> showed 10% mortality after 16 h. The adult stages of <i>A. aurita</i> exhibited sub-lethal effects at concentrations $\leq 25 \mu L/L$, including slight tissue damage and abnormal swimming behaviour. Survival of ephyra larvae of <i>A. aurita</i> decreased with increasing crude concentrations, decreasing to < 40% at crude concentrations of $\geq 1 \mu L/L$ (Almeda et al. 2013). Additionally, Almeda et al. (2013) recorded bioaccumulation in adult stages of <i>A. aurita</i> , which exhibited 1.4, 2.3, 3.1 times higher total PAH concentrations than the control when exposed to 1, 5, and 25 $\mu L/L$ of crude oil (Almeda et al. 2013).		

	SUB-GROUP LEVEL			-		SENSITIVITY Criteria					
	50B-G	ROUPLEVEL		Maritime example species		Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity			
1	2	3	4		s	Justification		Justification			
Pelagic	N/A	Low mobility	Ctenophora	Comb jellies [CL. Nuda, Tentaculata]	1	Filter or suspension feeders (Brusca and Brusca 1990) with feeding structures that can become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Almeda et al. (2013) found that the comb jelly <i>Mnemiopsis leidyi</i> , were tolerant to high exposures of crude oil. <i>Mnemiopsis leidyi</i> cydippid larvae showed a high tolerance to crude oil exposure, suggesting that this species may be able to complete their development and life cycle at relatively high crude oil exposure concentrations. Adult and larval stages both experienced alterations in swimming behavior (low mobility, slow swimming speeds, inverse swimming), but it is not known if these sublethal effects are prolonged or reversible. If not, then other vital physiological activities, such as feeding, may be affected, and there may be an increase in predation. They also bioaccumulate polycyclic aromatic hydrocarbons (PAH's) which may enter the food web. More studies are needed on the survival and effects on earlier larval stages. Peiffer and Cohen (2015) examined the effects of petroleum hydrocarbon on <i>M. leidyi</i> at seasonally relevant temperatures, using Corexit® 9500A dispersant, crude oil (WAF), and dispersed crude oil (CEWAF). The authors reported LC50 of 4.7 mg/L (24 hours at 23°C) and 29.5 mg/L (24 hours at 15°C) in crude oil WAF treatments.			
Pelagic	N/A	Low mobility	Zooplankton	Copepods, Mysids	1	Both copepods and mysids have feeding structures that may become clogged by oil. Copepods feed in one of two ways (sometimes both): ambush feeding and feeding-current feeding (Kiorboe 2011). Most mysid are filter/suspension feeders (Degan and Faulwetter 2019).	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Olsen et al. (2013) examined impacts on <i>Calanus</i> <i>finmarchicus</i> in a 120-h exposure to concentrations of 0.022, 1.8, and 16.5 mg /L of dispersed North Sea crude oil. The authors noted mortality of 3%, 15%, and 42% in all concentrations, respectively. The authors also noted increased sluggishness when examining the swimming behavior of surviving females. The authors found a concentration-dependent depression on reproductive capacity in exposed groups, though egg production seemed to stabilize and recover following 25 day post- exposure recovery period, indicating they may be able to recover after a spill event (Olsen et al. 2013). <i>Mysis oculata</i> exposed to oil in water dispersions and water soluble fractions had among the lowest median LC ₅₀ of reported Arctic crustaceans, ranging from 0.49–0.62 mg/L for water soluble fractions and 4.51–7.57 mg/L for oil in water dispersions (Reibel and Percy 1990).			

					SENSITIVITY Criteria						
	SOB-G	ROUP LEVEL		Maritime example species		Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity			
1	2	3	4		s	Justification	s	Justification			
		High mobility	Mollusca	Squid [Cephalopoda]	0	Do not have filter or suspension feeding structures (Brusca and Brusca 1990) that are expected to become clogged by oil	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. As referred to in Lacoue-Labarthe et al. (2016), there are very few toxicological studies examining the effect of oil on cephalopods. Of these, Long and Holdway (2002) found that after exposing <i>Octopus pallidus</i> hatchlings to crude water accommodated fraction (WAF), LC ₅₀ was 1.8 ppm in a 48 h exposure test.			
Pelagic			Porifera			Known larvae are lecithotrophic (Brusca and Brusca 1990), therefore do not have feeding structures that will be clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. There is a lack of research on the effects of hydrocarbons on Porifera larvae (Vad et al. 2018). A recent study (Luter et al. 2019) on a coral reef sponge, <i>Rhopaloeides odorabile</i> , exposed larvae to water-accommodated fractions (WAF) of crude oil, chemically enhanced water accommodated fractions of crude oil (CEWAF), and dispersant (Corexit® EC9500A). Larval survival was not impacted by exposure to WAF of crude oil (107 μ g / L). Significant decreases in metamorphosis occurred at 13.9 μ g/L WAF. Additionally, microbial shifts were detected at concentrations as low as 1.7 μ g/L WAF, indicating microbial community impacts at low concentrations (Luter et al. 2019).			
		LARVAE		Ctenophora		Cydippid larvae have a mouth (Brusca and Brusca 1990) that may become clogged with oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Cydippid larvae of the comb jelly <i>Mnemiopsis leidyi</i> , exhibited a high tolerance to crude oil exposure, suggesting that this species may be able to complete their development and life cycle at relatively high crude oil exposure concentrations. Adult and larval stages both experienced alterations in swimming behavior (low mobility, slow swimming speeds, inverse swimming), but it is not known if these sublethal effects are prolonged or reversible. If not, then other vital physiological activities, such as feeding, may be affected, and there may be an increase in predation. They also bioaccumulate polycyclic aromatic hydrocarbons (PAH's) which may enter the food web. More studies are needed on the survival and effects on earlier larval stages (Almeda et al. 2013).			

						SENSITIVI	TY Crit	eria
	50B-G	ROUPLEVEL		Maritime example species		Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity
1	2	3	4		s	Justification	s	Justification
Pelaoic	Pelagic LARVAE		Cnidaria		1	Typically have non-feeding planula larvae (Brusca and Brusca 1990), and will not have feeding structures that can be clogged by oil. However, some Hydrozoans have an actinula larval stage (Brusca and Brusca 1990) which does have mouth structures that may become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Echols et al. (2016), in a 96 h acute toxicity test for lethal response to crude oil, found that ephyrae of the <i>Aurelia aurita</i> (Schyphozoa) showed no acute toxic response ($LC_{50} > 100\%$ water accommodated fraction (WAF). The authors measured the total polycyclic aromatic hydrocarbons (TPAHs) as the sum of 46 PAHs, which averaged out to be 21.1 and 152 µg TPAH/L for WAFs of weathered and unweathered oil, respectively (Echols et al. 2016). Almeda et al. (2013) exposed adult and larval stages of the two Scyphozoans, <i>Pelagia noctiluca</i> and <i>Aurelia aurita</i> to crude oil emulsions, testing lethal effects. At concentrations of 20–40 µL/L, <i>P. noctiluca</i> showed 10% mortality after 16 h. The adult stages of <i>A. aurita</i> exhibited sub-lethal effects at concentrations $\leq 25 \mu L/L$, including slight tissue damage and abnormal swimming behaviour. Survival of ephyra larvae of <i>A. aurita</i> decreased with increasing crude concentrations, decreasing to < 40% at crude concentrations $s \geq 1 \mu L/L$ (Almeda et al. 2013).
T elagic				Worms	1	Some worms have lecithotrophic larvae and some worms have planktotrophic larvae (Brusca and Brusca 1990) with mouth structures that may become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Larvae of sea urchins, sea stars, crustaceans, molluscs, and marine worms in the zooplankton are exposed to floating oil slicks and to small dissolved droplets of oil. Negative impacts include death, impaired growth, development and reproduction (Blackburn et al. 2014).
			I	Lophophorates	1	Free swimming pelagic larvae (Brusca and Brusca 1990) with mouth structures that may become clogged with oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group.
				Mollusca		Trocophore larval stages and some veliger larvae have mouth structures or feeding organs (Brusca and Brusca 1990) that may become clogged with oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Larvae of sea urchins, sea stars, crustaceans, molluscs, and marine worms in the zooplankton are exposed to floating oil slicks and to small dissolved droplets of oil. Negative impacts include death, impaired growth, development and reproduction (Blackburn et al. 2014).

	SUB C			Maritime example species		SENSITIVIT	ΓΥ Criteria			
	30B-G					Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation	Chemical Sensitivity Impairment due to toxicity			
1	2	3	4		s	Justification	s	Justification		
Pelagic LARVAE			Echinodermata		1	 Echinoderms have both planktonic and lecithotrophic larvae (Brusca and Brusca 1990). Planktonic species would have mouth structures that may become clogged with oil. 		Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Larvae of sea urchins, sea stars, crustaceans, molluscs, and marine worms in the zooplankton are exposed to floating oil slicks and to small dissolved droplets of oil. Negative impacts include death, impaired growth, development and reproduction (Blackburn et al. 2014).		
		RVAE		Hemichordata	1	Some species have planktotrophic larvae (Brusca and Brusca 1990) and would have mouth structures that may become clogged by oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Almeda et al. (2014a) exposed barnacle larvae (<i>Amphibalanus improvisus</i>) and tornaria larvae (<i>Schizocardium</i> sp.) to Louisiana sweet crude oil, chemically dispersed crude oil, and dispersant Corexit 9500A. Barnacle larvae was more sensitive as it ingested the crude oil. The tornaria larvae was lecithotrophic larvae and did not ingest the oil. Growth rates of both species were negatively affected.		
		Arthropoda 1		Many species have free swimming nauplius larvae that are planktotrophic (Brusca and Brusca 1990) and would have mouth structures that may become clogged with oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Larvae of sea urchins, sea stars, crustaceans, molluscs, and marine worms in the zooplankton are exposed to floating oil slicks and to small dissolved droplets of oil. Negative impacts include death, impaired growth, development and reproduction (Blackburn et al. 2014).				

Table A6. Marine invertebrates sub-group scores for RECOVERY scoring criteria, the column labelled "S" indicates the score assigned (note: species lists are not exhaustive; scores with a "P" indicate a precautionary score due to knowledge gaps).

	SUB-GROUP LEVEL						RECOVERY Criteria								
	306-	GROUP LEVI	⊒L	Maritime example species		Population status		Reproductive capacity		Endemism or isolation	Close association with unconsolidated substrates				
1	2	3	4		s	Justification	s	S Justification		Justification	S	Justification			
			Porifera	Sponges [CL. Demospongiae, Calcarea]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	1P	Species in this sub-group are generally long lived, reproducing both sexually and asexually. Reproductive success is impacted by environmental conditions. Additionally, asexual budding or fragmentation implies lower reproductive capacity than sexual reproduction in this sub- group, and in general.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Sessile rock and rubble dwellers would not be in close association with unconsolidated substrate.			
Intertidal	Rock and rubble dwellers	Sessile (attached to hard substrate)	Cnidaria	Colonial hydroids [Hydrozoa]; Stalked jellyfish [Staurozoa]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	1P	Species in this sub-group reproduce both sexually and asexually. Asexual budding implies lower reproductive capacity than sexual reproduction in this sub-group, and in general.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Sessile rock and rubble dwellers would not be in close association with unconsolidated substrate.			
			Worms	Tube worms [Polychaeta]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Sessile rock and rubble dwellers would not be in close association with unconsolidated substrate.			

								RECOVER	Y Cri	teria		
	SUB-	GROUP LEVE	EL	Maritime example species		Population status		Reproductive capacity		Endemism or isolation	(un	Close association with consolidated substrates
1	2	3	4		s	Justification	s	Justification	s	Justification	s	Justification
			Lophophorates	Marine bryozoans [Bryozoa]; Lampshells [Branchiopoda]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Sessile rock and rubble dwellers would not be in close association with unconsolidated substrate.
Intertidal	Rock and	Sessile (attached	Mollusca	Oysters, Mussels [Bivalvia]; Snails [Gastropoda]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Sessile rock and rubble dwellers would not be in close association with unconsolidated substrate.
	dwellers	to hard substrate)	Hemichordata	Sea peaches, Sea squirts [Ascidiacea]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Sessile rock and rubble dwellers would not be in close association with unconsolidated substrate.

								RECOVER	Y Cri	teria		
	SUB-	GROUP LEVE	EL	Maritime example species		Population status		Reproductive capacity		Endemism or isolation	(un	Close association with consolidated substrates
1	2	3	4		s	Justification	s	Justification	s	Justification	s	Justification
			Arthropoda	Barnacles [CL. Hexanauplia]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Sessile rock and rubble dwellers would not be in close association with unconsolidated substrate.
		Low	Cnidaria	Anemones [Anthozoa]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Rock and rubble dwellers would not be expected to spend a significant portion of the time in close association with unconsolidated substrate.
		mobility	Worms	Bloodworms [Polychaeta]; Flatworms [Platyhelminthes]; Nemertean worms	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Rock and rubble dwellers would not be expected to spend a significant portion of the time in close association with unconsolidated substrate.

								RECOVER	Y Cri	teria		
	SUB-	GROUP LEVE	EL	Maritime example species		Population status		Reproductive capacity		Endemism or isolation	un	Close association with consolidated substrates
1	2	3	4		s	Justification	s	Justification	s	Justification	s	Justification
Intertidal	Rock and rubble dwellers	Low mobility	Mollusca	Chitons [Polyplacophora]; Whelks, Limpets, Snails [Gastropoda]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. Recent studies show no evidence of population decline for whelks (DFO 2020a).	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Rock and rubble dwellers would not be expected to spend a significant portion of the time in close association with unconsolidated substrate.
Intertidal	Rock and rubble	Low	Echinodermata	Sea stars, [Asteroidea]; Sea urchins [Echinoidea]; Sea cucumbers [Holothuroidea]	1	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. In SWNB Zone 1, there has been a decline (66%) in the catch rate indicator of sea cucumber from 2005 to 2019 (DFO 2021a).	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Rock and rubble dwellers would not be expected to spend a significant portion of the time in close association with unconsolidated substrate.
	dwellers	mobility	Arthropoda	Amphipods [Amphipoda]; Isopods [Isopoda]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Rock and rubble dwellers would not be expected to spend a significant portion of the time in close association with unconsolidated substrate.

	SUP		-1					RECOVER	Y Cri	teria		
	306-	GROUP LEVE	L	Maritime example species		Population status		Reproductive capacity		Endemism or isolation	un	Close association with consolidated substrates
1	2	3	4		S	Justification	s	Justification	s	Justification	S	Justification
		High mobility	Arthropoda	Crabs, Lobsters [Decapoda]	1Р	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. Based on population size structure, mature female abundance of Snow Crab is expected to decline for the next 3–4 years in all areas in the Maritimes Region (DFO 2020c). There was no evidence of expected Lobster population decline (DFO 2020b, 2021b).	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Rock and rubble dwellers would not be expected to spend a significant portion of the time in close association with unconsolidated substrate.
			Worms	Sandworms, Lugworms, other burrowers [Polychaeta]; Nemertean worms [Paleonemertea]; Sipuncula worms [Sipunculidea]; Flatworms [Platyhelminthes]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	1	Sediment infauna, by definition, closely associate with unconsolidated substrates.
	Sediment infauna	Low mobility	Mollusca	Clams, Astartes [Bivalvia]; Moonsnails [Gastropoda]	1	Atlantic Mud-piddock: Threatened (COSEWIC 2009); SARA status: Schedule 1, Threatened (Government of Canada 2011). There are no other species within this group in the Maritimes Region that are listed by SARA, COSEWIC, or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates	1	In Canada, the only habitat for the Atlantic Mud Piddock is found in Minas Basin, Nova Scotia. More specifically, at only 13 sites in Minas Basin. (COSEWIC 2009).	1	Sediment infauna, by definition, closely associate with unconsolidated substrates.

								RECOVER	Y Cri	teria		
	SUB-	GROUP LEVE	EL	Maritime example species		Population status		Reproductive capacity		Endemism or isolation	(un	Close association with consolidated substrates
1	2	3	4		s	Justification	s	Justification	s	Justification	s	Justification
	Sediment infauna		Arthropoda	Mud crab [Decapoda, Panopeidae]; Tube-building gammarid amphipods [Amphipoda]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	1	Sediment infauna, by definition, closely associate with unconsolidated substrates.
Intertidal	Sediment	Low mobility	Cnidaria	Starlet anemones, Sand anemones [Anthozoa]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	1	Sediment epifauna will generally have close association with unconsolidated substrate (living and foraging).
	epifauna		Mollusca	Nudibranchs [Gastropoda, Nudibranchia]; Snails [Gastropoda], Scallops [Bivalvia]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	1	Sediment epifauna will generally have close association with unconsolidated substrate (living and foraging).

								RECOVER	Y Cri	teria		
	SOB-	GROUP LEVE	:L	Maritime example species		Population status		Reproductive capacity		Endemism or isolation	(une	Close association with consolidated substrates
1	2	3	4		S	Justification	s	Justification	s	Justification	s	Justification
			Echinodermata	Brittle stars [Ophiuroidea]; Sea stars [Asteroidea]; Sea cucumbers [Holothuroidea]	1	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. In SWNB Zone 1, there has been a decline (66%) in the catch rate indicator for sea cucumber from 2005 to 2019 (DFO 2021a).	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates	0	No evidence of endemism in the Maritimes Region within this sub-group.	1	Sediment epifauna will generally have close association with unconsolidated substrate (living and foraging).
			Arthropoda	Hermit crabs [Decapoda]; Sand fleas and other amphipods [Amphipoda]; Sea spiders [Pycnogonida]; Isopods [Isopoda]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	1	Sediment epifauna will generally have close association with unconsolidated substrate (living and foraging).
		High mobility	Arthropoda	Crabs, Lobsters [Decapoda]	1	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. Based on population size structure, mature female abundance of Snow Crab is expected to decline for the next 3–4 years in all areas in the Maritimes Region. (DFO 2020c). There was no evidence of expected Lobster population decline (DFO 2020b, 2021b).	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	1	Sediment epifauna will generally have close association with unconsolidated substrate (living and foraging).

	0115							RECOVER	Y Cri	teria		
	SOB-	GROUP LEVE	:L	Maritime example species		Population status		Reproductive capacity		Endemism or isolation	Cune	Close association with consolidated substrates
1	2	3	4		s	Justification	s	Justification	s	Justification	s	Justification
			Porifera	Boring sponges, breadcrumb sponges, encrusting sponges [CL. Demospongiae, Calcarea]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	1P	Species in this sub-group are generally long lived, reproducing both sexually and asexually. Reproductive success is impacted by environmental conditions. Additionally, asexual budding or fragmentation implies lower reproductive capacity than sexual reproduction in this sub- group, and in general.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Sessile rock and rubble dwellers would not be in close association with unconsolidated substrate.
Subtidal benthic	Rock and rubble dwellers	Sessile (attached to hard substrate)	Cnidaria	Colonial hydroids [Hydrozoa], Soft corals [Anthozoa] Stalked jellyfish [Staurozoa]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	1P	Species in this sub-group reproduce both sexually and asexually. Asexual budding implies lower reproductive capacity than sexual reproduction in this sub-group, and in general.	0	No evidence of endemism in the Maritimes Region within this sub-groups.	0	Sessile rock and rubble dwellers would not be in close association with unconsolidated substrate.
			Worms	Tube worms [Polychaeta]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Sessile rock and rubble dwellers would not be in close association with unconsolidated substrate.

								RECOVER	Y Cri	teria		
	SUB-	GROUP LEVI	EL	Maritime example species		Population status		Reproductive capacity		Endemism or isolation	(un	Close association with consolidated substrates
1	2	3	4		s	Justification	s	Justification	s	Justification	s	Justification
			Lophophorates	Marine bryozoans [Bryozoa]; Lampshells [Branchiopoda]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Sessile rock and rubble dwellers would not be in close association with unconsolidated substrate.
			Mollusca	Slipper limpets [Gastropoda]; Mussels, Oysters, Comb bathyarks [Bivalvia]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Sessile rock and rubble dwellers would not be in close association with unconsolidated substrate.
Subtidal benthic	Rock and rubble dwellers	Sessile (attached to hard substrate)	Hemichordata	Ascidians (Tunicates, Sea squirts, Sea grapes) [Ascidiacea]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Sessile rock and rubble dwellers would not be in close association with unconsolidated substrate.

								RECOVER	Y Cri	teria		
	SUB-	GROUP LEVE	EL	Maritime example species		Population status		Reproductive capacity		Endemism or isolation	(un	Close association with consolidated substrates
1	2	3	4		s	Justification	s	Justification	s	Justification	s	Justification
			Arthropoda	Barnacles [CL. Hexanauplia]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Sessile rock and rubble dwellers would not be in close association with unconsolidated substrate.
		Low	Cnidaria	Anemones [Anthozoa]; Colonial hydroids [Hydrozoa]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	1P	Species in this sub-group reproduce both sexually and asexually. Asexual budding implies lower reproductive capacity than sexual reproduction in this sub-group, and in general.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Rock and rubble dwellers would not be expected to spend a significant portion of the time in close association with unconsolidated substrate.
		mobility	Worms	Ribbon worms [Hoplonemertea]; Polychaete worms [Polychaeta]; Flatworms [Platyhelminthes]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Rock and rubble dwellers would not be expected to spend a significant portion of the time in close association with unconsolidated substrate.

								RECOVER	Y Cri	teria		
	SUB-	GROUP LEVI	EL	Maritime example species		Population status		Reproductive capacity		Endemism or isolation	(un	Close association with consolidated substrates
1	2	3	4		s	Justification	s	Justification	s	Justification	s	Justification
			Mollusca	Nudibranchs, Whelks, Periwinkles [Gastropoda]; Scallops [Bivalvia]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. Recent studies show no evidence of population decline for whelks (DFO 2020a).	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Rock and rubble dwellers would not be expected to spend a significant portion of the time in close association with unconsolidated substrate.
			Echinodermata	Sea stars [Asteroidea]; Sea cucumbers [Holothuroidea]; Basket stars, Brittle stars [Ophiuroidea]; Sea urchins [Echinoidea]	1	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. In SWNB Zone 1, there has been a decline (66%) in the catch rate indicator for sea cucumber from 2005 to 2019 (DFO 2021a).	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Rock and rubble dwellers would not be expected to spend a significant portion of the time in close association with unconsolidated substrate.
Subtidal benthic	Rock and rubble dwellers	High mobility	Mollusca	North Atlantic Octopus [Cephalopoda]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	1	The North Atlantic Octopus broods eggs for over a year; the cost of a prolonged brooding period is reduced fecundity. They are also not found in high densities, so opportunities to mate may be limited (Wood et al. 1998). A similar species, the Spoonarm Octopus is a brooding species, carrying limited number of eggs.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Rock and rubble dwellers would not be expected to spend a significant portion of the time in close association with unconsolidated substrate.

								RECOVER	Y Cri	teria		
	SOB-	GROUP LEVE	:L	Maritime example species		Population status		Reproductive capacity		Endemism or isolation	(un	Close association with consolidated substrates
1	2	3	4		S	Justification	s	Justification	s	Justification	s	Justification
			Arthropoda	Crabs, Lobsters [Decapoda]	1Р	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. Based on population size structure, mature female abundance of Snow Crab is expected to decline for the next 3–4 years in all areas in the Maritimes Region. (DFO 2020c).	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Rock and rubble dwellers would not be expected to spend a significant portion of the time in close association with unconsolidated substrate.
						There was no evidence of expected Lobster population decline (DFO 2020b, 2021b).						
	Sediment	Low	Cnidaria	Burrowing anemones [Anthozoa]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	1	Sediment infauna, by definition, closely associate with unconsolidated substrates.
	infauna	mobility	Worms	Polychaete worms [Polychaeta]; Flatworms [Platyhelminthes]; Nemertean worms [Pilidiophora]; Peanut worms [Sipunculidea]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	1	Sediment infauna, by definition, closely associate with unconsolidated substrates.

	0.115		_					RECOVER	Y Cri	teria		
	SUB-	GROUP LEVE	EL	Maritime example species		Population status		Reproductive capacity		Endemism or isolation	(un	Close association with consolidated substrates
1	2	3	4		s	Justification	s	Justification	s	Justification	s	Justification
			Mollusca	Clams [Bivalvia]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	1	Sediment infauna, by definition, closely associate with unconsolidated substrates.
Subtidal	Sediment	Low	Echinodermata	Sea cucumbers (e.g., <i>Caudina arenata</i>), [Holothuroidea]	1	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. In SWNB Zone 1, there has been a decline (66%) in the catch rate indicator for sea cucumber from 2005 to 2019 (DFO 2021a).	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	1	Sediment infauna, by definition, closely associate with unconsolidated substrates.
Subtidal benthic	Infauna	mobility	Arthropoda	Amphipods [Amphipoda, Cumacea]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	1	Sediment infauna, by definition, closely associate with unconsolidated substrates.
								RECOVER	Y Cri	teria		
---	----------	------------	---------------	--	---	--	---	---	-------	--	---------	--
	SUB-	GROUP LEVE	iL	Maritime example species		Population status		Reproductive capacity		Endemism or isolation	(un	Close association with consolidated substrates
1	2	3	4		S	Justification	s	Justification	s	Justification	s	Justification
			Lophophorates	Marine bryozoans [Bryozoa]; Lampshells [Branchiopoda]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	1	Sediment infauna, by definition, closely associate with unconsolidated substrates.
	Sediment		Cnidaria	Anemones (Anthozoa]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	1	Sediment epifauna will generally have close association with unconsolidated substrate (living and foraging).
	epifauna		Worms	Sea mouse [Polychaeta]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	1	Sediment epifauna will generally have close association with unconsolidated substrate (living and foraging).

	0115							RECOVER	Y Cri	teria		
	SOB-	GROUP LEVE	:L	Maritime example species		Population status		Reproductive capacity		Endemism or isolation	un (Close association with consolidated substrates
1	2	3	4		S	Justification	s	Justification	s	Justification	S	Justification
			Mollusca	Nudibranchs, Whelks, Moonsnails [Gastropoda]; Quahogs, Scallops [Bivalvia]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. Recent studies show no evidence of population decline for whelks (DFO 2020a).	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	1	Sediment epifauna will generally have close association with unconsolidated substrate (living and foraging).
			Echinodermata	Sand Dollars [Echinoidea]; Cushion stars, Mud stars [Asteroidea]; Sea cucumbers [Holothuroidea]	1	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. In SWNB Zone 1, there has been a decline (66%) in the catch rate indicator for sea cucumber from 2005 to 2019 (DFO 2021a).	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	1	Sediment epifauna will generally have close association with unconsolidated substrate (living and foraging).
Subtidal benthic	Sediment epifauna	High mobility	Arthropoda	Crabs , Lobsters [Decapoda]	1	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. Based on population size structure, mature female abundance of Snow Crab is expected to decline for the next 3–4 years in all areas in the Maritimes Region (DFO 2020c). There was no evidence of expected Lobster population decline (DFO 2020b, 2021b).	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	1	Sediment epifauna will generally have close association with unconsolidated substrate (living and foraging).

								RECOVER	Y Cri	teria		
	SUB-	GROUP LEVE	εL	Maritime example species		Population status		Reproductive capacity		Endemism or isolation	(un	Close association with consolidated substrates
1	2	3	4		S	Justification	s	Justification	s	Justification	s	Justification
			Cnidaria	Moon jellies [Scyphozoa]; Hydromedusae [Hydrozoa]; Jelly fish [Scyphozoa]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Pelagic species do not have close association with unconsolidated substrate.
Pelagic	N/A	Low mobility	Ctenophora	Comb jellies [CL. Nuda, Tentaculata]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Pelagic species do not have close association with unconsolidated substrate.
			Zooplankton	Copepods, Mysids	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Pelagic species do not have close association with unconsolidated substrate.

								RECOVER	Y Cri	teria		
	SUB-	GROUP LEVE	EL	Maritime example species		Population status		Reproductive capacity		Endemism or isolation	un	Close association with consolidated substrates
1	2	3	4		s	Justification	s	Justification	s	Justification	s	Justification
		High mobility	Mollusca	Squid [Cephalopoda]	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List No recent population assessment information was found for this sub- group in the Maritimes Region.	0	Most marine invertebrates are r-strategists and as such are considered to have high fecundity rates.	0	No evidence of endemism in the Maritimes Region within this sub-group.	1P	Adult squid are pelagic and do not have close association with unconsolidated substrate. Squid will extrude egg masses that can be either benthic or pelagic and can interact with unconsolidated substrate.
	ic LARVAE	Po	rifera	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	-	0	No evidence of endemism in the Maritimes Region within this sub-group.	1P	Precautionary scoring applied to this sub-group. While early pelagic larval stages are not expected to interact with unconsolidated substrates, late larval settlement stages may do so when undergoing settlement.	
Pelagic		Cten	ophora	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	-	0	No evidence of endemism in the Maritimes Region within this sub-group.	0	Most members of this sub- group have an entirely pelagic life cycle and larvae are not expected to interact with the seafloor/vegetation.	

								RECOVER	Y Cri	teria		
	SUB-	GROUP LEVE	EL	Maritime example species		Population status		Reproductive capacity		Endemism or isolation	un	Close association with consolidated substrates
1	2	3	4		s	Justification	s	Justification	s	Justification	S	Justification
			Cn	idaria	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	-	0	No evidence of endemism in the Maritimes Region within this sub-group.	1P	Precautionary scoring applied to this sub-group. While early pelagic larval stages are not expected to interact with unconsolidated substrates, late larval settlement stages may do so when undergoing settlement.
		v		orms	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	-	0	No evidence of endemism in the Maritimes Region within this sub-group.	1P	Precautionary scoring applied to this sub-group. While early pelagic larval stages are not expected to interact with unconsolidated substrates, late larval settlement stages may do so when undergoing settlement.
Pelagic	LAF	₹VAE	Lopho	phorates	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub- group in the Maritimes Region.	0	-	0	No evidence of endemism in the Maritimes Region within this sub-group.	1P	Precautionary scoring applied to this sub-group. While early pelagic larval stages are not expected to interact with unconsolidated substrates, late larval settlement stages may do so when undergoing settlement.

	0115		-,					RECOVER	Y Cri	teria		
	50B-	GROUP LEVE	=L	Maritime example species		Population status		Reproductive capacity		Endemism or isolation	un	Close association with consolidated substrates
1	2	3	4		s	Justification	s	Justification	s	Justification	s	Justification
			Мо	llusca	1	Atlantic Mud-piddock: Threatened (COSEWIC 2009); SARA status: Schedule 1, Threatened (Government of Canada 2011). There are no other species within this group in the Maritimes Region that are listed by SARA, COSEWIC, or IUCN Red List.	0	-	1	In Canada, the only habitat for the Atlantic Mud- piddock is found in Minas Basin, Nova Scotia. More specifically, at only 13 sites in Minas Basin. (COSEWIC 2009).	1P	Precautionary scoring applied to this sub-group. While early pelagic larval stages are not expected to interact with unconsolidated substrates, late larval settlement stages may do so when undergoing settlement.
			Echino	odermata	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List.	0	-	0	No evidence of endemism in the Maritimes Region within this sub-group.	1P	Precautionary scoring applied to this sub-group. While early pelagic larval stages are not expected to interact with unconsolidated substrates, late larval settlement stages may do so when undergoing settlement.
Delecia	He			chordata	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List.	0	-	0	No evidence of endemism in the Maritimes Region within this sub-group.	1P	Precautionary scoring applied to this sub-group. While early pelagic larval stages are not expected to interact with unconsolidated substrates, late larval settlement stages may do so when undergoing settlement.
r cidyic			Arth	ropoda	0	There are no species within this group in the Maritimes Region that are listed by SARA, COSEWIC or IUCN Red List.	0	-	0	No evidence of endemism in the Maritimes Region within this sub-group.	1P	Precautionary scoring applied to this sub-group. While early pelagic larval stages are not expected to interact with unconsolidated substrates, late larval settlement stages may do so when undergoing settlement.

REFERENCES FOR MARINE INVERTEBRATES SCORING TABLES

- Almeda R., Wambaugh, Z., Chai, C., Wang, Z., Liu Z., and Buskey, E.J. 2013. Effects of crude oil exposure on bioaccumulation of polycyclic aromatic hydrocarbons and survival of adult and larval stages of gelatinous zooplankton. PLoS One. 8(10): e74476.
- Almeda, R., Bona, S., Foster, C.R., and Buskey, E.J. 2014. <u>Dispersant Corexit® 9500A and</u> <u>chemically dispersed crude oil decreases the growth rates of meroplanktonic barnacle</u> <u>nauplii (*Amphibalanus improvises*) and tornaria larvae (*Schizocardium* sp.)</u>. Mar. Environ. Res. **99**:212–217.
- Anderson, J.A., Kuhl, A.J., and Anderson, N.A. 2014. Toxicity of oil and dispersed oil on juvenile mud crabs, *Rhithropanopeus harrisii*. Bull. Environ. Contam. Toxicol. **92**: 375–380.
- Arnold, J.M. 1962. Mating behavior and social structure in *Loligo pealii*. Biol. Bull. **123**(1): 53–57.
- Barbosa, D.B., de Abreu Mello, A., Allodi, S., and de Barros, C. M. 2018. Acute exposure to water-soluble fractions of marine diesel oil: evaluation of apoptosis and oxidative stress in an ascidian. Chemosphere **211**: 308–315.
- Bayne, B.L., Widdows, J., Moore, M.N., Salkeld, P., Worrall, C.M., and Donkin, P. 1982. Some ecological consequences of the physiological and biochemical effects of petroleum compounds on marine molluscs. Philos. Trans. R. Soc. London, Ser. B. **297**: 219–239.
- Beermann, J., Dick, J.T.A., and Theil, M. 2015. Social recognition in amphipods: an overview. *In* Social recognition in invertebrates: the knowns and unknowns. *Edited by* L. Aquiloni and E. Tricario. Springer International Publishing. pp 85–100.
- Bejarano, A.C., and Michel, J. 2016. Oil spills and their impacts on sand beach invertebrate communities: a literature review. Environ. Pollut. **218**: 709–722.
- Blackburn, M., Mazzacano, C.A.S., Fallon, C., and Black, S.H. 2014. Oil in our oceans: a review of the impacts of oil spills on marine invertebrates. Portland, OR: The Xerces Society for Invertebrate Conservation. 152 pp.
- Boaden, P.J.S. 1995. Where Turbellaria? Concerning knowledge and ignorance of marine turbellarian ecology. Hydrobiologica **305**: 91–95.
- Bokn, T.L., Moy, F.E., and Murray, S.N. 1993. Long-term effects of the water-accommodated fraction (WAF) of diesel oil on rocky shore populations maintained in experimental mesocosms. Bot. Mar. **36**: 313–319.
- Bonine, K.M., Bjorkstedt, E.P., Ewel, K.C., and Palik, M. 2008. Population characteristics of the mangrove crab *Scylla serrata* (Decapoda: Portunidae) in Kosrae, Federated States of Micronesia: effects of harvest and implications for management. Pac. Sci. **62**(1): 1–19.
- Bowen, J.E., and Hunt, H.L. 2009. <u>Settlement and recruitment patterns of the soft-shell clam,</u> <u>Mya arenaria, on the northern shore of the Bay of Fundy, Canada. Estuaries Coasts</u>. 32: 758–772.
- Brescia, L.A. and Tunnicliffe, V. 1998. Population biology of two pycnogonid species (Ammotheidae) at hydrothermal vents in the northeast Pacific. Cah. Biol. Mar. **39**(3–4): 233–236.
- Brusca, R.C., and Brusca, G.J. 1990. Invertebrates. Sinauer Assoc. Inc., Sunderland, MA.

- Brusca, R.C., Brusca, G.J., and Haver, N.J. 2003. Invertebrates. Sinauer Assoc. Inc., Sunderland, MA.
- Budd, G.C. 2005. <u>A sand hopper (*Talitrus saltator*)</u>. *In* Marine life information network: biology and sensitivity key information reviews, [on-line]. *Edited by* H. Tyler-Walters and K. Hiscock. Marine Biological Association of the United Kingdom. Plymouth.
- Buresch, K.C., Gerlach, G., and Hanlon, R.T. 2006. Multiple genetic stocks of longfin squid *Loligo pealeii* in the NW Atlantic: stocks segregate inshore in summer, but aggregate offshore in winter. Mar. Ecol. Prog. Ser. **310**: 263–270.
- Burke, R.D. 1986. Pheromones and the gregarious settlement of marine invertebrate larvae. Bull. Mar. Sci. **39**(2): 323–331.
- Burns, K.A., Garrity, S.D., and Levings, S.C. 1993. How many years until mangrove ecosystems recover from catastrophic oil spills? Mar. Pollut. Bull. **26**(5): 239–248.
- Campbell, A. 1990. Aggregations of berried lobsters (*Homarus americanus*) in shallow waters off Grand Manan, Eastern Canada. Can. J. Fish. Aquat. Sci. **47**: 52–523.
- Carey, J.D., and Stokesbury, K.D.E. 2011. An assessment of juvenile and adult sea scallop, *Placopecten magellanicus*, distribution in the Northwest Atlantic using high-resolution still imagery. J. Shellfish Res. **30**(3): 569–582.
- Christensen, M., Anderson, O., and Banta, G.T. 2002. Metabolism of pyrene by the polychaetes *Nereis diversicolor* and *Arenicola marina*. Aquat. Toxicol. **58**(1): 15–25.
- Clark, R.C., and Finley, J.S. 1977. Effects of oil spills in Arctic and Subarctic environments. *In* Effects of petroleum on Arctic and Subarctic marine environments and organisms. Vol. II. Biological effects. *Edited by* D. C. Malins. Academic Press Inc. New York, New York. pp. 411–467.
- Claverie, T., and Kamenos, N.A. 2008. Spawning aggregations and mass movements in subtidal Onchidoris bilamellata (Mollusca: Opisthobranchia). J. Mar. Biol. Assoc. U.K. 88(1): 157–159.
- COSEWIC. 2009. COSEWIC assessment and status report on the Atlantic mud-piddock *Barnea truncata* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 42 pp.
- Craeymeersch J.A., and Jansen H.M. 2019. Bivalve assemblages as hotspots for biodiversity. *In* Goods and services of marine bivalves. *Edited by* A. Smaal, J. Ferreira, J. Grant., J. Petersen, and Ø. Strand. Springer, Cham. pp. 275–294.
- Degan, R., and Faulwetter, S. 2019. <u>The Arctic traits database–a repository of Arctic benthic</u> <u>invertebrate traits</u>. Earth System Science Data. **11**: 301–322. Accessed March 16, 2021.
- DFO. 2020a. <u>Development of a monitoring framework for the potential establishment of a</u> <u>commercial whelk (*Buccinum undatum*) fishery in the Maritimes Region (4Vs, 4W)</u>. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2020/045.
- DFO. 2020b. Assessment of American lobster (*Homarus americanus*) in lobster fishing areas <u>27–32</u>. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2020/026.
- DFO. 2020c. <u>Assessment of Scotian Shelf snow crab</u>. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2020/042.

- DFO. 2021a. <u>Guidance for setting reference points for the sea cucumber (*Cucumaria frondosa*) fishery in the Maritimes Region, and status of the SWNB sea cucumber fishery 2019. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2021/007.</u>
- DFO. 2021b. <u>Assessment of american lobster (*Homarus americanus*) in lobster fishing areas <u>35–38</u>. DFO Can. Sci. Sci. Advis. Rep. 2021/020.</u>
- Dorgan, K.M., Parker, R., Ballentine, W., Berke, S.K., Kiskaddon, E., Gadeken, K., Weldin, E., Clemo, W.C., Caffray, T., Budai, S., and Bell, S. 2020. Investigating the sublethal effects of oil exposure on infaunal behavior, bioturbation, and sediment oxygen consumption. Mar. Ecol. Prog. Ser. 635: 9–24.
- Dupuis, A., and Ucan-Marin, F. 2015. <u>A literature review on the aquatic toxicology of petroleum</u> <u>oil: an overview of oil properties and effects to aquatic biota</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2015/007. vi + 52 p.
- Echols, B.S., Smith, A.J., Gardinali, P.R., and Rand, G.M. 2016. The use of ephyrae of a scyphozoan jellyfish *Aurelia aurita*, in the aquatic toxicological assessment of Macondo oils from the *Deepwater Horizon* incident. Chemosphere. **144**: 1893–1900.
- Feare, C.J. 1971. The adaptive significance of aggregation behaviour in the dog whelk *Nucella lapillus* (L.). Oecologia (Berl.) **7**: 117–126.
- Figuerola, B., Gore, D.B., Johnstone, G., and Stark, J. 2019. Spatio-temporal variation of skeletal Mg-calcite in Antarctic marine calcifiers. PLoS One. **14**(5): e0210231–e0210231.
- Fisheries and Oceans Canada. 2019. <u>Integrated fisheries management plans. Sea cucumber</u> <u>Newfoundland and Labradour regions 3Ps</u>. Fisheries and Oceans Canada.
- Folt, C.L., and Burns, C.W. 1999. Biological drivers of zooplankton patchiness. TREE **14**(8): 300–305.
- Gehrels, H., Knysh, K.M., Boudreau, M., Thériault, M-H., Courtenay, S.C., Cox, R., and Quijón, P.A. 2016. Hide and seek: habitat-mediated interactions between European green crabs and native mud crabs in Atlantic Canada. Mar. Biol. **163**(7):1–11.
- Gonzalez-Cueto, J., Quirego, S., and Norenburg, J. 2014. A shore-based preliminary survey of marine ribbon worms (Nemertea) from the Caribbean coast of Colombia. ZooKeys **439**: 83–108.
- Gosner, K.L. 1971. Guide to identification of marine and estuarine invertebrates Cape Hatteras to the Bay of Fundy. Wiley-Interscience Publication.
- Government of Canda. 2011. <u>Species at risk public registry, species list</u>. Accessed for Atlantic mud-piddock.
- Gulec, I., Leonard, B., and Holdway, D.A. 1997. Oil and dispersed oil toxicity to amphipods and snails. Spill Sci. Technol. Bull. **4**(1): 1–6.
- Hailey, N. 1995. Likely impacts of oil and gas activities on the marine environment and integration of environmental considerations in licensing policy. English Nature Research Report, no. 145, Peterborough: English Nature.
- Hamner, W.M., Hamner, P.P., and Strand, S.W. 1994. Sun-compass migration by Aurelia aurita (Scyphozoa): population retention and reproduction in Saanich Inlet, British Columbia. Mar. Biol. **119**(3): 347–356.
- Hardege, J.D., Bentley, M.G., and Snape, L. 1998. Sediment selection by juvenile *Arenicola marina*. Mar. Ecol. Prog. Ser. **166**: 187–195.

- Heip, C.1975. On the significance of aggregation in some benthic marine invertebrates. *In* Proc.
 9th Euro. Mar. Biol. Symp. *Edited by* Harold Barnes. Aberdeen University Press. pp. 527–538.
- Ho, K.A.Y., Patton, L., Latimer, J.S., Pruell, R.J., Pelletier, M., McKinney, R., and Jayaraman, S. 1999. The chemistry and toxicity of sediment affected by oil from the North Cape spilled into Rhode Island Sound. Mar. Pollut. Bull. 38(4): 314–323.
- Hodgins, H.O. 1978. Physiological and behavioral effects. *In* Marine effects of OCS petroleum development: A program review of research supported under the NOAA outer continental shelf environmental assessment program. November 29–December 1, 1977. *Edited by* D. A. Wolfe. NOAA Technical Memorandum ERL OCSEAP–1: 72–86.
- Hofmeister, J.K.K., and Voss, K.M. 2017. Activity space and movement patterns of Octopus bimaculatus (Verrill, 1883) around Santa Catalina Island, California. J. Exp. Mar. Biol. Ecol. 486: 344–351.
- Hughes, R.G. 1977. Aspects of the biology and life-history of *Nemertesia anntennina* (L.) (Hydrodozoa: Plumulariidae). J. Mar. Biol. Assoc. U.K. **57**: 641–657.
- Hull, D.H. 2019. Bioturbation. *In* Encyclopedia of Ocean Sciences. Third Edition. *Edited by* J.K. Cochran, H.J. Bokuniewicz, and P.L. Yager. Elsevier Ltd.
- Hyman, L.H. 1955. The Invertebrates Vol. 4. Echinodermata, the Coelomate Bilateria. McGraw-Hill. New York, New York.
- Jackson, A., and Hiscock, K. 2008. <u>Dahlia anemone (*Urticina felina*)</u>. *In* Marine life information network: biology and sensitivity key information reviews, [on-line]. *Edited by* H. Tyler-Walters and K. Hiscock. Marine Biological Association of the United Kingdom. Plymouth.
- Johnson, F.G. 1977. Sublethal biological effects of petroleum hydrocarbons exposures: bacteria, algae, and invertebrates. *In* Effects of Petroleum on Arctic and Subarctic Marine Environments and Organisms. Vol II. Biological Effects. *Edited by* D. C. Malins. Academic Press Inc. New York, New York. pp 271–318.
- Keck, R.T., Hees, R.C., Wehmiller, J., and Maurer, D. 1978. Sublethal effects of the water soluble fraction of Nigerian crude oil on juvenile hard clams, *Mercenaria mercenaria* (L.). Environ. Pollut. **15**: 109–119.
- Keesing, J.K., Gartner, A., Westera, M., Edgar, G.J., Myers, J., Hardman-Mountford, N.J., and Bailey, M. 2018. Impacts and environmental risks of oil spills on marine invertebrates, algae, and sea grass: a global review from an Australian perspective. *In* Oceanography and Marine Biology: An Annual Review, Volume 56. *Edited by* S. J. Hawkins, A. J. Evans, A. C. Dale, L. B. Firth, and I. P. Smith. CRC Press. pp. 311–370.
- Kiorboe, T. 2011. What makes pelagic copepods so successful? J. Plankton Res. **33**(5): 677–685.
- Kupriyanova, E.K, and Badyaev, A. 1998. Ecological correlates of arctic serpulidae (Annelida, Polychaeta) distributions. Ophelia, **49**(3): 181–193.
- Lacoue-Labarthe, T., Le Pabic, C., and Bustamante, P. 2016. Ecotoxicology of early life stages in the common cuttlefish *Sepia officinalis*: review and perspectives. Vie et Milieu-Life and Environment. **66**(1): 65–79.
- Lewis, C., Pook, C., and Galloway, T. 2008. <u>Reproductive toxicity to the water accommodated</u> <u>fraction (WAF) of crude oil in the polychaetes *Arenicola marina* (L.) *and Nereis virens* (Sars). Aquat. Toxicol. **90**(1): 73–81.</u>

- Long, S.M., and Holdway, D.A. 2002. Acute toxicity of crude and dispersed oil to *Octopus pallidus* (Hoyle, 1885) hatchlings. Water Research (Oxford). **36**(11): 2769–2776.
- Luter, H.M., Whalan, S., Andreakis, N., Abdul Wahab, M., Botté, E.S., Negri, A.P., Webster, N.S. 2019. <u>The effects of crude oil and dispersant on the larval sponge holobiont</u>. mSystems 4:e00743–19.
- McGee, B.L, and Targett, N.M. 1989. Larval habitat selection in Crepidula (L.) and its effect on adult distribution patterns. J. Exp. Mar. Biol. Ecol. **131**: 195–214.
- Mereu, M., Agus, B., Addis, P., Cabiddu, S., Cau, A., Follesa, M.C., and Cuccu, D. 2015. Movement estimation of *Octopus vulgaris* Cuvier, 1797 from mark recapture experiment. J. Exp. Mar. Biol. Ecol. **470**: 64–69.
- Michel, W.C., and Case, J.F. 1984. Effects of a water-soluble petroleum fraction on the behavior of the hydroid coelenterate *Tubulari crocea*. Mar. Environ. Res. **13**: 161–176.
- Michel, W.C., Sanfilippo, K., and Case, J.F. 1986. Drilling mud evoked hydranth shedding in the hydroid *Tubularia crocea*. Mar. Pollut. Bull. **17**: 415–419.
- Mileikovsky, S.A. 1973. Speed of active movement of pelagic larvae of marine bottom invertebrates and their ability to regulate their vertical position. Mar. Biol. **23**: 11–17.
- Montecinos, C., Riera, R., and Brantea, A. 2020. Site fidelity and homing behaviour in the intertidal species *Chiton granosus* (Polyplacophora) (Frembly 1889). J. Sea Res. **164**(2020): 1–6.
- Monteiro, L., Traunspurger, W., Roeleveld, K., Lynen, F., and Moens, T. 2018. Direct toxicity of the water-soluble fractions of a crude and a diesel-motor oil on the survival of free-living nematodes. Ecol. Indic. **93**: 13–23.
- Neal, K.J., and Avant, P. 2006. <u>A mud shrimp (Corophium volutator)</u>. In Marine life information network: biology and sensitivity key information reviews, [on-line]. *Edited by* H. Tyler-Walters and K. Hiscock. Plymouth: Marine Biological Association of the United Kingdom.
- Olsen, A.J., Nortdug, T., Altin, D., Lervik, M., and Hansen, B.H. 2013. Effects of dispersed oil on reproduction in the cold water copepod *Calanus finmarchicus* (Gunnerus). Environ. Toxicol. Chem. **32**(9): 2045–2055.
- Ormand, R.F.G., and Caldwell, S. 1982. The effect of oil pollution on the reproduction and feeding behaviour of the sea anemone *Actinia equine*. Mar. Pollut. Bull. **13**(4):118–122.
- Peiffer, R.F., and Cohen, J.H. 2015. Lethal and sublethal effects of oil, chemical dispersant, and dispersed oil on the ctenophore *Mnemiopsis leidyi*. Aquat. Biol. **23**: 237–250.
- Ponat, A. 1975. Investigations on the influence of crude oil on the survival and oxygen consumption of *Idotea baltica* and *Gammarus salinus*. Kieler Meeresforschungen. **31**: 26–31.
- Reibel, P.N., and Percy, J.A. 1990. Acute toxicity of petroleum hydrocarbons to the arctic shallow-water mysid, *Mysis oculata* (Fabricus). Sarsia, **75**: 223–232.
- Scheibling, R.E., and Lauzon-Guay, J-S. 2007. Feeding aggregations of sea stars (*Asterias* spp. and *Henricia sanguinolenta*) associated with sea urchin (*Strongylocentrotus droebachiensis*) grazing fronts in Nova Scotia. Mar. Biol. **151**: 1175–1183.
- Sebens, K.P. 1983. Population dynamics and habitat suitability of the intertidal sea anemones *Anthopleura elegantissima* and *A. xanthogrammica*. Ecol. Monogr. **53**(4): 403–433.
- Shenkar, N., and Swalla, B.J. 2011. Global diversity of Ascidiacea. PLoS One 6(6): e20657.

Spight, T.M. 1974. Sizes of populations of a marine snail. Ecology, **55**(4): 712–729.

- Suchanek, T.H. 1993. Oil impacts on marine invertebrate populations and communities. Am. Zool. **33**: 510–523.
- Tettelbach, S.T., Europe, J.R., Tettelbach, C.R.H., Havelin, J., Rodgers, B.S., Bradley, T., Furman, B.T., and Velasquez, M. 2017. Hard clam walking: active horizontal locomotion of adult *Mercenaria mercenaria* at the sediment surface and behavioral suppression after extensive sampling. PLoS One **12**(3): e0173626.
- Thiel, M., and Junoy, J. 2006. Mating behavior of nemerteans: present knowledge and future directions. J. Nat. Hist. **40**(15–16): 1021–1034.
- Tyler-Walters, H. 2005. <u>An erect bryozoan (*Bugulina turbinata*)</u>. In Marine life information network: biology and sensitivity key information reviews, [on-line]. *Edited by* H. Tyler-Walters and K. Hiscock K. Marine Biological Association of the United Kingdom. Plymouth.
- Tyler-Walters, H., and Hughes, J.R. 2007. <u>Sea mouse (Aphrodita aculeata)</u>. In Marine life information network: biology and sensitivity key information reviews, [on-line]. Edited by H. Tyler-Walters and K. Hiscock. Marine Biological Association of the United Kingdom. Plymouth.
- Vad, J., Kazanidis, G., Henry, L-A., Jones, D.O.B., Tendal, O.S., Christiansen, S., Henry, T.B., and Roberts, J.M. 2018. Potential impacts of offshore and gas activities on deep-sea sponges and the habitats they form. *In* Advances in Marine Biology Volume 79. *Edited by* C. Sheppard. Academic Press. pp. 33–60.
- Vadas, R.L., Elner, R.W., and Garwood, P.E. 1986. Experimental evaluation of aggregation behavior in the sea urchin *Strongylocentrotus droenbachiensis*. Mar. Biol. **90**: 433–448.
- Warner, G.F. 1979. Aggregations in echinoderms. *In* Biology and systematics of colonial organisms. *Edited by* G. Larwood and B.R. Rosen. Syst. Assoc., Spec. Vol.,V.11. pp 375–396.
- Wicksten, M.K. 1984. Survival of sea anemones in Bunker C fuel. Mar. Pollut. Bull. **15**(1): 28–33.
- Wood, J.B., Kenchington, E., and O'Dor, R.K. 1998. Reproduction and embryonic development time of *Bathypolypus arcticus*, a deep-sea octopod (Cephalopda: Octopoda). Malacologia, **39** (1–2):11–19.

APPENDIX 3. DETAILED SCORING TABLES WITH JUSTIFICATIONS FOR MARINE FISH

Table A7. Marine fishes sub-group scores for EXPOSURE scoring criteria, the column labelled "S" indicates the score assigned (note: species lists are not exhaustive; scores with a "P" indicate a precautionary score due to knowledge gaps) (N/A = not applicable).

									EXPOSU	IRE Cri	teria		
	3	UB-GROUP LE	VEL		Maritime example species	Con	centration (aggregation)	N	lobility and/or site fidelity		Sea surface interacting	:	Seafloor or vegetation interacting
1	2	3	4	5		S	Justification	s	Justification	s	Justification	s	Justification
				Snailfishes (Liparidae)	Atlantic Snailfish	0	Not expected to aggregate in the benthic intertidal zone for a specific purpose or in significantly large numbers (Scott and Scott 1988).	1P	Precautionary scoring applied to small fish species, as small body size assumed to confer lower mobility and a relatively limited home range. Snailfish size ranges from 9.5 cm to a maximum size of 14.4 cm (Scott and Scott 1988). Maturing adult Snailfish make only short migrations from shallow inshore waters to the intertidal zone for spawning.	1	Intertidal organisms are assumed to have regular surface interaction due to tidal movements. Surface interaction is very likely in this group because they will remain in the intertidal as the tide drops (Lamb and Edgell 2010).	1	Benthic species are expected to be in constant contact with seafloor (Scott and Scott 1988).
Marine	Intertidal	Benthic	Associated with unconsolidat ed substrates (silt/mud/san d/ gravel)	Pout (Zoarcidae)	Ocean Pout	0	Not expected to aggregate in the benthic intertidal zone for a specific purpose or in significantly large numbers (Scott and Scott 1988).	0	Species in this sub-group have been known to perform seasonal migration from intertidal or shallow coastal waters to deeper water in autumn, returning to shallower waters in spring (Scott and Scott 1988).	1	Intertidal organisms are assumed to have regular surface interaction due to tidal movements. Surface interaction is very likely in this group because they will remain in the intertidal as the tide drops (Lamb and Edgell 2010).	1	Benthic species are expected to be in constant contact with seafloor (Scott and Scott 1988).
				Cryptacanthodidae	Wrymouth	0	Not expected to aggregate in the in the benthic intertidal zone for a specific purpose or in significantly large numbers (Scott and Scott 1988).	1	Builds system of burrows so likely to exhibit site fidelity (Scott and Scott 1988).	1	Intertidal organisms are assumed to have regular surface interaction due to tidal movements. Surface interaction is very likely in this group because they will remain in the intertidal as the tide drops (Lamb and Edgell 2010).	1	Benthic species are expected to be in constant contact with seafloor (Scott and Scott 1988).

									EXPOSU	RE Cri	iteria		
	5	UB-GROUP LE	VEL		Maritime example species	Con	centration (aggregation)	N	lobility and/or site fidelity		Sea surface interacting	÷	Seafloor or vegetation interacting
1	2	3	4	5	·	S	Justification	s	Justification	s	Justification	s	Justification
			Associated	Snailfishes (Liparidae)	Atlantic Snailfish	0	Not expected to aggregate in the benthic intertidal zone for a specific purpose or in significantly large numbers.	1P	Precautionary scoring applied to small fish species, as small body size assumed to confer lower mobility and a relatively limited home range. Snailfish size ranges from 9.5 cm to a maximum size of 14.4 cm (Scott and Scott 1988). Maturing adult Snailfish make only short migrations from shallow inshore waters to the intertidal zone for spawning.	1	Intertidal organisms are assumed to have regular surface interaction due to tidal movements. Surface interaction is very likely in this group because they will remain in the intertidal as the tide drops (Lamb and Edgell 2010).	1	Benthic species are expected to be in constant contact with seafloor (Scott and Scott 1988).
Marine	Intertidal	Benthic	with consolidated substrates (rock/ boulder/ bedrock)	Pout (Zoarcidae)	Ocean Pout	0	Not expected to aggregate in the benthic intertidal zone for a specific purpose or in significantly large numbers.	0	Species in this sub-group have been known to perform seasonal migration from intertidal or shallow coastal waters to deeper water in autumn, returning to shallower waters in spring (Scott and Scott 1988).	1	Intertidal organisms are assumed to have regular surface interaction due to tidal movements. Surface interaction is very likely in this group because they will remain in the intertidal as the tide drops (Lamb and Edgell 2010).	1	Benthic species are expected to be in constant contact with seafloor (Scott and Scott 1988).
				Pholidae	Rock Gunnel	0	Not expected to aggregate in the benthic intertidal zone for a specific purpose or in significantly large numbers.	0	Sawyer (1967) as cited in Scott and Scott (1988), assume that there is an offshore migration in December off the coast when spawning is believed to occur, and a return inshore in March.	1	Intertidal organisms are assumed to have regular surface interaction due to tidal movements. Surface interaction is very likely in this group because they will remain in the intertidal as the tide drops (Lamb and Edgell 2010).	1	Benthic species are expected to be in constant contact with seafloor (Scott and Scott 1988). Hides under stones, in crevices, and under seaweed (Scott and Scott 1988).

									EXPOSU	RE Cri	teria		
	S	UB-GROUP LE	VEL		Maritime example species	Con	centration (aggregation)	N	lobility and/or site fidelity		Sea surface interacting	S	Seafloor or vegetation interacting
1	2	3	4	5		s	Justification	S	Justification	s	Justification	s	Justification
	Intertidal	Non-benthic (pelagic	N/A	Sticklebacks (Gasterosteidae)	Blackspotted Stickleback, Fourspine Stickleback, Threespine Stickleback	1P	Precautionary scoring as sticklebacks aggregate in estuarine waters but it is unknown whether they also aggregate in the marine environment.	1	Sticklebacks hover in the water column and are not highly active swimmers. They can maintain typical teleost swimming behavior for short periods of time, such as when excited, escaping a predator, chasing a rival or approaching a female (Wootton 1984). May show site fidelity on spawning grounds from May to July in the Maritimes Region (Scott and Scott 1998).	1	Intertidal organisms are assumed to have regular surface interaction due to tidal movements. Surface interaction is very likely in this group because they will remain in the intertidal as the tide drops (Lamb and Edgell 2010).	1	Demersal species are expected to have regular interactions with the seafloor (Scott and Scott 1988).
Marine		demersal)		Silversides (Atherinopsidae)	Atlantic Silverside	1	Atlantic Silverside is a schooling species (Scott and Scott 1988).	1P	Precautionary scoring applied to small fish species, as small body size assumed to confer lower mobility and a relatively limited home range. Maximum size observed for the Atlantic Silverside is 13.7 cm (Scott and Scott 1988). Atlantic Silverside make short migrations from shallow inshore waters into estuaries for spawning.	1	Intertidal organisms are assumed to have regular surface interaction due to tidal movements. Surface interaction is very likely in this group because they will remain in the intertidal as the tide drops (Lamb and Edgell 2010).	1	Demersal species are expected to have regular interactions with the seafloor (Scott and Scott 1988). Atlantic Silversides feed on mud flats during ebb tide (Scott and Scott 1988).
	Subtidal	Benthic	Associated with unconsolidat ed substrates (silt/mud/ sand/ gravel)	Skates (Rajidae)	Little Skate, Thorny Skate, Smooth Skate	0	Not expected to aggregate in benthic environment for a specific purpose or in significantly large numbers.	0	Species in this sub-group move inshore in winter and offshore into deeper water in summer (Scott and Scott 1988).	0	Subtidal benthic species are not expected to interact with the sea surface (Scott and Scott 1988).	1	Benthic species are expected to be in constant contact with seafloor (Scott and Scott 1988).

									EXPOSU	RE Cri	teria		
	5	UB-GROUP LE	VEL		Maritime example species	Con	centration (aggregation)	N	lobility and/or site fidelity		Sea surface interacting	5	Seafloor or vegetation interacting
1	2	3	4	5		s	Justification	s	Justification	s	Justification	S	Justification
				Flatfishes (Pleuronectidae)	Winter Flounder, Yellowtail Flounder, Atlantic Halibut, Windowpane, American Plaice	0	Not expected to aggregate in benthic environment for a specific purpose or in significantly large numbers.	0	Winter Flounder undergo more or less regular onshore- offshore migrations and tend to move offshore in winter (Scott and Scott 1988).	0	Subtidal benthic species are not expected to interact with the sea surface (Scott and Scott 1988).	1	Benthic species are expected to be in constant contact with seafloor (Scott and Scott 1988).
larine	Subtidal	Benthic	Associated with unconsolidat ed substrates	Sculpins (Cottidae)	Shorthorn Sculpin, Longhorn Sculpin, Moustache Sculpin	0	Not expected to aggregate in benthic environment for a specific purpose or in significantly large numbers.	1P	Precautionary scoring for this sub-group due to lack of research on mobility/site fidelity. The Shorthorn Sculpin, when disturbed, swims slowly and only for a short distance (Scott and Scott 1988).	0	Subtidal benthic species are not expected to interact with the sea surface (Scott and Scott 1988).	1	Benthic species are expected to be in constant contact with seafloor (Scott and Scott 1988).
2			(silt/mud/ sand/ gravel)	Pout (Zoarcidae)	Ocean Pout	0	Not expected to aggregate in benthic environment for a specific purpose or in significantly large numbers.	0	Species in this sub-group have been known to perform seasonal migration from intertidal or shallow coastal waters to deeper water in autumn, returning to shallower waters in spring (Scott and Scott 1988).	0	Subtidal benthic species are not expected to interact with the sea surface (Scott and Scott 1988).	1	Benthic species are expected to be in constant contact with seafloor (Scott and Scott 1988).
				Redfish (Sebastidae)	Acadian Redfish	1	Known to aggregate in exceedingly large schools (Scott and Scott 1988).	1	Redfish have been classified as "deep water sedentary" and make only short migrations of 10–100 km (Pikanowski et al. 1999).	0	Subtidal benthic species are not expected to interact with the sea surface (Scott and Scott 1988).	1	Benthic species are expected to be in constant contact with seafloor (Scott and Scott 1988). Live over rocky or clay-silt bottom (Scott and Scott 1988).
Marine	Subtidal	Benthic	Associated with unconsolidat ed substrates (silt/mud/ sand/ gravel)	Lophiidae	Monkfish	0	Not expected to aggregate in benthic environment for a specific purpose or in significantly large numbers.	1P	Precautionary scoring for this sub-group due to lack of research on mobility/site fidelity. Monkfish is a sluggish fish (Scott and Scott 1988).	0	Subtidal benthic species are not expected to interact with the sea surface (Scott and Scott 1988).	1	Benthic species are expected to be in constant contact with seafloor (Scott and Scott 1988). Found on muddy bottoms of continental slope (Scott and Scott 1988).

									EXPOSU	RE Cri	teria		
	5	UB-GROUP LE	VEL		Maritime example species	Con	centration (aggregation)	N	lobility and/or site fidelity		Sea surface interacting	:	Seafloor or vegetation interacting
1	2	3	4	5		S	Justification	s	Justification	s	Justification	s	Justification
				Myxinidae	Atlantic Hagfish	1	Can be found in large numbers when feeding (Scott and Scott 1988).	1P	Precautionary scoring for this sub-group due to lack of research on mobility/site fidelity. Atlantic Hagfish can remain inactive for long periods either completely buried or on top of, soft sediment (Scott and Scott 1988).	0	Not expected to interact with surface as it lives at depths of below 30 m (Scott and Scott 1988).	1	Benthic species are expected to be in constant contact with seafloor (Scott and Scott 1988). Live on soft, muddy bottoms (Scott and Scott 1988).
				Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon	1	Atlantic Sturgeon have been shown to aggregate for feeding (Dadswell et al. 2016). Atlantic Sturgeon aggregate to feed from May to October in the Minas Basin, NS (Dadswell et al. 2016).	1P	Precautionary scoring applied as there is limited research on mobility or site fidelity in the marine environment	0	Subtidal benthic species are not expected to interact with the sea surface (Scott and Scott 1988).	1	Anadromous bottom living sub-group (Scott and Scott 1988).
			Associated with consolidated substrates (cobble/bould er/bedrock)	Sculpins (Cottidae)	Snowflake Hookear Sculpin, Longhorn Sculpin, Shorthorn Sculpin	0	Not expected to aggregate in benthic environment for a specific purpose or in significantly large numbers.	1P	Precautionary scoring for this sub-group due to lack of research on mobility/site fidelity. The Shorthorn Sculpin, when disturbed, swims slowly and only for a short distance (Scott and Scott 1988).	0	Subtidal benthic species are not expected to interact with the sea surface (Scott and Scott 1988).	1	Benthic species are expected to be in constant contact with seafloor (Scott and Scott 1988).
Marine	Subtidal	Benthic	Associated with consolidated substrates (cobble/bould er/bedrock)	Lumpfishes (Cyclopteridae)	Atlantic Spiny Lumpsucker, Lumpfish	0	Not expected to aggregate in benthic environment for a specific purpose or in significantly large numbers.	1P	Precautionary scoring for this sub-group due to lack of research on mobility/site fidelity. Juvenile lumpsuckers are poor swimmers (Frantzen 2015).	1	Young Lumpfish remain in the top 1m of water for the first year before taking up life on or near bottom (Scott and Scott 1988).	1	Benthic species are expected to be in constant contact with seafloor (Scott and Scott 1988). Lumpfish is primarily a bottom fish of cold to temperate waters, though it is frequently semi- pelagic during early life (Scott and Scott 1988).

									EXPOSU	IRE Cr	iteria		
	3	UB-GROUP LE	VEL		Maritime example species	Con	centration (aggregation)	Ν	Nobility and/or site fidelity		Sea surface interacting	1	Seafloor or vegetation interacting
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
				Wolffishes (Anarhichadidae)	Atlantic Wolffish, Spotted Wolffish, Northern Wolffish	0	Wolffish do not form large schools (Scott and Scott 1988). Atlantic Wolffish is a solitary species (Le François et al. 2021).	1	Atlantic Wolffish have been shown to exhibit homing behavior and site fidelity to spawning and feeding grounds (Gunnarsson et al. 2019).	0	Species in this sub-group are not reported to interact with the surface regularly (COSEWIC 2012d, 2012e, 2012f).	1	Species in this sub-group have regular interactions with the sea floor (COSEWIC 2012d, 2012e, 2012f).
				Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon	1	Atlantic Sturgeon have been shown to aggregate for feeding (Dadswell et al. 2016). Atlantic Sturgeon aggregate to feed from May to October in the Minas Basin, NS (Dadswell et al. 2016).	1P	Precautionary scoring applied as there is limited research on mobility or site fidelity in the marine environment	0	Subtidal benthic species are not expected to interact with the sea surface (Scott and Scott 1988).	1	Anadromous bottom living sub-group (Scott and Scott 1988).
e		Non-benthic		Cod (Gadidae)	Atlantic Cod, Arctic Cod, Tomcod, Pollock	1	Known to aggregate in exceedingly large shoals (Scott and Scott 1988).	0	Species in this sub-group exhibit high mobility. The maximum distance travelled by a tagged Atlantic Cod is 3,228 km over a four year period (Scott and Scott 1988).	0	Species in this sub-group are not reported to interact with the surface regularly (COSEWIC 2010b).	1	Adapted for bottom feeding so will have regular interaction with the sea floor (Scott and Scott 1988).
Mari	Subtidal	demersal)	N/A	Elasmobranchs	Shortfin Mako, Porbeagle, Blue Shark	1	Porbeagles aggregate on mating grounds on Georges Bank in the Maritimes Region (COSEWIC 2014).	0	Species in this sub-group exhibit high mobility. Shortfin Mako is considered the fastest shark and one of the swiftest fishes (Scott and Scott 1988).	1	Blue Sharks are often found near the surface (Scott and Scott 1988). The Porbeagle is a pelagic, epipelagic, or littoral species (COSEWIC 2014).	0	The Porbeagle is a pelagic, epipelagic, or littoral species that feeds on smaller pelagic species, so is unlikely to come into contact with the seafloor. (COSEWIC 2014, Scott and Scott 1988).

	SUB-GROUP LEVEL								EXPOSU	JRE Cr	iteria		
	5	UB-GROUP LE	VEL		Maritime example species	Con	centration (aggregation)	N	lobility and/or site fidelity		Sea surface interacting		Seafloor or vegetation interacting
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
				Osmeridae	Rainbow Smelt, Capelin	1	Known to aggregate for mass spawning, which takes place when fish are 3–4 years old (Scott and Scott 1988).	0	Intensive migration inshore by coastal Capelin populations takes place prior to spawning activities on beaches (Scott and Scott 1988).	1	Expected to interact with the sea surface during spawning activities. Beach spawning Capelin eggs are buried by wave action (Scott and Scott 1988).	1	While not expected to have regular interaction with the seafloor, when spawning, species in this sub-group will have contact with sandy/gravel shores and beaches (Scott and Scott 1988).
				Salmon (Salmonidae)	Atlantic Salmon	0	Not expected to aggregate in pelagic and demersal environments for a specific purpose or in significantly large numbers.	0	Species in this sub-group exhibit high mobility. Atlantic Salmon exhibit extensive movement while at sea (e.g., Atlantic Salmon from some Canadian rivers are known to travel as far as Greenland) (Scott and Scott 1988).	1	A pelagic sub-group, so may interact with the sea surface (Scott and Scott 1988).	0	Can be found in deeper water but not expected to be in frequent contact with sea floor (Scott and Scott 1988).
Marine	Subtidal	Non-benthic (pelagic and demersal)	N/A	Scombridae	Atlantic Mackerel. Atlantic Bluefin Tuna	1	Atlantic Mackerel is a strong schooling species (Scott and Scott 1988). Tuna school, often in groupings of less than 50 fish (Scott and Scott 1988).	0	Species in this sub-group exhibit high mobility. Tuna feature morphological adaptations for high performance swimming (Gliess et al. 2019). In addition to extensive spawning migrations, tagged Atlantic Mackerel have been shown to travel long distances (e.g., from Newfoundland to Long Island, NY) (Scott and Scott 1988). Tuna undergo extensive migrations along the Atlantic coast as well as trans- Atlantic (Scott and Scott 1988).	1	A pelagic sub-group, so may interact with the sea surface (Scott and Scott 1988). Young tuna live in sea surface layers (Scott and Scott 1988).	0	Can be found in deeper water but not expected to be in frequent contact with sea floor (Scott and Scott 1988).

	SUB-GROUP LEVEL								EXPOSU	IRE Cri	teria		
	S	UB-GROUP LE	VEL		Maritime example species	Cond	centration (aggregation)	Ν	lobility and/or site fidelity		Sea surface interacting		Seafloor or vegetation interacting
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
				Clupeidae	Atlantic Herring, American Shad, Blueback Herring, Alewife	1	Species in this sub- group exhibit schooling behavior (Scott and Scott 1988).	0	Species in this sub-group are highly mobile and highly migratory (Scott and Scott 1988).	1P	A pelagic sub-group, so may interact with the sea surface (Scott and Scott 1988).	1	Shad consume benthic amphipods (Scott and Scott 1988). Blueback Herring prefer to spawn in fast currents over hard substrate whereas the alewife uses a wide variety of spawning sites and substrates (Mullen et al. 1986).
				Eels (Anguillidae)	American Eel	1P	Precautionary scoring for this sub-group as there is limited research on the marine life stage.	1P	Precautionary scoring for this sub-group as there is limited research on its movements in the marine environment.	1P	Precautionary scoring for this sub-group as there is limited research on the marine life stage.	1P	Precautionary scoring for this sub-group as there is limited research on the marine life stage.
Estuarine	Estuarine transient	Benthic	Associated with unconsolidat ed substrates (silt/mud/san	Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon	1	Atlantic Sturgeon have been shown to aggregate for feeding (Dadswell et al. 2016). Atlantic Sturgeon aggregate to feed from May to October in the Minas Basin, NS (Dadswell et al. 2016).	1	Species in this sub-group are known to exhibit site fidelity. Some populations are known to have breeding grounds (Scott and Scott 1988). Atlantic Sturgeon migrate from the Saint John River, NB and Kennebec River, NB to feed (Dadswell et al. 2016).	1P	Precautionary scoring applied as aggregations migrating through confined waters are more likely to interact with the sea surface.	1	Anadromous bottom living sub-group (Scott and Scott 1988).
			d/ gravel)	Eels (Anguillidae)	American Eel	1	Eels aggregate in shallow estuarine waters for seasonal spawning migrations (Scott and Scott 1988). Formation of 'eel balls' have been observed but only in fresh water (Scott and Scott 1988).	1	In the freshwater phase of their lives, eels become sluggish in cooler water and overwinter buried in muddy bottoms of lakes and rivers (Scott and Scott 1988).	1	In estuaries, eels exhibit regular surface interaction as they aggregate in shallow estuarine waters for seasonal mating (Scott and Scott 1988).	1	Overwinter buried in muddy bottoms of lakes and rivers (Scott and Scott 1988).

									EXPOSU	IRE Cri	teria		
	5	UB-GROUP LE	VEL		Maritime example species	Con	centration (aggregation)	Ν	lobility and/or site fidelity		Sea surface interacting	:	Seafloor or vegetation interacting
1	2	3	4	5		S	Justification	S	Justification	S	Justification	s	Justification
			Associated with consolidated substrates (cobble/bould er/bedrock)	Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon	1	Atlantic Sturgeon have been shown to aggregate for feeding (Dadswell et al. 2016). Atlantic Sturgeon aggregate to feed from May to October in the Minas Basin, NS (Dadswell et al. 2016).	1	Species in this sub-group are known to exhibit site fidelity. Some sturgeon populations are known to have breeding grounds (Scott and Scott 1988). Atlantic Sturgeon migrate from the Saint John River, NB and Kennebec River, NB to feed (Dadswell et al. 2016).	1P	Precautionary scoring applied as aggregations migrating through confined waters are more likely to interact with the sea surface.	1	Anadromous bottom living sub-group (Scott and Scott 1988).
rine	Estuarine	Non-benthic		Clupeidae	American Shad, Blueback Herring, Alewife	1	American Shad is a schooling species. Alewife form spawning groups and move through estuaries en route to freshwater spawning grounds in tributary rivers and streams (Scott and Scott 1988).	1P	American Shad is highly migratory (Scott and Scott 1988). Shad also exhibit homing to their natal stream (Scott and Scott 1988).	1P	Precautionary scoring applied as aggregations migrating through confined waters are more likely to interact with the sea surface.	0	Pelagic feeders, so not expected to interact with the sea floor in the marine and estuarine environment (Scott and Scott 1988).
Estus	transient	ິ and demersal)	N/A	Salmon (Salmonidae)	Atlantic Salmon	1	Atlantic Salmon are a schooling anadromous species and thus are expected to pass through estuaries from fresh water in aggregations as they smoltify; and when they return as adults from salt water to spawn (Scott and Scott 1988).	1	Adult salmon in estuaries exhibit high site fidelity as they prepare for spawning migration up their river of origin (Scott and Scott 1988).	1P	Precautionary scoring applied as aggregations migrating through confined waters are more likely to interact with the sea surface.	1	Atlantic Salmon parr are known to use cobble and aquatic vegetation as cover (Beland, et al. 2004).

	SUB-GROUP LEVEL								EXPOSU	IRE Cri	teria		
	5	UB-GROUP LE	VEL		Maritime example species	Con	centration (aggregation)	Ν	lobility and/or site fidelity		Sea surface interacting		Seafloor or vegetation interacting
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
				Silversides (Atherinopsidae)	Atlantic Silverside	1	Atlantic Silverside is a schooling species, and forms spawning masses in estuaries (Scott and Scott 1988).	1P	Precautionary scoring applied to small fish species, as small body size assumed to confer lower mobility and a relatively limited home range. Maximum size observed for the Atlantic Silverside is 13.7 cm (Scott and Scott 1988). Atlantic Silverside make short migrations from shallow inshore waters into estuaries for spawning.	1P	Precautionary scoring applied as aggregations migrating through confined waters are more likely to interact with the sea surface.	1	Feed on mud flats during ebb tide (Scott and Scott 1988).
tuarine	Estuarine transient	Non-benthic (pelagic and	N/A	Sticklebacks (Gasterosteidae)	Threespine Stickleback	1P	Threespine Sticklebacks spend most of their lives in schools (Love 2011). Some populations are anadromous, spawning in rivers, but not in large aggregations (Love 2011).	1	Sticklebacks hover in the water column and are not highly active swimmers. They can maintain typical teleost swimming behavior for short periods of time, such as when excited, escaping a predator, chasing a rival or approaching a female (Wootton 1984). May show site fidelity on spawning grounds from May to July in the Maritimes Region (Scott and Scott 1988).	1P	Though not considered a regular behaviour, Threespine Sticklebacks can rise into surface waters at night (Love 2011)	1	Excavate soft substrates to build nests (Love 2011).
Es		demersal)		Petromyzontidae	Sea Lamprey	1	Sea Lampreys spawn in the spring. Adults congregate in the estuaries of rivers during late winter, starting to move upstream during the dark hours. As many as 25,000 adults may migrate into the same river (Scott and Crossman 1973).	0	As many as 25,000 adults may migrate into the same river, moving upstream as far as 200 miles (Scott and Crossman 1973). Migrating adults can manage rapids easily by alternately swimming and attaching to stones. They can surmount nearly vertical barriers (of 5–6 feet), by creeping up the face with their suctorial disc (Scott and Crossman 1973).	1	In estuaries, fishes in this sub-group are scored for regular surface interaction as they mill in dense aggregations at all depths in the water column in preparation for seasonal spawning migrations (Scott and Crossman 1973).	1	Although they may at times act like a pelagic fish, most of their life is spent near or on the bottom (Scott and Scott 1988).

	SUB-GROUP LEVEL								EXPOSU	IRE Cri	teria		
	5	UB-GROUP LE	VEL		Maritime example species	Con	centration (aggregation)	Ν	lobility and/or site fidelity		Sea surface interacting	Seafloor or vegetation interacting	
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
Estuarine	Estuarine resident	Non-benthic (pelagic and demersal)	N/A	Fundulidae	Mummichog	0	Not expected to aggregate in the pelagic and demersal environments for a specific purpose or in significantly large numbers.	1P	Precautionary scoring applied to small fish species, as small body size assumed to confer lower mobility and a relatively limited home range. Maximum size observed for the Mummichog is 13 cm (Scott and Scott 1988). No evidence that the Mummichog engages in regular or predictable migrations (Scott and Scott 1988).	1	In estuaries, fishes in this sub-group are scored for regular surface interaction. They can be trapped by tidal movement or dry up in small pools (Scott and Scott 1988).	1	Mummichogs prefer habitat where there is submergent or emergent vegetation. Eggs are deposited in clutches on the outer side of aquatic plants, on masses of algae, or in sand and mud substrate (Scott and Scott 1988).
				Syngnathidae	Northern Pipefish	0	Pipefish live an independent life from time of emergence from the brood pouch (Scott and Scott 1988).	1	Pipefish are not considered highly mobile as evidenced by low genetic connectivity between populations (de Graaf 2006).	1	In estuaries, fishes in this sub-group are scored for regular surface interaction. Pipefish live in association with seaweeds and eelgrass (Scott and Scott 1988), which have regular interaction with the sea surface.	1	Not expected to have regular interaction with the seafloor, but will be in close association with eelgrass and beds of seaweed (Scott and Scott 1988).

Table A8. Marine fishes sub-group scores for SENSITIVITY scoring criteria, the column labelled "S" indicates the score assigned (note: species lists are not exhaustive; scores with a "P" indicate a precautionary score due to knowledge gaps) (N/A = not applicable).

	SUB-GROUP LEVEL						S	ENSIT	IVITY Criteria
		SUB-GROUP L	EVEL		Maritime example species	R	Mechanical Sensitivity reduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity
1	2	3	4	5		s	Justification	s	Justification
				Snailfishes (Liparidae)	Atlantic Snailfish	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in snailfishes. Thomas (1973) reported 12 dead snailfish (<i>Liparis atlanticus</i>) in field surveys following the <i>Arrow</i> spill in the Chedabucto Bay area of Nova Scotia (Thomas 1973).
Marine	Intertidal	Benthic	Associated with unconsolidate d substrates (silt/mud/sand/ gravel)	Pout (Zoarcidae)	Ocean Pout	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in ocean pout (<i>Zoarces americanus</i>). There have been few studies on the Eelpout (<i>Zoarces viviparous</i>). Celander et al. (1994) examined induction of hepatic cytochrome P450 in individuals intraperitoneally injected with North Sea crude oil. Over 14 days, the injection of oil resulted in temporal responses in P450 1A protein content and P450 catalytic activity. Additionally, it was found that pooled bile of injected organism contained Polycyclic Aromatic Hydrocarbons (PAHs) (phenantrenes, anthracene, pyrenes, fluoranthene, benzo (a) anthracene and chrysene, compounds not found in the bile of control fish (Celander et al. 1994).
				Cryptacantho didae	Wrymouth	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in wrymouth. There were no toxicity studies found on <i>Cryptacanthodes maculatus</i> nor the Cryptacanthodidae family.
				Snailfishes (Liparidae)	Atlantic Snailfish	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in snailfishes. Thomas (1973) reported 12 dead snailfish (<i>Liparis atlanticus</i>) in field surveys following the <i>Arrow</i> spill in the Chedabucto Bay area of Nova Scotia (Thomas 1973).

						S	ENSIT	IVITY Criteria	
		SUB-GROUP L	EVEL		Maritime example species	R	Mechanical Sensitivity eduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity
1	2	3	4	5		s	Justification	s	Justification
arine	Intertidal	Benthic	Associated with consolidated substrates	Pout (Zoarcidae)	Ocean Pout	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in Ocean Pout (<i>Zoarces americanus</i>). There have been few studies on the Eelpout (<i>Zoarces viviparous</i>). Celander et al. (1994) examined induction of hepatic cytochrome P450 in individuals intraperitoneally injected with North Sea crude oil. Over 14 days, the injection of oil resulted in temporal responses in P450 1A protein content and P450 catalytic activity. Additionally, it was found that pooled bile of injected organism contained Polycyclic Aromatic Hydrocarbons (PAHs), phenantrenes, anthracene, pyrenes, fluoranthene, benzo (a) anthracene and chrysene, compounds not found in the bile of control fish.
Marine			(rock/ boulder/ bedrock)	Pholidae	Rock Gunnel	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in Rock Gunnels. Exposure to <i>Exxon Valdez</i> oil in Crescent Gunnel induced higher levels of cytochrome P4501A, a protein that can result in deleterious physiological effects (Jewett et al. 2002). Thomas (1973) performed a survey of the intertidal and lagoonal biota in Chedabucto Bay, Nova Scotia following a crude oil spill from the <i>Arrow</i> (> 1,400,000 gallons). Surveys were performed from March 1970 to 1972. During the surveys, Thomas found 1 dead Rock Gunnel in which cause of death is unknown.
Marine	Intertidal	Non-benthic (pelagic and demersal)	N/A	Sticklebacks (Gasterosteidae)	Blackspotted Stickleback, Fourspine Stickleback, Threespine Stickleback	1	Blackspotted Stickleback (<i>Gasterosteus wheatlandi</i>) have gill rakers (Scott and Scott\ 1988). Note that sticklebacks are primarily active feeders but, in polymorphic population of <i>G. wheatlandi</i> , the two morphs fed on different prey types (primarily benthic organisms versus swimming or surface organisms). Associated with this difference in diet was a difference in the mean number of gill rakers. The author contends that gill rakers may thus play a role in feeding as a filtering device, and are more numerous and finer in planktivorous fish (Wootton 1984). Since gill rakers are used in feeding, they may become clogged with oil.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. A few studies have investigated the toxic effects of oil on sticklebacks (mostly Threespine, not Blackspotted or Fourspine) (e.g., Geoghegan et al. 2008). Exposure to dibenzathracene and 17β-oestradiol (E2) in Threespine Sticklebacks has been linked to endocrine disruption (Geoghegan et al. 2008). Blenkinsopp et al. (1996) conducted 96 h LC ₅₀ exposure tests with Threespine Sticklebacks, testing the effect (lethality) of weathered crude oil and found no adverse direct effects at any time during the test at concentrations of petroleum hydrocarbons up to 1.10 µg/L. In 2013, Knag and Taugbøl found that acute exposure to offshore produced water (PW) (wastewater from offshore petroleum production) containing Polycyclic Aromatic Hydrocarbons (PAHs) had an effect on stress and secondary stress responses in adult Threespine Stickleback. Low dose PW exposure resulted in an upregulation of cytochrome (CYP1A) and UDP-glucuronsyltransferase (UDP-GT), both of which are associated with toxicant stress.

SUB-GROUP LEVEL							S	ENSIT	IVITY Criteria
		SUB-GROUP L	EVEL		Maritime example species	R	Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity
1	2	3	4	5		s	Justification	s	Justification
				Silversides (Atherinopsidae)	Atlantic Silverside	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Gardner et al. (1975) studied the effects of waste motor oil on Atlantic Silversides, using both long and short-term exposures. In a 96 h static bioassay (short-term), fish were exposed to 0, 10, 50, 250, 1000, and 5000 ppm of waste motor oil with LC_{50} of 2,200 ppm (48 h) and 1,700 ppm (96 h). In the long-term assay, individuals were subsequently exposed to waste oil at concentrations of 0, 20, 100 and 5000 ppm. In the long-term assay, 100% mortality occurred at 250 ppm after 7 days, with no mortality found at 100 ppm of higher, vascular system lesions were found in both moribund Atlantic Silversides and surviving individuals. Note that the authors were aiming to examine the morphological effects of waste motor oil, and toxicity data in long-term exposures are not intended to be definitive. Note that there is very little information regarding the effects of oil on the Atlantic Silverside, but there are multiple studies on inland silversides (<i>Menidia beryllina</i>).
Marine	Subtidal	Benthic	Associated with unconsolidate d substrates (silt/mud/ sand/ gravel)	Skates (Rajidae)	Little Skate, Thorny Skate, Smooth Skate	0	Species in this do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. There appears to be little or no information concerning the chemical toxicity to oil of the Family Rajidae.

	SUB-GROUP LEVEL						S	ENSI	IVITY Criteria
		SOB-GROUP L	EVEL		Maritime example species	R	Mechanical Sensitivity eduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity
1	2	3	4	5		s	Justification	s	Justification
				Flatfishes (Pleuronectidae)	Winter Flounder, Yellowtail Flounder, Atlantic Halibut, Windowpane, American Plaice	0	Species in this sub-group do not have filter feeding structures.	1P	 Precautionary scoring applied due to limited research on oil toxicity in this sub-group. A handful of studies have investigated the toxic effects of oil on flatfishes. Yellowfin Sole, a flat fish, sampled after the <i>Exxon Valdez</i> Oil Spill displayed lowered plasma levels of estradiol, a reproductive hormone involved in regulation of gonadal development and spawning (Varanasi et al. 1995). Payne et al. (1995) exposed male Winter Flounder to sand contaminated with oil well drill cuttings (various concentrations) for approximately 80 days in an effort to assess effects of chronic exposure. Total petroleum hydrocarbons (TPH) concentration in 5 treatments were measured at beginning and ending of exposure period. The authors note that there were no statistically significant observable effects in the treatments, though at the highest concentration 4000 µg/L (beginning) MFO enzyme activities were observed to decrease (Payne et al. 1995). When examining long-term effects of the Amoco Cadiz crude oil spill in France, organ samples were collected from American Plaice (<i>Pleuronectes platessa</i>) from highly oiled areas from 1978–1980 (Haensly et al. 1982). Histopathology indicated chronically exposed plaice exhibited fin and tail necrosis, hyperplasia and hypertrophy of gill lamellar mucous cells, gastric gland degeneration, decreased hepatocellular vacuolation and more (Haensley et al. 1982).
Marine	Subtidal	Benthic	Associated with unconsolidate d substrates (silt/mud/ sand/ gravel)	Sculpins (Cottidae)	Shorthorn Sculpin, Longhorn Sculpin, Moustache Sculpin	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Gardiner et al. (2013) assessed the acute toxicity (96 h) of larval sculpin (<i>Myoxocephalus</i> sp.) to crude oil (Water Accommodated Fraction (WAF) and Breaking Wave WAF (BWWAF) and found the mean LC ₅₀ to be 4.0 (SD 1.3) mg/L and 2.3 (1.0 SD) mg/L Total Petroleum Hydrocarbon (TPH) respectively. The authors found that the LC ₅₀ based on total Polycyclic Aromatic Hydrocarbon (PAH) concentrations (parent form) (mg/L PAH) in the WAF and BWWAF to be 0.04 mg/L PAH and 0.05 mg/L PAH (Gardiner et al. 2013). Khan and Payne (2005), while assessing effects of Corexit® 9527, reported on effects of Hibernia Light Crude oil on Longhorn Sculpin. The authors found that when exposed to a WAF of crude oil, there were no changes in behaviour in sculpin, though some limited mortality was noted (4%) over control. In those individuals that died, 100% were found to have epithelial rupture/lifting, epithelial hyperplasia (100%), fusion of secondary lamellae (80%), basal hyperplasia (80%) and telangiectasis (25%) (Khan and Payne 2005).

		- 1/-1				S	ENSIT	IVITY Criteria	
		SUB-GROUP L	EVEL		Maritime example species	R	Mechanical Sensitivity reduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity
1	2	3	4	5		s	Justification	s	Justification
				Pout (Zoarcidae)	Ocean Pout	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in Ocean Pout (<i>Zoarces americanus</i>). There have been few studies on the Eelpout (<i>Zoarces viviparous</i>). Celander et al. (1994) examined induction of hepatic cytochrome P450 in individuals intraperitoneally injected with North Sea crude oil. Over 14 days, the injection of oil resulted in temporal responses in P450 1A protein content and P450 catalytic activity. Additionally, it was found that pooled bile of injected organism contained Polycyclic Aromatic Hydrocarbons (PAHs) (phenantrenes, anthracene, pyrenes, fluoranthene, benzo (a) anthracene and chrysene, compounds not found in the bile of control fish (Celander et al. 1994).
Marine	Subtidal	Benthic	Associated with unconsolidate d substrates (silt/mud/ sand/ gravel)	Redfish (Sebastidae)	Acadian Redfish	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. There have been some studies assessing PAH and oil toxicity in (<i>Sebastes schlegeli</i> , the Korean Rockfish). Lee et al. (2018) examined adverse effects and immune dysfunction in <i>Sebastes schlegeli</i> when exposed, through oral ingestion, to weathered Iranian crude oil (10, 100 and 200 mg/kg of body weight). Individuals were sampled at intervals over 96 h post ingestion. The authors found that the Total Polycyclic Aromatic Hydrocarbon (TPAH) concentrations in treatment groups increased significantly within the first 6 hours, followed by a rapid decrease to control levels within 24 hours but PAH metabolite concentrations remained relatively high throughout the 96 hour period. The authors also found that crude oil exposure to juvenile Rockfish can significantly affect immune related genes, disturbing the cell cycle, apoptosis and phagocytosis (Lee et al. 2018).
				Lophiidae	Monkfish	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group.
				Myxinidae	Atlantic Hagfish	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group.

	SUB-GROUP LEVEL						S	ENSIT	IVITY Criteria
		SUB-GROUP L	EVEL		Maritime example species	R	Mechanical Sensitivity eduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity
1	2	3	4	5		s	Justification	s	Justification
			Associated with unconsolidate d substrates (silt/mud/ sand/ gravel)	Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in in this sub-group. There is a lack of information in the literature regarding toxicity of oil to sturgeon species found in the Maritimes Region. Rostami and Soltani (2016) examined the impact of acute exposure of crude oil to <i>Acipenser persicus</i> (Persian Sturgeon). The authors exposed juveniles to crude oil at concentrations of 15, 16, 17, 18, and 19 ppm in a 96 h toxicity test and found the mean LC ₅₀ to be 16.5 ppm crude oil. In addition to the LC ₅₀ , the authors found that, in organisms exposed to the LC ₅₀ concentration, neutrophils and monocytes increase while lymphocytes and eosionphils decreased. Total protein, ALT, AST, ALP and LDH enzymes decreased significantly.
Marine	Subtidal	Benthic	Associated with consolidated substrates (cobble/boulde r/bedrock)	Sculpins (Cottidae)	Snowflake Hookear Sculpin, Longhorn Sculpin, Shorthorn Sculpin	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Gardiner et al. (2013) assessed the acute toxicity (96 h) of sculpin (<i>Myoxocephalus</i> sp.) to crude oil Water Accommodated Fraction (WAF) and Breaking Wave WAF (BWWAF) and found the mean LC ₅₀ to be 4.0 (SD 1.3) mg/L and 2.3 (1.0 SD) mg/L Total Petroleum Hydrocarbon (TPH) respectively. The authors found that the LC ₅₀ based on total Polycyclic Aromatic Hydrocarbon (PAH) concentrations (parent form) (mg/L PAH) in the WAF and BWWAF to be 0.04 mg/L PAH and 0.05 mg/L PAH (Gardiner et al. 2013). Khan and Payne (2005), while assessing effects of Corexit® 9527, reported on effects of Hibernia Light Crude oil on Longhorn Sculpin. The authors found that when exposed to a WAF of crude oil, there were no changes in behaviour in sculpin, though some limited mortality was noted (4%) over control. In those individuals that died, 100% were found to have epithelial rupture/lifting, epithelial hyperplasia and telangiectasis. In surviving individuals exposed to a WAF of crude, individuals exhibited epithelial hyperplasia (100%), fusion of secondary lamellae (80%), basal hyperplasia (80%) and telangiectasis (25%) (Khan and Payne 2005).

	SUB-GROUP LEVEL				Maritime		S	ENSIT	IVITY Criteria
		SUB-GROUP L	EVEL		Maritime example species	R	Mechanical Sensitivity eduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity
1	2	3	4	5		s	Justification	s	Justification
				Lumpfishes (Cyclopteridae)	Atlantic Spiny Lumpsucker, Lumpfish	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in lumpfishes. However, in one study acute (48 h) and long-term (42-day recovery period) effects of mechanically dispersed oil were assessed on juvenile Lumpsucker (<i>Cyclopterus lumpus</i>) (Frantzen et al. 2015). No mortality was observed in treatments, but the 24-h EC ₅₀ for narcosis were found to be 22.1 (NAPH; Naphthalene), and 45.1 (SUM 16 EPA PAH; Polycyclic Aromatic Hydrocarbons), and the 48-h EC ₅₀ for narcosis to be 24.7 (NAPH) and 40.9 (SUM 16 EPA PAH). Specific growth rates were found to be lower in exposed treatments than control, though long-term studies were ended prematurely due to water supply issues (Frantzen et al. 2015).
Marine	Subtidal	Benthic	Associated with consolidated substrates (cobble/boulde r/bedrock)	Wolffishes (Anarhichadidae)	Atlantic Wolffish, Spotted Wolffish, Northern Wolffish	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Sandrini-Neto et al. (2016) assessed the effects of 48 h oil exposure on biomarker response in juvenile wolffish (<i>Anarchichas denticulatus</i>) and monitored growth for 5 weeks post-exposure. The authors found that Polycyclic Aromatic Hydrocarbons (PAH) biliary metabolites, ethoxyresorufin-O-deethylase (EROD) and acetylcholinesterase (AChE) to be appropriate biomarkers for assessing exposure in wolffish and, more relevantly here, that growth rate (length and weight) was significantly lower in exposed treatments than control (Sandrini-Neto et al. 2016).
				Sturgeon (Acipenseridae)	Shortnosed Sturgeon, Atlantic Sturgeon	0	Species in this sub-group do not have filter feeding structures.	1P	 Precautionary scoring applied due to limited research on oil toxicity in in this sub-group. There is a lack of information in the literature regarding toxicity of oil to sturgeon species found in the Maritimes Region. Rostami and Soltani (2016) examined the impact of acute exposure of crude oil to <i>Acipenser persicus</i> (Persian Sturgeon). The authors exposed juveniles to crude oil at concentrations of 15, 16, 17, 18, and 19 ppm in a 96 h toxicity test and found the mean LC₅₀ to be 16.5 ppm crude oil. In addition to the LC₅₀, the authors found that, in organisms exposed to the LC₅₀ concentration, neutrophils and monocytes increase while lymphocytes and eosionphils decreased. Total protein, ALT, AST, ALP and LDH enzymes decreased significantly.

						SENSITIVITY Criteria					
		SUB-GROUP L	EVEL		Maritime example species	R	Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity		
1	2	3	4	5		s	Justification	s	Justification		
Marine	Subtidal	Non-benthic (pelagic and demersal)	N/A	Cod (Gadidae)	Atlantic Cod, Arctic Cod, Tomcod, Pollock	0	Species in this sub-group do not have filter feeding structures.	1P	 Precautionary scoring applied due to limited research on oil toxicity in this sub-group. A handful of studies have investigated the toxic effects of oil on Cod. Kiceniuk and Khan (1987) found that food consumption was significantly reduced in male cod chronically exposed to petroleum. Further, condition factor and somatic indices of some organs were lower in oil-treated fish. Gall bladders were enlarged in oil-treated fish. Hansen et al. (2019a) performed exposed Cod larvae to five different concentration of mechanically dispersed oil (25–2500 µg/L) for 5 days, followed by a four-day recovery period in clean water. The authors found that the LC₅₀ of unfiltered and filtered mechanically dispersed Troll Oil to be 9 µg/L and 6 µg/L, respectively. Hansen et al. (2019b) discovered embryonic exposure to produced water can cause cardiac toxicity and deformations in Atlantic Cod (<i>Gadus morhua</i>) and Haddock (<i>Melanogrammus aeglefinus</i>) larvae. Arctic Cod (<i>Boreogadus saida</i>) exposed to Water Accommodated Fraction (WAF) and Breaking Wave WAF (BWWAF) of Alaskan Northern Slope (ANS) Crude, the mean LC₅₀ (based on Total Petroleum Hydrocarbons) was 1.6 mg/L and 3.3 mg/L, respectively (Gardiner et al. 2013). Sørhus et al. (2015) exposed fertilized eggs of Atlantic Haddock (Gadidae) to weathered blend crude oil from the Heidrum oil field of the Norwegian Sea. Over 18 days, the authors collected embryos and larvae at 11 time points from three treatments: low (130 µg/L nominal), high (1200 µg/L nominal), and pulse (1200 µg/L nominal, for 2.4 hours in a 24 hour period). The authors noted that adhesion of oil micro-droplets to embryos resulted in higher buoyancy. Hatching success in the high dose group was very poor (17%), and the majority of larvae were severely deformed resulting in the termination of the high dose group after 8 days. Reduced growth was noted in exposed groups; exposed groups were significantly shorter than in the control group. Other effects noted after		
				Elasmobranchs	Shortfin Mako, Porbeagle, Blue Shark	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. While a single study (Al-Hassan et al. 2000) has shown that sharks have the potential to accumulate Polycyclic Aromatic Hydrocarbons (PAHs), there is a marked lack of research into chemical sensitivity or impairment on sharks due to oil exposure.		

						SENSITIVITY Criteria					
		SUB-GROUP L	EVEL		Maritime example species	R	Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity		
1	2	3	4	5		s	Justification	s	Justification		
Marine	Subtidal	Non-benthic (pelagic and demersal)	N/A	Osmeridae	Rainbow Smelt, Capelin	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Paine et al. (1991) found lethal effects of hydrocarbons on Capelin larvae and embryos, with sub-lethal effects on growth, pigmentation, developmental rate, and hatch time. In 1992, Paine et al. found lethal effects on Capelin embryos exposed to high doses (27–37 mg/L x days) of Hibernia crude over long exposure periods (21 d). The authors found that lethal effects on larvae were observed at lower concentrations and/or shorter exposure time (1.3–7.1 mg/L x days). Sub-lethal effects (growth, pigmentation, developmental rate, time to hatch) were observed at concentrations < 10–50% of lethal concentrations. Freshly fertilized capelin eggs were exposed to a Water Accommodated Fraction (WAF) of heavy fuel oil (IFO30) for 72 hours at Total Hydrocarbon concentrations of 0.02, 0.1, 0.6, 2.9, and 14.5 mg/L. The authors found a significant relationship between mortality and concentration in WAF exposure (Tairova et al. 2019). It has been found that oiled sediment (0–400 ppm Total Polycyclic Aromatic Hydrocarbon [TPAH]) may not negatively impact emergence of capelin larvae following incubation (Paine et al. 1991). Capelin embryos were continuously exposed (from blastula to larval emergence) to oiled sediment (Hibernia crude and gravel) at 0, 25, 50, 100, 200 and 400 ppm TPAH. The authors found that exposed embryos (gravel and Hibernia crude oil mix) emerged slightly earlier (0.5–1 days) and in higher numbers than the control. Long-term sublethal or lethal effects were not assessed in this study.		

						SENSITIVITY Criteria				
		SUB-GROUP L	EVEL		Maritime example species	R	Mechanical Sensitivity eduction of feeding/photosynthesis/thermoregulation	Chemical Sensitivity Impairment due to toxicity		
1	2	3	4	5		s	Justification	s	Justification	
Marine	Subtidal	Non-benthic (pelagic and demersal)	N/A	Salmon (Salmonidae)	Atlantic Salmon	0	Species in this sub-group do not have filter feeding structures.	1P	 Precautionary scoring applied due to limited research on oil toxicity in Atlantic Salmon. Several studies have documented the toxic effects of oil on salmonids but results are inconclusive. Wang et al. (1993) found that growth of juvenile Pink Salmon was inversely related to the level of crude oil contamination in food. Gagnon and Holdway (2000) exposed immature Atlantic Salmon to Water Accommodated Fraction (WAF) of Bass Strait Crude and found that Hepatic ethoxyresorufin-O-deethylase (EROD) activity was induced within 2 days following the onset of exposure, persisting for 2–4 days following transfer to clean water. The aim of the study was to compare exposure to a WAF of crude to dispersed oil, noting differences in hepatic activity. Incardona et al. (2015) tested the effect on Pink Salmon embryo development of low level exposure to crude oil (Σ Polycyclic Aromatic Hydrocarbon (PAH) 0.2, 9.8, 15.4, 30.0, 45.4 µg/L). The authors found that PAH accumulation occurs in salmon embryos, and that while there were low levels of visibly malformed embryos (11% of embryos at high dose), other effects included reduce juvenile growth (specific growth rate declined significantly with dose), and reduced juvenile cardiorespiratory function (critical swimming speed as proxy). Assessed after 8 and 10 months of growth in clean water, altered cardiac structure and outflow tract in juvenile hearts was observed. When exposed to diluted bitumen for 24 days, Atlantic Salmon smolts showed no lasting change in seawater acclimation, other than an CYP1A immune response in the pillar cells of gill lamellae when exposed to 67.9 µg/L of polycyclic aromatic compounds (PAC) (Alderman et al. 2020). 	
				Scombridae	Atlantic Mackerel. Atlantic Bluefin Tuna	1	Atlantic Mackerel use gill rakers for filter feeding (Scott and Scott 1988).	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Tuna embryos exposed to MC252 oil displayed defects in cardiac dysfunction and secondary malformations (Incardona et al. 2014).	

						SENSITIVITY Criteria					
		SUB-GROUP L	EVEL		Maritime example species	Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity			
1	2	3	4	5		s	Justification	s	Justification		
Marine	Subtidal	Non-benthic (pelagic and demersal)	N/A	Clupeidae	Atlantic Herring, American Shad, Blueback Herring, Alewife	1	Species in this sub-group have feeding structures that may become clogged with oil. Shad are filter feeders (Scott and Scott 1988). Alewives also exhibit filter feeding behaviour (Mullen et al. 1986).	1P	Precautionary scoring applied due to limited research on oil toxicity in in this sub-group. Tagatz (1961) performed 24 and 48 h toxicity tests with American Shad, testing a variety of concentrations of gasoline, diesel fuel oil and Bunker C. The author noted that the LG ₅₀ (termed TL _m - Median Tolerance Limit) for juvenile American Shad in the 24 h exposures were 91 mg/L and 204 mg/L for gasoline and diesel fuel oil, respectively. In the 48 h exposure test, LC ₅₀ was measured at 91 mg/L, 167 mg/L and 2,417 mg/L for gasoline, diesel fuel oil and Bunker C, respectively. Note that Tagatz (1961) did not observe any mortality in the 24 h test with Bunker C, but noted that at 96 h, the LC ₅₀ was 1,952 mg/L. Atlantic Herring (<i>Clupea harengus</i>) embryos were exposed to a Water Accommodated Fraction (WAF) of Medium South American (MESA) crude oil for 19 days (Adams et al. 2014). Embryos exposed to a nominal concentration of 0.32% v/v WAF appeared abnormal. The authors calculated an EC ₅₀ on hatching success was found to be 1.02 mg/L Total Petroleum Hydrocarbons (Adams et al. 2014).		
				Eels (Anguillidae)	American Eel	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Nava and Englehardt (1980) found rapid uptake of hydrocarbons in American Eels resulting in absorption through the gut and deposition in key organs and tissues of treated fish. In 1982, Nava and Englehardt exposed American Eels to crude oil by ingestion of 0.1ml of a crude oil and beef liver homogenate (10, 100, or 500 µL/kg fish) per day for 5 days followed by a 12 day depuration. The authors found that exposure to crude oil resulted in enhanced hepatic MFO activity (measured as BaPH and cytochrome P-450), and was maximal by the third day of exposure (Nava and Englehardt 1982).		
Estuarine	Estuarine transient	Benthic	Associated with unconsolidate d substrates (silt/mud/sand/ gravel)	Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon	0	Species in this sub-group do not have filter feeding structures.	1P	 Precautionary scoring applied due to limited research on oil toxicity in in this sub-group. There is a lack of information in the literature regarding toxicity of oil to sturgeon species found in the Maritimes Region. Rostami and Soltani (2016) examined the impact of acute exposure of crude oil to <i>Acipenser persicus</i> (Persian Sturgeon). The authors exposed juveniles to crude oil at concentrations of 15, 16, 17, 18, and 19 ppm in a 96 h toxicity test and found the mean LC₅₀ to be 16.5 ppm crude oil. In addition to the LC₅₀, the authors found that, in organisms exposed to the LC₅₀ concentration, neutrophils and monocytes increase while lymphocytes and eosionphils decreased. Total protein, ALT, AST, ALP and LDH enzymes decreased significantly. 		

						SENSITIVITY Criteria					
		SUB-GROUP L	EVEL		Maritime example species	R	Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity		
1	2	3	4	5	-	s	Justification	s	Justification		
				Eels (Anguillidae)	American Eel	0	Species in this sub-group do not have filter feeding structures.	1P	 Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Nava and Engelhardt (1980) found rapid uptake of hydrocarbons in American Eels resulting in absorption through the gut and deposition in key organs and tissues of treated fish. In 1982, Nava and Englehardt exposed American Eels to crude oil by ingestion of 0.1ml of a crude oil and beef liver homogenate (10, 100, or 500 µL/kg fish) per day for 5 days followed by a 12 day depuration. The authors found that exposure to crude oil resulted in enhanced hepatic MFO activity (measured as BaPH and cytochrome P-450), and was maximal by the third day of exposure (Nava and Englehardt 1982). 		
			Associated with consolidated substrates (cobble/boulde r/bedrock)	Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon	0	Species in this sub-group do not have filter feeding structures.	1P	 Precautionary scoring applied due to limited research on oil toxicity in in this sub-group. There is a lack of information in the literature regarding toxicity of oil to sturgeon species found in the Maritimes Region. Rostami and Soltani (2016) examined the impact of acute exposure of crude oil to <i>Acipenser persicus</i> (Persian Sturgeon). The authors exposed juveniles to crude oil at concentrations of 15, 16, 17, 18, and 19 ppm in a 96 h toxicity test and found the mean LC₅₀ to be 16.5 ppm crude oil. In addition to the LC₅₀, the authors found that, in organisms exposed to the LC₅₀ concentration, neutrophils and monocytes increase while lymphocytes and eosionphils decreased. Total protein, ALT, AST, ALP and LDH enzymes decreased significantly. 		
Estuarine	Estuarine transient	Non-benthic (pelagic and demersal)	N/A	Clupeidae	American Shad, Blueback Herring, Alewife	1	Species in this sub-group have feeding structures that may become clogged with oil. Shad are filter feeders (Scott and Scott 1988). Alewives also exhibit filter feeding behaviour (Mullen et al. 1986).	1P	Precautionary scoring applied due to limited research on oil toxicity in in this sub-group. Tagatz (1961) performed 24 and 48 h toxicity tests with American Shad, testing a variety of concentrations of gasoline, diesel fuel oil and Bunker C. The author noted that the LC ₅₀ (termed TL _m - Median Tolerance Limit) for juvenile American Shad in the 24 h exposures were 91 mg/L and 204 mg/L for gasoline and diesel fuel oil, respectively. In the 48 h exposure test, LC ₅₀ was measured at 91 mg/L, 167 mg/L and 2,417 mg/L for gasoline, diesel fuel oil and Bunker C, respectively. Note that Tagatz (1961) did not observe any mortality in the 24 h test with Bunker C, but noted that at 96 h, the LC ₅₀ was 1,952 mg/L. Atlantic Herring (<i>Clupea harengus</i>) embryos were exposed to a Water Accommodated Fraction (WAF) of Medium South American (MESA) crude oil for 19 days (Adams et al. 2014). Embryos exposed to a nominal concentration of 0.32% v/v WAF appeared abnormal. The authors calculated an EC ₅₀ of approximately 0.15 mg/L of oil (estimated by fluorescence). 19 day EC ₅₀ on hatching success was found to be 1.02 mg/L Total Petroleum Hydrocarbons (Adams et al. 2014).		

						SENSITIVITY Criteria					
		SUB-GROUP L	EVEL		Maritime example species	R	Mechanical Sensitivity eduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity		
1	2	3	4	5		s	Justification	s	Justification		
Estuarine	Estuarine transient	Non-benthic (pelagic and demersal)	N/A	Salmon (Salmonidae)	Atlantic Salmon	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in Atlantic salmon. Several studies have documented the toxic effects of oil on salmonids but results are inconclusive. Wang et al. (1993) found that growth of juvenile Pink Salmon was inversely related to the level of crude oil contamination in food. Gagnon and Holdway (2000) exposed immature Atlantic Salmon to Water Accommodated Fraction (WAF) of Bass Strait Crude and found that hepatic ethoxyresorufin-O-deethylase (EROD) activity was induced within 2 days following the onset of exposure, persisting for 2–4 days following transfer to clean water. The aim of the study was to compare exposure to a WAF of crude to dispersed oil, noting differences in hepatic activity. Incardona et al. (2015) tested the effect on Pink Salmon embryo development of low level exposure to crude oil (Σ Polycyclic Aromatic Hydrocarbon (PAH) 0.2, 9.8, 15.4, 30.0, 45.4 μg/L).The authors found that PAH accumulation occurs in salmon embryos, and that while there were low levels of visibly malformed embryos (11% of embryos at high dose), other effects included reduce juvenile growth (specific growth rate declined significantly with dose), and reduced juvenile cardiorespiratory function (critical swimming speed as proxy). Assessed after 8 and 10 months of growth in clean water, altered cardiac structure and outflow tract in juvenile hearts was observed. When exposed to diluted bitumen for 24 days, Atlantic Salmon smolts showed no lasting change in seawater acclimation, other than an CYP1A immune response in the pillar cells of gill lamellae when exposed to 67.9 μg/L of polycyclic aromatic compounds (PAC) (Alderman et al. 2020).		
							S	ENSI	TIVITY Criteria		
-----------	------------------------	--	------	-------------------------------	--------------------------------	---	---	------	---		
		SUB-GROUP L	EVEL		Maritime example species	R	Mechanical Sensitivity eduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity		
1	2	3	4	5		s	Justification	S	Justification		
Estuarine	Estuarine transient	Non-benthic (pelagic and demersal)	N/A	Silversides (Atherinopsidae)	Atlantic Silverside	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Gardner et al. (1975) studied the effects of waste motor oil on Atlantic Silversides, using both long and short-term exposures. In a 96 h static bioassay (short-term), fish were exposed to 0, 10, 50, 250, 1000, and 5000 ppm of waste motor oil with LC_{50} of 2,200 ppm (48 h) and 1,700 ppm (96 h). In the long-term assay, individuals were subsequently exposed to waste oil at concentrations of 0, 20, 100 and 5000 ppm. In the long-term assay, 100% mortality occurred at 250 ppm after 7 days, with no mortality found at 100 ppm after 36 days, nor at 20 ppm after 60 days. At concentrations of 20 ppm or higher, vascular system lesions were found in both moribund Atlantic Silversides and surviving individuals. Note that the authors were aiming to examine the morphological effects of waste motor oil, and toxicity data in long-term exposures are not intended to be definitive. Note that there is very little information regarding the effects of oil on the Atlantic Silverside, but there are multiple studies on Inland Silversides (<i>Menidia beryllina</i>).		
				Sticklebacks (Gasterosteidae)	Threespine Stickleback	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. Exposure to dibenzathracene and 17β-oestradiol (E2) in Threespine Sticklebacks has been linked to endocrine disruption (Geoghegan et al. 2008). Blenkinsopp et al. (1996) conducted 96 hour LC ₅₀ exposure tests with Threespine Sticklebacks, testing the effect (lethality) of weathered crude oil and found no adverse direct effects at any time during the test at concentrations of petroleum hydrocarbons up to 1.10 µg/L. In 2013, Knag and Taugbøl found that acute exposure to offshore produced water (wastewater from offshore petroleum production) containing Polycyclic Aromatic Hydrocarbons (PAHs) has an effect on stress and secondary stress responses in adult Threespine Stickleback. Low dose PW exposure resulted in an upregulation of cytochrome (CYP1A) and UDP-glucuronsyltransferase (UDP-GT), both of which are associated with toxicant stress.		
Estuarine	Estuarine transient	Non-benthic (pelagic and demersal)	N/A	Petromyzontidae	Sea Lamprey	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in this sub-group. A handful of studies that have examined the toxic effects of environmental contaminants on Sea Lamprey, and most of these focus on PCBs, Hg, and dioxins and furans (PCDD/F) (Madenjian et al. 2020). Also note that Lamprey are considered invasive species in some areas, which has resulted in a myriad of toxicological testing on lampricides.		

			EVEI				s	ENSI	IVITY Criteria
					Maritime example species	F	Mechanical Sensitivity eduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity
1	2	3	4	5		s	Justification	s	Justification
	Estuarine resident			Fundulidae	Mummichog	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in Mummichog. Boudreau et al. (2009) studied the toxicity of Orimulsion-400® (emulsion of 70% bitumen in 30% water) and No. 6 fuel oil on Mummichog during embryonic development (Boudreau et al.,2009). In exposure tests with Orimulsion, the survival of Mummichog embryos was significantly reduced at concentrations ≥ 0.1% and 0.0032% with LC ₅₀ s of 0.0478% and 0.0421%. At lower concentrations of Orimulsion, development was significantly affected with EC ₅₀ s of 0.0157% and 0.0082%. Most common developmental abnormalities observed were delayed growth and development, pericardial edema, hemorrhaging, hemostasis, craniofacial and spinal abnormalities and non-inflated swim bladders. Also observed was reduced time to hatch and smaller larvae at hatch for all treatments (Boudreau et al. 2009). When exposed to No.6 Fuel Oil, LC ₅₀ was recorded as 6.12% and 2.81% in two assays. Developmental abnormalities increased significantly at concentrations ≥ 1%, with an EC ₅₀ of 2.39% and 1.11% in the two assays (Boudreau et al. 2009). Couillard et al. (2005) exposed newly hatched Mummichog to a Water Accommodate Fraction (WAF) of weathered Mesa Light crude oil in a 96 h static renewal assay, assessing effects on survival, body length or ethoxyresorufin-O-deethylase (EROD) activity. The authors found that WAF prepared with 1 g oil/L (Total Polycyclic Aromatic Hydrocarbon (TPAH) of 243 ± 6 ng/L) resulted in 22% mortality. Body length in individuals exposed to WAF prepared with 0.5 to 1 g oil/L was reduced by 3.8–6.0 % respectively (Couillard et al. 2005).
				Syngnathi dae	Northern Pipefish	0	Species in this sub-group do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in Syngnathids.

Table A9: Marine fishes sub-group scores for RECOVERY scoring criteria, the column labelled "S" indicates the score assigned (note: species lists are not exhaustive; scores with a "P" indicate a precautionary score due to knowledge gaps) (N/A = not applicable).

									RECOVERY	Y Crite	ia		
	:	SUB-GROUP	LEVEL		Maritime example species		Population Status		Reproductive Capacity		Endemism or Isolation	un	Close association with consolidated substrates
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
				Snailfishes (Liparidae)	Atlantic Snailfish	0	There are no species in this sub-group listed on SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub-group in the Maritimes Region.	1	Family Liparidae exhibit low to very low fecundity (Chernova 2004).	0	No evidence of endemism or isolation within the Maritimes Region.	1	Species in this sub-group exhibit a close association with unconsolidated substrate. They live on soft, muddy bottoms (Scott and Scott 1988), and feed benthically on amphipods, polychaete worms, and other benthic invertebrates in unconsolidated substrates (Coad 2018).
Marine	Intertidal	Benthic	Associated with unconsolidated substrates (silt/mud/sand/ gravel)	Pout (Zoarcidae)	Ocean Pout	1P	There are no species in this sub-group listed on SARA, COSEWIC or IUCN Red List. No recent population assessment information found for Pout in the Maritimes Region. NOAA fisheries indicates a decline (NFSC 2017, NOAA 2020).	0	A female ocean pout may produce 1200–4200 eggs, the number increasing with the size of the female (Scott and Scott 1988). Age at maturity of ocean pout (approx. 2–3 yrs.) varies geographically, and is confounded by difficulty in identifying mature females (Steimle et al. 1999a).	0	No evidence of endemism or isolation within the Maritimes Region.	1	Found over all types of bottom, but more numerous on hard and semi-hard substrate than on muddy substrate (Scott and Scott 1988). Bottom type has been found to vary by season for Ocean Pout, with rocky shelter being more important during spawning (autumn). In soft sediments, ocean pout may burrow tail first, leaving a depression on the sediment surface (Steimle et al. 1999a).
				Cryptacanthodidae	Wrymouth	0	There are no species in this sub-group listed on SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub-group in the Maritimes Region.	1P	Precautionary scoring applied due to limited research on the fecundity in this sub-group.	0	No evidence of endemism or isolation within the Maritimes Region.	1	Species in this sub-group exhibit a close association with unconsolidated substrate. They live on soft, muddy bottoms (Scott and Scott 1988).

									RECOVER	Y Criter	ia		
	:	SUB-GROUP	LEVEL		Maritime example species		Population Status		Reproductive Capacity		Endemism or Isolation	un	Close association with consolidated substrates
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
				Snailfishes (Liparidae)	Atlantic Snailfish	0	There are no species in this sub-group listed on SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub-group in the Maritimes Region.	1	Family Liparidae exhibit low to very low fecundity (Chernova 2004).	0	No evidence of endemism or isolation within the Maritimes Region.	1P	This species can live on soft, muddy bottoms (Scott and Scott 1988) and consolidated substrates (attached via a basal disk under rocks) (Coad 2018), but feeds benthically on amphipods, polychaete worms, and other benthic invertebrates in unconsolidated substrates (Coad 2018).
Marine	Intertidal	Benthic	Associated with consolidated substrates (rock/ boulder/ bedrock)	Pout (Zoarcidae)	Ocean Pout	1P	There are no species in this sub-group listed on SARA, COSEWIC or IUCN Red List. No recent population assessment information found for the Pout in the Maritimes Region. NOAA fisheries indicates a decline (NFSC 2017, NOAA 2020).	0	A female Ocean Pout may produce 1200–4200 eggs, the number increasing with the size of the female (Scott and Scott 1988). Age at maturity of Ocean Pout (approx. 2–3 years) varies geographically, and is confounded by difficulty in identifying mature females (Steimle et al. 1999a).	0	No evidence of endemism or isolation within the Maritimes Region.	1P	Found over all types of bottom, but more numerous on hard and semi-hard substrate than on muddy substrate (Scott and Scott 1988).
				Pholidae	Rock Gunnel	0	There are no species in this sub-group listed on SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub-group in the Maritimes Region.	1P	Precautionary scoring applied due to limited research on the fecundity in this sub-group.	0	No evidence of endemism or isolation within the Maritimes Region.	0	Rock Gunnels avoid muddy bottoms (Scott and Scott 1988).

									RECOVER	Y Criter	ia		
		SUB-GROUP	LEVEL		Maritime example species		Population Status		Reproductive Capacity		Endemism or Isolation	un	Close association with consolidated substrates
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
Marine	Intertidal	Non- benthic (pelagic and demersal)	N/A	Sticklebacks (Gasterosteidae)	Blackspotted Stickleback, Fourspine Stickleback, Threespine Stickleback	0	There are no species in this sub-group listed on SARA, COSEWIC or IUCN for the Maritimes Region (Note that Threespine Stickleback is listed on COSEWIC, but these are continental populations (Little Quarry Lake and lakes in the Vananda Creek watershed) – marine fish in the Maritimes Region are not at risk). No recent population assessment information was found for this sub-group in the Maritimes Region.	1P	Fecundity varies by body size at maturity (females). Age specific fecundity is further complicated by the effect of food on the number of spawnings within a breeding season. Generally speaking, female fecundity is enough to produce (given that a male can successfully take up a territory and build a nest) several hundred free swimming fry in a breeding season (Wootton 1984, Scott and Scott 1988). <i>Gasterosteus aculeatus</i> (Threespine Stickleback): generally reaches sexual maturity at 1 year (though maximum lifespan varies by population) (this is generally shared throughout Gasterosteidae). As many as 300 eggs have been counted in Threespine Stickleback nests (Scott and Scott 1988). Fourspine Stickleback females spawn at intervals of 3 or 4 days, depositing 15–20 eggs at each spawning (Scott and Scott 1988, Rowland 1974).	0	No evidence of endemism or isolation within the Maritimes Region. Most Gasterosteidae have extremely large home ranges (other than those continental species); of these species, the Blackspotted Stickleback is endemic to the North Atlantic coast of North Atlantic coast of North America, but their range extends into the St. Lawrence Estuary, through Newfoundland and south to New Jersey, far beyond the Maritimes Regional boundaries (Wootton 1984).	1	Expected to come into contact with unconsolidated substrates due to nesting behaviour. Fourspine Stickleback spawning is commonly associated with aquatic vegetation on intertidal spawning areas (Scott and Scott 1988) Males build nests around, or at the base of vegetation or other protuberances from the substrate (Courtenay and Keenleyside 1983).

									RECOVER	Y Crite	ia		
		SUB-GROUP	LEVEL		Maritime example species		Population Status		Reproductive Capacity		Endemism or Isolation	un	Close association with consolidated substrates
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
	Intertidal	Non- benthic (pelagic and demersal)	N/A	Silversides (Atherinopsidae)	Atlantic Silverside	0	There are no species in this sub-group listed on SARA, COSEWIC or IUCN for the Maritimes Region. No recent population assessment information was found for this sub-group in the Maritimes Region.	0	Atlantic Silverside: is considered an annual species, completing its life- cycle within 1 year (northernmost distributed individuals may take 2 years) (Sargent et al. 2008). Silversides (age 2+) can produce up to 5000 eggs (Scott and Scott1988).	0	No evidence of endemism or isolation within the Maritimes Region. Sargent et al. (2008) found the distribution of the Atlantic Silverside can extend well past the Maritimes Regional Boundary.	1	Feed on mud flats during ebb tide (Scott and Scott 1988).
Marine	Subtidal	Benthic	Associated with unconsolidated substrates (silt/mud/ sand/ gravel)	Skates (Rajidae)	Little Skate, Thorny Skate, Smooth Skate	1	Smooth Skate: endangered [Funk Island Deep population, Assessed 2012/05], special concern, [Laurentian-Scotian population, assessed 2012] (COSEWIC 2012a). Thorny Skate: special concern, assessed 2012/05 (COSEWIC 2012b); Winter Skate: endangered (Eastern Scotian Shelf) assessed 2015/05; not at risk (Western Scotian Shelf–Georges Bank Population) assessed 2015/05 (COSEWIC 2015).	1	Reproductive capacity per female of Little Skates is expected to be low (Scott and Scott, 1988); Winter Skates are slow to mature (5 years) and exhibit long gestation (approx. 22 months) (COSEWIC 2015).	0	Smooth Skate: no evidence for endemism within the Maritimes Regional Boundary (Laurentian–Scotian Designatable Unit (DU) range includes QC, PEI, NS and NB) (COSEWIC 2012a). Thorny Skate: no evidence of endemism or isolation within the Maritimes Regional Boundary (COSEWIC 2012b). Winter Skate – endemic to Northwest Atlantic Ocean, but contains 3 DUS, all of which are not isolated or endemic to the Maritimes Regional boundaries (COSEWIC 2015).	1	Benthic species living over sand and gravel bottoms (Scott and Scott 1988).

									RECOVER	Y Criter	ia		
		SUB-GROUP	LEVEL		Maritime example species		Population Status		Reproductive Capacity		Endemism or Isolation	un	Close association with consolidated substrates
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
			Associated with unconsolidated	Flatfishes (Pleuronectidae)	Winter Flounder, Yellowtail Flounder, Atlantic Halibut, Windowpane, American Plaice	1	Atlantic Halibut: not at risk, assessed 2011/11 (Government of Canada 2021). American Plaice: threatened, Maritime population and Newfoundland and Labrador population, assessed 2009/04 (COSEWIC 2009a).	1P	American Plaice has a relatively long time to maturity with the shortest time to maturity 3–5 years (in warmest water, i.e., Passamaquoddy Bay, NB) and longest in cold water off NL (10–13 years) (Johnson 1999). Once mature, a 70 cm American Plaice can produce 1.5 million eggs. Witch flounder can produce 200,000–450,000 eggs. Female Halibut weighing 90kg may produce over 2 million eggs (Scott and Scott 1988).	1	American Plaice: Maritimes designated unit (DU) falls within the Maritimes Region Boundary, indicating some isolation (COSEWIC 2009a).	1	Bottom dwelling group closely associated with mud and sand (Scott and Scott 1988).
Marine	Subtidal	Benthic	substrates (silt/mud/ sand/ gravel)	Sculpins (Cottidae)	Shorthorn Sculpin, Longhorn Sculpin, Moustache Sculpin	1	There are no species in this sub-group listed on SARA, COSEWIC or IUCN Red List. Species in this sub-group show evidence of declining population (DFO 2020).	0	Species in this sub-group exhibit high fecundity (Scott and Scott 1988).	0	No evidence of endemism or isolation within the Maritimes Region.	1	Bottom dwelling group expected to come into close contact with unconsolidated substrates (Scott and Scott 1988).
				Pout (Zoarcidae)	Ocean Pout	1P	There are no species in this sub-group listed on SARA, COSEWIC or IUCN Red List. No recent population assessment information found for the Pout in the Maritimes Region. NOAA fisheries indicates a decline (NFSC 2017, NOAA 2020).	0	A female Ocean Pout may produce 1200–4200 eggs, the number increasing with the size of the female (Scott and Scott 1988). Age at maturity of Ocean Pout (approx. 2–3 years) varies geographically, and is confounded by difficulty in identifying mature females (Steimle et al. 1999a).	0	No evidence of endemism or isolation within the Maritimes Region.	1	Found over all types of bottom, but more numerous on hard and semi-hard substrate than on muddy substrate (Scott and Scott 1988).

									RECOVER	Y Criter	ia		
		SUB-GROUP			Maritime example species		Population Status		Reproductive Capacity		Endemism or Isolation	un	Close association with consolidated substrates
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
			Associated with unconsolidated	Redfish (Sebastidae)	Acadian Redfish	1	Threatened (Atlantic Population); special concern (Bonne Bay population), both assessed 2010/04 (COSEWIC 2010c).	1P	A 50 cm female redfish can produce 50,000 fertilized eggs and release 15–20,000 live young (Scott and Scott 1988). Fecundity is relatively low (Pikanowski et al. 1999). Slow growing and long lived. Females extrude 15,000 to 20,000 larvae (live bearing species) (Pikanowski et al. 1999). Age at maturity estimates vary from 5.5 years to 8–9 years.	0	Two designatable units (COSEWIC 2010c): Atlantic population and Bonne Bay population. Neither of which lie solely within the Maritimes Region.	1	No direct evidence of substrate preference, but most often found over clay-silt bottom (Scott and Scott 1988); and mud, and rocky substrate (Pikanowski et al. 1999).
Marine	Subtidal	Benthic	substrates (silt/mud/ sand/ gravel)	Lophiidae	Monkfish	1P	There are no species in this sub-group listed on SARA, COSEWIC or IUCN Red List. Species in this subgroup show evidence of widespread decreasing trends in body size (Charbonneau et al. 2020).	1	Slow growing species (Smith et al. 2008), reaching maturity at about 32.0-43.3 cm and 4 years old for males, and 36.1-48.0 cm and 5 years old for females (Steimle et al. 1999b).	0	No evidence of endemism or isolation within the Maritimes Region.	1	Found over muddy bottoms (Scott and Scott 1988).
				Myxinidae	Atlantic Hagfish	0	There are no species in this sub-group listed on SARA, COSEWIC or IUCN Red List. No recent population assessment information was found for this sub-group in the Maritimes Region.	1	The Hagfish exhibits low fecundity. Spawning occurs throughout the year, female Hagfish may carry 1–30 large eggs (Scott and Scott 1988).	0	No evidence of endemism or isolation within the Maritimes Region.	1	Live on soft, muddy bottoms (Scott and Scott 1988).

									RECOVER	Y Criter	ia		
		SUB-GROUP	LEVEL		Maritime example species		Population Status		Reproductive Capacity		Endemism or Isolation	un	Close association with consolidated substrates
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
Marine	Subtidal	Benthic	Associated with unconsolidated substrates (silt/mud/ sand/ gravel)	Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon	1	Atlantic Sturgeon: threatened, Maritimes and St. Lawrence populations, assessed 2011/05 (COSEWIC 2011a); Shortnose Sturgeon: special concern, assessed 2015/05 (COSEWIC 2005).	1P	Sturgeon are very slow to sexually mature. Female Shortnose Sturgeon in Saint John estuary only sexually mature at age 18. Female Atlantic Sturgeon in St. Lawrence estuary reach sexual maturity at age 27–28 (Scott and Scott 1988). Atlantic Sturgeon: the Maritimes population has a relatively small breeding population (COSEWIC 2011a), but due to their large size, females of the species are extremely fecund (350 kg female may exhibit potential fecundity of 7–8 million eggs) (COSEWIC 2011a). That being said, there can be long periods of reproductive quiescence, from 1–5 years for females (COSEWIC 2011a). Shortnose Sturgeon: spawn every 3 years and females can produce up to 200,000 eggs (COSEWIC 2005).	1	Atlantic Sturgeon have three designatable units (DU) (COSEWIC 2011a): Great lakes and upper St. Lawrence, Lower St. Lawrence, and the Maritimes. The Maritimes DU is endemic/isolated in the Maritimes Region and the Saint John River area is the only spawning ground for this population (COSEWIC 2011a). Shortnose Sturgeon: endemic/isolated in the Saint John River in New Brunswick (COSEWIC 2005).	1	Bottom feeding sub-group (Scott and Scott 1988); which prey on benthic organisms via a suctorial mouth and buccal cavity- created vacuum (COSEWIC 2011a). Atlantic Sturgeon spawn over rocky and gravel substrates (COSEWIC 2011a).
			Associated with consolidated substrates (cobble/boulder/ bedrock)	Sculpins (Cottidae)	Snowflake Hookear Sculpin, Longhorn Sculpin, Shorthorn Sculpin	1	There are no species in this sub-group listed on SARA, COSEWIC or IUCN Red List. Species in this sub-group show evidence of declining population (DFO 2020).	0	Species in this sub-group exhibit high fecundity (Scott and Scott 1988). Sea Raven may produce on average 15,000 eggs (Scott and Scott 1988).	0	No evidence of endemism or isolation within the Maritimes Region.	1	Bottom dwelling group expected to come into close contact with consolidated and unconsolidated substrates (Scott and Scott 1988).

									RECOVER	Y Criter	ia		
		SUB-GROUP	LEVEL		Maritime example species		Population Status		Reproductive Capacity		Endemism or Isolation	un	Close association with consolidated substrates
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
				Lumpfishes (Cyclopteridae)	Atlantic Spiny Lumpsucker, Lumpfish	1	Lumpfish: Threatened, assessed 2017/11 (COSEWIC 2017).	0	Lumpfishes exhibit high fecundity. Female Lumpfish can produce 140,000 eggs or more (Scott and Scott 1988).	0	No evidence of endemism or isolation within the Maritimes Region.	1	Bottom dwelling group expected to come into close contact with consolidated and unconsolidated substrates (Scott and Scott 1988).
Marine	Subtidal	Benthic	Associated with consolidated substrates (cobble/boulder/ bedrock)	Wolffishes (Anarhichadidae)	Atlantic Wolffish, Spotted Wolffish, Northern Wolffish	1	Atlantic Wolffish: special concern, COSEWIC, assessed 2012/11 (COSEWIC 2012d); Northern Wolffish: threatened, COSEWIC Assessed 2012/11 (COSEWIC 2012e); threatened, SARA Schedule 1, 2003/06/05. Spotted Wolffish: threatened, COSEWIC, Assessed 2012/11 (COSEWIC 2012f); threatened, (SARA Schedule 1, 2003/06/05).	1	Species in this sub-group are not expected to exhibit high fecundity (Scott and Scott 1988). Northern Wolffish: generation time is approx. 10.5 years (COSEWIC 2012e). Atlantic Wolffish: generation time estimated at 15 years, females exhibit low egg production, and age at maturity for 50% of female population estimated at 8–15 years (COSEWIC 2012d).	0	No evidence of endemism or isolation within the Maritimes Region.	1	Wolffish feed on a variety of benthic species (Scott and Scott 1988), so likely to come into contact with unconsolidated substrates. Northern Wolffish: believed to be more common over sandy substrate (with shell hash) (COSEWIC 2012e). Atlantic Wolffish: primarily live on rocky or sandy substrates (COSEWIC 2012d).

									RECOVER	/ Criter	ia		
		SUB-GROUP	LEVEL		Maritime example species		Population Status		Reproductive Capacity		Endemism or Isolation	un	Close association with consolidated substrates
1	2	3	4	5		s	Justification	S	Justification	s	Justification	s	Justification
Marine	Subtidal	Benthic	Associated with consolidated substrates (cobble/boulder/ bedrock)	Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon	1	Atlantic Sturgeon: threatened, Maritimes and St. Lawrence populations, assessed 2011/05 (COSEWIC 2011a); Shortnose Sturgeon: special concern, assessed 2015/05 (COSEWIC 2005).	1	Sturgeon are very slow to sexually mature. Female Shortnose Sturgeon in Saint John estuary only sexually mature at age 18. Female Atlantic Sturgeon in St. Lawrence estuary reach sexual maturity at age 27–28 (Scott and Scott 1988). Atlantic Sturgeon: the Maritimes population has a relatively small breeding population (COSEWIC 2011a), but due to their large size, females of the species are extremely fecund (350 kg female may exhibit potential fecundity of 7–8 million eggs) (COSEWIC 2011a). That being said, there can be long periods of reproductive quiescence, from 1–5 years for females (COSEWIC 2011a). Shortnose Sturgeon: spawn every 3 years and females can produce up to 200,000 eggs (COSEWIC 2005).	1	Atlantic Sturgeon have three designatable units (DU) (COSEWIC 2011a): Great lakes and upper St. Lawrence, Lower St. Lawrence, and the Maritimes The Maritimes DU is endemic/isolated in the Maritimes Region and the Saint John River area is the only spawning ground for this population (COSEWIC 2011a). Shortnose Sturgeon: endemic/isolated in the Saint John River in New Brunswick (COSEWIC 2005).	1	Bottom feeding sub-group (Scott and Scott 1988); which prey on benthic organisms via a suctorial mouth and buccal cavity- created vacuum (COSEWIC 2011a). Atlantic Sturgeon spawn over rocky and gravel substrates (COSEWIC 2011a).
		Non- benthic (pelagic and demersal)	N/A	Cod (Gadidae)	Atlantic Cod, Arctic Cod, Tomcod, Pollock	1	Atlantic Cod: endangered (Laurentian North population, Laurentian South population, Newfoundland and Labrador population) assessed 2010/04 (COSEWIC 2010b); Cusk: endangered, assessed 2012/11 (COSEWIC 2012c).	0	Atlantic Cod: a 50 cm female can produce 200,000 eggs (Scott and Scott 1988). Species in this sub-group exhibit high fecundity (Scott and Scott 1988). Average egg production per female Atlantic Cod per spawning year can range from 300,000 to several million (COSEWIC 2010b; Lough 2004).	0	Of the four designatable units (DUs) for cod, two exist within the Maritimes Region, though the geographic range of the DUs extend beyond the Maritime Regional Boundary.	1	Atlantic Cod feed on a variety of benthic species (Scott and Scott 1988), so likely to come into contact with unconsolidated substrates. Some studies show a preference in adults for coarse sediment (Fahay et al. 1999).

									RECOVER	Y Crite	ia		
		SUB-GROUP	LEVEL		Maritime example species		Population Status		Reproductive Capacity		Endemism or Isolation	un	Close association with consolidated substrates
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
ine		Non- benthic		Elasmobranchs	Shortfin Mako, Porbeagle, Blue Shark	1	Shortfin Mako: endangered, Atlantic population, assessed 2019/05 (COSEWIC 2019); Porbeagle: endangered, assessed 2014/05 (COSEWIC 2014); Blue Shark: not at risk, North Atlantic Population, assessed 2016/11 (COSEWIC 2016). Basking Shark: special concern, assessed 2009/11 (COSEWIC 2009b).	1	Most sharks produce few offspring and reach sexual maturity slowly. Shortfin Mako sharks have a long generation time (approximately 25 years) relative to others in this group (also late maturity 7–18 years) (Government of Canada 2019, COSEWIC 2019). Porbeagle exhibit late maturity (8–13 years) and low fecundity (COSEWIC 2014). Basking Shark has a generation time of approximately 22 years (COSEWIC 2009b).	0	No evidence of endemism or isolation for Shortfin Mako or Porbeagle; designatable unit (DU) range continues outside of the Maritimes Regional Boundaries for both species (COSEWIC 2019, COSEWIC 2014).	0	Species in this sub-group are not expected to have a close association with unconsolidated substrate.
Mar	Sublida	demersal)	N/A	Osmeridae	Rainbow Smelt, Capelin	0	There are no species in this sub-group listed on SARA, COSEWIC or IUCN Red List for the Maritimes Region. The Lake Utopia population of Rainbow Smelt is listed by COSEWIC. Not included in this framework as it is not a Marine population. Capelin stock information revolves mostly around the Newfoundland region. Some data is available on the Scotian Shelf Capelin population, though very minimal, from 1997 and not enough to identify trends in the population within the Maritimes Region.	0	A large female Capelin can produce 50,000 eggs. A large female smelt can produce up to 60,000 eggs (Scott and Scott 1988). Smelt produce 7,000 (12.7 cm adult) to 69,000 eggs (20.9 cm adult) (Buckley 1989).	0	Smelt and Capelin show no evidence of endemism or isolation within the Maritimes Region. Species range extends outside of the Maritimes (Buckley 1989).	1	Smelt deposit eggs over gravel substrate. Eggs are demersal and adhesive (Buckley 1989). In the Northwest Atlantic Ocean, Capelin spawn on bottom, on intertidal gravel beaches (Kenchington et al. 2015).

									RECOVER	Y Criter	ia		
	:	SUB-GROUP	LEVEL		Maritime example species		Population Status		Reproductive Capacity		Endemism or Isolation	un	Close association with consolidated substrates
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
Marine	Subtidal	Non- benthic (pelagic and demersal)	N/A	Salmon (Salmonidae)	Atlantic Salmon	1	Not at risk: Labrador population, Northeast Newfoundland population, Northwest Newfoundland population, Southwest Newfoundland population, assessed 2010/11 (COSEWIC 2010a); special concern: Gaspe – Southern Gulf of St. Lawrence population, Inner St. Lawrence population, South Newfoundland population assessed 2010/11 (COSEWIC 2010a); endangered: Eastern Cape Breton population, Inner Bay of Fundy population, Inner Bay of Fundy population, Inner Bay of Fundy population, assessed 2010/11 (COSEWIC 2010a); Inner Bay of Fundy population: endangered, SARA, Listed on 2003/06/05.	1P	Precautionary scoring as fecundity in Atlantic Salmon is highly variable and dependent on a number of factors including age, body size, stock, and river. Relative fecundity (eggs/kg) can range from 33 (dwarf or stunted resident population) to 16,585, but on average, a female deposits 700–800 eggs per pound of body weight (Scott and Scott 1988). Average generation time is 5 years (O'Connell et al. 2006). Survival across life stages is low, 0.03%–3.0% from egg to smolt (COSEWIC 2010a).	1	Eleven designatable units (DU) (COSEWIC 2010a): Labrador population, Northeast Newfoundland population, Northwest Newfoundland population, Southwest Newfoundland population, Gaspe – Southern Gulf of St. Lawrence population, Inner St. Lawrence population, South Newfoundland population, Eastern Cape Breton (ECB) population, Inner Bay of Fundy (iBoF) population, Nova Scotia Southern Upland (SU) population, Outer Bay of Fundy population (oBoF). Justification for the scoring of 1 is due to the genetic isolation (and geographic extent) of 4 DUs (ECB, iBoF, oBoF, and SU) (COSEWIC 2010a). Atlantic Salmon exhibit some of the widest ranging migration patterns of salmonids. Typically, the extensive geographic range of the species would result in a score of 0 however, due to the reproductive behaviour of the species, and the limited (or non-existence of) genetic transfer between DUs, this receives a 1.	0	Interaction with sediment in Atlantic Salmon is limited to spawning events in fresh water environments. When at sea, species in this sub- group are not expected to interact with unconsolidated substrates.
Marine	Subtidal	Non- benthic (pelagic and demersal)	N/A	Scombridae	Atlantic Mackerel. Atlantic Bluefin Tuna	1	Atlantic Bluefin Tuna: endangered, assessed 2011/05 (COSEWIC 2011b).	0	A 35 cm female Mackerel is estimated to produce 200,000 eggs (Scott and Scott 1988). Large female Bluefin Tuna may produce over 60 million eggs, though not in Canadian waters (Scott and Scott 1988).	0	No evidence of endemism or isolation within the Maritimes Region (COSEWIC 2011b, DFO 2017).	0	Can be found in deeper water but not expected to be in frequent contact with sea floor (Scott and Scott 1988).

									RECOVER	Y Crite	ia		
		SUB-GROUP	LEVEL		Maritime example species		Population Status		Reproductive Capacity		Endemism or Isolation	un	Close association with consolidated substrates
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
				Clupeidae	Atlantic Herring, American Shad, Blueback Herring, Alewife	1Р	American Shad and Alewife have not been nor are they currently being assessed by COSEWIC, but are considered a mid-priority candidate for assessment (COSEWIC 2021); Blueback Herring: not at risk, assessed 1980/04 (Government of Canada 2021). Declining stocks of Atlantic Herring in the Northwest Atlantic. (NFSC 2022).	0	Female Blueback Herring can produce up to 400,000 eggs. Shad and Alewife display similar fecundity (Scott and Scott 1988). Fecundity estimates for Alewives ranges from 60,000 eggs to 206,000 eggs (Mullen et al. 1986). Shad are prolific and can produce up to 600,000 eggs (Scott and Scott 1988).	0	No evidence of endemism or isolation in the Maritimes Region. Geographic ranges extend outside of the Maritimes, down the eastern shore of North American (Mullen et al. 1986).	1P	Shad consume benthic amphipods (Scott and Scott 1988). Blueback Herring prefer to spawn in fast currents over hard substrate whereas the alewife uses a wide variety of spawning sites and substrates (Mullen et al. 1986).
				Eels (Anguillidae)	American Eel	1	Threatened, assessed 2012/05 (COSEWIC 2012g); COSEWIC report singles out St. Lawrence and Ontario as areas of concern.	1P	Precautionary scoring as there is a lack of research to quantify fecundity in American Eels (Scott and Crossman 1973).	0	No evidence of endemism or isolation within the Maritimes Region (ranked as secure in NB and NS) (COSEWIC 2012g).	1	American Eel is a benthic species, preferring rock, sand and muddy substrate (COSEWIC 2012g). Overwinter buried in muddy bottoms of lakes and rivers (Scott and Scott 1988).

									RECOVER	/ Criter	ia		
	:	SUB-GROUP	LEVEL		Maritime example species		Population Status		Reproductive Capacity		Endemism or Isolation	un	Close association with consolidated substrates
1	2	3	4	5		s	Justification	S	Justification	s	Justification	s	Justification
Estuarine	Estuarine transient	Benthic	Associated with unconsolidated substrates (silt/mud/sand/ gravel)	Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon	1	Atlantic Sturgeon: threatened, Maritimes and St. Lawrence populations, assessed 2011/05 (COSEWIC 2011a); Shortnose Sturgeon: special concern, assessed 2015/05 (COSEWIC 2005).	1P	Sturgeon are very slow to sexually mature. Female Shortnose Sturgeon in Saint John estuary only sexually mature at age 18. Female Atlantic Sturgeon in St. Lawrence estuary reach sexual maturity at age 27–28 (Scott and Scott 1988). Atlantic Sturgeon: the Maritimes population has a relatively small breeding population (COSEWIC 2011a), but due to their large size, females of the species are extremely fecund (350 kg female may exhibit potential fecundity of 7–8 million eggs) (COSEWIC 2011a). That being said, there can be long periods of reproductive quiescence, from 1–5 years for females (COSEWIC 2011a). Shortnose Sturgeon: spawn every 3 years and females can produce up to 200,000 eggs (COSEWIC 2005).	1	Atlantic Sturgeon have three designatable units (DU) (COSEWIC 2011a): Great lakes and upper St. Lawrence, Lower St. Lawrence, and the Maritimes. The Maritimes DU is endemic/isolated in the Maritimes Region and the Saint John River area is the only spawning ground for this population (COSEWIC 2011a). Shortnose Sturgeon: endemic/isolated in the Saint John River in New Brunswick (COSEWIC 2005).	1	Bottom feeding sub-group (Scott and Scott 1988); which prey on benthic organisms via a suctorial mouth and buccal cavity- created vacuum (COSEWIC 2011a). Atlantic Sturgeon spawn over rocky and gravel substrates (COSEWIC 2011a).
				Eels (Anguillidae)	American Eel	1	Threatened, assessed 2012/05 (COSEWIC 2012g); COSEWIC report singles out St. Lawrence and Ontario as areas of concern.	1P	Precautionary scoring as there is a lack of research to quantify fecundity in American Eels (Scott and Crossman 1973).	0	No evidence of endemism or isolation within the Maritimes Region (ranked as secure in NB and NS) (COSEWIC 2012g).	1	American Eel is a benthic species, preferring rock, sand and muddy substrate (COSEWIC 2012g). Overwinter buried in muddy bottoms of lakes and rivers (Scott and Scott 1988).

									RECOVER	Y Criter	ia		
		SUB-GROUP	LEVEL		Maritime example species		Population Status		Reproductive Capacity		Endemism or Isolation	un	Close association with consolidated substrates
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
Estuarine	Estuarine transient	Benthic	Associated with consolidated substrates (cobble/boulder/ bedrock)	Sturgeon (Acipenseridae)	Shortnose Sturgeon, Atlantic Sturgeon	1	Atlantic Sturgeon: threatened, Maritimes and St. Lawrence populations, assessed 2011/05 (COSEWIC 2011a); Shortnose Sturgeon: special concern, assessed 2015/05 (COSEWIC 2005).	1P	Sturgeon are very slow to sexually mature. Female Shortnose Sturgeon in Saint John estuary only sexually mature at age 18. Female Atlantic Sturgeon in St. Lawrence estuary reach sexual maturity at age 27–28 (Scott and Scott 1988). Atlantic Sturgeon: the Maritimes population has a relatively small breeding population (COSEWIC 2011a), but due to their large size, females of the species are extremely fecund (350 kg female may exhibit potential fecundity of 7–8 million eggs) (COSEWIC 2011a). That being said, there can be long periods of reproductive quiescence, from 1–5 years for females (COSEWIC 2011a). Shortnose Sturgeon: spawn every 3 years and females can produce up to 200,000 eggs (COSEWIC 2005).	1	Atlantic Sturgeon have three designatable units (DU) (COSEWIC 2011a): Great lakes and upper St. Lawrence, Lower St. Lawrence, and the Maritimes The Maritimes DU is endemic/isolated in the Maritimes Region and the Saint John River area is the only spawning ground for this population (COSEWIC 2011a). Shortnose Sturgeon: endemic/isolated in the Saint John River in New Brunswick (COSEWIC 2005).	1	Bottom feeding sub-group (Scott and Scott 1988); which prey on benthic organisms via a suctorial mouth and buccal cavity- created vacuum (COSEWIC 2011a). Atlantic Sturgeon spawn over rocky and gravel substrates (COSEWIC 2011a).
Estuarine	Estuarine transient	Non- benthic (pelagic and demersal)	N/A	Clupeidae	American Shad, Blueback Herring, Alewife	1P	American Shad and Alewife have not been nor are they currently being assessed by COSEWIC, but are considered a mid-priority candidate for assessment (COSEWIC 2021); Blueback Herring: not at risk, assessed 1980/04 (Government of Canada 2021). Declining stocks of Atlantic Herring in the Northwest Atlantic. (NEFSC 2022).	0	Female Blueback Herring can produce up to 400,000 eggs. Shad and Alewife display similar fecundity (Scott and Scott 1988). Fecundity estimates for Alewives ranges from 60,000 eggs to 206,000 eggs (Mullen et al. 1986). Shad are prolific and can produce up to 600,000 eggs (Scott and Scott 1988).	0	No evidence of endemism or isolation in the Maritimes Region. Geographic ranges extend outside of the Maritimes, down the eastern shore of North American (Mullen et al. 1986).	1P	Shad consume benthic amphipods (Scott and Scott 1988). Blueback Herring prefer to spawn in fast currents over hard substrate whereas the Alewife uses a wide variety of spawning sites and substrates (Mullen et al. 1986).

									RECOVER	Y Crite	ia		
		SUB-GROUP			Maritime example species		Population Status		Reproductive Capacity		Endemism or Isolation	(un	Close association with consolidated substrates
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
Estuarine	Estuarine transient	Non- benthic (pelagic and demersal)	N/A	Salmon (Salmonidae)	Atlantic Salmon	7	Not at risk: Labrador population, Northeast Newfoundland population, Northwest Newfoundland population, Southwest Newfoundland population, assessed 2010/11 (COSEWIC 2010a); special concern: Gaspe – Southern Gulf of St. Lawrence population, Inner St. Lawrence population, South Newfoundland population, assessed 2010/11 (COSEWIC 2010a); endangered: Eastern Cape Breton population, Inner Bay of Fundy population, Nova Scotia Southern Upland population, Outer Bay of Fundy population, assessed 2010/11 (COSEWIC 2010a); Inner Bay of Fundy Population endangered, SARA, Listed on 2003/06/05.	1P	Precautionary scoring as fecundity in Atlantic Salmon is highly variable and dependent on a number of factors including age, body size, stock, and river. Relative fecundity (eggs/kg) can range from 33 (dwarf or stunted resident population) to 16,585, but on average, a female deposits 700–800 eggs per pound of body weight (Scott and Scott 1988). Average generation time is 5 years (O'Connell et al. 2006). Survival across life stages is low, 0.03%–3.0% from egg to smolt (COSEWIC 2010a).	1	Eleven designatable units (DU) (COSEWIC 2010a): Labrador population, Northeast Newfoundland population, Northwest Newfoundland population, Southwest Newfoundland population, Gaspe – Southern Gulf of St. Lawrence population, Inner St. Lawrence population, South Newfoundland population, Eastern Cape Breton (ECB) population, Inner Bay of Fundy (iBOF) population, Nova Scotia Southern Upland (SU) population, Nova Scotia Southern Upland (SU) population, Outer Bay of Fundy population (oBOF). Justification for the scoring of 1 is dues to the genetic isolation (and geographic extent) of 4 DUS (ECB, iBOF, oBoF, and SU) (COSEWIC 2010a). Atlantic Salmon exhibit some of the widest ranging migration patterns of salmonids. Typically, the extensive geographic range of the species would result in a score of 0 however, due to the reproductive behaviour of the species, and the limited (or non-existent) genetic transfer between DUs, this receives a 1	0	Atlantic Salmon deposit eggs in nests or 'redds' in gravel substrates in freshwater (Scott and Scott 1988, COSEWIC 2010a). They do not spawn in estuaries, therefore not expected to have a close association with unconsolidated substrates in estuaries.

									RECOVER	Criter	ia		
		SUB-GROUP			Maritime example species		Population Status		Reproductive Capacity		Endemism or Isolation	un	Close association with consolidated substrates
1	2	3	4	5		S	Justification	s	Justification	s	Justification	s	Justification
				Silversides (Atherinopsidae)	Atlantic Silverside	0	There are no species in this sub-group listed on SARA, COSEWIC or IUCN for the Maritimes Region. No recent population assessment information was found for this sub-group in the Maritimes Region.	0	Atlantic Silverside: is considered an annual species, completing its life- cycle within 1 year (northernmost distributed individuals may take 2 years) (Sargent et al. 2008). Silversides (age 2 +) can produce up to 5000 eggs (Scott and Scott 1988).	0	No evidence of endemism or isolation within the Maritimes Region. Sargent et al. (2008) found the distribution of the Atlantic Silverside can extend well past the Maritimes Regional Boundary.	1	Feed on mud flats during ebb tide (Scott and Scott 1988).
Estuarine	Estuarine transient	Non- benthic (pelagic and demersal)	N/A	Sticklebacks (Gasterosteidae)	Threespine Stickleback	0	There are no species in this sub-group listed on SARA, COSEWIC or IUCN for the Maritimes Region (Note that Threespine Stickleback is listed on COSEWIC, but these are continental populations (Little Quarry Lake and lakes in the Vananda Creek watershed) – marine fish in the Maritimes Region are not at risk). No recent population assessment information was found for this sub-group in the Maritimes Region	1P	As many as 300 eggs have been counted in Threespine Stickleback nests (Scott and Scott 1988). Gasterosteus aculeatus generally reaches sexual maturity at 1 year (though maximum lifespan varies by population). Fecundity varies by body size at maturity (females). Age specific fecundity is further complicated by the effect of food on the number of spawnings within a breeding season. Generally speaking, female fecundity is enough to produce (given that a male can successfully take up a territory and build a nest), several hundred free swimming fry in a breeding season (Wootton 1984).	0	No evidence of endemism or isolation within the Maritimes Region. Most Gasterosteidae have extremely large home ranges (other than those continental species), of these species, the Blackspotted Stickleback is endemic to the North Atlantic coast of North Atlantic coast of North America, but their range extends into the St. Lawrence Estuary, through Newfoundland and south to New Jersey, far beyond the Maritimes Regional boundaries (Wootton 1984).	1	Expected to be found in close association with substrate due to nest building behavior when in fresh water. Most stickleback species will build nests off the substrate, usually closely associated with vegetation. Some, such as the Blackspotted Stickleback will build their nest on the substrate, and show no preference for sandy or muddy bottoms over hard substrate (can be found in all) (Wootton 1984).

									RECOVER	Y Criter	ia		
	:	SUB-GROUP	LEVEL		Maritime example species		Population Status		Reproductive Capacity		Endemism or Isolation	un	Close association with consolidated substrates
1	2	3	4	5		s	Justification	s	Justification	s	Justification	s	Justification
	Estuarine transient			Petromyzontidae	Sea Lamprey	0	There are no species in this sub-group listed on SARA, COSEWIC or IUCN for the Maritimes Region. No recent population assessment information was found for this sub-group in the Maritimes Region.	0	Females can produce up to 300,000 eggs (Scott and Scott 1988).	0	No evidence of endemism or isolation within the Maritimes Region.	0	Make nests on stream beds so likely to come into contact with unconsolidated substrate (Scott and Scott 1988).
Estuarine	Estuarine resident	Non- benthic (pelagic and demersal)	N/A	Fundulidae	Mummichog	0	There are no species in this sub-group listed on SARA, COSEWIC or IUCN for the Maritimes Region. No recent population assessment information was found for this sub-group in the Maritimes Region. NL has a Mummichog population nearing threatened levels (not applicable to the Maritimes application).	1P	Low fecundity species. Eggs number between 460 (Scott and Crossma 1973) and 740 (Katz 1954 as cited in Scott and Scott 1988).	0	No evidence of endemism or isolation within the Maritimes Region.	1P	Eggs are deposited on substrate (Scott and Scott 1988). Mummichog spend their entire life cycle in close association with salt marshes and shallow estuarine waters (Scott and Scott 1988). Those in salt marshes have a close association with <i>Spartina alterniflora</i> , which grows in unconsolidated substrate (Scott and Scott 1988).
				Syngnathidae	Northern Pipefish	0	There are no species in this sub-group listed on SARA, COSEWIC or IUCN for the Maritimes Region. No recent population assessment information was found for this sub-group in the Maritimes Region.	1P	Brooding species with a highly unique reproductive strategy (relative to other marine fish) – male pregnancy (Wilson and Orr 2011). Sexual maturity reached between 1–2 years (Dawson and Vari 1982).	0	No evidence of endemism or isolation within the Maritimes Region. Geographic range reported to extend beyond the Maritimes Regional Boundary (from PEI and Cape Breton, NS to Florida, USA) (Dawson and Vari 1982).	1	Species is expected to have close association with marine vegetation, particularly eelgrass, <i>Zostera</i> sp., which grows in unconsolidated substrates. (Dawson and Vari 1982).

REFERENCES FOR MARINE FISH SCORING TABLES

- Adams, J., Sweezey, M., and Hodson, P.V. 2014. Oil and oil dispersant do not cause synergistic toxicity to fish embryos. Environ. Toxicol. Chem. **33**(1): 107–114.
- Alderman, S.L., Dilkumar, C.M., Avey, S.R., Farrell, A.P., Kennedy, C.J., and Gillis, T.E. 2020. Effects of diluted bitumen exposure and recovery on the seawater acclimation response of Atlantic salmon smolts. Aquat. Toxicol. **221**: 105419.
- Al-Hassan, J.M., Afzal, M., Rao, C.V.N., and Fayad, S. 2000. Petroleum hydrocarbon pollution in sharks in the Arabian Gulf. Bull. Environ. Contam. Tox. **65**(3): 391–398.
- Beland, K.F., Trial, J.G., and Kocik, J.F. 2004. Use of riffle and run habitats with aquatic vegetation by juvenile Atlantic salmon. N. Am. J. Fish. Manage. **24**(2): 525–533.
- Blenkinsopp, S.A., Sergy, G., Doe, K., Wohlgeschaffen, G., Li, K., and Fingas, M. 1996. Toxicity of the weathered crude oil used at the Newfoundland offshore burn experiment (NOBE) and the resultant burn residue. Spill Sci. Technol. Bull. **3**(4): 277–280.
- Boudreau, M., Sweezey, M.J., Lee, K., Hodson, P.V., and Courtenay, S.C. 2009. Toxicity of orimulsion-400® to early life stages of Atlantic herring (*Clupea harengus*) and mummichog (*Fundulus heteroclitus*). Environ. Toxicol. Chem. **28**(6): 1206–1217.
- Buckley, J.L.1989. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (North Atlantic) rainbow smelt. U.S. Fish Wildl. Serv. Biol. Rep. 82(11.106). U.S. Army Corps of Engineers. TR EL–82–4. 11 pp.
- Celander, M., Nät, C., Broman, D., and Förlin, L. 1994. Temporal aspects of induction of hepatic cytochrome P450 1A and conjugating enzymes in the viviparous blenny (*Zoarces viviparus*) treated with petroleum hydrocarbons. Aquat. Toxicol. **29**(3–4): 183–196.
- Charbonneau, J.A., Keith, D.M., MacNeil, M.A., Sameoto, J.A., and Hutchings, J.A. 2020. <u>Pervasive declines in monkfish (*Lophius americanus*) size structure throughout the <u>northwest Atlantic</u>. Fish. Res. **230**: 105633.</u>
- Chernova, N., Stein, D., and Andriashev, A. 2004. Family Liparidae Scopoli 1777 Snailfishes. California Academy of Sciences Annotated Checklists of Fishes, 31.
- Coad, B. W. 2018. Family 48. Liparidae Snailfishes, Limaces de mer (11). In: Marine Fishes of Arctic Canada. Edited by Brian W. Coad and James D. Reist. University of Toronto Press.
- COSEWIC. 2005. COSEWIC assessment and status report on the Shortnose sturgeon (*Acipenser brevirostrum*) in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 27 pp.
- COSEWIC. 2009a. COSEWIC Assessment and status report on the American plaice, *Hippoglossoides platessoides* (Maritime population, Newfoundland and Labrador population, Arctic population) in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 74 pp.
- COSEWIC. 2009b. COSEWIC Assessment and status report on the Basking shark, *Cetorhinus maximus,* Atlantic population in Canada. viii + 56 pp.

- COSEWIC. 2010a. COSEWIC assessment and status report on the Atlantic salmon *Salmo salar* (Nunavik population, Labrador population, Northeast Newfoundland population, South Newfoundland population, Southwest Newfoundland population, Northwest Newfoundland population, Quebec Eastern North Shore population, Quebec Western North Shore population, Anticosti Island population, Inner St. Lawrence population, Lake Ontario population, Gaspé-Southern Gulf of St. Lawrence population, Eastern Cape Breton population, Nova Scotia Southern Upland population, Inner Bay of Fundy population, Outer Bay of Fundy population) in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xlvii + 136 pp.
- COSEWIC. 2010b. COSEWIC assessment and status report on the Atlantic cod, *Gadus morhua*, Laurentian North population, Laurentian South population, Newfoundland and Labrador population, southern population, Arctic lakes population, Arctic marine population in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xiii + 105 pp.
- COSEWIC. 2010c. COSEWIC assessment and status report on the deepwater redfish/Acadian redfish complex, *Sebastes mentella* and *Sebastes fasciatus*: deepwater redfish Gulf of St. Lawrence, Laurentian Channel population; deepwater redfish northern population; Acadian redfish Atlantic population; Acadian redfish Bonne Bay population in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 80 pp.
- COSEWIC. 2011a. COSEWIC assessment and status report on the Atlantic sturgeon *Acipenser oxyrinchus* St. Lawrence populations Maritime populations in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xiii + 50 pp.
- COSEWIC. 2011b. COSEWIC assessment and status report on the Atlantic bluefin tuna (*Thunnus thynnus*) in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. ix + 30 pp.
- COSEWIC. 2012a. COSEWIC assessment and status report on the smooth skate (*Malacoraja senta*) Hopedale Channel population, Funk Island Deep population, Nose of the Grand Bank population, Laurentian-Scotian population in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xix + 77 pp.
- COSEWIC. 2012b. COSEWIC assessment and status report on the thorny skate (*Amblyraja radiata*) in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. ix + 75 pp.
- COSEWIC. 2012c. COSEWIC assessment and status report on the cusk, *Brosme brosme*, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 85 pp.
- COSEWIC. 2012d. COSEWIC assessment and status report on the Atlantic wolffish, *Anarchichas lupus*, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. ix + 56 pp.
- COSEWIC. 2012e. COSEWIC assessment and status report on the Northern wolffish, *Anarchichas denticulatus,* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 41 pp.
- COSEWIC. 2012f. COSEWIC assessment and status report on the spotted wolffish, *Anguilla rostrata*, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 44 pp.
- COSEWIC. 2012g. COSEWIC assessment and status report on the American eel, *Anarchichas minor,* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xii + 109 pp.

- COSEWIC. 2014. COSEWIC assessment and status report on the porbeagle shark *Lamna nasus* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. viii + 43 pp.
- COSEWIC. 2015. COSEWIC assessment and status report on the winter skate (*Leucoraja ocellata*), Gulf of St. Lawrence population, Eastern Scotian Shelf Newfoundland population and Western Scotian Shelf Georges Bank population in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xviii + 46 pp.
- COSEWIC. 2016. COSEWIC assessment and status report on the Blue shark, *Prionace glauca,* North Atlantic population, North Pacific population, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xv + 46 pp.
- COSEWIC. 2017. COSEWIC assessment and status report on the lumpfish, Cyclopterus lumpus, in Canada. Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 78 pp.
- COSEWIC. 2019. COSEWIC assessment and status report on the Shortfin Mako, *Isurus oxyrinchus*, Atlantic population in Canada. xi + 38 pp.
- COSEWIC. Updated 2021. <u>COSEWIC candidate wildlife species</u>. Accessed for American Shad and Alewife.
- Couillard, C.M., Lee, K., Légaré, B., and King, T.L. 2005. Effect of dispersant on the composition of the water-accommodated fraction of crude oil and its toxicity to larval marine fish. Environ. Toxicol. Chem. **24**(6): 1496–1504.
- Courtenay, S.C. and Keenleyside, M.H.A. 1983. Nest site selection by the four-spine stickleback, *Apeltes quadracus* (Mitchill). Can. J. Zool. **61**(7):1443–1447.
- Dadswell, M.J., Wehrell, S.A., Spares, A.D., McLean, M.F., Beardsall, J.W., Logan-Chesney, L.M., Nau, G.S., Ceapa, C., Redden, A.M., and Stokesbury, M.J.W. 2016. <u>The annual</u> <u>marine feeding aggregation of Atlantic sturgeon *Acipenser oxyrinchus* in the inner Bay of <u>Fundy: population characteristics and movement</u>. J. Fish Biol. **89**: 2107–2132.</u>
- Dawson, C. E., and Vari, R. P. 1982. Fishes of the western North Atlantic: Part eight, Order Gasterosteiformes, suborder Syngnathoidei: Syngnathidae: (Doryrhamphinae, Syngnathinae, Hippocampinae). New Haven, Conn.
- de Graaf, R.C. 2006. <u>Fine-scale population genetic structure of the eastern Pacific bay pipefish</u>, <u>Syngnathus leptorhynchus (T)</u>. University of British Columbia.
- DFO. 2017. <u>Assessment of the Atlantic mackerel stock for the Northwest Atlantic (Subareas 3 and 4) in 2016</u>. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2017/034.
- Fahay, M. P., Berrien, P. L., Johnson, D. L., and Morse, W. W. 1999. Essential fish habitat source document: Atlantic cod, *Gadus morhua*, life history and habitat characteristics. NOAA Technical Memorandum NMFS_NE–124. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Region, Northeast Fisheries Science Center Woods Hole, Mass.
- Frantzen, M., Hansen, B.H., Geraudie, P., Palerud, J., Falk-Petersen, I.-B., Olsen, G.H., and Camus, L. 2015. Acute and long-term biological effects of mechanically and chemically dispersed oil on lumpsucker (*Cyclopterus lumpus*). Mar. Environ. Res. **105**: 8–19.
- Gagnon, M.M., and Holdway, D.A. 2000. EROD induction and biliary metabolite excretion following exposure to the water accommodated fraction of crude oil and to chemically dispersed crude oil. Arch. Environ. Contam. Toxicol. **38**(1): 70–77.

- Gardiner, W.W., Word, J.Q., Word, J.D., Perkins, R.A., McFarlin, K.M., Hester, B.W., Word, L.S., and Ray, C.M. 2013. The acute toxicity of chemically and physically dispersed crude oil to key arctic species under arctic conditions during the open water season. Environ. Toxicol. Chem. **32**(10): 2284–2300.
- Gardner, G.R., Yevich, P.P., and Rogerson, P.F. 1975. Morphological anomalies in adult oysters, scallop, and Atlantic silversides exposed to waste motor oil. *In* Conference on prevention and control of oil pollution: proceedings. 1 March, 1975. pp. 473–477.
- Geoghegan, F., Katsiadaki, I., Williams, T.D., and Chipman, J.K. 2008. A cDNA microarray for the threespine stickleback, *Gasterosteus aculeatus* L., and analysis of the interactive effects of oestradiol and dibenzanthracene exposures. J. Fish. Biol. **72**(9): 2133–2153.
- Gleiss, A.C., Schallert, R.J., Dale, J.J., Wilson, S.G., and Block, B.A. 2019. Direct measurement of swimming and diving kinematics of giant Atlantic Bluefin tuna (*Thunnus thynnus*). R. Soc. Open Sci. **6**(5): 190203.
- Government of Canada. 2019. <u>List of wildlife species at risk (referral back to COSEWIC). Order:</u> <u>SI/2019–13</u>. Canada Gazette. Part II. **153**(6).
- Government of Canada. Updated 2021. <u>Species at risk public registry</u>. Accessed for Atlantic Halibut, Blueback Herring.
- Gunnarsson, A., Sólmundsson, J., Björnsson, H., Sigurðsson, G., and Pampoulie, C. 2019.
 Migration pattern and evidence of homing in Atlantic wolffish (*Anarchichas lupus*). Fish. Res.
 215: 69–75.
- Haensly, W.E., Neff, J.M., Sharp, J.R., Morris, A.C., Bedgood, M.F., and Boem, P.D. 1982.
- Hansen, B.H., Parkerton, T., Nordtug, T., Størseth, T.R., and Redman, A. 2019a. Modeling the toxicity of dissolved crude oil exposures to characterize the sensitivity of cod (*Gadus morhua*) larvae and role of individual and unresolved hydrocarbons. Mar. Poll. Bull. **138**: 286–294.
- Hansen, B.H., Sørensen, L., Størseth, T.R., Nepstad, R., Altin, D., Krause, D., Meier, S., and Nordtug, T. 2019b. Embryonic exposure to produced water can cause cardiac toxicity and deformations in Atlantic cod (*Gadus morhua*) and haddock (*Melanogrammus aeglefinus*) larvae. Mar. Environ. Res. **148**: 81–86.
- Histopathology of *Pleuronectes platessa L*. from Aber Wrac'h and Aber Benoit, Brittany, France: long-term effects of the Amoco Cadiz crude oil spill. J. Fish Dis. **5**(5): 365–391.
- Incardona, J.P., Carls, M.G., Holland, L., Linbo, T.L., Baldwin, D.H., Myers, M.S., Peck, K.A., Tagal, M., Rice, S.D., and Scholz, N.L. 2015. Very low embryonic crude oil exposures cause lasting cardiac defects in salmon and herring. Sci. Rep. **5**(1): 13499–13499.
- Incardona, J.P., Gardner, L.D., Linbo, T.L., Brown, T.L., Esbaugh, A.J., Mager, E.M., Stieglitz, J.D., French, B.L., Labenia, J.S., Laetz, C.A. and Tagal, M. 2014. *Deepwater Horizon* crude oil impacts the developing hearts of large predatory pelagic fish. Proc. of the Natl. Acad. Sci. U.S.A (15): E1510–E1518.
- Jewett, S.C., Dean, T.A., Woodin, B.R., Hoberg, M.K. and Stegeman, J.J. 2002. Exposure to hydrocarbons 10 years after the *Exxon Valdez* oil spill: evidence from cytochrome P4501A expression and biliary FACs in nearshore demersal fishes. Mar. Environ. Res. **54**(1): 21–48.

- Johnson, D.L, Berrien, P.L., Morse, W.W., and Vitaliano, J.J. 1999. Essential fish habitat source document: American plaice, *Hippoglossoides platessoides*, life history and habitat characteristics. NOAA Technical Memorandum NMFS–NE–123. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Region, Northeast Fisheries Science Center. Woods Hole, Mass.
- Kenchington, E.L., Nakashima, B.S., Taggart, C.T., and Hamilton, L.C. 2015. Genetic structure of capelin (*Mallotus villosus*) in the Northwest Atlantic Ocean. *PLoS One*, **10**(3).
- Khan, R.A., and Payne, J.F. 2005. Influence of a crude oil dispersant, Corexit® 9527, and dispersed oil on capelin (*Mallotus villosus*), Atlantic cod (*Gadus morhua*), Longhorn sculpin (*Myoxocephalus octodecemspinosus*), and Cunner (*Tautogolabrus adspersus*). Bull. Environ. Contam. Toxicol. **75**(1): 50–56.
- Kiceniuk, J. W., and Khan, R.A. 1987. Effect of petroleum hydrocarbons on Atlantic cod, *Gadus morhua,* following chronic exposure. Can. J. Zool. **65**: 490–494.
- Knag, A.C., and Taugbøl, A. 2013. Acute exposure to offshore produced water has an effect on stress- and secondary stress responses in threespine stickleback *Gasterosteus aculeatus*. Comp. Biochem. Phys. C: Toxicol. Pharmacol. **158**(3): 173–180.
- Lamb, A., and Edgell, P. 2010. Coastal fishes of the Pacific Northwest. Harbour publishing, Madeira Park, B.C.
- Le François, N.R., Beirão, J., Superio, J., Dupont Cyr, B.A., Foss, A., and Bolla, S. 2021. Spotted wolffish broodstock management and egg production: Retrospective, Current Status, and Research Priorities. Animals. 11(10): 2849. DOI:10.3390/ani11102849
- Lee, E.-H., Kim, M., Moon, Y.-S., Yim, U.H., Ha, S.Y., Jeong, C.-B., Lee, J.-S., and Jung, J.-H. 2018. Adverse effects and immune dysfunction in response to oral administration of weathered Iranian heavy crude oil in the rockfish *Sebastes schlegeli*. Aquat. Toxicol. **200**: 127–135.
- Lough, R. G. 2004. <u>Essential fish habitat source document: Atlantic cod, Gadus morhua, life</u> <u>history and habitat characteristics</u>. Second Edition. NOAA Technical Memoradum NMFS– NE–190.
- Love, M.S. 2011. Certainly more than you want to know about the fishes of the Pacific coast. Really Big Press. Santa Barbara, California.
- Madenjian, C.P., Unrein, J.R., and Pedro, S. 2020. Trends and biological effects of environmental contaminants in lamprey. J. Great Lakes Res. 09/2020.
- Mullen, D.M., Fay, C.W., and Moring, J.R. 1986. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (North Atlantic): alewife/blueback herring. U.S. Fish Wildl. Serv. Biol. Rep. 82(11.56) Technical report EL 82– 4, United States Army Corps of Engineers, Waterways Experiment Station.
- Nava, M., and Engelhardt, F. R. 1980. Compartmentalization of ingested labelled petroleum in tissues and bile of the American eel (*Anguilla rostrata*). Bull. Environ. Contam. Toxicol. **24**: 879–885.
- Nava, M.E., and Engelhardt, F.R. 1982. Induction of mixed function oxidases by petroleum in the American eel, *Anguilla rostrata*. Arch. Environ. Contam. Toxicol. **11**(2): 141–145.
- O'Connell, M.F., Dempson, J.B., and Chaput, G. 2006. <u>Aspects of the life history, biology, and population dynamics of Atlantic salmon (Salmo salar L.) in Eastern Canada</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/014. iv + 47 p.

- Paine, M.D., Leggett, W.C., McRuer, J.K., and Frank, K.T. 1991. Effects of incubation in oiled sediment on emergence of capelin (*Mallotus villosus*) larvae. Can. J. Fish. Aquat. Sci. 48(11): 2228–2239.
- Paine, M.D., Leggett, W.C., McRuer, J.K., and Frank, K.T. 1992. <u>Effects of Hibernia crude oil on</u> <u>Capelin (*Mallotus villosus*) embryos and larvae</u>. Mar. Environ. Res. **33**(3): 159–187.
- Payne, J.F., Fancey, L.L., Hellou, J., King, M.J., and Fletcher, G.L. 1995. Aliphatic hydrocarbons in sediments: a chronic toxicity study with winter flounder (*Pleuronectes americanus*) exposed to oil well drill cuttings. Can. J. Fish. Aquat. Sci. **52**(12): 2724–2735.
- Pikanowski, R.A., Morse, W.W., Berrien, P.L., Johnson, D.L., and McMillian, D.G. 1999. Essential fish habitat source document: Redfish, Sebastes spp., life history and habitat characteristics. NOAA Technical Memorandum NMFS–NE0132. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Region, Northeast Fisheries Science Center. Woods Hole, Mass.
- Rostami, H.K., and Soltani, M. 2016. Effects of acute crude oil exposure on basic physiological functions of Persian sturgeon, *Acipenser persicus*. Caspian J. Environ. Sci. **14**(1): 43–53.
- Rowland, W.J. 1974. Reproductive behavior of the Fourspine stickleback, *Apeltes quadracus*. Copeia **1974**(1): 183–194.
- Sandrini-Neto, L., Geraudie, P., Santana, M.S., and Camus, L. 2016. Effects of dispersed oil exposure on biomarker responses and growth in juvenile wolffish *Anarhichas denticulatus*. Environ. Sci. Pollut. Res. **23**(21): 21441–21450.
- Sargent, P.S., Methven, D. A., Hooper, R.G., and McKenzie, C.H. 2008. A range extension of the Atlantic silverside, *Menidia menidia*, to coastal waters of Southwestern Newfoundland. Can. Field-Nat. **122**(4): 338–344.
- Scott, W.B., and Crossman, E.J. 1973. Freshwater fishes of Canada. Fisheries Research Board of Canada Bulletin, pp. 69–76.
- Scott, W.B., and Scott, M. G. 1988. Atlantic fishes of Canada. Can. Bull. Fish. Aquat. Sci. **219**: 731 p.
- Smith, M.D., Grabowski, J.H., and Yund, P.O. 2008. The role of closed areas in rebuilding monkfish populations in the Gulf of Maine. ICES J. Mar. Sci. **65**: 1326–1333.
- Sørhus, E., Edvardsen, R.B., Karlsen, O., Nordtug, T., van der Meeren, T., Thorsen, A., Harman, C., Jentoft, S., and Meier, S. 2015. Unexpected interaction with dispersed crude oil droplets drives severe toxicity in Atlantic haddock embryos. PLoS One **10**(4): e0124376 – e0124376.
- Steimle, F.W., Morse, W.M., and Johnson, D.J. 1999b. Essential fish habitat source document: Goosefish, *Lophius americanus*, life history and habitat characteristics. NOAA Technical Memorandum NMFS–NE–127. U.S. Dept. of Commerce, National Oceanix and Atmospheric Administration, National Marine Fisheries Service, Northeast Region, Northeast Fisheries Science Center. Woodshole, Mass.
- Steimle, F.W., Morse, W.M., Berrien, P.L., Johnson, D.L., and Zetlin, C.A. 1999a. Essential fish habitat source document: Ocean pout, *Macrozoarces americanus*, life history and habitat characteristics. NOAA Technical Memorandum NMFS–NE–129. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Region, Northeast Fisheries Science Center. Woods Hole, Mass.

- Tagatz, M.E. 1961. Reduced oxygen tolerance and toxicity of petroleum products to juvenile American shad. Chesapeake Sci. **2**(1/2): 65–71.
- Tairova, Z., Frantzen, M., Mosbech, A., Arukwe, A., and Gustavson, K. 2019. Effects of water accommodated fraction of physically and chemically dispersed heavy fuel oil on beach spawning capelin (*Mallotus villosus*). Mar. Environ. Res. **147**: 62–71.
- Thomas, M.L.H. 1973. Effects of Bunker C oil on intertidal and lagoonal biota in Chedabucto Bay, Nova Scotia. J. Fish. Res. Board Can. **30**(1): 83–90.
- Varanasi, U., Collier, T.K., Krone, C.A., Krahn, M.M., and Johnson, L.L. 1995. Assessment of oil spill impacts on fishery resources: Measurement of hydrocarbons and their metabolites, and their effects, in important species. NRDA project subtidal 7. *Exxon Valdez* oil spill state/federal natural resource damage assessment final report. United States.
- Wang, S.Y., Lum, J.L., Carls, M.G., and Rice, S.D. 1993. Relationship between growth and total nucleic acids in juvenile pink salmon, *Oncorhynchus gorbuscha*, fed crude oil contaminated food. Can. J. Fish. Aquat. Sci. **50**(5): 996–1001.
- Wilson, A.B., and Orr, J.W. 2011. The evolutionary origins of Syngnathidae: pipefishes and seahorses. J. Fish Biol. **78**(6): 1603–1623.
- Wootton, R.J. 1984. A functional biology of sticklebacks. Springer. Boston, MA.

APPENDIX 4. DETAILED SCORING TABLES WITH JUSTIFICATIONS FOR MARINE MAMMALS

Table A10. Marine mammals sub-group scores for EXPOSURE scoring criteria, the column labelled "S" indicates the score assigned (note: species lists are not exhaustive; scores with a "P" indicate a precautionary score due to knowledge gaps) (– = not applicable).

							EXPOSUR	E Crit	eria		
3	OB-GROUP LEVE	L	Maritime example species		Concentration (aggregation)		Mobility and/or site fidelity		Sea surface interacting	Seat	floor or vegetation interacting
1	2	3		s	Justification	s	Justification	s	Justification	S	Justification
		Discrete	Killer Whale, Long-finned Pilot Whale, Northern Bottlenose Whale, Atlantic White-sided Dolphin	1	Species in this sub-group have been observed to form concentrations or aggregations (Olson 2018, Cipriano 2018, Ford 2018).	0	All marine mammals can be described as highly mobile (Tyack 2018).	1	All marine mammals surface to breathe (Miller and Roos 2018, Tyack 2018).	1P	Diet composition studies indicate that species in this sub-group have the ability to interact with the sea floor (Reeves et al. 1999, Cipriano 2018).
Cetaceans	Toothed	Dispersed	Harbour Porpoise, Sperm Whale, Cuvier's Beaked Whale, Sowerby's Whale, True's Beaked Whale, Blainville's Beaked Whale	1	Species in this sub-group have been observed to form concentrations or aggregations (Baird 2018, Bjørge and Tolley 2018, Whitehead 2018).	0	All marine mammals can be described as highly mobile (Tyack 2018).	1	All marine mammals surface to breathe (Miller and Roos 2018, Tyack 2018).	1	All beaked whales tend to forage at or near the seabed (MacLeod 2018).
	Baleen	Discrete	Fin Whale, Humpback Whale, North Atlantic Right Whale	1	Species in this sub-group have been observed to form concentrations or aggregations (COSEWIC,2013, Cole et al. 2013, Brown et al. 2008, Mitchell 1974, Perkins and Whitehead 1977, DFO 2016, Aguilar and Garcia-Vernet 2018).	0	All marine mammals can be described as highly mobile (Tyack 2018)	1	All marine mammals surface to breathe (Miller and Roos 2018, Tyack 2018).	1P	Humpback Whales exhibit feeding behaviour resulting in interaction with the sea floor (Hain et al. 1995, Ware et al. 2013).
Cetaceans	Baleen	Dispersed	Minke Whale, Blue Whale, Sei Whale	1	Species in this sub-group have been observed to form concentrations or aggregations (Horwood 2018, Perrin et al. 2018).	0	All marine mammals can be described as highly mobile (Tyack 2018).	1	All marine mammals surface to breathe (Miller and Roos 2018, Tyack 2018).	1P	In the North Atlantic, Minke Whale diet includes species generally associated with the sea floor (Sand Eel, Sand Lance, Cod) (Perrin et al. 2018).

							EXPOSUR	E Cri	teria		
3	OB-GROUP LEVE	L	Maritime example species		Concentration (aggregation)		Mobility and/or site fidelity		Sea surface interacting	Seat	loor or vegetation interacting
1	2	3		s	Justification	s	Justification	s	Justification	s	Justification
	Thermoregulate with fur	None	e Found	-	_	-	_	-	_	-	-
Pinnipeds		Discrete	Harbour Seal, Harp Seal,	1	Species in this sub-group have been observed to form concentrations or aggregations (breeding, haul-out, at-sea) (Teilmann and Galatius 2018, Lavigne 2018).	1P	All marine mammals can be described as highly mobile (Tyack 2018), but pinnipeds haul out on land for periods of rest and reproduction where mobility is reduced.	1	All marine mammals surface to breathe (Miller and Roos 2018, Tyack 2018). Species in this sub-group also surface to breed and rest (Hall and Russel 2018).	0	Species in this sub-group feed primarily on small pelagic fish (Lavigne 2018).
Pinnipeds	Other pinnipeds	Dispersed	Grey Seal, Ringed Seal, Bearded Seal, Hooded Seal	1	Species in this sub-group have been observed to form concentrations or aggregations (Hammill 2018, Kovacs 2018a).	1P	All marine mammals can be described as highly mobile (Tyack 2018), but pinnipeds haul out on land for periods of rest and reproduction where mobility is reduced.	1	All marine mammals surface to breathe (Miller and Roos 2018, Tyack 2018).	1	This sub-group contains species that are largely benthic and semi-demersal feeders (Hall and Russell 2018, Hammill 2018, Kovacs 2018b, Kovacs and Lavigne 1986).

Table A11. Marine mammals sub-group scores for SENSITIVITY scoring criteria, the column labelled "S" indicates the score assigned (note: species lists are not exhaustive; scores with a "P" indicate a precautionary score due to knowledge gaps) (– = not applicable).

		-1				Sensitiv	vity Criteria
	SUB-GROUP LEVE	:L	Maritime example species	F	Mechanical Sensitivity Reduction of feeding/photosynthesis/thermoregulation		Chemical Sensitivity Impairment due to toxicity
1	2	3		S	Justification	S	Justification
		Discrete	Killer Whale, Long-finned Pilot Whale, Northern Bottlenose Whale, Atlantic White-sided Dolphin	0	Do not rely on fur for thermoregulation and do not have filter feeding structures.	1P	Limited research regarding toxicological effects on toothed cetaceans. Lack of baseline data and standardized methods make results difficult to compare.
Cetaceans	Toothed	Dispersed	Harbour Porpoise, Sperm Whale, Cuvier's Beaked Whale, Sowerby's Whale, True's Beaked Whale, Blainville's Beaked Whale	0	Do not rely on fur for thermoregulation and do not have filter feeding structures.	1P	Limited research regarding toxicological effects on toothed cetaceans. Lack of baseline data and standardized methods make results difficult to compare.
	Baleen	Discrete	Fin Whale, Humpback Whale, North Atlantic Right Whale	1P	Potential obstruction of baleen plates by oil, with a potential to reduce efficacy of or ability to feed (Gubbay and Earll 2000, Geraci and St. Aubin 1988).	1P	Limited research regarding toxicological effects on baleen cetaceans. Lack of baseline data and standardized methods make results difficult to compare.
		Dispersed	Minke Whale, Blue Whale, Sei Whale	1P	Potential obstruction of baleen plates by oil, with a potential to reduce efficacy of or ability to feed (Gubbay and Earll 2000, Geraci and St. Aubin 1988).	1P	Limited research regarding toxicological effects on baleen cetaceans. Lack of baseline data and standardized methods make results difficult to compare.
	Thermoregulate with fur	No	ne Found	-	-	-	-
Diamin e de		Discrete	Harbour Seal, Harp Seal	0	Do not rely on fur for thermoregulation and do not have filter feeding structures	1P	Limited research regarding toxicological effects on pinnipeds. Lack of baseline data and standardized methods make results difficult to compare.
rinipeds	Other pinnipeds	Dispersed	Grey Seal, Ringed Seal, Bearded Seal, Hooded Seal	1P	Grey Seal pups are born with a white lanugo to assist in thermoregulation (Jenssen 1996, Hall and Russell 2018). While the lanugo is shed during moulting, young pups have the potential to experience a loss in thermoregulation if exposed to oil (Davis and Anderson 1976).	1P	Limited research regarding toxicological effects on pinnipeds. Lack of baseline data and standardized methods make results difficult to compare.

Table A12. Marine mammals sub-group scores for RECOVERY scoring criteria, the column labelled "S" indicates the score assigned (note: species lists are not exhaustive; scores with a "P" indicate a precautionary score due to knowledge gaps) (– = not applicable).

		51					RECOVER	Y Crit	eria		
	SUB-GROUP LEV	EL	Maritime example species		Population status	F	Reproductive capacity		Endemism or isolation	u	Close association with inconsolidated substrates
1	2	3		S	Justification	S	Justification	s	Justification	S	Justification
		Discrete	Killer Whale, Long-Finned Pilot Whale, Northern Bottlenose Whale, Atlantic White-sided Dolphin	1	The Northwest Atlantic/Eastern Arctic population of Killer Whale are listed as Special Concern by COSEWIC (2008–11) and are under consideration for addition to Schedule 1 (SARA). The Scotian Shelf population of Northern Bottlenose Whale is listed as Endangered by COSEWIC (2011–05) and as Endangered on Schedule 1 of SARA (2006–04).	1	All cetaceans are K- strategists (Estes 1979, Fordyce 2018).	1	The Northern Bottlenose Whale sub-population in the Maritimes Region is endemic/genetically isolated to the Scotian Shelf Gullies (COSEWIC 2011).	1P	Diet composition studies show that some species in this sub-group consume Sand Lance, indicating that there is an association with unconsolidated substrates (Reeves et al. 1999, Cipriano 2018, Staudinger et al. 2020).
Cetaceans	Toothed	Dispersed	Harbour Porpoise, Sperm Whale, Cuvier's Beaked Whale, Sowerby's Whale, True's Beaked Whale, Blainville's Beaked Whale	1	This sub-group contains species that are listed on COSEWIC and SARA. The Northwest Atlantic population of Harbour Porpoise is listed as Special Concern by COSEWIC (2006–04) and Schedule 2 Threatened under SARA. Sowerby's Beaked Whale is listed as Special Concern under COSEWIC (2019–05) and is Schedule 1 – Special Concern under SARA (2011-06-23).	1	All cetaceans are K- strategists (Estes 1979, Fordyce 2018, Whitehead 2018).	0	No evidence of endemism or isolation in this sub-group.	1	All beaked whales tend to forage at or near the seabed, consuming prey whose habitat includes unconsolidated substrate (MacLeod 2018, Staudinger et al. 2020).
	Baleen	Discrete	Fin Whale, Humpback Whale, North Atlantic Right Whale	1	This sub-group contains species listed under COSEWIC and SARA. The Atlantic population of Fin Whale is listed as Special Concern under COSEWIC (2019–05) and Schedule 1 Special Concern under SARA (2006-08-15). The North Atlantic Right Whale is listed as Endangered by both COSEWIC (2013–11) and SARA (Schedule 1) (2005-01- 01).	1	All cetaceans are K- strategists (Estes 1979, Fordyce 2018, Brown et al. 2008 , Baird 2003).	0	No evidence of endemism or isolation in this sub-group.	1P	Humpback Whales exhibit feeding behaviour on sand lance indicating association with unconsolidated substrate (Hain et al. 1995, Staudinger et al. 2020).

		-1					RECOVER	Y Crit	eria		
	SUB-GROUP LEV	EL	Maritime example species		Population status	F	Reproductive capacity		Endemism or isolation	u	Close association with nconsolidated substrates
1	2	3		s	Justification	s	Justification	S	Justification	s	Justification
Cetaceans	Baleen	Dispersed	Minke Whale, Blue Whale, Sei Whale	1	This sub-group contains species listed under COSEWIC and SARA. The Atlantic population of the Sei Whale is listed as Endangered by COSEWIC (2019–05) but not listed by SARA though is under consideration for addition.	1	All cetaceans are K- strategists (Estes 1979, Fordyce 2018).	0	No evidence of endemism or isolation in this sub-group.	1P	In the North Atlantic, Minke Whale diet includes species generally associated unconsolidated substrate (Sand Eel, Sand Lance) (Perrin et al. 2018, Staudinger et al. 2020).
	Thermoregulate with fur	Non	e Found	-	-	-	-	-	_	-	-
Pinnipeds		Discrete	Harbour Seal, Harp Seal	1	This sub-group does not contain species listed on COSEWIC or SARA Registry. The Harbour Seal (2007–11) was assessed by COSEWIC as Not at Risk. Harbour Seal – Trend unknown (COSEWIC 2008), Population declining on sable island (Blanchet et al. 2021) No evidence for Harp Seal declines.	1	All pinnipeds are K- strategists (Estes 1979, Berta 2018).	0	No evidence of endemism or isolation in this sub-group.	0	Species in this sub-group feed primarily on small pelagic fish (Lavigne 2018).
	Other pinnipeds	Dispersed	Grey Seal, Ringed Seal, Bearded Seal, Hooded Seal	1	This sub-group contains species that are listed by COSEWIC. The Ringed Seal is listed as Special Concern by COSEWIC (2019–11) and though not listed by SARA, is under consideration for addition to Schedule 1. The Bearded Seal is listed by COSEWIC as Data Deficient (2007–04). Grey Seal (1999–04) was assessed by COSEWIC as Not at Risk.	1	All pinnipeds are K- strategists (Estes 1979, Berta 2018).	0	No evidence of endemism or isolation in this sub-group.	1	This sub-group contains species that are largely benthic and semi-demersal feeders ((Hall and Russell 2018, Hammill 2018, Kovacs 2018b, Kovacs and Lavigne 1986).

REFERENCES FOR MARINE MAMMALS SCORING TABLES

- Aguilar, A., and Garcia-Vernet, R. 2018. Fin Whale. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 368–371.
- Baird, R.W. 2018. Cuvier's Beaked Whale. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 531–537.
- Baird, R.W. 2003. Update COSEWIC status report on the humpback whale *Megaptera novaeangliae* in Canada *In* COSEWIC assessment and update status report on the humpback whale *Megaptera novaeangliae* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. pp. 1–25.
- Berta, A. 2018. Pinnipeds. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 733–740.
- Bjørge, A., and Tolley K.A. 2018. Harbour Porpoise. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 86–93.
- Blanchet, M.-A., Vincent, C., Womble, J.N., Steingass, S.M., and Desportes, G. 2021. <u>Harbour</u> <u>seals: population structure, status, and threats in a aapidly changing environment</u>. Oceans (Basel, Switzerland) **2**(1): 41–63.
- Brown, M.W., Fenton, D., Smedbol, K., Merriman, C., Robichaud-Leblanc, K., and Conway, J.D. 2008. Recovery strategy for the North Atlantic Right Whale (*Eubalaena glacialis*) in Atlantic Canadian waters [Proposed]. Species at Risk Act Recovery Strategy Series. Fisheries and Oceans Canada. vi + 63 p.
- Cipriano, F. 2018. Atlantic White-sided dolphin. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 42–44.
- Cole, T.V.N., Hamilton, P., Henry, A.G., Duley, P., Pace, R.M. III, White, B.N., Frasier, T. 2013. <u>Evidence of a North Atlantic right whale *Eubalaena glacialis* mating ground</u>. Endang Species Res **21**:55–64.
- COSEWIC. 2011. COSEWIC assessment and status report on the Northern Bottlenose whale *Hyperoodon ampullatus* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xii + 31 pp.
- COSEWIC. 2013. COSEWIC assessment and status report on the North Atlantic Right Whale *Eubalaena glacialis* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 58 pp.
- Davis, J.E., and Anderson, S.S. 1976. Effects of oil pollution on breeding grey seals. Mar. Poll. Bull. **7**(6): 115–118.
- DFO. 2016. <u>Management Plan for the fin whale (*Balaenoptera physalus*), Atlantic population in <u>Canada</u>. Species at Risk Act Management Plan Series, DFO, Ottawa, vi + 38 p.</u>
- Estes, J.A. 1979. Exploitation of marine mammals: r-selection or K-strategists? J. Fish. Res. Bd. Can. **36**: 1009–1017.
- Ford, J.K.B. 2018. Killer whale. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 531–537.
- Fordyce, R.E. 2018. Cetacean evolution. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 180–185.

- Geraci, J.R. and St. Aubin, D.J. 1988. Synthesis of effects of oil on marine mammals. Department of Interior, Minerals Management Service, Atlantic OCS Region report MMS 88–0049. Contract no. 14–12–0001–320293.
- Gubbay, S., and Earll, R. 2000. Review of literature on the effects of oil spills on cetaceans. Scottish Natural Heritage Review No. 3. Scottish Natural Heritage, Publication Section Advisory Services, Edinburgh, UK.
- Hain, J.W.H., Ellis, S.L., Kenney, R.D., Clapham, P.J., Gray, B.K, Weinrich, M.T., and Babb,
 I.G. 1995. Apparent bottom feeding by humpback whales on Stellwagen Bank. Mar. Mamm.
 Sci. 11(4): 16 pp.
- Hall, A.J., and Russell, D.J.F. 2018. Gray seal. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 420–422.
- Hammill, M.O. 2018. Ringed seal. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 455–457.
- Horwood, J. 2018. Sei whale. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 86–93.
- Jenssen, B.M. 1996. <u>An overview of exposure to, and effects of, petroleum oil and organochlorine pollution in Grey seals (*Halichoerus grypus*). Sci. Total Environ. 86(1–2):109–118.</u>
- Kovacs, K.M. 2018a. Hooded seal. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 477–480.
- Kovacs, K.M. 2018b. Bearded seal. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 83–86.
- Kovacs, K.M. and Lavigne, D.M. 1986. *Cystophora cristata*. The American Society of Mammalogists **258**: pp. 1–9.
- Lavigne, D.M. 2018. Harp seal. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 455–457.
- MacLeod, C.D. 2018. Beaked whales, Overview. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 531–537.
- Miller, P.J.O. and Roos, M.M.H. 2018. Breathing. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 140–143.
- Mitchell, E. 1974. Present status of northwest Atlantic fin and other whale stocks. *In* The Whale Problem, A Status Report. *Edited by* W.E. Schevill. Harvard University Press, Cambridge, MA. pp. 108–161.
- Olson, P.A. 2018. Pilot whales. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 701–705.
- Perkins, J. and Whitehead, H. 1977. Observations on three species of baleen whales off northern Newfoundland adjacent waters. J. Fish. Res. Board Can. **34**:1436–1440.
- Perrin, W.F., Malette, S.D., and Brownell Jr., R.L. 2018. Minke whales. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 608–613.

- Reeves, R.R, Smeenk, C. Brownell, R.L. Jr., and Kinze, C.C. 1999. Atlantic White-sided dolphin *Lagenorhynchus acutus* (Gray, 1828). *In* Handbook of marine mammals: the second handbook of dolphins and the porpoises. Edited by S. H. Ridgeway, R. Harrison, and R. J. Harrison. Academic Press, London, UK. pp 31–56.
- Species at Risk Public Registry. 2020. <u>Species at Risk Public Registry</u>. Environment and Climate Change Canada.
- Staudinger, M.D., Goyert, H., Suca, J.J., Coleman, K., Welch, L., Llopiz, J.K., Wiley, D., Altman, I., Applegate, A., Auster, P., Baumann, H., Beaty, J., Boelke, D., Kaufman, L., Loring, P., Moxley, J., Paton, S., Powers, K., Richardson, D., Robbins, J., Runge, J., Smith, B., Spiegel, C. and Steinmetz, H. 2020. The role of sand lances (*Ammodytes* sp.) in the Northwest Atlantic ecosystem: A synthesis of current knowledge with implications for conservation and management. Fish. Fish. 21: 522–556.
- Teilmann, J. and Galatius, A. 2018. Harbor seal. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 451–455.
- Tyack, P.L. 2018. Behavior, overview. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 86–93.
- Ware, C., Wiley, D.N., Friedlaender, A.S., Weinrich, M., Hazen, E.L., Bocconcelli, A., Parks, S.E., Stimpert, A.K., Thompson, M.A., and Abernathy, K. 2013. Bottom side-roll feeding by humpback whales (*Megaptera novaeangliae*) in the southern Gulf of Maine, U.S.A. Mar. Mamm. Sci. **30**(2): 18 pp.
- Whitehead, H. 2018. Sperm whale. *In* Encyclopedia of marine mammals. *Edited by* B. Würsig and J. Thewissen. Academic Press, San Diego, CA. pp. 919–925.

APPENDIX 5. DETAILED SCORING TABLES WITH JUSTIFICATIONS FOR MARINE REPTILES

Table A13. Marine reptiles sub-group scores for EXPOSURE scoring criteria, the column labelled "S" indicates the score assigned (note: species lists are not exhaustive; scores with a "P" indicate a precautionary score due to knowledge gaps).

	Maritime example species	EXPOSURE Criteria								
SUB-GROUP LEVEL		Concentration (aggregation)		Mobility and/or site fidelity		Sea surface interacting		Seafloor or vegetation interacting		
		s	Justification	s	Justification	s	Justification	S	Justification	
Sea turtles	Leatherback Sea Turtle (<i>Dermochelys coriacea</i>) Loggerhead Sea Turtle (<i>Caretta caretta</i>) Kemp's Ridley (<i>Lepidochelys kempii</i>)	1	Sea turtles are migratory visitors to offshore waters in the Atlantic. Dodge et al. (2014) determined that Leatherbacks were highly aggregated in temperate shelf and slope waters during summer, early fall, and late spring in the Northwest Atlantic.	1P	Behavioural experiments conducted by Vargo et al. (1986) determined that both Loggerhead (aged 3–20 mo.) and Green turtles (aged 3–16 mo.) had very little ability to avoid oil slicks. Hays et al. (2006) found that while Leatherback Turtles may range across very large spatial scales, there is evidence that some site fidelity to foraging ranges occur in the Atlantic region.	1	Sea turtles interact with the sea surface regularly to breathe.	1	The Loggerhead Turtle will interact with the seafloor foraging for prey. (Patel et al. 2016). The Leatherback Turtle primarily eats pelagic gelatinous prey and is not expected to have interactions with the seafloor. Adult Kemp's Ridley are predominately benthic feeders and eat mostly crabs (Shaver 1991).	

Table A14. Marine reptiles sub-group scores for SENSITIVITY scoring criteria, the column labelled "S" indicates the score assigned (note: species lists are not exhaustive; scores with a "P" indicate a precautionary score due to knowledge gaps).

			SENSITIVITY Criteria						
SUB-GROUP LEVEL	Maritime example species Leatherback Sea Turtle (Dermochelys coriacea) Loggerhead Sea Turtle (Caretta caretta) Kemp's Ridley (Lepidochelys kempii)	Mechanical sensitivity (reduction in feeding/photosynthesis/thermoregulation)			Chemical sensitivity (impairment due to toxicity)				
		S	Justification	S	Justification				
Sea turtles		0	Sea turtles do not depend on fur for thermoregulation and do not have filter feeding structures.	1P	Precautionary scoring applied due to limited research on oil toxicity in the sub-group. The only laboratory work investigating the direct impacts of oil on sea turtles was completed by Lutcavage et al. (1995). Results indicate that loggerhead turtles (15–18 mo.) experienced major negative impacts on physiological systems during both chronic and acture oil exposures (skin sloughing, intestinal bleeding, anemia, decreases in red blood cells).				

Table A15. Marine reptiles sub-group scores for RECOVERY scoring criteria, the column labelled "S" indicates the score assigned (note: species lists are not exhaustive; scores with a "P" indicate a precautionary score due to knowledge gaps).

	Maritime example species	RECOVERY Criteria							
SUB-GROUP LEVEL		Population status		Reproductive capacity		Endemism or isolation		Close association with unconsolidated substrates	
		S	Justification	s	Justification	S	Justification	S	Justification
Sea turtles	Leatherback Sea Turtle (<i>Dermochelys coriacea</i>) Loggerhead Sea Turtle (<i>Caretta caretta</i>) Kemp's Ridley (<i>Lepidochelys kempii</i>)	1	The Leatherback Turtle was designated endangered in May 2012 (COSEWIC 2012) and listed as Schedule 1 Endangered under SARA (2003-06-05). Loggerhead Turtle was designated endangered in April 2010 (COSEWIC 2010) and listed as Schedule 1 Endangered under SARA (2017-04- 13).	1	Marine reptiles have a low reproductive capacity compared to other groups assessed. Mature female Loggerhead Turtles nest on a 2–3 year interval, laying 3–4 clutches of eggs of approx. 112 eggs each. (COSEWIC 2010). Mature female Leatherback Turtles nest on a 2–4 year interval, laying approx. 80 eggs several times over a nesting season (COSEWIC 2012).	0	Sea turtles are migratory visitors to offshore waters in North Atlantic waters. There is no evidence of endemism or isolated populations in the Atlantic region.	1Р	Members of this sub- group forage benthically for food. There is no evidence that this species group would not have a close association with unconsolidated substrates.
REFERENCES FOR MARINE REPTILES SCORING TABLES

- COSEWIC. 2010. COSEWIC assessment and status report on the loggerhead sea turtle *Caretta caretta* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. viii + 75 pp.
- COSEWIC. 2012. COSEWIC assessment and status report on the leatherback sea turtle *Dermochelys coriacea* in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 25 pp.
- Dodge, K.L., Galuardi, B, Miller, T.J, and Lutcavage, M.E. 2014. Leatherback turtle movements, dive behavior, and habitat characteristics in ecoregions of the Northwest Atlantic Ocean. PLoS one **9**(3): e91726–e9172.
- Hays, G.C., Hobson, V.J., Metcalfe, J.D., Righton, D and Sims, D.W. 2006. Flexible foraging movements of leatherback turtles across the North Atlantic Ocean. Ecology, 87(10): 2647– 2656.
- Lutcavage, M.E., Plotkin, P., Witherington, B., and Lutz, P.L. 1995. Physiologic and clinicopathologic effects of crude oil on loggerhead sea turtles. Arch. Environ. Contam. Toxicol. **28:** 417–422.
- Patel, S.H., Dodge, K.L., Haas, H.L. and Smolowitz, R.J. 2016. Videography reveals in-water behavior of loggerhead turtles (*Caretta caretta*) at a foraging ground. Front. Mar. Sci. **3**: 254.
- Shaver, D. 1991.Feeding ecology of wild and head-started Kemp's ridley sea turtles in South Texas waters. J. Herpetol. **25**(3): 327–334.
- Vargo, S., Lutz, P., Odell, D., Van Vleet, E., and Bossart, G. 1986. Study of the effects of oil on marine turtles. Volume 2. Technical Report. Final report, 30 September 1983–1 October 1985. United States: 212 p.

APPENDIX 6. LIST OF VERIFIED SPECIES FOR THE MARITIMES REGION APPLICATION SUB-GROUP CREATION

Group	Species
Vascular	Achillea millefolium
Vascular	Aster novi-belgii
Vascular	Aster subulatus
Vascular	Atriplex acadiensis
Vascular	Atriplex littoralis
Vascular	Atriplex patula
Vascular	Blysmus rufus
Vascular	Bolboschoenus maritimus
Vascular	Carex hormathodes
Vascular	Carex mackenziei
Vascular	Carex paleacea
Vascular	Carex recta
Vascular	Atriplex subspicata
Vascular	Chenopodium glaucum
Vascular	Chenopodium rubrum
Vascular	Comarum palustre
Vascular	Convolvulus sepium americanus
Vascular	Crassula aquatica
Vascular	Distichlis spicata
Vascular	Eleocharis parvula
Vascular	Elvmus repens
Vascular	Elatine americana
Vascular	Festuca rubra
Vascular	Eriocaulon parkeri
Vascular	Glaux maritima
Vascular	Hierochloe odorata
Vascular	Honckenva peploides
Vascular	Hordeum iubatum
Vascular	Juncus arcticus
Vascular	Juncus gerardii
Vascular	Liausticum scoticum
Vascular	Limonium carolinianum
Vascular	Limonium carolinianumnashii
Vascular	Limosella australis
Vascular	Lysimachia maritima
Vascular	Myrica pensylvanioca
Vascular	Phraamites australis
Vascular	Plantago maritima
Vascular	Polygonum fowleri
Vascular	Polygonum ramosissimum
Vascular	Potentilla anserina/Argentina anserina
Vascular	Puccinellia distans
Vascular	Puccinellia fasciculata
Vascular	Puccinellia maritima
Vascular	Puccinellia nutkaensis
Vascular	Puccinellia phryganodes
Vascular	Ranunculus cymbalaria
Vascular	Rumex maritimus
	· · · · · · · · · · · · · · · · · · ·

Table A16. Verified Species for the Marine Plants and Algae Group.

Group	Species
Non-vascular	Monostroma grevillei
Non-vascular	Palmaria palmata
Non-vascular	Petalonia fascia
Non-vascular	Phycodrys rubens
Non-vascular	Phyllophora pseudoceranoides
Non-vascular	Plumaria plumosa
Non-vascular	Polyides rotunda
Non-vascular	Polysiphonia lanosa/Vertebrata lanosa
Non-vascular	Polysiphonia stricta
Non-vascular	Porphyra purpurea
Non-vascular	Porphyra umbilicalis
Non-vascular	Ptilota elegans
Non-vascular	Rhodomela confervoides
Non-vascular	Saccharina latissima
Non-vascular	Fucus vesiculosus
Non-vascular	Spongomorpha arcta
Non-vascular	Ulva intestinalis
Non-vascular	Ulva lactuca

Table A17. Verified Species for the Marine Invertebrates Group.

Group	Species
Porifera	Amphilectus lobatus
Porifera	Chalinula loosanoffi
Porifera	Clathria prolifera
Porifera	Clathrina cancellata
Porifera	Cliona acelata
Porifera	Cliona sp.
Porifera	Crella (Yvesia) rosea
Porifera	Halichondria bowerbanki
Porifera	Halichondria oculata
Porifera	Halichondria panicea
Porifera	Halichondria (Eumastia) sitiens
Porifera	Haliclona (Flagellia) flagellifera
Porifera	Haliclona (Rhizoniera) canaliculata
Porifera	Hymedesmia (Hymedesmia) canadensis
Porifera	Lophon hyndmani
Porifera	Lophon nigrcans
Porifera	Isodictya deichmannae
Porifera	Isodictya palmata
Porifera	Leucosolenia variabilis
Porifera	Leucosolenia sp.
Porifera	Melonanchora elliptica
Porifera	Melonanchora sp.
Porifera	Mycale (Mycale) lingua
Porifera	Myxilla (Myxilla) fimbriata
Porifera	Myxilla (Myxilla) incrustans
Porifera	Myxilla incrustans
Porifera	Phakellia sp.
Porifera	Pione vastifica
Porifera	Polymastia boletiformis
Porifera	Protosuberites epiphytum
Porifera	Suberites ficus
Porifera	Sycon ciliatum
Ctenophora	Beroe cucumis

Group	Species
Ctenophora	Bolinopsis infundibulum
Ctenophora	Hormiphora cucumis
Ctenophora	Mertensia ovum
Ctenophora	Pleurobrachia pileus
Cnidaria	Abietinaria abietina
Cnidaria	Abietinaria filicula
Cnidaria	Acaulis primarius
Cnidaria	Aeguorea albida
Cnidaria	Aequorea sp.
Cnidaria	Agalma elegans
Cnidaria	Aglantha digitale
Cnidaria	Alcyonium digitatum
Cnidaria	Antennularia sp.
Cnidaria	Aulactinia stella
Cnidaria	Aurelia aurita
Cnidaria	Aurelia aurita (scyphistoma stage)
Cnidaria	Bougainvillia superciliaris
Cnidaria	Calycella syringa
Cnidaria	Campanularia groenlandica
Cnidaria	Campanularia sp.
Cnidaria	Campanularia volubilis
Cnidaria	Candelabrum phrygium
Cnidaria	Catablema vesicarium
Cnidaria	Cerianthus Iloydii
Cnidaria	Chrysaora quinquecirrha
Cnidaria	Clava multicornis
Cnidaria	Clytia hemisphaerica
Cnidaria	Corymorpha pendula
Cnidaria	Aurelia aurita (medusa stage)
Cnidaria	Coryne pusilla
Cnidaria	Craterolophus convolvulus
Cnidaria	Cyanea capillata
Cnidaria	Diadumene lineata
Cnidaria	Diphasia fallax
Cnidaria	Diphasia margareta
Cnidaria	Dynamena pumila
Cnidaria	Ectopleura crocea
Cnidaria	Ectopleura larynx
Cnidaria	Edwardsia sipunculoides
Cnidaria	Eudendrium capillare
Cnidaria	Eudendrium cochleatum
Cnidaria	Eudendrium dispar
Cnidaria	Eudendrium ramosum
Cnidaria	Eudendrium vaginatum
Cnidaria	Gersemia rubiformis
Cnidaria	Gonionemus vertens
Cnidaria	Halcampa duodecimcirrata
Cnidaria	Halecium articulosum
Cnidaria	Halecium beanii
Cnidaria	Halecium halecinum
Cnidaria	Halecium muricatum
Cnidaria	Halecium sessile
Cnidaria	Haliclystus auricula
Cnidaria	Haliclystus octoradiatus
Cnidaria	Haliclystus salpinx

Group	Species
Cnidaria	Halistaura sp.
Cnidaria	Haloclava producta
Cnidaria	Hydractinia echinata
Cnidaria	Hydractinia polyclina
Cnidaria	Hydrallmania falcata
Cnidaria	Lafoea dumosa
Cnidaria	Laomedea flexuosa
Cnidaria	Leuckartiara octona
Cnidaria	Lucernaria quadricornis
Cnidaria	Lytocarpia myriophyllum
Cnidaria	Manania auricula
Cnidaria	Melicertum octocostatum
Cnidaria	Mesacmaea laevis
Cnidaria	Metridium senile
Cnidaria	Mitrocoma sp.
Cnidaria	Nanomia cara
Cnidaria	Nematostella vectensis
Cnidaria	Nemertesia americana
Cnidaria	Nemertesia antennina
Cnidaria	Nemertesia sp.
Cnidaria	Obelia bidentata
Cnidaria	Obelia geniculata
Cnidaria	Obelia longissima
Cnidaria	Obelia sp. (polyp)
Cnidaria	Orthopyxis integra
Cnidaria	Pelagia noctiluca
Cnidaria	Phacellophora camtschatica
Cnidaria	Physalia physalis
Cnidaria	Polyplumaria gracillima
Cnidaria	Podocoryna americana
Cnidaria	Podocoryna borealis
Cnidaria	Rhacostoma atlanticum
Cnidaria	Rhizocaulus verticillatus
Cnidaria	Rhizogeton fusiformis
Cnidaria	Rhizorhagium roseum
Cnidaria	Sarsia lovenii
Cnidaria	Sarsia tubulosa
Cnidaria	Sagartiogeton verrilli
Cnidaria	Sertularella polyzonias
Cnidaria	Sertularella rugosa
Cnidaria	Sertularia argentea
Cnidaria	Sertularia cupressina
Cnidaria	Sertularia latiuscula
Cnidaria	Sertularia pumila
Cnidaria	Sertularia similis
Cnidaria	Stauromedusae sp.
Chidaria	Staurostoma mertensii
Chidaria	Symplectoscyphus tricuspidatus
Chidaria	i amarisca tamarisca
Chidaria	i ubularia sp.
Chidaria	
Vvorms	Alaurina composita
Worms	Alitta virens
Worms	Ambiyosyllis finmarchica
VVorms	Ampharete acutifrons

Group	Species
Worms	Ampharete octocirrata
Worms	Ampharete trilobata
Worms	Amphiporus angulatus
Worms	Amphiporus bioculatus
Worms	Amphiporus caecus
Worms	Amphiporus frontalis
Worms	Amphiporus groenlandicus
Worms	Amphiporus heterosorus
Worms	Amphiporus lactifloreus
Worms	Amphitrite brunnea
Worms	Amphitrite cirrata
Worms	Amphitrite ornata
Worms	Apistobranchus tullbergi
Worms	Aphrodita aculeata
Worms	Aphrodita hastata
Worms	Árabella iricolor
Worms	Arenicola brasiliensis
Worms	Arenicola cristata
Worms	Arenicola marina
Worms	Aricidea (Acmira) catherinae
Worms	Aricidea nolani
Worms	Aricidea (Strelzovia) quadrilobata
Worms	Artacama proboscidea
Worms	Astrotorhynchus bifidus
Worms	Autolytus varians
Worms	Bispira crassicornis
Worms	Brada granosa
Worms	Brada sublaevis
Worms	Bradabyssa setosa
Worms	Bradabyssa villosa
Worms	Capitella capitata
Worms	Cephalothrix linearis
Worms	Cephalothrix spiralis
Worms	Cerebratulus lacteus
Worms	Chaetozone setosa
Worms	Chitinopoma serrula
Worms	Circeis spirillum
Worms	Cirratulus cirratus
Worms	Cirrifera cirrifera
Worms	Cistenides granulata
Worms	Clitellio (Clitellio) arenarius
Worms	Clymenella torquata
Worms	Clymenella zonalis
Worms	Coelogynopora erotica
Worms	Coelogynopora schulzii
Worms	Cossura longocirrata
Worms	Cyanophthalma cordiceps
Worms	Cyanophthalma obscura
Worms	Dipolydora concharum
Worms	Dipolydora quadrilobata
Worms	Dodecaceria concharum
Worms	Drilonereis longa
Worms	Drilonereis magna
Worms	Dysponetus pygmaeus
Worms	Enchytraeus albidus

Group	Species
Worms	Epigamia alexandri
Worms	Erinaceusyllis erinaceus
Worms	Eteone flava
Worms	Eteone longa
Worms	Eteone trilineata
Worms	Eulalia aurea
Worms	Eulalia bilineata
Worms	Eulalia viridis
Worms	Eunice pennata
Worms	Eunoe nodosa
Worms	Eunoe oerstedi
Worms	Euphrosine borealis
Worms	Eusyllis blomstrandi
Worms	Exogone dispar
Worms	Exogone longicirrus
Worms	Exogone verugera
Worms	Fabricia stellaris
Worms	Filograna implexa
Worms	Flabelligera affinis
Worms	Flabelligera grubei
Worms	Foviella affinis
Worms	Fragilonemertes rosea
Worms	Gattyana cirrhosa
Worms	Glycera capitata
Worms	Glycera dibranchiata
Worms	Glycera robusta
Worms	Gyptis vittata
Worms	Harmothoe extenuata
Worms	Harmothoe imbricata
Worms	Harmothoe rarispina
Worms	Hediste diversicolor
Worms	Heteromastus filiformis
Worms	Hydroides dianthus
Worms	Hypereteone heteropoda
Worms	Hypereteone lactea
Worms	Isodiametra hortulus
Worms	Laetmatonice filicornis
Worms	Laonice cirrata
Worms	Leitoscoloplos acutus
Worms	Leitoscoloplos fragilis
Worms	Leitoscoloplos robustus
Worms	Lepidametria commensalis
Worms	Lepidonotus squamatus
Worms	Levinsenia gracilis
Worms	Lineus ruber
Worms	Lineus sanguineus
Worms	Lineus sp.
Worms	Lineus viridis
Worms	Lumbrineris acicularum
Worms	Lumbrineris hebes
Worms	Macrochaeta leidyi
Worms	Macrochaeta sexoculata
Worms	Marenzelleria viridis
Worms	Marionina spicula
Worms	Melinna cristata

Group	Species
Worms	Microphthalmus aberrans
Worms	Microphthalmus pettiboneae
Worms	Micrura affinis
Worms	Micrura dorsalis
Worms	Monocelis durhami
Worms	Monocelis lineata
Worms	Myriochele heeri
Worms	Mystides borealis
Worms	Myrianida prolifera
Worms	Myxicola infundibulum
Worms	Naineris quadricuspida
Worms	Neoleanira tetragona
Worms	Neoamphitrite figulus
Worms	Nephasoma (Nephasoma) diaphanes diaphanes
Worms	Nephasoma (Nephasoma) eremita
Worms	Nephtys bucera
Worms	Nephtys caeca
Worms	Nephtys ciliata
Worms	Nephtys discors
Worms	Nephtys incisa
Worms	Nephtys longosetosa
Worms	Nephtys paradoxa
Worms	Nereis pelagica
Worms	Nereis zonata
Worms	Nicolea zostericola
Worms	Nicomache lumbricalis
Worms	Ninoe nigripes
Worms	Nothria conchylega
Worms	Notomastus latericeus
Worms	Notoplana atomata
Worms	Oerstedia dorsalis
Worms	Ophelina acuminata
Worms	Otocelis sandara
Worms	Owenia fusiformis
Worms	Paedomecynostomum bruneum
Worms	Paramacrostomum tricladoides
Worms	Paradexiospira (Paradexiospira) violacea
Worms	Paranaitis speciosa
Worms	Paraonis fulgens
Worms	Parasagitta elegans
Worms	Parougia caeca
Worms	Parexogone hebes
Worms	Pectinaria gouldii
Worms	Phascolion (Phascolion) strombus strombus
Worms	Phascolopsis gouldii
Worms	Pherusa affinis
Worms	Pherusa aspera
Worms	Pherusa plumosa
Worms	Philocelis brueggemanni
Worms	Pholoe minuta
Worms	Phyllodoce citrina
Worms	Phyllodoce groenlandica
Worms	Phyllodoce maculata
Worms	Phyllodoce mucosa
Worms	Pista maculata

Group	Species
Worms	Platynereis dumerilii
Worms	Plehnia ellipsoides
Worms	Polycirrus eximius
Worms	Polycirrus medusa
Worms	Polycirrus phosphoreus
Worms	Polydora ciliata
Worms	Polydora cornuta
Worms	Polydora gracilis
Worms	Pontonema vulgare
Worms	Potamilla neglecta
Worms	Praeaphanostoma wadsworthi
Worms	Praeconvoluta tigrina
Worms	Praeconvoluta tornuva
Worms	Praxillella praetermissa
Worms	Priapulus caudatus
Worms	Prionospio steenstrupi
Worms	Proceraea cornuta
Worms	Proceraea prismatica
Worms	Procerodes littoralis
Worms	Pseudopotamilla reniformis
Worms	Protodriloides chaetifer
Worms	Psammodrilus balanoglossoides
Worms	Pygospio elegans
Worms	Rhodine loveni
Worms	Sabaco elongatus
Worms	Sagitta sp.
Worms	Scalibregma inflatum
Worms	Scoletoma fragilis
Worms	Scoletoma tenuis
Worms	Serratosagitta tasmanica
Worms	Sphaerodoridium minutum
Worms	Sphaerosyllis hystrix
Worms	Spinther citrinus
Worms	Spio filicornis
Worms	Spio setosa
Worms	Spiophanes bombyx
Worms	Spiophanes wigleyi
Worms	Spirorbis (Spirobis) spirobis
Worms	Sternaspis fossor
Worms	Streblospio benedicti
Worms	Streptosyllis varians
Worms	Stylochus ellipticus
Worms	Syllides benedicti
Worms	Syllides convolutus
Worms	Syllides eburneus
Worms	Syllis cornuta
Worms	Syllis gracilis
Worms	Terebellides stroemii
Worms	Tetrastemma candidum
Worms	Thalassoanaperus gardineri
Worms	Tomopteris helgolandica
Worms	Tubifex sp.
Worms	Uteriporus vulgaris
Lophophorates	Aeverrillia setigera
Lophophorates	Amathia gracilis

Group	Species
Lophophorates	Amphiblestrum auritum
Lophophorates	Biflustra tenuis
Lophophorates	Bugulina fulva
Lophophorates	Bugulina simplex
Lophophorates	Bugula sp.
Lophophorates	Caberea ellisii
Lophophorates	Callopora craticula
Lophophorates	Cauloramphus cymbaeformis
Lophophorates	Celleporella hyalina
Lophophorates	Cribrilina (Juxtacribrilina) annulata
Lophophorates	Crisia eburnea
Lophophorates	Crisularia turrita
Lophophorates	Dendrobeania decorata
Lophophorates	Dendrobeania murrayana
Lophophorates	Disporella hispida
Lophophorates	Electra pilosa
Lophophorates	Eucratea loricata
Lophophorates	Flustra foliacea
Lophophorates	Flustrellidra hispida
Lophophorates	Microporella ciliata
Lophophorates	Patinella verrucaria
Lophophorates	Posterula sarsii
Lophophorates	Tegella unicornis
Lophophorates	Terebratulina septentrionalis
Molluscs	Acanthodoris pilosa
Molluscs	Acirsa borealis
Molluscs	Adalaria proxima
Molluscs	Admete viridula
Molluscs	Aeolidia papillosa
Molluscs	Alvania pseudoareolata
Molluscs	Ameritella agilis
Molluscs	Ancula gibbosa
Molluscs	Anomia simplex
Molluscs	Antalis entalis
Molluscs	Arctica islandica
Molluscs	Arcuatula sp.
Molluscs	Arrhoges occidentalis
Molluscs	Asperspina riseri
Molluscs	Astarte borealis
Molluscs	Astarte castanea
Molluscs	Astarte crenata
Molluscs	Astarte elliptica
Molluscs	Astarte subaequilatera
Molluscs	Astarte undata
Molluscs	Astyris lunata
Molluscs	Astyris rosacea
Molluscs	Bathyarca pectunculoides
Molluscs	Bathypolypus arcticus
Molluscs	Bathypolypus bairdii
Molluscs	Borealea nobilis
Molluscs	Boreochiton ruber
Molluscs	Boreoscala greenlandica
Molluscs	Boreotrophon clathratus
Molluscs	Boreotrophon truncatus
Molluscs	Buccinum ciliatum

Group	Species
Molluscs	Buccinum undatum
Molluscs	Bulbus smithii
Molluscs	Cadlina laevis
Molluscs	Calliostoma occidentale
Molluscs	Catriona gymnota
Molluscs	Carronella pellucida
Molluscs	Chlamys islandica
Molluscs	Ciliatocardium ciliatum
Molluscs	Clione limacina
Molluscs	Colus islandicus
Molluscs	Colus pubescens
Molluscs	Colus pygmaeus
Molluscs	Colus stimpsoni
Molluscs	Coryphella sp.
Molluscs	Coryphella verrucosa
Molluscs	Couthouyella striatula
Molluscs	Cratena pilata
Molluscs	Crenella decussata
Molluscs	Crepidula plana
Molluscs	Crassostrea virginica
Molluscs	Crepidula fornicata
Molluscs	Crucibulum striatum
Molluscs	Cryptonatica affinis
Molluscs	Curtitoma decussata
Molluscs	Curtitoma incisula
Molluscs	Curtitoma violacea
Molluscs	Cuspidaria pellucida
Molluscs	Cuthonella concinna
Molluscs	Cyclocardia borealis
Molluscs	Cyclocardia novangliae
Molluscs	Cyclocardia ovata
Molluscs	Cylichnoides occultus
Molluscs	Dendronotus frondosus
Molluscs	Dendronotus robustus
Molluscs	Diaphoreolis viridis
Molluscs	Doryteuthis pealeii
Molluscs	Doto coronata
Molluscs	Doto formosa
Molluscs	Ecrobia truncata
Molluscs	Ensis directus /Ensis leei
Molluscs	Ennucula delphinodonta
Molluscs	Ennucula tenuis
Molluscs	Eubranchus pallidus
Molluscs	Eubranchus sanjuanensis
Molluscs	Eubranchus tricolor
Molluscs	Eulimella polita
Molluscs	Eumetula arctica
Molluscs	Euspira heros
Molluscs	Euspira levicula
Molluscs	Euspira pallida
Molluscs	Euspira triseriata
Molluscs	Facelina bostoniensis
Molluscs	Fargoa bartschi
Molluscs	Frigidoalvania pelagica
Molluscs	Gemma gemma

Group	Species
Molluscs	Geukensia demissa
Molluscs	Gyroscala rupicola
Molluscs	Hanleya hanleyi
Molluscs	Heteranomia squamula
Molluscs	Hiatella arctica
Molluscs	Illex illecebrosus
Molluscs	Lacuna pallidula
Molluscs	Lacunavincta
Molluscs	Lepeta caeca
Molluscs	Leptochiton cancellatus
Molluscs	Limacina retroversa
Molluscs	Limatula subauriculata
Molluscs	Limecola balthica
Molluscs	Limneria undata
Molluscs	Littorina littorea
Molluscs	Littorina obtusata
Molluscs	Littorina saxatilis
Molluscs	Lyonsia arenosa
Molluscs	Lyonsia hyalina
Molluscs	Macoma calcarea
Molluscs	Mactromeris polynyma
Molluscs	Margarites argentatus
Molluscs	Margarites costalis
Molluscs	Margarites groenlandicus
Molluscs	Margarites helicinus
Molluscs	Margarites olivaceus
Molluscs	Margarites sp.
Molluscs	Margarites striatus
Molluscs	Marsenina ampla
Molluscs	Marsenina glabra
Molluscs	Megayoldia thraciaeformis
Molluscs	Menestho albula
Molluscs	Mercenaria mercenaria
Molluscs	Microchlamylla gracilis
Molluscs	Modiolus modiolus
Molluscs	Moelleria costulata
Molluscs	Musculus discors
Molluscs	Musculus glacialis
Molluscs	Musculus niger
Molluscs	Musculus sp.
Molluscs	Mya arenaria
Molluscs	Mya truncata
Molluscs	Myosotella myosotis
Molluscs	Mytilus edulis
Molluscs	Neoterebra dislocata
Molluscs	Neptunea decemcostata
Molluscs	Neverita duplicata
Molluscs	Nucella lapillus
Molluscs	Nucula proxima
Molluscs	Nuculana tenuisulcata
Molluscs	Nuculana sp.
Molluscs	Odostomia striata
Molluscs	Oenopota elegans
Molluscs	Oenopota pingelii
Molluscs	Oenopota pyramidalis

Group	Species
Molluscs	Onchidoris bilamellata
Molluscs	Onchidoris grisea
Molluscs	Onchidoris muricata
Molluscs	Onchidoris sp.
Molluscs	Onchidoris tenella
Molluscs	Onoba aculeus
Molluscs	Onoba mighelsii
Molluscs	Ostreidae
Molluscs	Ostreidae
Molluscs	Palio dubia
Molluscs	Pandora gouldiana
Molluscs	Pandora trilineata
Molluscs	Panomya norvegica
Molluscs	Parvicardium pinnulatum
Molluscs	Periapta pandion
Molluscs	Periploma fragile
Molluscs	Periploma leanum
Molluscs	Petricolaria pholadiformis
Molluscs	Pitar morrhuanus
Molluscs	Placopecten magellanicus
Molluscs	Polinices immaculatus
Molluscs	Propebela cancellata
Molluscs	Propebela exarata
Molluscs	Propebela harpularia
Molluscs	Propebela nobilis
Molluscs	Pseudopolinices nanus
Molluscs	Ptychatractus ligatus
Molluscs	Puncturella noachina
Molluscs	Retusa obtusa
Molluscs	Scabrotrophon fabricii
Molluscs	Semirossia tenera
Molluscs	Skeneopsis planorbis
Molluscs	Solamen glandula
Molluscs	Solariella obscura
Molluscs	Solemya velum
Molluscs	Spisula solidissima
Molluscs	Stenosemus albus
Molluscs	Tachyrhynchus erosus
Molluscs	Taranis moerchii
Molluscs	Tergipes tergipes
Molluscs	Testudinalia testudinalis
Molluscs	Tonicella marmorea
Molluscs	Tritia obsoleta
Molluscs	Tritia trivittata
Molluscs	Velutina velutina
Molluscs	Yoldia sapotilla
Molluscs	Ziminella salmonacea
Echinoderms	Amphipholis squamata
Echinoderms	Asterias rubens
Echinoderms	Crossaster papposus
Echinoderms	Cucumaria frondosa
Echinoderms	Echinarachnius parma
Echinoderms	Epitomapta roseola
Echinoderms	Gorgonocephalus arcticus
Echinoderms	Henricia eschrichti

Group	Species
Echinoderms	Henricia sp.
Echinoderms	Leptasteria (Leptasterias) muelleri
Echinoderms	Leptasterias tenera
Echinoderms	Leptasterias sp.
Echinoderms	Ophiacantha bidentata
Echinoderms	Ophiura sarsii
Echinoderms	Psolus phantapus
Echinoderms	Pteraster militaris
Echinoderms	Pteraster pulvillus
Echinoderms	Rhabdomolgus ruber
Echinoderms	Solaster endeca
Echinoderms	Stephansterias albula
Echinoderms	Strongylocentrotus droebachiensis
Echinoderms	Thyonidium drummondii
Hemichordates	Aplidium glabrum
Hemichordates	Aplidium pallidum
Hemichordates	Ascidia callosa
Hemichordates	Ascidia prunum
Hemichordates	Boltenia echinata
Hemichordates	Boltenia ovifera
Hemichordates	Bostrichobranchus pilularis
Hemichordates	Botrylloides diegensis
Hemichordates	Botryllus schlosseri
Hemichordates	Botryllus sp.
Hemichordates	Ciona intestinalis
Hemichordates	Cnemidocarpa mollis
Hemichordates	Dendrodoa carnea
Hemichordates	Dendrodoa grossularia
Hemichordates	Dendrodoa pulchella
Hemichordates	Didemnum albidum
Hemichordates	Didemnum vexillum
Hemichordates	Distaplia clavata
Hemichordates	Halocynthia pyriformis
Hemichordates	Lissoclinum aureum
Hemichordates	Molgula arenata
Hemichordates	Molgula citrina
Hemichordates	Molgula complanata
Hemichordates	Molgula manhattensis
Hemichordates	Molgula retortiformis
Hemichordates	Molgula siphonalis
Hemichordates	Molgula sp.
Hemichordates	Oikopleura (Vexillaria) labradoriensis
Hemichordates	Polycarpa fibrosa
Hemichordates	Saccoglossus kowalevskii
Hemichordates	Styela clava
Hemichordates	Styela canopus
Hemichordates	Styela coriacea
Arthropods	Acanthonotozoma serratum
Arthropods	Achelia spinosa
Arthropods	Aeginina longicornis
Arthropods	Ameira curviseta
Arthropods	Amphiascus parvulus
Arthropods	Ampelisca abdita
Arthropods	Ampelisca macrocephala
Arthropods	Ampelisca vadorum

Group	Species
Arthropods	Amphiporeia lawrenciana
Arthropods	Ampithoe rubricata
Arthropods	Ampithoe sp.
Arthropods	Anonyx lilljeborgi
Arthropods	Anonyx nugax
Arthropods	Anonyx sarsi
Arthropods	Anoplodactylus lentus
Arthropods	Apohyale prevostii
Arthropods	Balanus balanus
Arthropods	Balanus crenatus
Arthropods	Byblis gaimardii
Arthropods	Byblis serrata
Arthropods	Calanus sp.
Arthropods	Calathura brachiata
Arthropods	Calliopius laeviusculus
Arthropods	Cancer borealis
Arthropods	Cancer irroratus
Arthropods	Caprella linearis
Arthropods	Caprella penantis
Arthropods	Caprella septentrionalis
Arthropods	Caprella sp.
Arthropods	Caprella unica
Arthropods	Carcinus maenas
Arthropods	Caridion gordoni
Arthropods	Casco bigelowi
Arthropods	Chionoecetes opilio
Arthropods	Chiridotea coeca
Arthropods	Chiridotea tuftsii
Arthropods	Corophium volutator
Arthropods	Crangon septemspinosa
Arthropods	Crassicorophium bonellii
Arthropods	Crassicorophium crassicorne
Arthropods	Cyathura polita
Arthropods	Deflexilodes intermedius
Arthropods	Dexamine thea
Arthropods	Diastylis lucifera
Arthropods	Diastylis quadrispinosa
Arthropods	Dichelopandalus leptocerus
Arthropods	Dosima fascicularis
Arthropods	Dyspanopeus sayi
Arthropods	Echinogammarus finmarchicus
Arthropods	Echninogammarus obtusatus
Arthropods	Edotia triloba
Arthropods	Epimeria (Epimeria) loricata
Arthropods	Ericthonius difformis
Arthropods	Ericthonius rubicornis
Arthropods	Eualus fabricii
Arthropods	Eualus gaimardii
Arthropods	Eualus pusiolus
Arthropods	Eusirus cuspidatus
Arthropods	Gammarellus angulosus
Arthropods	Gammaropsis melanops
Arthropods	Gammaropsis nitida
Arthropods	Gammarus annulatus
Arthropods	Gammarus duebeni

Group	Species
Arthropods	Gammarus lawrencianus
Arthropods	Gammarus oceanicus
Arthropods	Gammarus setosus
Arthropods	Gammarus tigrinus
Arthropods	Gronella groenlandica
Arthropods	Haploops fundiensis
Arthropods	Haploops setosa
Arthropods	Haploops tubicola
Arthropods	Harpinia plumosa
Arthropods	Harpinia propinqua
Arthropods	Heterolaophonte discophora
Arthropods	Heterolaophonte minuta
Arthropods	Hippomedon serratus
Arthropods	Homarus americanus
Arthropods	Hyas araneus
Arthropods	Hyas coarctatus
Arthropods	Hyperia galba
Arthropods	Idotea balthica
Arthropods	Idotea metallica
Arthropods	Idotea phosphorea
Arthropods	Ischyrocerus anguipes
Arthropods	Ischyrocerus megacheir
Arthropods	Jaera (Jaera) albifrons
Arthropods	Janira alta
Arthropods	Jassa marmorata
Arthropods	Laophonte trilobata
Arthropods	Lebbeus groenlandicus
Arthropods	Lebbeus polaris
Arthropods	Leimia vaga
Arthropods	Lepas (Anatifa) anatifera
Arthropods	Lepas sp.
Arthropods	Leptocheirus pinguis
Arthropods	Leucon (Leucon) Nasicoides
Arthropods	Libinia dubia
Arthropods	Libinia emarginata
Arthropods	Lignorium lignorium
Arthropods	Limnoria lignorum
Arthropods	Lithodes maja
Arthropods	Lycaea pulex
Arthropods	Maera danae
Arthropods	Mancocuma stellifera
Arthropods	Meganyctiphanes norvegica
Arthropods	Megamoera dentata
Arthropods	Monocorophium insidiosum
Arthropods	Metopa alderi
Arthropods	Metopa groenlandica
Arthropods	Microarthridion littorale
Arthropods	Munna fabricii
Arthropods	Munnopsis typica
Arthropods	Mysis gaspensis
Arthropods	Mysis mixta
Arthropods	Mysis sp.
Arthropods	Mysis stenolepis
Arthropods	Nannopus palustris
Arthropods	Natatolana borealis

Group	Species
Arthropods	Neomysis sp.
Arthropods	Nymphon grossipes
Arthropods	Nymphon hirtipes
Arthropods	Nymphon longitarse
Arthropods	Nymphon sp.
Arthropods	Nymphon stroemi
Arthropods	Orchestia gammarellus
Arthropods	Orchomene macroserratus
Arthropods	Orchomenella minuta
Arthropods	Orchomenella pinguis
Arthropods	Pagurus acadianus
Arthropods	Pagurus arcuatus
Arthropods	Pagurus longicarpus
Arthropods	Pagurus pubescens
Arthropods	Palaemon pugio
Arthropods	Pandalus borealis
Arthropods	Pandalus montagui
Arthropods	Paramphithoe hystrix
Arthropods	Paroediceros lynceus
Arthropods	Photis reinhardi
Arthropods	Phoxichilidium femoratum
Arthropods	Phoxocephalus holbolli
Arthropods	Pleustes (Pleustes) panoplus
Arthropods	Pleusymtes glaber
Arthropods	Platorchestia platensis
Arthropods	Politolana concharum
Arthropods	Praunus flexuosus
Arthropods	Pseudunciola obliquua
Arthropods	Ptilanthura tenuis
Arthropods	Pontogeneia inermis
Arthropods	Pycnogonum litorale
Arthropods	Sclerocrangon boreas
Arthropods	Semibalanus balanoides
Arthropods	Spirontocaris phippsii
Arthropods	Spirontocaris sp.
Arthropods	Spirontocaris spinus
Arthropods	Stegocephalus inflatus
Arthropods	Stenopleustes inermis
Arthropods	Stenula solsbergi
Arthropods	Strongylacron buchholtzi
Arthropods	Syrrhoe crenulata
Arthropods	Tanystylum orbiculare
Arthropods	Unciola irrorata
Arthropods	Wecomedon nobilis

Table A18. Verified Species for the Marine Fishes Group.

Species
Acipenser brevirostrum
Acipenser oxyrinchus
Alosa aestivalis
Alosa pseudoharengus
Alosa sapidissima
Amblyraja radiata
Ammodytes americanus

Species
Ammodytes dubius
Anarhichas denticulatus
Anarhichas lunus
Anarhichas minor
Anguilla rostrata
Anglina rostrata Anglitas quadracus
Artediellus uncinatus
Aspidonhoroides monontervaius
Roreogadus saida
Brosme brosme
Clupes barenous
Crupta naicingus
Civilantarius lumpus
Enchelvenus cimbrius
Coduo morbuo
Conterenteur aculantur
Conterestous acultatus
Gasterosteus witedildilui
Hemimplerus americanus
Hippoglossoides platessoides
Hippoglossus hippoglossus
Limanda forruginoa
Lipans allamicus
Lumpenus lumpretaeformis
Lycoues lavalael Malacoraia senta
Mallacoraja senta Mallatus villosus
Melanogrammus aeglefinus
Menidia menidia
Merlucejus hilipearis
Microgadus tomcod
Morone savatilis
Myoyocenhalus aenaeus
Myoxocephalus actadecemeninosus
Myoyocenhalus scornius
Myvine alutinosa
Osmerus morday
Paralichthys dentatus
Penrilus triacanthus
Petromyzon marinus
Pholis gunnellus
Pleuronectes putnami
Pollachius virens
Prionace glauca
Prionotus carolinus
Pseudonleuronectes americanus
Punaitius nunaitius
Raia laevis

Species
Raja ocellata
Raja senta
Rajella bathyphila
Reinhardtius hippoglossoides
Salmo salar
Salvelinus fontinalis
Scomber scombrus
Scophthalmus aquosus
Sebastes fasciatus
Sebastes norvegicus
Squalus acanthias
Stenotomus chrysops
Syngnathus fuscus
Tautogolabrus adspersus
Thunnus thynnus
Triglops murrayi
Ulvaria subbifurcata
Urophycis chuss
Urophycis tenuis
Xiphias gladius
Zoarces americanus

Table A19. Verified Species for the Marine Mammals Group.

Species
Balaenoptera musculus
Balaenoptera borealis
Megaptera novaeangliae
Eubalaena glacialis
Balaenoptera physalus
Balaenoptera acutorostrata
Physeter macrocephalus
Hyperoodon ampullatus
Delphinapterus leucas
Globicephala melas
Lagenorhynchus albirostris
Lagenorhynchus acutus
Delphinus delphis
Orcinus orca
Phocoena phocoena
Ziphius cavirostris
Mesoplodon bidens
Mesoplodon mirus
Stenella coeruleoalba
Tursiops truncatus
Grampus griseus
Halichoerus grypus
Phoca vitulina
Pusa hispida
Cystophora cristata
Pagophilus groenlandicus
Erignathus barbatus

Table A20. Verified Species for the Marine Reptiles Group.

Species
Dermochelys coriacea
Caretta caretta
Lepidochelys kempii