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ABSTRACT 
St. Lawrence Estuary (SLE) belugas are a relict population from the Wisconsin glaciation that 
probably numbered 10,000 or more in the mid-1800s. As a result of intensive harvests starting 
in the 1700s, combined with environmental degradation, the population was greatly reduced by 
the 1980s, leading to their classification as ‘Endangered’ by the Committee on the Status of 
Endangered Wildlife in Canada in 1983 and to the implementation of a series of programs to 
monitor the health, demography and dynamics of the population. SLE beluga are exposed to 
multiple stressors, including environmental contaminants, prey reductions, toxic algal blooms, 
vessel noise, and various other risk factors. We compiled available data sets on abundance 
trends, mortality patterns, cause of death and age structure, and used these data to develop 
and fit an integrative population model (IPM) with the aim of assessing the current status and 
trends of the SLE beluga population, estimating the risk of quasi-extinction under different 
scenarios, and identifying new recovery targets for this endangered population. The process 
model consisted of a stage-structured projection matrix model that incorporated age and sex 
differences in survival and reproduction. We used Bayesian hierarchical methods to estimate 
time and density varying vital rates by simultaneously fitting to aerial survey data (from visual 
and photo-based methods), data on the age structure of the living population and the death 
assemblage (based on age estimation of stranded carcasses) and cause-of-death analyses of 
the relative frequencies of natural mortality, harvest mortality, and dystocia/postpartum mortality 
of adult reproductive females. We found evidence for increased density-dependent (DD) and 
density independent (DiD) mortality over the 20th century that prevented rebound of the 
population after the cessation of human harvest in 1979. Our model results showed complex 
patterns of age and sex specific mortality trends over recent decades: for example, DiD hazards 
affecting older animals declined between 2010-2018, possibly reflecting reduced cancer rates 
associated with lower contaminant exposure, resulting in an increasing trend in abundance. In 
contrast, DD mortality of calves increased over that period, along with dystocia/postpartum 
mortality of pregnant females, with the result that the proportion of young animals in the living 
population decreased while the proportion of young animals in the death assemblage increased. 
These demographic shifts, combined with an uptick in DiD hazards after 2018, caused 
abundance trends to stabilize after 2018 and possibly begin to decline, although the higher level 
of uncertainty typical of the end of a time series makes the current trend uncertain. 
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INTRODUCTION 
The St. Lawrence Estuary (SLE) beluga (Delphinapterus leucas) is a relict population from the 
Wisconsin glaciation that has likely established itself in the SLE some 10,000—12,000 years 
ago when the Champlain Sea covered most of the St. Lawrence Lowland (Harington 2008). The 
population appears to undertake only limited seasonal movements, remaining in the SLE year-
round with part of the population moving into the northwestern Gulf of St. Lawrence during 
winter (see Mosnier et al. 2015 for a review). While maximum population size is uncertain, 
historical harvest records and modelling suggest a population likely numbering around 8,000—
10,000 at the end of the 19th century (Reeves and Mitchell 1984, Mosnier et al. 2015). Intense 
exploitation has considerably reduced the population, which was estimated at a few hundred 
individuals in the late 1970s (Pippard and Malcolm 1978, Sergeant and Hoek 1988, Kingsley 
1998). These results led to their classification as ‘Endangered’ by the Committee on the Status 
of Endangered Wildlife in Canada in 1983 (Pippard 1985), and to the implementation of a series 
of programs to monitor the health, demography and dynamics of the population (DFO 2014, 
Lesage 2021; also see below). These programs have been rigorously maintained over time, 
leading to one of the longest multi-faceted datasets for a cetacean, and making SLE beluga the 
best monitored beluga population (Norman et al. 2022), and among the best monitored 
cetacean populations in the world. 
Following the ban of beluga hunting in 1979, the population continued to show little signs of 
recovery. While adult mortality rate appeared comparable to Arctic populations and emigration 
rate minimal, recruitment rate was deemed to be low, and identified as the likely cause for the 
apparent stagnation of the population (Hammill et al. 2007). These observations suggested that 
population growth in the early 1980’s was constrained by anthropogenic stressors or sub-
optimal environmental conditions associated with local climate, or both (Lesage 2021). In the 
1980s, monitoring programs confirmed that the population was small (Kingsley 1998), and 
amongst the most contaminated marine populations on the planet (Martineau et al. 1987, 1994, 
Wagemann et al. 1990, Béland et al. 1993, Lebeuf 2009), with an incidence of tumours and 
other severe lesions much higher than observed in any other wild mammal population (Béland 
et al. 1993, De Guise et al. 1994). 
SLE beluga are exposed to multiple stressors in addition to contaminants, thus identifying a 
single cause for their apparent lack of recovery might be challenging (Beauchesne et al. 2020, 
Lesage 2021). SLE beluga live in a major seaway to central North America, and are chronically 
exposed to noise from shipping, and to multiple ferries, recreational vessels and a highly 
developed whale-watching industry operating within their habitat (Simard et al. 2010, 2014, 
McQuinn et al. 2011, Gervaise et al. 2012, Chion et al. 2021). These operations and associated 
noise may interfere with beluga normal activities, and can reduce the potential for females to 
maintain contact with their newborn calf (Richardson et al. 2013, Erbe et al. 2018, Southall et al. 
2021, Vergara et al. 2021). Overfishing and climate variability and warming have affected 
community structure of many ecosystems including the Estuary and Gulf of St. Lawrence (Worm 
and Myers 2003, Savenkoff et al. 2007, Cairns et al. 2014). These factors, and the population 
increase of potential competitors such as grey (Halichoerus grypus) and harp (Pagophilus 
groenlandicus) seals (Hammill and Sauvé 2017), have likely modified the St. Lawrence 
trophodynamics (Savenkoff et al. 2007) with potential consequences for prey quality and 
availability to SLE beluga (Lesage et al. 2020). Toxic algal blooms occur sporadically in the St. 
Lawrence Estuary; in 2008, mortality of multiple marine species, including beluga, following a 
well-documented event, highlighted the vulnerability of the population to such stochastic events 
(Starr et al. 2017). 
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A large die-off of newborn calves (5 to 6-fold typical values) in 2012 raised new concerns over 
the status of the population, triggering a thorough review of the multiple time series available to 
document the evolution of their health, population dynamics, and various threats over time (DFO 
2014). As part of this exercise, a population dynamics model integrating multiple data sources 
issued from long-term monitoring programs was implemented in a Bayesian framework to 
provide a biologically plausible context to observed changes in demography (Mosnier et al. 
2015). This analysis indicated that several aspects of SLE beluga demography had changed 
over time. The population had shifted from a stable to unstable state around 1999, when an 
increased interannual variability was estimated in calf mortality. The proportion of juveniles in 
the population was also estimated to be smaller during the latter period (33% vs. 42% pre-
1999), whereas female reproductive cycles were estimated to have changed toward the end of 
the time series (when calf mortality was abnormally high), with peaks every two years and about 
50% of the females being pregnant, instead of the normal three-year cycle and one-third of the 
females being annually pregnant. As a result, and given the low abundance estimate obtained in 
2009 (Gosselin et al. 2014), the model predicted a population shifting from a stable or slightly 
increasing trend between 1990-2002 (~0.13% yr-1), toward a declining trend (~ –1.13% yr-1) 
between 2003-2012 (Mosnier et al. 2015). 
Reasons for this apparent decline and increased calf mortality were uncertain (DFO 2014, 
Lesage 2021). The model-predicted decline coincided with periods of extreme warmth in the 
Estuary and Gulf of St. Lawrence (Galbraith et al. 2022), with still unclear effects on the 
trophodynamics and community structure of these ecosystems. Over the same period, we 
observed a decrease in the amount of essential fatty acids in SLE beluga blubber, suggesting 
poorer body condition in more recent years (Bernier-Graveline et al. 2021). While some toxic 
substances such as PCBs and DDTs have declined in the environment and tissues of beluga 
following their ban (Lebeuf et al. 2014a), others such as polybrominated flame retardants 
(PBDEs) have increased exponentially in the environment and are at maxima in beluga tissues 
(De Wit 2002, Lebeuf et al. 2014a, 2014b, Simond et al. 2017). Shipping traffic has remained 
high in many parts of the SLE beluga habitat, with no indication of a decrease over time 
(Ménard et al. 2014). Activities directed toward beluga that might interfere with parturition or 
lactation have increased in sectors used particularly by females and calves, potentially 
interfering with critical behaviours (Ménard et al. 2014, Lair et al. 2016). Necropsy analyses of 
recovered carcasses showed an apparent increase in mortality of adult females associated with 
dystocia or postpartum complications at birth (Lair et al. 2016). At the same time, other factors 
appeared inconsistent with a declining population, in particular the fact that the incidence of 
cancers declined in animals born in the 1970s or later (Lair et al. 2016), likely increasing adult 
survival (Lesage 2021).  
Since the last assessment in 2013 (DFO 2014), multiple aerial surveys have been conducted for 
beluga abundance estimation, and additional data has been acquired on health and 
demography, as well as on environmental factors and threats (e.g., reviewed in Lesage 2021; 
see also St-Pierre et al. 2023). A population viability analysis incorporating PCBs as a proxy for 
contaminant loads, noise effects on prey access, and prey abundance as potential threats to 
recovery has predicted that elevated sea surface temperatures in the summer months can affect 
calf survival negatively, whereas biomass of spring herring and demersal species, and sea ice 
extent and volume can affect it positively (Williams et al. 2021). Prey availability and other 
environmental factors were not good predictors of adult female mortality and fecundity, 
suggesting that such effects on survival or reproductive success would likely arise from extreme 
changes in adult female body condition. Williams et al. (2021) concluded that in order for the 
population to cope with the negative effects of climate warming, actions would need to be 
undertaken on all three stressors for the population to increase. It also became clear from this 
analysis that the recovery targets established at a growth rate of 2% per year, and a population 
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size of 7,000 (i.e., 70% of historical size) by year 2100 were unlikely to be met, even under the 
most optimistic scenarios (Williams et al. 2021). 
In this study, we aim to assess the current status and trends of the SLE beluga population, 
estimating the risk of quasi-extinction under different scenarios and identifying new recovery 
targets for this endangered population using the best available information. We updated the 
previous model (Mosnier et al. 2015) in multiple ways, for instance: we extended the time series 
incorporated in the previous model to 2022, and included population size estimates obtained 
from both visual and photographic aerial surveys based on recent analyses (St-Pierre et al. 
2023); we incorporated several new data sources, including age-at-death from carcasses; the 
process model is now more finely structured by age and includes density-dependence, is 
extended to include males and not just females, includes multiple causes of death, and allows 
for different scenarios to be examined for their effect on recovery and risk of quasi-extinction. 
We therefore expected to gain new insights into demographic processes and factors affecting 
recovery of the SLE beluga population. 

METHODS 

DATA SOURCES 
The demography and dynamics of the SLE beluga population has been monitored since the 
1980s through three main programs. First, systematic aerial photographic and visual surveys 
covering the entire summer habitat of SLE beluga were carried out on a regular basis since 
1988 to monitor abundance (reviewed in St-Pierre et al. 2023). Length measurements of 
animals in the photographs obtained from these surveys have been used to monitor stage 
composition of the population: animals ≤ 0.5 body length of adjacently swimming animals were 
considered as newborn calves or yearlings (Gosselin et al. 2014; St-Pierre et al. 2023). Second, 
a program using a consistent methodology to monitor the number, age- and sex-composition of 
stranded beluga carcasses has been maintained since 1983 (Lesage et al. 2014, Lair et al. 
2015, Lesage 2021). Full necropsies of nearly all relatively fresh individuals recovered through 
this program also allowed for a systematic and thorough examination of pathologies and 
diagnosis of cause of death (Lair et al. 2016). Finally, skiff surveys conducted each year since 
1989 for beluga photo-identification provided annual indices of the proportion of calves and 
juveniles in the SLE beluga population (Michaud 2014). 

Aerial survey data 
Photographic strip-transect surveys provided abundance estimates and age composition every 
3 to 5 years between 1988 and 2009, with a 10 yr gap between 2009 and the most recent 
survey in 2019 (St-Pierre et al. 2023). The 1988 survey was rejected due to multiple problems 
with the survey design and results (Gosselin et al. 2014), leaving eight abundance estimates 
available for the current analysis (St-Pierre et al. 2023). For age composition, we tallied the 
number of newborn calves and yearlings (age 0-1) observed in the photos for comparison with 
the number of older animals. Newborns and yearlings are smaller and darker in colour and thus 
clearly distinguishable on photographs, although this colouration may also cause some degree 
of negative detection bias. Conversely, newborns and yearlings likely spend a higher proportion 
of their time near the surface than adults, which could cause a positive availability bias. At 
present there is no way to determine the relative balance between these competing biases, or 
the associated uncertainty, thus for model fitting we treated the raw counts of newborns and 
yearlings relative to older animals and as an uncorrected binomial sample.  
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Visual line-transect surveys were initiated in 2001 and conducted on a regular basis (every 1-3 
years), often with multiple replicate surveys per year (St-Pierre et al. 2023). This dataset 
comprised of 51 surveys were flown in 13 survey years over the period 2001-2022 (St-Pierre et 
al. 2023). Discrepancies in abundance estimates between the photographic and visual surveys 
(see St-Pierre et al. 2023) forced their consideration as two independent sources of data for 
model fitting, with the relative weighting of each (in terms of contribution to model likelihood) 
determined by the associated variance estimates. 

Carcass data 
A total of 606 beluga were reported dead over the period 1983-2022, including 283 that were 
fully necropsied (Appendix I, Lair et al. 2016, Lesage 2021, S. Lair, unpublished data). Age was 
estimated as the number of growth layer groups (GLG) in the teeth dentine (see Lesage et al. 
2014), and was available for 544 whales. There were 61 other carcasses with undetermined 
age: for 30 of these, categorical age classes (adult, juvenile or newborn calves) were assigned 
based on other metrics including body length (< 3 m: juvenile; > 3.5 m adult female; > 3.8 m 
adult male; < 1.80 m newborn; Lesage et al. 2014), colour (white/off-white: adult), lack of teeth 
(old adults) or reproductive tracts (spermatogenesis activity and testis size for males; presence 
of corpora in ovaries for females). We found no apparent bias in age class composition between 
these two groups, so for model fitting we restricted analysis to the sampled animals with GLG 
estimates.  
Primary cause of death can generally be determined in the majority (~75%) of dead animals 
receiving full necropsies (Lair et al. 2016). Dystocia/postpartum complications as primary 
causes of mortality were entered in the model as the number of such cases relative to the 
number of sexually mature female carcasses examined each year (Lair et al. 2016, Lair 
unpublished data). In cases where a dead female had a calf in utero, only the female was 
considered a case and we assumed the calf would not be represented in the stranded carcass 
data set. Females with postpartum complications but no calf in utero were considered to have 
released an unviable calf, which we assumed could potentially be represented in the stranded 
carcass data set (subject to carcass detection probability).  
A final source of information derived from the carcass data was the empirical relationship 
between colour (grey vs. white or off-white) and age. We fit a simple logistic regression model 
with linear and quadratic terms to the data set of colour (grey = 1, white or off-white = 0) vs. age. 
The model provided excellent fit to the data (R2 >0.95), and the estimated functional relationship 
allowed us to probabilistically infer the proportion of individuals of a given age that would be 
grey in colour. We used this function to relate visual estimates of the proportion of grey 
individuals in various data sets (see below) to the model-estimated age structure. 

Skiff survey data 
A program with various objectives but mainly photo-identification of SLE beluga has been 
conducted on a yearly basis since 1989 following a consistent survey protocol explicitly 
described elsewhere (Michaud 2014). Briefly, these surveys covered the central portion of the 
beluga summer habitat between early-June and mid-October, alternating sectors to sample all 
segments of the population and the variety of habitats that beluga use during summer. Once a 
herd was encountered, data on herd composition and behaviour was acquired over the first 
15 min of the encounter while remaining 300-500 m away from the herd, then every 30 min until 
end of the encounter, usually 2 to 4 hours later. Individuals within a herd were categorized as 
either newborn calves (< 1 yr-old), bleuvet (1-2 yr-old), juvenile (grey) or adults (white or off-
white). An annual index of the proportion of newborn calves and grey animals (categories 
bleuvet and juvenile together) was obtained for each year between 1989 and 2021 following the 
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methodology described in Michaud (2014). Only the proportion of grey individuals was used in 
the model (Appendix 2), because the low proportion of calves (1—4%) obtained by Michaud 
(2014) suggests a systematic underestimation of their occurrence likely due to their small size, 
dark colour, and proximity to females.  

Other data sources 
The model also incorporates data from three other sources. We estimated the stage structure of 
SLE beluga in 1938-1939 from the sex, length, colour, and sexual maturity of a hunted sample 
of 161 SLE beluga (Vladykov 1944). We used the number of grey individuals relative to the total 
number of hunted animals (excluding 0-age calves, which were considered potentially biased) 
as a binomial sample of the age distribution of the living population.  
We used annual reported harvest data for the period 1866—1979 to help infer historical 
dynamics and provide context for more recent demographic trends. Data up to until 1960 were 
extracted directly from Reeves and Mitchell (1984, Table VII) and incorporated an average 
struck and loss rate of 0.2. Data for the period 1960-1979 (i.e., until harvests were officially 
banned) were more difficult to determine with precision. Laurin (1982) and Pippard and Malcolm 
(1978) both reported a minimum of 20 beluga being shot each year after 1960 and through the 
1970’s, with a small number of animals (21 over 7 years) being taken in the 1960s through a 
weir fishery (see Reeves and Mitchell 1984). We added to these numbers five whales each year 
to account for the minimal struck and loss reported by Laurin (1982).  
Finally, we examined long-term (start date: 1969 to 1990) indices of five environmental factors 
for their potential relationship with newborn calf mortality based on findings from a previous 
study (Williams et al. 2021). Indices included ice duration (in days) in the SLE, ice volume 
(seasonal maximum) and average water temperature at 200 m in the Gulf of St. Lawrence 
(Galbraith et al. 2022); mean capelin biomass in the northern Gulf of St. Lawrence (standard 
sampled biomass; Duplisea et al. 2020); and spring spawner herring biomass in the southern 
Gulf of St. Lawrence (Rolland et al. 2022). All the above variables were centered and scaled to 
unit variance prior to model fitting.  

MODEL OVERVIEW 
We used a stage-structured, integrated population model to analyze demographic trends within 
the SLE beluga population. While we were interested in the drivers of beluga population 
dynamics over recent decades (the 1980s through the present), we extended our study period 
to encompass a much longer time period (1865-2022) in order to gain insights into historical 
potential abundance, and to ensure our model was initialized with a realistic age/sex structure 
(the long lifespan of belugas means that the age structure of the death assemblage reflects 
demographic processes over the previous half century). Our process model incorporated both 
sex and age structure, with a mixture of single-year and multi-year age classes providing an 
analytically tractable number of stages for this long-lived mammal, while at the same time 
allowing for a realistic treatment of age-based trends in abundance and survival. We evaluated 
the effects of multiple sources of mortality on population dynamics, including age and sex-
specific hazards, density-dependent factors, environmental risk factors, direct human harvests 
(over the early part of the study period), and environmental stochasticity. We used Bayesian 
hierarchical methods to fit the process model to multiple data sets: photo-based and visual 
aerial survey data on abundance and stage structure, age/sex-at-death data from stranded 
carcasses, necropsy data on cause-of-death, stage composition data from skiff surveys and 
harvested animals, and historical harvest records. 
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To help in keeping track of the large number of processes, parameters, and variables included 
in the model, we provide summary tables of all possible demographic transitions (Table 1) and 
parameter symbols and definitions (Table 2). 

PROCESS MODEL 
We used a discrete process model with 1-year time step and assumed a post-breeding survey 
occurring in late summer (mid-Aug to early September), after most births have occurred, such 
that calves-of-the-year (aged 0yr) represented the first age class in the model. We considered 
individuals of age < 8yr to be juveniles and age ≥ 8yr as adults (Robeck et al. 2005, Suydam 
2009, Inyakina et al. 2022). We evaluated a range of possible age classification structures for 
the model, with a goal of defining stage boundaries that ensured age-based differences in 
survival and fecundity would primarily occur between rather than within stages (Caswell 2001). 
Based on graphical comparisons of goodness of fit statistics for carcass age structure under 
different structures (see model fitting section below), we found that sufficient resolution in age-
varying vital rates was achieved by single year stage durations for ages 0-3yr, followed by 4-
year stage durations for ages 4-15 yr, and 8-year stage durations for ages >15yr. A loop 
diagram (Figure 1) illustrates the full suite of possible demographic transitions between the 13 
resulting age classes (denoted by index a), which we further divided into two sexes and three 
adult female reproductive classes for a total of 37 stages (denoted by index i). Our use of 
multiple reproductive classes (following Mosnier et al. 2015) allowed us to estimate mortality 
risks specific to each stage, and accounts for the extended gestation period (12-16 months; 
Brodie 1971, Robeck et al. 2005) and calf dependency period (12-24 months; Matthews and 
Ferguson 2015), whereby females can be assigned to 1 of 3 classes based on their 
reproductive status at the time of the survey: available to become pregnant (av), pregnant with 
calf (pr), or accompanied by a newborn calf (wc). Transitions between age classes and 
reproductive status were determined by three vital rates: survival (S), growth (G), and 
reproduction (R), with the latter comprised of two separate processes: 1) the probability (P) of 
an available female at year t becoming pregnant at year t+1; and 2) the probability of a pregnant 
female at year t producing a newborn calf at year t+1 (determined by the newborn survival rate, 
Sn). A complete list of the demographic transitions defined by these vital rates is provided in 
Table 1. 
To examine the patterns and potential causes of variation in beluga vital rates, we computed 
survival in terms of instantaneous hazards: this approach provides a useful mathematical 
framework with which to examine multiple “competing” causes of death, as well as age and sex-
dependent mortality factors and the environmental variables that mediate their effects (Fine and 
Gray 1999, Gelfand et al. 2000). Each hazard (Λ) represents the instantaneous mortality rate 
from a particular cause of death, and the annual survival rate (S) can thus be calculated as the 
exponent of the negative sum of instantaneous hazard rates from all causes of death. We 
analyzed sources of variation in hazards in log-form, as this allows predictive variables to be 
expressed as simple additive linear functions. The predictors of log hazards for individuals of 
stage i at time t can be conceptually categorized as either fixed effects (e.g., age, sex, 
environmental variables) or random effects (unexplained sources of variation). 
We defined two primary types of competing hazards: natural or environmental sources of 
mortality (baseline hazards, ΛB), and direct human harvest mortality (ΛH). We also defined a 
third hazard, dystocia/postpartum mortality (ΛZ), a major cause of death for adult reproductive 
females (Lair et al. 2016; S. Lair, unpublished data). While dystocia/postpartum mortality could 
also be considered a component of baseline mortality, we decided to track it as a separate 
hazard because 1) it is limited to just one component of the population (adult females with 
status pr); 2) there is concern that it may have been increasing in recent years, potentially 
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affecting population recovery, and thus tracking it separately could help inform management 
recommendations; and 3) the existence of necropsy data on the relative frequency of 
dystocia/postpartum deaths over time provided an opportunity to measure its impacts as a 
distinct hazard (just as harvest records allowed us to measure the impacts of harvest mortality 
hazards).  
In the case of baseline hazards, the key risk factors included age and sex-based factors, density 
dependent factors, environmental factors, and stochastic effects: 

log�⋀𝐵𝐵,𝑖𝑖,𝑡𝑡� = ζ + 𝛾𝛾0 + 𝛥𝛥𝑖𝑖·𝛾𝛾1 + Ω𝑖𝑖·𝛾𝛾2 + 𝛤𝛤𝑖𝑖·𝛾𝛾3 + 𝛥𝛥𝑖𝑖· �φ �
𝑁𝑁𝑡𝑡

1000� � + ∑ 𝐗𝐗𝑗𝑗,𝑡𝑡𝛽𝛽𝑗𝑗 + 𝜀𝜀𝐷𝐷,𝑡𝑡𝑗𝑗 � + 𝜀𝜀𝐴𝐴,𝑡𝑡 1 

The first parameter in equation 1, ζ, represents a minimum log hazard rate (a nuisance 
parameter which we set to an arbitrarily low value, ζ = -10, which corresponds to a survival rate 
of 0.9999), and all other parameters can thus be interpreted as log hazard ratios relative to this 
minimum. Parameter γ0 determined baseline adult mortality in the absence of any other effects, 
γ1 determined the effect of “early hazards” affecting younger animals (scaled by age-modifying 
vector ∆i, which declines from a value of 1 for a = 1 to a value of 0 for a = 13), and γ2 determined 
the effect of “late hazards” affecting older animals (scaled by age-modifying vector Ωi, which 
increases from a value of 0 for a = 1 to a value of 1 for a = 13). Previous analyses (Mosnier et 
al. 2015) suggested that survival rates for males and females were identical for juveniles but 
differed for adults; accordingly, we included parameter γ3 to represent the mean log hazard ratio 
for adult males relative to females, where γ3 was multiplied by switch variable Γi in order to limit 
effects to adult males (Γi = 1 for adult males and 0 for all other stages). The magnitude of 
density-dependent hazards was determined by the product of parameter φ and the current 
population size (N, scaled by 1/1000 to simplify interpretation of parameter φ), while the effects 
of various environmental variables (Xj,t, centered and scaled to unit variance and mean of 0) 
were determined by estimated parameters βj (see section Other data sources for details). Earlier 
analyses (Williams et al. 2021) and mammalian life history theory (Fowler 1987, Holser et al. 
2021) suggest that effects of density dependent hazards, environmental factors, and additional 
environmental stochasticity (determined by random effect εD) would be mostly limited to younger 
age classes (primarily calves and yearlings), and thus all these effects in Equation 1 were 
multiplied by age-modifying vector ∆i. However, some sources of mortality (infectious disease, 
intoxication) are not restricted to younger animals, while yet other mortality factors such as 
cancer may affect mainly older animals (Lair et al. 2016); we therefore included an age-
independent random effect term (εA) to account for variation in these additional hazards. 
Random effect terms εD and εA were assumed to be normally distributed with mean of 0 and 
standard deviations (SD) σD, and σA (respectively).  

We note that our inclusion of age-specific hazard parameters γ1 and γ2 in Equation 1 is 
analogous to a Siler proportional hazards model (Breslow 1975); however, we built on the basic 
proportional hazards formulation to allow flexibility in the functional form of the age-modifying 
vectors. Specifically, age-based variation in the relative strength of early hazards was 
determined by the functional form of age modifying vector ∆i:  

 𝛥𝛥𝑖𝑖 = 𝛥̑𝛥𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚�𝛥̑𝛥𝑖𝑖�
𝑚𝑚𝑚𝑚𝑚𝑚�𝛥̑𝛥𝑖𝑖�−𝑚𝑚𝑚𝑚𝑚𝑚�𝛥̑𝛥𝑖𝑖�

,  𝛥̑𝛥𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒 �𝛿𝛿 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙 � 1
𝒗𝒗[𝑖𝑖]
��  2 

while age-based variation in the strength of late hazards was determined by the functional form 
of Ωi: 

 𝛺𝛺𝑖𝑖 = 𝒗𝒗[𝑖𝑖]𝜔𝜔+1

𝑚𝑚𝑚𝑚𝑚𝑚(𝒗𝒗[𝑖𝑖])𝜔𝜔+1  3 
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In Equations 2 and 3, v was a vector of the median age (in years) of each demographic stage i, 
and estimated parameters δ and ω determined the degree of non-linearity in the functional forms 
of ∆ and Ω, respectively, thus allowing flexibility in the shape of the overall relationship between 
age and survival (Figure 2). 

We modeled human harvest mortality as a separate hazard, ΛH, calculated for each stage and 
year as: 

 𝛬𝛬H,𝑖𝑖,𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒�𝜁𝜁 + 𝛾𝛾𝐻𝐻 + 𝜀𝜀𝐻𝐻,𝑡𝑡� ⋅ Θ𝑖𝑖 4 

where ζ represented the minimum log hazard rate (defined as for equation 1), γH represented 
the mean log hazard ratio associated with harvest mortality, and random effect term εH allowed 
for year to year differences in harvest effort (εH is normally distributed with mean = 0 and SD = 
σH). Harvest hazards were assumed to vary by age, which we achieved using age-modifying 
vector (Θ): we set Θi = 1 for all adult stages and 0 < Θi < 1 for juvenile stages, based on 
evidence that harvesters tend to avoid the youngest age classes (Vladykov 1944, Reeves and 
Mitchell 1984). Different methods of harvest were associated with differing degrees of age bias 
(Reeves and Mitchell 1984), and in most cases there was no direct information on the age-
distribution of the SLE beluga harvest, but based on anecdotal reports and the 1938-1939 
hunted beluga sample (Vladykov 1944) we set Θi = 0.5 for 0-age calves, Θi = 0.75 for younger 
juveniles (ages 1 – 3), and Θi = 0.9 for older juveniles (ages 4-7). 
The third class of hazards tracked by our model was dystocia/postpartum mortality of adult 
reproductive females (we note that female mortality also implicitly involves mortality of a 
newborn calf or fœtus). There is evidence that poor body condition, deficiency in essential 
micronutrients or exposure to toxic substances affecting thyroidal activity are risk factors for 
dystocia/postpartum mortality in other species (reviewed in Lair et al. 2016). We thus assumed 
this mortality source would have both density dependent and density independent components, 
and we calculated dystocia/postpartum hazards as: 

 𝑙𝑙𝑙𝑙𝑙𝑙�𝛬𝛬𝑍𝑍,𝑖𝑖,𝑡𝑡� = 𝜁𝜁 + 𝛾𝛾𝑍𝑍 + 𝜌𝜌 ⋅ 𝜙𝜙 � 𝑁𝑁𝑡𝑡
1000

� + 𝜀𝜀𝑍𝑍,𝑡𝑡 5 

where parameter γZ determined the baseline log hazard ratio for dystocia/postpartum mortality, 
parameter φ determined density-dependent increase in risks (as defined in Equation 1), 
parameter ρ is a rescaling parameter (0<ρ<1) that scales density dependent impacts on 
dystocia/postpartum hazards relative to the effect on baseline hazards, and random effect term 
εZ represents unexplained temporal variation in dystocia/postpartum mortality (εZ was normally 
distributed with mean = 0 and SD = σZ).  
We combined the three types of hazards to calculate stage-specific annual survival rates as: 

 𝑆𝑆𝑖𝑖,𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒 �−�𝛬𝛬𝐵𝐵,𝑖𝑖.𝑡𝑡 + 𝛬𝛬𝐻𝐻,𝑖𝑖.𝑡𝑡 + ϒ𝑖𝑖 ⋅ 𝛬𝛬𝑍𝑍,𝑖𝑖.𝑡𝑡�� 6 

In Equation 6, dystocia/postpartum hazards (ΛZ) were multiplied by switch variable ϒi in order to 
limit effects to pregnant females (ϒi = 1 for adult females of status pr and ϒi = 0 for all other 
stages). 
Reproductive transitions in our model were divided into two components, pregnancy rates (P) 
and calf production rates. Females with status av at year t were assumed to transition to status 
pr at year t+1 with probability P, conditional upon their survival. We calculated pregnancy rates 
using a similar mathematical approach to survival rate calculations, although in this case the 
“hazard” corresponds to the instantaneous probability of not becoming pregnant. Thus, the age-
specific annual pregnancy rate for “available” adult females was calculated as: 
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 𝑃𝑃𝑖𝑖,𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑒𝑒𝑒𝑒𝑒𝑒 �𝜂𝜂 + 𝜌𝜌 ⋅ �𝜙𝜙 ⋅ � 𝑁𝑁𝑡𝑡
1000

� + 𝜀𝜀𝐷𝐷,𝑡𝑡��� ⋅ 𝜍𝜍𝑖𝑖 7 

where parameter η determined the expected mean probability of pregnancy at low population 
sizes, φ determined density-dependent reductions in pregnancy rates, parameter ρ is a 
rescaling parameter (0<ρ<1) that scales density dependent impacts on pregnancy rates relative 
to the effect on baseline hazards, and the random effect term εD determined the effects of 
environmental stochasticity (as in equation 1). The final term in Equation 7, ςi, is an age-varying 
adjustment factor that accounted for the effects of reproductive senescence. Based on 
previously published data on reproductive senescence in belugas (Suydam 2009, Ellis et al. 
2018), we set ςi = 1 for females < 40yr, ςi = 0.8 for ages 40-47, ςi = 0.4 for ages 48-55, and ςi = 
0.2 for females aged ≥ 56, as these values resulted in age-specific pregnancy rates that closely 
approximated those reported by Ellis et al. (2018) and were also generally consistent with other 
published data on beluga reproductive rates for older animals (Brodie 1972, Burns and Seaman 
1986, Heide-Jørgensen and Tielman 1994).  
The second component of reproduction is calf production, defined as the probability that 
pregnant females in year t produce calves that survive to the time of the survey at t+1. We 
assumed that after the first few days postpartum (i.e., excluding dystocia or postpartum 
complications, where both the female and the fetus or newborn calf are assumed to die rapidly 
as described above), that virtually all pregnancies past that point resulted in viable newborn 
calves. Therefore, the calf production rate for pregnant females, conditional upon female 
survival, corresponds to newborn calf survival probability from birth to the time of the survey, a 
parameter we defined as Sn. Births start in late-June in the SLE, peak in July, and by the time of 
the survey (late August or early September) virtually all births have occurred (Michaud 2014). 
Newborns therefore have to survive from 0 – 3 months between their birth and the survey, at 
which point they are entered into the 0-age calf stage of the model. Based on an assumption 
that the rate of survival of newborns over the first few months is similar to or lower than the 
survival rate over the following 12 months, we calculated Sn,t as equal to the survival rate of 0-
age calves (S1,t) raised to the power ¼ (which conservatively assumes a survival period of three 
months from birth to survey). Females of status pr at year t whose newborn calf survived to the 
survey at year t+1 transitioned to status wc, while females that lost their calf prior to the survey 
transitioned to status av but with a reduced probability of becoming pregnant right away (Figure 
1). 
The final vital rate required to calculate demographic transitions (Table 1) was G, defined as the 
probability that an individual advances to the next age class, conditional upon survival. For 
stages with 1-year stage durations (i ≤ 4; Figure 1), G = 1; however, for stages that represent 
multi-year age classes (i > 4), G < 1. When the number of years that individuals spend in a 
stage is fixed, the exact value of G will depend on the stage duration (Di = number of year 
classes within stage i), the survival rate for individuals within stage i (Si,t), and the current 
population growth rate (λt= Nt / Nt-1). We calculated G using a standard formula for fixed stage 
duration growth rates (Caswell 2001):  

 𝐺𝐺𝑖𝑖,𝑡𝑡 =
��
𝑆𝑆𝑖𝑖,𝑡𝑡
𝜆𝜆𝑡𝑡
�
𝐷𝐷𝑖𝑖
−�

𝑆𝑆𝑖𝑖,𝑡𝑡
𝜆𝜆𝑡𝑡
�
𝐷𝐷𝑖𝑖−1

�

��
𝑆𝑆𝑖𝑖,𝑡𝑡
𝜆𝜆𝑡𝑡
�
𝐷𝐷𝑖𝑖
−1�
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We combined the stage-specific vital rates described in equations 1-8 to create a set of 17 
composite equations (Table 1) that together define all possible demographic transitions in our 
process model (Figure 1). We used these composite equations to populate the cells of a 
projection matrix (M) with dimensions 37x37 (Figure S1). The abundance of beluga in each 
stage i at year t was compiled into a population vector of length 37 (nt), which when summed 
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gave the estimated total abundance for that year (Nt = ∑ nt). We then used matrix multiplication 
(Caswell 2001) to calculate the expected abundance of beluga in each stage at year t+1 using 
the recursive equation: 

 𝒏𝒏𝑡𝑡+1 = 𝑴𝑴𝑡𝑡  ×  𝒏𝒏𝑡𝑡 9 

We note that the parameterization of matrix Mt is unique for each year due to time-varying 
environmental variables, density-dependence, and random effects. 

HISTORICAL VS. RECENT DYNAMICS 
The process model described in the previous section is time-independent: that is, all parameters 
and demographic effects are assumed to apply equally across years (excluding time-varying 
environmental variables and stochastic variation in random effects). However, several major 
changes are known to have occurred over the time period of interest (1865 – 2022), requiring us 
to relax the assumption of time invariance. Following earlier analyses (Mosnier et al. 2015), we 
divided the study period into two phases: phase 1 (1865-1978) represents a historical period 
during which harvests occurred and for which we had limited data available for model fitting; 
phase 2 (1979-2022) spans the recent decades post-harvest for which we had more extensive 
data for fitting and thus greater ability to estimate variation in vital rates (the carcass age 
structure surveys actually began in 1983, but we selected a breakpoint 5 years earlier to allow 
equilibration of the youngest age classes by 1983). We assumed that the population was at or 
near its historical environmental carrying capacity at the beginning of phase 1 of the study 
period (1865) and was approximately an order of magnitude more abundant than the current 
population (Reeves and Mitchell 1984, Mosnier et al. 2015). The first recorded harvests began 
in 1866 and continued until 1979 when beluga hunting was banned, causing a dramatic decline 
in abundance (Reeves and Mitchell 1984, Hammill et al. 2007, Mosnier et al. 2015). After the 
cessation of harvests, the population was approximately stable (Hammill et al. 2007) and has 
showed no substantial recovery since (Mosnier et al. 2015). Such a pattern indicates that 
underlying mortality rates must have increased relative to pre-harvest levels: otherwise, under 
any reasonable assumptions of logistic population growth (such as those described by Hammill 
et al. 2007) the population should have at least tripled in the intervening 42 years. Increased 
mortality could reflect an increase in the strength of density-dependent hazards, the addition of 
density-independent risk factors, or both. We therefore made several adjustments to our 
process model to account for these changes. 

First, we set harvest mortality hazards (ΛH) equal to 0 for phase 2 of the study period (all years 
after 1979). We next modified our calculations of baseline and dystocia/postpartum hazards to 
allow the possibility of a directional increase in mortality over the study period, as explained 
below. The degree to which mortality increases were density-dependent or density-independent 
is uncertain: evidence of poor body condition and nutritional status of animals in recent decades 
(Simond et al. 2020, Bernier-Graveline et al. 2021) would suggest at least some increase in 
density-dependent effects, while other mortality factors such as those associated with 
contaminant exposure (Martineau et al. 1994, Lair et al. 2016) are likely to be density- and age-
independent. We therefore specified two parameters for increased mortality, one for density-
dependent effects (θ) and one for density independent effects (α), both of which were 
constrained to be ≥0. Parameter θ represented the log of the proportional increase in density 
dependent effects (as determined by parameter φ in Equation 1), while α represented the log 
hazard ratio associated with increased density independent effects.  
A second area of uncertainty concerns the timing and rate of increase in mortality over the study 
period. Previous reports suggest potential increases in non-harvest mortality beginning in the 
early to mid-1900s caused by reduced fish stocks, habitat alteration, harassment, and pollution 
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(Reeves and Mitchell 1984), and increases in contaminant exposure date from at least the 
1950s (Martineau et al. 1994). However, these reports are insufficient to quantify temporal 
variation in hazards over this period. One possible approach would be to limit the increased 
hazards to phase 2 only (i.e., implicitly fix θ = 0 for phase 1); however, this is unlikely to be 
realistic given that cancer rates were already prevalent early in the 1980s. In addition, such a 
sudden change in mortality would be both biologically unrealistic and also problematic from a 
model fitting perspective. We therefore defined a simple, monotonically increasing function, χt, 
to determine variation in the relative magnitude of increased hazards over time. We assumed 
that χt = 0 at the start of the study period (t = 0), and that it would increase as a sigmoidal 
function to reach an asymptote of 1 by t = tc (where tc is the first year of phase 2 of the study 
period), since continued variation in mortality during phase 2 was already accounted for by other 
fixed and random effects in the model. We calculated χt as a logit function:  

 𝜒𝜒𝑡𝑡 = �𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
−1(6 − [1 + 𝜉𝜉] ⋅ [𝑡𝑡𝑐𝑐 − 𝑡𝑡]0.5)

1
 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 < 𝑡𝑡𝑐𝑐
 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡 ≥ 𝑡𝑡𝑐𝑐

 10 

In Equation 10, the timing and rate of increase in χ is controlled by a single parameter, ξ, where 
0 < ξ < 1 and where values of ξ → 0 producing a gradually increasing function beginning early 
in phase 1, and values of ξ → 1 producing a sharply increasing function with an inflection point 
near the end of phase 1 (Figure 2). Data limitations precluded estimation of ξ during model 
fitting, so we instead evaluated several values of ξ between 0 and 1 to evaluate its impacts on 
other model parameters.  
We next modified the equations for calculating baseline and dystocia/post partum hazards, as 
well as pregnancy rates, to account for temporal increases in density-dependent and density 
independent hazards: 

 𝑙𝑙𝑙𝑙𝑙𝑙�𝛬𝛬B,𝑖𝑖,𝑡𝑡� = 𝜁𝜁 + 𝛾𝛾0 + 𝛥𝛥𝑖𝑖𝛾𝛾1 + 𝛺𝛺𝑖𝑖𝛾𝛾2 + 𝛤𝛤𝑖𝑖𝛾𝛾3 + 𝛥𝛥𝑖𝑖 �𝑒𝑒𝑒𝑒𝑒𝑒(𝜒𝜒𝑡𝑡𝜃𝜃)𝜙𝜙 � 𝑁𝑁𝑡𝑡
1000

� + ∑ 𝑿𝑿𝑗𝑗,𝑡𝑡𝛽𝛽𝑗𝑗𝑗𝑗 + 𝜀𝜀𝐷𝐷,𝑡𝑡� + 𝜒𝜒𝑡𝑡𝛼𝛼 + 𝜀𝜀𝐴𝐴,𝑡𝑡

 11 

 𝑙𝑙𝑙𝑙𝑙𝑙�𝛬𝛬𝑍𝑍,𝑖𝑖,𝑡𝑡� = 𝜁𝜁 + 𝛾𝛾𝑍𝑍 + 𝜌𝜌 ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒(𝜒𝜒𝑡𝑡𝜃𝜃)𝜙𝜙 � 𝑁𝑁𝑡𝑡
1000

� + 𝜒𝜒𝑡𝑡𝛼𝛼 + 𝜀𝜀𝑍𝑍,𝑡𝑡 12 

 𝑃𝑃𝑖𝑖,𝑡𝑡 = 𝑒𝑒𝑒𝑒𝑒𝑒 �−𝑒𝑒𝑒𝑒𝑒𝑒 �𝜂𝜂 + 𝜌𝜌 �𝑒𝑒𝑒𝑒𝑒𝑒(𝜒𝜒𝑡𝑡𝜃𝜃)𝜙𝜙 � 𝑁𝑁𝑡𝑡
1000

� + 𝜀𝜀𝐷𝐷,𝑡𝑡��� ⋅ 𝜒𝜒𝑖𝑖 13 

We note that baseline and dystocia/postpartum hazards rates are assumed to be affected by 
increases in both density-dependent and density-independent mortality (parameters θ and α, 
respectively), while pregnancy rates are assumed to be affected only by an increase in density 
dependent effects.  
Finally, we set all random effects equal to 0 for phase 1 of the study period, given the lack of 
available data for estimating fine-scale variation in vital rates over these years. Similarly, given 
the lack of environmental covariate data coverage for this period, we also set βj = 0 for phase 1. 
Because the random effects and centered/scaled environmental variables were all assumed to 
have mean = 0, these changes had no effect on parameter fitting for phase 2 of the study 
period, but they do mean that the process model was effectively deterministic for phase 1. 

DATA MODEL 
Fitting the process model to observed data required defining probabilistic relationships between 
each data set and the corresponding predictions generated by the process model. Raw data 
from the aerial surveys (photographic strip transect surveys and visual line transect surveys) 
were analyzed separately (see St-Pierre et al. 2023) to provide abundance point estimates and 
associated uncertainty measures (SE values). The uncertainty distributions associated with 
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survey estimates were lognormally distributed, thus we related the observed point estimates 
from photographic surveys (ObsPt) and visual surveys (ObsVt) to the model-estimated 
abundance values (Nt) using lognormal distributions: 

 𝑂𝑂𝑂𝑂𝑂𝑂𝑃𝑃𝑡𝑡~𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �𝜇𝜇 = 𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑁𝑁𝑡𝑡2

�𝑁𝑁𝑡𝑡2+𝑆𝑆𝐸𝐸𝑃𝑃,𝑡𝑡
2
� ,  𝜎𝜎 = �𝑙𝑙𝑙𝑙𝑙𝑙 �1 +

𝑆𝑆𝐸𝐸𝑃𝑃,𝑡𝑡
2

𝑁𝑁𝑡𝑡2
�� 14 

 𝑂𝑂𝑂𝑂𝑂𝑂𝑉𝑉𝑡𝑡~𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 �𝜇𝜇 = 𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑁𝑁𝑡𝑡2

�𝑁𝑁𝑡𝑡2+𝑆𝑆𝐸𝐸𝑉𝑉,𝑡𝑡
2
� ,  𝜎𝜎 = �𝑙𝑙𝑙𝑙𝑙𝑙 �1 +

𝑆𝑆𝐸𝐸𝑉𝑉,𝑡𝑡
2

𝑁𝑁𝑡𝑡2
�� 15 

The photographic surveys also provided uncorrected counts of calves and yearlings (Ncyt) 
relative to total counts (Ntotal t). We assumed these counts would be described by a binomial 
distribution with probabilities calculated from the model-estimated proportions of the population 
in the first two stages (i.e., ages 0 and 1):  

 𝑁𝑁𝑁𝑁𝑦𝑦𝑡𝑡~𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �𝒏𝒏[1]𝑡𝑡+𝒏𝒏[2]𝑡𝑡
∑𝒏𝒏𝑡𝑡

� ,  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑙𝑙𝑡𝑡� 16 

The carcass data set consisted of the number of stranded dead animals (with GLG age 
estimates), classified by age class and sex, for each year between 1983 – 2022. We compiled 
these data into annual vectors ct = <cg=1, c g=2, … cg=26 >, where subscript g indicates a unique 
combination of age class and sex (13 age classes for each sex; see Figure 1). We used the 
process model to derive equivalent vectors of the expected proportion of deaths occurring by 
age/sex class. Specifically, we took the elementwise product of the population vector at year t-1 
(nt-1) and a vector of annual stage-specific mortality probabilities (mt = <1-S1,t, 1-S2,t … 1-S37,t >), 
which gave the expected number of dead animals by stage at year t. We combined the 
expected numbers of deaths for different female reproductive classes to obtain a vector of 
expected deaths by age class and sex (dt) that could be compared to the observed carcass 
counts (ct). We adjusted the first element of dt (0-age calves) by adding the estimated number 
of newborn calves-of-the-year that did not survive until the survey (i.e., demographic transitions 
k and l in Table 1 and Figure 1), including those associated with female deaths from 
dystocia/postpartum hazards where the dead calf was released to the environment (see Data 
Sources section, above). We further adjusted dt to reflect under-representation of dead calves in 
the data set, as newborn carcasses are much less likely to be recovered than older/larger 
animals (Mosnier et al. 2015, Lesage 2021): we multiplied the first element of dt by ψ1, a 
detection probability parameter that was estimated as part of model fitting. We assumed that the 
frequency distribution of observed carcass counts would be described by a multinomial 
distribution with probabilities determined by the age/sex-at-death distributions predicted by the 
process model: 

 𝒄𝒄𝑡𝑡~𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝒅𝒅𝑡𝑡
∑𝒅𝒅𝑡𝑡

� 17 

In addition to age/sex-at-death distributions, data from a sub-set of carcasses provided 
information on cause of death. For each year we tabulated the number of necropsies of adult 
females for which dystocia/postpartum mortality was determined to be the primary cause of 
death (AFDzt), relative to the total number of adult female necropsies conducted (AFDtotalt). We 
assumed these data would be described by a binomial distribution with probabilities calculated 
from model-estimated proportions of adult female deaths attributable to dystocia/postpartum 
hazards: 
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 𝐴𝐴𝐴𝐴𝐴𝐴𝑧𝑧𝑡𝑡~𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
∑ 𝒏𝒏[𝑖𝑖]𝑡𝑡−1𝒎𝒎[𝑖𝑖]𝑡𝑡�

𝛬𝛬𝑍𝑍,𝑖𝑖,𝑡𝑡
𝛬𝛬𝑍𝑍,𝑖𝑖,𝑡𝑡+𝛬𝛬𝐵𝐵,𝑖𝑖,𝑡𝑡

�𝑖𝑖=14:21

∑ 𝒏𝒏[𝑖𝑖]𝑡𝑡−1𝒎𝒎[𝑖𝑖]𝑡𝑡𝑖𝑖=6:29
,  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑙𝑙𝑡𝑡� 18 

In Equation 18, the binomial probability was calculated as the ratio of deaths of pregnant 
females from dystocia/postpartum hazards to deaths of all adult females (the summation in the 
numerator is over values of index i corresponding to pregnant female stages, while the 
summation in the denominator is over values of index i corresponding to all adult female 
stages). For pregnant females we calculated the fraction of deaths from dystocia/postpartum 
hazards as the ratio of ΛZ to ΛB + ΛZ, noting that harvest hazards (ΛH) were effectively zero by 
the time the carcass surveys were initiated.  
Data used from skiff surveys consisted of the mean annual proportions of grey individuals 
(excluding calves) in the population (Pgrt), estimated as part of a previous analysis (Michaud 
2014). These proportions corresponded to the number of grey individuals (excluding calves) 
divided by the total number of whales. We assumed these proportional data would be well 
described by a beta distribution with a and b parameters calculated from model-estimated 
proportions of grey individuals in the population at year t:  

 𝑃𝑃𝑃𝑃𝑟𝑟𝑡𝑡~𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 �𝑎𝑎 = �𝜓𝜓2 ⋅
∑ 𝒏𝒏[𝑖𝑖]𝑡𝑡⋅𝑓𝑓𝑔𝑔[𝑖𝑖]𝑖𝑖≠1

∑ 𝒏𝒏[𝑖𝑖]𝑡𝑡𝑖𝑖
� ⋅ 𝜈𝜈,  𝑏𝑏 = �1 − 𝜓𝜓2 ⋅

∑ 𝒏𝒏[𝑖𝑖]𝑡𝑡⋅𝑓𝑓𝑔𝑔[𝑖𝑖]𝑖𝑖≠1

∑ 𝒏𝒏[𝑖𝑖]𝑡𝑡𝑖𝑖
� ⋅ 𝜈𝜈� 19 

where ν represents a precision parameter, estimated as part of model fitting, and fg[i] represents 
the probability of grey colour as a function of stage, derived from the empirical relationship 
between age and colour estimated from carcass data (see Data Sources section, above). The 
proportions of grey individuals estimated from skiff surveys tend to be biased slightly low (on 
average) relative to the inferred age structure based on photographic survey counts of 0-1 age 
juveniles, so we included an estimated adjustment parameter (ψ2) to account for this bias.  
Data on the number of grey individuals (NGhv) relative to total abundance (NThv) were also 
available from a sample of harvested animals in 1938-39 (Vladykov 1944). To avoid the effects 
of sampling bias we excluded 0-age calves from both these tallies. We assumed these data 
would be described by a binomial distribution with probabilities calculated from the model-
estimated proportions of grey individuals in the population in 1939 (calculated as for the skiff-
based surveys, previous paragraph): 

 𝑁𝑁𝑁𝑁ℎ𝑣𝑣~𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �
∑ 𝒏𝒏[𝑖𝑖]𝑡𝑡=1939⋅𝑓𝑓𝑔𝑔[𝑖𝑖]𝑖𝑖≠1

∑ 𝒏𝒏[𝑖𝑖]𝑡𝑡=1939𝑖𝑖≠1
� ,  𝑁𝑁𝑁𝑁ℎ𝑣𝑣� 20 

The number of reported or estimated harvests per year (Ht) were assumed to be described by a 
Poisson distribution with rate parameter corresponding to the mean number of harvest 
mortalities predicted by the model: 

 𝐻𝐻𝑡𝑡 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 �∑ 𝒏𝒏[𝑖𝑖]𝑡𝑡−1𝒎𝒎[𝑖𝑖]𝑡𝑡 �
𝛬𝛬𝐻𝐻,𝑖𝑖,𝑡𝑡

𝛬𝛬𝐻𝐻,𝑖𝑖,𝑡𝑡+𝛬𝛬𝐵𝐵,𝑖𝑖,𝑡𝑡+ϒ𝑖𝑖𝛬𝛬𝑍𝑍,𝑖𝑖,𝑡𝑡
�𝑖𝑖 � 21 

Three additional data constants were included in model fitting to help ensure demographically 
reliable results. These effectively represent priors placed on certain emergent properties of the 
model, corresponding to explicitly stated assumptions (and associated uncertainties) that were 
consistent with published findings but for which there were no empirical data that could be used 
for fitting. The first of these was the mean annual rate of population growth at the start of the 
time series (λt=0). While not known with certainty, it is assumed that the pre-harvest population 
must have been at or near to the historical value of K, the environmental carrying capacity 
(Hammill et al. 2007). We therefore inferred that the mean annual growth rate at time 0, after 
accounting for density-dependent effects, must have been approximately 1. To ensure that this 
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was the case, for each set of parameter values and initial population size (Nt=0) evaluated during 
model fitting, we calculated the associated population projection matrix (solving equations 1 to 8 
with harvest hazards and environmental/random effects forced to 0) and iteratively conducted 
matrix multiplication (Equation 9) for a sufficient number of time steps (200) to allow stabilization 
of the stage structure and expected growth rate (λexp,t=0). We assumed the “observed” growth 
rate (λt=0, fixed at 1.0) was drawn from a normal distribution with mean of λexp,t=0 and an 
arbitrarily small standard error: 

 𝜆𝜆𝑡𝑡=0~𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒, 𝑡𝑡=0,  𝑆𝑆𝑆𝑆 = 0.0001� 22 

By including Equation 22 as part of model fitting we constrained the joint posterior of all 
parameters such that the asymptotic value of K (the density at which λ→1) corresponded to the 
estimated pre-harvest abundance, while also ensuring appropriate stable stage structure at t=0. 

The second constant was the maximum growth rate at low population density (λmax), which we 
assumed would be close to the 4% maximum rate of growth reported for many cetacean 
populations (Wade 1998) including beluga (Lowry et al. 2019). For each set of parameter values 
evaluated during model fitting, and a “low” population size of N=100 animals, we calculated the 
associated population projection matrix (solving equations 1 to 8 with harvest hazards and 
environmental/random effects forced to 0) and iteratively conducted matrix multiplication 
(equation 9) for a sufficient number of time steps (200) to allow stabilization of the stage 
structure and expected growth rate (λexp,N100). We assumed the observed maximum growth rate 
(λmax , fixed at 1.04) was drawn from a normal distribution with mean of λexp,N100 and an 
arbitrarily small standard error: 

 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚~𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛�𝜆𝜆𝑒𝑒𝑒𝑒𝑒𝑒,𝑁𝑁100,  𝑆𝑆𝑆𝑆 = 0.0025� 23 

We note that the standard error in Equation 23 was larger than for Equation 22, reflecting 
greater uncertainty about the expected growth rate at low population size. By including Equation 
23 as part of model fitting we constrained the joint posterior of all parameters such that the 
expected growth rate at low population density (excluding effects of environmental variables, 
harvest, or other sources of increased mortality) was consistent with literature-based estimates 
of λmax.  
A third constant, based on expert opinion, was used to constrain the relative partitioning of 
increased mortality over the 20th century between density-dependent vs. density independent 
effects (parameters α and θ). There is at present no rigorous basis for ascertaining this ratio; 
however, based on review of reported patterns of mortality and risk factors in the literature 
(Martineau et al. 1994, Lebeuf et al. 2014a, Lair et al. 2016, Poirier et al. 2019, Lesage 2021), it 
appeared reasonable to assume a greater increase in density independent effects relative to 
density-dependent effects during this early period. We define RDiD as the ratio of the increase in 
density independent log hazards (α) relative to the realized increment in density-dependent log 
hazards at some specified density (we arbitrarily selected the estimated abundance at the 
beginning of phase 2 of the study period, Nt=tc). We set an average value for this ratio of 1.5, 
and an associated standard error of 0.25, thus implying 95% confidence that the true value of 
RDiD was between 1 and 2. We assumed gamma distributed error (appropriate for a ratio) with 
an inverse scale parameter set to produce the desired level of uncertainty: 

 𝑅𝑅𝐷𝐷𝐷𝐷𝐷𝐷~𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 � 𝛼𝛼

𝑒𝑒𝑒𝑒𝑒𝑒(𝜃𝜃)⋅𝜙𝜙⋅�𝑁𝑁𝑡𝑡=𝑡𝑡𝑡𝑡1000 �−𝜙𝜙⋅�
𝑁𝑁𝑡𝑡=𝑡𝑡𝑡𝑡
1000 �

⋅ 8.57,  𝑖𝑖𝑖𝑖𝑖𝑖. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 8.57� 24 
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PRIOR MODEL 
We used vague prior distributions for most model parameters, which we define as weakly 
informed based on biological feasibility but having no information specific to this analysis. We 
used Cauchy priors for unconstrained parameters and half-Cauchy priors for parameters 
constrained to be positive (such as variance parameters), with location parameters of 0 and 
scale parameters set at appropriate values given the range of biologically possible values. The 
Cauchy distribution has been suggested as an effective, uninformative prior because it has a 
taller peak than the Normal distribution, is leptokurtic (“fat tailed”), and has no defined mean, 
and thus provides wide potential bounds on parameter space, a tendency to shrink towards 0 
for non-significant parameters, and minimized influence of the prior on the estimation of the 
posterior (Gelman et al. 2008). For calf detection probability parameters (ψ1 and ψ1), which were 
constrained to the 0-1 range, we used a flat Beta prior with parameters a = b = 1. In the case of 
initial population size (Nt=0) we used a weakly informative lognormal distribution with parameters 
µ = 9.3 and σ = 0.3, as this distribution encompassed a broad range of values consistent with all 
previously reported historical estimates, and with a mode close to 10,000 (the upper value 
proposed by Hammill et al. 2007). 

In the case of two parameters, η (baseline pregnancy rates) and ρ (the scale of density 
dependent effects on dystocia hazards and pregnancy rates relative to effects on calf survival) 
we were unable to use vague priors, as the sets currently available for model fitting were 
insufficient to distinguish between reductions in pregnancy rates and reductions in neonatal 
survival, thus preventing model convergence. We therefore set informed priors on these based 
on expert opinion and on literature-reported values. For the baseline pregnancy rate parameter 
(η) we used a normal prior with mean = -1.7 and SE = 0.1, as this distribution resulted in a 
range of maximum pregnancy probabilities (0.80-0.85) and a prevalence of pregnant animals 
(30-40% of adult females) consistent with previously reported values (Vladykov 1944, Burns and 
Seaman 1986, Heide-Jørgensen and Teilmann 1994, Suydam 2009). For parameter ρ, we used 
a Beta prior with parameters a = b = 50, which resulted in a bell-shaped distribution centered at 
0.5. A value of ρ = 0.5 for scaling density-dependent effects resulted in a reduction in pregnancy 
rates from 0.85 to 0.75 (or a reduction from 35% to 25% females pregnant) as density increased 
from near 0 to near K, generally consistent with the range of reproductive rates measured from 
populations of differing status (Kleinenberg et al. 1964, Suydam 2009, McGuire et al. 2020). 
A complete list of prior distributions for all model parameters is provided in Table 2.  

MODEL FITTING 
The observed data variables constrained the possible values of unknown parameters in the 
process model, allowing us to estimate posterior distributions for these parameters using 
standard Markov Chain Monte Carlo (MCMC) methods. We used R (R.Core.Team 2022) and 
Stan software (Carpenter et al. 2017) to code and fit the model, saving 20,000 samples after a 
burn-in of 1,000 samples. We evaluated model convergence by graphical examination of trace 
plots from 20 independent chains and by ensuring that the Gelman-Rubin convergence 
diagnostic (R-hat) was <1.05 and the effective sample size (SSeff) was >500 for all fitted model 
parameters. We plotted and visually compared prior and posterior distributions for all 
parameters to assess the degree to which posteriors were distinct from priors (Figure S2). We 
conducted graphical posterior predictive checking to evaluate model goodness of fit, ensuring 
that 1) out-of-sample predictive distributions of abundance were consistent with distributions of 
aerial survey data (both photo-based and visual surveys); 2) out-of-sample predictive 
distributions of stage composition were consistent with survey estimates of proportion grey and 
proportion calves/yearlings; and 3) out-of-sample predictive distributions of mortality age 



 

16 

structure were consistent with the carcass data set. We assessed the relative influence of 
different data sources on model predictions by conducting Leave-out-one cross validation 
analysis of the point-wise log likelihoods (Vehtari et al. 2017). Specifically, we used Pareto 
smoothed importance sampling to estimate the Pareto-k statistic for each observation, which 
can be used as a measure of the observation's influence on the posterior distribution of the 
model. 

We repeated model fitting for three different values of the parameter ξ, which determines the 
timing and rate of increase in mortality during the 20th century: ξ = 0.1, ξ = 0.5 and ξ = 0.9. We 
present graphical summaries of estimated population trends associated with each value of ξ, 
and report on any associated differences in parameter estimates. However, based on the lack of 
significant differences for most parameters between alternative values of ξ, we used the fitted 
model with ξ = 0.5 to generate all remaining tables and plots.  
We evaluated the potential effects of 5 different environmental variables on survival (see Data 
Sources section for more details). We first fit a model with all 5 variables, and then re-fit the 
model after sequentially removing non-significant variables (defined as variables for which the 
80% quantiles of the posterior distribution of the associated β parameter overlapped 0) in 
reverse order of significance. The final model retained only those environmental variables 
having significant effects on hazard rates. We note that the limited time series available 
restricted us to considering simple linear relationships between log hazard rates and 
environmental variables (see equation 11), which we recognize is likely to be a simplification of 
more complex non-linear relationships between environmental drivers and mortality.  
We report summary statistics for the posterior distributions of estimated parameters (including 
mean, SD, and 95% credible intervals, or CI), and also for key derived parameters including 
estimated abundance in 2022 (Table 3). We graphically examined model-predicted dynamics 
over the study period including trends in abundance, harvest mortality, pregnancy and survival 
rates, female deaths from dystocia/postpartum hazards, age-specific variation in survival, and 
stage composition of the living population and death assemblage. 
Based on the model estimated abundance estimate for 2022 and associated uncertainty, we 
calculated the Potential Biological Removal (PBR) following standard procedures for cetaceans 
(Wade 1998). We then used the model to estimate functional carrying capacity (K) under current 
conditions, which we distinguish from the historical K (i.e., pre-harvest abundance, estimated as 
part of model fitting). To estimate current K, we retained the increased density-dependent 
effects (θ) at their estimated values, but set parameter α (increased density-independent 
hazards) to 0, as we assumed that α represented the combined effects of emergent mortality 
factors subject to management and mitigation. We also fixed stochastic fluctuations (ε) at 0 (i.e., 
their mean values over phase 2 of the study period), but in the case of environmental variables 
(e.g., Gulf Temperature at 200 m) we used the mean value for the period 2000-2022, to account 
for non-reversable shifts in climate-driven variables. We iteratively drew all parameters from 
their joint posterior distributions to parameterize the matrix, then sequentially varied N to find the 
abundance at which the dominant eigenvalue of the parameterized matrix = 1. We repeated this 
10,000 times in order to accurately characterize uncertainty around the estimate of K, which we 
report as the median value and the 95% CI. Based on the point estimate of K, and the 
precautionary assumption that maximum net productivity level (MNPL) would occur at 
approximately 60% of K (which we validated by numerical simulations using the model), we 
calculated two abundance thresholds for management: a Precautionary Reference level (PRL), 
also referred to as the Upper Stock Limit, and a Limit Reference Level (LRL), signifying the level 
below which significant harm can occur (DFO 2013, Hammill et al. 2017). We set PRL to 80% of 
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MNPL, or 48% of estimated K, and we set LRL to 40% of MNPL, or 24% of estimated K 
(Hammill et al. 2017).  

SIMULATING DYNAMICS FOR FUTURE SCENARIOS 
We generated projections of future population dynamics under various scenarios by running 
Monte Carlo simulations of the process model, parameterized by drawing from the joint 
posteriors of all parameters and with environmental covariates and random effects drawn 
randomly from appropriate sampling distributions. We assumed that more recent conditions 
would be most reflective of future conditions, and thus we used the observed distributions of 
environmental covariates and random effects for the 2010-2022 period as the basis for future 
projections (unless otherwise stated). We conducted simulations under various scenarios to 
evaluate model sensitivities and management implications. Specifically, we evaluated climate 
change scenarios with differing levels of increased water temperatures (we specify % increases 
in mean water temperature after 100 years, assuming a continuous rate of increase from 
present values) and proportional increases or reductions in mean hazard rates (ΛB or ΛZ). A 
complete list of the scenarios evaluated is provided in Table 4.  
For each scenario, we iterated 100-year population projections for 10,000 iterations, in order to 
quantify the effects of parameter uncertainty and sampling variance. We presented the results 
of simulations in several ways: 1) we summarized the average minimum abundance over the 
projection period (minN), the mean abundance at the end of the projection period, and the 95% 
CI for abundance at the end of the projection period; 2) we compared the expected final 
population size to the baseline scenario (current conditions with no management actions or 
directional change in environmental variables); 3) we summarized the proportion of iterated 
simulations under each scenario for which the final estimated abundance was greater than each 
of 4 reference thresholds: MNPL, PRL, LRL, and a quasi-extinction threshold (QE) which we 
defined for the purposes of this analysis as a population with 50 or fewer adult females; 4) we 
summarized the proportion of iterated simulations under each scenario where the mean 
instantaneous growth rate (r) over a single generation time (28 years) was greater than 1% or 
lower than -1%.  

RESULTS 

RETROSPECTIVE ANALYSES 
Fitting the model to the multiple independent data sets provided excellent convergence, as 
indicated by R-hat <1.05 and SSeff > 500 for all parameters (Table 3). Posterior distributions for 
model parameters were highly distinct from prior distributions (Figure S2), indicating sufficient 
information across data sets to minimize the influence of priors (for parameters η and ρ the 
available data sets did not contain sufficient information to update the priors). Graphical 
posterior predictive checks indicated good model fit, with observed data distributions 
corresponding closely to distributions of out-of-sample projected estimates (Figure S3), and 
posterior distributions for all estimated parameters were biologically feasible and generally 
consistent with previously published analyses (Hammill et al. 2007, Lesage et al. 2014, Mosnier 
et al. 2015, Williams et al. 2021). An analysis of the relative influence of the various data 
sources on model posteriors indicated relatively high influence of data on carcass age structure, 
cause of death, and photo-based estimates of abundance and age composition, and relatively 
low influence of data from visual surveys (Figure S4). 

Results from fitting three versions of the model with alternative values of ξ (0.1, 0.5 and 0.9) 
showed slightly differing trends during phase 1 of the study period, but identical trends during 
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phase 2 (Figure 3). The only base parameter that changed substantially between the three 
model fits was the estimate of pre-harvest abundance (N0), which varied inversely with ξ. The 
parameter determining baseline strength of density dependence (φ) also decreased slightly for 
smaller values of ξ and larger values of N0, however this was offset by corresponding increases 
in θ such that the cumulative density-dependent hazards in phase 2 of the study period 
remained constant between the three model fits, as did all other parameters. For all three model 
fits the average hazard rates in phase 2 of the study were significantly higher than at the 
beginning of phase 1, with the combined estimates of θ and α (Table 3) producing an overall 
increase in baseline hazards of 17% (CI95 = 2% – 56%) at the beginning of phase 2, although 
the realized hazard increase depended on current abundance and the degree to which the 
additional hazards were density-dependent. The estimate of pre-harvest abundance averaged 
across the three model fits was 13,558. Combining the posterior distributions across the three 
model fits resulted in a 95% credible interval for pre-harvest abundance (i.e., historical K) of 
12,428 – 17,432. The remaining results are reported for the model fit with ξ = 0.5, although we 
note these results are almost identical to results from models with alternative values of ξ (except 
for the differences mentioned above). 
Hazard rates were higher (relative to adults of 10-20 years age) for very young animals 
(primarily calves and yearlings) and for older animals, producing an “inverted-U” age specific 
survival schedule typical for large mammals (Figure 4). Density-dependent effects on hazard 
rates were associated with a reduction in 0-age calf survival rates from 61% for a population 
growing at rmax, to 31% for a population at K (Figure 4). Environmental variables also affected 
calf survival, although of the 5 different environmental covariates evaluated (see Data Sources 
section), only Gulf average temperature at 200m showed strongly significant effects on baseline 
hazards (Figure S5). An increase in mean annual temperature from 4.6 degrees (the long-term 
average) to 5.2 degrees (the average after 2010) was associated with a 40% increase in the 
hazard rate for 0-age calves. There was also a consistent but non-significant negative 
relationship between Gulf ice volume and hazard rate, which could be interpreted as a tendency 
towards higher calf survival on years with higher ice volume (Figure S5). 
In addition to the variation in survival attributable to the fixed effects included in the model, there 
was a substantial degree of unexplained variation in hazard rates, which we generically refer to 
as stochasticity (while recognizing that this actually reflects the impacts of factors not included in 
the model). Interestingly, patterns of stochasticity often differed between density-dependent 
hazards (which primarily affect calves and pregnant females) and the density-independent 
hazards that affected all ages (Figure 5). For example, density-dependent hazards were 
generally higher than average between 2010 and 2020, while density-independent hazards 
were generally lower than average over the same decade. Both density-dependent and density 
independent random effects showed increased volatility between the late 1990s and early 
2000s (Figure 5), consistent with findings from a previous model (Mosnier et al. 2015).  
The process model integrated multiple hazards, reflecting both fixed and random effects, to 
estimate temporal variation in survival rates for different classes of the population (Figure 6). As 
previously reported (Mosnier et al. 2015), calves showed the greatest magnitude of variation in 
survival, followed by yearlings. In some cases, the estimated trends were consistent across 
age-sex classes: for example, all age/sex classes experienced a downwards spike in survival in 
the early 2000s (Figure 6), although this period of lower survival was most severe and 
prolonged for calves. However, in the decade since 2010, survival trends appear to have 
diverged somewhat among age/sex classes. Survival rates over this period were mostly higher 
than average for older age classes, although there was a downward trend over the last 3-5 
years (2018-2022), particularly for pregnant females that experience dystocia/postpartum 
hazards in addition to baseline hazards. In contrast, for calves there was a steady decline in 



 

19 

survival since 2010, with the survival rate over the last few years approaching the lowest values 
observed since 1980 (Figure 6). Although pregnancy rates for “available” females (av) do not 
appear to have changed substantially (Figure 7), the lower survival of calves combined with 
higher levels of mortality for pregnant females (Figure 6) resulted in a decline in the proportion 
of adult females with calves since 2010 (Figure 8), as well as an increase in the proportion of 
adult female deaths from dystocia/postpartum hazards (Figure 9).  
The above-described trends in survival and calf production have resulted in shifts in the age/sex 
structure over time, for both the living population and the death assemblage. The estimated % 
calves and yearlings in the population tended to track calf survival rates fairly closely, with a 
high degree of volatility in the late 1990s and early 2000s, and a declining trend since 2010 
(Figure 10A). The % grey category, which encompassed a wider range of ages (mostly 
juveniles, although including some younger adults) and thus was less responsive to survival 
changes for a single cohort, showed an increasing trend from 1980 – 2003, followed by a 
declining trend between 2003 and 2010. After 2010 the % greys stabilized at approximately 
30% of the population, although there is suggestion of a decline starting in the last 3 years 
(Figure 10B). We note that the temporal pattern of % greys roughly tracks the trends in % 
calves/yearlings, but with a 2-5 year lag, as we would expect demographically.  
The frequency distribution of dead animals provided another window into demographic 
processes, although we caution that distributions of living and dying animals are both related yet 
divergent because they are produced by the opposite demographic process (survival vs. death). 
Broadly speaking, the age/sex structure of the death assemblage has shifted “leftwards” since 
the early 1980s, from a distribution dominated by the oldest age classes to a distribution 
dominated by calves (as well as more younger adult age classes; Figure 11). The demographic 
bulge of older dying animals in the 1980s (Figure 11A) was indicative of a population that had 
declined from a more abundant state in previous decades, consistent with our model predictions 
(Figures S4). The preponderance of older juveniles and younger adults in the 2001-2010 period 
(Figure 11C) was indicative of elevated mortality across all age classes in the early 2000s 
(Figure 6). The higher representation of calves since 2011 (Figure 11D) likely reflected a decline 
in calf survival relative to other age classes over this period (Figure 6). The model-predicted 
trends in the age structure of both the living population and the death assemblage (Figures 10 
and 11) were generally consistent with observed data trends in the three relevant data sets (% 
calves/yearlings from photo surveys, % greys from skiff surveys, and the age/sex distribution of 
stranded carcasses), after correcting for detection biases against calves (determined by 
parameters ψ1 and ψ2; Table 3). One exception was that our model estimates of % 
calves/yearlings were slightly lower than observed values between 1990-2000; however, this 
was not surprising given that the model was constrained by inconsistent trends in age structure 
between the three data sets over this period. 
The ultimate outcome of all demographic processes is variation in abundance over time. Model-
estimated trends from 1980–2007 (Figure 12) were fairly consistent with the pattern of trends 
estimated by an earlier model (Mosnier et al. 2015), although we note that absolute abundance 
values in the current model were higher by approximately five hundred animals than the earlier 
model estimates due to an update in the aerial survey data used by both models (following a 
comprehensive re-analysis; see St-Pierre et al. 2023). Both models suggest a pattern of overall 
stability through 1999, followed by a sharp increase, then decrease, then stability in abundance 
by 2007. However, after 2007 the inferred trends diverge: the earlier model predicted a declining 
trend through 2012 (although with extremely wide CI), while the current model suggested an 
increasing trend through approximately 2018. This increasing trend stabilized by 2018, and 
there has been no net growth (or possibly a slight decline) between 2018 and 2022 (Figure 12). 
The increasing trend from 2010–2018 estimated by the current model was likely driven by 
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higher adult survival over this period (Figure 6), while the stabilization/decline at the end of the 
time series likely reflected the continuing decline in calf survival combined with an uptick in age-
independent mortality over the last few years (Figure 5). We note that the abundance trends 
estimated by our model appear consistent with the combined time series of photo and visual 
survey estimates, with model estimates effectively interpolating between the two data sets but 
adhering more closely to the photo surveys (Figure 12). This is expected given that the visual 
survey data had higher associated uncertainty estimates and thus less influence on estimated 
parameters (Figure S4). The estimated abundance for the final year of the time series (2022) 
was 1,850 (CI95 = 1,528 – 2,180). 

PROSPECTIVE ANALYSES: MANAGEMENT THRESHOLDS AND FUTURE 
SCENARIOS 
Based on an estimated Nmin value of 1,711 (the 20th percentile if the posterior distribution for 
estimated abundance in 2022), we calculated PBR as: 

 𝑃𝑃𝑃𝑃𝑃𝑃 = 0.5 ∙ 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 ∙ 𝐹𝐹𝑅𝑅 = 0.5 ∙ 0.04 ∙ 1,711 ∙ 0.1 = 3.4 25 

We used the model results to estimate the functional carrying capacity (K) under current 
conditions. The point estimate for K was 6,706, with CI95 = 4,309 – 10,435. This is substantially 
lower than the estimate of pre-harvest abundance (13,558, CI95 = 12,428 – 17,432), 
corresponding to the historical K. Based on the point estimate of current K we can infer values 
for other reference thresholds: MNPL = 4,024, PRL = 3,219, and LRL = 1,609. We used these 
thresholds to evaluate the status of the population as-of the most recent estimate, and its 
expected future status assuming continuation of recent (2010-2022) environmental conditions 
and patterns of stochasticity. The point estimate of abundance for 2022 falls below the PRL and 
above the LRL, although the lower limit of the CI95 falls below the LRL. Projecting the population 
forward 100 years suggests an 87% probability that the future population will be below MNPL (if 
current conditions persist) as well as an 78% probability it will fall below PRL, a 41% probability 
it will fall below LRL, and a 0.06% probability it will fall below QE. There was a 16% probability 
of the baseline scenario having a mean instantaneous growth rate of <-1% over the next 28 
years (Table 5). 
We repeated the above assessment for 6 different future projection scenarios (as defined in 
Table 4), to evaluate how worsening conditions and/or the mitigating effects of management 
actions might impact projected status of the population (Table 5, Figure S6). Because of the 
strong relationship between Gulf temperature and baseline hazards, we found that even a 10% 
additional increase in average Gulf temperatures over the next century (an increase of one-half 
degree C) could lead to a 26% reduction in projected abundance relative to the baseline 
scenario, with associated increases in the probabilities of falling below management thresholds 
(Figure S6 A). For reference, average Gulf temperatures over the period 2010-2022 have 
already increased by three quarters of a degree C relative to the average for 1970-2009. A 20% 
increase in Gulf temperatures (an increase of one degree C) would be expected to have even 
more dire consequences (a 44% reduction in projected abundance) and would increase quasi-
extinction probability to 1.4% (Figure S6 B). Conversely, if conservation efforts were able to 
reduce density-independent hazards (such as those associated with pollution impacts, toxic 
algal blooms or disease outbreaks) by 25%, this could increase projected abundance by 34% 
relative to the baseline scenario and reduce the probability of being below PRL to 23% (Figure 
S6 C). Similar though less dramatic improvements could be achieved by reducing 
dystocia/postpartum mortality (Table 5). 
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DISCUSSION 
The integrated model presented here builds upon the insights and methods of previous 
quantitative analyses of the SLE beluga population (e.g., Kingsley 1998, Hammill et al. 2007, 
Lesage et al. 2014, Michaud 2014, Mosnier et al. 2015, Lesage 2021, Williams et al. 2021). We 
relied heavily on those previous analyses to inform our model structure, assumptions, and 
parameterization. By integrating multiple data sets using Bayesian hierarchical modeling, we 
were able to increase the resolution of population structure in our process model, allowing for 
greater insights into how specific threats affect demographic processes and components of the 
population. In particular, by combining historical harvest records, abundance estimates from 
multiple survey types, cause of death and age-at-death data from the carcass record, and age 
structure data from multiple survey platforms, we were better able to infer temporal trends in 
stage-specific mortality, including effects of density-dependent and density-independent factors 
and environmental variables. Diverse sources of information helped constrain model parameters 
and accommodate specific biases inherent to various types of data, such as the detection bias 
associated with observing small calves (both visually and in the carcass record). The use of 
multiple data types to gain greater insights into demographic processes is of course the defining 
feature of integrated population models (Besbeas et al. 2005, Abadi et al. 2010, Rhodes et al. 
2011, Zipkin and Saunders 2018). While this feature has clear benefits, in some cases it can 
produce results that may challenge previous inferences based on individual data sets. This point 
is illustrated by the apparent model under-estimate of the proportion of calves/yearlings prior to 
2000, as inferred from photo-based survey data (Figure 10A). The relatively minor discrepancy 
between model estimates and photo-based estimates between 1990-1999 reflects the models 
“compromise” between higher values implied by the photo survey data and lower values inferred 
from contemporaneous carcass age distributions and skiff survey data on percent greys in the 
population (Figure 11, Figure 10B); however, the resulting inferences about age structure raise 
questions about an earlier assumption that the proportion of juveniles in the population 
experienced a sustained downwards shift after 1999 (Michaud 2014, Mosnier et al. 2015). This 
example demonstrates both the benefits and challenges inherent in the use of integrated 
models for conservation.  
Our current model is similar in structure to an earlier Bayesian model that used some of the 
same data sources (Mosnier et al. 2015). A cursory comparison of the trends predicted by the 
two models suggest substantial inconsistencies (e.g., compare Figure 12 from the current report 
to Figure 4 from Mosnier et al. 2015). However, closer examination of results shows that many 
of the key inferences are remarkably consistent between the two models. Most importantly, the 
absolute differences in abundance are entirely the result of the change in the magnitude of 
aerial survey estimates (based on data re-analysis), and do not reflect any intrinsic differences 
between model dynamics or projections. Moreover, the estimated trends in calf survival, 
pregnancy, and overall abundance were highly consistent between the two models through 
about 2007 (i.e., for all but the last 5 years of inference for the earlier model). The discrepancy 
in trends after 2007 is not at all surprising given the extended time series of survey data and the 
additional data sets (particularly carcass age structure data) that were available for fitting the 
current model but not the earlier one. 
Another similarity between the earlier model (Mosnier et al. 2015) and the current analysis is the 
use of the long time series of harvest records to inform hind-casting of trends to a historic period 
where other data are limited. Understanding this historic period is important both because the 
past dynamics set the stage for current dynamics, and also because it can provide insight into 
population potential under more “pristine” conditions (prior to the advent of modern pollutants, 
climate change and fisheries collapses). As with previous analyses (Reeves and Mitchell 1984, 
Hammill et al. 2007, Mosnier et al. 2015), our model results indicate that the magnitude of 
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harvests over many decades, combined with basic beluga life history, reproduction and 
survivorship schedules, are consistent with a much higher historical abundance and a dramatic 
decline over the late 19th and early 20th centuries (Figure S4). However, our model approach 
built on the previous analyses to explicitly incorporate and estimate density-dependent effects 
on calf survival and pregnancy rates, as well as the directional shifts in density-dependent and 
density independent hazards that must have occurred to explain the discrepancy between 
historic abundance and current trends. Making these phenomena explicit within the model 
(rather than just implicit assumptions, as was the case in the previous analyses), served to 
highlight the sensitivity of hind-cast estimates of abundance to uncertainties about the nature of 
variation in survival over the 20th century. As a result, our projections of historical abundance 
have a higher degree of uncertainty than previous estimates, which we believe is a realistic 
representation of the true uncertainty about past dynamics. Moreover, the magnitude of our 
historical mean abundance estimate (13,558 individuals) is higher than past estimates, 
reflecting both the updated analysis of aerial survey data (which shifted all abundance estimates 
upwards) and our more detailed and demographically rigorous treatment of age/sex differences 
in mortality and density-dependent effects. Given this high degree of uncertainty and new 
insights into past dynamics, we caution against continued use of previous estimates of historical 
K as recovery targets or management benchmarks. Nor do we recommend switching to our 
current estimate of historical abundance. Instead, we suggest alternative approaches that are 
more relevant to current dynamics and that recognize that the effective carrying capacity for 
SLE beluga in the current environment has fundamentally changed from historical levels, as 
discussed below. 
In addition to new insights about historical dynamics, our model results provide an updated 
picture of recent trends in survival and abundance. The previously reported increase in the 
volatility of survival rates (particularly calf survival) starting around 1999 (Mosnier et al. 2015) 
was also well supported by our model (see Figure 6). However, a new finding from our current 
analysis is that trends in calf survival rates and the survival rates of older animals began to 
diverge after 2010. Our results show that older juveniles and adults experienced an increase in 
survival rates starting around 2010 (Figure 6), reflecting a “stochastic” decrease in density-
independent hazards (Figure 5). While this shift was incorporated as a random effect in our 
model, it is reasonable to hypothesize that it reflects an observed reduction in gastrointestinal 
cancers in SLE beluga occurring at the same time and attributed to reduced exposure to 
environmental contaminants such as PAH and PCBs (Lair et al. 2016, Poirier et al. 2019). 
Regardless, increased survival of older animals appears to have contributed to an increasing 
trend in abundance between 2010 and 2018, contrary to previous inferences of population 
decline over that period. At the same time, calf survival rates showed the opposite pattern to 
older animals, with reduced survival (Figure 6) and increased density-dependent hazards 
(Figure 5) occurring after 2010, leading to a dramatic increase in the number of calves 
appearing in the carcass records (Figure 11). Pregnant females also experienced higher 
mortality during this period (Figure 6), as dystocia/peripartum hazards did not decline in parallel 
with baseline hazards, resulting in an increase in their representation in the carcass record as 
well (Figure 9). The continued decline in the survival of calves and pregnant females, combined 
with a more recent uptick in baseline hazards after 2018, appears to have reversed the 
increasing trend in abundance over the last few years of the time series (Figure 12). 
The Integrated Population Model presented here provides novel insights into key demographic 
processes for the SLE beluga, but there are also some important limitations and remaining 
challenges. Our process model currently combines multiple sources of mortality in to a single 
“baseline hazards” term; ideally these various mortality factors could be partitioned into separate 
hazards terms. Our model also does not explicitly allow for sudden catastrophic pulses of 
mortality, such as those associated with unusual mortality events (Lair et al. 2016, Lesage 
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2021). The high degree of uncertainty in many of the estimated parameters (and thus, by 
extension, in model projections) is a limitation that reduces the model’s utility for making precise 
inferences about status and trends. One clear source of this uncertainty is the substantial 
discrepancy between the two aerial survey data sets in terms of estimated abundance. The 
Bayesian MCMC algorithm automatically weights data contributions to overall likelihood based 
on variance (see Figure S4), thus helping to avoid spurious data points from exerting undue 
leverage on results; nonetheless, the large discrepancies are major contributors to overall 
model uncertainty and should be resolved if at all possible. Given the relatively small number of 
surveys, the model is also potentially sensitive to single surveys with lower variance estimates: 
for example, the 2019 visual and photo-based estimates may be exerting a fairly strong 
influence on estimated trends over the last decade.  
There are two other major contributors to uncertainty in our model results and predictions, each 
of which could potentially be addressed in differing ways:  
1. Uncertainty about the relative contributions of density-dependent vs. density-independent 

factors to increased mortality. The data used for model fitting in the current analyses could 
not resolve this question, and thus we relied on an assumed range of values to set a prior. 
Yet the different demographic implications of density-dependent vs. density independent 
mortality are substantial (Ohlberger et al. 2014), and this is perhaps the primary contributor 
to uncertainty in future projections. Also unclear is the degree to which Allee effects – 
factors causing a positive correlation between population density and individual fitness, and 
which may become important at low abundance for some social species (Angulo et al. 2018) 
– or inbreeding depression (Patenaude et al. 1994) have contributed to the failure of SLE 
beluga to recover, although we note that both of these factors would manifest 
demographically as either reduced survival or reduced fecundity at lower populations sizes, 
and thus are implicitly accounted for in our model. We believe that much of this uncertainty 
could be resolved in future analyses by incorporating more information on causes of death 
(i.e., from necropsies) and how they vary over time and between demographic groups. 
Incorporation of multiple causes of death into model structure as competing hazards would 
be straight forward, using the same approach we used in the current model for 
dystocia/postpartum hazards, and in many cases it would be clear from the data or expert 
opinion the degree to which specific mortality hazards were density-dependent (e.g., Tinker 
et al. 2021).  

2. Uncertainty about the actual mechanisms or external factors driving the variation in hazard 
rates. Our model evaluated several environmental variables as potential predictors of 
mortality (of which Gulf Temperature at 200 m was strongly significant), and also explicitly 
tracked dystocia/postpartum hazards. However, with the exception of those two factors (and 
harvest deaths historically), all other underlying factors responsible for fluctuations in 
mortality over the last two decades were not explicitly included and thus were effectively 
combined within the random effect terms. This was an appropriate solution given limited 
data availability, but it is not ideal for understanding process or evaluating specific 
management actions, and ultimately contributes to uncertainty about future population 
trends. A much better solution (though difficult) would be to identify and include in the model 
the relevant data for factors really driving mortality trends. This might include adding 
empirical data on causes of death (see above), as well as additional environmental 
covariates (e.g., various pollutant levels, more finely resolved prey data, etc.). As an 
example, the cessation in 1976 of PAH emissions and ban on PCBs in 1979 may be the 
causal factor for the observed reduction in gastrointestinal cancers in SLE beluga (Lair et al. 
2016, Poirier et al. 2019) that resulted in reduced hazards for adults after 2010 (Figure 6), 
but at present this remains a hypothesis only, as the relevant variables were not explicitly 
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included in the model. In the case of the significant relationship found between Gulf mean 
temperature and calf mortality, our model currently assumes a simple linear relationship 
between temperature and log hazard rate. We recognize that the mechanistic underpinnings 
of this temperature effect are probably mediated by prey dynamics, and thus likely to be 
highly non-linear and complex, but future work will be needed to elucidate these 
mechanisms.  

Even without having addressed the main sources of uncertainty discussed above, the results 
from our model can help inform management decisions and recovery targets. Past recovery 
targets for SLE beluga included achieving a 2% annual growth rate, an interim target of 1000 
mature individuals, and achieving a long-term population size of 7070 individuals, which was 
considered to be 70% of the estimated “pristine” value of K (DFO 2012). As stated above, we do 
not recommend continued use of earlier estimates of pristine K as a recovery target, both 
because our current analyses suggest that this value underestimates both the magnitude and 
uncertainty around historical abundance, and (more importantly) because pre-harvest 
abundance provides an unrealistic and no-longer-relevant recovery target (Williams et al. 2021). 
We use our model to estimate a functional, “current K” that represents the potential equilibrium 
abundance that could be achieved within the environment that SLE beluga now occupy. This 
current K estimate (6,706 individuals) is slightly lower than the previously targeted long-term 
population size of 7,070. We caution that the estimate of current K presented here is sensitive to 
our assumptions about the relative degree of density-dependence of emerging mortality factors, 
and future work to better understand these processes could result in more robust estimates of 
K. However, while the prospect of basing recovery targets on a current K estimate (as opposed 
to a historical K estimate) may prompt understandable resistance to the risk of “shifting 
baselines”, we point out the historical K estimate encompasses even more untested 
assumptions and uncertainties than the current K estimate, and thus in many respects 
represents an even more arbitrary basis for management. 
Based on the updated current K estimate, we provide corresponding estimated values of MNPL, 
PRL and LRL (Table 5). We suggest that maintaining population abundance above the revised 
LRL threshold with some level of confidence (e.g., 80% certainty) would provide a reasonable 
minimum management target. Other target recovery criteria might include some minimum 
probability that future projections do not significantly decline (e.g., 90% probability of exceeding 
a mean growth rate of -1% over a single generation time). The model-estimated abundance for 
2022 was still well below the estimated value of current K. Based on the range of variation in 
environmental conditions and unexplained hazards observed since 2010, there is a substantial 
probability that the population will remain below MNPL (87%) or PRL (78%) over the next 100 
years if current conditions persist (Table 5). Additional simulations could be used to explore the 
range of likely outcomes of management actions aimed at mitigating specific hazards, or 
accounting for the emergence of new hazards (e.g., emerging pollutants or climate driven 
changes in productivity), like the examples in Table 4 (and see Table 5, Figure S6). 
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TABLES 

Table 1. Demographic transitions for St Lawrence beluga model. The ID codes (column 1) correspond to 
the annotations associated with transition arrows shown in the loop diagram (Figure 1) and cell contents 
of the projection matrix (Figure 2). Adult females are divided into 3 classes corresponding to reproductive 
status: available for reproduction (AFav), pregnant (AFpr) and with dependent calf (AFwc). In the equations, 
“S” represents the probability of survival, “G” represents the probability of “growing” (advancing to the next 
age class), conditional upon survival, “P” represents the probability of becoming pregnant for females of 
status AFav, “Sn” represents the probability that newborn calves-of-the-year survive to the fall survey, and 
the index “i” identifies the age/sex/status class, or stage, corresponding to the row or column number of 
the population projection matrix (Figure S1) and can be cross referenced to the loop diagram (Figure 1).  

ID Description Equation 

a Survival/growth, juveniles (juv.) aged 0-3yr  𝑆𝑆𝑖𝑖, i = 1, 2, 3, 4 
b Survival/persistence (same stage), juvenile aged 4-7yr 𝑆𝑆𝑖𝑖 ⋅ (1 − 𝐺𝐺𝑖𝑖), i = 5 
c Survival/growth (to adult male), juvenile aged 4-7yr 0.5 ⋅ 𝑆𝑆𝑖𝑖 ⋅ 𝐺𝐺𝑖𝑖, i = 5 
d Survival/persistence (same stage), adult males  𝑆𝑆𝑖𝑖 ⋅ (1 − 𝐺𝐺𝑖𝑖), i = 30, 31, … 37 
e Survival/growth (to next stage), adult males 𝑆𝑆𝑖𝑖 ⋅ 𝐺𝐺𝑖𝑖, i = 30, 31, … 37 
f Survival/growth (to adult female), juvenile aged 4-7yr 0.5 ⋅ 𝑆𝑆𝑖𝑖 ⋅ 𝐺𝐺𝑖𝑖, i = 5 
g Survival/persistence, no pregnancy, AFav 𝑆𝑆𝑖𝑖 ⋅ (1 − 𝐺𝐺𝑖𝑖) ⋅ (1 − 𝑃𝑃𝑖𝑖), i = 6, 7, … 13 
h Survival/growth, no pregnancy, AFav 𝑆𝑆𝑖𝑖 ⋅ 𝐺𝐺𝑖𝑖 ⋅ (1 − 𝑃𝑃𝑖𝑖), i = 6, 7, … 13 
i Survival/persistence, become pregnant, AFav 𝑆𝑆𝑖𝑖 ⋅ (1 − 𝐺𝐺𝑖𝑖) ⋅ 𝑃𝑃𝑟𝑟𝑖𝑖, i = 6, 7, … 13 
j Survival/growth, become pregnant, AFav 𝑆𝑆𝑖𝑖 ⋅ 𝐺𝐺𝑖𝑖 ⋅ 𝑃𝑃𝑖𝑖, i = 6, 7, … 13 
k Survival/persistence, newborn calf dies, AFpr 𝑆𝑆𝑖𝑖 ⋅ (1 − 𝐺𝐺𝑖𝑖) ⋅ (1 − 𝑆𝑆𝑛𝑛), i = 14, 15, … 21 
l Survival/growth, newborn calf dies, AFpr 𝑆𝑆𝑖𝑖 ⋅ 𝐺𝐺𝑖𝑖 ⋅ (1 − 𝑆𝑆𝑛𝑛), i = 14, 15, … 21 
m Survival/persistence, newborn calf survives, AFpr 𝑆𝑆𝑖𝑖 ⋅ (1 − 𝐺𝐺𝑖𝑖) ⋅ 𝑆𝑆𝑛𝑛, i = 14, 15, … 21 
n Survival/growth, newborn calf survives, AFpr 𝑆𝑆𝑖𝑖 ⋅ 𝐺𝐺𝑖𝑖 ⋅ 𝑆𝑆𝑛𝑛, i = 14, 15, … 21 
o Survival/persistence, female with calf (AFwc) 𝑆𝑆𝑖𝑖 ⋅ (1 − 𝐺𝐺𝑖𝑖), i = 22, 23, … 29 
p Survival/growth, female with calf (AFwc) 𝑆𝑆𝑖𝑖 ⋅ 𝐺𝐺𝑖𝑖, i = 22, 23, … 29 
q Reproduction, pregnant female produces calf (age 0) 𝑆𝑆𝑖𝑖 ⋅ 𝑆𝑆𝑛𝑛, i = 14, 15, … 21 
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Table 2. Summary and descriptions of the parameters included in the model. 

Symbol Name Prior Description  
γ0   gamma_0 Half-Cauchy(0, 1) Baseline log hazards: determines adult survival in ideal conditions 

γ1 gamma_1 Half-Cauchy(0, 1) Log hazard ratio, early hazards (primarily affecting calves/juveniles) 

γ2   gamma_2 Half-Cauchy(0, 1) Log hazard ratio, late hazards (primarily affecting older animals) 

γ3 gamma_3 Cauchy(0, .5) Log hazard ratio, males relative to females 

γZ gamma_Z Cauchy(0, 1) Log-hazard ratio for Dystocia/postpartum mortality, pregnant females 

γH gamma_H Cauchy(0, 1) Log-hazard ratio for Harvest mortality (for adult animals: reduced for 
juveniles) 

δ delta Half-Cauchy(0, .1) Parameter determining shape of age-based adjustment function for 
early hazards (∆) 

ω omega Half-Cauchy(0, .1) Parameter determining shape of age-based adjustment function for 
late hazards (Ω) 

φ phi Half-Cauchy(0, .1) Effect of density-dependence (pre-harvest conditions) 

βj Beta_j Cauchy(0, 1) Effect of environmental variable j on mortality of calves/juveniles 

σD sigma_D Half-Cauchy(0, .5) Standard error, environmental stochasticity affecting calves/juveniles 

σA sigma_A Half-Cauchy(0, .5) Standard error, stochasticity in hazards affecting all ages 

σF sigma_F Half-Cauchy(0, .5) Standard error, stochasticity in dystocia/postpartum hazards 

σH sigma_H Half-Cauchy(0, .5) Standard error, annual variation in harvest hazards 

θ theta Half-Cauchy(0, .5) Log of proportional increase in density-dependent mortality effects 

α alpha Half-Cauchy(0, .5) Density-independent component of increased mortality 

η eta Normal(-1.7, 0.1) Parameter determining baseline probability an available female 
becomes pregnant 

ρ rho Beta(50, 50) Parameter determining proportional strength of density-dependent 
effects on pregnancy and dystocia hazards relative to effects on calf 
mortality 

ψ1 psi_1 Beta(1, 1) Bias adjustment parameter, proportion of calves detected in carcass 
record 

ψ2 psi_2 Beta(1, 1) Bias adjustment parameter, proportion of grey individuals on skiff 
surveys 

ν nu Half-Cauchy(0, 5) Precision parameter, beta-distributed proportion grey animals on skiff 
surveys 

Nt=0 N_initial Lognormal(9.3, 
.3) 

Abundance at the beginning of the study period (1865) 

Nt=T N_final NA (derived) Abundance at the end of the study period (2022) 
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Table 3. Summary of model fitting results: posterior distribution and model fitting statistics for base 
parameters and select derived parameters.  

Parameter Mean SD 2.75% Q 5% Q 50% Q 95% Q 97.5% Q SSeff R-hat 

γ0 3.2270 0.7078 1.7711 2.0013 3.2470 4.3642 4.5754 950.58 1.0164 

γ1 6.0743 0.7223 4.6785 4.9114 6.0572 7.3097 7.5488 960.23 1.0159 

γ2 4.8303 0.7778 3.4892 3.6581 4.7763 6.2352 6.5152 967.32 1.0187 

γ3 0.0643 0.0986 -0.1085 -0.0810 0.0529 0.2424 0.2865 3888.17 1.0029 

γZ 5.4792 0.2940 4.8480 4.9727 5.4975 5.9321 6.0033 1904.27 1.0083 

γH 6.0378 0.0695 5.9002 5.9217 6.0380 6.1532 6.1740 1659.13 1.0132 

δ 0.2731 0.1365 0.0602 0.0838 0.2560 0.5192 0.5913 1040.34 1.0162 

ω 0.1657 0.2083 0.0038 0.0078 0.0933 0.5893 0.7792 1821.00 1.0091 

φ 0.0686 0.0066 0.0564 0.0581 0.0684 0.0800 0.0824 3649.03 1.0041 

β1 0.3421 0.1633 0.0340 0.0796 0.3378 0.6159 0.6724 2517.37 1.0058 

σD 0.4688 0.1847 0.2129 0.2246 0.4421 0.8096 0.8827 1510.12 1.0124 

σA 1.0239 0.1821 0.6893 0.7418 1.0144 1.3413 1.4193 1558.76 1.0105 

σF 0.1908 0.1972 0.0337 0.0375 0.1220 0.6034 0.7938 2758.54 1.0056 

σH 1.5275 0.1172 1.3172 1.3485 1.5202 1.7332 1.7761 5467.80 1.0039 

θ 0.2344 0.2205 0.0204 0.0276 0.1570 0.7090 0.8477 1897.79 1.0060 

α 0.0489 0.0576 0.0032 0.0045 0.0282 0.1654 0.2165 1956.15 1.0063 

η -1.6971 0.0503 -1.7957 -1.7804 -1.6964 -1.6150 -1.5989 5650.10 1.0009 

ρ 0.5010 0.0501 0.4031 0.4173 0.5016 0.5818 0.5957 4941.40 1.0010 

ψ1 0.0814 0.0168 0.0512 0.0558 0.0801 0.1107 0.1181 1862.63 1.0080 

ψ2 0.9195 0.0423 0.8336 0.8469 0.9207 0.9867 0.9933 2002.87 1.0051 

ν 75.40 24.45 37.56 41.73 72.10 119.96 132.05 3193.08 1.0035 

Nt=0 13287 504.5 12395 12525 13252 14166 14326 4386.08 1.0035 

Nt=T 1850 166 1528 1582 1850 2127 2180 6565.03 1.0010 
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Table 4. Description of Scenarios evaluated using forward projections of the best-fit model, with 
modifications to parameters as described. All model projections were run for 100 years and replicated 
10000 times to capture parameter uncertainty and sampling variance. 

Scenario Description Explanation 

Scenario 0 Base model Project model with no management action or expected change in 
conditions: parameters drawn from estimated joint posterior distribution, 
and environmental variables and random effects drawn from observed 
distributions over most recent 12 years (2010-2022) 

Scenario 1 10% incr. Temp. Same as base, but Gulf water temperature increases by 10% over 100 
years (i.e., one half degree Celsius higher than 2010-2022 values) 

Scenario 2 20% incr. Temp. Same as base, but Gulf water temperature increases by 20% over 100 
years (i.e., one degree Celsius higher than 2010-2022 values) 

Scenario 3 25% reduced Base Hz. Same as base, but reduce baseline hazards (ΛB) by 25% 

Scenario 4 25% increased Base Hz. Same as base, but increase baseline hazards (ΛB) by 25% 

Scenario 5 25% reduced DyPP Hz. Same as base, but reduce dystocia/postpartum hazards (α) by 25% 

Scenario 6 25% increased DyPP Hz. Same as base, but increase dystocia/postpartum hazards (α) by 25% 
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Table 5. Summary of results from future simulations generated using Integrated Population Model for St. Lawrence Estuary beluga. Model 
projections were run for 100 years and replicated 10000 times to capture parameter uncertainty and sampling variance (refer to Table 4 for details 
of each simulation). The distributions of simulation results were then compared to target thresholds, including 60% K (MNPL) = 4,024, PRL = 
3,219, LRL = 1,609, and QE = 50 adult females. The probability that the mean instantaneous rate of growth (r) over a single generation (28 years) 
was expected to be greater than 1% or less than -1% is also shown. 

Scenario Description Mean N CI95_lo CI95_hi Min_N % 
Change 
vs Base 

Prob. 
>60%K 

Prob. 
>PRL 

Prob. 
>LRL 

Prob. 
<QE 

Prob.  
r > 1% 

Prob.  
r < -1% 

Historical K  Pre-harvest est. K 13,558 12,428 17,432 - - - - - - - - 
Current K  Model est. K 6,706 4,309 10,435 - - - - - - - - 
Scenario 0 Base model 2,285 338 6,289 1,235 - 0.1308 0.2230 0.5944 0.0006 0.181% 0.2592 
Scenario 1 10% incr. Temp. 1,687 155 5,503 1,043 -26.2 0.0710 0.1264 0.3918 0.0030 0.069% 0.2312 
Scenario 2 20% incr. Temp. 1,272 67 4,949 842 -44.3 0.0476 0.0830 0.2660 0.0144 -0.044% 0.2056 
Scenario 3 25% redc. Base Hz. 5,335 1,352 11,721 1,674 133.5 0.6418 0.7728 0.9582 0.0000 1.419% 0.6798 
Scenario 4 25% incr. Base Hz. 945 84 3,148 686 -58.6 0.0098 0.0224 0.1600 0.0098 -0.926% 0.0602 
Scenario 5 25% redc. DyPP Hz. 2,484 376 6,738 1,280 8.7 0.1618 0.2570 0.6450 0.0000 0.279% 0.286 

Scenario 6 25% incr. DyPP Hz. 2,099 306 5,861 1,191 -8.1 0.1022 0.1864 0.5380 0.0004 0.087% 0.2304 
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FIGURES 

 
Figure 1. Loop diagram showing demographic transitions for a population model of St. Lawrence Estuary beluga. Demographic stages are 
represented by circles (annotated by sequential stage numbers), where each stage is defined by a unique combination of age, sex, and 
reproductive status. We note that age classes are of variable duration, with the shading of circles indicating stage duration: light grey = 1yr, 
medium grey = 4 yr and dark grey = 8yr stage durations. Stages are arranged in columns (corresponding to age class) and rows (corresponding to 
age/sex groupings), with connecting arrows representing all possible transitions between stages. Solid arrows represent survival/growth transitions 
while dashed arrows represent reproductive contributions to the 0yr age class (=newborn calves). The lower-case letter annotations associated 
with arrows identify the type of transition and can be cross-referenced to the definitions in Table 2 (in the case of identical transitions repeated 
across age classes, only the first instance is labelled). 
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Figure 2. Parameter modifying functions that mediate the strength of specific hazards (based on age or 
time) used in an Integrated Population Model for St. Lawrence Estuary Beluga. 
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Figure 3. Estimated historical trends in the St Lawrence Beluga population generated from an integrated 
population model. Panel A shows 3 possible relationships between increased hazards and time (temporal 
function χ) associated with alternative values of ξ. Panel B shows estimated abundance values 
associated with alternative χ functions (dark lines = mean estimate, shaded ribbons = CI95), as well as 
associated observed estimates from photo surveys (black points) and visual surveys (red points). Panel C 
shows harvest mortality as estimated from the model (line = mean and shaded ribbon = CI95) and 
reported data (points).  

χ t

ξ value
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Figure 4. Plot of estimated annual survival rate as a function of age for St. Lawrence Estuary beluga. 
Survival rates are density-dependent and so are plotted for two different relative densities: 1) high 
density, at carrying capcity (K), and 2) at low density, when the populaiton is growing at the maximum 
growth rate (rmax). Mean survival under both conditions is plotted as a solid line, and 95% uncertainty 
bands (the credible intervals) are plotted as shaded bands.  
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Figure 5. Plots of the random effect terms for densty dependent base hazards (panel A) and density 
independent base hazards (panel B) over phase 2 of the study period, from an Integrated Model of St 
Lawrence beluga. The solid lines show the mean estmated value and the shaded bands show the 95% 
CI. The dashed horizontal line shows the mean value of 0: when the average is above this value there is 
higher than average unexplained mortality.  
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Figure 6. Plots of temporal variation in the estmated annual survival rates for 6 age/sex classes, from an 
Integrated Model of St Lawrence beluga. The solid lines show the mean estmated value and the shaded 
bands show the 95% CI.  
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Figure 7. Plot of temporal variation in the estmated pregnancy rate for available adult females, from an 
Integrated Model of St Lawrence beluga. The solid line shows the mean estmated value and the shaded 
band shows the 95% CI.  
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Figure 8. Plots of temporal variation in the estmated proportion of adult females in each of 2 reproductive 
states, from an Integrated Model of St Lawrence beluga. Panel A shows the prportion of adult females 
that are pregnat each year, and Panel B shows the Proportion of females accompanied by a dependent 
calf. The solid lines show the mean estmated value and the shaded bands show the 95% CI.  
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Figure 9. Plot of temporal variation in the estmated proportion of adult female deaths attributable to 
dystocia/postpartum hazards, from an Integrated Model of St Lawrence beluga. The solid line shows the 
mean estmated value each year and the shaded band shows the 95% CI as estimated by the model. The 
solid points represent observed data: the binomial proportions calculated from the ratio of the number of 
necropsied females with dystocia/postpartum as primary cause of death vs. the total number of adult 
females necropsied (these data were used for model fitting). The dashed line shows a simple 3-year 
running average smoother fit to the observed data, for comparison with rhe model estimated values.   
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Figure 10. Plots of temporal variation in the estmated percentage of the living populaiton composed of 
calves and yearlings (Panel A) and of grey-colored individuals (Panel B). For the estimates of % grey 
individuals, 0-age calves were excluded from the analysis. In each plot the solid lines show the mean 
estmated value and the shaded bands show the 95% CI. The points and error bars show the observed 
data correspondig to each estimated statistic: the percent of counts from the photo-based aerial suveys 
comprisd of calves and yearlings (Panel A) and the percent of grey individuals observed during skiff 
surveys (Panel B).   
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Figure 11. Bar plot showing the age/sex distributin of dead stranded animals for four different temporal 
periods. Age/sex classes are ordered along the horizontal axis by age (females on left and males on 
right), and the vertical axis shows the relative frequency of dead individuals within each class. The red 
bars show observed data (i.e. from counts of dead belugas collected each year, grouped by age/sex 
class) and the blue-green bars show estimated age/sex distribution of animals dying each year.   
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Figure 12. Plot of model estimated trends in abundance from an Integrated Population Model fit to the St. 
Lawrence Estuary beluga population. The solid line shows the mean abundance estimated by the model 
for each year, while the shaded band shows the uncertainty (95% CI) around that estimate. The points 
represent survey-based estimates of abundance from aerial photo-based surveys (black points) and 
aerial visual surveys (red points), and the associated error bars represent the 95% confidence intervals 
around each point estimate, calculated from the total variance asssociated wth each survey.  
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APPENDIX 1. STRANDED CARCASS DATA USED FOR FITTING THE 
INTEGRATED POPULATION MODEL 

Table S 1. Counts of female carcases grouped by year and age category. 
Year 0yr 1yr 2yr 3yr 4-

7yr 
8-
12yr 

13-
15yr 

16-
23yr 

24-
31yr 

32-
39yr 

40-
47yr 

48-
55yr 

>56yr 

1983 0 0 0 0 0 0 0 0 0 0 0 1 1 
1984 0 0 0 1 0 0 0 0 0 2 2 0 0 
1985 0 0 0 0 0 0 0 1 0 0 1 1 0 
1986 0 0 0 1 0 0 0 0 1 1 1 0 0 
1987 0 0 0 0 1 0 0 1 0 3 0 0 0 
1989 0 0 1 0 0 0 0 0 0 1 7 4 0 
1990 0 0 0 0 0 0 0 0 3 1 2 2 0 
1993 0 0 0 0 0 1 1 0 0 0 1 3 1 
1994 0 0 0 0 0 0 1 1 1 0 0 1 0 
1997 0 0 1 0 0 0 0 0 0 1 1 0 3 
1998 0 0 0 0 1 0 0 1 0 0 1 0 2 
2001 0 0 0 0 0 0 2 0 0 0 0 1 1 
2002 0 0 0 0 0 2 0 0 1 0 0 0 1 
2005 0 0 0 0 1 0 0 0 0 1 0 2 0 
2006 0 0 0 0 2 1 1 1 0 1 1 0 0 
2009 0 0 0 0 0 1 1 1 0 0 0 1 0 
1988 1 0 0 0 0 1 0 0 0 0 3 0 1 
1991 1 0 0 0 0 0 0 0 0 2 1 1 0 
1992 1 0 0 0 0 0 0 0 0 0 1 1 0 
1995 1 0 0 1 0 0 0 0 0 0 2 2 0 
1996 1 0 0 0 0 1 0 0 0 3 0 0 1 
2000 1 0 0 0 0 2 0 1 0 3 0 1 0 
2003 1 0 0 0 0 0 0 0 0 0 2 0 1 
2004 1 0 0 0 0 1 1 0 2 0 1 2 2 
2007 1 0 0 0 0 0 0 1 1 2 1 2 0 
2013 1 1 0 1 1 0 0 0 2 0 2 0 0 
2018 1 0 0 0 0 0 0 1 0 1 3 0 0 
2019 1 0 0 0 1 0 0 2 0 1 0 1 0 
2022 1 0 0 0 0 0 0 0 0 1 2 1 0 
1999 2 0 0 0 0 0 0 0 1 1 0 1 0 
2010 2 1 1 0 1 0 0 1 2 0 4 1 0 
2011 2 0 0 0 0 0 1 0 1 1 1 0 2 
2014 2 0 0 0 0 1 0 0 0 2 0 0 0 
2015 2 0 0 0 0 0 0 2 0 2 0 0 0 
2017 2 0 0 0 0 1 1 1 0 0 1 1 0 
2021 2 0 0 0 0 1 0 2 1 1 0 0 1 
2008 5 0 0 0 1 1 0 1 1 3 1 2 1 
2016 5 0 0 1 0 0 2 2 0 2 0 0 0 
2020 5 0 0 0 0 0 0 0 2 1 0 0 2 
2012 7 0 0 0 0 0 1 2 1 0 0 0 0  
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Table S 2. Counts of male carcases grouped by year and age category. 
Year 0yr 1yr 2yr 3yr 4-

7yr 
8-
12yr 

13-
15yr 

16-
23yr 

24-
31yr 

32-
39yr 

40-
47yr 

48-
55yr 

>56yr 

1983 2 0 0 0 0 0 0 1 0 1 0 0 1 
1984 0 0 0 2 0 0 0 0 1 1 0 2 0 
1985 0 0 0 0 0 1 0 0 0 1 6 0 0 
1986 1 0 0 0 0 0 0 1 0 0 3 0 0 
1987 0 0 0 0 0 0 0 0 1 1 1 1 0 
1989 1 0 0 0 1 0 0 0 0 1 1 2 0 
1990 1 0 0 0 0 0 0 1 1 0 3 0 1 
1993 0 0 0 0 0 0 0 0 0 1 3 0 1 
1994 2 0 0 0 0 1 0 1 1 0 1 2 0 
1997 0 0 0 1 1 0 0 0 2 0 0 3 0 
1998 0 0 0 0 1 1 0 2 0 1 3 0 1 
2001 0 0 0 0 0 0 0 3 0 0 0 3 2 
2002 1 1 0 1 0 0 0 0 0 0 2 2 0 
2005 0 0 0 0 0 0 0 1 0 0 1 1 0 
2006 1 0 0 0 0 0 1 1 0 1 0 3 0 
2009 0 0 1 0 0 0 0 0 1 1 1 2 0 
1988 1 0 0 0 0 0 0 0 2 3 2 1 0 
1991 0 0 0 0 1 0 0 1 0 1 0 0 0 
1992 0 0 0 0 1 0 0 0 0 0 0 2 1 
1995 1 0 0 0 0 0 0 2 1 0 1 2 2 
1996 1 0 1 0 0 0 0 0 1 1 0 1 0 
2000 0 0 1 1 0 0 1 0 1 1 0 3 1 
2003 0 0 0 0 0 0 0 0 1 3 0 1 1 
2004 0 0 0 0 0 1 0 0 0 0 0 2 0 
2007 1 1 0 0 0 0 0 1 1 0 0 1 1 
2013 1 0 0 0 0 2 1 1 1 0 2 0 0 
2018 1 1 0 0 0 0 0 0 1 0 0 1 0 
2019 3 0 0 0 0 0 0 0 0 0 0 1 0 
2022 2 1 1 0 0 0 0 0 0 0 0 0 0 
1999 5 1 0 0 0 0 0 1 0 0 1 1 0 
2010 3 1 0 0 0 1 0 1 0 0 1 1 1 
2011 3 0 0 0 0 0 0 0 0 0 0 1 0 
2014 5 0 0 0 1 0 0 0 0 1 1 0 0 
2015 1 0 0 0 0 0 0 0 0 1 0 0 0 
2017 3 0 1 0 0 0 0 0 2 1 0 0 0 
2021 2 0 0 0 1 1 0 0 1 0 0 0 0 
2008 1 0 1 0 0 0 0 0 0 0 0 1 0 
2016 0 0 0 0 0 0 0 1 0 0 0 1 1 
2020 2 0 1 0 1 0 0 0 0 0 1 1 0 
2012 2 0 0 0 0 0 0 0 2 1 0 0 0 
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APPENDIX 2. DATA ON PROPORTION OF GREY INDIVIDUALS FROM SKIFF 
SURVEYS 

Table S 3. Estimates based on multiple skiff surveys per year of the mean proportion of grey individuals in 
the population, and the associated standard error. 

Year Proportion grey Proportion grey SE 

1989 0.2489822 0.02888375 
1990 0.3185342 0.03164528 
1991 0.2478776 0.0293515 
1992 0.2788954 0.04699021 
1993 0.3207036 0.03573639 
1994 0.2381289 0.02754265 
1995 0.2346102 0.02969697 
1996 0.3217839 0.03864932 
1997 0.2571971 0.03280613 
1998 0.2504622 0.02878592 
1999 0.3006393 0.03919418 
2000 0.2341548 0.03057708 
2001 0.3686939 0.05544695 
2002 0.2981512 0.04298003 
2003 0.2716939 0.03593495 
2004 0.3491584 0.03784508 
2005 0.4145559 0.0442584 
2006 0.2836973 0.03726471 
2007 0.3774896 0.0555679 
2008 0.3477057 0.06313177 
2009 0.329694 0.04028457 
2010 0.3571105 0.04307053 
2011 0.3122695 0.03623413 
2012 0.2709951 0.04772748 
2013 0.3325997 0.048287 
2014 0.2569434 0.02641769 
2015 0.3127364 0.04631133 
2016 0.2940015 0.04397167 
2017 0.3369856 0.0367393 
2018 0.3171821 0.03413617 
2019 0.3196218 0.04549226 
2020 0.3711851 0.04082216 
2021 0.2884716 0.03516331 
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APPENDIX 3. SUPPLEMENTARY FIGURES 
(next pages) 
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Figure S 1. Stage-based projection matrix for St Lawrence Estuary beluga model. Each cell represents the probability of transition from the stage 
in column i to the stage in row j. Letters symbols represent the equations that describe those probabilities in terms of vital rates and can be cross 
referenced to the values in Table 1. 
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Figure S 2. Comparison of prior distributions (light grey) to posterior distributions (dark grey) for the base parameters of an integrated population 
model of St Lawrence Beluga 
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Figure S3 A) 

 
Figure S3 B) 
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Figure S3 C) 

 
Figure S3 D) 
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Figure S3 E) 

 
Figure S 3. Posterior predictive plots for an integrated population model of St Lawrence Estuary Beluga. 
Panels A – E show comparisons of the distributions of observed data (dark blue lines) vs out-of-sample 
predicted values (light blue lines or bars) generated by the model.  
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Figure S 4. Estimated influence of various data sources on the model posterior, based on contributions to 
total model likelihood. Panel A) shows the cumulative effect of data sources (reflecting both the per-data-
point influence and the number of data points per data source), while panel B) shows the average 
influence for each data point for the specified data source. 
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Figure S 5. Postrior distributions for the estimated effects of 4 environmental variables on the base 
hazard rate for calves, as estimated from an Integrated Population model fit to St. Lawrence Esturary 
beluga. Units on the horizontal axis represent log hazard ratio vaues, and the vertical axis shows the 
relative probability of a given value. The shaded areas under each curve designate 80% of the distribution 
(the 80% credible interval, or CI): if the shaded area does not overlap the 0 line then the effect is 
considered to be significant. Only the effect of Gulf mean temperature was signifant, although Ice Volume 
variable was only marginally nonsignificant. A 5th variable, mean Caplin biomass, is not show here but 
was also non significant with mean posterior centered on 0 (identical to posterior for Herring_SSB). 
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Figure S 6. Results from model projections of future population dynamics for St. Lawrence Estuary 
beluga. Plots A – F show simulated population dynamics for alternative scenarios of future conditions or 
management effects (light red) as compared to baseline scenario (light blue): the alternate scenario is 
described in the plot title (refer to Table 4 for details). Dashed lines show possible management 
thresholds: MNPL (green), PRL (purple), LRL (orange) and Quasi-extinction threshold (QE; red). Solid 
lines show mean of iterated simulations and shaded bands show the inter-quartile range. 
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