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ABSTRACT 
Revisions to Canada’s Fisheries Act have resulted in a need for a single limit reference point 
(LRP) and metric of stock status for major fish stocks prescribed by regulation. The Science 
Sector has identified a need to provide guidance to estimate LRPs and stock status for 
scenarios that presently do not meet the “one stock, one LRP, one status” requirement, and a 
more general need for guidance on methods to estimate and report both LRP and stock status 
across a spectrum of data and knowledge availability and quality. To inform this guidance, we 
provide a review of literature and approaches to defining LRPs, describe technical 
considerations for choosing from various approaches for estimating LRPs and indicators of 
stock status across the data spectrum, and provide technical considerations and guidance for 
estimating a single LRP and metric of stock status in cases where either a single assessment 
model or multiple models are applied. We review methods to estimate BMSY and B0; theoretical, 
historical, and empirical proxies for these indicators; and some generic “rules of thumb” for other 
common LRPs used in Canada. We also provide examples of less common indicators, LRPs, 
and stock status estimation methods that may be applicable across the data spectrum, and 
review approaches with which to address volatility in stock status indicators. We provide 
operational and technical considerations as a basis from which to select or reject various 
candidate indicators and LRPs as well as options and considerations for reporting a single 
status per stock in an assessment or stock status update, and across advice and management 
frameworks. 
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1. INTRODUCTION 

1.1. CONTEXT 
Canada’s Fisheries Act (R.S.C., 1985, c. F-14) was revised on June 21, 2019, resulting in new 
Considerations and Fish Stocks Provisions (FSPs) that relate to the management of fisheries. 
The requirements of the FSPs are being interpreted through the lens of the Fisheries and 
Oceans Canada’s (DFO) Sustainable Fisheries Framework suite of policies, in particular the 
Fishery decision-making framework incorporating the precautionary approach (PA Policy, DFO 
2009). The FSPs came into force in April 2022 with the prescription of the first batch of major 
fish stocks and associated regulations for rebuilding plan requirements. 
The FSPs identify objectives for conservation in light of sustainable use. These include 
objectives to maintain stocks at or above the “level necessary to promote sustainability of the 
stock”, s 6.1(1); or “above [the limit reference point or LRP]”, s 6.1(2); “rebuild [stocks above 
LRP]”, s 6.2(1); as well as “minimizing further [stock] decline” and mitigating “adverse socio-
economic or cultural impacts”, s 6.2(2)). The FSPs also reference required management actions 
(setting LRPs, implementing measures, and developing and implementing rebuilding plans). 
The FSPs are understood to require advice pertaining to: 

• A single LRP for each candidate or prescribed major fish stock (the “one-stock-one-LRP” 
requirement); 

• A single stock status relative to the LRP (part of the objective for s 6.1(2) and when 
breached, a rebuilding plan is triggered under s 6.2); and 

• Supporting the prescription of major fish stocks that are of one species, can be defined 
geographically or by management area, and for which there is a single LRP/stock status. 

In Canada, the LRP is intended to help operationalize an objective to avoid serious harm to fish 
stocks, a central objective of the PA Policy (DFO 2009). In the PA Policy, the LRP serves 
multiple roles. As a limit, it is part of fisheries management objectives. As part of stock status 
metrics, the LRP defines the Critical Zone. The LRP further serves as an inflection point for the 
removal reference (limit fishing mortality rate), and often as an operational control point for 
management measures. Lastly, the LRP now has a legislated role in triggering the need for 
rebuilding plans when breached. Fisheries managers have a leading role for most aspects of 
fisheries management objectives and therefore the PA Policy (including most reference points, 
risk tolerance and timeframes over which objectives are evaluated, and measures to achieve 
the objectives), the responsibility for setting LRPs (and the estimation of stock status) lies with 
DFO’s Ecosystems and Oceans Science Sector (Science Sector; DFO 2009). 

1.2. GOALS OF THIS PAPER 
This research document is the second of a series of three working papers presented during the 
June 21-29, 2022 National Advisory Process meeting entitled “Science Advice on Guidance for 
Limit Reference Points under the Fish Stocks Provisions” (DFO 2023a). The first working paper 
contains a review of Canadian approaches to operationalizing LRPs and stock status, and a 
literature review of existing Canadian and international guidance for LRP and stock status 
estimation. A consolidated definition of serious harm is provided in the first paper and a set of 
six best-practice principles concerning indicators, LRPs and stock status metrics are identified 

https://laws-lois.justice.gc.ca/eng/acts/f-14/
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(Marentette et al. unpublished working paper)1. The third paper provides guidance and 
recommendations on identifying a single LRP and status where there is a complex spatial and 
temporal relationship between stock structure and associated biological processes, stock and 
fishery monitoring data, and management measures applied to the stock (Ings et al. 
unpublished working paper) 2. To support the process of choosing LRPs and estimating stock 
status, Marentette et al. (unpublished working paper) suggested technical guidance should 
focus on: 

• Different methods with which to estimate biomass at maximum sustainable yield (BMSY) and 
unfished biomass (B0) suitable across the data spectrum; 

• Theoretical, historical, and empirical proxies for model-based indicators and for BMSY and B0 
or carrying capacity (K); 

• Generic “rules of thumb” for other common LRPs used in Canada (e.g., proportions of B0 or 
K, the minimum biomass that produced the recruitment that lead to stock recovery (Brecover), 
recruitment thresholds); 

• Examples of less common indicators, LRPs, and stock status estimation methods that may 
be applicable across the data spectrum (including composites, “traffic light” approaches, and 
expert judgement); 

• Different approaches with which to address volatility in stock status indicators; 

• Use of basic life history information and meta-analyses (including extrapolation from other 
stocks) to inform LRP selection; 

• Operational and technical considerations as a basis from which to select or reject various 
candidate indicators and LRPs, e.g., 
o pros and cons, 
o diagnostics to evaluate reliability of estimation, including sensitivity analyses, and 
o considerations for evaluating the plausibility of candidate LRPs given the history of the 

stock, past evidence of serious harm, other biological information or analogous stocks; 

• Options and considerations for reporting a single status per stock, within and between 
assessments, and across advice and management frameworks. 

These needs were addressed in this paper by: 

• Providing a review of literature and approaches to defining LRPs for practitioners; 

• Describing technical considerations for choosing from among various approaches for 
estimating LRPs and indicators of stock status across the data spectrum, including 
situations of model uncertainty and parameter uncertainty; and 

• Providing technical considerations and guidance for estimating a single LRP and metric of 
stock status in cases where either a single assessment model or multiple models are 
applied. 

 

1 Marentette, J.R., Barrett, T.J., Cogliati, K.M., Ings, D.W., Ladell, J., and Thiess, M.E. Operationalizing 
thresholds to serious harm: existing guidance and contemporary Canadian practices. Unpublished 
working paper. 

2 Ings, D.W., Marentette, J.R., Thiess, M.E., and Barrett T.J. Considerations for stock structure and 
management scale under the Fish Stocks Provisions. Unpublished working paper. 
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To achieve these goals, we reviewed multiple methods of estimating LRPs, identified how the 
methods relate to serious harm, and described the relationships among the different methods 
based on the assumed resilience of the stock. The selection of indicators of stock status and 
selection of an LRP will be stock-specific in most cases. Therefore, this paper offers general 
guidance to support practitioners, instead of prescribed guidance for which there would be 
numerous exceptions. This general guidance is intended to help practitioners identify methods 
that are consistent with international best practices and consistent with the best practice 
principles for indicators, LRPs, and stock status defined by Marentette et al. (unpublished 
working paper). 

2. SELECTION OF LIMIT REFERENCE POINTS 
LRPs in Canadian policy are typically defined in terms of biomass, particularly spawning stock 
biomass (SSB), abundance, or a proxy for these, but other metrics that represent the 
reproductive capacity (e.g., total egg production) of the stock may be used. The indicator(s) 
chosen should be the one(s) that best represents the reproductive capacity of the stock, 
depending on the type of analytical assessment (e.g., age-structured vs. surplus production 
model) and data availability. The biomass indicator in this paper could therefore represent SSB, 
female SSB, total biomass, or vulnerable biomass. 
LRPs are commonly defined in terms of a proportion of unfished biomass (B0) or biomass at 
maximum sustainable yield (BMSY) or a proxy for these reference points. Generic policy 
guidance on LRPs in terms of a proportion of B0 and/or BMSY is provided by several jurisdictions, 
in the absence of which it is generally not clear which reference point and what proportion 
should be used. The relationship between B0, BMSY, and equilibrium biomass at FX%SPR (fishing 
mortality rate that results in a spawning potential ratio of X%) depends strongly on the resilience 
of the stock or steepness (h) of the stock-recruitment relationship (SRR) (Section 2.1.4) and it is 
important to consider this relationship when a proportion of one reference point is used as a 
proxy for the other. Understanding how these metrics of stock status are influenced by model 
assumptions and life-history characteristics can help guide identification of a candidate LRP. An 
evaluation of multiple candidate LRPs estimated using different metrics can provide confidence 
in selecting a metric when estimates agree, but can also identify potential risks when metrics 
don’t agree. For example, 0.4 BMSY could occur at a very low depletion (biomass relative to B0) 
where other forms of serious harm could occur. The pros and cons of different candidate LRPs 
are listed in Table 1 and some reasons why various methods have been chosen in Canada are 
provided in Marentette et al. (unpublished working paper). 
Some alternative LRPs that are not listed in Table 1 include unique LRPs for semelparous 
stocks and Atlantic salmon stocks (Sections 2.8 and 2.10) and alternative approaches to 
estimating stock status using a traffic light approach (Section 2.7) or expert judgement (Section 
2.12). The traffic light approach has the advantage of including multiple indicators and has been 
used in a framework consistent with the PA Policy for Pacific salmon (DFO 2022a). Expert 
judgement may be used for determining stock status; however, it may be difficult in some 
situations to formally define the LRP and quantify uncertainty. Stock status determination by 
expert judgement can be biased based on the level of expertise of the experts. A weight-of-
evidence approach based on expert judgement can be used to arrive at a status determination 
using multiple indicators based on cumulative weight-of-evidence, in a transparent and 
reproducible way. 
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Table 1. Candidate LRPs, their link(s) to serious harm, and some pros and cons. h = steepness of stock-
recruitment relationship (SRR). M = natural mortality rate. FMSY = fishing mortality rate at MSY. FX%SPR = 
fishing mortality rate at X% spawning potential ratio. Rmax = maximum recruitment. Brep = long-term 
equilibrium SSB that results from fishing at the replacement fishing mortality rate (Frep). Bloss = lowest 
observed biomass. 

LRP: Proportion of BMSY (Section 2.1) 

Link(s) to 
Serious Harm 

Loss of surplus production; Proxy for relative depletion (proportion of B0) and thus for 
recruitment overfishing. 

Pros DFO provisional PA Policy default LRP (0.4 BMSY). 

Cons May be difficult to estimate; Sensitive to uncertainty in selectivity, M, and h of the 
SRR; May correspond to very low biomass where stock dynamics may be less well 
known (e.g., validity of compensatory assumptions) or other sources of serious harm 
may become important (e.g., Allee effects). 

LRP: Proportion of B0 (Section 2.1) 

Link(s) to 
Serious Harm 

Proxy for recruitment overfishing; Proxy for Allee effects, Proportions of B0 may be a 
proxy for BMSY. 

Pros B0 may be more reliably estimated than BMSY. 

Cons No explicit DFO PA Policy provisional default for the proportion to choose; B0 may be 
difficult to estimate; Sensitive to uncertainty in model assumptions (e.g., M); If used 
as a proxy for 0.4 BMSY, the ratio BMSY / B0 depends strongly on the productivity of the 
stock (e.g., h, which is often poorly estimated), as well as the relationship between 
maturity-at-age and fishery selectivity-at-age. 

LRP: Proportion of Theoretical Proxies for BMSY (Section 2.2) 

Link(s) to 
Serious Harm 

Loss of reproductive potential; Proxy for BMSY. 

Pros Requires fewer assumptions and data (e.g., no SRR); FX%SPR (with X = 40 commonly 
used) and others can be a proxy for FMSY, and therefore can be used to estimate a 
proxy for BMSY. 

Cons X depends on stock productivity; Once X is selected, FX%SPR is sensitive to M; A per-
recruit estimate does not account for lower recruitment at low biomass; An estimate 
of equilibrium recruitment is needed to estimate the equilibrium biomass at FX%SPR. 

LRP: Biomass at X% Rmax or other thresholds to impaired recruitment (Section 2.3) 

Link(s) to 
Serious Harm 

Loss of recruitment; Rmax estimated from a Ricker SRR or Brep (see Section 2.3) is 
sometimes used as a proxy for BMSY. 

Pros Easy to interpret; Stock specific thresholds are possible. 

Cons Dependent on SRR (including data on recruitment at low stock sizes); May occur at a 
very low level of depletion for stocks with high h. 
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Table 1 (continued). Candidate LRPs, their link(s) to serious harm, and some pros and cons. 

LRP: Brecover (including Bloss, etc.) (Section 2.4) 

Link(s) to 
Serious Harm 

Proxy for recruitment overfishing, reflecting high uncertainty in population dynamics 
at low stock sizes. 

Pros Easy to understand and communicate; Not influenced as strongly by model 
assumptions; Recommended for stocks with occasional large year classes 
(spasmodic recruitment). 

Cons Values may vary widely among stocks (they may not “scale” with stock size or life 
history); Assumption of possible recovery in future depends on prevailing conditions 
in relation to the reference period; Recovery must also be defined and no consistent 
practice has emerged for what constitutes recovery. Variation in practices for 
selecting year(s) used in defining these reference points. 

LRP: Historical Proxies for BMSY or B0 (Appendix B) 

Link(s) to 
Serious Harm 

Often employed as proxies for other reference points such as BMSY or B0, although 
LRPs based on other thresholds to serious harm may be considered (e.g., agreed-
upon undesirable states to avoid). 

Pros Easy to understand and communicate; Can be applied to data-limited stocks; A 
provisional proxy for BMSY is 50% of the maximum population size as suggested by 
the PA Policy. 

Cons Relies on assumptions of the relationship between the indicator and stock attribute it 
represents; Wide variation in practice for selecting historical time periods, and thus 
may be variation in suitability for approximating BMSY or B0. 

LRP: Empirical LRPs (Appendix B) 

Link(s) to 
Serious Harm 

Often employed as proxies for other reference points such as BMSY, B0, or Brecover, 
although other thresholds to serious harm may be considered (e.g., agreed-upon 
undesirable states to avoid). 

Pros Easy to understand and communicate; Can be applied to data-limited stocks; Based 
on observable quantities that do not rely on model assumptions. 

Cons May be harder to link to desired management outcomes in some cases; Relies on 
assumptions of the relationship between the indicator and stock attribute it 
represents. 
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2.1. LRPS BASED ON B0 AND BMSY 

2.1.1. Thresholds of Relative Depletion (Proportions of B0) 
B0 can be defined as the mean long-term equilibrium biomass of the stock in the absence of 
fishing. In general, B0 is assumed to be stationary over time (i.e., stock and prevailing 
environmental conditions are assumed stable over time). In some cases these assumptions 
may be violated (see Section 5.1). B0 can also represent the theoretical carrying capacity (K) of 
the stock in surplus production models (e.g., Schaefer 1954; Section A.2). To avoid 
misinterpretation, it is important to define B0 and the assumptions used to define it (e.g., the time 
period over it reflects the equilibrium biomass). 
A proportion of B0 (e.g., 0.2 B0) is commonly adopted as an LRP, which may provide a 
reasonable proxy threshold for recruitment overfishing for productive stocks because there is 
often at least some reduction in per-capita recruitment below this threshold (Myers et al. 1994; 
Sainsbury 2008). A threshold of 0.2 B0 is the default recommendation and minimum acceptable 
value for an LRP in the absence of a stock-specific choice under Australia’s Commonwealth 
Fisheries Harvest Strategy Policy (DAWR 2018). Similarly, it is one default for the soft limit (a 
trigger for rebuilding plans) in New Zealand’s Harvest Strategy (MF 2008). For less productive 
stocks, the corresponding threshold is often recommended to be higher, e.g., 0.3 B0 (Musick 
1999, Mace et al. 2002, Sainsbury 2008; Stenson et al. 2012; DAWR 2018). Sainsbury (2008) 
further recommends 0.3 B0 as a best practice LRP for low productivity stocks unless there are 
high fluctuations in productivity, in which case 0.2 of the median long-term Bunfished may be more 
appropriate, where he defines Bunfished as a time-varying proxy for B0 that does not assume 
equilibrium conditions. 

2.1.2. Thresholds for Impaired Production (Proportions of BMSY) 
The concept of MSY has been the global standard for sustainable fisheries for decades (Mace 
2001; Punt and Smith 2001; Cadrin 2012) and is included in many international agreements 
(e.g., the Straddling Fish Stocks and Highly Migratory Fish Stocks Agreement, UN 1995; the 
European Union Common Fisheries Policy, EU 2013) and national laws (e.g., US Magnuson-
Stevens Fishery Conservation and Management Act, eCFR 2021). Theoretically, MSY is the 
maximum long-term yield that the stock can produce, given constant life history and selectivity 
parameters. MSY occurs at an intermediate level of fishing mortality (F, ranging between F = 0 
and the F that would cause extirpation of the stock) and at a biomass below K or B0. 
Conceptually, with increasing long-term F, the abundance and mean age of a population 
decreases and the per-capita growth rate of the population increases as a result of reduced 
competition or similar effects as the biomass reduces from K to BMSY (Sainsbury 2008). The 
increase in the per-capita growth rate (e.g., due to increased growth, survival, and reproductive 
success at lower population density) results in a surplus of biomass (i.e., surplus production) 
that can be harvested. Surplus production, like recruitment, is another direct measure of stock 
productivity (NAFO 2004) and persistent states of low or negative surplus production can be 
evidence of serious harm (Kronlund et al. 2018). 
There appear to be at least three interpretations of what LRPs based on proportions of BMSY are 
intended to represent: 
1. a biomass level associated with an unacceptable reduction in surplus production; 
2. a biomass level associated with less desirable yields; or 
3. a proportion of BMSY as a proxy for another proportion of B0 and/or a proxy for recruitment 

overfishing. 
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LRPs based on proportions of BMSY are common in Canada and elsewhere (Sainsbury 2008; 
DFO 2016, Marentette et al. unpublished working paper), familiar to managers and fishery 
interests (McKown et al. 2008), and often given in association with policy guidance on 
provisional default values (e.g., 0.4 BMSY in Canada; DFO 2009). Some jurisdictions use 0.3 
BMSY as a default LRP for stocks where production is estimated (NAFO 2004, ICES 2021a), 
since that is the biomass associated with a 50% reduction in maximum surplus production, 
under the assumptions of a Schaefer (1954) production model (Figure 1). A 50% reduction in 
surplus production could arguably serve as a literal interpretation of impaired productivity. Limits 
of 0.5 BMSY are often used in the US, but under legislative and policy frameworks where 
undesirable stock states are associated with an unacceptable reduction in ability to obtain 
optimum yield rather than serious harm to the stock (NAFO 2004). Loss of yield alone would not 
be consistent with an objective to avoid serious harm to the stock (Shelton and Rice 2002), but 
that does not necessarily exclude 0.5 BMSY from (also) being consistent with a threshold to 
serious harm. In fact, some have noted that 0.5 BMSY can occur at very low biomass, for 
example, 0.175 B0 for species considered to be highly productive (Sainsbury 2008). Even for 
highly productive stocks, such biomass levels may be inconsistent with objectives of maintaining 
resilience and avoiding loss of genetic diversity (Sainsbury 2008) which can also be considered 
indicative of serious harm. 
MSY-based reference points can be estimated in several ways (Punt et al. 2014; Appendix A). 
The simplest method of estimating MSY, and associated BMSY and FMSY, is to use a surplus 
production model such as the Schaefer model (Schaefer 1954; Figure 1; Section A.2). The 
minimum requirement for fitting a surplus production model is a time series of catch and an 
index of abundance or biomass that are used to estimate the parameters r and K, where r is the 
intrinsic rate of population growth and K is the population carrying capacity. Using an age-
structured model, MSY reference points are estimated using the SRR, growth, maturity, M, and 
fishery selectivity data. In addition to catch and index data, age-structured models can also be fit 
to age and/or length composition data, which can inform estimates of M and SRR parameters. 
For certain SRRs, specifically with high values of the steepness (h) parameter of the SRR (h is 
the proportion of unexploited recruitment, R0, produced at 0.2 B0; Mace and Doonan 1988), 
BMSY can occur at a very low level of depletion, where depletion is defined as biomass relative to 
B0 (Mace 1994). For a symmetrical Schaefer production model, 0.5 BMSY occurs at 75% of MSY 
(on the left-hand side of the yield curve; Figure 1) and DFO’s PA Policy default LRP of 0.4 BMSY 
is equivalent to 0.2 B0 and occurs at 64% of MSY (Figure 1). When modelling with an 
asymmetric production model (e.g., Pella and Tomlinson 1969; Fletcher 1978) or an age-
structured model SRR, these percentages will vary. For example, in an age-structured model 
the relationship between B0 and BMSY will be dependent on factors such as h (e.g., Figure 2), M, 
and the relationship of selectivity-at-age to maturity-at-age (see Section 2.1.3). 
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Figure 1. Plot of relative surplus production (maximum sustainable yield) vs. biomass as a ratio of B0 (i.e., 
K) and BMSY for a Schaefer production model. 0.3, 0.4, 0.5, and 1 BMSY result in 50%, 64%, 75%, and 
100% of MSY, respectively. 

 
Figure 2. An example of changes in the shape of the relative yield vs. relative biomass curve and the 
position of BMSY relative to B0 (labels on x-axis) with changes in steepness (h) for a theoretical small 
pelagic stock with h = 0.95, 0.8, 0.6, 0.4, 0.25 (from dark to light). BMSY relative to B0 is identified on the x-
axis for each curve.  
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2.1.3. Selecting Proportions of B0 and BMSY as LRPs 
Some jurisdictions define generic policy guidance for LRPs first in terms of proportions of B0, 
with proportions of BMSY recommended under certain conditions. The LRP in Australian fisheries 
policy is defined as the biomass level where risk to the stock in terms of recruitment impairment 
is unacceptably high and must be set at or above 0.2 B0 (DAWR 2018) under the assumption 
that 0.2 B0 is a suitable threshold that avoids recruitment overfishing for productive stocks 
(Sainsbury 2008). For less productive stocks, Australia’s harvest strategy policy and Sainsbury 
(2008) both suggest 0.3 B0. An LRP of 0.5 BMSY is only considered a potential alternative LRP in 
Australia’s harvest strategy policy when BMSY is reliably estimated and BMSY is also above 0.4 B0 
(DAWR 2018; see Section 2.1.4). New Zealand’s harvest policy recommends the use of either 
0.2 B0 or 0.5 BMSY, whichever is higher, as a soft limit in their harvest strategies (and half of each 
again as a hard limit, below which closure of fisheries are considered). The Marine Stewardship 
Council recommends a default point of reproductive impairment of 0.2 B0 = 0.5 BMSY for stocks 
with “average productivity”, in the absence of a stock-specific choice by making the assumption 
that BMSY occurs at 0.4 B0 (Agnew et al. 2014), but elaborates with more complex 
recommendations when more information is available. If BMSY is greater than 0.4 B0, then 0.5 
BMSY is advised, and if BMSY is less than 0.4 B0, then 0.2 B0 is preferred (unless BMSY < 0.27 B0, 
in which case 0.75 BMSY is recommended; MSC 2018). 
Some jurisdictions only provide default policy guidance for limits based on BMSY. The US 
guidance for minimum stock size thresholds is a minimum of 0.5 BMSY (eCFR 2021). Both the 
Northwest Atlantic Fisheries Organization (NAFO) and the International Council for the 
Exploration of the Sea (ICES) recommend 0.3 BMSY = 0.15 B0 as LRPs for stocks assessed with 
surplus production models based on a loss of 50% of maximum production (NAFO 2004, ICES 
2021a), although different choices are supported for stocks assessed with more complex 
assessment models. The choice of 0.4 BMSY as a provisional default LRP for Canada was 
considered consistent with international best practices at the time (DFO 2009). If it is assumed 
that BMSY = 0.5 B0 (i.e., as for a Schaefer production model; DFO 2016), then 0.4 BMSY would be 
conceptually equivalent to 0.2 B0 (Figure 1). 

2.1.4. The Relationship Between B0 and BMSY 

A proportion of B0 is sometimes used as a proxy for BMSY when BMSY cannot be directly or 
reliably estimated. The relationship between BMSY and B0 is determined by the shape of the yield 
vs. biomass plot (e.g., Figure 2) and this shape depends on the resilience of the stock to fishing 
pressure. When a proportion of B0 is used as a proxy for BMSY, an implicit assumption about the 
productivity of the stock is made. Resilience of a stock to fishing is a function of the stock's 
productivity. In general, stocks with low productivity (e.g., high age-at-maturity, long-lived, slow 
growth rate) tend to be less resilient to fishing pressure (MF 2011). In a simple surplus 
production model (Schaefer 1954), resilience is represented in the intrinsic population growth 
parameter, r. In more complex models, the components of productivity include the growth rate of 
individuals, M, and h, which measure the degree of compensatory density-dependence in 
juvenile survival. Resilience to fishing is also partly determined by the relationship of fishery 
selectivity-at-age to maturity-at-age, where stocks will be more resilient if there is a portion of 
the mature population that is invulnerable to fishing (Myers and Mertz 1998). 
Under a Beverton-Holt (BH) SRR, h is bounded between 0.2 and 1. This can result in values of 
BMSY/B0 ranging from <0.1 at very high (>0.95) h to 0.5 as h approaches 0.2. For age- or size-
structured models, BMSY/B0 is strongly influenced by h, but is also influenced by M, maturity, 
selectivity, and weight-at-age (Figure 3). Punt et al. (2008) illustrated the variability in the 
relationship between BMSY/B0 and h among four groundfish stocks. Their estimates of BMSY/B0 of 
~0.25 and ~0.35 corresponded to h values of ~0.8 to 0.9 and ~0.5 to 0.6, respectively (Punt et 
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al. 2008). Punt et al. (2014) showed that BMSY/B0 was sensitive to maturity-at-age and 
selectivity-at-age for two groundfish species where BMSY/B0 can range from ~0.2 to ~0.4 for high 
h depending on the fecundity of unselected ages. These studies demonstrate the importance of 
understanding the influence of fishery and biological parameters on the MSY reference point 
estimates. Steepness is generally poorly estimated in SRRs and setting priors for h is common 
practice. Haltuch et al. (2008) showed that B0 and current depletion could be estimated more 
reliably than BMSY. 

 

 
Figure 3. Relationship between BMSY/B0 and steepness (h) of the Beverton-Holt stock recruitment 
relationship for a small pelagic stock with a) M = 0.2 and three selectivity patterns: selectivity = maturity 
(mat) ogive, maturity ogive shifted left by one year, and maturity ogive shifted right by one age and b) M = 
0.2, 0.3 (red), 0.4 (black) with selectivity = maturity ogive. Selectivity curves plotted in c). 

Various proportions in the range of 0.3 to 0.6 of B0 have been used to approximate BMSY where 
the true ratio of BMSY/B0 is unknown, with higher proportions of B0 used for less resilient species 
(Restrepo et al. 1998, Gabriel and Mace 1999). A meta-analysis of 147 stocks estimated a 
mean BMSY/B0 of 0.40, but a wide range of mean ratios (0.26 to 0.46) among taxonomic groups 
(Thorson et al. 2012). An investigation by Punt et al. (2014) across a range of uncertainties, 
revealed that BMSY proxies in the range of 0.35 to 0.4 B0 minimized the potential loss in yield 
compared to that if BMSY was known exactly. 
In Australia, it is recommended to consider 0.4 B0 as the BMSY proxy (DAWR 2018) and the 
Marine Stewardship Council similarly advises this default assumption for stocks with average 
productivity. A default policy equivalency of soft limits of 0.2 B0 with 0.5 BMSY in New Zealand 
also implies a default policy assumption that BMSY = 0.4 B0 (MF 2008), although recommended 
proxies for BMSY also range from 0.25 to over 0.45 B0 depending on stock productivity in 
accompanying operational guidelines (MF 2011; Table 2). The productivity classification used in 
MF (2011) and shown in Table 2 was determined by various life-history parameters, using 
categories defined by FAO (2001). 

a) b) 

c) 
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The implications of using the BMSY/B0 ratios in Table 2 in conjunction with the PA Policy default 
LRP of 0.4 BMSY is a range of LRPs from 0.1 B0 to 0.16 B0 for high to low productivity stocks. 
These depletion levels may be inconsistent with objectives of avoiding serious harm (Section 
2.1.2). In a recent evaluation of ICES stocks (ICES 2022), 50% of the 69 ICES Category 1 
stocks had Blim estimates (i.e., biomass-based LRPs) of less than 0.1 B0 and a workshop 
recommendation was made to consider setting LRPs at a minimum of 0.1 B0, which is 
consistent with the hard limit defined in New Zealand’s harvest policy (MF 2008). Setting such a 
minimum policy limit of 0.2 B0 (DAWR 2018) or 0.1 B0 (ICES 2022) as an LRP, or setting 
minimum assumed relationships between B0 and BMSY (MF 2008), could avoid states of serious 
harm resulting from very low depletion. 
DFO does not have default policy guidance for reference points based on B0. Given the 
prevalence of LRPs based on proportion of B0 or its proxies in Canada (Marentette et al. 
unpublished working paper), this default policy guidance would be beneficial. 

Table 2. Recommended proxies for BMSY/B0 and FMSY based on FX%SPR (see Section 2.2) based on 
productivity categories from MF (2011), and the intrinsic rate of population growth (r). 

Productivity r BMSY/B0 FMSY ≈ FX%SPR 

Very Low -* ≥0.45 F ≥50% 

Low <0.14 0.40 F 45% 

Medium 0.14-0.35 0.35 F 40% 

High >0.35 0.25 F 30% 

* Defined based on M < 0.1 and age-at-maturation > 15 years. 

2.2. THEORETICAL PROXIES FOR BMSY 

Per-recruit (also called “dynamic pool”) models (Beverton and Holt 1957) are estimates of the 
lifetime expectation of the contributions of a single recruit to various metrics such as yield, 
biomass (or SSB), or egg production, and can be used as simple proxies for MSY reference 
points (DFO 2016). The advantage of using dynamic pool models is that they require less data 
because they do not consider recruitment dynamics and do not require a time series of catch or 
abundance data. They do, however, require assumptions to be made about growth of 
individuals and M (Kronlund et al. 2018) and are sensitive to changes in fishery selectivity 
(Wakeford et al. 2018). The disadvantage of per-recruit reference points is that they do not 
account for reductions in the number of recruits as SSB declines and therefore do not provide 
an internal basis for defining a threshold for recruitment overfishing (Sainsbury 2008). This has 
led to widespread use of ‘rules of thumb’ concerning what proportion of per-recruit reference 
points to use as a proxy for BMSY (MF 2011). Per-recruit reference points are generally 
calculated using SSB as a measure of reproductive potential (e.g., SPR described below). 
However, SSB should be considered interchangeable with spawners, egg production, larval 
production or any other measure of reproductive potential (Brooks 2013). 
The spawning potential ratio (SPR; Gabriel et al. 1989; Clark 1991; Mace and Sissenwine 1993) 
is defined as the SSB-per-recruit (𝜑𝜑) at a given constant, long-term F divided by the 𝜑𝜑 at long-
term F = 0 (𝜑𝜑0). FX%SPR represents the F that results in X% of 𝜑𝜑0. The value of X that results in 
FMSY is an inverse function of h (Williams 2002; Punt et al. 2008; Forrest et al., 2010). However, 
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while FMSY is a function of both h and M, once X is selected, FX%SPR is estimated independent of 
h, although still sensitive to M (Forrest et al. 2018). F40%SPR is commonly used as a proxy for 
FMSY (Mace 1994; Clark 2002; Sainsbury 2008). F-based reference points can be interpreted in 
terms of biomass-based reference points as the equilibrium biomass resulting from long-term 
fishing at the constant specified F. Thus, the equilibrium biomass at F40%SPR is a proxy for BMSY; 
however, SPR values in the range of 30-50% are relatively common proxies for FMSY (MF 2011; 
PFMC 2014). In New Zealand’s operational guidance, F40%SPR corresponds to an FMSY for 
“medium productivity” stocks (Table 2), while the SPR for “low” and “high” productivity stocks 
are 45% and 30%, respectively (MF 2011). F50%SPR has further been suggested by Sainsbury 
(2008) as a default proxy for FMSY when h is unknown, since it provides a high fraction of MSY 
for h greater than 0.3. Dorn (2002) recommended fishing mortality rates in the range of F40%SPR 
to F60%SPR should be considered for data-limited West Coast rockfishes. 
Additional theoretical proxies for BMSY can be found in Appendix B. 

2.3. LRPS BASED ON IMPAIRED RECRUITMENT 
When a SRR is assumed, MSY reference points can be estimated (Section A.1); however, 
direct estimates of thresholds to avoid recruitment overfishing can also be made. These consist 
of non-parametric estimates based on the replacement F (Sissenwine and Shepherd 1987) or 
methods of estimating the biomass below which average recruitment declines or stock 
dynamics are highly uncertain (ICES 2018). For example, ICES guidance includes different 
methods for estimating LRPs based on the characteristics of the SRR. ICES (2021) defined six 
stock types based on SRRs and prescribed methods to estimate Blim (equivalent to an LRP) for 
each type based on change points in segmented regressions or biomass estimates based on 
lowest observed biomass (ICES 2021a, Section A.1). 
Non-parametric replacement F-based reference points can be used as a threshold for 
recruitment overfishing in the absence of a well-fitting SRR (Sissenwine and Shephard 1987), 
based on the theory that the persistence of a population requires that each recruited year class 
replaces the biomass of its parents (i.e., SSB) on average. The slope of a straight line through 
each point on the SRR plot and the origin (slope of 1/𝜑𝜑F) corresponds to an F that would be 
applied over the lifetime to those recruits in order to obtain SSB. The authors define recruitment 
overfishing as an F that reduces the SBB produced by a year class below the SSB of its parents 
on average. The slope of the replacement line is defined as the median ratio of recruitment to 
SSB. The mean long-term equilibrium SSB that results from fishing at Frep (i.e., Brep) is estimated 
as the SSB where the median replacement line intersects the SRR curve. In the absence of a 
SRR, the curve can be represented as the median recruitment (e.g., DFO 2002). Fishing at Frep 
will result in Brep on average, a proxy for BMSY. A lower threshold for recruitment overfishing in 
terms of biomass can be defined as the equilibrium biomass from fishing at Frep90 which is the 
90th percentile of the ratio of recruitment to SSB (Serebryakov 1991, DFO 2002). The Frep and 
Frep90 reference points are consistent with the Fmed and Flow defined by ICES (1988). 
The hockey stick SRR (or segmented regression) allows an estimate of a threshold for 
recruitment overfishing by identifying a biomass below which the recruitment rate begins to 
decline (e.g., ICES 2021, Figure A.1). Various forms of the hockey stick SRR have been applied 
(e.g., segmented regression, ICES 2018; smooth hockey stick, Mesnil and Rochet 2010) and 
various methods of estimating the breakpoint have been used (e.g., grid-search method, 
Barrowman and Myers 2000). The shape of the hockey stick SRR is convenient because a 
biomass can be identified below which recruitment declines linearly, consistent with the 
definition of recruitment overfishing where there is no longer a compensatory buffer in juvenile 
survival (Hilborn and Walters 1992). 
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The biomass producing 50% of maximum recruitment (Myers et al. 1994) or 50% of the 
maximum recruitment predicted from the SRR (Rmax) can also be estimated as a candidate LRP 
(DFO 2002; NAFO 2004). The choice of 50% is somewhat arbitrary and does not consider the 
variability in the SRR or h but has been used as a general rule of thumb for a threshold to 
recruitment overfishing. However, if mean recruitment is nearly constant across all levels of 
biomass (i.e., h is high) then 50% of maximum recruitment can occur at a low level of depletion 
(Myers et al. 1994) that could be associated with greater risk of serious harm. 

2.4. LRPS BASED ON UNKNOWN STOCK DYNAMICS AT LOW BIOMASS 
Uncertainty concerning population dynamics can be high at low stock sizes and in these cases, 
thresholds can be defined to delineate stock states with unknown dynamics (NAFO 2004, DFO 
2006). The lowest biomass observed (Bloss) and from which there has been a recovery (often 
specifically designated as Brecover or Brec) are historical reference points that can represent this 
concept (DFO 2016, ICES 2021a, Rivard and Rice 2003). They are also easy to understand and 
communicate (DFO 2004) and can also be applied to empirical indicators (e.g., survey indices 
and CPUE time series). This reference point may be recommended for stocks with occasional 
large year classes (e.g., spasmodic stocks, ICES 2021a) or that have shown no evidence of 
impaired recruitment (non-informative SRR). These approaches are not suitable for stocks 
where recruitment appears to increase with stock size, nor stocks with narrow ranges of 
estimated biomasses (ICES 2021a). If used, the reference point should not be taken from recent 
years if the stock is declining (ICES 2021a). 
The lowest biomass where “large recruitment” has been observed has also been used as an 
LRP (e.g., for spasmodic stocks, ICES 2021a). Large recruitment can be interpreted differently 
(e.g., the 50th or 80th percentile in a time series, van Deurs et al. 2021) and the determination of 
large recruitment may be determined by expert judgment (ICES 2015). When using percentiles 
of data distributions, to estimate reference points, van Deurs et al. (2021) showed that the 
length of the time series can strongly influence the reference point estimates. 
A common assumption in using historical reference points, like empirical reference points, is 
that of stationarity (Kronlund et al. 2018, DFO 2004) and periods associated with Bloss or a “large 
recruitment” may correspond to favourable environmental conditions and/or low risk of 
excessive exploitation (DFO 2008). It may not be possible to determine whether stocks depleted 
to historic lows will again be able to rebuild from that level if the stock is expected to be under 
unfavourable productivity conditions (Rivard and Rice 2003). Alternatives should be considered 
if there is strong evidence of such conditions (DFO 2016) when knowledge of stock productivity 
allows (DFO 2008). 

2.5. LRPS BASED ON RECOVERY FROM PERTURBATION 
Resilience, or the ability to recover from perturbation, is arguably the stock attribute most 
pertinent to the risk of collapse but can be hard to define and measure (MF 2011). Lack of 
resilience could be defined as an impaired ability to exceed replacement and grow in the sense 
of stock rebuilding or stock recovery, e.g., to target levels capable of producing MSY (DFO 
2016, Sainsbury 2008). Evaluation of impaired ability requires a time frame often linked to 
generation time, i.e., within one (NAFO 2004) or two (Rivard and Rice 2003) generation times 
under good conditions, or on timescales meaningful for human intergenerational equity 
(Sainsbury 2008), where generation time can be defined as the mean age of individuals 
contributing to the reproduction of the stock. An example of such an LRP would be Sgen, the 
spawner abundance that will result in recruitment equal to spawners at SMSY (spawner 
abundance at MSY) in one generation in the absence of fishing under equilibrium conditions 
(DFO 2016). Care must be taken in defining LRPs based on recovery, as the estimate will 
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depend on how the recovered state and time period are defined, as well as assumptions around 
productivity. Such LRPs can, however, be useful as a basis with which to compare the 
plausibility of other LRPs (Rice and Rivard 2003) where plausibility refers to whether estimates, 
assumptions or hypotheses are consistent with empirical data and ecosystem and population 
dynamics theory (e.g., past trajectories of stock indicators or productivity in light of fishing 
pressure and past or future environmental conditions). 

2.6. SPATIAL REFERENCE POINTS 
Spatial reference points may be most important for species with limited dispersal of early life-
history stages (NAFO 2004). A threshold for serious harm was defined by a NAFO working 
group as a decrease in area of distribution of 75% (NAFO 2004), which is based on the 
assumption of a MacCall (1990) basin-model-like distribution pattern. This basin model 
assumption is that a reduction in spatial distribution will overestimate the reduction in population 
size. This is because density in the preferred habitat is hypothesized to increase with 
decreasing population size (i.e., the population will aggregate more densely in the preferred 
habitat or “the deepest part of the basin” in MacCall’s basin model distribution pattern). The 25% 
of the area of distribution would therefore maintain at least 25% of the population size. 
Reuchlin-Hugenholtz et al. (2016) developed a methodology to estimate the threshold below 
which SSB declines increasingly quickly relative to a spatial indicator. They defined HDAX% as 
the proportion of total survey tows in a given year that fall within the highest X% of non-zero 
tows over the entire time series distribution of tows. HDAX% is therefore an index for areas 
containing the highest concentration of biomass, where values of X in the range of 2.5 to 15 
were explored. Reuchlin-Hugenholtz et al. (2016) identified a concave relationship between 
standardized SSB and the standardized HDA indicator and found that across six groundfish 
stocks 0.2-0.3 HDA, a loss of 70-80% of high-density areas, consistent with the threshold 
defined above by NAFO (2004), was associated with potentially large declines in SSB. 

2.7. TRAFFIC LIGHT APPROACH 
The term “traffic light approach” (Caddy 2002), has been used to describe a management 
framework that uses a system of green, amber, and red lights (e.g., Halliday et al. 2001) or 
simply red and green lights (e.g., ICES 2018) to categorize multiple indicators of the state of the 
fishery. A threshold for serious harm (or an undesirable state) is determined for each indicator. 
In the absence of an objective basis for defining a threshold for an indicator, expert judgement 
can be used (Halliday et al. 2001; Harford et al. 2021). Some form of integration of indicators is 
required to support an estimate of overall stock status. The integration can involve scaling the 
indicators to make them comparable and using some operation to combine the indicators 
(Halliday et al. 2001). 
Advantages of the traffic light approach include its simplicity and ability to accommodate 
multiple indicators including those that are directly observable. The traffic light approach may be 
considered in situations where multiple data sets cannot be combined statistically but can inform 
on different aspects of stock status that are relevant for management objectives (Harford et al. 
2021). Multiple indicators can be appealing when a single indicator could be ambiguous (e.g., a 
decrease in mean length could be driven by a strong recruitment event or by a loss of older 
individuals in the population). The challenges may be in defining a method of integrating the 
indicators into an overall metric of stock status. Various approaches have been used, including 
using the proportion of indicators in the red category and using a weighting method to combine 
multiple indicators that are proxies for the same variable (Harford et al. 2021). 
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2.8. LRPS FOR SEMELPAROUS STOCKS 
For semelparous species, SRRs can be used to describe the entire life history of a stock. 
Estimates of the spawner abundance at MSY (SMSY), the optimal harvest rate at MSY, and the 
spawner abundance that produces maximum recruitment (Rmax) can be directly estimated from 
the SRR parameter estimates (Hilborn and Walters 1992; Table 3). Candidate LRPs can be 
defined based on a proportion of SMSY (e.g., 0.4 SMSY), the spawner abundance at 50% Rmax, or 
Sgen, the spawner abundance that results in recruitment equal to spawners at MSY in one 
generation in the absence of fishing at equilibrium conditions (e.g., Holt et al. 2009; Chaput 
2015). Reference points based on SMSY and Sgen have been adopted under Canada’s Wild 
Salmon Policy (WSP) (Holt et al. 2009) and have also been used as operational control points 
(OCPs) for salmon, below which harvest is limited to low levels (DFO 2016). 

Table 3. Reference points for semelparous stocks estimated from the Beverton-Holt (BH) and Ricker 
stock recruitment relationships parameterized as in Equations A.1 and A.2 in Appendix A. (Adapted from 
Hilborn and Walters 1992, based on the Equation A.1 and A.2 parameterizations). 

Reference Point BH (Equation A.1) Ricker (Equation A.2)* 

SMSY  √𝛼𝛼 − 1
𝛽𝛽

 
l n(𝛼𝛼)
𝛽𝛽

�0.5 − 0.07ln(𝛼𝛼)� 

Rmax 𝛼𝛼
𝛽𝛽

 
𝛼𝛼
𝛽𝛽
𝑒𝑒−1 

uMSY 
1 − �1 𝛼𝛼�  0.5ln(𝛼𝛼) − 0.07�ln(𝛼𝛼)�2 

* SMSY and uMSY formulas are approximations that are valid over 0 < α < 3 (Hilborn 1985) 

2.9. LRPS FOR PACIFIC SALMON 
Pacific salmon (Oncorhynchus spp.) are unique among marine fish species due to their high 
levels of intraspecific diversity that gives rise to a large range in data availability, considerations, 
and approaches for assessments and LRP development. For Pacific salmon, LRPs have been 
developed to align with Canada’s Wild Salmon Policy (WSP) objective of preserving adaptive 
diversity of salmon at the scale of conservation units (CUs), which are nested within major 
stocks, or salmon “Stock Management Units”, SMUs (Holt et al. 2023a, Holt et al. 2023b). 
Methods for evaluating status of CUs are well established using biological benchmarks to 
delineate three zones of status: green, amber, and red representing increasing conservation 
concern and management intervention. Given diversity in data availability and types among 
CUs, a traffic light approach (Section 2.7) is used to estimate status where statuses on multiple 
metrics are combined into an overall assessment of green, amber, or red (Holt et al. 2009; DFO 
2024). 
For the purposes of the FSP, LRPs can be identified from the proportion of CUs that have status 
above the red zone for WSP status assessments (Holt et al. 2023a). This approach provides 
some consistency with status assessments already produced under the WSP, and can inform 
management decisions for harvest, habitat, and hatcheries that often occur at finer, CU scales. 
To supplement the default approach, LRPs based on metrics of aggregate abundances for the 
entire SMU have also been proposed (Holt et al. 2023a; Holt et al. 2023b), which may be 
required for fisheries management purposes in some cases. For this approach, LRPs are 
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derived to have a desired probability of all component CUs being above red status and assume 
a relationship between aggregate abundance and the proportion of CUs that have status above 
the red zone. 
These LRP methods may be adaptable to other species and assessment management contexts 
where data are limited, traditional estimation approaches cannot be applied, or biological units 
of assessment are nested within major stocks. The “traffic light” approach is particularly useful 
for species where theoretical or historical abundance-based metrics are not estimable or 
applicable, or where data are limited (Dowling et al. 2015). 

2.10. LRPS FOR ATLANTIC SALMON 
LRPs for Atlantic salmon (Salmo salar) in Canada have been defined on the basis of 
conservation of the salmon population by setting escapement goals (DFO 2015). Candidate 
LRPs consistent with the PA Policy have been defined based on the SRR in terms of SMSY, Sgen, 
the spawner abundance at 50% Rmax, or spawning abundance that results in less than 25% 
probability of recruitment being less than 50% of Rmax. (DFO 2015). In Atlantic salmon 
populations there is a strong sex bias in the sea age-at-maturity (O’Connell et al. 2006) and 
differences in the abundances of sea age groups in annual returns to a river (DFO 2015). Egg 
deposition rates are therefore commonly used as the indicators of stock status for Atlantic 
salmon. The LRP most recently defined for Atlantic salmon in Canada was the egg deposition 
rate (i.e., number of eggs per area of habitat) that results in less than a 25% chance that the 
realized smolt production from freshwater would be less than 50% of Rmax (DFO 2015; 2018b). 

2.11. LENGTH-BASED APPROACHES 
The length-based approaches include length-based indicators of stock status and length-only 
assessment methods that generally only allow estimation of F-based reference points (Pons et 
al. 2020). Some length-based approaches do, however, include estimation of biomass-based 
reference points (e.g., Froese et al. 2018) or alternative indicators of stock status (e.g., based 
on SPR). The theory behind length-based indicators is that there is a decline in average length 
in the catch because of high fishing mortality that truncates the size distribution, or size-
selective fishing mortality where larger individuals are removed from the population. Most 
length-based approaches assume equilibrium conditions and the methods are influenced by 
strong year classes (reducing mean length and suggesting high mortality) so it is critical to 
understand whether extreme year-classes are influencing the length distributions (ICES 2018). 

2.11.1. Length-based Indicators 
Froese (2004) first introduced three length-based indicators based on the length frequency 
distribution of the catch with targets: 

• Pmat, the percent of mature fish in the catch (target 100%), 

• Popt, the percent of fish with optimum length (size at which the highest yield from a cohort 
occurs) in the catch (target 100%), and 

• Pmega, the percent of “mega-spawners” (large mature fish) in the catch (target 0%), 30-40% 
mega-spawners represents a healthy age structure and < 20% is a concern. 

These metrics were intended to avoid growth and recruitment overfishing; however, the metrics 
have no quantitative linkage to metrics of stock status (e.g., BMSY or B0). Cope and Punt (2009) 
explored the relationships between these indicators and measures of F and SSB using 
simulations from an age-structured model. They found that each metric showed a wide range of 
possible values depending on selectivity, h, and the ratio of length-at-maturity to optimal fishing 
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length and that a single metric was not sufficient to ensure sustainable fishing. Even with Popt = 
100%, major decreases in biomass can still occur depending on the selectivity. Cope and Punt 
(2009) therefore provided a decision tree for interpreting stock status when the fishery is not 
operating on the optimal selectivity. The authors proposed a new metric (Pobj = Pmat + Popt + 
Pmega) to identify reference points in terms of biomass relative to a target biomass, based on 
selectivity type which is determined by the value of Pobj. 
A set of length-based indicators (LBIs) is used by ICES to assess data-limited stocks, which 
follows the traffic light approach (Caddy 2002; Section 2.7). The traffic light approach used by 
ICES for LBIs is a system of red and green lights to categorize multiple indicators in relation to 
desired stock status states. The ICES LBIs require the following data: length-at-maturity (Lmat); 
asymptotic length (Linf); catch-at-length by year; and the weight-length parameters (a and b) 
from the catch. The LBIs are grouped in terms of indicators of conservation/sustainability, 
optimal yield, and MSY (Table 4). The approach assumes equilibrium conditions and that the 
fishery selectivity ogive is flat-topped (logistic) (ICES 2018). The optimal length (Lopt) is 
estimated assuming M/k = 1.5, where k is the von Bertalanffy growth rate parameter. However, 
if direct estimates of M and k are available then reference points Lopt and LF=M can be estimated 
as: 

𝐿𝐿𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖
3

3+𝑀𝑀/𝑘𝑘
      (1) 

 

𝐿𝐿𝐹𝐹=𝛾𝛾𝑀𝑀.𝑘𝑘=𝜃𝜃𝑀𝑀 = 𝜃𝜃𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖+𝐿𝐿𝑐𝑐(𝛾𝛾+1)
𝜃𝜃+𝛾𝛾+1

      (2) 

where the parameters are as defined in Table 4 and 𝛾𝛾 and 𝜃𝜃 are user-defined proportions of M 
used as proxies for FMSY and k, respectively, when assumptions of FMSY = M and M/k = 1.5 are 
not supported. The expected values of the LBIs for optimal yield and MSY in theory reflect 
length-frequency distributions of the catch under equilibrium conditions fishing at FMSY. The 
indicators are sensitive to the assumed values of Lmat and Linf, and sensitivity analyses are 
recommended to evaluate the influence of these values on status estimates (Shephard et al. 
2018). The suitability of the assumed ratio of M/k = 1.5 should also be evaluated. Although the 
ratio of M/K is believed to be less variable across stocks/species than M (Prince et al. 2015), the 
ratio can be outside the bounds of 1.2 to 1.8 for many exploited species (Hordyk et al. 2019). 
Length-frequency distributions should be inspected for evidence of a unimodal distribution to 
support the assumption of equilibrium conditions (ICES 2018). 
Candidate reference points for each indicator are provided in Table 4. An overall estimate of 
stock status would be obtained using a traffic light approach (Section 2.7) or a weight-of-
evidence approach (Section 2.12). 

Table 4. Length-based Indicators used by ICES (2018). 

Indicator 
Type 

Indicator Calculation Reference 
Point* 

Expected Value 
of the Ratio: 

Indicator/ 
Reference Point 

Conservation 
(large 
individuals) 

Lmax5% Mean length of largest 5% Linf >0.8 

L95% 95th Percentile Linf >0.8 

Pmega Proportion of individuals > 
1.1 Lopt 

0.3 – 0.4 Pmega > 0.3 
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Indicator 
Type 

Indicator Calculation Reference 
Point* 

Expected Value 
of the Ratio: 

Indicator/ 
Reference Point 

Conservation 
(juveniles) 

L25% 25th Percentile Lmat >1 

Lc Length at 50% of modal 
abundance 

Lmat >1 

Optimal Yield Lmean Mean length > Lc Lopt = 2/3 Linf ≈1 

Lmaxy Length class with 
maximum biomass in 
catch 

Lopt = 2/3 Linf ≈1 

MSY Lmean Mean length > Lc LF=M = 0.75 Lc 
+ 0.25 Linf 

≥1 

*Lopt and LF=M reported for M/k = 1.5 

2.11.2. Length-based Methods for SPR Ratio and Biomass-based Indicators 
A length-based SPR (LBSPR) method was developed by Hordyk et al. (2015a, 2015b) and has 
been adopted by ICES (2018) in their guidance for data-limited stocks. For this approach, the 
indicator of stock status is the annual estimated %SPR and an estimate of F/M (a proxy for 
F/FMSY) is also generated. The SPR is estimated from a representative sample of the size 
distribution from the catch and some assumptions about the life-history characteristics of the 
species. The LBSPR method assumes equilibrium conditions and that the length distribution 
data are a representative sample from the exploitable population. The method uses the ratio of 
M/k (less variable across stocks/species than M; Prince et al. 2015), estimates of asymptotic 
length (Linf) and the von Bertalanffy growth parameter k, maturity-at-length (i.e., length at 50% 
and 95% maturity), the weight-length relationship parameters (a, b), and fishery selectivity-at-
length (assumed to be knife-edged, logistic, or domed shaped). SPR is estimated using 
maximum likelihood estimation to find values of F/M and selectivity-at-length that minimize the 
difference between observed and expected length composition of the catch. The annual SPR 
can be estimated and used as an indicator of stock status. A 40% SPR is a common target 
reference point (i.e., F40% is a proxy for FMSY; see Section 2.2) although the percentage depends 
strongly on the assumed resilience of the stock (Table 1). Goodyear (1993) provides a range of 
20-30% SPR as minimum acceptable levels above which stocks maintain acceptable 
productivity, the minimum value of this range consistent with 0.5 of a target of 40% SPR. Mace 
and Sissenwine (1993) similarly provide a range of 20-35% SPR as a threshold for recruitment 
overfishing and recommend 30% SPR as an LRP when stock resilience is unknown. 
A length-based integrated mixed effects method (LIME; Rudd and Thorson 2018) also uses 
length composition data from the catch and life-history data to estimate F and SPR but does not 
have the equilibrium assumption of LBSPR. LIME uses mixed effects to estimate changes in 
recruitment and F separately over time and estimates one selectivity curve for the entire time 
series (Rudd and Thorson 2018). All other data requirements are the same as LBSPR. 
A length-based Bayesian biomass estimation method (LBB; Froese et al. 2018) can estimate 
B/B0 and B/BMSY from the analysis of length frequency distributions of the catch. The LBB 
method relies on the von Bertalanffy growth equation. The LBB framework is based on relative 
rates (instead of absolute rates) which reduces the number of parameters. An increase in length 
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of a cohort is used as a proxy for time and, by using ratios instead of absolute values, the units 
of time and biomass cancel out (Froese et al. 2018). The rates M/k and F/k are used in the LBB 
method to estimate F/M (here M is a proxy for FMSY) and B/B0. Hordyk et al. (2019) note that the 
LBB method is highly sensitive to the assumed asymptotic length. 
Pons et al. (2020) simulation tested the LBSPR, LIME, and LBB methods for three life-history 
scenarios (short-lived, medium-lived, and long-lived) crossed with three harvest trends (F 
increasing to a maximum then declining, F increasing then remaining constant, and F constantly 
increasing), and three depletion scenarios (final depletion 0.2, 0.4, and 0.6) to evaluate bias and 
precision. In general, LIME was the least biased method. LBSPR generally underestimated 
harvest rates. For short-lived species, LIME performed best, whereas LBB had the most 
variability in F estimates. For medium-lived species, LIME performed best and results for 
LBSPR and LBB were similar, but LBSPR was more precise. Pons et al. (2020) showed that 
LBB was highly biased and imprecise for long-lived species. This result was also noted by the 
authors of LBB, who didn’t recommend using it for long-lived species (Froese et al. 2018). LIME 
was also highly imprecise for long-lived species, a result also noted by the authors of the 
method (Rudd and Thorson 2018). LIME was, however, the least biased among the three 
methods for all life-histories. The general recommendation of Pons et al. (2020) was to use 
LIME except for long-lived species, for which LBSPR was recommended. However, a long time 
series of data is generally needed to draw conclusions for long-lived species using this method. 

2.12. STATUS BASED ON EXPERT JUDGEMENT 
The use of expert judgement alone to assign stock status has sometimes been invoked where 
all other methods appear to be infeasible. Expert judgement has been used in data-rich 
scenarios, where expertise is widely applied in Bayesian frameworks to develop stock status 
priors (Chrysafi et al. 2019), where expertise is used to select a minimum biomass that had 
“good” recruitment (ICES 2015), to select an undesirable historical biomass to be avoided in 
future (e.g., DFO 2019b), or to integrate estimates of status over multiple, often conflicting 
metrics, in a “composite” approach (e.g., Grant and Pestal 2012). Methods of expert elicitation 
vary from formalized Delphi techniques (Rowe and Wright 2001), where experts are 
anonymously and iteratively consulted to provide judgements on a given topic, interspersed with 
discussion of expert inputs at the group level; to less intensive but standardized software tools 
displaying available information (Chrysafi et al. 2019). Regardless of method, rigour should be 
applied in the collection of expertise to ensure expert judgement is both transparent and 
repeatable (Drescher et al. 2013). 
Another example of expert judgement methodologies is the use of weight-of-evidence 
frameworks. Weight-of-evidence is used in risk assessment in a variety of fields and can be 
summarized into general principles as follows, with each activity supported by sufficient 
documentation (Health Canada 2018): 

• gathering all available evidence, 

• assessing individual studies for inclusion/exclusion based on screening criteria (relevance, 
quality, reliability, etc.), 

• assembling lines of evidence (i.e., groups of related studies of data sources), 

• assessing lines of evidence for their strength or robustness in support of, or against, a 
particular hypothesis, and 

• integrating multiple lines of evidence to an overall conclusion by either qualitative or 
quantitative processes, including the use of weighting schemes. 
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In 2009, Australia’s Department of Agriculture, Fisheries and Forestry launched the Reducing 
Uncertainty in Stock Status (RUSS) project, with two streams. Stream 1 developed a weight-of-
evidence framework to systematically classify stock status of data-limited stocks (Larcombe et 
al. 2015), which was subsequently used to inform stock status designations for the Status of 
Australia’s Fish Stocks (SAFS) report (Flood et al. 2016). Stream 2 conducted closed-loop 
simulations to evaluate whether data-limited harvest strategies could still achieve the intent of 
applicable policies (Haddon 2012). Stream 2 was motivated by the greater array of input and 
output controls typically used for data-poor stocks, including indicators that differ from 
“traditional” strategies relying on estimates of fishing mortality and stock size to set catch limits. 
The RUSS weight-of-evidence framework aimed to provide structure for a scientific review and 
interpretation of indicators of biomass and F (evaluated separately), arriving at a status 
determination for each attribute through cumulative weight-of-evidence, in a transparent and 
reproducible way (Larcombe et al. 2015). It involved: 

• compiling evidence of: 
o stock and fishery attributes related to productivity, M, distribution, aggregation, mobility, 

structure, whether there is a targeted fishery, how many fisheries, and whether it is a 
multi-species fishery, 

o empirical indicators such as trends in catch, effort, catch rates, spatial distribution of the 
fishery and age- and size-structure of the catch, 

o fishery independent surveys, if available, 
o stock assessment models, if available, and 
o risk assessments, such as the sustainability assessment for fishing effects (SAFE) 

approach or productivity-sensitivity analyses (PSA; but see Hordyk and Carruthers 2018). 

• documenting and weighing evidence, by: 

• identifying key lines of evidence, their interpretation, and the rationale for using them; 

• describing whether different weights were assigned to different lines of evidence, and why; 

• identifying inconsistent lines of evidence, including whether these were weighted differently; 
and 

• identifying key areas of uncertainty; 

• concluding by assigning status, including a peer review component. 
Regardless of framework, it is important to note that the experience level of experts and the 
“true” stock status can both impact the performance of expert judgement-based methods of 
stock status assignment. Expert judgement has been shown to perform best for stocks with 
intermediate status (around BMSY), whereas experts tended to under-estimate stock status for 
underexploited stocks and over-estimate status of depleted stocks. Furthermore, less 
experienced experts with little to no background in stock assessment can be both more biased, 
and more certain of their choices (Chrysafi et al. 2019, Chrysafi and Cope 2019). 

3. PROPERTIES OF LRPS 

3.1. UNCERTAINTY 
Uncertainty in the context of fisheries can be defined as “the incompleteness of knowledge 
about the state or processes (past, present, and future) of nature” (FAO 1995). Six types of 
uncertainty in fisheries management have been defined: uncertainties associated with process, 
observation, model, estimation, implementation, and institutions and these are reviewed in 
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(Francis and Shotton 1997). The first four types of uncertainty can be considered scientific 
uncertainty and the latter two can be considered management uncertainty (e.g., Privitera-
Johnson and Punt 2020). The estimation uncertainty in LRPs and estimates of stock status 
relate to scientific uncertainty and result from the combined effects of process, observation, and 
model uncertainties. The process uncertainty results from the underlying stochasticity or natural 
variability in population dynamics such as annual variability in recruitment. Observation 
uncertainties arise from the process of data collection resulting in measurement or sampling 
error from observing a sample from a statistical population. Model uncertainty refers to 
assumptions about structural forms within the model (e.g., form of the SRR, shape of the 
selectivity ogive, assumptions about whether parameters are age- or time-varying). Some 
methods for calculating LRPs include estimation uncertainty and some do not. When reference 
points are estimated within an assessment model, estimation uncertainty can be accounted for 
in internally estimated reference points. In assessment models where key parameters that 
determine reference points are fixed (e.g., h and/or M), uncertainty in reference points will be 
underestimated and the reference points will potentially be biased (Mangel et al. 2013). 
Estimates of LRPs can also be made outside of the assessment model (e.g., by inputting stock 
assessment outputs into reference point software packages), but assumptions like the form of 
the SRR may not be consistent with the original assessment model (ICES 2022). Uncertainty in 
LRP estimates outside of an assessment model can be estimated using various methods (e.g., 
Monte Carlo simulations, Braccini et al. 2015; bootstrapping, Cadigan 2013, ICES 2022; closed-
loop simulation, Merino et al. 2020). However, these methods may not maintain the correlations 
among model parameters (Trijoulet et al. 2022). When model estimated stock-recruit pairs are 
treated as independent observations in subsequent analyses, spurious relationships and 
underestimates of uncertainty can introduce bias in reference point estimates (Link 1999; 
Maunder and Punt 2013; Brooks and Deroba 2015). 
Characterization of the uncertainty in stock status is critical because the statistical properties of 
uncertainty captured in an estimate of stock status affect conclusions about stock status relative 
to reference points and the choice of management measures aimed at meeting objectives 
related to reference points. The PA Policy is focused on tolerance for stock decline. With 
respect to the LRP, the management objective is to avoid biomass levels below the LRP with 
high probability. 
Sensitivity analyses can be used to qualitatively characterize uncertainty by demonstrating 
model behaviour and assess the robustness of model results to specific model formulations or 
alternative data sources (Privitera-Johnson and Punt 2020). Often, a base or reference model is 
selected based on expert judgement, and advice is based on this model. Sensitivity analyses 
can be used to evaluate the consequences of uncertainty from alternative model assumptions 
on model outputs and advice. Model uncertainty can also be captured in an estimate of stock 
status by combining estimates from multiple models using a model-averaging or ensemble 
approach (Section 4.2). These could be alternative assessment models or operating models 
that represent alternative hypotheses in a closed-loop simulation approach. 
When uncertainty in stock status can be estimated, a probability distribution for current or 
projected biomass can be generated and the probability of being above the LRP can be 
estimated. There is an underlying probability distribution for current or projected biomass and 
also for the estimate of the LRP. To capture this variability, the ratio of biomass to the LRP is 
expected to have greater precision and accuracy than using the absolute values in terms of 
biomass (NAFO 2004). 
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3.2. RELIABILITY 
Reliable estimation of LRPs or stock status metrics can be interpreted as being acceptably 
robust (considering consistency, variance, and bias) to key uncertainties and assumptions in the 
advice framework (Marentette et al. unpublished working paper). The true values of reference 
points are unknown so evaluations of the accuracy of estimates are conducted in simulation 
tests of systems with known values. Historical fishing pressure and the availability of data 
influence the reliability of reference point estimates. In a simulation study, Magnusson and 
Hilborn (2007) identified that a large decrease in abundance is the most important feature in the 
fishery time series for informing reliability of reference points, followed by a time series with 
contrast in harvest rates. Reliability of LRP estimates depends on the method used to estimate 
uncertainty in the estimates. An evaluation of methods to quantify uncertainty can also be 
conducted using simulation testing. For example, Magnusson et al. (2013) conducted a 
simulation study to evaluate bias and width of confidence intervals for reference points using 
three methods of quantifying reference points in an age-structured model. Simulation studies 
have also been used to estimate the bias and precision of data-limited methods to estimate 
metrics like BMSY and SPR (e.g., Pons et al. 2020). 
The reliability of estimates of BMSY depends on how well h is estimated. Estimates of h in a 
simulation study were more reliable when age-composition data and an index of abundance 
data were available from time periods with very low abundance (Magnusson and Hilborn 2007) 
which resulted in estimates of recruitment at low biomass. Given the challenges in estimating h, 
priors for h are commonly used when fitting assessment models (e.g., Myers et al. 1999; 
Mangel et al. 2010). Estimates of h for similar stocks from meta-analyses (e.g., Thorson et al. 
2020), or estimates from life-history characteristics (Wiff et al. 2018) can be used to guidance 
estimates or prior distributions for h. Sensitivity analyses can be conducted to evaluate the 
influence of model parameters on reference point estimates. 

3.3. PLAUSIBILITY 
The plausibility of candidate indicators of stock status and LRPs refers to whether estimates, 
assumptions or hypotheses are consistent with empirical data and ecosystem and population 
dynamics theory (e.g., past trajectories of stock indicators or productivity in light of fishing 
pressure and past or future environmental conditions). When comparing multiple candidate 
LRPs, an evaluation of the plausibility of each candidate approach may support LRP selection. 
For example, proportions of model based estimates of B0 and BMSY can be compared to Bloss 
and Brecover or with past states associated with low surplus production to assess whether 
recovered from these candidate values have occurred in the past. 

4. STOCK STATUS METRICS 

4.1. HIGH VARIABILITY 
Approaches for addressing high variability in estimates of stock status include using smoothers 
(e.g., loess: locally-weighted scatterplot smoothing or a 3- or 5-year moving average) which are 
commonly used for empirical indices of stock status for Canadian stocks (Marentette et al. 
unpublished working paper)). Smoothing methods can also be used for model-based estimates 
of stock status. For example the R package for the LBSPR method uses a smoother to reduce 
annual variability in SPR and F/M (Hordyk 2021). 
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4.2. SINGLE STOCK STATUS FROM MULTIPLE MODELS 

4.2.1. Ensemble Approaches 
An ensemble approach (also known as model averaging) is any method of combining inference 
for quantities of interest across multiple models (e.g., Dietterich 2000; Anderson et al. 2017; 
Jardim et al. 2021). In stock assessment, those quantities of interest might be the LRP or stock 
status with respect to the LRP. An ensemble can combine models with, for example, alternative 
structural assumptions, distinct modeling platforms, parameters fixed at different values, or 
models with alternative priors. Any models that produce the same quantity of interest can be 
combined in an ensemble unless the ensemble relies on statistical weighting (e.g., based on 
Akaike information criterion [AIC], Bayes factors), in which case the same statistical framework 
must be used. 
When using an ensemble of models, a decision must be made about how to assign weights to 
the component models. Options include: 

• equal weighting; 

• tactical weighting (e.g., based on expert opinion or historical performance); 

• weighting based on model probabilities (e.g., Bayes factors); 

• weighting based on information theoretic values (e.g., AIC); or 

• weighting based on predictive ability. 
An additional more complex form of weighting by a second-level model fit to known or trusted 
data is also possible (“superensembles”, Anderson et al. 2017). Model selection can be thought 
of as an extreme version of ensemble modeling where one model is assigned all the weight 
(Jardim et al. 2021). 
There are several issues to consider when choosing which models to include in an ensemble. 
First, it is critical that all component models are plausible and satisfy model assumptions (e.g., 
residual distributions, posterior predictive checks, convergence). Then, there are issues related 
to the composition of the models in the ensemble. Issues of model composition include too little 
overlap among models, too much overlap among models, or some combination of the two (e.g., 
“clumping” among models). With too little overlap, there is a risk of obscuring distinct plausible 
realities that would require alternative management actions—the best answer isn’t necessarily 
in the middle (e.g., Anderson et al. 2017, Maunder et al. 2020). Solutions could include 
subgroup ensembles or not using ensembles at all. With too much overlap, the benefit of using 
an ensemble approach may be reduced, since the component models may not be representing 
a sufficient diversity of structural assumptions. This may or may not be an issue. However, if too 
much overlap occurs within groups of models, it can result in undesired unequal weighting 
among broader hypotheses. Solutions include refining the composition of the ensemble so that 
model groups are based on broader hypotheses or considering a hierarchical framework to 
group hypotheses and assign weights (Maunder et al. 2020). 
If combining multiple models to derive a single estimate of the LRP or status with respect to the 
LRP, several best practices are recommended: 

• Do not use ensembles as an excuse to avoid rigorous model validation of the component 
models. 

• Make decisions about ensemble composition prior to fitting models to data if possible. 
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• Consider models that can expand or simplify based on the data if possible (e.g., estimating 
effects as random effects or letting parameters vary according to some constrained function) 
rather than including multiple models in an ensemble. 

4.2.2. Closed-Loop Simulation 
Closed-loop simulation is a process that involves evaluating the performance of alternative 
management procedures (MPs, algorithms for making management recommendations) through 
simulation to assess trade-offs among multiple fishery and conservation objectives (Butterworth 
and Punt 1999; Punt et al. 2016). This process is commonly called management strategy 
evaluation (MSE); however, we have reserved the term “MSE” in this paper to represent the full 
stakeholder-driven process. Closed-loop simulation is the technical modeling component of 
MSE, which can be used as part of a full consultative MSE process or on its own. In closed-loop 
simulation, multiple operating models (OMs) are typically used to capture a range of uncertainty 
in stock and fishery dynamics; however, a single OM can be used. Each OM has its own implicit 
biomass, reference points, and stock status under the assumptions and hypotheses of the OM. 
The objective of closed-loop simulation is to identify MPs with acceptable performance relative 
to management objectives, and not specifically to estimate the stock status relative to the LRP. 
There has been a movement towards closed-loop simulation approaches in stock assessment 
and fisheries management worldwide (e.g., de La Mare 1998; Butterworth and Punt 1999; 
Plagányi et al. 2007; Rademeyer et al. 2007; Berkson and Thorson 2015; Geromont and 
Butterworth 2015; Carruthers et al. 2014; Punt et al. 2016). The closed-loop simulation 
approach can be used to provide management advice consistent with the PA Policy objectives 
of avoiding the LRP with a high probability and can be used as a tool to examine the 
consequences of alternative management measures aimed at sustainable management or 
rebuilding depleted stocks (DFO 2019a). Advantages of closed-loop simulation include the 
requirement for an explicit statement of conservation and fishery objectives, against which 
performance of alternative MPs are measured; and the ability to integrate testing of the 
performance of MPs across a range of alternative hypotheses about stock and fishery dynamics 
represented in the OMs. For this latter reason, closed-loop simulation is also a useful tool for 
evaluating performance of MPs in data-limited situations (Carruthers et al. 2014; Carruthers and 
Hordyk 2019; DFO 2020a; Anderson et al. 2021; Haggarty et al. 2022). Simulation testing of 
MPs allows for evaluation of performance across a range of uncertainties in fish stock and 
fishery dynamics, observation error, estimation error, and implementation error (e.g., Kell et al. 
2006; Carruthers et al. 2016). While OMs are best conditioned on available data, a strength of 
closed-loop simulation in the data-limited context is that the OMs can also explore the 
robustness of MPs to plausible stock and fishery dynamics based on expert knowledge 
(Carruthers and Hordyk 2019; Anderson et al. 2021). 
Reference points and stock status are an integral component of closed-loop simulation; 
however, the concept of an LRP may serve multiple roles or definitions in closed-loop 
simulation: 
1. A component of a measurable management objective (e.g., greater than 95% probability of 

SSB > LRP over the long-term) that is defined in each OM and which is used to evaluate 
performance of MPs relative to the objective. 

2. As an explicit metric of stock status to be used for determining whether a rebuilding plan is 
triggered under s 6.2 of the FSP. 

3. An operational control point (OCP) in an MP (e.g., as used in the provisional HCR in DFO’s 
PA Policy; DFO 2009). 
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Each of these three roles is explored below. 
4.2.2.1. LRP Role 1: Component of Management Objectives and Performance Metrics 

The first role of the LRP is as a fully specified objective in the closed-loop simulation framework, 
which includes a probability and a time frame. For example, the operational objective may be 
“P(SSB > LRP) > 95% in each and every year of the long-term component of the projection 
period.” The LRP in this context is defined as a theoretical threshold consistent with the 
objective to avoid serious harm to the stock (e.g., as a fixed proportion of BMSY or B0, or as a 
minimum historical biomass). 
Best practice involves separating OMs into reference and robustness sets of OMs (Rademeyer 
et al. 2007; Punt et al. 2016; Anderson et al. 2021), where the reference set of OMs consists of 
the most plausible hypotheses and the robustness set of OMs consists of hypotheses that are 
less likely but cannot be eliminated entirely and may have high consequence. The specific 
values of LRPs are unique to each OM and simulation replicate under consideration in the 
framework. In this role, the LRP is therefore an implicit component of the performance metrics 
used to evaluate the MPs within each OM and stock status is not typically explicitly reported in 
the advice. The advice provided is with reference to which MPs meet management objectives 
and the trade-offs that ensue relative to the other objectives. 
In closed-loop simulations with multiple OMs, OMs may be weighted, where weights can be 
based on qualitative criteria (Butterworth et al. 1996), or may be quantitative based on model-
selection criteria (e.g., AIC). However, Punt et al. (2016) urged caution in using model selection 
criteria to weight OMs unless there is confidence in the reliability of the likelihood function, which 
is unlikely to be the case in data-limited situations. Placing less plausible OMs into the 
robustness set may be one alternative to weighting of OMs. For example, Anderson et al. 
(2021) calculated performance metrics on average across an unweighted set of OMs in the 
reference set and presented performance metrics from each OM in the robustness set 
calculating performance metrics across operating models (OMs) separately. ICES (2020) 
identify two general approaches for calculating performance metrics across OMs: 

• International Whaling Commission (IWC) approach, and 

• Commission for the Conservation of Southern Bluefin Tuna (CCSBT) approach. 
The IWC approach considers a manageable number of OMs and presents probabilities 
separately for each OM. MPs must meet mandatory management objectives related to the LRP 
for each OM in the reference set (ICES 2020). This has been termed “satisficing” (Miller and 
Shelton 2010), which simplifies the results set by screening out MPs that do not meet 
predefined minimum performance criteria (see also Anderson et al. 2021). The CCSBT 
approach can be applied with a greater number of OMs (but also can be applied to a small 
number of OMs) in a reference set and involves applying a weighting to each OM (e.g., based 
on fit likelihood or expert judgement). Performance statistics using the CCSBY approach are 
calculated across all weighted OMs in the reference set (ICES 2020). 
There are also multiple ways to quantify the probability of dropping below the LRP in a 
performance metric. ICES (2013) describe three approaches that have been used in the past: 

• average annual P(SSB < LRP) over the projection period, 

• P(SSB < LRP) at least once during the projection period, or 

• maximum annual P(SSB < LRP) over the projection period. 
These probabilities can be calculated across all OMs (e.g., CCSBT approach) or separately for 
each OM (e.g., IWC approach) to evaluate performance. The choice of approach will affect the 
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values of performance metrics, which in turn will affect MP selection criteria such as trade-offs 
with other performance metrics. 

4.2.2.2. LRP Role 2: Metric of Stock Status 
Given that closed-loop simulation focuses on LRP Role 1, a challenge under the FSP is how to 
estimate stock status and determine whether a rebuilding plan should be triggered. The FSP 
require the reporting of a single estimate of stock status for each candidate or prescribed fish 
stock. It is sometimes proposed to use an estimated LRP and stock status from the conditioned 
OMs using any of the methods discussed in this document. When a closed-loop simulation 
framework uses a single OM, this may be appropriate; however, when multiple OMs are used, 
these OMs may not represent a balanced set of models to combine or have a single best model 
to choose. In data-limited cases, a closed-loop simulation approach may have been chosen 
because estimated status using alternative methods was considered unreliable (e.g., Carruthers 
and Hordyk 2019, Anderson et al. 2021). In these cases, it is possible an MP can be selected 
that meets conservation and fisheries objectives with a high degree of confidence even if status 
is not well estimated and using the OMs to report status would undermine this form of science 
advice. 
Multiple approaches to defining an indicator of stock status can be used when a closed-loop 
simulation framework is being used to provide harvest advice. A single (e.g., base case) OM 
can be selected to inform stock status that may have the “best” estimates of model parameters 
(e.g., Pacific herring, Clupea pallasii, DFO 2021); however, the full range of uncertainty in status 
will not be captured by a single OM. When OMs have been weighted based on model 
plausibility (e.g., CCSBT approach of calculating performance across OMs), or can be assumed 
equally plausible, an ensemble approach using the weighted average stock status among OMs 
can be used (e.g., Sablefish, Anoplopoma fibria; DFO 2020b). Although an estimate of stock 
status can be obtained from the OMs over the historical time period using this approach, 
updates of stock status would not be estimated during the period for which an MP is selected 
and applied. A trigger for changes in stock status during this period could be identified through 
exceptional circumstances in the framework process (e.g., Carruthers and Hordyk 2019; DFO 
2018a), which could result in an evaluation of the MP and reconditioning of OMs. 
When OMs may not represent a balanced set of models to combine or a single best model 
cannot be determined (e.g., data-limited scenarios, or the IWC approach of calculating 
performance across OMs), stock status may be determined using a weight-of-evidence 
approach (Section 2.12) based on the conditioned OMs (e.g., Inside and Outside Yelloweye 
Rockfish, Sebastes ruberrimus, DFO 2020a, DFO 2020c, Anderson et al. 2021). This follows 
the advice of Kronlund et al. (2021), who drew on precedent by Health Canada (2018), for a 
weight-of-evidence approach. If the conditioned OMs suggest a high probability of a fish stock 
being below its LRP across a range of plausible OM assumptions or if the best performing MPs 
have a low probability of maintaining the stock above the internal LRP (Role 1) in the near 
future, this contributes to the weight-of-evidence that can trigger a rebuilding plan. 
An alternative approach to reporting stock status when a closed-loop simulation framework is 
used is to use an empirical indicator (e.g., survey index or empirical index of biomass), outside 
of the analytical modelling framework. This approach has been used for Western-component 
Pollock (Pollachius virens; DFO 2011), Atlantic herring (Clupea harengus; DFO 2022b), and 
Atlantic halibut (Hippoglossus hippoglossus; DFO 2023b) where a survey index is used as the 
indicator of stock status and is also used to determine catch limits in the MP. 
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4.2.2.3. LRP Role 3: Operational Control Points 
When a reference point is used as an OCP in an MP (e.g., the provisional HCR in the PA Policy, 
DFO 2009), it is important to distinguish its role as a trigger for management action from that as 
the threshold in a measurable objective. To avoid confusion, alternative terms, e.g., “lower 
OCP” or simply “fishing cutoff” have been used to represent the role of the LRP as an OCP in a 
harvest control rule (Kronlund et al. 2018; Forrest et al. 2018). 

4.3. CHANGE IN STOCK STATUS 
Stock status estimates (biomass relative to the LRP: B/LRP) can change between assessments 
due to many factors, which include: acquisition of new or previously unavailable data; a change 
in analytical methods or model assumptions; or a change in the choice of reference points. 
Changes can be classified by source, as changes due to the monitored state (i.e., the 
numerator of B/LRP) or policy goal (i.e., the denominator of B/LRP) (Silvar-Viladomiu et al. 
2021), or both the numerator and denominator through changes in analytical methods. Changes 
in stock status between assessments can be common. Silvar-Viladomiu et al. (2021) found 
reference points (based on F or biomass) changed between sequential assessments for 64% of 
124 ICES stocks evaluated between 2011 to 2019. The two most important predictors for 
changes in status of biomass reference points were re-evaluation of the technical basis of the 
LRP and how assessment uncertainty was accounted for. There was no directional trend in the 
change in stock status that would represent a movement towards or away from sustainability 
(Silvar-Viladomiu et al. 2021). 
Understanding and communicating the general causes for the change in status between 
assessments aligns with understanding and communicating the sources of uncertainty (Section 
3.1) affecting the advice. Even slight changes in an estimate of a model parameter (e.g., h) 
could have significant implications on the estimated stock status. Inclusion of sources of error 
may result in more reliable estimates of stock status that may deviate from previous 
assessments. 
Retrospective patterns are systematic changes in estimates of biomass or other model-
estimated quantities that occur from the sequential addition or removal of a full year of data 
(Mohn 1999). Evaluation of potential retrospective patterns in stock assessment is a common 
way of diagnosing impacts of new data and possible structural error in the model. Temporal 
changes in model parameters (e.g., non-stationarity due to changes in productivity) is one 
cause of retrospective patterns that can result in model misspecification (e.g., Hurtado-Ferro et 
al. 2015; Szuwalski et al. 2018). The influence of retrospective on management advice can be 
explored using closed-loop simulation (Huynh et al. 2022). 
The best available science and the guidance provided by DFO evolves over time. Changes in 
stock status due to changes in the LRP may reflect a change in methods (e.g., from a proportion 
of BMSY to a proportion of B0) or changes that reflect non-stationarity due to changes in 
productivity (e.g., regime shifts and long-term climate drift; ICES 2022). Changes in productivity 
can have a large influence on estimated reference points (e.g., BMSY, B0) due to change in 
parameters such as growth and recruitment (e.g., Barrett et al. 2022). The ICES approach for 
dealing with uncertainty in biological parameters (e.g., density dependence and changes in 
productivity) is to update reference points every benchmark (i.e., assessment framework, 3-5 
years; ICES 2022); however, specific guidance from DFO varies from this. For example, the PA 
Policy (DFO 2009) suggests using the longest possible time series and to include high 
productivity periods in consideration of reference points. Conclusions from a DFO (2013) 
workshop on MSY reference points and the PA when productivity varies included “changes in 
recruitment rates, natural mortality, fecundity, or growth rates are not considered to be 
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appropriate reasons to change biomass limit reference points”. Guidance on defining reference 
points when there are changes in productivity is outside the scope of this paper (see Section 
5.1), but changes in productivity may be an important explanatory factor to changes in stock 
status. 
Marentette et al. (unpublished working paper) recommend that indicators and LRPs be re-
evaluated when a new advisory framework (e.g., a new assessment model) or management 
paradigm (e.g., initiation of an MSE) is undertaken. The recommended approach to address 
changes in stock status is provided by Marentette et al. (unpublished working paper) and is 
based on clearly communicating the Science advice: (i) document the technical specifications 
and supporting rationales for the choice of indicator and LRP; (ii) document key uncertainties 
and assumptions; (iii) report stock status as the ratio of the indicator to LRP; and iv) evaluate 
the influence of various sources (e.g., additional data, model assumptions, technical basis for 
the LRP) on changes in stock status. 

5. WHERE FURTHER WORK IS NEEDED 

5.1. GUIDANCE ON TIME VARYING REFERENCE POINTS 
Equilibrium reference points are influenced by non-stationary or regime shifts in key model 
productivity parameters such as M (Punt et al. 2021; O’Leary et al. 2020), growth (Barrett et al. 
2022), and recruitment (A’mar 2009a,b; Maunder and Thorson 2019; Holt and Michielsens 
2020). Equilibrium assumptions may also underlie many historical or empirical reference points. 
Management decisions based on static equilibrium reference points may not reflect stock 
dynamics in the future (Haltuch et al. 2009; O’Leary et al. 2020). Dynamic reference points have 
been proposed as one solution to address temporal changes in productivity parameters (Berger 
2019). A dynamic B0 can be defined as the biomass at any point in time that would have 
resulted if no fishing had occurred (MacCall et al. 1985). The dynamic B0 time series can be 
estimated using the parameters of a stock assessment model and projecting the population 
forward over the same time period with F = 0 which makes an implicit assumption that temporal 
changes in biological parameters (e.g., M, weight-at-age, maturity-at-age, and recruitment) are 
independent of fishing and are not density-dependent (Berger 2019). These assumptions can 
be challenged and a continuous decrease in reference points over time due to a change in 
productivity seems in conflict with the objective of the definition of the LRP to avoid states of 
serious harm. Frequent changes to reference points may undermine trust in the management 
process (Walters 1998; Collie et al. 2012) and distract from more important components of the 
management process (Hilborn 2002). There is likely no one rule on when and how to use time-
varying reference points, and their use will depend on the degree to which drivers of population 
dynamics are understood (Basson 1999; Haltuch and Punt 2011). Guidance on time-varying 
reference points is outside the scope of this paper but guidance is needed in the future. 

5.2. POLICY GUIDANCE FOR LRPS BASED ON A PROPORTION OF B0 
The default policy guidance for LRPs in Canada is 0.4 BMSY. In some situations, e.g., when h is 
high, 0.4 BMSY can occur at a low level of depletion where other forms of serious harm may 
occur (Section 2). Other jurisdictions have set minimum LRPs in terms of B0 (e.g., DAWR 2018: 
0.2 B0) or have made recommendations for considering setting a minimum LRP (ICES 2022, 0.1 
B0) for this reason. Given that reference points based on B0 are commonly used in Canada 
(Marentette et al. unpublished working paper), default policy guidance for LRPs based on B0 is 
recommended for future consideration in Canadian harvest strategy policies (in addition to the 
existing guidance of 0.4 BMSY). 
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6. CONCLUSIONS 
To support the process of choosing LRPs and estimating stock status, Marentette et al. 
(unpublished working paper) identified the need for technical guidance on various aspects of 
estimating reference points, considerations for selecting candidate indicators of stock status and 
LRPs, and options for reporting a single stock status (Section 1.2). These were addressed 
herein and the following recommendations are provided: 

• Evaluate several candidate LRPs and look for agreements/disagreements among methods 
(van Deurs et al. 2021; ICES 2022). 

• When the functional form of the SRR and/or estimates of h are highly uncertain, consider 
defining an LRP: 
o using a proxy for BMSY (ICES 2022); 
o using an ensemble from multiple models that capture model (structural) uncertainty. 

• When h is assumed to be high, LRPs based on a proportion of BMSY may be below the 
minimum observed historical biomass or below a threshold for other sources of serious harm 
so consider: 
o setting a minimum LRP in terms of B0 (e.g., 0.2 B0, DAWR 2018; 0.1 B0, MF 2008; ICES 

2022) to avoid low depletion or the potential for Allee effects (e.g., at a threshold of 0.15-
0.25 B0, Perälä and Kuparinen 2017; Perälä et al. 2022); 

o using a proxy for BMSY (e.g., B0 or equilibrium biomass at FX%SPR); or 
o using a historical biomass (e.g., Brecover, Bloss) or another threshold that represents an 

undesirable state. 

• Consider using closed-loop simulation with multiple OMs to capture a range of uncertainty in 
stock and fishery dynamics, incorporate feedback between MPs and stock outcomes, and 
provide harvest advice in compliance with the PA Policy and the FSP. 

• There are many data-limited approaches to estimating LRPs and stock status, all of which 
require assumptions that should be given careful consideration depending on the stock life-
history, fishing history, and data-availability. 

• Catch-only methods are generally not recommended for assessing individual stock status, 
but can provide a preliminary source of information in data-limited situations. 

• For data-limited stocks, consider using closed-loop simulation methods to evaluate 
performance of alternative data-limited MPs over a range of uncertainties in stock and 
fishery dynamics. 

• When multiple models (assessment models or OMs) can be equally weighted or plausibility 
weights have been determined, these weights can be used in an ensemble approach to 
estimate stock status while capturing model uncertainty. 

• If plausibility weights are not available for multiple models (e.g., IWC approach of estimating 
performance using closed-loop simulation), an indicator of stock status can be selected from 
a single base-case or most pessimistic model (understanding that model uncertainty is not 
captured) or using an empirical indicator. 

• LRPs should be re-evaluated during each advisory framework review. 

• Clearly communicate the advice on stock status and the LRP so sources of any changes in 
stock status between assessments can be understood. 
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APPENDIX A: DATA-RICH ESTIMATION METHODS FOR B0 AND BMSY 

Here, we define data-rich methods to estimate B0 and BMSY as those used in analytical 
assessments (i.e., supported by age-structured, size-structured, or surplus production models). 
Estimates of stock parameters (e.g., h and M) and reference points can still be highly uncertain 
in data-rich scenarios. Stock-recruit estimates are generally highly variable and the functional 
form of the SRR is usually unknown. Estimates of BMSY depend on model assumptions and 
proxies for BMSY may be more reliably estimated. Various thresholds for recruitment overfishing 
have been defined based on replacement F, change points estimated from segmented 
regressions, and generic rules of thumb (e.g., 0.2 B0 or biomass at 50% of maximum model 
estimated recruitment from a SRR). Potential solutions to capturing uncertainty in the SRR in 
estimates of stock status include fitting multiple assessment models with different SRRs or 
capturing different hypotheses about the SRR in alternative operating models. Estimates of 
stock status from multiple models can be combined using ensemble (model averaging) 
methods. 

A.1. AGE- OR SIZE-STRUCTURED MODELS WITH A STOCK RECRUITMENT 
RELATIONSHIP 

A.1.1. Stock Recruitment Relationships 
Stocks that use age- or size-structured analytical models generally assume a SRR and describe 
the population and fishery exploitation pattern based on age- or size-structure. This section 
addresses SRR for iteroparous species but semelparous species also use SRRs for which 
reference points can be estimated directly from the SRR parameter estimates (see Section 2.8). 
A common SRR is the BH model (Beverton and Holt 1957): 

𝑅𝑅(𝐵𝐵) = 𝛼𝛼𝛼𝛼
1+𝛽𝛽𝛼𝛼

       (A.1) 

where recruitment (R) is modelled as a function of two parameters 𝛼𝛼 (the slope near the origin, 
or maximum survival rate) and 𝛽𝛽 (which determines the degree of density-dependence), and 
biomass (B, usually SSB) for which recruitment increases to an asymptotic value of 𝛼𝛼/𝛽𝛽.  

Another common SRR is the Ricker model (Ricker 1954): 

𝑅𝑅(𝐵𝐵) = 𝛼𝛼𝐵𝐵𝑒𝑒−𝛽𝛽𝛼𝛼      (A.2) 

also a function of 𝛼𝛼 and 𝛽𝛽. The 𝛼𝛼 has the same interpretation as the BH model, while the 𝛽𝛽 
parameter is also a density-independent parameter that determines the degree of density 
dependence, including “over-compensation”, where R can decline at high biomass (Figure A.1). 
Alternative parameterizations of (A.1) and (A.2) are also commonly used (e.g., Hilborn and 
Walters 1992; Mangel et al. 2010), including parameterizations based on h. For example, a 
version of the BH model using the h parameterization is (Dorn 2002; Miller and Brooks 2021): 

𝑅𝑅(𝐵𝐵) = 4𝑅𝑅0ℎ𝛼𝛼
(1−ℎ)𝑅𝑅0𝜑𝜑0+(5ℎ−1)𝛼𝛼

      (A.3) 

where 𝜑𝜑0 is the unfished (spawning stock) B per recruit (where 𝜑𝜑0 = B0/R0). A version of the 
Ricker model using the h parameterization is (Miller and Brooks 2021): 

𝑅𝑅(𝐵𝐵) = 𝛼𝛼
𝑅𝑅0

(5ℎ)
5
4�1−

𝐵𝐵
𝑅𝑅0𝜑𝜑0

�     (A.4) 

The parameterization of the SRR in terms of h is convenient for practitioners due to the 
interpretation of h in terms of the resilience of the stock (greater resilience corresponds to higher 
h), where h is a standardized measure of productivity that appears to be comparable among 
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stocks (Dorn 2002; Miller and Brooks, 2021). The h parameterization of the BH SRR implicitly 
assumes that the productivity of recruited individuals (through the 𝜑𝜑0 term of Eqn. A.3 and A.4) 
is constant, in addition to the assumed constant pre-recruit mortality rate. With estimates of h 
and R0, one can derive B0 (from Eqn. A.3 or A.4) and specify the SRR. Estimates of h can be 
supported from results obtained from meta-analyses (e.g., Myers et al. 2002; Dorn 2002; 
Michielesens and McAllister 2004; Forrest et al. 2010; Sherzer and Conn 2012; FishBase, 
Froese and Pauly 2022) or h can be defined explicitly or as a range of plausible values in a 
Bayesian approach (Mangel et al. 2010). Commonly, one of these approaches is used to 
develop a prior probability distribution within a Bayesian stock assessment model. 
In some cases, SRR parameters may be time-varying (van Deurs et al. 2021), making 
estimation of reference points challenging. Miller and Brooks (2021) note that many applications 
of SRRs violate the important assumptions underlying the derivation of the SRR (e.g., constant 
𝜑𝜑0). When the components of 𝜑𝜑0 (i.e., M-at age, maturity-at-age, and weight-at-age) change 
over time then h implicitly also changes over time. In this situation the α, β parameterization of 
the SRR could be one approach to avoid misinterpretation of the SRR (Miller and Brooks 2021) 
and resulting bias in the estimates of MSY reference points. 
The variability in the SRR data, uncertainty in the functional form of the SRR, and/or uncertainty 
in the SRR parameter estimates may be so large that candidate LRPs that rely on the SRR 
parameter estimates may be unreliable (Myers et al. 1994; van Deurs et al. 2021). Reliability of 
BMSY estimates depend strongly on model parameters, especially h and M. When the 
assumptions concerning h of the SRR are unsupported, alternative metrics and proxies for BMSY 
(e.g., proportions of B0 or equilibrium biomass at FX%SPR; Section 2.2) may be more credible 
than direct estimates of BMSY (MF 2011). Similarly, when h is fixed (i.e., not estimated in an 
assessment model), BMSY should not be used as the basis for reference points (Punt 2008). 
Trijoulet et al. (2021) suggested that MSY-based reference points should not be used if the SRR 
is poorly estimated or the MSY reference points are not estimated with confidence. This is 
echoed by the Western and Central Pacific Fisheries Commission (WCPFC) guidance for 
defining LRPs based on the reliability of h in the SRR (Preece et al. 2011). The WCPFC 
recommends: using a proportion of BMSY if a reliable estimate of h is available; 0.2 B0, 0.2 
Bunfished, or a proportion of the equilibrium biomass based on F%SPR if h is not well estimated or is 
unknown; and 0.2 B0 or 0.2 Bunfished if key biological and fishery parameters are not well 
estimated or known (Preece et al. 2011). 
High variability in recruitment is typical of short-lived, fast-growing, and early maturing small 
pelagic fish (van Deurs et al. 2021). Extrinsic factors may be more important drivers of 
recruitment than SSB for some stocks. For example, Brosset et al. (2019) found that physical 
and biological environmental variability was a significant predictor of recruitment of spring 
spawning herring (Clupea harengus) in the Gulf of St. Lawrence, while SSB was not a 
significant predictor of recruitment. Short-lived stocks with volatile dynamics may pose 
challenges for LRP estimation due to changes in the SRR over time (van Deurs et al. 2021). 
High variability in recruitment and a lack of stock-recruit data at low biomass can mask the 
underlying SRR. When there is no SRR apparent in the stock-recruit data, the assumption of h 
approaching 1 implies productivity approaching infinity which is biologically unreasonable, and 
also risk-prone in terms of setting reference points (Mangel et al. 2013). If a high h is assumed, 
BMSY estimates can be extremely low (Myers et al. 1994) and candidate LRPs based on proxies 
may need to be considered (see Sections B.1 and 2.4). 
An alternative approach to estimating stock status that addresses the uncertainty in the SRR is 
to combine estimates from multiple models with different structural assumptions using model 
ensemble approaches (see Section 4.2). 
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Figure A.1. Example dataset of stock (SSB) and recruit (recruitment) pairs fit to different functional forms 
of the stock recruitment relationship a) Beverton-Holt, b) Ricker, and c) hockey stick (segmented 
regression) 

A.1.2. Natural Mortality Rate 
M is considered one of the most important parameters in stock assessment but is difficult to 
estimate (Hamel 2015; Then et al. 2015; Punt et al. 2021). Uncertainty in M, is influenced by 
time varying processes such predation, food availability, disease, and environmental effects 
(Punt et al. 2021). An additional challenge in estimating M is that it is confounded with h and the 
growth-rate, and it also declines in selectivity with increasing age (Punt et al. 2021). M is a 
function of age and sex, but commonly assumed to be a constant in assessment models. M 
may be fixed, or estimated within an assessment model for which priors on M may be assumed. 
Estimates of M influence estimates of B0 and MSY reference points. In general a higher M 
results in a higher estimate of B0, a higher FMSY, a lower estimate of BMSY, and a lower ratio of 
BMSY/B0 (He et al. 2011; Szuwalski and Punt 2012; Punt et al. 2021). Although the magnitude of 
the reference points are influenced by M, estimates of BMSY depend strongly on h and are not 
impacted substantially by M when h is correctly specified (Punt et al. 2021). He et al. (2011) 
conducted a simulation study using an age-structured model and found that misspecification of 
M influenced B0 estimates but had a negligible effect on depletion estimates (i.e., changes in M 
scale both current biomass and B0). However, when M is time-varying, bias in M can influence 
depletion estimates if terminal year M differs from M assumed over the period used to define B0 
(Johnson et al. 2015). 

A.1.3. Selectivity 
Fishery selectivity-at-age relative to maturity-at-age influences estimates of MSY-based 
reference points (Myers and Mertz 1998; Punt et al. 2014). Increased yields and lower 
probabilities of stock collapse have been demonstrated by adjusting the selectivity-at-age or 

c) 

b) a) 
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selectivity-at-size, usually to reduce the harvest of juveniles (e.g., Myers and Mertz 1998, 
Froese et al. 2016; Vasilakopoulos et al. 2016; Prince and Hordyk 2019). The mechanism 
through which increasing the age- or size-at-first-capture promotes sustainability is by 
preventing growth overfishing and recruitment overfishing (Vasilakopoulos 2020). There is a 
trade-off between fishing mortality rate and selectivity, such that a higher F can be sustained 
when catching larger fish but catching too many juvenile fish can lead to stock depletion at 
moderate levels of F (Prince and Hordyk 2019; Vasilakopoulos et al. 2016). Therefore, a 
selectivity that targets larger fish will lead to a higher FMSY and therefore a lower BMSY. Changes 
to selectivity do not influence estimates of B0. 

A.2. SURPLUS PRODUCTION MODELS 
In the absence of size- or age-structured data, surplus production models implicitly capture the 
combined effects of recruitment, growth, and M in a single parameter r (the intrinsic rate of 
population growth). In these models, the exploitation rate is simply the ratio of catch to stock 
biomass so the stock biomass is assumed to be the exploitable biomass. Surplus production 
models rely on the assumption that the predicted surplus production of a population depends on 
population size. Production models require at minimum a times series of catch-per-unit-effort 
(CPUE) and total catch and work best when there is considerable contrast in effort, biomass, 
and catch rate (Hilborn and Walters 1992; ICES 2018). These models can be criticized for being 
overly simplistic since they do not account for size-structure, varying recruitment, or changes in 
selectivity, which can result in lags in population responses to perturbations such as fishing 
(DFO 2016); however, they may be the best available approach when only size-aggregated 
data are available and SRRs cannot be estimated. MSY reference points can be estimated 
directly from surplus production models. The most common surplus production model is based 
on the Schaefer (1954) production model: 

𝐵𝐵𝑜𝑜+1 = 𝐵𝐵𝑜𝑜 + 𝑟𝑟𝐵𝐵𝑜𝑜 �1 − 𝛼𝛼𝑡𝑡
𝐾𝐾
� − 𝐶𝐶𝑜𝑜      (A.5) 

where 𝐵𝐵𝑜𝑜 in this case represents total biomass at time t, r was defined above, K represents the 
population carrying capacity, and 𝐶𝐶𝑜𝑜 is the catch removed in year t. This version of the surplus 
production model assumes a symmetric production vs. biomass curve such that BMSY = 0.5 K. 
More flexible production models exist that deviate from the symmetric production vs. biomass 
curve. Another common model is based on the Fox (1970) production model: 

𝐵𝐵𝑜𝑜+1 = 𝑟𝑟𝐵𝐵𝑜𝑜𝑙𝑙𝑙𝑙 (𝐾𝐾) �1 − 𝑙𝑙𝑖𝑖 (𝛼𝛼𝑡𝑡)
𝑙𝑙𝑖𝑖 (𝐾𝐾)

� − 𝐶𝐶𝑜𝑜     (A.6) 

which has a production vs. biomass curve that is skewed to the right such that BMSY ~ 0.37 K 
(0.4 BMSY = 0.144 B0). The Pella-Tomlinson production model (Pella and Tomlinson, 1969) is 
more flexible with an additional shape parameter that is equivalent to the Schaefer production 
model when m = 2 and reduces to the Fox model as m approaches 1 (Quinn and Deriso 1999): 

𝐵𝐵𝑜𝑜+1 = 𝐵𝐵𝑜𝑜 + 𝑟𝑟
𝑚𝑚−1

𝐵𝐵𝑜𝑜 �1 − �𝛼𝛼𝑡𝑡
𝐾𝐾
�
𝑚𝑚−1

� − 𝐶𝐶𝑜𝑜    (A.7) 

BMSY can be calculated directly from the m parameter (Table A.1). The default DFO PA Policy 
guidance of 0.4 BMSY as an LRP can result in low depletion for the Fox and Pella-Tomlinson 
models (DFO 2016). An LRP of 0.2 K was suggested as an LRP for these models by DFO 
(2016).  
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Table A.1. Estimates of BMSY and FMSY from biomass dynamics models. 

Model BMSY FMSY 

Schaefer 0.5 𝐾𝐾 0.5 𝑟𝑟 

Fox  𝑒𝑒−1𝐾𝐾 𝑟𝑟 

Pella-Tomlinson 𝑚𝑚−� 1
𝑚𝑚−1�𝐾𝐾 

𝑟𝑟
𝑚𝑚 − 1

�1 −
1
𝑚𝑚
� 

Notes: K = carrying capacity (B0); r = intrinsic rate of population growth rate; m = Pella-Tomlinson shape 
parameter; e = Euler’s number; MSY is estimated as the product of BMSY and FMSY. 

Criticisms of surplus production models include the possible problem that they do not account 
for reductions in the rate of recruitment at low biomass (Froese et al. 2017) and that they 
assume that the rate of change of biomass over time increases as biomass approaches zero 
(Schnute and Richards 2002). A solution to this shortcoming is to add a SRR to the production 
model. There are multiple approaches to do this (e.g., McAllister et al. 2001; Schnute and 
Richards 2002, Mangel et al. 2013). A simple approach proposed by Froese et al. (2016) 
assumes constant recruitment above a proportion (Plim) of K and that recruitment declines 
linearly below Plim to zero, consistent with the hockey stick SRR (ICES 2021a; Figure A.1). This 
approach results in the following model (Froese et al. 2016): 

𝐵𝐵𝑜𝑜+1 = 𝐵𝐵𝑜𝑜 + 𝑟𝑟
𝑚𝑚−1

� 𝛼𝛼𝑡𝑡
𝑃𝑃𝑙𝑙𝑖𝑖𝑙𝑙𝐾𝐾

�𝐵𝐵𝑜𝑜 �1 − �𝛼𝛼𝑡𝑡
𝐾𝐾
�
𝑚𝑚−1

� − 𝐶𝐶𝑜𝑜  if 𝛼𝛼𝑡𝑡
𝐾𝐾

 < 𝑃𝑃𝑙𝑙𝑖𝑖𝑚𝑚   (A.8) 

where Plim in the range of 0.2 – 0.25 represents a threshold for recruitment overfishing (i.e., 
recruitment declines linearly to zero below 0.2 – 0.25 B0). 
The stochastic surplus production model in continuous-time (SPiCT; Pedersen and Berg, 2017) 
is a more advanced model based on the Pella-Tomlinson formulation but allows for observation 
error in catch and includes one or more abundance indices (e.g., CPUE, biomass, survey 
indices) to estimate stock parameters such as depletion, biomass, and F. The continuous-time 
formulation of the model can accommodate arbitrary and irregular data sampling (e.g., when 
catch and biomass indices do not match temporally). The surplus production models in SPiCT 
use biomass indices to estimate K, which helps scale the trends in F and biomass (instead of 
relying on depletion priors like catch-only methods; Appendix C). The K parameter cannot be 
well estimated when the index time series does not extend back to the beginning of the fishery 
(Punt and Szuwalski, 2012) or does not have sufficient contrast in biomasses over the time 
series (Ono et al. 2012). Priors for depletion at the beginning of the time series are important 
when the catch and index time series begin after a period of high exploitation (Bouch et al. 
2021). SPiCT models provide estimates of MSY reference points and include estimates of 
uncertainty (95% confidence intervals). Bouch et al. (2021) compared SPiCT evaluations to 
ICES stock status determination from 17 assessed stocks from the Celtic, Irish, and North Seas 
and found that SPiCT predicted lower relative F (15 of 17 stocks) and higher relative biomass 
(15 of 17 stocks) when compared to their respective ICES assessment results, which suggests 
an increased risk of generating overly optimistic results. The SPiCT modelling package 
(Pedersen and Berg, 2017) includes diagnostics to evaluate model assumptions. Additionally, 
SPiCT is included as a suggested resource in the guidance for ICES Category 3 and 4 stocks 
(ICES 2018). 
An intermediate between age-structured models and biomass-dynamic models is the delay-
difference model (Deriso 1980; Schnute 1985; Hilborn and Walters 1992). The delay-difference 
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model is essentially a collapsed age-structured model that tracks the effects of recruitment, 
survival, and growth on biomass, without requiring a fully age-structured framework, and can 
perform well, as long as its major assumptions are met, which include growth in mean body 
weight follows the Ford-Walford equation; fishery selectivity-at-age and maturity-at-age are 
knife-edged (i.e., fish mature at the same age, ak, they become vulnerable to the fishery, and all 
fish aged ak and older are equally vulnerable to fishing gear); and constant M-at-age (Hilborn 
and Walters, 1992). Reference points in the delay-difference model are calculated using the 
same equations as for age-structured models, with the advantage that the models can be fit 
without size or age composition data (e.g., Forrest et al., 2020). However, it is advantageous if 
there are enough size and age data to estimate growth parameters and to have an 
understanding of the likely age at which fish mature and become vulnerable to the fishery. 
Estimates of MSY-based reference points made using delay-difference models are subject to 
the same uncertainties described for age-structured models (e.g., uninformative SRR) and may 
also be biased if the assumptions of the delay-difference model are violated. For example, 
Forrest et al. (2018) used a delay difference model to estimate the biomass of Pacific cod 
(Gadus macrocephalus) stocks, but used reference points based on historical estimates of 
biomass and fishing mortality. 

APPENDIX B: DATA-LIMITED ESTIMATION METHODS FOR B0 AND BMSY 

Here, we define data-limited methods to estimate stock status as those that lack data or the 
quality of data typical of the data-rich methods in Appendix A (i.e., age- or size-structured data 
or the index of abundance used in biomass dynamics models). These include using empirical or 
theoretical proxies for B0 and BMSY, historical biomass levels, catch-only methods, and 
evaluating the performance of harvest strategies using closed-loop simulations. Many Canadian 
stocks that lack reference points are data-limited. Empirical and theoretical proxies for B0 and 
BMSY may be estimated in some cases. Catch-only methods can provide estimates of stock 
status relative to B0 and BMSY; however, they have generally been used to estimate global trends 
in stock status and have been shown not to be a reliable method of assessing individual stocks. 
A closed-loop simulation approach is a robust alternative to using empirical proxies (that may 
not capture uncertainty in the estimate of stock status) or methods that rely on strong model 
assumptions (that may not be valid) or priors (that may not be reliably determined). 

B.1. PROXIES FOR B0 AND BMSY 

B.1.1. Theoretical Proxies for BMSY 
The F that maximizes yield-per-recruit (YPR) is Fmax and it has been used as a basis for 
reference points. However, Fmax represents a threshold for growth overfishing (where fish are 
harvested before they reach a size that enables the population to reach biomass levels needed 
to achieve MSY) and, as such, may exceed a threshold for recruitment overfishing (Shelton and 
Rice 2002). Fmax is always greater than or equal to FMSY, which can lead to overfishing and 
result in excessive depletion (Sainsbury 2008) and is therefore not recommended as a proxy for 
FMSY. A more conservative alternative to Fmax is F0.1 (proposed by Gulland and Boerema 1973) 
which is the level of F found where the slope of the YPR vs. F curve is 10% of the slope of the 
curve at its origin. DFO’s PA Policy suggests the equilibrium biomass at F0.1 as a possible proxy 
for BMSY (DFO 2009), but the choice of 10% is arbitrary, sensitive to assumptions about growth 
and M. F0.1 can overestimate FMSY in some cases (Mace and Sissenwine 1993, Myers et al. 
1995b). Mace (2001) recommended against using F0.1 without understanding how well it relates 
to FMSY. 
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B.1.2. BMSY Proxies based on Natural Mortality Rate (M) 
A general rule of thumb has been to assume that FMSY is approximately equal to M and 
therefore BMSY is approximately equal to the equilibrium biomass at F = M (e.g., Francis 1974, 
Mace 1994; Froese et al. 2016). However, it has been noted that such proxies are often 
considered in largely data-limited scenarios where it may not be possible to reliably estimate M 
either (Gabriel and Mace 1999). Zhou et al. (2012) conducted a meta-analysis of 245 fish 
species to evaluate the relationships between FMSY (and FMSY proxies) and life-history 
parameters, including M. They concluded that M was the most important life-history parameter 
influencing F reference points, and that the best model for teleosts was FMSY = 0.87M (standard 
deviation = 0.05). While this represents an average result from a meta-analysis, FMSY has been 
shown to be closer to 0.5M for some stocks (Walters and Martell 2002), especially pelagic 
species (Patterson 1992). 

B.1.3. Historical, Empirical, or Other Proxies for B0 and BMSY 
Candidate historical or empirical LRPs can be defined based on: 

• a BMSY proxy, defined by  
o the mean or median value of an indicator over a historical time period when the indicator 

is high and catches are high; or 
o the mean or median value of an indicator over a productive period. 

• a B0 proxy, defined by  
o the mean/median (or maximum) value of the indicator over a historical time period 

reflecting the beginning of exploitation. 

• A historical low biomass state: 
o from which the stock recovered to above average levels; 
o or that is agreed by managers and resource users to be an undesirable state to avoid. 

It may be reasonable to select a historical time period to approximate either B0 or BMSY using 
either estimated abundance or biomass, or an empirical stock indicator (e.g., survey index or 
CPUE) that is assumed to be proportional to biomass or abundance. An understanding of 
historical fishing pressure is needed to properly interpret the historical proxies for either B0 or 
BMSY (NAFO 2004). Understanding the relationship between an empirical indicator and biomass 
(or abundance) and accounting for environmental variability are important when considering 
potential indicators of stock status. For example, Murray and Seed (2010) found that CPUE 
could not be used as a proxy for green crab (Carcinus maenas) abundance due to the influence 
of temperature on crab activity levels and catches. Standardization of an indicator (by season or 
temperature) may be necessary to ensure the indicator is reflective of abundance (e.g., Cook et 
al. 2020). 
The maximum population size (estimated or inferred) can be used as a historical proxy for B0 or 
K (e.g., marine mammals; Stenson et al. 2012, DFO 2016), particularly if the indicator starts at 
the beginning of the exploitation time series. A provisional estimate for BMSY is 50% of the 
maximum population size as suggested by the PA Policy (DFO 2009). If there are no data on 
recruitment, some function of CPUE might be used, but only if information on resource 
conditions prior to or shortly after the onset of fishing are available (Gabriel and Mace 1999, 
Restrepo et al. 1998). 
If the stock already has some history of exploitation and has declined from B0 to a stable 
biomass assumed to be BMSY, then the highest observed indicator value may instead serve as a 
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proxy for BMSY (NAFO 2004). Therefore, the use of the highest observed indicator value as a 
proxy for B0 or BMSY relies on expert judgement on the interpretation of the ratio of B/B0 at the 
beginning of the index time series. 
As an alternative to using a maximum value as a proxy for BMSY, the mean or median value of 
an indicator over a productive period (DFO 2009) may serve as a proxy for BMSY (DFO 2016), 
given that BMSY is attained when fishing at FMSY on average, under equilibrium conditions. The 
choice of productive period can be subjective (Smith et al. 2012) but should be from a period 
when both indicators and catches are high (MF 2011). If both biomass estimates and catch data 
are available, estimates of surplus production can be investigated for evidence of MSY (DFO 
2016). If a reference period is used to approximate MSY from fishery-dependent indices such as 
CPUE, catches or landings indicators, there should be no evidence that abundance was 
declining during that time (Gabriel and Mace 1999). That is, both CPUE and catches should 
have been relatively high and CPUE is considered reasonably proportional to stock size (MF 
2011), suggesting biomass was relatively high and recruitment stable (DFO 2008). Regardless 
of the approach chosen, expert judgement is needed to support the choice of LRP. 
LRPs can also be based on estimated historical biomass states without consideration of their 
relationship to B0 or BMSY. For example, a historical LRP for Pacific rock sole (Lepidopsetta spp.) 
was set at the minimum biomass for the period 1996-2005, when the stock was agreed to be 
low (DFO 2014; Holt et al. 2016). The LRP for Area 3CD Pacific cod (Forrest et al. 2020; DFO 
2019b) is based on the estimate of the lowest historical biomass from which the stock recovered 
to above average levels. The LRP for Area 5ABCD Pacific cod is based upon an agreed 
historical low biomass state to be avoided, where the year of this state (2000) was agreed at the 
regional peer review meeting (DFO 2019b). 

B.2. CATCH-ONLY APPROACHES 
Many stock assessment methods have been developed for data-limited stocks that rely only on 
catch data. These methods can produce estimates of biomass relative to BMSY or B0. There is, 
however, controversy over the use of catch-only methods for estimating stock status (e.g., 
Branch et al. 2011, Pauly et al. 2013). Catch-only methods assume that trends in catch are 
indicative of trends in abundance or biomass. In developing fisheries, the catch is assumed to 
be initially low, increase over time in heavily exploited fisheries, decrease in overexploited 
fisheries, and decline when the fishery collapses (Branch et al. 2011). This assumption has 
been debated (e.g., Worm et al. 2006, Branch et al. 2011) since there are many other factors 
that may influence catch rates (e.g., management regulations, changes in market demand and 
fuel prices, natural disasters; Branch et al. 2011; Kleisner et al. 2013). Furthermore, data-limited 
stocks sometimes only have data on landings and assumptions must be made regarding the 
magnitude of discards (Rosenberg et al. 2014). 
A recent review of 11 data-limited methods for estimating stock status evaluated their 
performance on data-rich stocks as well as simulated fisheries data (Free et al. 2020). The 
authors found that the catch-only methods they evaluated produced biased and imprecise 
estimates of relative depletion, especially for stocks that were lightly exploited. Catch-only 
methods have been developed primarily to assess the global status of unassessed stocks (e.g., 
Costello et al. 2012; Kleisner et al. 2013; Palomares et al. 2020). Given current interest in the 
application of catch-only methods for estimating stock status, a brief review of the catch-only 
methods described by Free et al. (2020) is provided in Appendix C. However, these methods 
have not proven to be a consistently reliable method of assessing individual stocks (Carruthers 
et al. 2014; Free et al. 2020; Sharma et al., 2021; Ovando et al. 2022). Therefore, other 
approaches should be preferred when possible (e.g., closed-loop simulation approaches; 
Carruthers and Hordyk 2019, see Section 4.4.2), efforts to collect data that enable the use of 
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other assessment methods should be prioritized (Ovando et al. 2021), and catch-only methods 
should only be used after careful consideration of their assumptions and chosen priors. 

APPENDIX C: REVIEW OF CATCH-ONLY METHODS 

C.1. GRAPHICAL APPROACHES (STOCK STATUS PLOTS) 
Catch-based Stock Status Plots (SSPs) are used to define the status of a fishery relative to the 
maximum catch in the time series. Various criteria and status categories have been defined by 
different authors (e.g., Froese and Kesner-Reyes (2002), Kleisner and Pauly (2011), Kleisner et 
al. (2013)). The categories defined by Kleisner et al. (2013) are presented in Table C.1. The 
SSP methods have been evaluated using simulation testing and were demonstrated to be poor 
and inherently pessimistic predictors of stock status (Branch et al., 2011; Carruthers et al., 
2012). Modifications to the methods to overcome some of the pitfalls have been proposed (e.g., 
smoothing the catch time series; Anderson et al. 2012), but there remain limitations of the 
methods because the classification of stock status is based on assumed relationships between 
abundance, fishing effort, and catch over time. It is assumed that abundance first decreases as 
catch and effort increase in the developing phase. As the fishery becomes fully exploited and 
moves to over-exploited, the relationship between catch and abundance breaks down until high 
effort leads to lower abundance and catches eventually decline (Free et al. 2020). 
The general application of the SSP methods has been to assign stock statuses for many stocks 
to infer global trends (e.g., Anderson et al. 2012, Kleisner et al. 2013) and the methods were not 
intended to be used to assess single stocks for fisheries management (Froese et al. 2022). 
While Kleisner et al. (2013) acknowledge that it can be difficult to attribute a change in catch to 
changes in biomass alone, they note that there would be few instances where a large decline in 
catch (e.g., changing from exploited to over-explored or collapse categories) would not be 
related to a decline in biomass. 
The status categories from the SSP method (e.g., Table C.1) are defined based on the 
maximum catch. A stock status indicator could be defined to be consistent with the intent of an 
LRP (e.g., a proportion of maximum catch). The advantage of the method is that it is simple, 
however, the disadvantage is the dependence on a relationship between abundance, fishing 
effort, and catch over time. This method is not recommended unless these assumptions can be 
supported by empirical evidence or expert judgement. 

Table C.1. Categories used by Kleisner et al. (2013) to define the status of fisheries based on catch time 
series. 

Status Criterion 

Developing Years where catch < year of maximum catch AND catch is ≤ 50% of maximum 
catch OR year of maximum catch = final year of catch 

Exploited Years where catch > 50% of maximum catch 

Over-exploited Years where catch > year of maximum catch AND catch is 10-50% of maximum 
catch 

Collapsed Years where catch > year of maximum catch AND catch < 10% of maximum catch 
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Status Criterion 

Rebuilding Years where catch > year of minimum catch post maximum catch AND the post-
maximum minimum catch < 10% of maximum catch AND catch is 10-50% of 
maximum catch 

C.2. EMPIRICAL APPROACHES 
Empirical models predict stock status (B/BMSY or relative depletion) from catch and other 
information (e.g., life-history parameters, location, or fishery characteristics) using models that 
are fit using data for data-rich stocks (Free et al. 2020). The empirical approaches derive 
relationships between stock status and catch data to inform stock status from catch data of 
data-limited stocks in an attempt to learn from experience. Methods are typically cross-validated 
by testing them on a set of data-rich stocks. 
The “only reliable catch stock” (ORCS) working group method estimates stock status (under, 
fully, or overexploited) based on the mean of 14 categorical predictor variables for the stock and 
fishery (Berkson et al. 2011). The method was further refined by Free et al. (2017) by using a 
boosted classification tree model that was trained on data-rich stocks in the RAM Legacy 
Database (Ricard et al. 2012), using 12 of the 14 original predictors. The refined ORCS method 
correctly classified 74% of stocks in the training dataset and 74% of stocks in a test dataset and 
out-performed other methods evaluated by Free et al. (2017); however, the classification rate 
was lower for overexploited stocks (62% and 50%, respectively). The refined ORCS method can 
be applied with missing data for any of the 12 predictor variables and the most important 
predictor variables were value of the fishery ($/lb), status of assessed stocks in the fishery, 
targeting intensity, and discard rate and occurrence in the catch. 
An approach to estimating stock status using a panel regression model (PRM) was developed 
by Costello et al. (2012). PRMs were defined to predict B/BMSY for data-limited stocks using the 
catch time series and predictor variables for life-history traits. The models were defined using 
data from a set of assessed fisheries (from the RAM Legacy Database; Ricard et al. 2012) then 
used to estimate B/BMSY for data-limited fisheries. The method assumes that the status of a 
stock is a function of its life-history traits and harvest history and that the way these parameters 
influence stock status is consistent across stocks with similar characteristics (Costello et al. 
2012). A modified PRM was defined by Rosenberg et al. (2014) and is a simplified version of 
the PRM using only the catch time series and a categorical predictor variable for life-history 
category (demersal, small pelagic, and large pelagic). The modified PRM can be applied to 
more stocks given it doesn’t require detailed life-history information. 
A catch-only boosted regression tree model was developed by Zhou et al. (2017). It uses 
predictor variables based on catch history to estimate relative depletion and was trained on 
data-rich stocks in the RAM Legacy Database. Overall, the model out-performed the modified 
PRM and catch-based classification (Kleisner et al. 2013) methods, but the overall classification 
was driven by results for fully exploited stocks. Classification for developing, over-exploited, and 
collapsed stocks were low (8%, 32%, and 52%, respectively), compared to 72% for fully 
exploited stocks. Zhou et al. (2017) describe the application of the catch-only boosted 
regression tree model as a method to estimate a final year depletion prior to be used in other 
catch-only methods, and not as a method for estimating stock status. 
As with the SSP method of estimating a stock status, the empirical approaches described here 
were intended to estimate stock status to infer global trends and not to assess individual stocks. 
A limitation of these methods is that they assume empirical relationships between catch history 
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and observed stock status. They rely on the assumption that these relationships exist and are 
consistent between stocks with formal assessments (heavily managed stocks) and those that 
are unassessed. The empirical methods are therefore not recommended for estimating 
indicators of stock status (e.g., B/BMSY or B/B0). Although the empirical approaches may not be 
reliable for estimating stock status for individual stocks, they may be useful for estimating priors 
for relative depletion for other methods (Free et al. 2020) or inclusion into ensemble methods 
(e.g., Anderson et al. 2017; see below). 

C.3. MECHANISTIC APPROACHES 
Mechanistic approaches are those that rely on an underlying population dynamics model. These 
approaches fit a population dynamics model or a coupled model of population and fishing effort 
dynamics if effort data are also available (Free et al. 2020). Assumptions are required for fishing 
effort and priors are generally set for initial and final year depletion, intrinsic rate of population 
growth (r), and carrying capacity (K). A range of reference points can be estimated including 
B/BMSY and F/FMSY. 

C.3.1. Catch-MSY 
The catch-MSY family of methods (Catch-MSY, Martell and Froese 2013; CMSY, Froese et al. 
2017; and CMSY++, Froese et al. 2022) are based on the Schaefer production model (Equation 
A.5; Appendix A). Initial estimates of r and K are required (e.g., r based on life-history traits from 
fishbase.org, Froese and Pauly 2022; or Fishlife, Thorson 2020) and the time series of biomass 
and catch can be projected with FMSY = r/2 and BMSY = K/2 (Froese et al. 2022) using stock 
reduction analyses that reconstruct historical biomass and F by estimating biomass trajectories 
that could have produced the historical catch time series. The catch-MSY method generates 
thousands of biomass trajectories from “viable” r-K pairs (note that r and K are negatively 
correlated) that did not lead to a population outside of the expected depletion range (Froese et 
al. 2022). 
Catch-MSY was updated to CMSY (Froese et al. 2017) with a modification to the method of 
identifying the most probable r-K pairs. The 75th percentile of viable r values was selected 
(instead of the center of the viable r values) and a central value with the confidence limits of the 
selected r values was used (Froese et al. 2022). The modification of the method resulted in 
improved estimates of B/BMSY and F/FMSY. CMSY was also revised to account for reduced 
recruitment at low biomass (i.e., B/K < 0.25), by including a stock recruitment relationship 
(Equation A.8, Appendix A). CMSY was updated to CMSY++ (Froese et al. 2022) with some 
improvements to the default priors, the method to estimate r-K pairs (now sampled from a 
multivariate lognormal distribution that accounts for the negative correlation between r and K), 
and an option to consider increases in CPUE over time not related to increases in biomass (i.e., 
technological creep, Palomares and Pauly, 2019). 
Ovando et al. (2021) found that estimates of the status of stocks based primarily on catch 
history alone (CMSY approach) performed only 25% better than a random guess and assigned 
stocks to the wrong FAO status category (underfished, B/BMSY ≥ 1.2; maximally sustainably 
fished, 0.8 ≤ B/BMSY < 1.2; overfished, B/BMSY <0.8) 57% of the time. Bouch et al. (2021) 
compared CMSY evaluations to ICES stock status determination from 17 assessed stocks from 
the Celtic, Irish, and North Seas and found that CMSY predicted higher relative F (11 of 17 
stocks) and lower relative biomass (12 of 17 stocks). The simplicity of catch-only methods is 
appealing; however, applying them to obtain the status of individual stocks can provide highly 
imprecise and biased results (Ovando et al. 2021). Catch is a function of catchability, effort, and 
biomass, so using only data on catch to infer biomass trends requires assumptions of constant 
catchability and constant effort. Each unique combination of r and K, along with a model and 
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catch history, produces a specific stock status at each time step. Since a prior is also provided 
for recent stock depletion, two priors are effectively defined in the Catch-MSY method (Ovando 
et al. 2021; 2022). This can result in a situation where an appropriate prior of recent depletion is 
provided but the priors for population biology (r and K) that appear to be independent of stock 
status strongly influence the posterior distribution of stock status (Ovando et al. 2021). Ovando 
et al. (2021) do however propose a method for tuning the r-K priors to have them be consistent 
with the explicitly defined depletion prior. 
Several attempts of validating mechanistic catch-only methods have consistently found them to 
perform poorly (Free et al., 2020; Pons et al., 2020; Bouch et al., 2021; Sharma et al., 2021). 
For example, the evaluation of Bouch et al. (2021) of the method on data-rich stocks found that 
performance of the CMSY assessment highly depends on how well the ranges for the biomass 
priors match up with the “true” (data-rich) assessment. An analysis was conducted by Bouch et 
al. (2021) to assess the sensitivity of the priors to a 10% change. The authors found that the 
prior on upper depletion at the start and end of the time series had the greatest influence on 
B/BMSY. Froese et al. (2022) point out that if the range of values of B/K used as a prior are too 
wide then it is telling the model that it is equally likely that the stock is collapsed vs. unexploited 
(which is unlikely). 
Pons et al. (2020) found that CMSY performs poorly for stocks that are actively being managed 
where F has decreased in recent years and higher catches are interpreted as higher F instead 
of successful management. Sharma et al. (2021) found that CMSY methods performed well 
when reliable estimates of initial depletion were available but estimates of stock status were 
biased when using default priors provided in the CMSY software. Sharma et al. (2021) suggest 
that CMSY may be suitable for categorizing data-poor stocks in aggregate, given that the overall 
biases would be low across a number of stocks, but that catch-only methods are not a substitute 
for a data-rich assessment. 
Based on the results from several attempts to validate CMSY methods, Ovando et al. (2021) 
suggest that improvements to the understanding of the stock status of global fisheries will come 
from improving data collection and not the development of data-limited methods alone. Ovando 
et al. (2022) showed that the catch time series does little to update the status predictions 
beyond the priors. The performance of the CMSY methods therefore depend on the reliability of 
the depletion priors (i.e., stock status in terms of relative depletion is known). If stock status in 
terms of depletion is known, an advantage of the CMSY methods could be that they can provide 
an estimate of stock status relative to BMSY, however, DFO’s PA Policy does not require the LRP 
to be defined in terms of BMSY, and an LRP can be defined in terms of B0 (K) without conversion 
to a ratio relative to BMSY. As Bouch et al. (2020) states, “stock assessment is used to determine 
the depletion level of the stock, not rely on it being known beforehand”. The relationship 
between B/B0 to B/BMSY is strongly based on r or steepness (h) of the SRR (Section 2.1.4) so an 
estimate of stock status relative to BMSY based on depletion could be obtained without the use of 
CMSY methods. 

C.3.2. Other Mechanistic Catch-only Methods 
The optimized catch-only model (OCOM, Zhou et al. 2018) is a modified version of the CMSY 
approach for which the prior for r is derived from an estimate of the natural mortality rate and the 
prior for depletion is estimated using the Zhou et al. (2017) catch-only boosted regression tree 
model. The method performed well for 14 fish stocks assessed using stock synthesis (Zhou et 
al. 2018). 
Two other mechanistic approaches include the catch-only model with sampling-importance-
resampling (COM-SIR; Vasconcellos and Cochrane, 2005) and the state-space catch-only 
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model (SSCOM; Thorson et al. 2013). COM-SIR is a coupled harvest dynamics model in which 
biomass dynamics follow a Schaefer model and harvest follows a logistic model. A sampling-
importance-resampling algorithm is used in the model fitting. SSCOM is a coupled harvest 
dynamics model that estimates dynamics in biomass and harvest based on the catch time 
series, priors of r, the maximum rate of increase of fishing effort, and the magnitude of 
stochasticity for variation in effort, population dynamics, and fishing efficiency. The model is fit in 
a Bayesian state-space framework and was validated by simulation (Thorson et al. 2013). 
OCOM was evaluated by Free et al. (2020) and COM-SIR and SSCOM were evaluated by 
Anderson et al. (2017) and all three methods were identified to provide imprecise and biased 
estimates of stock status when applied to data-rich assessments from the RAM Legacy 
Database and a set of simulated stocks. 
Two Simple Stock Synthesis (SSS) methods have been developed for catch-only scenarios to 
mimic a depletion-based stock reduction analysis (DBSRA) (Cope 2013). SSS-MC uses a 
Monte Carlo approach like DBSRA by drawing values from probability distributions of input 
parameters (M, h, and depletion) and estimates R0 and repeats this many times to obtain 
probability distributions for model outputs. SS-MCMC uses the DBSRA distributions as prior 
distributions for the parameters and a Markov chain Monte Carlo (MCMC) approach to calculate 
posterior distributions for all model outputs. SS-MCMC estimates M, h, R0, while fitting to an 
artificial abundance survey representing stock depletion with an error distribution equivalent to 
the depletion prior used in the DB-SRA (Cope 2013). The SSS models require 4 input 
parameters (priors): distribution of relative depletion in the current year, distribution of M, 
distributions of FMSY/M, and distributions of BMSY/B0 (these ratios are how productivity/h is 
incorporated). 
Pons et al. (2020) evaluated the bias and precision of SSS and DBSRA and two versions and 
the CMSY method in a simulation study (simulation setup described in Section 2.11.2). SSS 
generally performed best among the catch-only methods, but it did underestimate harvest rates 
for medium-lived and short-lived species at high stock sizes. DBSRA was the most precise 
among the catch-only methods, but it generally underestimated harvest rates (Pons et al. 2020). 
The CMSY methods were the most biased and imprecise among the four catch-only methods 
evaluated. 
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