

Fisheries and Oceans Canada

Sciences des écosystèmes et des océans

s Ecosystems and Oceans Science

Secrétariat canadien des avis scientifiques (SCAS)

Document de recherche 2023/066

Région du Québec

Abondance totale et impact des prélèvements sur le béluga de l'est de la baie d'Hudson et de la baie James 2015-2022

Mike O. Hammill, Anne P. St-Pierre, Arnaud Mosnier, Geneviève J. Parent et Jean-Francois Gosselin

> Institut Maurice-Lamontagne Pêches et Océans Canada C.P. 1000 Mont-Joli (Québec) G5H 3Z4

Avant-propos

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Publié par :

Pêches et Océans Canada Secrétariat canadien de consultation scientifique 200, rue Kent Ottawa (Ontario) K1A 0E6

> http://www.dfo-mpo.gc.ca/csas-sccs/ csas-sccs@dfo-mpo.gc.ca

© Sa Majesté le Roi du chef du Canada, représenté par la ministre des Pêches et des Océans, 2023 ISSN 1919-5044 ISBN 978-0-660- 68218-1 N° cat. Fs70-5/2023-066F-PDF

La présente publication doit être citée comme suit :

Hammill, M.O., St-Pierre, A.P., Mosnier, A., Parent, G.J., et Gosselin, J.-F. 2023. Abondance totale et impact des prélèvements sur le béluga de l'est de la baie d'Hudson et de la baie James 2015-2022. Secr. can. des avis sci. du MPO. Doc. de rech. 2023/066. iv + 54 p.

Also avalaible in English:

Hammill, M.O., St-Pierre, A.P., Mosnier, A., Parent, G.J. et Gosselin, J.-F. 2023. Total Abundance and Harvest Impacts on Eastern Hudson Bay and James Bay Beluga 2015– 2022. DFO Can. Sci. Advis. Sec. Res. Doc. 2023/066. iv + 50 p.

TABLE DES MATIÈRES

RÉSUMÉiv
INTRODUCTION1
MÉTHODES2
DONNÉES D'ENTRÉE
MODÈLE DE POPULATION
VALEURS A PRIORI
CADRES DE GESTION
Rendement durable (RD)8
Rendement maximal durable du MPO (RMD-MPO)9
Gestion du phoque de l'Atlantique du MPO (GPA-MPO)10
RÉSULTATS10
RÉCOLTE10
ABONDANCE DE LA POPULATION DE LA BAIE JAMES12
ABONDANCE DU STOCK DES ÎLES BELCHER ET DE L'EST DE LA BAIE D'HUDSON
REPERCUSSIONS LIEES A LA RECULTE
Bale James
BEL-EBN
DISCUSSION
L'APPROCHE DE PRECAUTION AU CANADA22
REMERCIEMENTS
RÉFÉRENCES CITÉES
ANNEXE A
ANNEXE B

RÉSUMÉ

Les bélugas de la population de la baie James (JAM) et du stock des îles Belcher et de l'est de la baie d'Hudson (BEL-EBH) sont récoltés par des chasseurs de toutes les communautés du Nunavik et de la communauté de Sanikiluag au Nunavut. En 2020-2021, les chasseurs du Nunavik ont déclaré avoir récolté un total de 366 bélugas, dont 41 individus récoltés dans la région de l'île Long. Parmi ces 366 bélugas, on estime à 139 le nombre de bélugas du stock de BEL-EBH récoltés. De plus, 19 bélugas du stock de BEL-EBH ont été récoltés à Sanikiluag. Un modèle de dynamique de la population adapté à une série chronologique de 8 estimations de relevés aériens à l'aide de méthodes bayésiennes et tenant compte des prélèvements par les chasseurs a permis d'estimer l'abondance en 2021 à 16 700 bélugas dans la baie James et à une gamme de 2 900 à 3 200 bélugas dans l'est de la baie d'Hudson, selon les hypothèses du modèle. La population de la baie James s'est stabilisée depuis la dernière évaluation, tandis que le stock de BEL-EBH diminue actuellement à un taux de 2,5 % par année. Une récolte de 190 bélugas par an dans la baie James entraînerait une probabilité de 50 % de déclin de la population de JAM après 5 ans. Le prélèvement biologique potentiel (PBP) pour cette population est de 196 bélugas. Si un cadre de l'approche de précaution était utilisé pour gérer le béluga dans la baie James, de 170 à 173 bélugas pourraient être récoltés annuellement. Pour le stock de BEL-EBH, on a utilisé deux modèles et on a évalué les récoltes par rapport à deux points de référence ou seuils sur des périodes de 5 et 10 ans. Selon les hypothèses du modèle, les points de référence et les délais, les récoltes ne devraient pas dépasser les niveaux de 0 à 70 bélugas du stock de BEL-EBH par an pour que le stock reste au-dessus de l'estimation de l'abondance du point de référence. Le PBP pour ce stock est de 5 animaux. Sur une période de 50 ans, si les récoltes annuelles de bélugas du stock de BEL-EBH se maintiennent entre 20 et 25 animaux par an, il y a une forte probabilité de rester au-dessus du niveau de référence de précaution.

Mots clés : Béluga, Delphinapterus leucas, abondance, génétique, Nunavik, récolte

INTRODUCTION

Les relevés côtiers des bélugas (*Delphinapterus leucas*) réalisés en 1978 et 1980 indiquent que l'abondance des bélugas dans l'est de la baie d'Hudson pourrait n'être que de 160 à 250 individus, soit beaucoup moins que les 6 000 à 7 000 individus ou plus que l'on pensait présents dans le secteur avant les récoltes commerciales élevées (de 1854 à 1868) Breton-Provencher 1980; Finley *et al.* 1982). Dans la baie d'Ungava, les relevés côtiers estivaux ont révélé un nombre encore plus faible d'animaux, avec peut-être moins de 50 individus concentrés autour de l'estuaire de la rivière Mucalic (figures 1 et 2; Finley *et al.* 1982). Des relevés ultérieurs ont permis de déterminer des nombres plus importants, soit d'environ 1 400 animaux (non corrigé pour les animaux en plongée) dans l'est de la baie d'Hudson (Smith et Hammill 1986). Ces estimations relativement faibles, combinées à des récoltes élevées, ont amené le MPO à établir des quotas de prises pour le béluga, ainsi que des fermetures saisonnières et des fermetures de zones au milieu des années 1980.

Depuis la signature de l'Accord sur les revendications territoriales des Inuits du Nunavik (ARTIN) en 2006, la chasse du béluga dans les eaux du nord du Québec est cogérée par les conseils de gestion des ressources fauniques et par Pêches et Océans Canada (MPO); les conseils concernés sont le Conseil de gestion des ressources fauniques de la région marine du Nunavik dans la région visée par l'ARTIN et le Conseil de gestion des ressources fauniques de la région marine de l'Eeyou dans les zones où les revendications territoriales se chevauchent. Un nouveau plan de gestion, récemment approuvé par la ministre du MPO pour 2021-2026, établit un équilibre entre les droits de récolte et les objectifs de conservation définis dans les accords de revendication territoriale. L'objectif de conservation du plan de gestion est de maintenir la population à un niveau égal ou supérieur à l'estimation de l'abondance de 2015, soit 3 400 animaux, et que la probabilité d'un déclin dû à la récolte ne dépasse pas 50 % (Hammill *et al.* 2017a, 2021). On doit atteindre cet objectif grâce à une combinaison de limites de récolte dans la zone côtière du sud-est de la baie d'Hudson (appelée « l'Arc ») et de fermetures saisonnières dans le détroit d'Hudson et la baie d'Ungava.

Il est essentiel d'obtenir une compréhension de l'abondance et la répartition spatiale pour assurer une gestion durable des récoltes. Si une espèce est abondante et que les individus ne présentent pas de tendance marquée d'utilisation du domaine vital ou de sous-structuration au sein de la répartition plus large du stock, tous les membres de la population de la zone sont probablement exposés à tous les événements de récolte. Cependant, s'il existe des preuves de la sous-structuration du stock et des tendances de fidélité au site, la récolte (ou d'autres perturbations) concentrée sur une zone peut avoir un impact disproportionné sur cette composante de la population (DeFur *et al.* 2007; Bonnell *et al.* 2022).

On a réalisé une nouvelle analyse approfondie du matériel génétique disponible pour évaluer la structure des populations de bélugas présentes dans le complexe de la baie et du détroit d'Hudson (Parent *et al.* 2023). Cinq populations de bélugas génétiquement distinctes ont été identifiées : ouest de la baie d'Hudson (OBH), baie James (JAM), est de la baie d'Hudson (EBH), îles Belcher (BEL) et baie Cumberland (BC). La définition de ces populations a été étayée par des éléments de preuve selon lesquels des individus appartenant à chaque population font également preuve d'une grande fidélité aux sites estivaux intra et interannuels, d'après : des observations du comportement et de la génétique (Caron et Smith 1990; Colbeck *et al.* 2013); des données de télémétrie (Richard et Stewart 2009; Bailleul *et al.* 2012), des données de surveillance acoustique passive (Booy *et al.* 2021); des données sur la génétique, les isotopes et les contaminants (Brennin *et al.* 1997; Brown Gladden *et al.* 1997,1999; de March *et al.* 2012; Colbeck *et al.* 2013). Une sixième population, celle de la baie d'Ungava, est reconnue sur la base de données historiques d'abondance et pour sa conservation (COSEPAC 2014), bien qu'elle n'ait pas été caractérisée génétiquement en raison d'un manque

d'échantillons (Parent *et al.* 2023). On craint que la perte de certaines composantes de la population, notamment les individus plus âgés, entraîne la perte de connaissances écologiques au sein des groupes, limitant ainsi le potentiel de rétablissement de la population, comme cela a été observé dans certains secteurs des baies d'Hudson et d'Ungava et chez le béluga de l'estuaire du Saint-Laurent (Caron et Smith 1990; Colbeck *et al.* 2013; O'Corry-Crowe *et al.* 2018, 2020; Ouellet *et al.* 2021; Bonnell *et al.* 2022).

Sur les six populations, deux (EBH et BEL) présentent un important chevauchement dans la répartition estivale. En outre, elles partagent certains haplotypes qui font partie de l'haplogroupe de l'est, ce qui peut entraîner des erreurs d'attribution entre les populations BEL et EBH (Parent *et al.* 2023). Le fait de regrouper les populations BEL et EBH en un seul groupe de référence génétique défini comme le stock de BEL-EBH continue de permettre de distinguer les animaux de cette aire d'estivage, réduit les erreurs de classification et leur répartition est conforme à la zone couverte par les relevés aériens estivaux de l'est de la baie d'Hudson (Parent *et al.* 2023; St-Pierre *et al.* 2023).

Dans l'ensemble, les bélugas qui appartiennent aux différentes populations ou aux différents stocks du complexe de la baie et du détroit d'Hudson passent l'hiver dans le détroit d'Hudson et la baie d'Ungava, où ils sont capturés à l'automne, à l'hiver et au printemps. Les échantillons de peau fournis par les chasseurs de leurs prises offrent des renseignements sur la proportion des prises effectuées dans le cadre des chasses d'automne, d'hiver et de printemps qui appartiennent aux différentes populations prises en compte (de March et Postma 2003; Turgeon *et al.* 2012; Mosnier *et al.* 2017), et en particulier au stock BEL-EBH décrit dans Parent *et al.* (2023). Actuellement, les animaux récoltés dans les populations JAM et OBH sont déclarés et enregistrés. Les niveaux de récolte ne dépassent pas les niveaux durables pour ces populations (Hammill *et al.* 2017a; la présente étude).

Depuis 1985, l'abondance des bélugas en été dans l'est de la baie d'Hudson et dans la baie James est surveillée au moyen de relevés aériens (Gosselin *et al.* 2002, 2009, 2013, 2017). Le relevé dans l'est de la baie d'Hudson est effectué de la côte jusqu'à l'ouest des îles Belcher, et on considère donc qu'il permet de réaliser l'inventaire à la fois des populations BEL et EBH (c.à-d. du stock BEL-EBH). De même, on considère que le relevé effectué dans la baie James permet de réaliser un inventaire de la population de JAM. On a ajusté un modèle de population qui intègre de l'information sur les niveaux de capture et la composition du stock aux estimations du relevé aérien en vue de fournir des renseignements sur l'abondance et les tendances. On a également utilisé le modèle pour formuler des avis en matière de récolte (Hammill *et al.* 2005; 2017a, Doniol-Valcroze *et al.* 2012, 2013, 2014; Hammill *et al.* 2014 2017a, 2021).

Un nouveau relevé aérien couvrant la baie James et l'aire d'estivage du stock BEL-EBH a été effectué à l'été 2021 (St-Pierre *et al.* 2023). La région de la baie d'Ungava n'a pas été incluse, mais on prévoit y effectuer un relevé en 2022.

Nous intégrons ici les données provenant du nouveau relevé aérien et des analyses génétiques dans le modèle de population afin de fournir un aperçu de l'état actuel du stock BEL-EBH et, pour la première fois, de l'état de la population de la population de la baie James (St-Pierre *et al.* 2023; Parent *et al.* 2023). Les niveaux de récolte respectant l'objectif de gestion actuel sont fournis pour les populations de bélugas de BEL-EBH et de la baie James. Des avis en matière de récolte fondés sur d'autres cadres de gestion possibles sont également fournis.

MÉTHODES

Le modèle de population est ajusté à une série chronologique ajustée d'estimations de l'abondance des relevés aériens (1985-2021), tout en incorporant les données sur les prises déclarées (1974-2021) pour chacune des 14 communautés du Nunavik et de Sanikiluaq, au

Nunavut (figure 1). Il tient compte de la proportion d'animaux du stock BEL-EBH dans les prises, telle que déterminée par une analyse de modèle génétique mixte d'échantillons fournis par les chasseurs (Hammill *et al.* 2017a; Mosnier *et al.* 2017; Parent *et al.* 2023; St-Pierre *et al.* 2023).

DONNÉES D'ENTRÉE

Les données de recensement consistent en huit estimations de relevés aériens systématiques effectués en 1985, 1993, 2001, 2004, 2008, 2011, 2015 et 2021(St-Pierre *et al.* 2023). On a considéré les bélugas détectés dans les estuaires comme des dénombrements totaux et on les a ajoutés aux estimations corrigées en fonction des biais de disponibilité et de perception (tableau 1). On a effectué tous les relevés le long de lignes parallèles similaires, mais au fil du temps, la collecte et l'analyse des données ont changé d'un relevé à l'autre. Des détails sur les méthodes de relevé et les analyses sont accessibles dans Smith et Hammill (1986), Kingsley (2000), Hammill *et al.* (2004), Gosselin *et al.* (2009, 2013, 2017) et St-Pierre *et al.* (2023).

Figure 1. Carte de la zone d'intérêt montrant la répartition estivale du stock BEL-EBH (bleu) et de la population de la Baie James (jaune)

3

Figure 2. Carte des zones de gestion de la chasse au Nunavik. a : île Long; b, c : est de la baie d'Hudson (répartition du stock BEL-EBH), y compris les eaux au large à l'ouest des îles Belcher (Nunavut) qui ne sont pas gérées dans le cadre du plan de gestion actuel; Nunavut (cette zone n'est pas gérée dans le cadre du plan de gestion actuel; Nunavut (cette zone n'est pas gérée dans le cadre du plan de gestion actuel); f, g : nord-est de la baie d'Hudson h : détroit d'Hudson; i : baie d'Ungava Les zones d, e et j (estuaires de la Petite rivière de la Baleine, de la rivière Nastapoka et de la rivière Mucalic) sont des zones fermées.

Tableau 1. Estimations de l'abondance du stock BEL-EBH, des populations de bélugas de l'ouest de la baie d'Hudson (OBH), de la baie James (JAM) et de la baie d'Ungava (UNG), d'après les relevés aériens. On a corrigé les indices pour tenir compte du biais de disponibilité et de perception (Matthews et al. 2017; (St-pierre et al. 2023) Des bélugas ont été observés dans la baie d'Ungava, mais aucun sur le transect. L'abondance estimée est de 32 (IC à 95 %=0-94) (Doniol-Valcroze et Hammill 2012). La mention « AR » signifie qu'aucun relevé n'a été effectué

Année	BEL-EBH (ET)	OBH (ET)	JAM (ET)	UNG
1985	6 711 (1 936)	AR	6 511 (1 842)	*
1987	AR	31 124 (6 967)	AR	AR
1993	4 163 (1 760)	AR	12 811 (3 569)	*
2001	4 570 (2 265)	AR	28 242 (7 971)	*
2004	7 368 (2 899)	51 761 (15 875)	14 021 (4 667)	AR
2008	4 764 (1 404)	AR	39 152 (27 296)	*
2011	5 001 (2 350)	AR	23 324 (7 768)	AR
2015	7 841 (3 687)	54 473 (5 329)	21 860 (6 126)	AR
2021	2 501 (719)	_	14 213 (3 187)	AR

Au Nunavik, les renseignements sur les récoltes sont recueillis hebdomadairement auprès de chaque communauté par le réseau de gardiens (1974–2021) et auprès de la communauté de Sanikiluaq (1977–2022) à la fin de la saison et sont regroupés selon la saison et l'aire de gestion où la récolte a lieu (Lesage *et al.* 2009; figure 2; annexe A, tableau A1). Les récoltes estimées d'animaux appartenant au stock BEL-EBH ont été déterminées à l'aide d'une analyse du métissage génétique (tableau 2; Parent *et al.* 2023). La proportion d'animaux appartenant au stock EBH-BEL dans les récoltes du détroit d'Hudson était similaire ou légèrement supérieure aux niveaux signalés dans les évaluations précédentes. Toutefois, la proportion du stock BEL-EBH dans la région de Sanikiluaq (tableau 2) était beaucoup plus élevée que dans les évaluations précédentes (voir l'annexe A, tableau A2). Les prises de la population de la baie James étaient composées d'animaux capturés dans la région de l'île Long. Tous les bélugas capturés directement dans la région de l'arc (voir les figures 1 et 2) durant l'été appartenaient au stock BEL-EBH. Les prélèvements estimés d'animaux du stock BEL-EBH sont basés sur les proportions utilisées dans le cadre de la dernière réunion, se trouvent à l'annexe A (tableaux A1 et A2).

Tableau 2. Proportion d'animaux du stock BEL-EBH capturés dans les différentes zones de gestion dans les eaux autour du nord du Québec et au Nunavut (Sanikiluaq), comme indiqué dans les figures 1 et 2 (Parent et al. 2023). N_{samp} : nombre d'échantillons individuels; N_{event} : nombre de dates de chasse différentes. Les résultats du projet pilote du détroit d'Hudson étaient basés sur des animaux récoltés dans le détroit d'Hudson et collectés après : le 1^{er} nov. à Ivujivik, le 6 nov. à Salluit, le 10 nov. à Kangiqsujuaq et le 15 nov. à Quaqtaq. IC95 = intervalle de crédibilité de 95 %.

Saison	Nsamp	Nevent	Proportion moyenne BEL-EBH	IC95 inférieur	IC95 supérieur
Printemps					
Détroit d'Hudson	824	364	0,12	0,086	0,165
NE. baie d'Hudson	2	1	-	-	-
Baie d'Ungava	143	87	0,05	0,008	0,118
Automne					
Détroit d'Hudson	512	202	0,44	0,351	0,53
NE. baie d'Hudson	45	19	0,50	0,239	0,762
Baie d'Ungava	6	6	-	-	-
Projet pilote du détroit d'Hudson	43	10	0,22	0,088	0,383

Zones de gestion du Nunavik

Sanikiluaq (Nunavut)

Saison	Nsamp	Nevent	Proportion moyenne BEL-EBH	IC95 inférieur	IC95 supérieur
Printemps	229	99	0,63	0,515	0,734
Automne	49	35	0,61	0,351	0,839
Hiver	76	11	0,40	0,130	0,7082

MODÈLE DE DYNAMIQUE DE LA POPULATION

On a ajusté un modèle stochastique de production de stock au moyen de méthodes bayésiennes pour estimer l'abondance actuelle et évaluer l'incidence de différents niveaux de prélèvement sur la tendance future de la population (Doniol-Valcroze *et al.* 2013; Hammill *et al.* 2017 a). L'erreur d'observation (associée à la collecte des données et à l'estimation de l'abondance) a été séparée de l'erreur de processus (découlant de la variabilité naturelle de la dynamique de la population) au moyen d'un modèle espace-état hiérarchique qui considère les données des relevés comme le résultat de deux processus stochastiques distincts (de Valpine et Hastings 2002).

Le processus d'état décrit la dynamique de la population sous-jacente et l'évolution de la taille réelle du stock dans le temps, selon une formulation discrète du modèle de Pella-Tomlinson (Pella et Tomlinson 1969; Innes et Stewart 2002), modifiée pour permettre à l'erreur de processus d'avoir des effets positifs ou négatifs sur le taux de croissance :

$$\begin{split} N_t &= N_{t-1} \cdot (1 + (\lambda_{max} - 1) \cdot \left[1 - (N_{t-1}/K)^{\theta}\right]) \cdot \epsilon_{p_t} - R_t \\ & \text{avec } \epsilon_{p_t} \sim \text{logN} \big(0 \ \tau_p \big) \\ & \text{et } R_t = C_t \cdot (1 + \text{SL}) \end{split}$$

où N est l'abondance au temps *t* ou *t-1*, λ_{max} est le taux maximal d'augmentation, *K* est la capacité de charge environnementale et thêta (θ) définit la forme de la fonction dépendant de la densité. L'erreur de processus (ε_{p_t}) a reçu une distribution log-normale, avec une moyenne de 1, tandis que la précision de l'erreur de processus (τ_p)) a suivi une distribution gamma. Les prélèvements (R_t)) ont été calculés en ajustant les prises déclarées (*Ct*) pour les animaux abattus et perdus (*AP*, c'est-à-dire la proportion d'animaux blessés ou tués, mais non récupérés) ainsi que les prises non déclarées.

Le processus d'observation décrit la relation entre la taille réelle de la population (N_t) et les données observées (estimations des relevés, S_t). Dans notre modèle, on a supposé que cette relation suivait une distribution gamma compte tenu d'un terme d'erreur ε_{S_t} correspondant à la précision de l'estimation du relevé.

$$S_{t} \sim \Gamma(\alpha \ \beta)$$

avec $\alpha = N_{t} \cdot \beta$
et $\beta = N_{t} \cdot \varepsilon_{S_{t}}$

VALEURS A PRIORI

On a utilisé les renseignements existants, les connaissances traditionnelles et les avis d'experts pour formuler des distributions antérieures pour les variables aléatoires comprises dans le modèle (tableau 3). En commençant par le stock BEL-EBH, on a attribué une valeur a priori uniforme à la taille initiale de la population, soit entre 2 000 et 15 000 individus. La limite inférieure reflète les observations d'au moins guelques centaines de bélugas dans les estuaires de l'EBH, mais reconnaît que la population a été grandement réduite par rapport aux tailles d'origine (Smith et Hammill 1986; Reeves et Mitchell 1987). Doniol-Valcroze et ses collaborateurs (2012b), a estimé une population d'origine d'environ 8 000 individus (IC de 95 % : 7 200-8 700), en supposant qu'il n'y a pas eu de pertes dans le cadre de la chasse commerciale. Cette estimation ne tient pas compte de la chasse de subsistance. Pour K, on a utilisé une fourchette de 5 000 à 20 000 individus. La limite supérieure englobe la gamme d'estimations possibles de la taille de la population d'origine, y compris si les taux d'animaux abattus et perdus étaient aussi élevés que 2, et tiendrait probablement en compte des récoltes de subsistance de l'époque (Hammill et al. 2005; 2017a, Doniol-Valcroze et al. 2012, 2013). Le taux d'augmentation de la population n'est pas connu, mais la majorité des études ont proposé une estimation médiane d'environ 4 %, avec une gamme de 2 à 8 % (Béland et al. 1988; Alvarez-Flores et Heide-Jørgensen 2004; Hobbs et al. 2006; Lowry et al. 2008; 2017a, Doniol-Valcroze et al. 2012, 2013). Nous avons utilisé une valeur a priori avec une distribution Beta dont la gamme était de 0,02 à 0,06. Thêta (θ) définit le pont de productivité nette maximale, qui, pour les mammifères marins, est généralement considéré comme se produisant à 60 % de la

capacité de charge de l'écosystème, ce qui entraîne une valeur θ de 2,39 (Taylor et DeMaster 1993; Butterworth *et al.* 2002; Hobbs et al. 2006).

Les prises déclarées sous-estiment le nombre de bélugas tués en raison des animaux blessés ou tués, mais non récupérés, ainsi que de la sous-déclaration des prises. On ne connaît pas les taux de bélugas abattus et perdus (AP) dans les chasses au Nunavik, mais des études menées ailleurs indiquent qu'ils varient entre 18 et 66 %, ce dernier taux s'appliquant aux chasses en eaux profondes, p. ex. le long des lisières de glace (Seaman et Burns 1981; Hobbs et al. 2006; Richard 2008). Heide-Jørgensen et Rosing-Asvid (2002) ont calculé un facteur d'AP de 0,29 pour le Groenland, sans tenir compte des prises non déclarées. Innes et Stewart (2002) ont estimé un facteur de correction tenant compte des AP et des baleines non déclarées dans la baie de Baffin à 0,41 baleine par baleine débarquée. Richard (2008) a estimé un taux d'AP à 18 % (CV de 6 %). Dans les évaluations précédentes, on a utilisé une valeur a priori modérément informative suivant une distribution Beta (3, 4) avec une médiane de 0,42 et des points de quartile à 0,29 et 0,55 (Doniol-Valcroze et al. 2013; Hammill et al. 2021). Cependant, dans le cadre des consultations publiques, les chasseurs ont estimé que ce taux était trop élevé. Par conséquent, dans cette évaluation, on a attribué au taux d'AP une valeur a priori modérément informative suivant une distribution Beta (1,135, 2,763), ce qui a donné des quantiles 0,025, 0,25, 0,5, 0,75 et 0,975, de 0,015, 0,123, 0,253, 0,426 et 0,753.

Les termes d'erreur de processus stochastique (ε_{pt}) ont reçu une distribution log normale avec un paramètre de localisation nul. Le paramètre de précision de cette distribution log normale a reçu une valeur a priori modérément informative suivant une distribution gamma délimitée(1,5; 0,005). Ces paramètres ont entraîné des coefficients de variation (CV) avec des quantiles de 0,033, 0,049, 0,065, 0,091 et 0,218.

Les proportions d'animaux du stock BEL-EBH récoltés dans chaque zone de gestion (identifiées dans le tableau 2) sont intégrées dans le modèle sous forme de probabilités (tableau 3). Étant donné que le modèle de mélange génétique suppose une distribution de Dirichlet multivariée, les priorités génétiques pour chaque proportion de stock ont supposé une distribution Beta, avec une moyenne et une erreur type connues, mais pour laquelle les paramètres α et β ne sont pas disponibles. Nous avons résolu le système d'équations pour la moyenne et la variance d'une distribution Beta afin de déterminer les valeurs de α and β qui décrivent les distributions observées. On a ensuite utilisé les distributions Beta comme valeurs a priori pour les proportions d'animaux du stock BEL-EBH dans les différentes chasses qui varient dans l'espace et dans le temps (tableau 3). Le modèle a été exécuté au moyen de 5 chaînes, avec 60 000 exécutions, une phase de rodage de 25 000 itérations et un amincissement de 50.

Nous avons obtenu des estimations postérieures de tous les paramètres en utilisant un algorithme d'échantillonnage de Gibbs mis en œuvre dans JAGS (Plummer 2003). Les résultats, y compris le mélange des chaînes et la convergence, ont été examinés (Doniol-Valcroze *et al.* 2014; Hammill *et al.* 2017 a). Nous avons mis à l'essai le mélange des chaînes en utilisant le test de Geweke pour déterminer les similitudes entre différentes parties de chaque chaîne (Geweke 1996). Nous avons appliqué le diagnostic de Brooks-Gelman-Rubin (BGR), qui compare la largeur de l'intervalle de crédibilité à 80 % des chaînes regroupées avec la moyenne des largeurs de l'intervalle de crédibilité à 80 % des chaînes individuelles, pour la convergence entre les chaînes (Brooks et Gelman 1998).

Tableau 3a) Distributions antérieures, paramètres et hyperparamètres utilisés dans le modèle de
population de bélugas du Nunavik BEL-EBH = stock des îles Belcher et de l'est de la baie d'Hudson,
JAM = population de la baie James. La médiane antérieure et les quantiles 0,025 et 0,975 sont indiqués.

Paramètres	Notation	Distribution antérieure	Hyper- paramètres	Valeur de paramètre	Médiane antérieur e	0,025	0,975
Précision du relevé (t)	ϵ_{S_t}	Fixe		1 / (erreur type du relevé) ²	-	-	-
Erreur de processus (t)	ε _{pt}	Log normal	μр / тр	0 / estimation	1 / inf	0	inf
Précision (processus)	тр	Gamma	αρ / βρ	1,5 / 0,005	236,6	21,6	934,8
Theta	θ	Fixe	-	-	2,39	-	-
Animaux abattus et perdus 25 %	AP	Beta	asl / βsl	1,135 / 2,763	0,25	0,015	0,755
Population initiale (BEL-EBH)	Début	Uniforme	Nsup / Ninf	15 000 / 2 000	8500	2325	14675
Capacité de charge (BEL-EBH)	К	Uniforme	Nsup / Ninf	20 000 / 5 000	12500	5375	19625
Population initiale (JAM)	Début	Uniforme	Nsup / Ninf	40 000 / 2 000	21000	2950	39050
Capacité de charge (JAM)	К	Uniforme	Nsup / Ninf	40 000 / 5 000	22500	5875	39125
Taux maximal d'augmentation	λ_{max}	Beta	αsl / βsl	15,618 / 373,015	0,039	0,023	0,062

Tableau 3b) Distributions préalables utilisées dans le modèle de population pour la proportion d'animaux du stock BEL-EBH récoltés au Nunavik et au Nunavut, par région. Pour chaque sous-région et saison, les antécédents de la proportion de bélugas du stock de BEL-EBH dans la récolte sont donnés. DHBU = avant 2009, la majorité des échantillons provenaient de la zone de la détroit d'Hudson et de la baie d'Ungava à l'automne, mais la zone de récolte est inconnue. Les paramètres qui leur sont attribués sont les mêmes que ceux qui sont attribués pour PDH_A. La médiane antérieure et les quantiles 0,025 et 0,975 sont indiqués.

Nunavut

Paramètres	Notation	Distribution antérieure	Hyper- paramètres	Valeur de paramètre	Médiane antérieure	0,025	0,975
Sanikiluaq (printemps)	PSAN_PR	Beta	αsan / βsan	45,778 / 27,164	0,629	0,515	0,734
Sanikiluaq (automne)	PSAN_A	Beta	αsan / βsan	8,194 / 5,323	0,6113	0,344	0,837
Sanikiluaq (Winter)	PSAN_W	Beta	αsan / βsan	3,697 / 5,493	0,396	0,131	0,7151
Sanikiluaq (été)	PSAN_É	Fixe	-	-	1	-	-

Nunavik

Paramètres	Notation	Distribution antérieure	Hyper-paramètres	Valeur de paramètre	Médiane antérieure	0,025	0,975
Détroit d'Hudson (printemps)	PDH_PR	Beta	Ahs_sp / βhs_sp	32,11 / 229,09	0,122	0,086	0,165
Détroit d'Hudson (automne)	PDH_A	Beta	Ahs_f / βhs_f	50,58 / 64,36	0,44	0,351	0,532
DHBU *	PDHA	Beta	αhs / βhs	50,58 / 64,36	0,44	0,351	0,532
Baie d'Ungava (printemps)	PBU_P	Beta	αub_s / βub_s	3,13 / 57,43	0,047	0,015	0,12
Baie d'Ungava (automne, utilisé automne du DH)	PBU_A	Beta	Aub_f / βub_f	50,58 / 64,36	0,44	0,351	0,532
NE. de la baie d'Hudson (utilisé le printemps du DH)	PNEBH_P	Beta	Anehb_s / βnehb_s	32,11 / 229,09	0,122	0,086	0,165
NE. de la baie d'Hudson (automne)	PNEBH_A	Beta	Anehb_f / βnehb_f	6,228 / 6,20281	0,50	0,24	0,762

CADRES DE GESTION

Rendement durable (RD)

L'objectif de gestion pour le stock BEL-EBH est de maintenir une abondance stable égale ou supérieure à l'estimation de l'abondance en 2015, soit une population stable de 3 400 animaux, où, pour une récolte donnée, la probabilité d'une diminution de l'abondance ne dépasse pas

50 % (Hammill *et al.* 2017a, 2021). Cependant, cet objectif ne prévoit pas de marge pour l'incertitude en ce qui concerne l'évaluation, la dynamique de la population ou les conditions environnementales. Il ne définit pas non plus les niveaux de récolte ou les points de référence associés aux mesures de gestion assurant que la population demeure ou revienne à un état sain. Nous présentons ici trois cadres d'approche de précaution et les niveaux de récolte qui pourraient être maintenus grâce à ces approches.

Le prélèvement biologique potentiel (PBP) est estimé à l'aide de l'équation suivante :

$$PBR = 0.5 R_{max} \times FR \times N_{min}$$

où R_{max} est le taux maximal de croissance de la population (avec une valeur par défaut pour les cétacés de 0,04), *FR* est le facteur de récupération (entre 0,1 et 1) et N_{min} est la taille de la population estimée à l'aide du 20e percentile de la répartition log-normale (Wade 1998). L'objectif de gestion implicite de l'approche PBP est de déterminer les niveaux de récolte qui ont une probabilité de 95 % que la population soit au-dessus du niveau de productivité nette maximale, que l'on définit comme 50 % de la capacité de charge sur une période de 100 ans (Wade 1998).

Rendement maximal durable du MPO (RMD-MPO)

Le cadre général du RMD-MPO établit un niveau de référence limite (NRL) et un niveau de référence de précaution (NRP), qui définissent trois zones de préoccupation de la ressource (figure 3; MPO 2006, 2013). Ce cadre a pour objectif de gérer le taux d'exploitation de manière à ce que la population demeure dans la zone saine. Un stock est considéré comme sain s'il existe une probabilité d'au moins 50 % qu'il se situe au-dessus du NRP. Il est considéré comme critique s'il existe une probabilité de 50 % qu'il se situe sous le NRL. Un stock se situe dans la « zone de prudence » si son abondance se situe entre le NRL et NRP (Hammill *et al.* 2017b). Ce cadre est basé sur le concept de rendement maximal durable (RMD). Pour les mammifères marins, le NRP serait fixé à 80 % du RMD, qui se produit à 60 % de la capacité de charge estimée. Le NRL et le NRP sont calculés comme étant 24 % et 48 % de *K* respectivement.

Figure 3. Proposition de cadre de l'approche de précaution pour la pêche au Canada.1. Niveau de référence limite (NRL)). 2. Niveau de référence de précaution (NRP). 3. Taux d'exploitation établi pour maintenir la ressource dans la zone saine (MPO 2006).

Gestion du phoque de l'Atlantique du MPO (GPA-MPO)

Le cadre de la GPA-MPO est similaire au cadre du RMD, avec un NRL, un NRP et trois zones de préoccupation de la ressource (critique, prudente et saine; figure 3). Cependant, dans le cadre de la GPA-MPO, le NRP est fixé à 70 % de la population la plus élevée observée (N_{max}) sur la base d'un relevé ou d'une estimation de modèle. Le NRL est fixé à 30 % du N_{max} . L'objectif de gestion est de maintenir une probabilité de 95 % que la population soit supérieure au NRL et une probabilité de 80 % que la population soit supérieure au NRP (Hammill et Stenson 2003, 2007, 2009, 2013; Stenson *et al.* 2012).

Dans ce document, les nombres supérieurs à 1 000 sont présentés dans les tableaux, mais arrondis à la centaine la plus proche dans le texte.

RÉSULTATS

RÉCOLTE

Les chasseurs du Nunavik ont déclaré avoir récolté un total de 366 bélugas, y compris 41 animaux dans la région de l'île Long au cours de la saison 2021-2022 (figure 4). Trente autres bélugas ont été capturés à Sanikiluaq, au Nunavut (figure 2). La récolte de 2021 était proche de la moyenne de 344 bélugas capturés au cours des cinq dernières années (annexe A, tableaux A1 et A2). Dans une évaluation antérieure, il avait été reconnu qu'il y avait certaines différences génétiques entre les animaux capturés dans la région de Sanikiluaq, mais on n'avait pas regroupé ces animaux avec les animaux du stock EBH (Hammill *et al.* 2017a). En utilisant les proportions de bélugas du stock EBH dans les prises de la dernière évaluation, on estime que 112 bélugas du stock EBH ont été capturés, dont un à Sanikiluaq (figure 4; Hammill *et al.* 2021). Le nombre de bélugas du stock EBH capturés est supérieur à la moyenne quinquennale de 89 bélugas par année.

Sur la base des nouvelles proportions d'animaux du stock BEL-EBH dans la récolte de Parent *et al.* (2023), on estime que 158 animaux du stock EBH-BEL ont été récoltés, y compris 19 animaux du stock EBH-BEL de Sanikiluaq. Le nombre estimé de bélugas du BEL-EBH récoltés est supérieur à la moyenne quinquennale de 119 bélugas récoltés par année depuis 2016, y compris une moyenne de 19 bélugas récoltés à Sanikiluaq (Figure 5; tableau 2; annexe A, tableau A1).

Figure 4. Statistiques de récolte dérivées des proportions de l'évaluation 2017 et trouvées dans Hammill et al. (2017a). Captures totales déclarées de bélugas au Nunavik (bleu), débarquements dans la région de l'île Long (vert) et prélèvements estimés au débarquement dans le stock BEL-EBH par les chasseurs du Nunavik (orange) et de Sanikiluaq (noir). Les débarquements d'animaux du stock BEL-EBH se fondent sur les statistiques de captures déclarées pour la zone et sur les proportions issues de l'analyse génétique utilisée dans Hammill et al. (2017a; annexe A, tableau A2). La ligne rouge représente le total autorisé des captures (TAC) recommandé pour les animaux du stock BEL-EBH.

Figure 5. Statistiques de récolte dérivées des proportions révisées de la nouvelle analyse génétique. Captures totale déclarées de bélugas au Nunavik (bleu), prélèvements estimés au débarquement dans le stock BEL-EBH (orange) et débarquements dans la région de l'île Long (vert). Les débarquements d'animaux du stock BEL-EBH se fondent sur les statistiques de captures déclarées pour la zone et sur les proportions issues de l'analyse génétique présentées dans cette analyse (tableau 2; annexe A, tableau A1; Parent et al. 2023). La ligne rouge représente le total autorisé des captures (TAC) recommandé pour les animaux du stock BEL-EBH.

ABONDANCE DE LA POPULATION DE LA BAIE JAMES

Le modèle a convergé rapidement et il n'y avait pas de signes d'autocorrélation importante entre les variables (toutes les valeurs < 0,5). L'abondance initiale était négativement corrélée à la capacité de charge et au taux maximal d'augmentation. L'estimation de l'abondance en 2021 était positivement corrélée à la capacité de charge estimée et à l'erreur de processus. La capacité de charge et le taux maximal d'augmentation étaient négativement corrélés (annexe B). Une mise à jour importante des valeurs a priori a été observée pour la capacité de charge et l'abondance initiale. Il y a eu une certaine mise à jour des valeurs a priori du taux maximal d'augmentation, mais aucun changement n'a été observé dans les valeurs a priori des animaux abattus et perdus. Le modèle a estimé une capacité de charge de 21 000 (IC à 95 % = 12 900–38 000), et un taux maximal d'augmentation de 4,1 % (IC à 95 % = 2,4–6,4). L'abondance initiale estimée était de 7 800 (IC à 95 % = 5 000–10 400, arrondi à la centaine près), augmentant jusqu'à 18 200 en 2015, puis se stabilisant et diminuant légèrement jusqu'à 16 700 (IC à 95 % = 11 600-21 300) en 2021 (tableau 4; figure 6; annexe B, tableau B1, figures B1 et B2).

Figure 6. Estimations de l'abondance des bélugas de la baie James et intervalles de crédibilité à 95 % de 1985 à 2021.

ABONDANCE DU STOCK DES ÎLES BELCHER ET DE L'EST DE LA BAIE D'HUDSON (BEL-EBH)

Le modèle (appelé exécution du modèle 1 et sur la base du CV de 29 % observé dans le cadre du relevé de 2021) ajusté aux données du stock BEL-EBH a convergé rapidement, sans signe d'autocorrélation importante entre les variables (annexe B, tableau B2 et figures B3 et B4). On a observé des corrélations négatives entre la population initiale, le taux maximal d'augmentation et l'estimation de l'abondance en 2021. La capacité de charge présentait une corrélation

négative avec le taux maximal d'augmentation et l'estimation de l'abondance en 2021, mais une corrélation positive avec la population initiale et les animaux abattus et perdus. Le taux maximal d'augmentation était corrélé négativement avec la population initiale et l'erreur de processus, et positivement avec les animaux abattus et perdus et l'estimation de l'abondance la plus récente (annexe B, figure B4). On a observé une mise à jour importante des valeurs a priori pour la population initiale, la capacité de charge et le taux maximal d'augmentation. On a également observé une certaine mise à jour de la valeur a priori pour les animaux abattus et perdus. Le modèle a estimé une population initiale de 9 000 bélugas (IC à 95 % = 5 800-13 200, arrondi à la centaine près), une capacité de charge de 11 000 (IC à 95 % = 6 400-19 400) et un taux maximal d'augmentation de 3.5 % (IC à 95 % = 2,1-5.5 %; figure 7; tableau 4). La médiane de la valeur a priori pour les animaux abattus et perdus était de 25 % (IC à 95 % = 1.5-76). L'estimation médiane a posteriori pour les animaux abattus et perdus était de 27 % (IC à 95 % = 1,7-76 %). La population estimée pour 2021 est de 2 900 (IC à 95 % = 1 700-3 900). Sur la base des estimations à jour de l'abondance, l'abondance en 2015 était de 3 600 (IC à 95 % = 2 400-5 700). Le taux de déclin est passé d'un taux annuel moyen de 1,1 % entre 2004 et 2014 à un taux annuel moyen de 3 % entre 2015 et 2021 (figure 7).

Figure 7. Estimations de l'abondance des bélugas de l'est de la Baie d'Hudson au moyen de relevés aériens et de modèles de population pour 1974-2021 et intervalles de crédibilité à 95 %. On a réalisé deux exécutions, en supposant une médiane de la valeur a priori pour les animaux abattus et perdus (AP) de 25 % (rouge) ou 2 (bleu).

Les estimations des relevés aériens de 2021 étaient les plus basses de la série chronologique et avaient le coefficient de variation le plus bas (la plus grande précision) de la série chronologique également. Ces caractéristiques, ainsi que le fait qu'il s'agisse du dernier point de la série chronologique des relevés, signifient que ce point a eu une incidence considérable sur les estimations du modèle relatives à l'abondance et à la tendance. On a examiné l'incidence de cette estimation en augmentant le coefficient de variation (CV) des relevés à une valeur égale au coefficient de variation pour l'ensemble de la série chronologique des relevés, à l'exclusion de 2021, et on a réajusté le modèle à la série chronologique des estimations du relevé aérien (appelée exécution 2 du modèle; le CV du relevé de 2021 a été augmenté à 40 %). Le modèle a convergé rapidement, sans aucun signe d'autocorrélation importante entre les variables (annexe B, tableau B3; figures B5 et B6). La force des corrélations croisées a légèrement changé, mais les directions générales des corrélations sont demeurées les mêmes (annexe B). Une mise à jour importante des valeurs a priori a été observée pour l'abondance initiale, la capacité de charge et le taux maximal d'augmentation. Il n'y a pas eu de mise à jour de la valeur a priori pour les animaux abattus et perdus (tableau 4). Le modèle a estimé une population initiale de 9 000 bélugas (IC à 95 % = 5 800-13 100, arrondi à la centaine près), une capacité de charge de 10 900 (IC à 95 % = 6 500-19 400) et un taux maximal d'augmentation de 3,6 % (IC à 95 % = 2,1-5,6 %; tableau 4, figure 7). La population estimée pour 2021 est de 3 200 bélugas (IC à 95 % = 1 800-4 600). L'abondance en 2015 était de 3 900 (IC à 95 % = 2 500-6 000). Le taux de déclin de la population selon ce scénario est passé d'une moyenne de moins de 1 % par an entre 2004 et 2014 à 2,5 % par an entre 2015 et 2021 (figure 7).

Tableau 4. Estimations a priori et a posteriori de la capacité de charge (K), du taux maximal d'augmentation (lambda), de l'abondance initiale (pop initiale), des animaux abattus et perdus, et de l'abondance en 2021 (N2021) pour les bélugas du stock JAM et BEL-EBH La moyenne et l'erreur type (ET) ainsi que les quantiles 0,025, 0,25, 0,5, 0,75 et 0,975 sont indiqués.

JAM							
Paramètres	Moyenne	ET	0,025	0,25	0,5	0,75	0,975
К	22 536	6 618	12 873	17 704	21 016	26 320	38 031
Valeur a priori de K	22 484	10 098	5 872	13 731	22 493	31 197	39 121
Lambda _{max} Valeur a priori de	0,042	0,01	0,024	0,035	0,041	0,048	0,064
Lambda _{max} .	0,04	0,01	0,023	0,033	0,039	0,046	0,062
Pop. initiale Valeur a priori de la	7 792	1 362	5 050	6 890	7 813	8 718	10 400
pop. initiale Animaux abattus et	20 994	10 983	2 949	11 478	20 985	30 512	39 047
perdus Valeur a priori des animaux abattus et	0,29	0,21	0,02	0,12	0,25	0,43	0,76
perdus	0,29	0,21	0,02	0,12	0,25	0,43	0,76
N2021	16 662	2 459	11 555	15 092	16 742	18 333	21 252
Stock BEL-EBH (CV=2	29 %)						
Paramètres	Moyenne	ET	0,025	0,25	0,5	0,75	0,975
К	11 860	3 676	6 435	8 945	11 049	14 549	19 395
Valeur a priori de K	12 503	4 334	5 375	8 745	12 507	16 256	19 630
Lambda _{max} Valeur a priori de	0,036	0,009	0,021	0,03	0,035	0,041	0,055
Lambda _{max} .	0,04	0,01	0,023	0,033	0,039	0,046	0,062
Pop. initiale Valeur a priori de la	9 158	1898	5 776	7 810	9 033	10 389	13 236
pop. initiale Animaux abattus et	8 495	3 751	2 318	5 249	8 501	11 734	14 672
perdus Valeur a priori des animaux abattus et	0,305	0,205	0,017	0,137	0,273	0,444	0,756
perdus	0,291	0,205	0,015	0,122	0,252	0,427	0,755
N2021	2 859	571	1680	2 490	2 881	3 250	3 917
Stock BEL-EBH (CV=4	40 %)						
Paramètres	Moyenne	ET	0,025	0,25	0,5	0,75	0,975
К	11 763	3 641	6 487	8 891	10 910	14 363	19 365
Valeur a priori de K	12 493	4 331	5 373	8 753	12 480	16 248	19 632
Lambda _{max} Valeur a priori de	0,037	0,009	0,021	0,03	0,036	0,042	0,056
Lambda _{max}	0,04	0,01	0,023	0,033	0,039	0,046	0,062

Paramètres	Moyenne	ET	0,025	0,25	0,5	0,75	0,975
Pop. initiale Valeur a priori de la	9 111	1852	5 832	7 795	8 983	10 303	13 110
pop. initiale Animaux abattus et	8 495	3 754	2 321	5 239	8 492	11 744	14 668
perdus Valeur a priori des animaux abattus et	0,29	0,20	0,02	0,13	0,26	0,43	0,74
perdus	0,29	0,21	0,02	0,12	0,25	0,43	0,76
N2021	3 228	706	1782	2 766	3 248	3 711	4 554

RÉPERCUSSIONS LIÉES À LA RÉCOLTE

Baie James

Aucun objectif de gestion n'a encore été établi pour la population de la baie James. Si l'on utilise l'approche actuelle selon laquelle la probabilité d'une diminution de l'abondance due à la récolte ne doit pas dépasser 50 % après 5 ans, la récolte ne devrait pas dépasser 190 bélugas par année (tableau 5). Si l'on appliquait un cadre de l'approche de précaution, le PBP serait de 296 bélugas avec un facteur de rétablissement de 1. En utilisant les cadres de l'approche de précaution du MPO, les niveaux de récolte se situeraient entre 170 et 173 animaux, selon le cadre, et auraient une probabilité de 95 % de demeurer au-dessus du NRL sur une période de 50 ans. À ces niveaux de récolte, la probabilité que la population demeure au-dessus du NRP était près de 80 % (tableau 6).

Tableau 5. Abondance estimée (Abond.) et erreur type (ET) de la population JAM et du stock BEL-EBH et niveaux de récolte qui auraient une probabilité de 50 % de maintenir la population au-dessus du niveau de référence (Réf.) et des prélèvements biologiques potentiels (PBP). CV=Coefficient de variation

		Plan de ge	estion actu	el		PBP	
Zone	Abond. 2021	ET	Réf.	Récolte pour 50 % pop. > Réf.	N _{min}	Facteur de rétablis sement	PBP
JAM	16 662	2 459	16 662	190	14 800	1	296
BEL-EBH (série de base, CV=29 %)	2 859	571	3 650 3 400	0*(20**) 0*(38**)	2 254	0,1	5
BEL-EBH (CV = 40 %)	3 248	1 013	3 936 3 400	0*(35**) 60*(70**)	2 752	0,1	5

* Évalué sur 5 ans.

** Évalué sur 10 ans.

BEL-EBH

On a examiné plusieurs approches différentes pour évaluer l'incidence des récoltes sur le stock BEL-EBH (tableaux 5 et 6). L'estimation du prélèvement biologique potentiel (PBP) est de 5 bélugas, en supposant un facteur de rétablissement de 0,1. L'objectif de gestion actuel est de maintenir le stock à un niveau égal ou supérieur à un niveau de référence de 3 400 animaux. Cet objectif est basé sur l'abondance estimée de 3 400 bélugas dans le cadre de l'évaluation de 2015 (Hammill *et al.* 2017 a). Cependant, depuis l'évaluation de 2017, un nouveau relevé aérien a été effectué et de nouveaux facteurs de correction de la disponibilité et du biais de perception ont été appliqués à l'ensemble de la série chronologique des estimations de l'abondance des relevés aériens (1985–2021), ce qui a entraîné des changements dans l'estimation de l'abondance du modèle de 2015. Dans l'exécution du modèle 1 (CV _{relevé 2021}=29 %), l'ajustement du modèle de population aux nouvelles estimations d'abondance du relevé aérien

corrigées de la disponibilité et du biais de perception a permis de rééchelonner l'estimation de l'abondance du béluga du stock BEL-EBH en 2015 à 3 600 animaux. Cette estimation est la référence établie lorsqu'on évalue l'incidence des différentes récoltes sur le stock. L'exécution du modèle 2 a utilisé un CV de 40 % pour l'estimation du relevé aérien de 2021. L'ajustement du modèle de population à la série chronologique des relevés aériens avec une estimation moins précise de l'abondance en 2021 a donné une estimation de l'abondance en 2015 de 3 900 animaux, ce qui constituerait le point de référence pour évaluer l'incidence des récoltes sur le stock dans cette deuxième exécution.

Dans la première exécution du modèle, aucune récolte du stock BEL-EBH ne respecterait l'objectif de gestion consistant à rester au-dessus du point de référence de 3 400 ou 3 600 sur une période de 5 ans (tableau 5, figure 8). Si le délai est augmenté à 10 ans, une récolte de 20 animaux par an respecterait le point de référence de 3 600 et une récolte de 38 animaux par an respecterait le point de référence de 3 400. Dans la deuxième exécution du modèle, avec le CV du relevé aérien de 2021 augmenté à 40 %, aucune récolte ne respecterait le point de référence de 3 900 si l'évaluation s'étalait sur une période de 5 ans. Si le point de référence est 3 400, une récolte de 60 animaux par an respecterait le point de référence sur une période de 5 ans (tableau 5, figure 8). Si l'on évalue l'incidence des récoltes sur une période de 10 ans, une récolte de 35 bélugas par année respecterait le point de référence de 3 900, tandis qu'une récolte de 70 bélugas par année respecterait le point de référence de 3 400 animaux.

En appliquant un cadre d'approche de précaution, la population tomberait dans la zone de prudence, entre le niveau de précaution et le niveau de référence limite (figure 3). Pour maintenir une probabilité de 95 % que la population soit supérieure au NRL après 50 ans, dans l'exécution du modèle 1, le prélèvement ne devrait pas dépasser 20 animaux du stock BEL-EBH par an. Après 50 ans, la probabilité que le stock soit supérieur au NRP serait de 70 à 78 %. Dans l'exécution du modèle 2, les estimations de récolte de 25 bélugas du stock BEL-EBH par an auraient une probabilité de 95 % d'être au-dessus du NRL après 50 ans. À ce niveau, la probabilité que la population soit au-dessus du NRP après 50 ans est de 73 à 82 % (tableau 6).

Figure 8. Probabilité que le stock de bélugas du stock BEL-EBH soit supérieur au point de référence indiqué sur l'axe des y après 5 ans (deux premières lignes) ou 10 ans (troisième et quatrième lignes). La ligne rouge identifie le niveau de récolte pour une probabilité de 50 % que le stock soit supérieur au point de référence. Les estimations de récolte découlant du modèle de base (CV=29 %) figurent dans la colonne de gauche et celles découlant du modèle à variance accrue (CV = 40 % pour le relevé de 2021) figurent dans la colonne de droite.

Tableau 6. Niveaux de référence et prises totales autorisées (PTA) obtenus en fonction de deux cadres de gestion fondés sur l'approche de précaution. Le cadre GPA-MPO utilise la plus grande estimation de population du modèle (N_{max}) avec des niveaux de référence limites (NRL) à 30 % de N_{max} (N30), et des niveaux de référence de précaution (NRP) à 70 % of N_{max} (N70)(GPA-MPO). Le cadre RMD-MPO, une approche de rechange, fixe les NRL et NRP à 24 et 48 % de la capacité de charge de l'environnement (K). La prob. de 95 % PTA > NRL constitue les prises totales autorisées qui maintiennent une probabilité de 95 % que la population reste au-dessus du NRL après 50 ans. Prob. > NRP est la probabilité (%) de rester au-dessus du NRP au niveau de récolte établi dans la colonne précédente.

	GPA-MPO						RMD-MPO					
Zone	N _{max}	NRP (N70)	NRL (N30)	PTA 95 % prob > NR L	Prob > NRP	к	NRP 48 % K	NRL 24 % K	PTA 95 % prob. > NRL	Prob. > NRP		
JAM	18 205	12 744	5 461	170	75 %	21 016	10 088	5 044	173	85 %		
BEL-EBH Exéc. modèle 1 (CV _{relevé 2021} =29 %)	8 554	5 988	2 566	20	70 %	11 048	5 303	2 652	20	78 %		
BEL-EBH Exéc. modèle 2 (CV _{relevé 2021} =40 %)	8 508	5 956	2 552	25	73 %	10 909	5 236	2 618	25	82 %		

DISCUSSION

Plusieurs modifications sont survenues au cours de cette évaluation, ce qui a eu une incidence sur notre compréhension des bélugas qui passent l'été dans l'est de la baie d'Hudson. De nouvelles analyses génétiques ont permis d'identifier une nouvelle population génétique d'animaux qui passent l'été dans la région de l'île Belcher (BEL), dont la répartition chevauche également celle des bélugas de la population de l'EBH (Parent *et al.* 2023; St-Pierre *et al.* 2023). Le fait de combiner les deux populations en un stock de gestion BEL-EBH a permis d'améliorer l'assignation génétique, mais a également entraîné une augmentation du nombre estimé d'animaux récoltés dans ce stock. On a appliqué de nouvelles estimations du biais de disponibilité et du biais de perception à la série chronologique des relevés aériens, ce qui a permis d'augmenter nos estimations de l'abondance des bélugas par rapport aux évaluations précédentes. Le relevé aérien le plus récent présentait l'estimation la plus basse de l'abondance dans la série chronologique et était le plus précis (St-Pierre *et al.* 2023). Étant donné qu'il s'agit également du point le plus récent de la série chronologique, il a eu une incidence considérable sur les estimations d'abondance et la tendance du modèle de population.

La gestion de la récolte des bélugas au Nunavik est complexe parce que cette dernière a des répercussions sur au moins cinq populations de bélugas dont l'état de conservation diffère, et qu'elle touche 15 communautés dans deux territoires. Le cadre de gestion actuel utilise les renseignements génétiques obtenus des échantillons de peau fournis par les chasseurs pour orienter la chasse vers l'importante population de l'OBH et l'éloigner du petit stock de BEL-EBH. Le PBP pour la population de l'OBH est de 753 animaux (FR = 0,75), avec des prélèvements totaux de 584 animaux en 2015 (Hammill *et al.* 2017 a). Cela laisse une certaine marge de manœuvre pour augmenter les prélèvements d'animaux, bien qu'à un moment donné, les prélèvements puissent atteindre des niveaux nécessitant une gestion accrue de la population. Pour certaines communautés de l'Arc de la baie d'Hudson, le fait de réorienter les récoltes vers le béluga de la baie James permet d'accéder aux ressources de subsistance nécessaires, tout en favorisant la conservation du stock de béluga BEL-EBH qui passe l'été dans l'est de la baie d'Hudson (figure 1).

Dans les évaluations antérieures, on a supposé que les animaux observés pendant les relevés estivaux dans l'est de la baie d'Hudson avaient la même composition génétique que les animaux échantillonnés dans les deux rivières côtières de l'EBH (c.-à-d. la Petite rivière de la Baleine et la rivière Nastapoka). C'est ce qui a été supposé, même si les résultats des analyses du mélange génétique des évaluations antérieures indiguaient que la majorité des animaux capturés pendant la récolte estivale de Sanikiluag avaient une signature de population autre que celle de l'EBH (Hammill et al. 2017 a, Hawkes et al. 2021). Dans le cadre de l'évaluation de 2017, on a souligné que certains échantillons d'animaux présentaient des haplotypes spécifiques aux îles Belcher, ce qui suggère que la composition génétique des animaux observés dans ces zones extracôtières était plus complexe que celle caractérisée par les types typiques des populations de l'EBH et de l'OBH. Par conséquent, on a observé une incohérence entre la définition génétique du stock BEL-EBH, composé uniquement de bélugas de l'EBH, et le recensement des relevés aériens, qui comprenait les bélugas de l'EBH et les bélugas des îles Belcher. L'une des conséquences serait que l'évaluation sous-estime les répercussions des récoltes sur le stock de bélugas qui passe l'été dans l'est de la baie d'Hudson (Hammill et al. 2017 a). Le réexamen de la structure de la population dans le complexe du détroit de la baie d'Hudson montre que deux populations distinctes passent l'été dans l'est de la baie d'Hudson (Parent et al. 2023). Les relevés effectués dans l'est de la baie d'Hudson couvrent une vaste zone et ont toujours permis d'identifier des animaux, principalement dans une zone située entre la côte et les îles Belcher. Les données de télémétrie des animaux capturés dans la rivière Nastapoka et la petite rivière de la Baleine montrent un important mouvement vers le large en direction de la zone des îles Belcher, qui chevauche la zone où les animaux ont été vus pendant les relevés (Lewis et al. 2009; Bailleul et al. 2012). En supposant qu'il n'y a pas eu de changement substantiel dans la répartition vers des zones autres que celles où l'on a régulièrement observé des bélugas pendant les relevés d'été, les bélugas de la population BEL doivent se chevaucher avec les ceux de l'EBH. Les animaux des deux populations sont capturés dans le cadre des récoltes d'été dans la baie d'Hudson et des récoltes d'automne et de printemps dans le détroit d'Hudson. Il était donc logique de combiner les populations BEL et EBH en un seul stock de gestion, ce qui améliore également la cohérence avec ce qui est évalué par les relevés aériens d'été. De plus, cette combinaison a permis d'améliorer la définition génétique des bélugas qui passent l'été dans l'est de la baie d'Hudson et de réduire le nombre de bélugas appartenant à un groupe non identifié. Les relevés aériens montrent que les animaux qui passent l'été dans l'est de la baie d'Hudson ne sont pas abondants et, lorsqu'on les combine aux nouveaux renseignements génétiques, ils indiquent également que les répercussions des récoltes sur les animaux qui passent l'été dans cette région ont été sousestimées dans les analyses antérieures, en particulier pour les récoltes de Sanikiluaq (Parent et al. 2023).

Des relevés aériens ont été effectués dans la baie James et dans l'est de la baie d'Hudson depuis 1985, à des intervalles d'environ cinq ans. Les relevés ont suivi le même concept général, mais des changements ont été apportés aux méthodes au fil du temps (St-Pierre et al. 2023). Un changement important en 2021 a été le recours à trois avions, ce qui a permis d'achever les relevés avant la fin du mois d'août, lorsque les animaux commencent à se déplacer (Bailleul et al. 2012). Un deuxième changement important a été la modification des corrections du biais de disponibilité et de perception que l'on a appliquées aux données des relevés. Pour les relevés précédents, on a utilisé un facteur de correction de disponibilité de 2,09 basé sur les données du béluga du Saint-Laurent afin de tenir compte des animaux qui plongent (Gosselin et al. 2017). Dans le cadre du relevé de 2021, on a appliqué un facteur de correction de la disponibilité de 1,97 aux estimations du relevé en fonction des données de télémétrie provenant des émetteurs satellites déployés sur les bélugas de l'EBH au début des années 2000 (Bailleul et al. 2012; St-Pierre et al. 2022). Un facteur de correction du biais de perception basé sur les données recueillies dans le cadre du relevé de 2015, mais non analysées à l'époque, a été appliqué au relevé de 2015 et un facteur de correction du biais de perception distinct basé sur les données recueillies en 2021 a également été appliqué aux estimations du relevé aérien de 2021. On a également appliqué la moyenne de ces deux estimations (biais de perception moyen = 1.23) à la série chronologique des relevés aériens de 1985 à 2011. En moyenne, l'application des deux facteurs de correction a permis d'augmenter les estimations de l'abondance dans la série chronologique d'environ 65 % par rapport aux évaluations précédentes.

Le relevé aérien effectué en 2021 dans l'est de la baie d'Hudson a donné l'estimation d'abondance la plus faible et, avec un CV de 29 % (par rapport à CV = 51 %, ET = 4 % : 1985-2015). Ce CV était le plus faible de la série chronologique des relevés de 1985 à 2021. Ces résultats, ainsi que le fait qu'il s'agit du point le plus récent de la série chronologique, ont des répercussions importantes sur les estimations du modèle de l'abondance et de la tendance.

Le recours à de méthodes bayésiennes pour ajuster le modèle de population aux données des relevés aériens nous a permis d'intégrer explicitement l'incertitude entourant les paramètres du modèle (Wade 2000), qui sont représentés dans le modèle au moyen de distributions stochastiques au lieu de valeurs uniques. L'ajustement bayésien a également permis de s'assurer que l'incertitude se propageait tout au long de l'analyse et que les corrélations entre les paramètres étaient préservées (Hoyle et Maunder 2004). Cependant, il subsiste une incertitude liée à certains des renseignements qui ont été recueillis et à leur incidence sur l'approche de gestion. Par exemple, bien que des estimations de l'abondance de ce stock sont

disponibles pour une série chronologique de relevés aériens qui remontent à 1985, les relevés ont été réalisés à des intervalles d'environ 5 ans, ce qui limite le nombre de points que le modèle est en mesure d'ajuster (St-Pierre *et al.* 2023). Les estimations des relevés aériens de bélugas sont très incertaines en raison des défis liés à l'estimation de l'abondance d'une espèce qui passe peu de temps à la surface et dont le comportement influence l'activité de plongée, la taille du groupe et la répartition (Gosselin *et al.* 2014). En outre, en raison du nombre limité d'estimations de l'abondance, le modèle est sensible à la dernière estimation de l'abondance dans la série chronologique. La faible estimation du relevé de 2021, et notamment le faible CV associé à celui-ci, a eu d'importantes répercussions sur les estimations de l'abondance et de la tendance du modèle. Afin de déterminer quels pourraient être ces répercussions, on a réalisé une deuxième exécution du modèle (exécution du modèle 2) en utilisant un CV plus élevé de 40 % pour le relevé de 2021. Ce changement a permis de soutenir un stock légèrement plus grand, mais n'a pas modifié le fait que le stock BEL-EBH demeure un stock relativement petit et en déclin d'environ 2 900 à 3 200 bélugas.

Une autre incertitude est liée à la composition du stock dans les récoltes. Même si nous considérons que notre compréhension de la structure des stocks dans le complexe de la baie d'Hudson s'est améliorée, le nombre d'échantillons retournés par les chasseurs ne reflète pas la majorité de la chasse. En 2021, sur les 366 animaux déclarés récoltés au Nunavik, les échantillons de seulement 87 animaux avaient été reçus à la mi-janvier 2022. Des renseignements supplémentaires sur la structure d'âge des récoltes et les taux démographiques permettraient également d'améliorer notre compréhension de la dynamique de ce stock.

Dans la baie d'Hudson, des évaluations antérieures ont supposé un taux d'abattage et de perte de 42 % (Doniol-Valcroze *et al.* 2012, 2013; Hammill *et al.* 2017a, 2021). Cette valeur se situe à l'extrémité supérieure de la fourchette de valeurs que l'on trouve dans la littérature et qui est plus fréquemment associée à des pratiques de récolte où les animaux ne sont pas harponnés en premier, mais elle tient également compte de la non-déclaration. Les conversations avec les chasseurs dans le cadre des audiences publiques à Kuujjuarapik, qui ont eu lieu avant l'établissement du nouveau plan de gestion, ont appuyé la théorie selon laquelle cette hypothèse était trop élevée. Par conséquent, nous avons abaissé la valeur a priori à des valeurs avec une médiane de 25 %, ce qui est similaire à Richard (2008), qui a estimé un taux d'animaux abattus et perdus de 18 % (CV = 6 %; excluant la non-déclaration), mais n'a pas non plus rendu la valeur a priori trop étroite pour permettre la non-déclaration.

Le terme d'erreur de processus tient compte de la variabilité de la dynamique de la population. Dans cette évaluation, l'erreur de processus a considérablement diminué depuis 2000 (annexe B; figures B1 et B3). À ce stade, les raisons de cette diminution ne sont pas connues, mais elles pourraient comprendre une stochasticité environnementale accrue. Des évaluations récentes ont identifié d'autres stocks (p. ex. les phoques du Groenland; Stenson et al. 2020) pour lesquels le recrutement et la mortalité peuvent varier considérablement d'une année à l'autre en raison de la variabilité de l'état des glaces et des ressources alimentaires. Nous disposons de moins de renseignements sur la variabilité des taux démographiques du béluga, mais l'incertitude associée à ce paramètre doit être réexaminée plus en profondeur. La structure sociale des bélugas est également très complexe : d'autres membres du groupe s'occupent des veaux. La tendance à la baisse de l'âge moyen des animaux récoltés dans le stock BEL-EBH depuis les années 1980 peut avoir des répercussions sur la productivité si les animaux plus petits ont une natalité plus faible (Ferguson et al. 2020). Une structure d'âge en déclin peut aussi avoir d'autres implications. Les preuves émergentes de la culture animale en tant que rôle moteur dans les processus démographiques indiquent que la perte d'animaux plus âgés qui participent à l'établissement de relations de parenté pour prendre soin des jeunes et qui détiennent des connaissances écologiques liées aux itinéraires de migration et aux zones

d'alimentation favorables contribuera également à un déclin de la productivité du stock (c.-à-d. les effets d'Allee; O'Corry-Crowe *et al.* 2010, 2018, 2020; Brakes *et al.* 2021).

Dans la baie James, le modèle de population ajusté aux estimations des relevés aériens a donné lieu à une estimation de 16 700 animaux en 2021, ce qui en fait l'une des plus grandes populations de bélugas au monde (NAMMCO 2018). L'abondance de la population semble s'être stabilisée. Historiquement, les bélugas de la baie James étaient exploités à des fins de subsistance, et bien que l'on ait tenté de mettre en place une chasse commerciale à la baleine dans la région, ces efforts n'ont pas porté leurs fruits et les prélèvements semblent avoir été négligeables. Par conséquent, la population de la JAM n'a jamais été décimée dans les proportions observées ailleurs, bien que des modifications importantes aient été apportées à l'habitat par des aménagements hydroélectriques de très grande ampleur sur le côté est de la baie James (Reeves et Mitchell 1987). On ne sait pas comment ou si ces aménagements ont eu des répercussions sur le béluga dans la région de la baie James et de l'est de la baie d'Hudson. Les activités de récolte dans la région de la baie James et de l'île Long au cours du présent siècle ont été limitées jusqu'à maintenant, en raison des grandes distances que doivent parcourir les chasseurs des communautés du Nunavik jusqu'à la région de l'île Long. Aucun objectif de gestion n'a encore été fixé pour cette population. Toutefois, le développement social complexe du béluga et l'importance du transfert des connaissances (culture) dans l'établissement des habitudes migratoires du béluga, comme le soulignent des recherches récentes (Colbeck et al. 2013; O'Corry-Crowe et al. 2020; Ouellet et al. 2021; Bonnell et al. 2022) militent en faveur de l'élaboration de stratégies de récolte qui minimiseront les risques de réduire le nombre d'animaux qui fréquentent la région de l'île Long.

Les efforts de gestion qui visent à limiter la récolte d'animaux du stock de bélugas BEL-EBH ont eu une certaine incidence sur le ralentissement du déclin de la population; on a rapporté des déclins annuels estimés à 1 % ou moins entre 2004 et 2014, mais le taux de déclin a augmenté depuis (figure 7). Ces déclins d'abondance ne sont pas inattendus, car les captures ont toujours dépassé les niveaux de PTA recommandés, mais les évaluations antérieures ont également sous-estimé les proportions d'animaux qui passent l'été dans l'est de la baie d'Hudson qui sont retirés en raison de la chasse (figures 4 et 5). Un cadre d'approche de précaution n'aurait pas permis d'éviter les répercussions d'une plus grande proportion de bélugas prélevés dans les récoltes, mais il les aurait atténuées parce que, de par leur conception, les cadres d'approche de précaution comme le PBP ou les cadres du MPO intègrent les risques d'erreurs inconnues dans les paramètres du modèle (Stenson *et al.* 2012; MPO 2013; 2017a, Doniol-Valcroze *et al.* 2013; Hammill *et al.* 2017b).

PBP

En plus des niveaux de récolte respectant l'objectif du plan de gestion actuel du béluga, nous avons présenté trois approches de gestion basées sur le principe de précaution. L'approche axée sur le PBP a été élaborée en réponse à la Marine Mammal Protection Act des États-Unis (Wade 1998) et constitue le principal outil que l'on utilise pour estimer un niveau durable des prélèvements. Les États-Unis attendent des pays qui exportent des produits de la pêche sur leur marché qu'ils mettent en place des systèmes de surveillance des mammifères marins et qu'ils effectuent des prélèvements durables comparables à ceux actuellement en vigueur dans ce pays. L'estimation du PBP pour la population de JAM est de 296 bélugas, en supposant un facteur de rétablissement de 1. Le PBP pour le stock de bélugas BEL-EBH est de 5 bélugas, en supposant un facteur de rétablissement de 0,1 (tableau 5).

L'APPROCHE DE PRÉCAUTION AU CANADA

En vertu des dispositions modifiées de la *Loi sur les pêches* (2019), l'accent est à nouveau mis sur la durabilité des pêches par l'élaboration d'un cadre de gestion fondé sur l'approche de

précaution, qui demande notamment à la ministre du MPO d'établir un NRL. Le NRL est considéré comme une limite inférieure en dessous de laquelle le stock peut subir des dommages importants, ce qui complique considérablement les efforts de reconstitution du stock (Stenson *et al.* 2012; 2017a, Doniol-Valcroze *et al.* 2013; Hammill *et al.* 2017b). Dans cette étude, nous avons présenté deux cadres de gestion de précaution très semblables. Dans les deux cadres, le stock BEL-EBH se situe dans ce que l'on peut considérer comme la zone de prudence, soit sous le NRP, mais au-dessus du NRL (figure 3). Les stratégies de récolte doivent se concentrer sur le rétablissement du stock à l'intérieur d'un certain délai. Selon les cadres que nous avons ciblés, les prises annuelles devraient diminuer à 20-25 animaux du stock BEL-EBH si l'on peut s'attendre à ce que le stock ait une probabilité de 70 % ou plus d'augmenter au-dessus du NRP d'ici 50 ans (tableau 6).

En 1984, le béluga de l'EBH a été désigné à titre d'espèce en voie de disparition par le COSEPAC, car la population avait connu un déclin important sur une période de trois générations et que ce déclin était principalement attribuable à la surexploitation. En 2020, on a révisé le statut du béluga de l'EBH et celui-ci a été désigné comme espèce menacée, car la population semblait s'être stabilisée. De nouvelles analyses génétiques ont montré que le stock BEL-EBH se compose de deux populations, dont l'abondance globale est d'environ 2 900 à 3 200 animaux, avec une tendance à la baisse. Cette tendance s'explique en partie par la sous-estimation des prélèvements d'animaux appartenant au stock BEL-EBH et aux dépassements constants du PTA dans le cadre de plans de gestion consécutifs

On a établi des limites aux prélèvements de bélugas de l'EBH dans le nord du Québec au milieu des années 1980. Malgré plus de 30 ans de gestion et d'efforts pour limiter les prélèvements d'animaux du stock BEL-EBH, notamment grâce au programme d'échantillonnage et à la réorientation des prélèvements vers d'autres populations, les prélèvements ont constamment dépassé les niveaux recommandés et le stock continue de décliner. Tous les cadres de gestion soulignent la nécessité de réduire les prélèvements afin de mettre fin au déclin et d'œuvrer au rétablissement de ce stock.

REMERCIEMENTS

Merci à Talia Koll-Egyed pour les figures. Nous remercions également Pêches et Océans Canada et le Conseil de gestion des ressources fauniques de la région marine du Nunavik pour leur soutien financier.

RÉFÉRENCES CITÉES

- Alvarez-Flores, C.M. et Heide-Jørgensen, M.P. 2004. A risk assessment of the sustainability of the harvest of beluga (*Delphinapterus leucas* (Pallas 1776)) in West Greenland. ICES J. Mar. Sci. 61:274–286.
- Bailleul, F., Lesage, V., Power, M., Doidge, D.W. et Hammill, M.O. 2012. Differences in diving and movement patterns of two groups of beluga whales in a changing Arctic environment reveal discrete populations. Endanger. Species Res. 17:27–41.
- Béland, P., Vézina, A. et Martineau, D. 1988. Potential for growth of the St. Lawrence (Québec, Canada) beluga whale (*Delphinapterus leucas*) population based on modelling. ICES J. Mar. Sci. 45:22–32.
- Bonnell, T., Michaud, R., Dupuch, A., Lesage, V. et Chion, C. 2022. Extracting spatial networks from capture-recapture data reveals individual site fidelity patterns within a marine mammal's spatial range. Ecol. Evol. 2022(12):e8616. doi:10.1002/ece3.8616
- Booy, K.V., Mouy, X., Ferguson, S.H. et Marcoux, M. 2021. Spatio-temporal summer distribution of Cumberland Sound beluga whales (*Delphinapterus leucas*) in Clearwater Fiord, Nunavut, Canada. Arct. Sci. 7(2):394–412. doi:10.1139/as-2019-0031
- Brakes, P., Carroll, E.L., Dall, S.R.X., Keith, S.A., McGregor, P.K., Mesnick, S.L., Noad, M.J., Rendell, L., Robbins, M.M., Rutz et al. 2021. A deepening understanding of animal culture suggests lessons for conservation. Proc. R. Soc. B. 288:20202718. doi:10.1098/rspb.2020.2718
- Brennin, R., Murray, B.W., Friesen, M.K., Maiers, L.D., Clayton, J.W. et White, B.N. 1997. Population genetic structure of beluga whales (*Delphinapterus leucas*): Mitochondrial DNA sequence variation within and among North American populations. Can. J. Zool. 75:795–802.
- Breton-Provencher, M. 1980. Survey of the beluga population in the Poste-de-la-Baleine region (New Quebec). Rep. Int. Whal. Comm., Cambridge, Doc. SC/32/SM 16. [Transl. from French by DFO.]
- Brooks, S.P., et Gelman, A. 1998. Alternative methods for monitoring convergence of iterative simulations. J. Comp. and Graph. Stat. 7:434–455.
- Brown Gladden, J.G., Ferguson, M.M. et Clayton, J.W. 1997. Matriarchal genetic population structure of North American beluga whales *Delphinapterus leucas* (Cetacea: Monodontidae). Mol. Ecol. 6:1033–1046.
- Brown Gladden, J.G., Ferguson, M.M., Friesen, M.K. et Clayton, J.W. 1999. Population structure of North American beluga whales (*Delphinapterus leucas*) based on nuclear DNA microsatellite variation and contrasted with the population structure revealed by mtDNA variation. Mol. Ecol. 8:347–363.
- Butterworth, D.S., Plagányi, É.E. et Geromont, H.F. 2002. Resource assessment and projections for the belugas off West Greenland using the population model of HITTER-FITTER. NAMMCO Sci. Publ. 4:211–224.
- Caron, L.M.J. et Smith, T.G. 1990. Philopatry and site tenacity of belugas, *Delphinapterus leucas*, hunted by the Inuit at the Nastapoka estuary, eastern Hudson Bay. *In* Smith, T.G., St. Aubin, D.J. and Geraci, J.R. (eds.). Advances in research on the beluga whale, *Delphinapterus leucas*. Can. Bull. Fish. Aquat. Sci. 224:69–79.

- Colbeck, G., Duchesne, P., Postma, L.D., Lesage, V., Hammill, M. et Turgeon, J. 2013. Groups of related belugas (*Delphinapterus leucas*) travel together during their seasonal migrations in and around Hudson Bay. Proc. R. Soc. B. 280:20122552. doi:10.1098/rspb.2012.2552
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada) 2004. COSEWIC assessment and update status report on the beluga whale *Delphinapterus leucas* in Canada. Ottawa. ix + 70 p.
- DeFur, P.L., Evans, G.W., Hubal, E.A.C., Kyle, A.D., Morello-Frosch, R.A. et Williams, D.R. 2007. Vulnerability as a function of individual and group resources in cumulative risk assessment. Environ. Health Perspect. 115:817–824.
- de March, B.G.E. et Postma, L.D. 2003. Molecular genetic stock discrimination of belugas (*Delphinapterus leucas*) hunted in eastern Hudson Bay, Northern Quebec, Hudson Strait, and Sanikiluaq (Belcher Islands), Canada, and comparisons to adjacent populations. Arctic 56:111–124.
- de March, B.G.E., Maiers, L.D. et Friesen, M.K. 2002. An overview of genetic relationships of Canadian and adjacent populations of belugas (*Delphinapterus leucas*) with emphasis on Baffin Bay and Canadian eastern Arctic populations. NAMMCO Sci. Publ. 4:17–38.
- de March, B.G.E., Stern, G. et Innes, S. 2004. The combined use of organochlorine contaminant profiles and molecular genetics for stock discrimination of white whales (*Delphinapterus leucas*) hunted in three communities on Southeast Baffin Island. J. Cetacean Res. Manage. 6:241–250.
- De Valpine, P., et Hastings, A., 2002. Fitting population models incorporating process noise and observation error. Ecol. Monogr. 72:57–76.
- Doniol-Valcroze, T. et Hammill, M.O. 2012. <u>Information on abundance and harvest of Ungava</u> <u>Bay beluga</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2011/126. iv + 12 p.
- Doniol-Valcroze, T., Hammill, M.O. et Lesage, V. 2012. <u>Information on abundance and harvest</u> <u>of eastern Hudson Bay beluga (*Delphinapterus leucas*)</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2011/119. iv + 17 p.
- Doniol-Valcroze, T., Gosselin, J.-F. et Hammill, M.O. 2013. <u>Population modeling and harvest</u> <u>advice under the precautionary approach for eastern Hudson Bay beluga (*Delphinapterus* <u>leucas</u>). DFO Can. Sci. Advis. Sec. Res. Doc. 2012/168. iii + 31 p.</u>
- Doniol-Valcroze, T., Gosselin, J.-F. et Hammill, M.O. 2014. <u>Impacts of a flexible Total Allowable</u> <u>Take system on beluga conservation in the Nunavik Marine Region</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2014/004. v + 17 p.
- Ferguson, S.H., Willing, C., Kelley, T.C., Bogusti, D.A., Yurkowski, D.J. et Watt, C.A. 2020. Reproductive parameters for female beluga whales (*Delphinapterus leucas*) of Baffin Bay and Hudson Bay Canada. Arctic 73:405–420.
- Finley, K.J., Miller, G.W., Allard, M., Davis, R.A. et Evans, C.R. 1982. The belugas (*Delphinapterus leucas*) of northern Quebec: Distribution, abundance, stock identity, catch history and management. Can. Tech. Rep. Fish. Aquat. Sci. 1123:1–32.
- Geweke, J. 1996. Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. *In* Bernardo, J.M., Berger, J.M., Dawid, A.P. and Smith, A.F.M. Bayesian Statistics 4. Oxford University Press, Oxford. p. 169–193.

- Gosselin, J.-F., Lesage, V., Hammill, M.O. et Bourdages, H. 2002. <u>Abundance indices of beluga</u> <u>in James Bay, eastern Hudson Bay and Ungava Bay in summer 2001</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2002/042. 27 p.
- Gosselin, J.-F., Lesage, V. et Hammill, M.O. 2009. <u>Index estimates of abundance for beluga in</u> <u>eastern Hudson Bay, James Bay and Ungava Bay in Summer 2008</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2009/006. iv + 25 p.
- Gosselin, J.-F., Doniol-Valcroze, T. et Hammill, M.O. 2013. <u>Abundance estimate of beluga in</u> <u>eastern Hudson Bay and James Bay, summer 2011</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2013/016. vii + 20 p.
- Gosselin, J.-F., Hammill, M.O. et Mosnier, A. 2014. <u>Summer abundance indices of St. Lawrence</u> <u>Estuary beluga (*Delphinapterus leucas*) from a photographic survey in 2009 and 28 line <u>transect surveys from 2001 to 2009</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2014/021. iv + 51 p.</u>
- Gosselin, J.-F., Hammill, M.O. et Mosnier, A. 2017. <u>Indices of abundance for beluga</u> (<u>Delphinapterus leucas</u>) in James and eastern Hudson Bay in summer 2015. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/067. iv + 25 p.
- Hammill, M.O. et Stenson, G.B. 2003. <u>Application of the Precautionary Approach and</u> <u>Conservation Reference Points to the management of Atlantic seals: A Discussion Paper</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2003/067. iii + 23 p.
- Hammill, M.O. et Stenson, G.B. 2007. Application of the Precautionary Approach and Conservation Reference Points to the management of Atlantic seals. ICES J. Mar. Sci. 64:702–706.
- Hammill, M.O. et Stenson, G.B. 2009. <u>A preliminary evaluation of the performance of the</u> <u>Canadian management approach for harp seals using simulation studies</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2009/093. iv + 47 p.
- Hammill, M.O. et G.B. Stenson. 2013. <u>A discussion of the Precautionary Approach and its</u> <u>Application to Atlantic Seals</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2013/030. v + 25 p.
- Hammill, M.O., Lesage, V., Gosselin, J.-F., Bourdages, H., de March, B.G.E. et Kingsley, M.C.S. 2004. Changes in abundance of northern Quebec (Nunavik) beluga. Arctic 57:183–195.
- Hammill, M.O., Lesage, V. et Gosselin, J.-F. 2005. <u>Abundance of Eastern Hudson Bay belugas</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2005/010. iv + 17 p.
- Hammill, M.O., Mosnier, A., Gosselin, J.-F., Matthews, C.J.D., Marcoux, M. et Ferguson, S.H. 2017a. <u>Management Approaches, Abundance Indices and Total Allowable Harvest levels of Belugas in Hudson Bay</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/062. iv + 43 p.
- Hammill, M.O., Stenson, G B. et Doniol-Valcroze, T. 2017b. <u>A management framework for</u> <u>Nunavik beluga</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/060. v + 34 p.
- Hammill, M.O., Mosnier, A., et Bordeleau, X. 2021. <u>Mise à jour des impacts des prélèvements</u> <u>sur l'abondance du béluga du Nunavik</u>. Secr. can. de consult. sci. du MPO. Doc. de rech. 2021/003. iv + 22 p.
- Heide-Jørgensen, M.P. et Rosing-Asvid, A. 2002. Catch statistics for belugas in West Greenland 1862 to 1999. NAMMCO Sci. Publ. 4:127–142.

- Hobbs, R.C., Shelden, K.E.W., Vos, D.J., Goetz, K.T. et Rugh, D.J. 2006. Status review and extinction assessment of Cook Inlet belugas (*Delphinapterus leucas*). AFSC Processed Rep. 2006-16. Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv. 74 p.
- Hoyle, S. et Maunder, M. 2004. A Bayesian integrated population dynamics model to analyze data for protected species. Anim. Biodivers. Conserv. 27:247–266.
- Innes, S. et Stewart, R.E.A. 2002. Population size and yield of Baffin Bay Beluga (*Delphinapterus leucas*) stocks. NAMMCO Sci. Publ. 4:225–238.
- Kingsley, M.C. 2000. Numbers and distribution of beluga whales, *Delphinapterus leucas*, in James Bay, eastern Hudson Bay, and Ungava Bay in Canada during the summer of 1993. Fish. Bull. 98:736–736.
- Lesage, V., Baillargeon, D., Turgeon, S. et Doidge, D.W. 2009. <u>Harvest statistics for beluga in</u> <u>Nunavik, 2005–2008</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2009/007. iv + 25 p.
- Lewis, A., Hammill, M.O., Power, M., Doidge, D.W. et Lesage, V. 2009. Movements and seasonal distribution of beluga in the waters surrounding northern Quebec: A comparison of Traditional knowledge with satellite telemetry. Arctic 62:13–24.
- Lowry, L.F., Frost, K.J., Zerbini, A., DeMaster, D. et Reeves, R.R. 2008. Trend in aerial counts of beluga or white whales (*Delphinapterus leucas*) in Bristol Bay, Alaska,1993–2005. J. Cetacean Res. Manage. 10:201–207.
- Matthews, C.J.D., Watt, C., Dunn, B., Young, R., Hall, P.J., Orr, J., Ferguson, S.H. et Marcoux, M. 2017. <u>Estimated abundance of the Western Hudson Bay beluga stock from the 2015</u> <u>visual and photographic aerial survey</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/061. v + 34 p.
- Mosnier, A., Hammill, M.O., Turgeon, S. et Postma, L. 2017. <u>Updated analysis of genetic mixing</u> <u>among beluga stocks in the Nunavik marine region and Belcher Islands area: information for</u> <u>population models and harvest allocation</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/016. v + 15 p.
- MPO 2006. <u>Stratégie de pêche en conformité avec l'approche de précaution</u>. Secr. Can. de consult. sci. du MPO, Avis sci. 2006/023.
- MPO. 2013. <u>Compte rendu de l'atelier national pour Expertise technique en évaluation de</u> <u>stocks (ETES) : Points de référence en matière de rendement maximal soutenu (RMS) et</u> <u>approche de précaution en situation de variation de la productivité ; du 13 au 15 décembre</u> <u>2011</u>. Secr. can. de consult. sci. du MPO, Compte rendu 2012/055
- NAMMCO (North Atlantic Marine Mammal Commission) 2018. <u>Report of the NAMMCO Global</u> <u>Review of Monodontids</u>. 13–16 March 2017, Hillerød, Denmark.
- O'Corry-Crowe, G., Lydersen, C., Heide-Jørgensen, M.P., Hansen, L., Mukhametov, L.M., Dove, O. et Kovacs, K.M. 2010. Population genetic structure and evolutionary history of North Atlantic Beluga Whales (*Delphinapterus leucas*) from West Greenland, Svalbard and the White Sea. Polar Biol. 33:1179–1194. doi:10.1007/s00300-010-0807-y
- O'Corry-Crowe, G., Suydam, R., Quakenbush, L., Smith, T.G., Lydersen, C., Kovacs, K.M., Orr, J., Harwood, L., Litovka, D. et Ferrer, T. 2020. Group structure and kinship in beluga whale societies. Sci. Rep. 10:1–21.
- Ouellet, J.-F., Michaud, R., Moisan, M. et Lesage, V. 2021. Estimating the proportion of a beluga population using specific areas from connectivity patterns and abundance indices. Ecosphere.12(6):e03560. doi:10.1002/ecs2.3560

- Parent, G.J, Mosnier, A., Montana, L., Cortial, G., St-Pierre, A.P., Bordeleau, X., Lesage, V., Watt, C., Postma, L., et Hammill, M.O. 2023. <u>Réexamen des populations de bélugas dans le</u> <u>complexe de la baie et du détroit d'Hudson et évaluation des répercussions sur les récoltes</u> <u>dans les unités de gestion du Nunavik et de Sanikiluaq</u>. Secr. can. des avis sci. du MPO. Doc. de rech. 2023/004. iv + 32 p.
- Pella, J.J. et Thomlinson, P.K. 1969. A generalized stock production model. Int-Amer. Trop. Tuna Comm. Bull. 13:420–496.
- Plummer, M. 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling; Proceedings of the 3rd International Workshop on Distributed Statistical Computing; Vienna, Austria.
- Postma, L.D., Petersen, S.D., Turgeon, J., Hammill, M.O., Lesage, V. et Doniol-Valcroze, T. 2012. <u>Beluga whales in James Bay: a separate entity from eastern Hudson Bay belugas?</u> DFO Can. Sci. Advis. Sec. Res. Doc. 2012/074.
- Reeves, R.R. et Mitchell, E.D. 1987. History of white whale (*Delphinapterus leucas*) exploitation in eastern Hudson Bay and James Bay. Can. Spec. Publ. Fish. Aquat. Sci. 95. 45 p.
- Richard, P.R., 2008. <u>On determining the Total Allowable Catch for Nunavut odontocete stocks</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2008/022.
- Richard, P., et Stewart, D.B. 2009. <u>Information relevant to the identification of critical habitat for</u> <u>Cumberland Sound belugas (*Delphinapterus leucas*)</u>. DFO Can. Sci. Advis. Secr. Res. Doc. 2008/085. iv + 24 p.
- Rioux, E., Lesage, V., Postma, L., Pelletier, É., Turgeon, J., Stewart, R.E.A., Stern, G. et Hammill, M.O. 2012. Use of stable isotopes and trace elements to determine harvest composition and wintering assemblages of belugas at a contemporary ecological scale. Endang Spec. Res. 18:179–191.
- Seaman, G.A. et Burns, J.J. 1981. Preliminary results of recent studies of belukhas in Alaskan waters. Rep. Int. Whal. Comm. 31:567–574.
- Smith, T.G. et Hammill, M.O. 1986. Population estimates of white whale, *Delphinapterus leucas*, in James Bay, Eastern Hudson Bay and Ungava Bay. Can. J. Fish. Aquat. Sci. 43:1982–1987.
- St-Pierre, A.P., Gosselin, J.-F., Mosnier, A., Sauvé, C. et Hammill, M.O. 2023. Estimation de l'abondance du béluga (*Delphinapterus leucas*) dans la baie James et la région des îles Belcher-est de la baie d'Hudson à l'été 2021. Secr. can. des avis sci. du MPO. Doc. de rech. 2023/040.
- Stenson, G.B., Hammill, M., Ferguson, S., Stewart, R. et Doniol-Valcroze, T. 2012. <u>Applying the</u> <u>Precautionary Approach to Marine Mammal Harvests in Canada</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2012/107.
- Stenson, G. B., Buren, A.D. et Sheppard, G.L. 2020. <u>Estimations actualisées des taux de</u> reproduction des phoques du Groenland dans l'Atlantique Nord-Ouest et influence de l'état <u>corporel</u>. Secr. can.de consult. sci. du MPO. Doc. de rech. 2020/057. iv + 22 p.
- Taylor, B.J. et Demaster, D.P. 1993. Implications of non-linear density dependence. Mar. Mamm. Sci. 9:360–371.

- Turgeon, J., Duchesne, P., Colbeck, G.J.C., Postma, L. et Hammill, M.O. 2012. Spatiotemporal segregation among summer stocks of beluga (*Delphinapterus leucas*) despite nuclear gene flow: implication for an endangered population in eastern Hudson Bay (Canada). Conserv. Genet. 13: 419–433.
- Wade, P.R. 1998. Calculating limits to the allowable human-caused mortality of cetaceans and pinnipeds. Mar. Mamm. Sci. 14:1–37.

Wade, P.R. 2000. Bayesian Methods in Conservation Biology. Conserv. Biol. 14:1308–1316.

ANNEXE A

Tableau A1. Récoltes déclarées dans les communautés du Nunavik et de Sanikiluaq. L'ARC représente les communautés de Kuujjuarapik, Umiujaq et Inukjuak. DHBU représente une première période où les prises du détroit d'Hudson et de la baie d'Ungava ont été combinées. DH représente les prises déclarées dans la région du détroit d'Hudson au printemps (du 1^{er} février au 31 août) et à l'automne (du 1^{er} septembre au 31 janvier). BUPR et BUAU sont respectivement le printemps et l'automne dans la baie d'Ungava. NEBHPR et NEPHAU sont respectivement le printemps et l'automne dans le nord-est de la baie d'Hudson.

ANNÉE	ARC	DHBU	Sanikiluaq (toute l'année)	DH- printemps	DH- automne	BUPR	BUAU	NEBHPR	NEPHAU	Île Long	Total annuel
1974	184	421	0	0	0	0	0	0	0	0	605
1975	224	586	0	0	0	0	0	0	0	0	810
1976	216	463	0	0	0	0	0	0	0	0	679
1977	269	554	14	0	0	0	0	0	0	0	837
1978	164	243	6	0	0	0	0	0	0	0	413
1979	271	293	0	0	0	0	0	0	0	0	564
1980	280	281	0	0	0	0	0	0	0	0	561
1981	97	236	6	0	0	0	0	0	0	0	339
1982	114	271	30	0	0	0	0	0	0	0	415
1983	105	227	7	0	0	0	0	0	0	0	339
1984	131	189	28	0	0	0	0	0	0	0	348
1985	103	166	5	0	0	0	0	0	0	0	274
1986	43	126	25	0	0	0	0	0	0	0	194
1987	53	125	28	0	0	0	0	0	0	0	206
1988	52	117	20	0	0	0	0	0	0	0	189
1989	84	284	19	0	0	0	0	0	0	0	387
1990	53	109	20	0	0	0	0	0	0	0	182
1991	106	178	22	0	0	0	0	0	0	0	306
1992	78	96	20	0	0	0	0	0	0	0	194
1993	67	189	10	0	0	0	0	0	0	0	266
1994	82	207	50	0	0	0	0	0	0	0	339
1995	55	221	30	0	0	0	0	0	0	0	306
1996	56	211	30	0	0	0	0	0	0	0	297
1997	51	239	19	0	0	0	0	0	0	0	309
1998	50	252	54	0	0	0	0	0	0	0	356
1999	57	238	32	0	0	0	0	0	0	0	327
2000	62	208	23	0	0	0	0	0	0	0	293
2001	73	241	27	0	0	66	0	0	0	0	407
2002	5	161	15	0	0	23	0	0	0	0	204
2003	8	168	80	0	0	26	0	0	0	0	282
2004	3	144	94	0	0	4	0	0	0	0	245
2005	1	172	53	0	0	5	0	0	0	0	231
2006	0	147	22	0	0	2	0	0	0	0	171
2007	21	165	24	0	0	6	0	0	0	0	216
2008	23	92	33	0	0	5	0	0	0	0	153
2009	21	0	34	68	70	6	0	0	0	0	199
2010	16	0	47	138	61	8	7	0	0	0	277
2011	19	0	32	115	86	0	17	0	0	0	269
2012	13	0	61	208	56	10	2	0	0	0	350
2013	8	0	76	150	90	8	0	0	0	0	332
2014	22	0	26	208	37	11	0	1	14	5	324
2015	36	0	170	106	94	28	3	0	30	6	473
2016	17	0	43	121	19	24	3	0	3	38	268
2017	18	0	30	150	85	23	4	0	13	6	329
2018	14	0	50	146	91	100	2	2	17	6	428
2019	35	0	28	144	110	23	2	2	24	27	395
2020	39	0	46	189	78	90	1	0	2	28	473

ANNÉE	ARC	DHBU	Sanikiluaq (toute l'année)	DH- printemps	DH- automne	BUPR	BUAU	NEBHPR	NEPHAU	Île Long	Total annuel
2021	28	0	30	51	160	20	0	0	66	41	366

Tableau A2. Résultats de l'analyse du mélange génétique (1982 à 2018) utilisée dans Hammill et al. (2021) pour déterminer les proportions de béluga (%) de chaque stock source dans les récoltes des zones de chasse du Nunavik (partie supérieure) et de Sanikiluaq (partie inférieure). N_{samp} : nombre d'échantillons individuels; Nevent : nombre de dates de chasse différentes; OBH : ouest de la baie d'Hudson; EBH : est de la baie d'Hudson; IC à 95 % : intervalle de confiance fondé sur la variance entre les événements de chasse; ND : non déterminé (petite taille d'échantillon). Inconnu signifie que les échantillons n'ont pas pu être attribués au stock de l'OBH ou de BEL-EBH (de Hammill et al. 2021).

Saison	Nsamp	Nevent	% OBH	IC à 95 %	% EBH	IC à 95 %	CV (échant./évén.)	% inc.			
Printemps (du 1 ^{er} février au 31 août)											
Détroit d'Hudson	770	347	82,9	78,5-87	11,7	8,1-16	0,15 / 0,17	5,3			
NE. de la baie d'Hudson	2	1	ND	-	ND	-	-	-			
Baie d'Ungava	122	76	87,4	77,8-94,6	6,0	0,8-15,8	0,63 / 0,65	6,6			
Automne (1 ^{er} septembre a	au 31 jan	vier)									
Détroit d'Hudson	454	180	67,6	60,3-74,5	29,1	22,4-36,3	0,09 / 0,12	3,3			
NE. de la baie d'Hudson	31	14	49,1	26,4-72	44,5	23,5-66,5	0,26 / 0,25	6,5			
Baie d'Ungava	4	4	ND	-	ND	-	-	ND			
Sanikiluaq (Nunavut)											

Zones de gestion du Nunavik

Saison	Nsamp	Nevent	% OBH	IC à 95 %	% EBH	IC à 95 %	CV (échant./évén.)	% inc.
Printemps (1 ^{er} avril au 30 juin)	301	107	76,8	69,2-83,7	1,6	0-6,6	1,01 / 1,17	21,6
Printemps prolongé (1 ^{er} avril au 14 juillet)	324	120	75,1	67,2-82,2	4,6	1,1-10,2	0,43 / 0,52	20,4
Été (1 ^{er} juillet au 31 août)	31	18	61,5	32,8-86,2	25,6	4,9-56	0,37 / 0,53	12,9
Automne (1 ^{er} septembre au 30 novembre)	45	30	97,8	91,8-99,9	0,0	-	-	2,2
Hiver (1 ^{er} décembre au 31 mars)	56	7	31,3	6,1-65,6	3,6	9-70,7	0,21 / 0,45	32,1

ANNEXE B

Tableau B1. Valeurs a priori et posteriori pour les exécutions du modèle de la baie James. La moyenne, l'erreur type (ET) et les 2,5 °, 25°, 50°, 75° et 97,5 ° quantiles sont donnés pour les paramètres suivants du modèle et leurs valeurs a priori : taux maximal d'augmentation (lambda max), animaux abattus et perdus (AP) exprimées en proportions, et taille de la population en 2021. Rhat est la statistique de Brooks-Gelman-Rubin; les valeurs proches de 1 indiquent la convergence des chaînes. N.eff est le nombre d'exécutions efficaces après la prise en compte de l'autocorrélation.

Paramètre	Moyenne	ET	2,50 %	25 %	50 %	75 %	97,50 %	Rhat	n.eff
К	22 536	6 618	12 873	17 704	21 016	26 320	38 031	1,001	300 000
Valeur a priori de K	22 484	10 098	5 872	13 731	22 493	31 197	39 121	1,001	290 000
Lambda	0,042	0,01	0,024	0,035	0,041	0,048	0,064	1,001	300 000
lambda - a priori	0,04	0,01	0,023	0,033	0,039	0,046	0,062	1,001	94 000
Pop. initiale	7 792	1 362	5 050	6 890	7 813	8 718	10 400	1,001	300 000
Valeur a priori de la pop. initiale Animaux abattus et	20 994	10 983	2 949	11 478	20 985	30 512	39 047	1,001	300 000
perdus Valeur a priori des	0,29	0,21	0,02	0,12	0,25	0,43	0,76	1,001	300 000
animaux abattus et	0.29	0.21	0.02	0 12	0.25	0.43	0.76	1 001	300.000
perdus	0,23	0,21	0,02	0,12	0,20	0,40	0,70	1,001	000 000
Année	Abondance	ET	2,50 %	25 %	50 %	75 %	97,50 %	Rhat	n.eff
1985	7 792	1 362	5 050	6 890	7 813	8 718	10 400	1,001	300 000
1986	8 218	1527	5 252	7 208	8 206	9 213	11 244	1,001	290 000
1987	8 660	1689	5 479	7 546	8 614	9 711	12 081	1,001	300 000
1988	9 115	1843	5 740	7 906	9 042	10 219	12 915	1,001	200 000
1989	9 588	1987	6 034	8 296	9 484	10 742	13 741	1,001	250 000
1990	10 073	2 103	6 351	8 703	9 952	11 276	14 519	1,001	140 000
1991	10 571	2 192	6 705	9 130	10 435	11 832	15 228	1,001	99 000
1992	11 075	2 227	7 085	9 591	10 943	12 399	15 836	1,001	110 000
1993	11 588	2 221	7 480	10 074	11 488	12 999	16 242	1,001	180 000
1994	12 082	2 499	7 736	10 406	11 900	13 528	17 536	1,001	300 000
1995	12 577	2 748	7 994	10 759	12 322	14 073	18 715	1,001	300 000
1996	13 073	2 981	8 245	11 129	12 764	14 614	19 778	1,001	300 000
1997	13 565	3 157	8 556	11 515	13 208	15 148	20 749	1,001	300 000
1998	14 059	3 314	8 870	11 909	13 667	15 694	21 627	1,001	300 000
1999	14 555	3 434	9 195	12 326	14 141	16 242	22 486	1,001	300 000
2000	15 051	3 521	9 543	12 747	14 618	16 798	23 238	1,001	300 000
2001	15 535	3 521	9 904	13 193	15 101	17 337	23 866	1,001	300 000
2002	15 694	3 343	10 192	13 474	15 356	17 490	23 216	1,001	300 000
2003	15 837	3 063	10 493	13 781	15 608	17 631	22 488	1,001	300 000
2004	15 953	2 733	10 814	14 090	15 865	17 741	21 553	1,001	290 000
2005	16 439	3 105	10 956	14 351	16 223	18 273	23 157	1,001	300 000
2006	16 919	3 453	11 154	14 642	16 595	18 796	24 625	1,001	300 000
2007	17 392	3 748	11 388	14 941	16 977	19 320	25 915	1,001	300 000
2008	17 864	3 992	11 636	15 264	17 367	19 826	27 110	1,001	300 000
2009	18 081	4 005	11 761	15 466	17 598	20 082	27 360	1,001	300 000
2010	18 293	3 943	11 931	15 685	17 839	20 344	27 371	1,001	300 000
2011	18 479	3 771	12 089	15 922	18 088	20 610	27 149	1,001	300 000
2012	18 494	3 835	12 092	15 952	18 099	20 565	27 196	1,001	300 000
2013	18 487	3 794	12 111	15 992	18 120	20 540	27 017	1,001	300 000
2014	18 459	3 651	12 174	16 049	18 153	20 501	26 538	1,001	300 000
2015	18 411	3 391	12 262	16 122	18 205	20 468	25 753	1,001	300 000
2016	18 145	3 426	12 014	15 900	17 926	20 113	25 566	1,001	300 000
2017	17 903	3 355	11 851	15 741	17 719	19 829	25 068	1.001	300 000

Année	Abondance	ET	2,50 %	25 %	50 %	75 %	97,50 %	Rhat	n.eff
2018	17 645	3 228	11 682	15 577	17 510	19 540	24 354	1,001	190 000
2019	17 344	3 032	11 570	15 408	17 277	19 193	23 438	1,001	300 000
2020	17 017	2 774	11 524	15 240	17 032	18 800	22 385	1,001	300 000
2021	16 662	2 459	11 555	15 092	16 742	18 333	21 252	1,001	300 000

Figure B1. Exécution du modèle de la baie James, distributions a priori et a posteriori du modèle. Les valeurs a priori sont représentées par des lignes sombres, les valeurs a posteriori sont représentées par des colonnes pour les paramètres suivants : taux maximal d'augmentation (lambda max), population initiale, les animaux abattus et perdus, les erreurs de processus, la capacité de charge (K), l'autocorrélation et la convergence.

Figure B2. Exécution du modèle de la baie James. Corrélation croisée entre les paramètres du modèle : capacité de charge (K), population initiale(Init.N), animaux abattus et perdus (S&L dans ce tableau), taux maximal d'augmentation (lambda _{max}) erreur de processus (Process), et estimation de l'abondance en 2021 (Nlatest).

Tableau B2. Valeurs a priori et posteriori pour les paramètres de bélugas BEL-EBH. La moyenne, l'écart type (ET) et les 2,5 e, 25e, 50e, 75e et 97,5 e quantiles sont donnés pour les paramètres suivants du modèle et leurs valeurs a priori : taux maximal d'augmentation (lambda max), animaux abattus et perdus (AP) exprimés en proportions, et taille de la population en 2021. Rhat est la statistique de BrooksGelman-Rubin; les valeurs proches de 1 indiquent la convergence des chaînes. N.eff est le nombre d'exécutions efficaces après la prise en compte de l'autocorrélation.

Р	aramètre	Moyenne	e ET	2,50 %	25 %	50 %	75 %	97,50 %	Rhat	n.eff
	К	11 860	3 676	6 435	8 945	11 049	14 549	19 395	1,001	300 000
Valeu	r a priori de K	12 503	4 334	5 375	8 745	12 507	16 256	19 630	1,001	130 000
la	ambda _{max}	0,036	0,009	0,021	0,03	0,035	0,041	0,055	1,001	300 000
valeur a p	riori de lambda _{max} .	0,04	0,01	0,023	0,033	0,039	0,046	0,062	1,001	270 000
P	op. initiale	9 158	1898	5 776	7 810	9 033	10 389	13 236	1.001	140 000
Valeur a	priori de la pop.								.,	
	initiale	8 495	3 751	2 318	5 249	8 501	11 734	14 672	1,001	300 000
Animaux	abattus et perdus	0,305	0,205	0,017	0,137	0,273	0,444	0,756	1,001	300 000
Valeur a p	priori des animaux									
abatt	tus et perdus	0,291	0,205	0,015	0,122	0,252	0,427	0,755	1,001	300 000
Année	Abondance	ET	2,50 %	25 %	50 %	75 %	97,50 %	Rhat	n.eff	_
1974	8 677	1866	5 352	7 357	8 555	9 880	12 702	1,001	150 000	_
1975	8 226	1829	5 032	6 948	8 090	9 361	12 196	1,001	180 000	
1976	7 856	1787	4 782	6 620	7 713	8 930	11 761	1,001	170 000	
1977	7 356	1731	4 419	6 174	7 209	8 359	11 147	1,001	280 000	
1978	7 173	1680	4 334	6 033	7 029	8 138	10 869	1,001	280 000	
1979	6 824	1621	4 104	5 728	6 679	7 742	10 384	1,001	240 000	
1980	6 465	1553	3 865	5 418	6 327	7 340	9 887	1,001	260 000	
1981	6 362	1499	3 841	5 350	6 232	7 212	9 648	1,001	300 000	
1982	6 190	1 430	3 759	5 226	6 073	7 011	9 304	1,001	280 000	
1983	6 068	1 353	3 733	5 150	5 968	6 864	9 000	1,001	220 000	
1984	5 915	1 267	3 674	5 049	5 831	6 684	8 629	1,001	210 000	
1985	5 826	1 176	3 679	5 013	5 770	6 582	8 294	1,001	300 000	
1986	5 797	1 190	3 672	4 986	5 726	6 526	8 328	1,001	300 000	
1987	5 747	1 186	3 654	4 947	5 670	6 454	8 286	1,001	270 000	
1988	5 706	1 166	3 661	4 920	5 626	6 395	8 214	1,001	300 000	
1989	5 527	1 130	3 541	4 770	5 451	6 193	7 942	1,001	300 000	
1990	5 483	1 082	3 558	4 758	5 419	6 125	7 784	1,001	300 000	
1991	5 325	1 018	3 487	4 644	5 272	5 942	7 481	1,001	300 000	
1992	5 248	947	3 500	4 609	5 212	5 842	7 215	1,001	260 000	
1993	5 140	860	3 499	4 557	5 122	5 707	6 868	1,001	190 000	
1994	5 060	909	3 387	4 446	5 023	5 626	6 953	1,001	300 000	
1995	5 019	947	3 333	4 385	4 963	5 583	7 036	1,001	300 000	
1996	4 974	970	3 283	4 326	4 904	5 535	7 084	1,001	260 000	
1997	4 925	985	3 248	4 269	4 845	5476	7 099	1,001	210 000	
1998	4 835	987	31/1	4 177	4 746	5 381	7 020	1,001	190 000	
1999	4 755	975	3 120	4 099	4 662	5 300	6 939	1,001	150 000	
2000	4 685	951	3077	4 036	4 597	5 229	6 809	1,001	170 000	
2001	4 570	914	2 993	3 935	4 492	5 1 1 6	6 597	1,001	240 000	
2002	4 608	957	3 020	3 952	4 511	5 148	6784	1,001	300 000	
2003	4 580	983	2 983	3 909	4 469	5 1 1 8	6 848	1,001	300 000	
2004	4 558	995	2 953	3 880	4 439	5 099	68//	1,001	300 000	
2005	4 497	978	2 916	3 833	4 383	5 028	6750	1,001	300 000	
2006	4 4 7 5	943	2 926	3 832	4 373	4 998	6618	1,001	300 000	
2007	4 410	894	2 899	3 795	4 326	4 928	6 408	1,001	300 000	
2008	4 3/3	827	2 909	3 795	4 313	4 895	6 147	1,001	300 000	
2009	4 344	858	2878	3 751	4 268	4 851	6 243	1,001	300 000	
2010	4 298	869	2 835	3705	4 214	4 793	6 248	1,001	300 000	
2011	4 242	860	2789	3 653	4 156	4 7 32	6 198	1,001	300 000	
2012	4 154	878	2713	3 565	4 060	4 627	6 159	1,001	300 000	
2013	4 049	88U 972	2 024	3 40/	3 953	4 508	0 U04	1,001	300 000	
2014	39/9	8/3	25/0	3411	3 886	4 4 26	5 966	1,001	300 000	
2015	3/38	100	2 352	3 185	3 050	4 1/6	5 668	1,001	300 000	
2016	3 650	806	2 298	3127	3 581	4 0 / 8	5441	1,001	300 000	
2017	3 521	103	2 207	3 030	34/1	3 942	5 144	1,001	300 000	
2018	33/3	701	2093	2 914	3 342	3/8/	4 840	1,001	300 000	
2019	3 208	000	1900	2 / 80	3 196	3010	4 520	1,001	300 000	
2020	3 049	607	1842	2 652	3 054	3 450	4 227	1,001	300 000	
2021	∠ 809	5/1	0801	2 490	2 001	3 200	3911	1,001	300 000	_

Figure B3. Exécution du modèle du stock BEL-EBH. Les valeurs a priori sont représentées par des lignes sombres, les valeurs a posteriori sont représentées par des colonnes pour les paramètres suivants : le taux maximal d'augmentation (lambda _{max}), la population initiale (Init.N), les animaux abattus et perdus (S&L), les erreurs de processus (Process); la capacité de charge (K), l'autocorrélation et la convergence.

Figure B4. Modèle du stock BEL-EBH avec une médiane de la valeur a priori pour les animaux abattus et perdus de 25 %. Corrélation entre les paramètres du modèle : capacité de charge (K), population initiale (Init.N), animaux abattus et perdus (S&L dans ce tableau), taux maximal d'augmentation (lambda max), erreur de processus (Process), et estimation de l'abondance en 2021 (Nlatest).

Tableau B3. Valeurs a priori et a posteriori des paramètres du modèle du stock BEL-EBH, en supposant un coefficient de variance de 40 % pour le relevé de 2021. La moyenne, l'écart type (ET) et les 2,5 e, 25e, 50e, 75e et 97,5 e quantiles sont donnés pour les paramètres suivants du modèle et leurs valeurs a priori : taux maximal d'augmentation (lambda max), animaux abattus et perdus (AP), et taille de la population en 2021. *R*Hat est la statistique de Brooks-Gelman-Rubin; les valeurs proches de 1 indiquent la convergence des chaînes. N.eff est le nombre d'exécutions efficaces après la prise en compte de l'autocorrélation.

Paramètre	Moyenne	ET	2,50 %	25 %	50 %	75 %	97,50 %	Rhat	n.eff
К	11 763	3 641	6 487	8 891	10 910	14 363	19 365	1,001	180 000
Valeur a priori de K	12 493	4 331	5 373	8 753	12 480	16 248	19 632	1,001	240 000
lambda _{max}	0,037	0,009	0,021	0,03	0,036	0,042	0,056	1,001	260 000
Valeur a priori de									
lambda _{max}	0,04	0,01	0,023	0,033	0,039	0,046	0,062	1,001	280 000
Pop. initiale	9 111	1852	5 832	7 795	8 983	10 303	13 110	1,001	140 000
Valeur a priori de la									
pop. initiale	8 495	3 754	2 321	5 239	8 492	11 744	14 668	1,001	300 000
Animaux abattus et	0.20	0.20	0.02	0.12	0.26	0.42	0.74	1 001	240.000
Valeur a priori des	0,29	0,20	0,02	0,15	0,20	0,43	0,74	1,001	240 000
animaux abattus et									
perdus	0,29	0,21	0,02	0,12	0,25	0,43	0,76	1,001	140 000
· · ·	· · ·	· ·		-					
Année Mov	/enne	ET	2.50 %	25 %	50 %	75 %	97.50 %	Rhat	n.eff
1974 8	635	1820	5 4 10	7 347	8 508	9 799	12 576	1.001	140 000
1975 8	183	1778	5 080	6 939	8 050	9 283	12 036	1.001	140 000
1976 7	817	1737	4 836	6 618	7 678	8 857	11 584	1.001	130 000
1977 7	319	1683	4 462	6 166	7 176	8 299	10 998	1.001	220 000
1978 7	138	1636	4 376	6 025	6 998	8 074	10 700	1,001	300 000
1979 6	794	1576	4 148	5 729	6 653	7 686	10 245	1.001	300 000
1980 6	440	1513	3 900	5 421	6 305	7 293	9 765	1.001	300 000
1981 6	338	1455	3 877	5 359	6 213	7 166	9 528	1.001	300 000
1982 6	174	1 391	3 800	5 234	6 061	6 974	9 200	1.001	240 000
1983 6	057	1 323	3 771	5 161	5 957	6 835	8 909	1.001	170 000
1984 5	906	1 239	3 711	5 057	5 825	6 659	8 566	1.001	240 000
1985 5	820	1 153	3 708	5 024	5 767	6 559	8 227	1.001	300 000
1986 5	794	1 162	3 701	5 001	5 729	6 510	8 263	1.001	300 000
1987 5	749	1 153	3 694	4 969	5 680	6 445	8 210	1,001	300 000
1988 5	715	1 134	3 698	4 951	5 646	6 393	8 135	1,001	300 000
1989 5	542	1 095	3 586	4 808	5 477	6 196	7 873	1,001	300 000
1990 5	504	1 053	3 615	4 798	5 448	6 139	7 731	1,001	300 000
1991 5	354	994	3 541	4 685	5 309	5 963	7 442	1,001	300 000
1992 5	286	930	3 554	4 659	5 254	5 875	7 201	1,001	300 000
1993 5	186	852	3 550	4 609	5 173	5 748	6 897	1,001	300 000
1994 5	108	894	3 445	4 505	5 076	5 668	6 955	1,001	300 000
1995 5	068	925	3 395	4 446	5 021	5 629	7 033	1,001	300 000
1996 5	028	946	3 355	4 396	4 969	5 583	7 068	1,001	240 000
1997 4	981	956	3 319	4 342	4 910	5 530	7 047	1,001	250 000
1998 4	894	955	3 254	4 256	4 819	5 439	6 978	1,001	200 000
1999 4	819	944	3 201	4 184	4 743	5 360	6 897	1,001	300 000
2000 4	757	924	3 161	4 130	4 685	5 298	6 787	1,001	300 000
2001 4	650	891	3 082	4 036	4 585	5 191	6 597	1,001	300 000
2002 4	693	928	3 105	4 060	4 612	5 230	6 757	1,001	300 000
2003 4	671	951	3 073	4 025	4 581	5 209	6 808	1,001	300 000
2004 4	655	960	3 052	4 001	4 560	5 193	6 845	1,001	300 000
2005 4	604	947	3 022	3 963	4 515	5 136	6 737	1,001	300 000
2006 4	592	922	3 031	3 971	4 513	5 118	6 619	1,001	300 000
2007 4	539	894	3 007	3 943	4 475	5 060	6 437	1,001	300 000
2008 4	513	816	3 019	3 951	4 471	5 037	6 230	1,001	300 000
2009 4	500	849	2 994	3 921	4 445	5 019	6 331	1,001	300 000
2010 4	469	865	2 952	3 881	4 406	4 985	6 345	1,001	300 000
2011 4	428	861	2 911	3 841	4 365	4 942	6 314	1,001	300 000
2012 4	361	887	2 833	3 766	4 289	4 866	6 317	1,001	300 000
2013 4	276	897	2 743	3 678	4 202	4 777	6 259	1,001	300 000
2014 4	226	902	2 690	3 629	4 153	4 724	6 212	1,001	300 000
2015 4	005	893	2 472	3 414	3 936	4 503	5 973	1,001	200 000

 Année	Moyenne	ET	2,50 %	25 %	50 %	75 %	97,50 %	Rhat	n.eff
2016	3 935	867	2 417	3 364	3 880	4 429	5 793	1,001	210 000
2017	3 824	831	2 325	3 277	3 785	4 316	5 564	1,001	230 000
2018	3 694	795	2 210	3 169	3 670	4 186	5 317	1,001	170 000
2019	3 546	762	2075	3 044	3 537	4 035	5 063	1,001	150 000
2020	3 403	732	1945	2 921	3 410	3 889	4 818	1,001	150 000
2021	3 228	706	1 782	2 766	3 248	3 711	4 554	1,001	140 000

Figure B5. Valeurs a priori et a posteriori des paramètres du modèle du stock BEL-EBH, en supposant un coefficient de variance de 40 % pour le relevé de 2021. Les valeurs a priori sont représentées par des lignes sombres, les valeurs a posteriori sont représentées par des colonnes pour les paramètres suivants : taux maximal d'augmentation (lambda _{max}), la population initiale (Init.N), les animaux abattus et perdus (S&L), les erreurs de processus (Process); la capacité de charge (K), l'autocorrélation et la convergence.

Figure B6. Valeurs a priori et a posteriori des paramètres du modèle du stock BEL-EBH, en supposant un coefficient de variance de 43 % pour le relevé de 2021. Corrélation entre les paramètres du modèle : capacité de charge (K), population initiale (Init.N), animaux abattus et perdus (S&L dans ce tableau), taux maximal d'augmentation (lambda _{max}), erreur de processus (Process), et estimation de l'abondance en 2021 (Nlatest).

Population model-JAGS code

```
rm(list=ls())
setwd ("F:/Datas whales/Beluga/Assessment 2022/JAGS")
options(warn = -1)
options(max.print=999999)
library(R2jags)
library(Hmisc)
library(R.utils)
library(R2WinBUGS)
library(parallel)
source("jags_modifications.r") ## modify original JAGS code to avoid auto-thinning, correctly handle the
results from the parallelized version and add the potential to update this model afterward using parallel
calculations - THIS SOURCE CODE MUST BE IN THE SAME DIRECTORY TO RUN IT
sessionInfo()
start.time1 <- Sys.time()</pre>
DONNÉES
Période
start.year=1974
last.year=2021
Nyears=last.year-start.year+1
Sondage
###Nunavik beluga Abundance Estimates ######
1985,1993:2001,2004, 2008,2011-2015,2021.
6967.4061:4430.7153.4164.5060-8205.2315.
3240,1961:2427,3276, 2265,2879-4053,734.
###End of Nunavik beluga Data#####
Nsurv=length(survey.year)
                         # number of surveys
surv.year=survey.year-start.year+1
                                # survey year number (i.e., 1 = starting year)
#IMPORTANT WEIGHTING BY SURVEY SE
survey.prec = 1/survey.se^2
∑Prises (%)
catch<-read.csv2("catchSF_MOH1974update to 2021nov.csv", header=T)
ARC=catch$ARC
HSUB=catch$HSUB
SAN=catch$SAN
SPRING=catch$SPRING
FALL=catch$FALL
UBSP=catch$UBSP
UBFA=catch$UBFA
NEHBSP=catch$NEHBSP
NEHBFA=catch$NEHBFA
Titre du projet
N.fut.years=50
                                # number of years to project into the future
Fut.lev=c(0,20,30,40,50,60,65,70,75,80,90,100,110,125,150,175,200,225,250,275,300) #future catch
levels could be any number of scenarios
N.lev=length(Fut.lev)
                                    # number of future catch levels
```

dataDL<-

list(Nyears=Nyears,Nsurv=Nsurv,N.fut.years=N.fut.years,N.lev=N.lev,Fut.lev=Fut.lev,surv.year=surv.year, survey=survey,survey.prec=survey.prec,ARC=ARC,HSUB=HSUB,SAN=SAN, SPRING=SPRING,FALL=FALL,UBSP=UBSP,UBFA=UBFA,NEHBSP=NEHBSP,NEHBFA=NEHBFA)

modelJAGS <- function(){</pre>

Avant

these are updated from file genetic results to provide rollover advice to board 16072019.xlsx pSANSP~dbeta(45.77792,27.16434) #quantiles 0.5146050 0.5899003 0.6287670 0.6663520 0.7340679 pSANSP.prior ~dbeta(45.77792,27.16434) #quantiles 0.3436,0.5193,0.6113,0.6990,0.8370 pSANFA~dbeta(8.19355,5.32306) pSANFA.prior ~dbeta(8.19355,5.32306) pSANW~dbeta(3.69697,5.4934) #quantiles 0.1311,.2 883, 0.3956, 0.5098, 0.7151 pSANW.prior ~dbeta(3.69697,5.4934) pHSUB~dbeta(50.58324,64.36119) #quantiles are 0.351,0.408,0.4394, 0.4709,0.5318-changed to assume the HS fall hunt, pHSUB.prior~dbeta(50.58324,64.36119) pSPRING~dbeta(32,11427,229,0895) #quantiles 0.086.0.109. 0.122. 0.136. 0.165 pSPRING.prior~dbeta(32.11427,229.0895) pFALL~dbeta(50.58324,64.36119) pFALL.prior~dbeta(50.58324,64.36119) #quantiles are 0.351,0.408,0.4394, 0.4709,0.5318 pUBSP~dbeta(3.13,57.43) #quantiles are 0.015 0.047 0.12 pUBSP.prior~dbeta(3,13,57,43) pUBFA~dbeta(50.58324,64.36119) # 0.0114,0.0912,0.19 pUBFA.prior~dbeta(50.58324,64.36119) pNEHBSP~dbeta(32.11427.229.0895) #only 2 samples used HS spring pNEHBSP.prior~dbeta(32.11427,229.0895) pNEHBFA~dbeta(6.22767,6.20281) #guantiles are 0.2401,0.4047,0.5011,0.5978,0.762 pNEHBFA.prior~dbeta(6.22767,6.20281) struck.and.lost~dbeta(1.13536, 2.76339) # 0.01504672 0.12269235 0.25276648 0.42599210 0.75316933 median based on Richard but was broadened struck.and.lost.prior~dbeta(1.13536, 2.76339) # prec.process ~ dgamma(1.5,0.005) #dgamma(1.5,0.00005) prec.process.prior ~ dgamma(1.5,0.005) #dgamma(1.5,0.00005) lambda ~dbeta(15.61764, 373 015) # quantiles at 0.02299609 0.03308768 0.03934645 0.04637804 0.06159435 lambda.prior ~dbeta(15.61764, 373.015) K~ dunif(5000,20000)#dgamma(12,0.001) # in assessment use upper of 25000 K.prior~dunif(5000,20000) #dgamma(12,0.001) startpop1 - (2000,15000) startpop1.prior - (2000,15000) startpop <- min(startpop1,K)</pre>

```
startpop.prior ~ dunif(2000,15000)
```

r=-2,39

STATE PROCESS

Nstart[1] <- startpop

```
Nfin[1] <- Nstart[1] - (ARC[1]+HSUB[1]*pHSUB+ (0.16*SAN[1])+ (.54*SAN[1]*pSANSP)+
(.12*SAN[1]*pSANFA)+
(.18*SAN[1]*pSANW)+SPRING[1]*pSPRING+FALL[1]*pFALL+UBSP[1]*pUBSP+UBFA[1]*pUBFA+NEHB
SP[1]*pNEHBSP +NEHBFA[1]*pNEHBFA)* (1+struck.and.lost)
for (year in 2:9)
{ proc.error[year] ~ dlnorm(0,prec.process)
Nstart[year] <- (Nfin[year-1]*((1+lambda*(1-(Nfin[year-1]/(K))^R)))*(proc.error[year])) #density dependent
growth
Nfin[year] <- max(.01,Nstart[year] - (ARC[year]+HSUB[year]*pHSUB+ (0,16*SAN[year])+
(.54*SAN[year]*pSANSP)+ (.12*SAN[year]*pSANFA)+
(.18*SAN[year]*pSANW)+SPRING[year]*pSPRING+FALL[year]*pFALL+UBSP[year]*pUBSP+UBFA[year]
*pUBFA+NEHBSP[year]*pNEHBSP
+NEHBFA[year]*pNEHBFA)* (1+struck.and.lost) )
for (year in 10:Nyears)
{ proc.error[year] ~ dlnorm(0,prec.process)
Nstart[year] <- (Nfin[year-1]*((1+lambda*(1-(Nfin[year-1]/(K))^R)))*(proc.error[year])) #density dependent
growth
Nfin[year] <- max(.01,Nstart[year] - (ARC[year]+HSUB[year]*pHSUB+ (0,16*SAN[year])+
(.54*SAN[year]*pSANSP)+ (.12*SAN[year]*pSANFA)+
(.18*SAN[year]*pSANW)+SPRING[year]*pSPRING+FALL[year]*pFALL+UBSP[year]*pUBSP+UBFA[year]
*pUBFA+NEHBSP[year]*pNEHBSP
+NEHBFA[year]*pNEHBFA)* (1+struck.and.lost) )
}
### OBSERVATION PROCESS for weighted fit where the surveys are weighted by the se
for (surv.ser in 1:Nsurv)
REMARQUE : *** adjusted expected log N for variance/2, so mean survey will equal estimated N
{
survey.pred[surv.ser] <- (Nstart[surv.year[surv.ser]])</pre>
rate[surv.ser] <- survey.pred[surv.ser] * survey.prec[surv.ser]
survey[surv.ser] ~ dgamma(survey.pred[surv.ser] * rate[surv.ser], rate[surv.ser])
}
prédictions futures.
for (lev in 1:N.lev)
       for (year in 1:1)
{
        { fut.error[lev,year] ~ dlnorm(0,prec.process)
fut.Nstart[lev,year] <- (Nfin[Nyears]*((1+lambda*(1-(Nfin[Nyears]/(K))^R))))*fut.error[lev,year]
fut.Nfin[lev,year] <- max(1,(fut.Nstart[lev,year] - Fut.lev[lev]*(1+struck.and.lost))))
P.less[lev,year] <- step(Nfin[Nyears]-fut.Nfin[lev,year])
       for (year in 2:N.fut.years)
       { fut.error[lev,year] ~ dlnorm(0,prec.process)
fut.Nstart[lev,year] <- max(1,(fut.Nfin[lev,year-1]*((1+lambda*(1-(fut.Nfin[lev,year-
1]/(K))^R)))*fut.error[lev,year])
               fut.Nfin[lev,year] <- max(1,(fut.Nstart[lev,year] - Fut.lev[lev]*(1+struck.and.lost)))</pre>
               P.less[lev,year] <- step(Nfin[Nyears]-fut.Nfin[lev,year])
       }
}
```

FIN DE SECTION

}

write.model(modelJAGS, modelJAGS <- paste0(getwd(),"/modelJAGS.bug")) ##this line is needed to allow the parallel function to work

Nchains = 5 Final_NIter = 2000 #60000 #25000 good number at 20k iter nos 2, 50 et 50 Burnin = 2000 #25000 #50000 #10000 Effective_NIter = Burnin + Final_NIter * Thining Inits <- rep(list(list()),Nchains)

############

print(paste("run time elapsed:", round(system.time(m <- jags.parallel(model.file=modelJAGS,

```
n.chains = Nchains,
n.thin = Thining,
n.iter = Effective_Nlter,
n.burnin = Burnin,
dat = dataDL,
inits = Inits,
parameters.to.save= c("K","K.prior","R","R.prior","lambda.prior","lambda",
"rr.prior","rr","startpop.prior","startpop", "var.inflat.fact","prec.adj",
"struck.and.lost.prior","struck.and.lost","histo","histo.prior",
"prec.process.prior","prec.process", "proc.error",
"Nfin","fut.Nfin","HARVEST","survey.prec",
paste("P.less[", 1:N.lev, ",",N.fut.years,"]", sep=""),
```

```
"pSANSP","pSANFA","pSANW","pHSUB","pSPRING","pFALL","pUBSP","pUBFA","pNEH
BSP","pNEHBFA"))
)[3]),"seconds"))
```

```
a<-sapply(rownames(m$BUGSoutput$summary), function(x) { temp <-
as.numeric(unlist(strsplit(substr(x,regexpr("\\[", x)+1, regexpr("\\]", x)-1), ","))) ;
as.numeric(paste(ifelse(temp<10, paste("0", temp, sep=""), temp), collapse="")) })
```

b<-substring(rownames(m\$BUGSoutput\$summary), 1,as.numeric(regexpr("\\[", rownames(m\$BUGSoutput\$summary)))-1)

mod.summary<-round(m\$BUGSoutput\$summary[order(b,a),],3)

pSANSP<-mod.summary[substr(rownames(mod.summary),1,6) == "pSANSP","50%"] pSANFA<-mod.summary[substr(rownames(mod.summary),1,7) == "pSANFA","50%"] pSANW<-mod.summary[substr(rownames(mod.summary),1,6) == "pSANW","50%"] pHSUB<-mod.summary[substr(rownames(mod.summary),1,6) == "pHSUB","50%"] pSPRING<-mod.summary[substr(rownames(mod.summary),1,10) == "pSPRING","50%"] pFALL<-mod.summary[substr(rownames(mod.summary),1,5) == "pFALL","50%"] pUBSP<-mod.summary[substr(rownames(mod.summary),1,2) == "pUBSP","50%"] pUBFA<-mod.summary[substr(rownames(mod.summary),1,11) == "pUBFA","50%"] pNEHBSP<-mod.summary[substr(rownames(mod.summary),1,8) == "pNEHBSP","50%"] pNEHBFA<-mod.summary[substr(rownames(mod.summary),1,7) == "pNEHBFA","50%"]

HARVEST<-

ARC+((0,16*SAN)+(0,54*SAN*pSANSP)+(.12*SAN*pSANFA)+(0,18*SAN*pSANW)+HSUB*pHSUB+SPR ING*pSPRING+FALL*pFALL+UBSP*pUBSP+UBFA*pUBFA+NEHBSP*pNEHBSP+NEHBFA*pNEHBFA)

K<-m\$BUGSoutput\$sims.list\$K K.prior<-m\$BUGSoutput\$sims.list\$K.prior R<-m\$BUGSoutput\$sims.list\$R R.prior<-m\$BUGSoutput\$sims.list\$R.prior lambda<-m\$BUGSoutput\$sims.list\$lambda lambda.prior<-m\$BUGSoutput\$sims.list\$lambda.prior startpop<-m\$BUGSoutput\$sims.list\$startpop startpop.prior<-m\$BUGSoutput\$sims.list\$startpop.prior struck.and.lost<-m\$BUGSoutput\$sims.list\$startpop.prior struck.and.lost<-m\$BUGSoutput\$sims.list\$startpop.prior struck.and.lost<-m\$BUGSoutput\$sims.list\$struck.and.lost struck.and.lost.prior<-m\$BUGSoutput\$sims.list\$struck.and.lost struck.and.lost.prior<-m\$BUGSoutput\$sims.list\$prec.process) prec.process.prior<-1/sqrt(m\$BUGSoutput\$sims.list\$prec.process.prior) proc.error<-(m\$BUGSoutput\$sims.list\$proc.error)-1

calculate log-normal CI around survey estimates
cvalue <- function(CV) { exp(1.96 * sqrt(log(1 + CV^2))) }
Nvec<-survey
CVvec<-survey.se/survey
Cvec<-cvalue(CVvec)
Icl_vec <- Nvec/Cvec
ucl_vec <- Nvec*Cvec</pre>

```
dev.new(width=12,height=10)
par(mar=c(5, 4, 4, 4) + 0.1, bty="l")
plot(mod.summary[substr(rownames(mod.summary),1,4) ==
"Nfin","50%"]~seq(start.year,start.year+Nyears-
1),type="l",lwd=2,xlim=c(start.year,start.year+Nyears),ylim=c(0,150 00),yaxp=c(0,15 000,15),ylab="Abund
ance", xlab="Years",xaxt="n")
par(xaxp=c(1974,2022,15))
lines(mod.summary[substr(rownames(mod.summary),1,4) ==
"Nfin","2.5%"]~seq(start.year,start.year+Nyears-1),lty=2)
lines(mod.summarv[substr(rownames(mod.summarv),1,4) ==
"Nfin","97.5%"]~seq(start.year,start.year+Nyears-1),lty=2)
lines(mod.summary[substr(rownames(mod.summary),1,4) ==
"Nfin"."25%"]~seg(start.vear.start.vear+Nvears-1).ltv=2)
lines(mod.summary[substr(rownames(mod.summary),1,4) ==
"Nfin","75%"]~seq(start.year,start.year+Nyears-1),lty=2)
points(survey, year, survey, pch=19)
errbar(survey.year, survey, ucl_vec, lcl_vec, add=T)
axis(1,at=seq(start.year,start.year+Nyears-1),lab=as.character(seq(start.year,start.year+Nyears-1)))
```

Projections :

Nfin<-m\$BUGSoutput\$sims.list\$Nfin fut.Nfin<-m\$BUGSoutput\$sims.list\$fut. Nfin Fut.catch<-m\$BUGSoutput\$sims.list\$Fut.catch dev.new(width=21,height=14)

```
par(mfrow=c(2,3),cex.lab=1.5,cex.axis=1.5, bty="l")
# choose future harvest level to plot
h-9
plot(mod.summary[substr(rownames(mod.summary),1,4) ==
"Nfin"."50%"]~seg(start.vear.start.vear+Nvears-
1),type="l",lwd=2,xlim=c(start.year,start.year+Nyears+N.fut.years+2),ylim=c(-
10000,150 00),ylab="Abundance", xlab="Years",xaxt="n", yaxs="i", yaxt="n")
mtext(side=3,text=paste("Future harvest = ",Fut.lev[h],"/year",sep=""),col="red",adj=1)
axis(2, at=seq(0,15000,500))
h du profil = 0
lines(mod.summary[substr(rownames(mod.summary),1,4) ==
"Nfin","2.5%"]~seq(start.year,start.year+Nyears-1),Ity=2)
lines(mod.summary[substr(rownames(mod.summary),1,4) ==
"Nfin","97.5%"]~seq(start.year,start.year+Nyears-1),lty=2)
points(survey.year, survey, pch=19)
errbar(survey, year, survey, ucl vec, lcl vec, add=T)
axis(1,at=seq(start.year,start.year+Nyears+N.fut.years-
1),lab=as.character(seq(start.year,start.year+Nyears+N.fut.years-1)))
#future starts here
abline(v=2021,lty=3)
terre-plein centraux;
lines((start.year+Nyears-1):(start.year+Nyears),c(median(Nfin[,Nyears]),median(fut.Nfin[,h,1])), col="red",
lwd=2)
lines(seq((start.year+Nyears),(start.year+Nyears+N.fut.years-1)),apply(fut.Nfin[,h,],2,median), col="red",
lwd=2)
nos 2, 2,5 et 97,5
lines((start.year+Nyears-
1):(start.year+Nyears),c(quantile(Nfin[,Nyears],probs=c(0.025)),quantile(fut.Nfin[,h,1],probs=c(0,025))),
Ity=2, col="red", lwd=1)
lines((start.year+Nyears-
1):(start.year+Nyears),c(quantile(Nfin[,Nyears],probs=c(0,975)),quantile(fut.Nfin[,h,1],probs=c(0,975))),
lty=2, col="red", lwd=1)
lines(seq((start.year+Nyears),(start.year+Nyears+N.fut.years-1)),apply(fut.Nfin[,h,],2,function(x)
quantile(x,probs=c(0,025))), lty=2, col="red", lwd=1)
lines(seq((start.year+Nyears),(start.year+Nyears+N.fut.years-1)),apply(fut.Nfin[,h,],2,function(x)
quantile(x,probs=c(0.975))), lty=2, col="red", lwd=1)
par(new=T)
plot(seq(start.year,start.year+Nyears+N.fut.years-
1),rep(1,Nyears+N.fut.years),type="n",xlim=c(start.year,start.year+Nyears+N.fut.years),ylim=c(0,100 0),
yaxt="n",ylab="", xaxt="n", xlab="")
lines(seq(start.year,start.year+Nyears-1),HARVEST)
points(seq(start.year,start.year+Nyears-1),HARVEST,pch=21,bg="white")
axis(4,
at=c(0,10,20,25,30,35,40,45,50,55,60,65,70,75,100,300),labels=c(0,10,20,25,30,35,40,45,50,55,60,65,70)
,75,100,300), line=-5,cex.axis=1)
mtext(side=4,text="landed catch", adj=0.075, line=-3, cex=0.75)
### alt version with multiple catch levels
plot(mod.summary[substr(rownames(mod.summary),1,4) ==
"Nfin","50%"]~seq(start.year,start.year+Nyears-
1),type="l",lwd=2,xlim=c(start.year,start.year+Nyears+N.fut.years+2),ylim=c(0,150 00),ylab="Abundance",
xlab="Years",xaxt="n", yaxs="i")
lines(mod.summary[substr(rownames(mod.summary),1,4) ==
```

```
"Nfin","2.5%"]~seq(start.year,start.year+Nyears-1),lty=2)
```

```
lines(mod.summary[substr(rownames(mod.summary),1,4) ==
"Nfin"."97.5%"]~seg(start.vear.start.vear+Nvears-1).ltv=2)
points(survey, year, survey, pch=19)
errbar(survey.year, survey, ucl vec, lcl vec, add=T)
axis(1.at=seg(start.vear.start.vear+Nvears+N.fut.vears-
1),lab=as.character(seq(start.year,start.year+Nyears+N.fut.years-1)))
#future starts here...
abline(v=2022,lty=3)
terre-plein centraux;
nofurther=F
for(h in 1:N.lev){
   lines((start.year+Nyears-1):(start.year+Nyears),c(median(Nfin[,Nyears]),median(fut.Nfin[,h,1])),
col="red", lwd=2)
   lines(seq((start.year+Nyears),(start.year+Nyears+N.fut.years-1)),apply(fut.Nfin[,h,],2,median),
col="red", lwd=2)
  if(median(fut.Nfin[,h,N.fut.years])>0){
    text(label=as.character(Fut.lev[h]),x=start.year+Nyears+N.fut.years+1.5,
y=median(fut.Nfin[,h,N.fut.years]),col="red",cex=1)
  }
  if(median(fut.Nfin[,h,N.fut.years])<=0 & nofurther==F){
    text(label=bquote("">=.(Fut.lev[h])),x=start.year+Nyears+N.fut.years+1.5, y=800,col="red",cex=1)
    nofurther<-T
 }
}
С
hist(K.freg=F.n=50.col="grav".xlim=c(0.1.5*max(max(K.prior).max(K))).vlim=c(0.1.3*max(max(hist(K.n=50
,plot=F)$density),max(density(K)$y))),xaxs="i",yaxs="i",main="",ylab="Density",xlab=expression(paste("ca
rrying capacity ",italic(K))))
#lines(density(K.prior,adjust=1.5,cut=-1), lwd=2)
lines(density(K.prior), lwd=2)
#prec process
plot(1,20,type="n",xlim=c(0,0.4),ylim=c(0,50),xaxs="i",yaxs="i",,main="",ylab="Density",xlab=expression(p
aste("Prec ",italic(process))))
hist(prec.process, freq=F, n=50, col="gray", add=T)
lines(density(prec.process.prior), lwd=2)
# Proc error
plot(1,1,type="n",xlim=c(-
0.5,0.5),ylim=c(0,6),xaxs="i",yaxs="i",,main="",ylab="Density",xlab=expression(paste("proc.error
",italic())))
hist(proc.error, freq=F, n=50, col="gray", add=T)
Lambda
plot(1,1,type="n",xlim=c(-
.05,0.11),ylim=c(0,80),xaxs="i",yaxs="i",,main="",ylab="Density",xlab=expression(paste("lambda
",italic(lambda))))
hist(lambda, freq=F, n=50, col="gray", add=T)
lines(density(lambda.prior), lwd=2)
# start.pop
hist(startpop,freq=F,n=50,col="gray",xlim=c(0,1.5*max(max(startpop,prior),max(startpop))),ylim=c(0,1.3*
max(max(density(startpop.prior)$y),max(hist(startpop,n=50,plot=F)$density))),xaxs="i",yaxs="i",main="",yl
ab="Density",xlab="initial population (1985)")
```

#lines(density(startpop.prior,adjust=1.5,cut=-1), lwd=2) lines(density(startpop.prior), lwd=2) ABATTUS ET PERDUS hist(struck.and.lost,freg=F,n=50,col="gray",xlim=c(-.01,max(max(struck.and.lost.prior))),ylim=c(0,1.2*max(max(density(struck.and.lost.prior)\$y),max(hist(stru ck.and.lost,n=50,plot=F)\$density))),xaxs="i",yaxs="i",,main="",ylab="Density",xlab="struck and loss") #lines(density(struck.and.lost.prior,adjust=1.5,cut=-1), lwd=2) lines(density(struck.and.lost.prior), lwd=2) # time-series of median process errors (don't forget that proc.error begins at year 2) plot(apply(proc.error,2,median)~seq(start.year+1,start.year+Nyears-1),type="l",lwd=2,ylim=c(-0.025,.02),xlim=c(start.year,start.year+Nyears),ylab="Median process error", xlab="Years",xaxt="n") abline(h=0, lty=2) axis(1,at=seg(start.year,start.year+Nyears-1),lab=as.character(seg(start.year,start.year+Nyears-1))) dev.new(width=7,height=7) par(mar=c(5, 4, 4, 4) + 0.1, bty="l")#XX <- N.fut.years xx/-5 meanp<-mod.summary[substr(rownames(mod.summary),1,6) == "P.less","mean"] newprobs <- matrix(data=meanp.nrow=1.ncol=N.lev.dimnames=list(start.vear+Nvears-1+XX.Fut.lev)) xxx<-as.numeric(colnames(newprobs)) yyy<-as.numeric(newprobs[1,]) interpol<-approx(xxx.vvv.n=2000) print(p10<-which.min(abs(interpol\$y-0.10))) print(p15<-which.min(abs(interpol\$y-0.15))) print(p20<-which.min(abs(interpol\$y-0.20))) print(p25<-which.min(abs(interpol\$y-0.25))) print(p30<-which.min(abs(interpol\$y-0.30))) print(p35<-which.min(abs(interpol\$v-0.35))) print(p40<-which.min(abs(interpol\$v-0.40)))</pre> print(p45<-which.min(abs(interpol\$y-0.45))) print(p50<-which.min(abs(interpol\$y-0.5)))</pre> print(p55<-which.min(abs(interpol\$y-0.55))) print(p60<-which.min(abs(interpol\$y-0.6)))</pre> print(p65<-which.min(abs(interpol\$y-0.65))) print(p70<-which.min(abs(interpol\$y-0.7)))</pre> print(p75<-which.min(abs(interpol\$y-0.75))) print(p80<-which.min(abs(interpol\$y-0.8))) print(p85<-which.min(abs(interpol\$y-0.85))) print(p90<-which.min(abs(interpol\$v-0.9)))</pre> print(p95<-which.min(abs(interpol\$y-0.95)))</pre> plot(xxx,yyy, type="n", xlab="Annual landings of EHB beluga", ylab=paste("Probability of stock decrease from current levels", start.year+Nyears-1,"to", start.year+Nyears-1+XX), ylim=c(0,1),xlim=c(0,200), xaxp=c(0,200,20),xaxs="i", yaxs="i", yaxp=c(0,1,20), cex=1.5) lines(xxx,yyy, col="black", lwd=2, lty=1) segments(interpol\$x[p10],0,interpol\$x[p10],0.1, lty=3, lwd=2) segments(interpol\$x[p15],0,interpol\$x[p15],0.15, lty=3, lwd=2) segments(interpol\$x[p20],0,interpol\$x[p20],0.2, lty=3, lwd=2) segments(interpol\$x[p25],0,interpol\$x[p25],0.25, lty=3, lwd=2) segments(interpol\$x[p30],0,interpol\$x[p30],0.30, lty=3, lwd=2) segments(interpol\$x[p35],0,interpol\$x[p35],0.35, lty=3, lwd=2) segments(interpol\$x[p40],0,interpol\$x[p40],0.40, lty=3, lwd=2)

segments(interpol\$x[p45],0,interpol\$x[p45],0.45, lty=3, lwd=2) segments(interpol\$x[p50].0.interpol\$x[p50].0.5. ltv=3. lwd=5) segments(interpol\$x[p55],0,interpol\$x[p55],0.55, lty=3, lwd=2) segments(interpol\$x[p60],0,interpol\$x[p60],0.6, lty=3, lwd=2) segments(interpol\$x[p65],0,interpol\$x[p65],0.65, lty=3, lwd=2) segments(interpol\$x[p70],0,interpol\$x[p70],0.7, lty=3, lwd=2) segments(interpol\$x[p75],0,interpol\$x[p75],0.75, lty=3, lwd=2) segments(interpol\$x[p80],0,interpol\$x[p80],0.80, lty=3, lwd=2) segments(interpol\$x[p85],0,interpol\$x[p85],0.85, lty=3, lwd=2) segments(interpol\$x[p90],0,interpol\$x[p90],0.90, lty=3, lwd=2) segments(interpol\$x[p95],0,interpol\$x[p95],0.95, lty=3, lwd=2) segments(0,0.1,interpol\$x[p10],0.1, lty=3, lwd=2) segments(0,0.15,interpol\$x[p15],0.15, lty=3, lwd=2) segments(0.0.2.interpol\$x[p20].0.2. ltv=3. lwd=2) segments(0,0.25,interpol\$x[p25],0.25, lty=3, lwd=2) segments(0,0.30,interpol\$x[p30],0.30, lty=3, lwd=2) segments(0,0.35,interpol\$x[p35],0.35, lty=3, lwd=2) segments(0,0.40,interpol\$x[p40],0.40, lty=3, lwd=2) segments(0,0.45,interpol\$x[p45],0.45, lty=3, lwd=2) segments(0,0.50,interpol\$x[p50],0.50, lty=3, lwd=5) segments(0,0.55,interpol\$x[p55],0.55, lty=3, lwd=2) segments(0,0.60,interpol\$x[p60],0.60, lty=3, lwd=2) segments(0,0.65,interpol\$x[p65],0.65, lty=3, lwd=2) segments(0,0.70,interpol\$x[p70],0.70, lty=3, lwd=2) segments(0,0.75,interpol\$x[p75],0.75, lty=3, lwd=2) segments(0,0.80,interpol\$x[p80],0.80, lty=3, lwd=2) segments(0,0.85,interpol\$x[p85],0.85, lty=3, lwd=2) segments(0,0.90,interpol\$x[p90],0.90, lty=3, lwd=2) segments(0,0.95,interpol\$x[p95],0.95, lty=3, lwd=2) stop.time1 <- Sys.time()</pre> runtime<-start.time1-stop.time1 Temps écoulé ##### plot prob of staying above a management target WHERE TARGET AND NUMBER OF YEARS ARE STATED### # input 1: after how many years (by default = N.fut.years) #XX <- N.fut.years xx/-10 # input 2: reference point / target #target <- 0.24*median(K) # can replaced by a single value of K eg 0.69*median(K) or a fixed value target <-3464

get N estimates for year XX (a matrix with [i=n.iter,j=N.lev] pop.matrix<-m\$BUGSoutput\$sims.list\$fut.Nfin[,,XX]

for each harvest level, how many iterations are above target
probs.target <- apply(pop.matrix,2,function(x) {length(which(x>=target))/length(x)})

interpolate probabilites interpol<-approx(Fut.lev,probs.target,n=2000) print(p05<-which.min(abs(interpol\$y-0.05))) print(p10<-which.min(abs(interpol\$y-0.10))) print(p15<-which.min(abs(interpol\$y-0.15))) print(p20<-which.min(abs(interpol\$y-0.20)))</pre> print(p25<-which.min(abs(interpol\$y-0.25))) print(p30<-which.min(abs(interpol\$v-0.30))) print(p35<-which.min(abs(interpol\$y-0.35))) print(p40<-which.min(abs(interpol\$y-0.40)))</pre> print(p45<-which.min(abs(interpol\$v-0.45))) print(p50<-which.min(abs(interpol\$y-0.5)))</pre> print(p55<-which.min(abs(interpol\$y-0.55))) print(p60<-which.min(abs(interpol\$v-0.6))) print(p65<-which.min(abs(interpol\$y-0.65)))</pre> print(p70<-which.min(abs(interpol\$y-0.7)))</pre> print(p75<-which.min(abs(interpol\$y-0.75))) print(p80<-which.min(abs(interpol\$y-0.8)))</pre> print(p85<-which.min(abs(interpol\$y-0.85)))</pre> print(p90<-which.min(abs(interpol\$v-0.9)))</pre> print(p95<-which.min(abs(interpol\$y-0.95)))</pre> dev.new() #plot(Fut.lev,probs.target, type="I",xlab="Prélèvements annuels de béluga de l'EBH ", ylab=paste("« Probabilité d'avoir une population de ",target," après",XX,"ans"),ylim=c(0,1),xlim=c(0,300),xaxp=c(0,300,10), xaxs="i", yaxs="i", lwd=2, yaxp=c(0,1,20), cex=1.5) plot(Fut.lev,probs.target, type="l",xlab="Annual EHB beluga harvest", ylab=paste("Probability of population of ",target," after",XX,"years"),ylim=c(0,1),xaxp=c(0,300,30), xaxs="i", yaxs="i", lwd=2, yaxp=c(0,1,20), cex=1.5)#plot(Fut.lev,probs.target, type="I",xlab="Annual EHB beluga harvest", ylab=paste("Probability of staying above target ","population"," after",XX,"years"),ylim=c(0,1),xaxp=c(0,100,50),# xaxs="i", yaxs="i", lwd=2, vaxp=c(0.1.20), cex=1.5)segments(interpol\$x[p05],0,interpol\$x[p05],0.05, lty=3, lwd=2) segments(interpol\$x[p10],0,interpol\$x[p10],0.1, lty=3, lwd=2) segments(interpol\$x[p15],0,interpol\$x[p15],0.15, lty=3, lwd=2) segments(interpol\$x[p20],0,interpol\$x[p20],0.2, lty=3, lwd=2) segments(interpol\$x[p25],0,interpol\$x[p25],0.25, lty=3, lwd=2) segments(interpol\$x[p30],0,interpol\$x[p30],0.30, lty=3, lwd=2) segments(interpol\$x[p35],0,interpol\$x[p35],0.35, lty=3, lwd=2) segments(interpol\$x[p40],0,interpol\$x[p40],0.40, lty=3, lwd=2) segments(interpol\$x[p45],0,interpol\$x[p45],0.45, lty=3, lwd=2) segments(interpol\$x[p50],0,interpol\$x[p50],0.5, lty=1, lwd=4,col='red') segments(interpol\$x[p55],0,interpol\$x[p55],0.55, lty=3, lwd=2) segments(interpol\$x[p60],0,interpol\$x[p60],0.6, lty=3, lwd=2) segments(interpol\$x[p65],0,interpol\$x[p65],0.65, lty=3, lwd=2) segments(interpol\$x[p70],0,interpol\$x[p70],0.7, lty=3, lwd=2) segments(interpol\$x[p75],0,interpol\$x[p75],0.75, lty=3, lwd=2) segments(interpol\$x[p80],0,interpol\$x[p80],0.80, lty=3, lwd=2) segments(interpol\$x[p85],0,interpol\$x[p85],0.85, lty=3, lwd=2) segments(interpol\$x[p90],0,interpol\$x[p90],0.90, lty=3, lwd=2) segments(interpol\$x[p95],0,interpol\$x[p95],0.95, lty=3, lwd=2) segments(0,0.05,interpol\$x[p05],0.05, lty=3, lwd=2) segments(0,0.1,interpol\$x[p10],0.1, lty=3, lwd=2) segments(0,0.15,interpol\$x[p15],0.15, lty=3, lwd=2) segments(0,0.2,interpol\$x[p20],0.2, lty=3, lwd=2) segments(0,0.25,interpol\$x[p25],0.25, lty=3, lwd=2) segments(0,0.30,interpol\$x[p30],0.30, lty=3, lwd=2) segments(0,0.35,interpol\$x[p35],0.35, lty=3, lwd=2) segments(0,0.40,interpol\$x[p40],0.40, lty=3, lwd=2) segments(0,0.45,interpol\$x[p45],0.45, lty=3, lwd=2) segments(0,0.50,interpol\$x[p50],0.50, lty=1, lwd=4,col='red')

segments(0,0.55,interpol\$x[p55],0.55, lty=3, lwd=2)
segments(0,0.60,interpol\$x[p60],0.60, lty=3, lwd=2)
segments(0,0.65,interpol\$x[p65],0.65, lty=3, lwd=2)
segments(0,0.70,interpol\$x[p70],0.70, lty=3, lwd=2)
segments(0,0.80,interpol\$x[p75],0.75, lty=3, lwd=2)
segments(0,0.80,interpol\$x[p80],0.80, lty=3, lwd=2)
segments(0,0.85,interpol\$x[p85],0.85, lty=3, lwd=2)
segments(0,0.90,interpol\$x[p90],0.90, lty=3, lwd=2)
segments(0,0.95,interpol\$x[p95],0.95, lty=3, lwd=2)
segments(0,0.95,interpol\$x[p95],0.95, lty=3, lwd=2)