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ABSTRACT 

Lamothe, K.A., van der Lee, A.S., Reid, S.M., and Drake, D.A.R. 2023. Power to detect 
changes in occupancy and abundance of rare, imperfectly detected species using single-season 
hierarchical models. Can. Manuscr. Rep. Fish. Aquat. Sci. 3271: v + 27 p. 
 

Monitoring for species listed under the Species at Risk Act often does not begin until a 

suspected decline in abundance or distribution has occurred, leading to challenges for 

documenting trends. Here, simulations were performed to evaluate the power and precision of 

single-season occupancy and N-mixture models to detect proportional reductions in occupancy 

probability and abundance for imperfectly detected species in low abundance between two time 

periods. The results suggest that many sites and surveys are needed to achieve sufficient 

statistical power (i.e., 0.80) for detecting change when occupancy probability, detection 

probability, and abundance are low. For example, quantifying a 30% reduction in occupancy 

probability for a species with high detection probability (0.7) and moderate occupancy 

probability (0.5), 200 sites surveyed three times (600 samples) were needed to achieve a power 

of 0.80. For the same species with a detection probability of 0.30, the number of samples 

required increased to 1400. Even greater effort was needed to detect significant changes in 

abundance. Occupancy models generated estimates with greater accuracy and precision than 

N-mixture models for a given level of effort. Overall, the results suggest the need to maximize 

detection probability for rare species, which will reduce the effort needed to quantify trends with 

sufficient statistical power.   
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RÉSUMÉ 

Lamothe, K.A., van der Lee, A.S., Reid, S.M., and Drake, D.A.R. 2023. Power to detect 
changes in occupancy and abundance of rare, imperfectly detected species using single-season 
hierarchical models. Can. Manuscr. Rep. Fish. Aquat. Sci. 3271: v + 27 p. 
 

L’abondance et la répartition des espèces inscrites en vertu de la Loi sur les espèces en péril 
doivent faire l’objet d’une surveillance. Dans le cas présent, des simulations ont été effectuées 
pour évaluer l’efficacité et la précision des modèles d’occupation à une seule saison et des 
modèles N-mixture pour détecter des réductions proportionnelles de la probabilité d’occupation 
et de l’abondance entre deux périodes chez les espèces mal détectées et en faible abondance. 
Les résultats laissent entendre que plusieurs sites et relevés sont nécessaires afin d’obtenir une 
efficacité statistique suffisante (0,8) pour détecter les changements lorsque la probabilité 
d’occupation, la probabilité de détection et l’abondance sont faibles. Par exemple, pour obtenir 
une efficacité de 0,8 lors de la quantification d’une réduction de 30 % de la probabilité 
d’occupation pour une espèce avec une probabilité de détection élevée (0,7) et une probabilité 
d’occupation modérée (0,5), il a fallu que 200 sites fassent l’objet d’un relevé trois fois (600 
échantillons). Pour une espèce avec une faible probabilité de détection (0,3) et une probabilité 
d’occupation modérée (0,5), le nombre d’échantillons nécessaires est passé à 1 400. Il a fallu 
déployer encore plus d’efforts pour détecter les changements importants dans l’abondance. Les 
modèles d’occupation étaient plus exacts et précis que les modèles N-mixture pour un niveau 
d’effort donné. Dans l’ensemble, nos résultats suggèrent la nécessité de maximiser la 
probabilité de détection pour les espèces rares afin de réduire l’effort requis pour quantifier les 
tendances avec une efficacité statistique suffisante.
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INTRODUCTION 

The conservation status of freshwater fishes in Canada is assessed with criteria that include 
indicators such as the number of mature individuals, the area of occupancy, and plausible 
threats to the species, with species designation under the Species at Risk Act (SARA) requiring 
consideration of trends over space and time (COSEWIC 2021). Additionally, trend information is 
needed for the evaluation of recovery actions, which are implemented once species are listed. 
Due to the impracticality of completing a census of most wild freshwater fish populations, 
documenting trends in species status can require the use of multi-year monitoring data 
combined with statistical models. Typically, mark-recapture is considered to be the best 
approach for estimating the abundance of freshwater fish populations, providing greater 
accuracy and precision of abundance estimates relative to depletion-based designs of 
unmarked individuals (Rosenberger and Dunham 2005; Zipkin et al. 2014). However, issues 
such as low recapture rate and tag retention have led to variable success when performing 
mark-recapture studies, particularly for freshwater fish species listed under SARA (Barnucz et 
al. 2021; Barnucz and Drake 2021). The use of repeat-survey designs for estimating occupancy 
and abundance of unmarked populations may, therefore, represent a suitable alternative to 
mark-recapture (MacKenzie et al. 2018; Kéry and Royle 2016).  

Repeat-survey designs of unmarked individuals allow the joint modelling of species- or 
individual-based detection probabilities and estimates of occupancy or abundance when 
replicated spatially and temporally (MacKenzie et al. 2018; Kéry and Royle 2016). Imperfect 
detection is a well-recognized phenomenon affected by factors such as sampling gear 
effectiveness, habitat conditions, and local population size (Dextrase et al. 2014a; Dextrase et 
al. 2014b; Lamothe et al. 2019; Lamothe et al. 2023). False absences can lead to incorrect 
inferences about abiotic or biotic factors important for the persistence of the species (Tyre et al. 
2003) and biased estimates of species abundance and distribution (MacKenzie et al. 2002; Kéry 
and Royle 2016). Statistical models that incorporate species detection probabilities or capture 
probabilities for individuals may provide more accurate interpretations of the status of SARA-
listed fishes and the spatial boundaries of critical habitat. 

The collection of repeat-survey data within sites can be achieved many ways, including 
temporal replicates, records collected by multiple observers, multiple independent collection 
methods, and spatial subsampling of a site (MacKenzie et al. 2018). Visual counts of unmarked 
individuals could occur at selected quadrats three to five times over a five-day period (e.g., 
MacKenzie et al. 2005), or they may occur within a single day. A common approach for 
sampling SARA-listed freshwater fishes is to perform repeat surveys within a site consecutively, 
where captured animals are removed from the site after each survey until successive surveys at 
the site are complete (i.e., depletion sampling), and subsequently moving on to sample the next 
site (e.g., Dextrase et al. 2014a; Lamothe and Drake 2022). By only visiting a site once, time 
spent travelling among sites is reduced and therefore the number of sites surveyed and 
associated spatial coverage will be less constrained by project resources. Moreover, repeatedly 
accessing sites over multiple days and directly (or indirectly) interacting with organisms may 
impose additional sampling-related harm to individuals, which is another consideration when 
sampling at risk species. In all cases, evaluating the consequences of using a depletion versus 
non-depletion survey design is an important step for planning monitoring efforts for imperiled 
species (MacKenzie and Royle 2005). 

The lack of long-term monitoring data for most freshwater fishes is a substantial 
challenge when assessing conservation status. Investments in monitoring programs generally 
begin only after a suspected decline has occurred, or a conservation status has been assigned. 
This constraint can lead to low initial (i.e., baseline) site-specific abundances. As a result of the 
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difficulty of detecting rare or hard to sample species, and their usual low initial abundance, there 
is concern about the necessary effort needed to document changes in abundance or occupancy 
over time for many SARA-listed freshwater fishes. Power analyses can help guide the 
development of monitoring programs, or aid in the interpretation of monitoring program results, 
to ensure sufficient rigour when evaluating changes in species abundance and distribution, 
particularly when detection is imperfect (Guillera-Arroita and Lahoz-Monfort 2012). Prospective 
power analysis has been used to assess the effectiveness of sampling gear and methods to 
monitor the status of several Ontario fishes at risk (Reid and Dextrase 2017; Lamothe et al. 
2023). However, statistical power is rarely incorporated for distribution- and population-related 
metrics that inform conservation status. By convention, a power of 0.80 is considered sufficient 
for most ecological studies (Peterman 1990; Cohen 2001). For the purposes of monitoring 
changes in the status of imperiled species, a power of 0.80 indicates a 20% probability of failing 
to identify a true change in abundance or distribution – a conclusion that can have severe 
consequences for the persistence of species. Similar to chosen significance levels (i.e., α = 
0.05), the identified level of power deemed adequate for monitoring will reflect the level of risk 
tolerance for failing to meet SARA program objectives (e.g., Peterman 1990).  

The objectives of this study were to determine how sampling effort (number of sample 
sites and repeat surveys) and survey design (depletion versus non-depletion sampling) affect 
statistical power to infer changes in abundance or occupancy probability for species at risk. To 
achieve these objectives, hierarchical single-season occupancy and N-mixture models were 
used with simulated species presence-absence and abundance data, with detection 
probabilities representative of imperiled freshwater fishes. Overall, this study provides 
information for the design of freshwater fish species monitoring programs, particularly as it 
relates to the use of single-season, single-species occupancy and N-mixture models for 
characterizing changes in occupancy or abundance over time. 

METHODS 

Analyses were performed in four steps (Figure 1). First, presence-absence data for an 
imperfectly detected species were simulated to represent two independent surveys where the 
population had experienced a reduction in occurrence between surveys. With the simulated 
data, two single-season, single-species occupancy models (MacKenzie et al. 2002; MacKenzie 
et al. 2018) were built using the presence-absence data 1) before and 2) after proportional 
reductions to generate estimates of occupancy probability given that observations were 
imperfect (Step 2; Figure 1). Using the estimates of occupancy, the power to detect reductions 
in occupancy between the two surveys was calculated (Step 3; Figure 1). Finally, linear models 
were used to understand how the input parameters for occupancy models differentially 
influenced the final results (Step 4; Figure 1). These steps were repeated with simulated capture 
data (i.e., count data) reflecting an imperfectly detected species experiencing proportional 
reductions in abundance between two surveys, and using N-mixture models (Royle 2004; Kéry 
et al. 2005) to estimate abundance (Figure 1). The simulations were parameterized to reflect 
imperiled species with low abundance and low probability of detection. Below, a more detailed 
overview of each step is provided. 
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Figure 1: Step-by-step description of the analysis. 𝑀 = number of sites surveyed; 𝑧𝑖 = true 
occupancy state at site 𝑖; 𝜓 = probability of occupancy; 𝑦𝑖𝑗 = observed species occurrence at 

site 𝑖 during survey 𝑗; 𝜌 = probability of detecting the species; 𝑁𝑖 = true abundance state at site 
𝑖; 𝜆 = mean expected abundance across all sites; 𝐶𝑖𝑗 = observed species abundance at site 𝑖 

during survey 𝑗; and, 𝑝 = probability of detecting an individual of the species. 

 

STEP 1) DATA SIMULATION 

Presence-absence data were simulated for a single species experiencing proportional 
reductions (𝑅) in occupancy probability (𝜓) measured between two time periods. Sampling was 

simulated to occur across 𝑀 sites (𝑚 = 10, …, 200) using 𝐽 repeat surveys (𝑗 = 3, 5, 7) with 
defined 𝜓 and detection probability (𝜌; Table 1). Proportional reductions in 𝜓 were performed 

while holding 𝜌 constant. Initial site-specific presence-absence data were drawn from a binomial 
distribution with a probability equal to 𝜓. Two survey designs (𝑔) were implemented: depletion 
and non-depletion sampling. Depletion sampling describes the situation where an individual is 
sampled in survey 𝑗 and removed until all surveys at site 𝑖 are complete. Non-depletion sampling 
replaces individuals prior to performing subsequent surveys. In both scenarios, sites were 
assumed to be closed to immigration or emigration during the sampling period. Given the 
common challenge of data scarcity faced by conservation practitioners, we incorporated two 
sampling periods (as opposed to many years of data). Parameterization for the simulation was 
done to represent scenarios where the species showed low detection probability and variable 
levels of occupancy (Table 1). Proportional reduction (𝑅) values were chosen to represent 
thresholds used by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) 
for evaluating conservation status (-30%, -50%, and -70%; Table 1). One thousand repetitions 
were performed for each combination of parameter values (𝑀, 𝐽, 𝜓, 𝜌, 𝑔), totaling 810,000 
repetitions. 
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 Table 1: Parameters, abbreviations, and values included in the data simulations. 

Abbr. Variable Values 

𝐽  Number of repeat surveys per site 3, 5, 7 

𝑀  Number of sites 10, 25, 50, 100, 200 

𝜆  Mean site-specific species abundance 5, 15, 25 

𝑝  Probability of detecting an individual of a species 0.05, 0.15, 0.25 

𝑅  Proportional reduction in abundance or occupancy 
probability 

-0.3, -0.5, -0.7 

𝑔  Survey design Depletion or non-depletion 

𝜓  Simulated probability of site-level species occupancy 0.25, 0.50, 0.75 

𝜌 Probability of detecting a species 0.3, 0.5, 0.7 

 

Capture (count) data were simulated to represent an imperfectly detected species 
experiencing proportional reductions (𝑅) in simulated site-specific abundance (𝜆) between two 
time periods. Initial 𝑁 values were drawn from a Poisson distribution with mean 𝜆 for 𝑀 sites 
surveyed 𝐽 times, with observed abundances from survey 𝑗 at site 𝑖 influenced by the mean 

probability of detecting an individual of the species (𝑝; Table 1). Similar to the occupancy 
simulations, a reduction in abundance of magnitude 𝑅 was applied while holding 𝑝 constant to 

produce a second data set of observed captures after experiencing 𝑅. One thousand repetitions 
were performed for each unique parametrization (𝑀, 𝐽, 𝜆, 𝑝, 𝑔), totaling 810,000 repetitions. Both 
the presence-absence and abundance simulations assume independence of sampling sites 
before and after applying proportional reductions (Guillera-Arroita and Lahoz-Monfort 2012). 

Note that 𝜌 can be approximately transformed from 𝑝, using: 𝜌 = 1 − (1 − 𝑝)𝜆.  

 

STEP 2) HIERARCHICAL MODELS 

Hierarchical models are now common in the species monitoring literature as they allow the joint 
modelling of ecological and observational processes for unmarked individuals. Here, two of the 
most common hierarchical models, single-species occupancy models (MacKenzie et al. 2002; 
MacKenzie et al. 2018) and N-mixture models (Royle 2004; Kéry et al. 2005), were used to 

make independent estimates of mean occupancy �̂� and mean site-level abundance �̂� before 
and after proportional reductions. Independent single-species occupancy models (MacKenzie et 
al. 2002) were developed on the simulated presence-absence data before and after (i.e., 
stacked) experiencing 𝑅 in 𝜓 across all combinations of 𝑀, 𝐽, 𝜓, 𝑔, and 𝜌. For these models, the 
occupancy state (𝑧𝑖) was modeled as 𝑧𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓) and the observation process was 

modeled as 𝑦𝑖𝑗|𝑧𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑧𝑖𝜌) where 𝑦𝑖𝑗 is the observed survey data and 𝜌 is the probability 

of detecting the species (Figure 1).  

Similarly, N-mixture models (Royle 2004, Kéry et al. 2005) were developed with the 
simulated data before and after 𝑅 for different combinations of 𝑀, 𝐽, 𝜆, 𝑔, and 𝑝. For these 

models, the latent abundance state was modeled as 𝑁𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆) and the observation 
process was modeled as 𝐶𝑖𝑗|𝑁𝑖~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑖 , 𝑝) where 𝜆 is the expected abundance (mean 

over all sites), 𝐶𝑖𝑗 is the count data at site 𝑖 during survey 𝑗, and 𝑝 is the probability of detecting 

an individual of the target species (Figure 1; Kéry and Royle 2016). For depletion sampling, 
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where individual fish are removed between surveys, detection probability at a site for a given 
survey is conditional on the encounter history from the previous survey. The observation 
process follows a multinomial distribution and was modeled as 𝐶𝑖𝑗|𝑁𝑖~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁𝑖 , 𝜋(𝑝)) 

where 𝜋(𝑝) is a function describing the detection probably across surveys given the encounter 
probability (Kéry and Royle 2016). For example, the detection probability for an individual 
captured in the first survey was 𝜋1 = 𝑝1, during the second survey was 𝜋2 = (1 − 𝑝1)𝑝2, and 

during the third survey was 𝜋3 = (1 − 𝑝1)(1 − 𝑝2)𝑝3.  

Occupancy and N-mixture models were developed using the ‘unmarked’ package (Fiske 
and Chandler 2011) within the R software (R Core Team 2020). Single-season occupancy 
models were built using the ‘occu’ function with the default arguments. N-mixture models using 
non-depletion and depletion survey designs were developed with the default arguments using 
the ‘pcount’ and ‘gmultmix’ functions, respectively. Violin plots were generated to visualize the 

initial and post-reduction estimates of �̂� and �̂� across parameter combinations using the 
‘ggplot2’ package (Wickham 2016). 

 

STEP 3) POWER ESTIMATES 

Power to detect proportional changes (𝑅) in occupancy probability (𝜓) and site-level abundance 
(𝜆) was defined as the proportion of simulations where the lower 90% confidence interval (CI) of 

the estimated initial occupancy (�̂�0) or abundance (�̂�0) was greater than the upper 90% CI of 

the estimated post-reduction occupancy probability (�̂�1) or abundance (�̂�1; Figure 1). Overlap of 
confidence intervals does not always imply statistical significance; however, it does provide an 
estimate of confidence that a change has occurred. Tile plots were created to visualize power 
for each parameterization of the occupancy and N-mixture model simulations using the ‘ggplot2’ 
package (Wickham 2016) within the R software (R Core Team 2020). Power estimates were 
grouped to aid interpretation as bad (< 0.50), poor (0.50-0.79), good (0.80-0.89), great (0.90-
0.99), or perfect (1.00). The coefficient of variation (CV) was calculated to compare the 

precision of �̂�0, �̂�1, �̂�0, and �̂�1 estimates across parameterizations.   

 

STEP 4) POST-HOC ANALYSIS 

Linear models were used to understand the relative importance of the number sites (𝑀), the 
number of surveys (𝐽), detection probability (𝜌 or 𝑝), and survey design (𝑔) when estimating 

occupancy (�̂�) and abundance (�̂�; Figure 1). The absolute difference in �̂�0 and 𝜓 was first 

modelled as a function of 𝑀, 𝐽, 𝑔, and 𝜌. Similarly, the absolute difference in �̂�0 and 𝜆 was 
modelled as a function of 𝑀, 𝐽, 𝑔, and 𝑝. Variables were converted to z-scores prior to modelling 
to allow for comparisons of effect sizes. Negative estimates of predictors suggest a positive 

effect on the accuracy of �̂�0 and �̂�0. 

RESULTS 

OCCUPANCY MODELS 

The accuracy (Figure 2; Figure 3) and precision (Figure 4) of occupancy models improved with 
increased occupancy probability (𝜓), detection probability (𝜌), number of survey sites (𝑀), and 
the number of surveys per site (𝐽). The number of survey sites, 𝑀, had the greatest influence on 

the accuracy of �̂�0, followed by 𝜌, 𝐽, and 𝑔 (Table 2). A non-depletion survey design led to 

greater accuracy of �̂� than a depletion design (Table 2; Figure 2; Figure 3). For example, the 

average �̂�0 ± 1 SD was 0.30 ± 0.16 and 0.25 ± 0.06 for depletion versus non-depletion survey 
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designs, respectively, when 𝜓 = 0.25, 𝑀 = 100, 𝐽 = 5, 𝑝 = 0.3, and 𝑅 = 0.7. The biggest 

difference in mean �̂� and 𝜓 was observed in simulations with 𝜌 = 0.3, 𝜓 = 0.25, and 𝐽 = 3; 
differences neared 0 with increasing 𝜌, 𝜓, and 𝐽 (Table 3). Approximately 95% of the simulations 

captured the true 𝜓, or post-reduction 𝜓, within the 90% confidence intervals of �̂�0 and �̂�1, 
respectively, regardless of 𝜌 or 𝐽 (Table 4).  

 

 

Figure 2: Estimated initial occupancy probability (�̂�0) when sampling was performed using a 
depletion (grey) or non-depletion (black) design across 10, 25, 50, 100, and 200 sites and using 
𝐽 = 3, 5, or 7 repeat surveys. Plotted are simulations where 1) detection probability (𝜌) = 0.30 
and initial simulated occupancy probability (𝜓) = 0.25, 2) 𝜌 = 0.30 and 𝜓 = 0.75, 3) 𝜌 = 0.70 and 

𝜓 = 0.25, and 4) 𝜌 = 0.70 and 𝜓 = 0.75. Black lines represent simulated 𝜓. The violin plots are 
scaled to have the same maximum width. 
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Figure 3: Estimated occupancy probability after a 50% reduction (�̂�1) when sampling was 
performed using a depletion (grey) or non-depletion (black) design across 10, 25, 50, 100, and 
200 sites and using 𝐽 = 3, 5, or 7 repeat surveys. Plotted are simulations where 1) detection 

probability (𝜌) = 0.30 and initial simulated occupancy probability (𝜓) = 0.25, 2) 𝜌 = 0.30 and 𝜓 = 
0.75, 3) 𝜌 = 0.70 and 𝜓 = 0.25, and 4) 𝜌 = 0.70 and 𝜓 = 0.75. Black lines represent 𝜓 ∗ (1 − 𝑅). 
The violin plots are scaled to have the same maximum width.   
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Table 2: Results of the modelled differences in the mean initial occupancy estimate (�̂�0) and 

true occupancy (𝜓), and the mean initial abundance estimate (�̂�0) and true abundance (). 
Negative effect sizes indicate an increase in accuracy. 

Model Variable Estimate Std. Error t-value p-value 

�̂�0 − 𝜓  Depletion design, 𝑔, 0: false, 1: true 0.15 0.002 73.63 <0.001 

�̂�0 − 𝜓  Detection probability, 𝜌 -0.23 0.001 -228.49 <0.001 

�̂�0 − 𝜓  Number of sites, 𝑀 -0.32 0.001 -324.48 <0.001 

�̂�0 − 𝜓  Number of surveys, 𝐽 -0.17 0.001 -168.24 <0.001 

�̂�0 − 𝜆  Depletion design 𝑔, 0: false, 1: true -0.25 0.002 -125.26 <0.001 

�̂�0 − 𝜆  Detection probability, 𝑝 -0.36 0.001 -371.83 <0.001 

�̂�0 − 𝜆  Number of sites, 𝑀 -0.23 0.001 -236.11 <0.001 

�̂�0 − 𝜆  Number of surveys, 𝐽 -0.16 0.001 -159.28 <0.001 
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Table 3: Accuracy of occupancy probability estimates indicated by the mean difference (± SD) 

in estimated initial (�̂�0) and true occupancy probability (𝜓) and estimated post reduction 

occupancy (�̂�1) and true post reduction occupancy (𝜓 ∗ (1 − 𝑅)) when 𝐽 = 3, 5, 7, and 𝜌 = 0.3, 
0.5, 0.7. 

Metric 𝐽 𝜌 𝜓 = 0.25 𝜓 = 0.50 𝜓 = 0.75 

ψ̂0  3 0.3 0.16 ± 0.31 0.08 ± 0.24 0.03 ± 0.18 

ψ̂0  3 0.5 0.07 ± 0.21 0.03 ± 0.15 0.02 ± 0.12 

ψ̂0  3 0.7 0.02 ± 0.14 0.01 ± 0.11 0.01 ± 0.09 

ψ̂0  5 0.3 0.08 ± 0.22 0.04 ± 0.17 0.02 ± 0.13 

ψ̂0  5 0.5 0.02 ± 0.13 0.01 ± 0.11 0.01 ± 0.10 

ψ̂0  5 0.7 0.003 ± 0.09 0.003 ± 0.10 0.0002 ± 0.08 

ψ̂0  7 0.3 0.04 ± 0.16 0.02 ± 0.13 0.03 ± 0.12 

ψ̂0  7 0.5 0.01 ± 0.10 0.003 ± 0.10 0.005 ± 0.09 

ψ̂0  7 0.7 -0.0003 ± 0.08 -0.00006 ± 0.09 -0.00003 ± 0.08 

ψ̂1  3 0.3 0.20 ± 0.36 0.15 ± 0.32 0.12 ± 0.28 

ψ̂1  3 0.5 0.10 ± 0.26 0.07 ± 0.22 0.05 ± 0.19 

ψ̂1  3 0.7 0.04 ± 0.17 0.02 ± 0.14 0.02 ± 0.12 

ψ̂1  5 0.3 0.11 ± 0.28 0.08 ± 0.23 0.06 ± 0.20 

ψ̂1  5 0.5 0.03 ± 0.17 0.02 ± 0.13 0.02 ± 0.12 

ψ̂1  5 0.7 0.01 ± 0.09 0.004 ± 0.09 0.003 ± 0.09 

ψ̂1  7 0.3 0.06 ± 0.22 0.04 ± 0.17 0.03 ± 0.15 

ψ̂1  7 0.5 0.01 ± 0.12 0.01 ± 0.10 0.005 ± 0.10 

ψ̂1  7 0.7 0.002 ± 0.07 0.002 ± 0.08 0.001 ± 0.09 
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Table 4: Accuracy of occupancy probability estimates indicated by the proportion of simulations 
where the upper and lower 90% confidence intervals of the estimated initial mean occupancy 

probability (�̂�0) and post-reduction mean occupancy (�̂�1) were less than or greater than the 
simulated initial occupancy probability (𝜓) and the simulated occupancy probability post-

reduction ((𝜓 ∗ (1 − 𝑅)), respectively. 

                 J = 3 3 3 5 5 5 7 7 7 

Metric ψ            𝜌 = 0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7 

LCI ψ̂0> 0.25 0.054 0.056 0.059 0.057 0.060 0.059 0.054 0.063 0.054 

LCI ψ̂0> 0.50 0.043 0.052 0.055 0.058 0.057 0.055 0.052 0.058 0.055 

LCI ψ̂0> 0.75 0.027 0.055 0.059 0.052 0.051 0.050 0.049 0.056 0.052 

UCI ψ̂0< 0.25 0.030 0.029 0.033 0.027 0.027 0.036 0.026 0.032 0.038 

UCI ψ̂0< 0.50 0.044 0.040 0.041 0.035 0.039 0.052 0.037 0.047 0.054 

UCI ψ̂0< 0.75 0.046 0.039 0.043 0.043 0.039 0.049 0.039 0.046 0.051 

LCI ψ̂1> 0.25*(1-𝑅) 0.050 0.056 0.051 0.057 0.050 0.045 0.062 0.046 0.043 

LCI ψ̂1> 0.50*(1-𝑅) 0.054 0.059 0.056 0.058 0.054 0.053 0.054 0.055 0.053 

LCI ψ̂1> 0.75*(1-𝑅) 0.047 0.057 0.053 0.058 0.052 0.050 0.056 0.049 0.048 

UCI ψ̂1< 0.25*(1-𝑅) 0.027 0.021 0.027 0.021 0.026 0.031 0.022 0.029 0.035 

UCI ψ̂1< 0.50*(1-𝑅) 0.036 0.029 0.036 0.030 0.035 0.042 0.030 0.040 0.047 

UCI ψ̂1< 0.75*(1-𝑅) 0.042 0.035 0.040 0.034 0.038 0.043 0.035 0.045 0.046 

 

Precision of �̂� was poor when 𝜓 was relatively low, regardless of 𝜌 or 𝐽 (Figure 4). 
Sampling without depletion led to greater levels of precision (Figure 4); for example, the CV of 

�̂�0 was 0.52 and 0.22 when following a depletion and non-depletion design, respectively, where 
𝜓 = 0.25, 𝑀 = 100, 𝐽 = 5, and 𝜌 = 0.3. However, the difference in precision between survey 

designs diminished with increased 𝜌 (Figure 4). For the same scenario where 𝜌 is increased to 

0.75, the CV of �̂�0 was 0.13 when following a depletion designed compared to 0.09 when 
following a non-depletion design. 
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Figure 4: Coefficient of variation (CV) of the estimated occupancy probability (�̂�) before (A, B) 
and after (C, D) experiencing a proportional reduction (𝑅) in simulated occupancy (𝜓) across 
detection probabilities (𝜌; colour), number of surveys ( 𝐽; shape), and number of sites (panels; 

10, 25, 50, 100, 200) following a depletion (A, C) or non-depletion (B, D) design.  

 

The power to detect proportional reductions in occupancy probability (𝜓) was low, 
particularly when detection probability (𝜌), proportional reductions (𝑅), and initial occupancy 

probability (𝜓0) were low (Figure 5). Ten sites were never sufficient to characterize changes in 
𝜓, regardless of the survey design and species characteristics (i.e., 𝜓0, 𝜌; Figure 5). 

Furthermore, 50 sites were insufficient (power < 0.80) for identifying a 30% change in 𝜓 (Figure 
5). When species showed an 𝜓 = 0.50 or 0.75, 200 sites were sufficient to characterize a 

reduction of 70% if 𝜌 ≥ 0.5 and 𝐽 = 5 (Figure 5). Power to detect changes in occupancy was 
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improved by following a non-depletion survey design (Figure 5). For example, the power to 
detect a 70% change in occupancy was 0.904 when sampling was performed following a non-
depletion design with 𝐽 = 3, 𝑀 = 50, 𝜓 = 0.5, and 𝜌 = 0.7, compared to a power of 0.563 when 
performing a depletion design with the same parameters. Power would be improved to 0.869 
with the depletion design if the number of surveys 𝐽 was increased to 5 and the other 
parameters remained constant, representing an increased total effort of 100 surveys (i.e., 50 
sites * 2 additional surveys). 
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Figure 5: Power to detect proportional reductions (𝑅 = 0.3, 0.5, 0.7) in occupancy probability 
when sampling is performed at 10, 25, 50, 100, or 200 survey sites using a differing number of 
surveys (𝐽 = 3, 5, 7). Power was calculated for detecting a change in occupancy probability for 
species with different detection probabilities (𝜌 = 0.3, 0.5, 0.7) and occupancy probabilities (𝜓 = 
0.25, 0.50, 0.7) when sampling was performed using a depletion or non-depletion survey 
design, respectively. The interpretation of power is red = bad (< 0.50), orange = poor (0.50-
0.79), yellow = good (0.80-0.89), green = great (0.90-0.99), blue = perfect (1.00). 
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N-MIXTURE MODELS 

The ability of the N-mixture models to provide accurate estimates at low abundances was poor, 
but improved with increasing detection probability (𝑝), number of survey sites (𝑀), and number 

of surveys performed per site (𝐽; Figure 6; Figure 7Figure). Estimates of mean abundance (�̂�) 
followed a bimodal distribution when 𝑝 and 𝑀 were low (Figure 6; Figure 7), indicative of 

boundary estimates and poor model fit. Detection probability, 𝑝, had the greatest influence on 

the accuracy of �̂�0, followed by survey design (𝑔), 𝑀, and 𝐽 (Table 2). Contrary to the �̂�0 

estimates, �̂�0 estimates improved with a depletion design (Table 2; Figure 6Figure). For 

example, the average �̂�0 ± 1 SD was 5.85 ± 4.98 and 6.49 ± 6.40 for depletion versus non-
depletion, respectively, when 𝜆 = 5, 𝑀 = 50, 𝐽 = 3, 𝑝 = 0.25, and 𝑅 = 0.3. On average, N-mixture 

models typically overestimated 𝜆 and 𝜆 ∗ (1 − 𝑅), with variance of estimates improving with 𝐽 
and 𝑝 (Table 5). The proportion of simulations that identified 𝜆 and 𝜆 ∗ (1 − 𝑅) within the 90% 
confidence intervals before and after proportional reductions improved with 𝐽 and 𝑝 (Table 6).  
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Figure 6: Initial estimated site-level abundance (�̂�0) when sampling was performed using a 
depletion (grey) or non-depletion (black) design across 10, 25, 50, 100, and 200 sites and using 
𝐽 = 3, 5, or 7 repeat surveys, where 1) detection probabilities (𝑝) = 0.05 and simulated 
abundance (𝜆) = 5, 2) 𝑝 = 0.05 and 𝜆 = 25, 3) 𝑝 = 0.25 and 𝜆 = 5, and 4) 𝑝 = 0.25 and 𝜆 = 25. 

Black lines represent simulated 𝜆. The violin plots are scaled to have the same maximum width.   
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Figure 7: Initial post-reduction abundance (�̂�1) when sampling was performed using a depletion 
(grey) or non-depletion (black) design across 10, 25, 50, 100, and 200 sites and using 𝐽 = 3, 5, 

or 7 repeat surveys, where 1) detection probabilities (𝑝) = 0.05 and simulated abundance (𝜆) = 
5, 2) 𝑝 = 0.05 and 𝜆 = 25, 3) 𝑝 = 0.25 and 𝜆 = 5, and 4) 𝑝 = 0.25 and 𝜆 = 25. Black lines 

represent post-reduction 𝜆. The violin plots are scaled to have the same maximum width.   
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Table 5: Accuracy of abundance estimates indicated by the mean difference (± SD) in 

estimated initial abundance (�̂�0) and simulated abundance (𝜆) and estimated post reduction 

abundance (�̂�1) and true post reduction abundance ((𝜆 ∗ (1 − 𝑅))  when 𝐽 = 3, 5, or 7, and 𝑝 = 
0.05, 0.15, or 0.25. 

Metric J p λ = 5 λ = 15 λ = 25 

�̂�0  3 0.05 21.02 ± 28.94 18.14 ± 28.47 12.93 ± 27.13 

�̂�0  3 0.15 9.17 ± 21.25 7.87 ± 19.56 7.24 ± 19.25 

�̂�0  3 0.25 3.64 ± 13.94 3.91 ± 13.62 3.77 ± 13.94 

�̂�0  5 0.05 17.25 ± 27.25 14.08 ± 25.31 11.37 ± 23.80 

�̂�0  5 0.15 4.13 ± 14.26 4.28 ± 14.13 4.34 ± 14.50 

�̂�0  5 0.25 1.30 ± 7.77 1.88 ± 9.34 2.36 ± 10.60 

�̂�0  7 0.05 12.45 ± 24.13 10.35 ± 21.89 9.42 ± 21.20 

�̂�0  7 0.15 2.18 ± 10.27 2.73 ± 11.20 3.33 ± 12.46 

�̂�0  7 0.25 0.72 ± 5.44 1.34 ± 7.43 1.82 ± 9.22 

�̂�1  3 0.05 22.53 ± 28.97 20.84 ± 29.06 18.99 ± 28.70 

�̂�1  3 0.15 10.66 ± 22.66 8.73 ± 20.60 8.24 ± 20.08 

�̂�1  3 0.25 4.33 ± 15.08 3.77 ± 13.70 3.59 ± 13.17 

�̂�1  5 0.05 18.18 ± 27.42 16.38 ± 26.73 14.62 ± 25.64 

�̂�1  5 0.15 4.88 ± 15.92 3.96 ± 13.83 4.13 ± 13.82 

�̂�1  5 0.25 1.33 ± 8.26 1.40 ± 7.97 1.73 ± 8.88 

�̂�1  7 0.05 14.17 ± 25.40 12.26 ± 23.79 11.14 ± 22.65 

�̂�1  7 0.15 2.34 ± 11.04 2.31 ± 10.31 2.69 ± 11.07 

�̂�1  7 0.25 0.54 ± 4.94 0.85 ± 5.84 1.13 ± 7.06 
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Table 6: Accuracy of abundance estimates indicated by the proportion of simulations where the 

upper and lower 90% confidence intervals of the estimated initial mean abundance (�̂�0) and 

post-reduction mean abundance (�̂�1) were less than and greater than the simulated initial 

abundance (𝜆) and the abundance post-reduction (𝜆 ∗ (1 − 𝑅)), respectively. 

 J = 3 3 3 5 5 5 7 7 7 

Metric λ         p = 0.05 0.15 0.25 0.05 0.15 0.25 0.05 0.15 0.25 

LCI �̂�0> 5 0.439 0.245 0.132 0.382 0.145 0.067 0.308 0.096 0.069 

LCI �̂�0> 15 0.459 0.273 0.168 0.395 0.183 0.105 0.334 0.132 0.099 

LCI �̂�0> 25 0.448 0.288 0.181 0.402 0.199 0.134 0.354 0.165 0.120 

UCI �̂�0< 5 0.333 0.131 0.065 0.203 0.058 0.038 0.156 0.042 0.034 

UCI �̂�0< 15 0.359 0.185 0.104 0.286 0.112 0.075 0.230 0.087 0.068 

UCI �̂�0< 25 0.389 0.209 0.137 0.309 0.132 0.095 0.246 0.107 0.086 

LCI �̂�1> 5*(1-𝑅) 0.453 0.252 0.122 0.384 0.137 0.061 0.309 0.083 0.072 

LCI �̂�1> 15*(1-𝑅) 0.451 0.256 0.144 0.383 0.153 0.079 0.318 0.108 0.074 

LCI �̂�1> 25*(1-𝑅) 0.452 0.269 0.153 0.390 0.175 0.098 0.330 0.132 0.086 

UCI �̂�1< 5*(1-𝑅) 0.278 0.096 0.047 0.181 0.046 0.027 0.127 0.033 0.028 

UCI �̂�1< 15*(1-𝑅) 0.325 0.137 0.077 0.238 0.076 0.049 0.184 0.057 0.048 

UCI �̂�1< 25*(1-𝑅) 0.355 0.169 0.099 0.263 0.095 0.067 0.207 0.077 0.060 

 
 

Relative to the occupancy models (Figure 4), precision of the N-mixture models was 
poor. Generally, precision improved with a non-depletion design and when detection probability 
was relatively high (𝑝 = 0.25; Figure 8). However, due to the poor fit of the models, particularly 
when 𝑀 ≤ 50 and 𝑝 = 0.05 (Figure 6; Figure 7), precision estimates may be misleading (Figure 
8).  
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Figure 8: Coefficient of variation (CV) of the estimated abundance (�̂�) before (A, B) and after 
(C, D) experiencing a proportional reduction (𝑅) across detection probabilities (𝑝; colour), 
number of surveys (𝐽; shape), and number of sites (panels; 10, 25, 50, 100, 200) following a 

depletion (A, C) or non-depletion (B, D) design. 

 

The power to detect changes in 𝜆 improved with increasing 𝑝, 𝑀, 𝐽, 𝑅 and when 
following a depletion design (Figure 9). No sampling scenarios could detect a 30% reduction 
with 80% power when 𝜆 = 5 or 15 (Figure 9). Using a depletion survey design with 𝐽 = 7 repeat 
surveys provided sufficient power (i.e., > 0.80) to detect a 70% change in 𝜆 when individuals 

showed high detection probabilities (𝑝 = 0.25), regardless of 𝜆 or 𝑀 (Figure 7). In comparison, 
when using a non-depletion design with 𝐽 = 7, 𝑅 = 0.7, and 𝑝 = 0.25, power was poor (0.50-0.79) 

when 𝑀 = 10 and 𝜆 = 5 or 15, and when 𝑀 = 25 and 𝜆 = 5. 
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Figure 9: Power to detect proportional reductions (𝑅 = 0.3, 0.5, 0.7) in site-level abundance 
when sampling was performed at differing numbers of sites (𝑀 = 10, 25, 50, 100, 200) using a 

differing number of surveys (𝐽 = 3, 5, 7). Power was calculated for detecting a change in 
abundance for species that demonstrate different detection probabilities (p = 0.05, 0.15, 0.25; 

columns) and initial abundances (𝜆 = 5, 15, 25) when sampling was performed using a depletion 
and non-depletion survey design, respectively. The interpretation of power is red = bad (< 0.50), 
orange = poor (0.50-0.79), yellow = good (0.80-0.89), green = great (0.90-0.99), blue = perfect 
(1.00). 

DISCUSSION 

Monitoring is a critical aspect of species conservation in Canada as it provides trend information 
for species assessment by COSEWIC and, by extension, the SARA process. Benchmarks have 
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been established by the International Union for Conservation of Nature (IUCN) and 
implemented by COSEWIC for assessing the conservation status of a species based on spatial 
and temporal trends, commonly represented as proportional reductions in abundance, area of 
occupancy, extent of occurrence, and/or quality of habitat (SARA 2002; IUCN 2012; COSEWIC 
2021). However, due to the issues of imperfect detection and low species abundance, 
describing changes in abundance or distribution with reasonable statistical power is challenging. 
The results of this study demonstrate that the power to detect changes in occupancy and 
abundance over time improve with increasing numbers of sites and surveys, detection 
probability, and estimated occupancy or abundance. These results align with previous studies 
that have identified a substantial amount of effort is required to detect SARA-listed freshwater 
fishes and to characterize change in occupancy over time (Reid and Hogg 2014; Reid and 
Dextrase 2017; Reid and Haxton 2017; Lamothe et al. 2023).  

N-mixture models are more frequently being used to estimate species abundance but 
have only rarely been applied for SARA-listed freshwater fish species (Lamothe et al. 2023). 
The results of this study suggest that the use of independent single-season N-mixture models to 
detect changes in rare and imperfectly detected species abundance over time requires many 
sampled sites and repeat surveys and is limited to scenarios where species are undergoing 
significant declines (70% reductions or greater) and when mean site-level abundance values 
and detection probabilities are relatively high. The accuracy and precision of abundance 
estimates were often low, particularly when the number of sites and surveys and detection 
probabilities were low, leading to uncertainty in estimating true trends. The ability to detect 
changes in occupancy probability was greater than detecting changes in abundance, with 
estimates being more accurate and precise for detecting changes in occupancy given the same 
level of sampling effort; nevertheless, considerable effort was often required to detect trends in 
occupancy with sufficient power. Moreover, detecting a proportional change in occupancy equal 
in magnitude to a change in abundance may represent a more biologically significant impact to 
the species, depending on the nature of the decline. 

When species or individuals of a species have a low detection probability, the number of 
sites and repeat surveys needed to achieve reasonable (i.e., ≥ 0.80) statistical power for 
detecting change between two surveys using independent single-season hierarchical models 
was typically large. For example, if following a depletion design, 100 sites need to be repeatedly 
surveyed five times in each time period (100 * 5 * 2 = 1000 surveys) to detect a 70% reduction 
in occupancy when species detection probability was relatively high (𝜌 = 0.7) and initial 
occupancy probability = 0.25. The required effort is even greater when making inferences on 
relatively small changes in occupancy or abundance between two time periods (i.e., 30% 
proportional reduction). The challenge of estimating occupancy probability and abundance at 
very low detection probabilities and sample sizes has been demonstrated previously (Guillera-
Arroita et al. 2010; Lamothe et al. 2023). Estimates of occupancy tend to reach a boundary 
when the proportion of sites where the species was not detected is smaller than the proportion 
of zeros in the detection history raised to the power of 𝐽 (i.e., number of repeat surveys; 
Guillera-Arroita et al. 2010). This finding suggests that boundary estimates are an issue when 
working on species with low detection probability and when sample sizes are small (Guillera-
Arroita et al. 2010), as demonstrated in Figure 2. Similarly, biased abundance estimates for 
imperfectly detected individuals from N-mixture models can arise when the number of sites and 
surveys is low. For example, if two surveys are performed at 20 sites, the probability of 
detecting an individual would need to be greater than 0.70 to produce an unbiased estimate of 
abundance (Kéry and Royle 2016), much larger than the detection probability values included in 
the simulations used in this study.  
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Several empirical studies have quantified the probability of detection and occupancy of 
SARA-listed freshwater fishes in Ontario (e.g., Dextrase et al. 2014a; Dextrase et al. 2014b; 
Reid and Haxton 2017). For example, using backpack electrofishing sampling methods at 36 
sites in southern Ontario rivers following a non-depletion survey design, the probability of 
detecting Channel Darter (Percina copelandi) and Northern Sunfish (Lepomis peltastes) after 
four repeat surveys was estimated as 0.69 (95% CI: 0.61-0.77) and 0.61 (95% CI: 0.47-0.75), 
respectively (Reid and Haxton 2017). The estimated occupancy probability for Channel Darter 
was 0.88 (95% CI: 0.75-0.97) and for Northern Sunfish was 0.38 (95% CI: 0.23-0.54; Reid and 
Haxton 2017). Power to detect future changes in occupancy probability was estimated using a 
closed-form estimator (Guillera-Arroita and Lahoz-Monfort 2012) and suggested that a 70% 
decline in future site occupancy could be detected for Channel Darter, but not Northern Sunfish 
(Reid and Haxton 2017). Based on the approach used to estimate power in our study, the power 
to detect a 30%, 50%, or 70% change in occupancy for Channel Darter given the previous 
estimates and level of effort is 0.60, 0.98, and 1.00, respectively. Similarly, the power to detect a 
30%, 50%, or 70% change in occupancy for Northern Sunfish given the previous estimates and 
effort is 0.14, 0.30, and 0.60. 

In practice, the sampling resources required to implement a species monitoring program 
for detecting change in rare, imperfectly detected species over time with statistical certainty is 
high when detection probability is low. The consequences of low abundance and detection 
probabilities emphasize the importance of using the most effective sampling procedures and 
gear. Improving detection probability is the best solution for reducing the effort necessary for 
quantifying proportional reductions in occupancy or abundance over time (McKann et al. 2013). 
Pilot studies can help to determine the best gear for sampling species to maximize detection 
probability, while also providing a baseline expectation for gear-specific detection probabilities 
and informing how sampling procedures can be improved. For example, previous studies have 
demonstrated that increasing the size of camera arrays and allowing a greater duration of 
camera trap sampling can improve detection probability (e.g., of terrestrial mammals, including 
relatively rare species such as Bobcat (Lynx rufus); O’Connor et al. 2017; and Redside Dace, a 
SARA-listed freshwater fish (Castañeda et al. 2020a). In other cases, approaches involving 
multiple types of sampling gear can be used to increase detection probability and/or avoid 
captures of non-target species (Harkins et al. 2019). For example, environmental DNA 
techniques are improving the ability of researchers to detect rare aquatic species (Schmelzle 
and Kinziger 2016; Boothroyd et al. 2016; Stickland and Roberts 2019) and, combined with 
traditional sampling, may improve detection probability. Ultimately, an understanding of the 
efficiency of surveys at detecting target species is a critically important consideration when 
designing a species monitoring program. 

Alternative survey designs to the ones used in this study may provide a less resource-
intensive approach to sampling rare species (MacKenzie et al. 2005; Specht et al. 2017). For 
example, rather than a traditional non-depletion sampling design, which was shown to have 
greater power for detecting change in occupancy than a depletion design, repeat samples can 
be taken conditional on a positive detection in the first survey (i.e., conditional sampling; Specht 
et al. 2017). If the species was not detected in the first survey, field crews move to the next site 
after measuring any relevant habitat covariates. When a detection occurs in the first survey, the 
number of surveys at that site is dependent on prior expectations of detection and occupancy 
probabilities. In addition to improving estimates of occupancy and detection probability for rare 
species, conditional sampling also allows field crews to monitor a greater number of sites, 
potentially improving knowledge of species distribution (Specht et al. 2017).  

Power analysis is an important step when developing a monitoring program, but like any 
analysis, it has several underlying assumptions. In this study, we assumed independence 
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between sites within and across sampling periods for both the presence-absence and 
abundance simulations (as per Guillera-Arroita and Lahoz-Monfort 2012). Meeting this 
assumption requires a completely random survey design across sites, which is often difficult to 
implement for rare, imperfectly detected species. A random survey design for rare species can 
also cause zero-inflation in the data, or no detections at all, and subsequently results in lower 
estimated detection probability, further inflating the required number of sites for detecting 
change in species abundance and occupancy. Instead, stratified random sampling across 
potentially suitable habitat types may be more effective than a completely random design. A 
second assumption of this analysis was that proportional reductions in occupancy and 
abundance were applied uniformly across the entire sampling frame. Reductions in species 
abundance and distribution are more likely to occur in particular areas of the distribution, namely 
range edges or areas of perturbation, and therefore may be missed or amplified depending on 
the sampling frame. Third, the relationship between proportional reductions in occupancy and 
abundance is unknown, and likely not generalizable across species. For example, the 
occupancy probability of a schooling fish may remain relatively constant until the school 
becomes too small to offer protection from predators. Finally, the simulations in this study 
assumed a constant detection probability between surveys and through time. A variety of 
scenarios could lead to a violation of this assumption that may differ between depletion and 
non-depletion survey designs. For example, fishes may avoid sampling gear after being 
captured, leading to reduced detection probabilities in subsequent surveys following a non-
depletion design. Alternatively, the disruption of habitat during an initial survey may lead to 
increases or decreases in the detection probability of species during subsequent surveys when 
performing depletion surveys. Previous simulation studies that tested the assumptions of N-
mixture models demonstrated that survey-specific heterogeneity in detection probability can 
result in an overestimation of abundance and an underestimation of detection probability (Kéry 
and Royle 2016; Link et al. 2018). Given the assumptions of hierarchical models, study-specific 
simulations that encompass the anticipated survey design and estimated parameters are 
recommended prior to initiating monitoring. 

Dynamic occupancy and N-mixture models may provide a more applicable study design 
when estimating trends in species status compared with the static models used in this study. 
Rather than applying static models for each individual year, dynamic models estimate the 
probability of colonization and local extirpation to facilitate an understanding of change through 
time (MacKenzie et al. 2003; Dail and Madsen 2011). Simulations to explore biases in model 
output for small sample sizes and power analyses for dynamic occupancy and N-mixture 
models have shown promising results (McKann et al. 2013; Ficetola et al. 2018; Banner et al. 
2019). For example, a power of at least 0.80 can be achieved for detecting a 30% trend in 
abundance for a species with an initial mean abundance of 15 and a detection probability of 
0.05 using seven repeat surveys at 30 sites (Ficetola et al. 2018), which is far less effort than 
that shown in this study for stacked single-season models. In addition to increased power, 
factors hypothesized to influence the colonization or extirpation processes can be incorporated 
into dynamic occupancy models to provide a more causal understanding of population and/or 
species dynamics (Wheeler et al. 2018; Castañeda et al. 2020b). For example, the colonization 
and local extirpation rates of three imperiled fish species, Flannelmouth Sucker (Catostomus 
latipinnis), Bluehead Sucker (C. discobolus), and Roundtail Chub (Gila robusta), were linked to 
peak annual flows in the riverine systems of Utah, United States (Budy et al. 2015). As peak 
discharge increased, local extirpation probability of these imperiled species decreased, and 
colonization probability increased (Budy et al. 2015).  

As the number of SARA-listed species continues to increase, monitoring efforts are more 
frequently being considered from a multi-species perspective, aiming to document trends in the 
occurrence and abundance of as many imperiled species as possible. However, this approach 
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can reduce the number and frequency of sites sampled for any single species given the need to 
allocate effort across species and the potential need for deploying multiple sampling gear types 
per site. As a result, the power to detect statistically significant trends in occupancy or 
abundance for any individual species may be reduced. Therefore, future work to quantify the 
sampling time, resource requirements, and power to detect individual species within a multi-
species monitoring program is warranted.  
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