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ABSTRACT

Clay, S. and Devred, E. 2023. SOPhyE Satellite Data Processing Technical Report Series: 1.
Ocean Colour Satellite Intercalibration. Can. Tech. Rep. Fish. Aquat. Sci. 3560: vi + 42 p.

Though satellite ocean colour data has massively increased the scope of ocean observations in
the past few decades, differences in waveband placement and their spectral response function
between satellite sensors lead to inconsistencies between datasets that prevent users from
taking advantage of the combined satellite data repository in environmental studies. In this report
we examine the spatio-temporal differences between remote-sensing reflectance and chlorophyll-
a concentration products derived from three NASA ocean colour sensors (i.e., MODIS-Aqua,
SeaWiFS, and VIIRS-SNPP). We then present a simple method to align SeaWiFS and VIIRS
reflectances to MODIS, and derive chlorophyll-a concentration from the modelled bands. These
chlorophyll-a concentration estimates are compared to in situ matchups and the effects on spring
phytoplankton bloom metrics are examined. The “alignment” method can theoretically be applied
to any set of ocean colour sensors in order to generate a common set of wavebands, which
could then be merged into a single multi-sensor product for higher spatial and temporal coverage
suitable for climate studies.
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RÉSUMÉ

Clay, S. and Devred, E. 2023. SOPhyE Satellite Data Processing Technical Report Series: 1.
Ocean Colour Satellite Intercalibration. Can. Tech. Rep. Fish. Aquat. Sci. 3560: vi + 42 p.

Bien que les données satellitaires sur la couleur des océans aient considérablement élargi la
portée des observations océaniques au cours des dernières décennies, les différences dans
le placement des longueur d’ondes et leur fonction de réponse spectrale entre les capteurs
satellitaires entraînent des incohérences entre les ensembles de données qui empêchent
les utilisateurs de tirer parti des données satellitaires combinées dans le cadre d’études
environnementales. Dans ce rapport, nous examinons les différences spatio-temporelles entre
les produits de télédétection, i.e., la réflectance et la concentration en chlorophylle-a, dérivés
de trois capteurs de couleur de l’eau de la NASA (MODIS-Aqua, SeaWiFS et VIIRS-SNPP).
Nous présentons ensuite une méthode simple pour aligner les réflectances de SeaWiFS et de
VIIRS sur celle de MODIS, et pour dériver la concentration de chlorophylle-a à partir des bandes
modélisées. Ces estimations de concentration de chlorophylle-a sont comparées à des mesures
in situ et les effets sur les indices de la floraison printanière du phytoplancton sont examinés.
La méthode d’“alignement” peut théoriquement être appliquée à n’importe quel ensemble de
capteurs de couleurs de l’eau afin de générer un ensemble commun de longueur d’ondes, qui
pourraient ensuite être fusionnées en un seul produit multi-capteurs pour une couverture spatiale
et temporelle plus élevée convenant aux études climatiques.
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1 Introduction

Satellite remote-sensing has been widely used in recent decades to collect medium-resolution
and high-frequency ocean colour data over the entire globe. This technology provides a synoptic
view of the oceans for use in long-term studies, but is not without its drawbacks. There is a
frequent need for validation of algorithms with relatively sparse corresponding in situ data
matchups, and gaps in the dataset from a variety of causes such as low solar zenith angle
(particularly at high latitudes), cloud and ice cover, sun glint, or swath width (i.e. viewing area)
of the sensor which limits the frequency of revisit (https://oceancolor.gsfc.nasa.gov/
resources/atbd/ocl2flags).

Temporal and spatial gaps in the satellite data repository have always been a significant problem.
Various techniques have been tested in order to estimate missing values of ocean colour
variables, which are important as they are included in the set of Essential Climate Variables
(ECV) used to describe the Earth’s climate (Belward et al. 2016). Some focus on filling spatial
gaps in sequences of images, such as mathematical methods like DINEOF (Data Interpolating
Empirical Orthogonal Functions) that estimate missing data based on the surrounding regions
and time series (Alvera-Azcárate et al. 2009). Other methods of dealing with spatial data gaps
include sacrificing temporal frequency by compositing images over a selected time period to
increase spatial coverage.

As multiple ocean colour satellites have operated concurrently, combining imagery into
multisensor datasets can improve spatial and temporal coverage. In this report, we use three
common ocean colour satellites (MODIS, SeaWiFS, and VIIRS) and investigate a method to
ensure consistency between sensor Remote Sensing Reflectance data (Rrs) so that MODIS
may be used in conjunction with the other sensors. Inconsistencies between sensors can arise
from various sources in the field such as different solar and sensor viewing angles, atmospheric
paths, and satellite pass times (Barnes et al. 2021). Moreover, spatial resolution varies between
sensor which affects the final aggregated pixel value, and each sensor has its own unique
spectral response, which is defined as the number of photons detected by the sensor, varying
across the visible spectrum with increased sensitivity around certain wavelengths. In this study
we focused on differences between similar bands but did not characterize the effects of other
potential sources of discontinuities.

Previous attempts have used different models to estimate Rrs from one sensor at wavebands
from another sensor, with varying degrees of complexity and success. Notably, the Ocean Colour
Climate Change Initiative (OC-CCI) (Sathyendranath et al. 2019) relies on a semi-analytical
model that calculates the inherent optical properties (IOPs) of the surface water using the
existing Rrs from a sensor. The model can then be inverted and the IOPs used to estimate
Rrs at different wavebands, specifically the bands from the chosen reference sensor. This
is computationally expensive, as the spectrum from each individual pixel must be uniquely
modelled in order to retrieve the IOPs and Rrs at other wavelengths. Another simpler model
was proposed in (Wang et al. 2020), relying on a pre-calculated factor to convert radiances or
reflectances from one sensor band to another used in specific ocean variables. However, this
requires sufficient in situ radiance measurements to constrain the conversion factor, and was
only tested to shift band values to nearby wavelengths.

This report details a method of using simple multilinear regression to model Rrs to match bands
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between sensors. This method is empirical and requires spatially and temporally overlapping
sensor data in order to collect coincident pixels for the training set. The objectives of this report
are 1) to investigate the differences between MODIS, SeaWiFS, and VIIRS reflectances, 2)
model all visible MODIS bands using data from the other sensors, and 3) evaluate model
performance and possible sources of error in relation to the true MODIS data. Chlorophyll-a (Chl-
a) products are derived from the band-modelled data and used to determine the band-modelling
effect on in situ sample matchups and spring phytoplankton bloom metrics.

Calculation of the multilinear regression coefficients and resulting SeaWiFS (VIIRS)-modelled
MODIS datasets is simple and relatively fast, and the coefficients can be easily tuned to a
specific region. In this case, our region of interest is the Northwest Atlantic (NWA, 42° - 95° W,
39° - 82° N), an area of particular importance for Canadian fisheries management (Therriault
et al. 1998), climate studies (Azetsu-Scott et al. 2008), and ecosystem studies (Trzcinski et
al. 2013). The region is surveyed on the bi-annual Atlantic Zone Monitoring Program (AZMP)
and annual Atlantic Zone Off-Shelf Monitoring Program (AZOMP) cruises, which collect in situ
biogeochemical variables primarily along the Scotian Shelf and in the Labrador Sea to monitor
the state of the ocean (Therriault et al. 1998). This low frequency sampling means that short-
term changes are often missed, for example the spring and fall phytoplankton blooms (see
Figure 2 in Ringuette et al. 2022). Satellite sensors, with their high sampling frequency and wide
spatial coverage, can capture more events that are often missed by in situ sampling. However,
they are susceptible to cloud and ice cover as well as lack of data in the more northern areas
due to low solar zenith angle, and could benefit greatly from well-tested gap-filling techniques.
The modelled MODIS bands using the method in this report, coupled with true MODIS data, will
provide a longer consistent satellite time series that will help fill large temporal and spatial data
gaps and be more compatible with studies of long-term ecosystem changes.

2 Data and methods

2.1 Sensor data

For simplicity and computational efficiency but without compromising the scientific soundness of
the study, level-3 binned (L3b) satellite Rrs and Chl-a datasets were used. At this stage, NASA’s
default atmospheric correction algorithm has already been applied, and the data have been
filtered using a common set of quality-control flags, before being composited into daily images
and projected into approximately equal-area bins at 4.64km-resolution on a common irregular
grid (IOCCG 2004). Changes in the Rrs and Chl-a fields over small time scales (within the same
day) could account for some of the differences of these parameters between satellites on a given
day as they cross the equator at different times, however these were not quantified in the current
report. Data for the 2018 reprocessing of MODIS-Aqua (2003-present) and VIIRS-SNPP (2012-
present) were downloaded from NASA’s Ocean Biology Processing Group (OBPG; https://
oceancolor.gsfc.nasa.gov) and subset to the NWA (Figure 1).
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Figure 1. Map of the region of interest for the current study. The black box is drawn around the
Gulf of Saint Lawrence subregion (GoSL, 49° - 75° W, 41° - 53° N) used exclusively for EOF
Chl-a, described below in this section.

Similar SeaWiFS (1997-2010) L3b data is stored on NASA’s servers only in 9km-resolution. In
order to remain consistent with other sensors in this study, we downloaded SeaWiFS MLAC
(Merged Local Area Coverage at 1.1 km resolution) level-2 files (individual satellite passes
before spatial and temporal binning), and used the l2bin function from NASA’s OCSSW software
(https://oceancolor.gsfc.nasa.gov/docs/ocssw) to generate the L3b files at 4km-resolution.
MODIS was selected as the baseline sensor for calibration of the other two sensors, as it
overlaps the time series of both (Figure 2). VIIRS has the widest swath at 3000 km, while MODIS
is the narrowest at 2330 km, and SeaWiFS is 2800 km wide.

Figure 2. Daily percent coverage of MODIS (blue), plus the added percent coverage from
SeaWiFS (orange) and VIIRS-SNPP (red) across the NWA, for the shortest visible Rrs band
extracted from each sensor (410nm for VIIRS, 412nm for SeaWiFS and MODIS).

NASA’s quality control flags filter out pixels with potential navigation, atmospheric correction,
or Chl-a algorithm issues, as well as pixels that are saturated or have very low water-leaving
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radiance, sun glint, or stray light from other sources. Pixels contaminated by aerosols,
coccolithophore blooms, cloud, or ice are also removed by the flags, and values outside
the range of 0-25000 sr-1 (for Rrs) and 0.001-100 mg m-3 (for Chl-a) were filtered out after
downloading. The maximum allowed solar zenith angle was set to 75 degrees, limiting the
amount of data that could be retrieved farther north and in the winter. Sensor viewing angles
were limited to 60 degrees, but sensor-specific geometry could still account for differences in
sensor values, which are not evaluated here.

Valid coincident pixels between each pair of sensors were collected from each daily image within
the NWA, which contains a total of 295425 marine pixels in the level-3 binned images from
NASA. The number of valid pixels varied between Rrs and Chl-a datasets depending on whether
the Chl-a model could successfully retrieve a data value for a given pixel. We selected four Chl-a
algorithms to use for the final sensor comparison, all of which use different combinations of Rrs
bands as input:

1. NASA’s globally-tuned empirical algorithm OCI, which is a combination of a band
ratio model OCx (O’Reilly et al. 1998) and the Hu model (Hu et al. 2012) at lower
concentrations,

2. The regionally-tuned band ratio model POLY4 (Clay et al. 2019),

3. The regionally-tuned semi-analytical algorithm GSM_GS (Maritorena et al. 2002; Clay et al.
2019), and

4. The empirical algorithm EOF (Laliberté et al. 2018), which has been trained for use only in
the GoSL, and was therefore only applied to this subregion in the sensor comparison.

For the MODIS-SeaWiFS comparison and band modelling, datasets overlapped from 2003-
2010, with significant sections of missing data in the time series in the last three years (see
Figure 2, where the additional daily percent coverage from SeaWiFS drops, particularly in 2008
and 2009). The MODIS and VIIRS time series have overlapped since 2012. The number of valid
coincident pixels across the time series between two sensors varied significantly across the
map, concentrated more in coastal regions (Figure 3). High northern latitudes have very little
overlap between SeaWiFS and MODIS, compared to VIIRS and MODIS. The lack of SeaWiFS
data in later years of operation, particularly in Baffin Bay, results from the loss of a large subset
of the full-resolution MLAC data between 2005 and 2010 due to storage issues, detailed here:
https://forum.earthdata.nasa.gov/viewtopic.php?t=2261
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Figure 3. Map of the number of matching pixels between the two sensor pairs (SeaWiFS vs
MODIS and VIIRS vs MODIS) across the time series for a given spatial point, using the Rrs412
MODIS band and the closest corresponding bands from SeaWiFS and VIIRS.

For the band model, Rrs data were extracted from each pixel for all sensors and all visible
bands: for MODIS, 412, 443, 469, 488, 531, 547, 555, 645, 667, and 678, all in nanometres; for
SeaWiFS, 412, 443, 490, 510, 555, and 670nm; and for VIIRS, 410, 443, 486, 551, and 671nm.
In tests where outliers were removed prior to modelling, an outlier was defined as a value in the
1st or 99th percentile of the ratio of SeaWiFS (or VIIRS) to MODIS, calculated separately for
each variable. After removing unmatched, invalid, or outlying pixels, tens of millions of pixels still
remained for sensor comparison and modelling purposes.

2.2 Modelling MODIS bands using SeaWiFS and VIIRS bands

The set of coincident pixels between SeaWiFS (or VIIRS) and MODIS were split into 80:20%
training:test subsets. The training pixels were used to model each visible MODIS Rrs band as a
multilinear regression of the Rrs from all the visible bands in either SeaWiFS or VIIRS:

Rm(i) = aiRs(412) + biRs(443) + ciRs(490) + diRs(510) + eiRs(555) + fiRs(670) (1)

Rm(i) = niRv(410) + oiRv(443) + piRv(486) + qiRv(551) + riRv(671) (2)

R is shorthand for the Rrs of a particular sensor and band, subscripts m, s, and v denote
MODIS, SeaWiFS, and VIIRS, respectively, and coefficients a-f (for SeaWiFS-modelled MODIS)
and n-r (for VIIRS-modelled MODIS) are trained by the model and are specific to each MODIS
band i that is being modelled.
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We explored the effect of removing outliers or log10-transforming the Rrs prior to modelling. Note
that zero-values were removed prior to logging the Rrs. If the data were not logged, negative
predicted Rrs could potentially be generated, but were retained because small negative Rrs
(i.e. >= -0.001) are allowed in the calculation of some Chl-a algorithms. To test the performance
of the band models, the modelled MODIS from a given sensor (i.e. SeaWiFS or VIIRS) of the
test set were linearly regressed against the true MODIS data, obtaining summary statistics for
comparison. A simple correlation analysis was performed using the cor.test() function in R (R
Core Team 2022) on the percent difference between true and modelled MODIS data and four
variables that could potentially affect model accuracy: latitude, bathymetry, day of year, and year
(i.e. the full time series of overlapping data).

The optimal model was defined as the model with statistics closest to the ideal value (i.e. slope =
1, intercept = 0, R2 = 1, RMSE = 0). The resulting coefficients were used to create the modelled
Rrs files for SeaWiFS and VIIRS at MODIS-specific wavebands. The new Rrs were then used
in combination with the four Chl-a algorithms (OCI, POLY4, GSM_GS, and EOF, with MODIS-
specific coefficients) to make the corresponding Chl-a datasets. SeaWiFS-modelled MODIS
datasets and VIIRS-modelled MODIS datasets will be referred to as S-MODIS and V-MODIS,
respectively.

2.3 Comparing modelled and true MODIS data to in situ data

To further evaluate the band models’ performance, we conducted a linear regression of the
logged MODIS, S-MODIS, and V-MODIS Chl-a against logged HPLC (High Performance
Liquid Chromatography) Chl-a from in situ sample matchups within 10 metres of the surface
between 2003 and 2020 (Devine et al. 2014; DFO 2023). Correlation tests were performed on
the percent error between both S (or V)-MODIS and in situ data, and true MODIS and in situ
data, against the same four variables as before (latitude, bathymetry, day of year, and year), as
well as the distance between the center of the satellite pixel and the in situ sample location (for
the matchups, the pixel nearest the in situ sample was selected). These tests were repeated
using each of the four satellite Chl-a models (OCI, POLY4, GSM_GS, and EOF).

2.4 Calculating phytoplankton bloom metrics using S-MODIS and V-MODIS

The Chl-a datasets were formatted to be used in the PhytoFit application (Clay et al. 2021),
which has the capability to model the annual Gaussian curve of the phytoplankton spring bloom
given sufficient satellite data for a region. The app calculates metrics to summarize changes in
the bloom patterns over time: the timing of the start and maximum concentration of the bloom,
the duration, the amplitude (i.e. the maximum concentration), and the area under the Gaussian
curve (i.e. the total phytoplankton mass over the bloom period). This bloom modelling procedure
was run for the entire available time series for each original sensor (SeaWiFS, VIIRS, and
MODIS) as well as S-MODIS and V-MODIS. This was repeated for several AZMP and AZOMP
boxes of interest in the Labrador Sea, Gulf of Saint Lawrence (GoSL), and on the Scotian Shelf
(SS, see Figure 4). For these tests, only the POLY4 Chl-a algorithm was selected to compute the
spring bloom metrics (Clay et al. 2019), as it has has been tuned for use specifically in the NWA
and found to outperform other common Chl-a models (i.e. OCI, GSM) in this region.
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Figure 4. Map of the boxes that were used in the bloom fits for SS, GoSL, and the Labrador Sea.
Orange boxes = “South”, red boxes = “North”.

The input parameters used for the bloom fits were part of two standard sets of parameters
(for “North” and “South” boxes, divided by 52.5° N) that were determined in Devred et. al. (in
preparation) to retrieve the highest number of valid bloom fits across the time series for each of
the boxes in the region using MODIS data. A subset of several years for various boxes was fit by
manually adjusting the range of days used in the model, as the standard set of parameters did
not provide a valid fit. Bloom metrics were collected for each sensor in the different boxes, and
presented in boxplots to examine the overall change in the distribution of metrics depending on
sensor.

2.5 Differences between sensor data

For the sensor comparison, a subset of five Rrs bands in each sensor were used (see Table 1),
as well as the four Chl-a algorithms listed in section 2.1.

Table 1. Nominal wavelengths (nm) of the five sensor bands used in the comparison for the three
sensors of interest.

Band MODIS SeaWiFS VIIRS

B1 412 412 410
B2 443 443 443
B3 488 490 486
B4 547 555 551
B5 667 670 671

The five bands used in the comparison differ slightly from sensor to sensor in terms of bands
width and center, and Spectral Response Function (SRF, Figure 5), particularly in the “blue” and
“green” part of the spectrum (B3-B4). These bands were selected for the comparison as their
central wavelengths were most similar of all available bands.

7



Figure 5. Relative SRFs for each of the sensors (https://oceancolor.gsfc.nasa.gov/
resources/docs/rsr_tables), modelling their spectral response across the visible spectrum.
Colours indicate the approximate colour of the band for a given wavelength. Coloured vertical
dashed lines indicate the nominal wavelength of the band, while black vertical dashed lines
indicate the nominal wavelengths of the five most similar bands that are used in the sensor
comparison.

Boxplots were constructed to show the distribution of the percent difference between SeaWiFS
(VIIRS) and MODIS for each variable of interest over the entire time series and region, before
investigating the differences as a function of time or space, described in the following sections.

2.5.1 Temporal statistics

We removed outliers and log10-transformed Chl-a to more evenly distribute low and high
concentrations, as Chl-a typically follows a lognormal distribution (Campbell 1995), meaning
that the data are more likely to be normally distributed after the transformation. Subsequently, we
summarized the differences across the time series between SeaWiFS (or VIIRS) and MODIS for
each of the five most similar Rrs bands after removing outliers, as well as the log-transformed
Chl-a. For a given pixel, all the SeaWiFS (or VIIRS) data across the time series was regressed
against coincident MODIS data, leaving that pixel with a set of summary values: intercept,
slope, R2, p-value, and number of observations in the regression, as well as the median ratio
of (unlogged) SeaWiFS (VIIRS) to MODIS. To test for spatial patterns in sensor differences, the
pixel-wise values of the aforementioned statistics were mapped per variable, excluding pixels
with fewer than 50 observations across time (see Figure 6). This comparison was repeated for
S-MODIS and V-MODIS against true MODIS, to determine the effect of the band model on the
patterns seen in previous sensor comparisons.
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Figure 6. Diagram of the method used to summarize differences between sensors across time:
Regressing all matching pixels across time (i.e. blue pixels for sensor 2 against red for sensor 1),
giving that pixel a set of regression statistics (purple). After doing this for every pixel, the result
was a map for each statistic.

2.5.2 Spatial statistics

Similar to the temporal statistics, we summarized the sensor differences across the region. For
a given daily satellite image, SeaWiFS (VIIRS) data was regressed against MODIS data across
space. The same statistics as described in Section 2.5.1 were then plotted across time in order
to gauge temporal patterns in the sensor differences. Again, this was repeated for S-MODIS and
V-MODIS against true MODIS.

Figure 7. Diagram of the method used to summarize differences between sensors across space:
Regressing all matching pixels over the map (i.e. blue against red), condensing that layer (i.e. the
L3b daily image) into a single set of regression statistics (purple). This was repeated for each
image, so the statistics could then be plotted as a function of time.
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3 Results

3.1 Band model performance and improved coverage

Removing outliers or logging the Rrs did not improve the accuracy of the band model (see
Figure A.1, which shows that the linear model that includes outliers produces the best statistics
from the regression of modelled Rrs against true Rrs). Instead, it only decreased the size of our
dataset by approximately 7.2% for SeaWiFS and 3.9% for VIIRS. Therefore, S-MODIS and V-
MODIS datasets were generated using the band model trained with linear Rrs data that included
outliers.

There was good alignment between the modelled and true Rrs in the test dataset for both S-
MODIS and V-MODIS, which generally improved as wavelength increased (see Tables A.2
and A.4). Slopes were generally around one, bias around zero, and R2 increased with
wavelength except for the longest 2-3 modelled bands (645, 667, and 678nm) where there
was a slight decrease. The p-values of the estimates for each waveband in the models were all
statistically significant (<0.01), indicating that each band provided useful information in the model
and could not be removed. Rrs and Chl-a uncertainties can vary with water composition, which
can change significantly depending on time and location and negatively impact band model
performance. Nevertheless, correlations between model percent error and latitude, bathymetry,
day of year, or year were all negligible, with the exception of a slightly negative correlation with
day of year for S-MODIS “green” bands (469-555nm).

Table 2 shows the increase in average daily percent coverage as a result of using MODIS data
supplemented by SeaWiFS and VIIRS instead of one sensor alone. Coverage varies widely by
season, with the highest increase from single sensor (MODIS) to Multisensor coverage in fall
(+5.76% for MODIS/SeaWiFS, +3.54% for MODIS/VIIRS). Moreover, on 99% of the days when
one sensor was unable to retrieve any data, the second sensor had an average percent coverage
of 9.1%, up to a maximum of 34.9%.

Table 2. Average daily percent coverage in the NWA per sensor and season, as well as the
average percent coverage of the two sensors combined (Multisensor). Seasons are defined
as March-May (Spring), June-August (Summer), September-November (Fall), and December-
February (Winter). Split by years 2003-2010 (MODIS-SeaWiFS overlap) and 2012-2020 (MODIS-
VIIRS overlap). Coverage increase is the difference between Multisensor and MODIS coverage.

Years Season MODIS SeaWiFS VIIRS Multisensor Coverage increase

2003-2010 Spring 5.80 6.69 8.68 2.88
Summer 11.63 12.64 17.38 5.75
Fall 14.81 14.91 20.57 5.76
Winter 2.30 2.5 3.68 1.38

2012-2020 Spring 5.31 5.38 6.74 1.43
Summer 11.82 12.11 15.29 3.47
Fall 14.70 15.06 18.24 3.54
Winter 2.07 2.18 2.84 0.77
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Figure 8 focuses on two randomly-selected days from the overlapping SeaWiFS-MODIS and
VIIRS-MODIS time periods as an example of the spatial distribution of coverage between the
individual sensor images and the combined image. There are significant regions of overlap
between sensor data, highlighting the importance of ensuring consistency between datasets.
The zoomed-in area of Figure 8 shows a region of overlapping data with discrepancies in the
bands, easily visible due to the straight edge in the MODIS dataset. Despite these differences,
the overall spatial patterns between sensors are very similar.

Figure 8. Daily Rrs_412 maps from the individual sensors (left column) and the combined
sensors (right), showing the increase in coverage for two separate days. Top row: S-MODIS and
true MODIS; Bottom row: V-MODIS and true MODIS. Overlapping pixels were averaged. Red
circles highlight sections of the combined image that were only present in one of the individual
sensor images. The zoomed-in area to the right shows the visible line at the edge of the MODIS
field overlapping the SeaWiFS field.

3.2 Band model impact on in situ matchups and spring bloom metrics

S-MODIS Chl-a in situ matchups had consistently lower regression slopes than the true MODIS
matchups. This was paired with a higher and significant (p<0.01) correlation between percent
difference (between satellite and in situ) and day of year than the true values for all but EOF
Chl-a (Figure 9, and Appendix B). This indicates that S-MODIS Chl-a is less accurate during
the fall bloom, moreso than true MODIS Chl-a. For POLY4 and GSM_GS Chl-a, the correlation
between true MODIS/in situ percent difference and bathymetry was significant (p<0.05) and
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higher (0.27 and 0.24, respectively) than that of S-MODIS. The dissimilarities suggest that
these Chl-a algorithms are negatively impacted by shallow water, but the effect does not carry
over to S-MODIS. In contrast, there were significant and positive correlations (>0.16) between
bathymetry and both the true MODIS/in situ and V-MODIS/in situ percent differences using both
POLY4 and GSM_GS Chl-a.

Figure 9. Left: Matchups between S-MODIS (or true MODIS) POLY4 Chl-a and in situ samples,
with regression statistics at the top of the plot. Right: Table of Pearson’s correlation coefficients
(r ) of the percent difference between sensor pixel Chl-a and in situ Chl-a with each of the five
variables in the first column. Only one coefficient was statistically significant (p<0.01), indicated
in bold. Points are colored by sensor (S-MODIS in pink, true MODIS in blue).

V-MODIS Chl-a and true MODIS Chl-a had very similar relationships to in situ Chl-a with
respect to their regression coefficients, with the exception of EOF Chl-a. V-MODIS EOF Chl-
a tended to underestimate higher concentrations moreso than MODIS EOF Chl-a, leading to a
lower regression slope against in situ Chl-a (Figure B.3). Unlike S-MODIS which had a higher
correlation between percent difference and day of year than the true MODIS, the correlations
between percent difference and the tested variables in V-MODIS were very similar to those
in true MODIS. The number of in situ matchups from the overlapping SeaWiFS/MODIS or
VIIRS/MODIS time series ranged from 66-74 (S-MODIS) and 216-234 (V-MODIS), which could
have potentially affected the statistics. Figure B.1 shows the overlap of sample locations and
satellite pixels across the time series, displaying the higher number of potential matchup pixels
from V-MODIS.

The timings of the start and peak concentration of the bloom were generally consistent between
sensors (Figure 10). Small differences in timing and concentration were magnified in the
amplitude and magnitude (the total production over the bloom period), making these metrics
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more sensitive to changes in sensor. In particular, bloom curve amplitudes calculated using S-
MODIS were lower than the amplitudes calculated using either SeaWiFS or MODIS data, with a
smaller spread of values.

Figure 10. Boxplots of the phytoplankton spring bloom metrics calculated separately using
SeaWiFS, MODIS, VIIRS, S-MODIS, and V-MODIS. The following bloom metrics were retrieved
from the SS, GoSL, and Labrador Sea boxes: the day of year of the start of the bloom (t.start),
day of maximum concentration (t.max), duration of the bloom (t.duration), the amplitude,
i.e. peak Chl-a concentration within the bloom period (Amplitude), and the magnitude, i.e. the
area under the daily Chl-a data points (Magnitude). Bloom fits were inspected manually for each
year, box, and sensor, to remove poor fits before plotting. The only years/boxes used in the plot
are those with valid fits for both SeaWiFS and MODIS, or VIIRS and MODIS. Blue horizontal
line indicates the mean value of each metric from MODIS. Black horizontal line within each box
indicates the median of that group.

The pattern of lower bloom amplitudes from S-MODIS data is observed in each of the three main
regions (SS, GoSL, and the Labrador Sea, see Figure 11), but most prominent in SS and GoSL.
This coincides with regions of lower slopes seen in the S-MODIS POLY4 maps of Figure C.2,
suggesting that the peak Chl-a concentrations (i.e. those observed during spring blooms) were
lower in the S-MODIS data than in true MODIS, and lower than the original SeaWiFS as well,
which had very high slopes.
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Figure 11. Amplitude and Magnitude bloom metrics from Figure 10, split by region. Blue
horizontal line indicates the regional mean value of each metric from MODIS. Black horizontal
lines within each box indicate the median value of that group.

3.3 Differences between sensors before and after alignment

The percent difference between SeaWiFS and MODIS varied widely, with the largest range
of differences in the Rrs occurring at the shortest (blue) and longest (red) wavebands, and
the Chl-a variables (particularly the band ratio algorithms OCI and POLY4, see Figure 12).
VIIRS followed a similar pattern with smaller overall percent differences in the mid-range visible
bands. On average, both SeaWiFS and VIIRS provided Rrs and Chl-a lower than MODIS.
The median percent differences between S (or V)-MODIS and true MODIS were closer to
zero across all variables, and each variable had approximately the same or reduced range of
differences. Outliers (90th percentile) in the shortest Rrs band were more negatively affected
by the model. This is consistent with the findings of larger overall error in the shortest band
(https://oceancolor.gsfc.nasa.gov/data/reprocessing/r2018/aqua) and may result from
imperfect atmospheric correction (Mobley et al. 2016).
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Figure 12. Boxplot of the percent difference between SeaWiFS (or VIIRS) and MODIS data for
each variable, before and after applying the band model as indicated by the arrows. Rrs labels
on the x-axis are the bands used in MODIS, S-MODIS, and V-MODIS (corresponding original
bands from SeawiFS and VIIRS are given in Table 1). Boxes show the values between the 10th
and 90th percentiles, and whiskers extend to the 1st and 99th percentiles (i.e. all the data used in
the temporal and spatial statistics, and in the tested band models where outliers were removed).
Horizontal lines in each box indicate the median of that group, and a dashed horizontal line is
plotted at zero for reference.

Summary statistics of each pixel across the time series revealed noticeable patterns across the
NWA (Appendix C). The similarity between sensors was typically linked to physical features in
the ocean. Shelves and basins (e.g. Labrador Basin, Grand Banks, Gulf of Saint Lawrence) were
often easily distinguishable in the maps (Appendix C), and usually had poorer alignment between
sensors. The pixel-by-pixel linear regressions resulted in a vast majority (>99.99%) of pixels in

15



the NWA with statistically significant relationships between sensors.

Though SeaWiFS and VIIRS Rrs were found to be typically lower than or equal to MODIS (see
Rrs medianRatio, Figures C.1 and C.3), particularly in shorter wavebands, the longest band
(Rrs667 ) had large regression slopes in the Labrador Sea (Figure 13. Slopes were more variable
pixel-to-pixel from the SeaWiFS/MODIS regression, but typically >1.2 in that region, whereas
VIIRS/MODIS slopes were more consistent across space, with slopes ranging from 1.1-1.2 in the
Labrador Basin. This shows that the red band reflectances in SeaWiFS and VIIRS typically had a
greater range of values than that of MODIS in that region).

Figure 13. Pixel-by-pixel regression slopes of SeaWiFS (left) or VIIRS (right) Rrs667 against
MODIS across their respective overlapping time series, using the method described in Figure 6.

“Green” wavebands (i.e. ~488-547nm) generally had the best agreement in both
SeaWiFS/MODIS and VIIRS/MODIS comparisons. Regions of low slope and high intercept
reveal that SeaWiFS (VIIRS) reflectances are often overestimated relative to low MODIS
reflectances and underestimated relative to high MODIS reflectances.

When looking at the relationships between Chl-a models from SeaWiFS and MODIS, EOF Chl-a
was consistently lower in SeaWiFS than in MODIS, with low intercepts, slopes, and median ratios
across the map. The OCI, POLY4, and GSM_GS algorithms were all largely uniform across the
study region, with the exception of the Nova Scotia coastline, Gulf of Saint Lawrence, and the
eastern side of Hudson Bay (Figure C.2). These areas have low slopes (<1) and high intercepts
(>0), which indicates a lower gradient of SeaWiFS Chl-a concentrations than MODIS. Over the
remainder of the region, OCI and GSM_GS are close in value between SeaWiFS and MODIS,
yet the pattern diverges in the POLY4 Chl-a map which had consistently higher slopes (>1.1)
paired with low median sensor ratios (<1). This suggests that while POLY4 Chl-a is generally
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lower in SeaWiFS than in MODIS, the gradient of concentrations is steeper. Figure 14 shows the
overall improvement in POLY4 Chl-a alignment between S-MODIS and MODIS. However, areas
of low slope still remain, and have expanded over the Scotian Shelf.

Figure 14. Top row: Map of the pixel-by-pixel regression slopes and median ratios of SeaWiFS
against MODIS POLY4 Chl-a, and the time series of the daily median ratio of SeaWiFS:MODIS
POLY4 Chl-a. Dashed line in the time series shows the regression of median ratio over time, with
regression coefficients given in the plot. Bottom row: S-MODIS Chl-a against true MODIS Chl-a.

Both OCI and POLY4 VIIRS were more similar to MODIS than SeaWiFS, but GSM_GS Chl-a
varied widely between the two sensors depending on physical ocean features, with low slopes
along the coastal regions and high slopes in the Labrador Sea and Baffin Bay, as seen in the
Rrs667 VIIRS-MODIS map (Figure C.4).

Band model overcompensation resulted in higher median ratios in Rrs around the Maritimes
(the Gulf of Saint Lawrence, Newfoundland, and Nova Scotia), meaning S (or V)-MODIS data
values were generally too high in this area. This was particularly noticeable in the S-MODIS
dataset, but less so in V-MODIS. Slopes of Rrs were lowered and intercepts raised, indicating
underestimation of larger S(V)-MODIS reflectances relative to true MODIS and overestimation of
smaller reflectances. This effect was more prominent in shorter wavebands and coastal regions,
with the exception of the Labrador Sea which retained a patch of high slopes in both S-MODIS
and V-MODIS in the Rrs667 band. This bias propagated to Chl-a, though less so for VIIRS. The
high slopes in VIIRS vs MODIS Rrs667 translated to high GSM_GS Chl-a slopes in the original
VIIRS-MODIS comparison, but this was corrected in V-MODIS GSM_GS (Figure 15).
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Figure 15. Left: Pixel-by-pixel regression slopes of VIIRS against MODIS GSM_GS Chl-a. Right:
Using V-MODIS instead of VIIRS.

Sensor differences were found to be generally stable over time (see Appendix D), with a
seasonal pattern of larger discrepancies and lower R2 in the winter months when there were
fewer data points available across the NWA due to low sun angle and cloud or ice cover (not
shown). The exception is a pattern of divergence between some VIIRS and MODIS variables
in recent years (see “medianRatio” plots from Figures D.3 and D.4). The daily median ratio
of VIIRS to MODIS for Rrs443 was found to be increasing over time, more noticeably than
the change in the green-orange wavebands (see Figure 16), while the ratio in the shortest
waveband has been decreasing. As the OCI Chl-a algorithm is allowed to switch between
multiple potential blue-to-green band ratios and POLY4 does not use the 443nm band, neither
were affected by this pattern. However, the median VIIRS:MODIS ratio of both GSM_GS and
EOF diverged in recent years as both these algorithms use all wavebands and were therefore
affected by the change. This shows that VIIRS GSM_GS has reduced to a small fraction of
MODIS GSM_GS, and conversely, VIIRS EOF is now twice as high as MODIS EOF. The time
series of Chl-a intercepts mirrored these patterns, but the slopes were relatively unaffected,
suggesting an overall increase in the VIIRS/MODIS EOF ratio and decrease in the GSM_GS
ratio across all Chl-a concentrations. The most notable improvement from the band model was in
the removal of this divergence between VIIRS and MODIS (in particular, see the bottom panel of
Figure 16, where EOF and GSM_GS Chl-a have realigned with MODIS during the last few years
of operation).
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Figure 16. Top panel: Time series of median VIIRS:MODIS Rrs for each daily image. Middle
panel: VIIRS:MODIS POLY4 Chl-a. Bottom panel: Median ratio of V-MODIS to true MODIS
POLY4 Chl-a. These were created using the method described in Figure 7.

Shorter Rrs bands were more affected by seasonal oscillations in sensor differences. Gaps in
the SeaWiFS time series were apparent in its last three years of operation, particularly in 2008-
2009, but there were no large changes in the differences between SeaWiFS and MODIS (see
Figure D.2). POLY4 Chl-a was found to have a consistently higher daily SeaWiFS-to-MODIS
regression slopes and lower median SeaWiFS:MODIS ratios across the time series, similar
to the patterns observed across the SeaWiFS:MODIS POLY4 Chl-a maps, which indicates
a larger range of SeaWiFS Chl-a with lower values overall. EOF and GSM_GS Chl-a sensor
ratios oscillate with season but follow opposite patterns, with the GSM_GS ratio highest in the
winter months, coinciding with the opposite peaks and troughs in the seasonal patterns of the
blue band Rrs sensor ratios. The VIIRS/MODIS EOF Chl-a time series behaved similarly to
SeaWiFS/MODIS EOF Chl-a, but GSM_GS exhibited the opposite pattern to SeaWiFS/MODIS
GSM_GS with its lowest median ratios in the winter months, in closer alignment with EOF Chl-a.

Overall the spatial and temporal comparison metrics showed better agreement between S(V)-
MODIS and true MODIS compared to SeaWiFS/VIIRS and MODIS, with varying differences on
smaller spatial and temporal scales dependent on Rrs band and Chl-a model (see Appendices C
and D). These findings are in agreement with previous studies which found sensor differences to
vary regionally and seasonally (Melin 2010; Barnes et al. 2021), with larger differences in coastal
areas and higher latitudes such as the NWA (Djavidnia et al. 2010).
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4 Discussion

4.1 Sensor differences and model performance

Although the band model brought both VIIRS and SeaWiFS into closer alignment with MODIS
overall, with slightly better agreement using the VIIRS data, there is still significant spatial and
temporal variation between the three sensors and the variables of interest. Shelves, coastlines,
and the Gulf of Saint Lawrence are still easily distinguishable in many of the maps due to larger
differences observed between the sensors (Appendix C). This suggests that splitting the band
model into different regions, perhaps based on physical features or bathymetry, might reduce the
differences. Seasonal oscillations in the time series of sensor ratios demonstrate that splitting
the band model by season might also be beneficial (see Appendix D). However, this raises the
question of how to blend the models across the boundaries of different regions or seasons, and
would require further testing to ensure that it does not significantly increase the error between
the modelled sensor and in situ validation samples.

Figure 8 provides a quick view of the combined data from two different sensors, demonstrating
that while the overall patterns are consistent and coverage has improved, blending the remaining
inconsistencies in the data fields will be a challenge. This is particularly problematic in regions
where datasets overlap and one or more have a straight edge (for instance, at the edge of
a satellite swath, or a region flagged by high sun glint). Another study uncovered this issue
in the OC-CCI product as well, showing discontinuities between satellite scan lines that
had propagated to Chl-a derived from the merged band products (Garnesson et al. 2019).
Although the OC-CCI product is more complex than the band model described in this report,
and applies bias correction after band modelling, they also use a simple average to blend
overlapping reflectance data from multiple sensors. This contrast could potentially be reduced
by experimenting with a similar bias-correction technique, as well as different blending methods,
particularly at the edges of overlapping data fields.

High sensor zenith angles (>40 degrees) can cause noticeable variation in Rrs and Chl-a
within a single sensor, with additional discrepancies between sensors at lower zenith angles
as well (Barnes and Hu 2016). A potential improvement could be made in the methodology to
collect coincident satellite pixels to use in model training by limiting them to Simultaneous Nadir
Overpass (SNO) pixels (Cao et al. 2004), which can reduce the error attributed to differences
in atmospheric path, solar and sensor geometry, and short-term time differences. However, this
would require the use of level-2 satellite imagery (i.e. individual passes) to restrict the difference
in satellite pass times, and could significantly limit the number of matching pixels. A compromise
could be made by simply introducing stricter limits on geometry and timing than those used in
the current study (Barnes et al. 2021). The final product will still contain residual errors due to
varying sensor angles, which should be characterized in future work.

4.2 Sensor-specific derived metrics and in situ validation

The comparison of modelled and true MODIS Chl-a to in situ Chl-a revealed that V-MODIS
is typically representative of the true MODIS data with respect to in situ matchups for each of
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the Chl-a algorithms, with a slight increase in error for the EOF algorithm. This means that the
use of MODIS Chl-a coefficients is appropriate for the V-MODIS Rrs (Figure B.2). S-MODIS,
on the other hand, had an increased bias, resulting in a larger underestimation of high Chl-a
concentrations than with the true MODIS Chl-a data against the in situ Chl-a (Figure B.3). For
MODIS and in situ matchups, the percent error correlated with day of year as Chl-a estimate
error increases during the fall months, but the correlation doubled in the case of S-MODIS and in
situ percent error. The increase in error when using S-MODIS suggests the band model needs
improvement, however the low number of in situ matchups in the S-MODIS comparison (ranging
from 66-74) could account for a degree of error as opposed to the V-MODIS comparison, which
had 216-234 matchups depending on Chl-a algorithm (see Figure B.1). In addition, the in situ
matchups to the S-MODIS data were primarily located in areas of low slopes (Figures C.2
and B.1), with higher slopes located farther south, which explains the negative bias in the
matchups.

Phytoplankton bloom timing was found to be very similar between each sensor, and as a result,
the modelled MODIS data did not significantly change these metrics. However, small changes
in the timing propagated to larger changes in the duration, and lower modelled MODIS Chl-a
slopes, particularly in S-MODIS, resulted in lower bloom amplitudes and subsequently lower
magnitudes (Figure 10). The significant decrease in amplitude in S-MODIS was a result of
the alignment of POLY4 Chl-a between sensors (reduction of the high slopes in the original
sensor comparison to MODIS, Figure C.2), which was used in the bloom metric calculations.
Differences between the true MODIS metrics and S(V)-MODIS metrics could also be attributed
to differences in their spatio-temporal coverage. However, a brief analysis of the differences in
percent coverage in relation to bloom amplitudes showed that this was not an issue.

4.3 Recent divergence of VIIRS and MODIS

The divergence of the blue bands between MODIS and VIIRS beginning in 2018 was found
to have a minor effect on the band ratio algorithms OCI and POLY4 since they do not use the
shortest blue band, but the effect on EOF and GSM_GS was significant as they make use of
all bands and are therefore affected by these patterns. However, as the EOF and GSM_GS
models use the bands in different ways (i.e. GSM_GS attempts to fit the spectral shape to
a polynomial, while EOF uses each of the bands in a Principal Component Analysis), they
experienced opposite effects. The divergence of the bands also correlated with an increase
in striping in VIIRS GSM_GS Chl-a images, which was not present in MODIS and fainter in the
corresponding VIIRS OCI, POLY4, and EOF Chl-a. Figure 17 reveals that the striping effect (the
diagonal patterns in the middle row) was reduced (but not completely removed) in the V-MODIS
dataset.
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Figure 17. 8-day MODIS (top row), VIIRS (middle row), and V-MODIS (bottom row) log-
transformed GSM_GS Chl-a images for the period from June 18 - June 25, from 2016-2020.

VIIRS has experienced gradual sensor degradation since its launch due to tungsten
contamination on the mirrors, though this has mainly affected wavebands longer than the
visible bands (Blonski and Cao 2013). Striping, particularly in shorter wavebands (Choi et
al. 2022), is a known issue with a few potential causes; namely differences in the calibration,
performance, or solar-sensor geometry of individual sensor detectors in the multi-detector
sensor array, and differences in the reflectances on either side of the rotating mirror that directs
light into the sensor (Mikelsons et al. 2014). Previous reprocessings of VIIRS at NASA OBPG
have reduced striping and removed sensor artifacts. The most recent reprocessing (R2022.0,
https://oceancolor.gsfc.nasa.gov/data/reprocessing/r2022/snpp), is expected to have
helped correct the observed sensor artifacts in recent years that resulted in the striping and
divergence of the two shortest bands relative to MODIS.

As POLY4 is the best-performing Chl-a model in the NWA (Clay et al. 2019), it is used in regular
operations (e.g. AZMP and AZOMP annual bloom metrics), and therefore this divergence pattern
has minimal negative effect on multisensor time series. However, EOF can be a better choice of
Chl-a model in smaller regions using a training set composed of samples with a limited range of
water properties, such as in the Gulf of Saint Lawrence (Laliberté et al. 2018). For this reason,
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it might be preferable for use in studies confined to smaller spatial scales. GSM_GS has its
own benefits over the empirical Chl-a models, as it offers a breakdown of the inherent optical
properties of the water and is therefore required for studies investigating properties beyond Chl-a
concentration. The Chl-a model must be selected depending on the study area and required
target variables, with caution to the possible effects of this divergence between sensors if a
multisensor time series will be used.

4.4 Conclusion

Overall, this band modelling method had the most positive results using VIIRS data (V-MODIS),
as the SeaWiFS model (S-MODIS) tended to overcompensate depending on region. Internal
consistency between sensors can offer information about long-term patterns, underlining the
importance of correcting alignment between sensors. S-MODIS could benefit from further
investigation and perhaps splitting the model by region or season and developing an approach
to blend these submodels, for example applying sensor-specific weights. Both models could
potentially be improved by implementing a bias-correction technique similar to OC-CCI, as well
as limiting the pixels used in model training between different satellites to a smaller range of time
differences, and solar and sensor zenith angles.

The method to tune the coefficients is relatively simple and quick to process, so they can be
reoptimized after regular reprocessing of the raw satellite data by space agencies. MODIS-Aqua
is nearing its end of life, so further investigation will be required into the use of other sensors
as a baseline for sensor alignment. Additional sensors (e.g. OLCI-A and OLCI-B onboard the
Sentinel-3A and 3B satellites) are a part of the regular processing chain at NASA OBPG, and
will be added to the time series using the same multilinear regression band modelling method.
The S-MODIS and V-MODIS bands will be merged with true MODIS bands to create a long
time series of sensor data to improve spatial and temporal coverage. Chl-a will be derived from
the final merged product and compared to ongoing in situ matchups collected during regular
sampling cruises, as well as existing multi-sensor products such as those from GlobColour
(https://www.globcolour.info) and OC-CCI. The resulting high-coverage long time series
satellite product, tuned specifically for the NWA, will be key in examining climate signals and
other long-term trends relating to fisheries stocks and phytoplankton bloom indices reported by
the AZMP and AZOMP, as well monitoring existing MPAs.
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APPENDIX A Band model evaluation

Figure A.1. Statistics of the linear regression of S (or V)-MODIS vs true MODIS data, using
the test set. Note the “ideal” value for each statistic is marked with a horizontal dashed red
line for easier comparison. P-value plots are not presented because they were all found to be
statistically significant (<0.01). Bias is the average difference between true and modelled values.
“Zeroes_removed” is the number of zero-values (or in some cases, negative values) that had to
be removed from the training and test sets before log10-transforming values for the logged fits.
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A.1 Band models using SeaWiFS data

Figure A.2. Density plots of the S-MODIS bands from the test set against the corresponding
true MODIS bands. “K” on the legend axis represents x1000. Dashed red lines in the plots
indicate the linear relationship between modelled and true sensor values. MODIS waveband
is indicated at the top left of each plot. Note these models were performed without removing
outliers or logging the input data.

Table A.1. Table of optimal coefficients derived using SeaWiFS Rrs bands (*) to model each
MODIS band (+).

Intercept Rrs412* Rrs443* Rrs490* Rrs510* Rrs555* Rrs670*

Rrs412+ 0.001 0.398 0.216 1.086 -1.215 0.240 -0.035
Rrs443+ 0.001 0.066 0.197 1.391 -1.048 0.159 -0.039
Rrs469+ 0.001 -0.094 0.129 1.549 -0.902 0.174 -0.055
Rrs488+ 0.000 -0.175 0.022 1.487 -0.628 0.214 -0.115
Rrs531+ 0.000 -0.115 -0.129 0.566 -0.089 0.741 -0.175
Rrs547+ 0.000 -0.105 -0.116 0.449 -0.231 0.953 -0.116
Rrs555+ 0.000 -0.095 -0.098 0.397 -0.314 0.998 -0.074
Continued on next page ...
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... Continued from previous page

Intercept Rrs412* Rrs443* Rrs490* Rrs510* Rrs555* Rrs670*

Rrs645+ 0.000 -0.061 0.006 0.234 -0.462 0.475 0.526
Rrs667+ 0.000 -0.040 0.002 0.195 -0.395 0.379 0.507
Rrs678+ 0.000 -0.020 -0.006 0.141 -0.364 0.381 0.492

Table A.2. Table of statistics calculated for S-MODIS against MODIS data. RrsLT0 gives the
percentage of data points in the test set for which the model predicted negative Rrs values.
Regression intercepts (and bias) were all within 1e-4 (1e-6) from zero. Pearson’s correlation
coefficients were derived by testing percent error and latitude (rlatitude), bathymetry (rbathymetry),
day of year (rDOY), and year (ryear). * = p < 0.01.

Band Slope R2 RMSE RrsLT0 rlatitude rbathymetry rDOY ryear

Rrs412 1.001 0.755 0.001 0.006 0 0.001 -0.001 0
Rrs443 1.003 0.808 0.001 0.006 -0.016* 0.055* -0.091* -0.015*
Rrs469 1.004 0.842 0.001 0.006 -0.024* 0.072* -0.17* 0.049*
Rrs488 1.004 0.865 0.001 0.009 -0.009* 0.084* -0.163* -0.012*
Rrs531 1.001 0.897 0.000 0.009 -0.01* 0.064* -0.214* -0.01*
Rrs547 1.001 0.913 0.000 0.010 -0.009* 0.076* -0.172* 0.011*
Rrs555 1.001 0.915 0.000 0.010 -0.026* 0.062* -0.197* -0.03*
Rrs645 1.008 0.829 0.000 0.946 -0.004* -0.004* 0.001* 0
Rrs667 1.009 0.821 0.000 0.584 -0.001 0.001* 0 0
Rrs678 1.008 0.824 0.000 0.342 0 0.001* 0 0
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A.2 Band models using VIIRS data

Figure A.3. Density plots of the V-MODIS bands from the test set against the corresponding
true MODIS bands. “K” on the legend axis represents x1000. Dashed red lines in the plots
indicate the linear relationship between modelled and true sensor values. MODIS waveband
is indicated at the top left of each plot. Note these models were performed without removing
outliers or logging the input data.

Table A.3. Table of optimal coefficients derived using VIIRS Rrs bands (*) to model each MODIS
band (+).

Intercept Rrs410* Rrs443* Rrs486* Rrs551* Rrs671*

Rrs412+ 0 0.439 0.835 -0.304 -0.006 0.045
Rrs443+ 0 0.369 -0.036 0.797 -0.299 0.211
Rrs469+ 0 0.270 -0.387 1.275 -0.293 0.216
Rrs488+ 0 0.094 -0.360 1.280 -0.068 0.042
Rrs531+ 0 0.024 -0.231 0.413 0.843 -0.177
Rrs547+ 0 0.026 -0.173 0.184 0.966 -0.037
Rrs555+ 0 0.040 -0.162 0.101 0.943 0.059
Continued on next page ...
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... Continued from previous page

Intercept Rrs410* Rrs443* Rrs486* Rrs551* Rrs671*

Rrs645+ 0 -0.034 0.028 -0.014 0.064 1.079
Rrs667+ 0 -0.035 0.051 -0.020 0.007 1.027
Rrs678+ 0 -0.022 0.059 -0.071 0.035 0.989

Table A.4. Table of statistics calculated for V-MODIS against MODIS data. RrsLT0 gives the
percentage of data points in the test set for which the model predicted negative Rrs values.
Regression intercepts and bias were all within 1e-6 from zero. Pearson’s correlation coefficients
were derived by testing percent error and latitude (rlatitude), bathymetry (rbathymetry), day of year
(rDOY), and year (ryear). * = p < 0.01.

Band Slope R2 RMSE RrsLT0 rlatitude rbathymetry rDOY ryear

Rrs412 1.000 0.825 0.001 0.000 -0.001 0.001* 0 0
Rrs443 1.000 0.879 0.001 0.000 -0.005* 0.006* -0.008* 0.011*
Rrs469 1.000 0.909 0.001 0.000 0 0 0 0
Rrs488 1.000 0.936 0.000 0.000 -0.073* 0.001 -0.032* 0.005*
Rrs531 1.000 0.956 0.000 0.000 -0.117* -0.044* -0.107* -0.013*
Rrs547 1.000 0.963 0.000 0.000 -0.086* -0.006* -0.045* -0.016*
Rrs555 1.000 0.964 0.000 0.000 -0.081* 0.002* -0.026* 0.014*
Rrs645 1.001 0.944 0.000 0.064 -0.004* -0.004* 0.001* 0.001*
Rrs667 1.001 0.961 0.000 0.000 -0.001* 0.001 0 0
Rrs678 1.001 0.961 0.000 0.000 -0.001 0.001 0 0
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APPENDIX B Modelled MODIS satellite data and in situ chla

Figure B.1. Left: Heat map of in situ HPLC Chl-a samples used in the comparison between
satellite and in situ data (2003-2020). Top right: Number of matching points between SeaWiFS
(or VIIRS) and MODIS across the time series overlapping the two sensors. Bottom right: The
resulting matchups between in situ samples, MODIS, and SeaWiFS (or VIIRS).
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B.1 SeaWiFS

Figure B.2. Results of the regression between true MODIS (or S-MODIS) and in situ Chl-a using
four different models (OCI, POLY4, EOF, and GSM_GS). Two extreme satellite GSM_GS points
are outside the range of the y-axis (83.45 and 90.02 mg/m3).

Table B.1. Pearson’s correlation coefficients between percent error (satellite vs in situ chl-a), and
five variables. ’Distance’ is between pixel and in situ sample location. True MODIS chl-a and
S-MODIS chl-a are regressed against in situ chl-a separately. * = p < 0.01

Satellite data Algorithm Latitude Year Day of year Distance Bathymetry

True MODIS OCI -0.161 -0.126 0.249 -0.086 0.148
POLY4 -0.199 -0.153 0.130 -0.086 0.273
GSMGS -0.165 -0.297 -0.049 0.005 0.244
EOF 0.150 0.066 0.504* -0.241 0.094

S-MODIS OCI -0.140 0.101 0.523* -0.154 -0.028
POLY4 -0.166 0.107 0.455* -0.166 0.060
GSMGS -0.188 0.126 0.377* -0.127 0.049
EOF 0.237 0.214 0.531* -0.176 -0.041
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B.2 VIIRS

Figure B.3. Results of the regression between true MODIS (or V-MODIS) and in situ Chl-a using
four different models (OCI, POLY4, EOF, and GSM_GS).

Table B.2. Pearson’s correlation coefficients between percent error (satellite vs in situ chl-a), and
five variables. ’Distance’ is between pixel and in situ sample location. True MODIS chl-a and
V-MODIS chl-a are regressed against in situ chl-a separately. * = p < 0.01

Satellite data Algorithm Latitude Year Day of year Distance Bathymetry

True MODIS OCI -0.034 0.118 0.470* -0.037 0.088
POLY4 0.061 0.123 0.329* -0.057 0.199*
GSMGS 0.050 0.109 0.337* -0.047 0.204*
EOF 0.061 0.083 0.412* 0.019 -0.039

V-MODIS OCI -0.057 0.158 0.471* -0.007 0.049
POLY4 0.039 0.130 0.335* -0.020 0.164
GSMGS 0.009 0.205* 0.307* -0.056 0.174*
EOF 0.049 0.031 0.540* -0.024 0.013
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APPENDIX C Temporal statistics

Figure C.1. Maps created from regressing SeaWiFS Rrs against MODIS Rrs, before (top three
rows) and after (bottom three rows) applying the band model, using the method described in
Figure 6. Pixels with fewer than 50 observations were removed. Before calculating the statistics,
outliers were removed (pixels where the ratio of sensors was in the 1st or 99th percentiles). The
median of the sensor ratio (i.e. SeaWiFS:MODIS) across time was also calculated. For S-MODIS
to MODIS, the Rrs compared between sensors are from the same wavebands.
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Figure C.2. Maps created from regressing log10(SeaWiFS Chl-a) against log10(MODIS Chl-a),
before (top three rows) and after (bottom three rows) applying the band model, using the method
described in Figure 6. Pixels with fewer than 50 observations were removed from the maps.
Before calculating the statistics, outliers were removed (pixels where the ratio of sensors was in
the 1st or 99th percentiles), and Chl-a was log10-transformed. The median of the sensor ratio
(i.e. SeaWiFS:MODIS) across time was also calculated (using unlogged data).
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Figure C.3. Maps created from regressing VIIRS Rrs against MODIS Rrs, before (top three rows)
and after (bottom three rows) applying the band model. See Figure C.1 caption for details.
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Figure C.4. Maps created from regressing log10(VIIRS Chl-a) against log10(MODIS Chl-a),
before (top three rows) and after (bottom three rows) applying the band model. See Figure C.2
caption for details.
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APPENDIX D Spatial statistics

Figure D.1. Time series created from regressing daily SeaWiFS Rrs against MODIS Rrs, before
(top three rows) and after (bottom three rows) applying the band model, using the method in
Figure 7. Before calculating statistics, outliers (pixels where the ratio of sensors was in the
1st or 99th percentiles) and daily images with fewer than 50 observations were removed. The
daily median ratio SeaWiFS:MODIS across the NWA was also calculated. Ideal statistics
(e.g. slope=0, ratio=1) are marked with a black horizontal line. P-values have been omitted as
>99.4% of the daily linear regressions across the times series were significant (p<0.01).
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Figure D.2. Time series created from regressing daily log10(SeaWiFS Chl-a) against
log10(MODIS Chl-a), before (top three rows) and after (bottom three rows) applying the band
model, using the method described in Figure 7. Before calculating statistics, outliers (pixels
where the ratio of sensors was in the 1st or 99th percentiles) and daily images with fewer than
50 observations were removed, and Chl-a was log10-transformed. The daily median ratio
SeaWiFS:MODIS across the NWA was also calculated (using unlogged data). Ideal statistics
(e.g. slope=0, ratio=1) are marked with a black horizontal line. P-values have been omitted
as >99.7% of the daily linear regressions across the times series were statistically significant
(p<0.01).
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Figure D.3. Time series created from regressing daily VIIRS Rrs against MODIS Rrs, before (top
three rows) and after (bottom three rows) applying the band model. See Figure D.1 caption for
details. P-values have been omitted as >99.8% of the daily linear regressions across the times
series were statistically significant (p<0.01).
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Figure D.4. Time series created from regressing daily log10(VIIRS Chl-a) against log10(MODIS
Chl-a), before (top three rows) and after (bottom three rows) applying the band model. See
Figure D.2 caption for details. P-values have been omitted as >99.9% of the daily linear
regressions across the times series were statistically significant (p<0.01).
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