

Fisheries and Oceans Canada

Sciences des écosystèmes et des océans

s Ecosystems and Oceans Science

Secrétariat canadien des avis scientifiques (SCAS)

Document de recherche 2023/022

Région des Maritimes

Cadre de conditionnement des modèles opérationnels pour la composante de reproducteurs du sud-ouest de la Nouvelle-Écosse et de la baie de Fundy du hareng des divisions 4VWX

T.R. Carruthers¹, A.R. Hordyk¹, Q.C. Huynh¹, R. Singh², T.J. Barrett²

¹Institut pour les océans et la pêche Université de la Colombie-Britannique Laboratoire de recherche sur les écosystèmes aquatiques, 2202 Main Mall Vancouver (Colombie-Britannique) V6T 1Z4

> ²Division de l'écologie des populations Pêches et Océans Canada Station biologique de St. Andrews 125, promenade Marine Science St. Andrews (Nouveau-Brunswick) E5B 0E4

Avant-propos

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Publié par :

Pêches et Océans Canada Secrétariat canadien des avis scientifiques 200, rue Kent Ottawa (Ontario) K1A 0E6

http://www.dfo-mpo.gc.ca/csas-sccs/ csas-sccs@dfo-mpo.gc.ca

© Sa Majesté le Roi du chef du Canada, représenté par le ministre du ministère des Pêches et des Océans, 2023 ISSN 2292-4272 ISBN 978-0-660-48730-4 N° cat. Fs70-5/2023-022F-PDF

La présente publication doit être citée comme suit :

Carruthers, T.R., Hordyk, A.R., Huynh, Q.C., Singh, R., et Barrett, T.J. 2023. Cadre de conditionnement des modèles opérationnels pour la composante de reproducteurs du sudouest de la Nouvelle-Écosse et de la baie de Fundy du hareng des divisions 4VWX. Secr. can. des avis sci. du MPO. Doc. de rech. 2023/022. v + 111 p.

Also available in English:

Carruthers, T.R., Hordyk, A.R., Huynh, Q.C., Singh, R., and Barrett, T.J. 2023. A Framework for Conditioning Operating Models for the Southwest Nova Scotia/Bay of Fundy Spawning Component of 4VWX Herring. DFO Can. Sci. Advis. Sec. Res. Doc. 2023/022. v + 103 p.

TABLE DES MATIÈRES

RÉSUMÉ	V
INTRODUCTION	1
GESTION ET PÊCHE DU HARENG DU SUD-OUEST DE LA NOUVELLE-ÉCOSSE ET LA BAIE DE FUNDY	DE 1
HARENG DE L'ATLANTIQUE : INCERTITUDES	4
ÉVALUATION DE LA STRATÉGIE DE GESTION	7
L'ÉVALUATION DE LA STRATÉGIE DE GESTION DANS LE CONTEXTE DU HARENO L'ATLANTIQUE	G DE 9
TROUSSE D'ÉVALUATION DE LA STRATÉGIE DE GESTION (OUTIL MSETOOL)	9
EXIGENCES DES MODÈLES OPÉRATIONNELS	11
ORGANISATION DES DOCUMENTS	12
BUT ET OBJECTIFS DU PRÉSENT DOCUMENT	13
HORS DE LA PORTÉE DU PRÉSENT DOCUMENT	14
MÉTHODES	15
APERÇU DES DONNÉES	15
APERÇU DU MODÈLE OPÉRATIONNEL ET DU CONDITIONNEMENT	19
ÉLABORATION D'UN MODÈLE OPÉRATIONNEL DU SCÉNARIO DE RÉFÉRENCE	20
SPÉCIFICATION DES MODÈLES OPÉRATIONNELS DE SENSIBILITÉ	24
ÉTABLIR UNE GRILLE DE RÉFÉRENCE DES MODÈLES OPÉRATIONNELS	26
Quatre sources centrales d'incertitude	26
Capturabilité du relevé acoustique à estimer dans les modèles opérationnels de l'ense de référence avec des scénarios de q=1 inclus dans l'ensemble de robustesse	emble 27
Les estimations du modèle et les résultats des projections sont insensibles au	07
Conditionnement en fonction des donnees sur la composition selon la longueur.	
Pondérations de rechange sans conséquence pour les données sur la composition se	elon
l'aye	Z1 20
MODÈLES OPÉRATIONNELS DE ROBUSTESSE	20
Définition d'une grille de robustesse	23
SPÉCIFICATION DE L'ENSEMBLE DE ROBUSTESSE DES MODÈLES OPÉRATIONN	IELS
ΡΈςι ΙΙ ΤΑΤς	32
MODÈLE DU SCÉNARIO DE RÉFÉRENCE	32
Aiustement du modèle de scénario de référence aux indices	
Aiustement du modèle du scénario de référence aux données sur la composition selo	n
l'âge dans le relevé acoustique	33
Ajustement du modèle aux compositions selon l'âge dans la flotte	34
Estimations du modèle du scénario de référence	38
MODÈLES OPÉRATIONNELS DE SENSIBILITÉ	40

MODÈLES OPÉRATIONNELS DE L'ENSEMBLE DE RÉFÉRENCE	47
MODÈLES OPÉRATIONNELS DE L'ENSEMBLE DE ROBUSTESSE	54
DISCUSSION	62
CONSTATATIONS	62
POINTS FORTS DE L'APPROCHE PROPOSÉE	63
FAIBLESSES DE L'APPROCHE PROPOSÉE	63
INCERTITUDES NON DÉCRITES DANS LES ENSEMBLES DE RÉFÉRENCE ET DE ROBUSTESSE ACTUELS DES MODÈLES OPÉRATIONNELS	64
PRIORITÉS DE L'ÉVALUATION DE LA STRATÉGIE DE GESTION DU HARENG DE L'ATLANTIQUE	66
Objectifs et paramètres de rendement préliminaires	66
Tests « du rougissement » et plausibilité du modèle opérationnel	66
CONCLUSIONS	67
REMERCIEMENTS	67
RÉFÉRENCES CITÉES	67
ANNEXES	72
ANNEXE A. DONNÉES SUR LES PÊCHES ET PARAMÈTRES BIOLOGIQUES	72
ANNEXE B. ÉQUATIONS DU MODÈLE DE DYNAMIQUE DE LA POPULATION ET DE L'EXPLOITATION, Y COMPRIS LES FONCTIONS DE VRAISEMBLANCE ET LES ALGORITHMES NUMÉRIQUES POUR LE CONDITIONNEMENT DES MODÈLES	
OPÉRATIONNELS	98
DESCRIPTION MATHÉMATIQUE DU MODÈLE D'ANALYSE DE LA RÉDUCTION DES STOCKS	98
Sélectivité et mortalité	98
Distribution de la population initiale	98
Équations des dynamiques	99
VRAISEMBLANCES	00
ANNEXE C. AUTRES MODÈLES OPÉRATIONNELS DE SENSIBILITIÉ10	02
ANNEXE D. TERMINOLOGIE ET ACRONYMES17	10

RÉSUMÉ

Ce document décrit et démontre une méthode de conditionnement des modèles opérationnels en vue de son utilisation dans l'évaluation de la stratégie de gestion de la composante de reproducteurs du sud-ouest de la Nouvelle-Écosse et de la baie de Fundy du hareng de l'Atlantique des divisions 4VWX de l'OPANO. Il 1) donne une description détaillée de la structure du modèle opérationnel et des méthodes d'estimation; 2) décrit un modèle opérationnel du scénario de référence; 3) examine la sensibilité du conditionnement aux incertitudes centrales relevées pour le hareng de l'Atlantique; 4) évalue l'incidence de ces sensibilités afin de déterminer une grille de l'ensemble de référence des modèles opérationnels couvrant le taux de mortalité naturelle, la croissance, la résilience et les niveaux de prise historiques; 5) détermine les modèles opérationnels de l'ensemble de référence ayant les conséquences les plus contrastantes pour la projection de l'évaluation de la stratégie de gestion à utiliser dans les modèles opérationnels de robustesse; 6) définit les sources d'incertitude restantes et précise les modèles opérationnels de robustesse qui en tiennent compte; 7) renvoie aux documents à l'appui qui permettent de reproduire tous les résultats. L'ensemble de référence des modèles opérationnels couvrait différents états actuels du stock, l'ampleur du stock actuel et le taux d'exploitation durable. De plus, on a précisé 25 modèles opérationnels de robustesse qui englobaient huit autres sources d'incertitude dans la dynamique de la pêche du hareng et qui peuvent être utilisés pour différencier davantage les procédures de gestion possibles.

INTRODUCTION

GESTION ET PÊCHE DU HARENG DU SUD-OUEST DE LA NOUVELLE-ÉCOSSE ET DE LA BAIE DE FUNDY

Le hareng de l'Atlantique (*Clupea harengus*) est une espèce pélagique que l'on trouve des deux côtés de l'océan Atlantique Nord. Ce poisson se rassemblant en bancs forme des concentrations prévisibles pour se nourrir, hiverner et se reproduire. La pêche du hareng de l'Atlantique au large du sud-ouest de la Nouvelle-Écosse et dans la baie de Fundy, dans les divisions 4VWX de l'OPANO, est l'une des plus importantes et des plus anciennes pêches de la région. Le hareng des divisions 4VWX est capturé par divers types d'engins, notamment la senne coulissante, qui représente de 80 à 90 % des prises totales actuelles, le filet maillant, la fascine, la senne de plage et les pièges (Singh *et al.* 2020). La majorité des harengs de cette région sont des reproducteurs d'automne, formant de grands groupes dans plusieurs sites ciblés par la flotte de pêche à la senne coulissante. Depuis 2002, il n'y a pas eu de pêche d'hiver dirigée. La plupart des produits du hareng du Canada atlantique sont exportés dans des pays comme le Japon et les États-Unis sous forme de produits frais, congelés, fumés et autres.

La zone de gestion du hareng des divisions 4VWX comprend un certain nombre de frayères, séparées à des degrés divers dans l'espace et le temps. Les frayères proches les unes des autres, qui partagent la même aire de répartition des larves et où les périodes de fraie sont similaires, sont considérées comme faisant partie de la même composante. Certaines frayères sont étendues et extracôtières, mais d'autres sont petites et plus localisées, parfois très près des côtes ou dans de petites échancrures. La structure du stock est compliquée davantage par le fait que le hareng migre sur de longues distances et se mélange, en dehors de la saison de fraie, à la fois avec des poissons considérés comme faisant partie de la même composante et avec ceux d'autres composantes. Aux fins de l'évaluation et de la gestion, les pêches du hareng des divisions 4VWX sont divisées en quatre composantes :

- 1. Composante de reproducteurs du sud-ouest de la Nouvelle-Écosse et de la baie de Fundy (SONE/BF);
- 2. Composante de reproducteurs des bancs au large du plateau néo-écossais;
- Composante de reproducteurs des côtes de la Nouvelle-Écosse (côte sud, côte est et cap Breton);
- 4. Juvéniles migrateurs du sud-ouest du Nouveau-Brunswick (SONB).

Chaque composante, à l'exception des juvéniles migrateurs du sud-ouest du Nouveau-Brunswick, utilise plusieurs frayères et on constate un mélange de poissons entre les composantes de reproducteurs en dehors de la saison de fraie. Les juvéniles migrateurs du sud-ouest du Nouveau-Brunswick sont pêchés à l'intérieur des limites spatiales de la zone du sud-ouest de la Nouvelle-Écosse et de la baie de Fundy et sont considérés comme une composante distincte; cependant, les fascines capturent des harengs provenant de différentes frayères.

La composante de reproducteurs du sud-ouest de la Nouvelle-Écosse et de la baie de Fundy est la plus nombreuse et la pêche de cette composante est actuellement gérée par un total autorisé des captures (TAC) annuel. Les principales frayères d'automne sont les zones du banc German, de la baie Scots et du récif de la Trinité (figure 1), mais la pêche est également pratiquée dans les aires d'alimentation à l'extérieur de ces frayères. Par le passé, il y avait aussi une pêche à la fascine en Nouvelle-Écosse le long de la rive de l'île Long, dans la baie de Fundy; cependant, seules quelques fascines sont exploitées actuellement dans la partie supérieure de la baie de Fundy, dans le bassin Minas. Les pêcheurs utilisent des filets maillants au sud-est de Yarmouth, dans la zone de quota du stock du sud-ouest de la Nouvelle-Écosse et de la baie de Fundy, et leurs débarquements font donc partie du quota. Dans le passé, il y avait une pêche au filet maillant dans la zone du récif de la Trinité et de Spectacle Buoy (Power *et al.* 2013). Plus récemment, cette pêche a aussi lieu sur le banc German (depuis 2005) et dans la baie Scots (depuis 2009; Singh *et al.* 2020).

Figure 1. Carte de la région du sud-ouest de la Nouvelle-Écosse et de la baie de Fundy avec le total des prises de hareng à la senne coulissante de 2007 à 2018 (carrés bleus), et les trois frayères représentées par les rectangles rouges.

Les débarquements de la pêche commerciale dans les divisions 4VWX remontent au milieu des années 1960, lorsque les prises annuelles étaient supérieures à 140 000 tonnes (figure 2). Les prises ont eu tendance à diminuer par rapport à ce pic les premières années, avec l'un des plus faibles relevés de prises historiques en 1978 (figure 2). Le déclin apparent de l'abondance de la ressource dans les années 1970 a mené à l'établissement de limites du TAC annuel (figure 2). Les débarquements suivent le TAC depuis 2002. Le TAC a été réduit à 50 000 tonnes (t) en 2005, puis à 42 500 t en 2017 (figure 2).

Des déclins de l'abondance des poissons reproducteurs sont apparents dans certaines des zones autrefois importantes pour la pêche. Par exemple, le récif de la Trinité a déjà soutenu une grande partie des prises totales, mais les débarquements sont très bas depuis le milieu des années 2000 en raison de la faible estimation de la biomasse reproductrice dans les relevés acoustiques de la région. La majorité des prises dans les frayères proviennent maintenant de deux zones : le banc German et la baie Scots (figure 1).

Figure 2. Séries chronologiques des débarquements historiques de hareng de l'Atlantique dans les divisions 4VWX (barres bleues) et du total autorisé des captures (TAC; ligne pleine noire). Les années dans la figure représentent l'année « contingentaire », définie comme allant du 15 octobre de l'année précédente au 14 octobre de l'année contingentaire.

Une étude antérieure des méthodes d'évaluation du stock de hareng du sud-ouest de la Nouvelle-Écosse et de la baie de Fundy a révélé un certain nombre de préoccupations, y compris des conflits entre les données (composition selon l'âge et biomasse dans les relevés acoustiques), des données potentiellement trompeuses sur la composition selon l'âge (on suppose que la composition de la pêche est représentative des relevés) et un relevé acoustique peut-être erroné en raison d'une couverture spatio-temporelle incomplète (MPO 2011). La plupart des méthodes d'évaluation examinées ont estimé que la taille des stocks était de 5 fois inférieure à celle inférée du relevé acoustique (la réunion n'a pas réussi à déterminer l'explication de cette affirmation). Le MPO (2011) a conclu qu'il n'existait pas d'approches fiables disponibles à ce moment-là pour fournir des prévisions à moyen terme et que les

approches à court terme pour étayer la prise de décisions de gestion devraient reposer sur « l'interprétation des niveaux et des tendances des indicateurs ».

Par la suite, le hareng du sud-ouest de la Nouvelle-Écosse et de la baie de Fundy a été géré selon une stratégie de pêche informelle reposant sur divers indicateurs tels que les niveaux de biomasse observés lors des relevés, la contribution des pêcheurs, les données sur la composition selon l'âge et les tendances des taux d'exploitation relative et de mortalité totale. Ces données sont interprétées par rapport aux objectifs de gestion énoncés dans le plan de gestion des pêches (MPO 2003). Étant donné qu'il n'y a pas d'évaluation analytique des stocks acceptée et que des indices d'abondance centraux n'existent qu'à partir de 1999, les points de référence cible et limite classiques relatifs à la « biomasse non exploitée » ne sont pas disponibles. Un point de référence limite (PRL) correspondant à la biomasse moyenne dans les relevés acoustiques de 2005 à 2010 (Clark *et al.* 2012) a plutôt été établi.

HARENG DE L'ATLANTIQUE : INCERTITUDES

De récents documents d'évaluation ont souligné un certain nombre d'incertitudes centrales, notamment la capturabilité du relevé acoustique, la force du recrutement futur (incertitude élevée dans les prévisions de l'abondance à court terme), l'interprétation correcte des données sur la composition des prises et la poursuite possible des changements historiques observés dans le poids selon l'âge (MPO 2015; Melvin *et al.* 2014).

Dans d'autres pêches de la région plus vaste, les conditions océaniques changeantes et l'augmentation du nombre de prédateurs marins ont été associées à des variations de la répartition, de la croissance et de la survie (Neuenhoff *et al.* 2018).

Les domaines généraux d'incertitude ont été cernés lors d'une récente réunion du groupe de travail sur l'évaluation de la stratégie de gestion du hareng de l'Atlantique (figure 3). Ces incertitudes et d'autres exemples relevés pour ce stock sont présentés dans le tableau 1.

Figure 3. Domaines généraux d'incertitude dans la dynamique de la pêche du hareng de l'Atlantique déterminés par le groupe de travail sur le hareng de l'Atlantique en janvier 2020. Les barres représentent chacune une source d'incertitude dans la dynamique de la pêche du hareng de l'Atlantique. La hauteur de la barre correspond à la fréquence à laquelle l'incertitude a été déterminée par chacun des six sous-groupes. Voir la description de ces sources d'incertitude dans le tableau 1 ci-après.

Tableau 1. Incertitudes relevées dans le cadre de processus scientifiques antérieurs et des discussions initiales avec le groupe de travail sur le hareng de l'Atlantique, et à partir des plus récentes sources de données.

Incertitude	Données contradictoires
Recrutement	Comprend l'incertitude entourant la variabilité et la force du recrutement, en plus de la résilience (par exemple, le taux de variation de la relation stock-recrutement) et de la capacité de charge. Comprend également différentes relations stock-recrutement et la prise en compte de la stochasticité. En janvier 2020, le groupe de travail sur le hareng de l'Atlantique a déterminé que les facteurs pouvant influer sur le recrutement étaient les changements dans les sources alimentaires, la phénologie, la température, les changements écosystémiques, la prédation des œufs et l'état des larves.
	la stratégie de gestion, les autres scénarios de recrutement plausibles peuvent avoir une incidence sur la trajectoire historique estimée du stock, l'épuisement actuel du stock et les résultats futurs des procédures de gestion de rechange (par exemple, les évaluations du rétablissement).
Taux de mortalité naturelle (M)	Une incertitude considérable entoure les changements temporels dans le taux de mortalité naturelle, causés hypothétiquement par les conditions océaniques changeantes, la disponibilité de la nourriture et la présence croissante de prédateurs marins. Il existe une incertitude supplémentaire quant au taux de mortalité naturelle selon l'âge. Les évaluations précédentes du stock ont supposé une valeur constante de M de 0,2 (MPO 2004). D'autres scénarios de M variable selon l'âge ont été proposés pour ce stock en fonction des taux de consommation des prédateurs dans une analyse de population virtuelle plurispécifique (Guénette et Stephenson 2012), mais ils n'ont pas été adoptés dans les évaluations. Les évaluations du hareng dans le golfe du Maine ont utilisé soit un faible taux de mortalité naturelle instantanée invariable selon l'âge et le temps (0,35), soit un taux très élevé qui diminue avec l'âge (NEFSC 2012; Deroba 2015; Deroba 2017). L'incertitude dans le taux de mortalité naturelle est courante dans la plupart des contextes d'évaluation des pêches en raison du manque de données indépendantes permettant de l'estimer de façon fiable. Le problème est que le niveau typique d'incertitude relative à M correspond souvent à des conclusions divergentes sur la productivité, l'état du stock et la résilience aux niveaux
Croissance	Des changements inexpliqués de la croissance somatique (par exemple, poids selon l'âge) ont été observés durant la période d'exploitation par la pêche (MPO
	2015). Ces changements pourraient être dus à des variations des températures océaniques, du régime alimentaire, de la dépendance à la densité ou à des changements de productivité dans l'environnement.
	Si de tels changements se poursuivent à l'avenir, ils auront des répercussions à la fois sur l'efficacité des méthodes de gestion des pêches proposées et sur les points de référence des pêches en ce qui concerne les conditions de « non- exploitation ».

Incertitude	Données contradictoires
Prises	Une des principales sources d'incertitude vient de l'attribution correcte des prises à la zone de gestion. Par exemple, on a toujours supposé que les prises à la fascine concernaient les stocks à l'extérieur des zones de gestion des pêches canadiennes. De plus, une récolte relativement faible de hareng a encore eu lieu avant les années 1960 et le début de prises industrielles importantes et de la collecte d'indices de l'abondance relative.
	Il se peut que les modèles d'évaluation qui supposent des conditions de non- exploitation après ces prises ne tiennent pas pleinement compte de l'épuisement du stock qui influence la taille du stock non exploité, l'épuisement actuel et la productivité future du stock.
Relevés acoustiques	On n'a pas déterminé avec certitude s'il faut considérer les relevés acoustiques annuels (effectués sur le stock reproducteur de hareng des divisions 4VWX depuis 1999; Singh et al. 2016) comme un indice relatif (proportionnel, avec la constante de proportionnalité q, estimé) ou absolu (q = 1) de la biomasse vulnérable. Partant de l'hypothèse d'un renouvellement des harengs reproducteurs tous les 14 jours, les relevés acoustiques sont espacés de 10 à 14 jours pour éviter de les compter en double. Les relevés utilisent un indice de réflexion du poisson de l'équation générique pour les Clupéidés de Foote (1987), avec des estimations de la relation longueur-poids tirées de l'échantillonnage effectué tout au long de la période de relevé, pour estimer la biomasse reproductrice totale du hareng des divisions 4VWX (Singh et al. 2016). Les résultats des relevés acoustiques ont été utilisés dans des évaluations précédentes comme des estimations absolues de la biomasse du stock reproducteur (MPO 2005). Cependant, plus récemment, la biomasse estimée par le relevé acoustique a été considérée comme un indice relatif de l'abondance. Des études antérieures des évaluations (MPO 2011) ont permis de constater que les données sur la composition sous-entendaient une biomasse vulnérable absolue beaucoup plus petite (de 2,5 à 7 fois moins) que celle déduite par le relevé acoustique.
Mélange et migration	On inclut ici les incertitudes concernant la structure du stock canadien, la migration dans les zones de gestion et le mélange transfrontalier dans les eaux américaines. Les incertitudes au sujet du mélange et de la migration sont étroitement liées à l'attribution correcte des prises historiques. Des études de marquage menées dans les eaux américaines (Kanwit et Libby 2009) ont révélé une importante migration d'entrée dans les eaux canadiennes. Selon la taille relative des ressources du Canada et des États-Unis, les taux de récupération comparatifs et le sens de la migration, cela pourrait signifier soit une sur-déclaration des prises de poissons canadiens (trop élevées par erreur en raison des prises de poissons des États-Unis), soit une sous-déclaration des prises de poissons canadiens (trop élevées par erreur en raison des prises de poissons canadiens (trop élevées par erreur en raison des prises de poissons canadiens (trop élevées par erreur en raison des prises de poissons canadiens (trop élevées par erreur en raison des prises de poissons canadiens (trop élevées par erreur en raison des prises de poissons canadiens (trop élevées par erreur en raison des prises de poissons canadiens (en raison de l'exploitation des poissons canadiens passant dans les eaux américaines) étant donné que des poissons canadiens marqués ont aussi été récupérés dans les eaux américaines (Clark 2006).
Sélectivité future	Il s'agit de la sélectivité fondée sur la longueur appliquée dans la flotte de pêche en raison des changements des pratiques de pêche (par exemple, passage à une pêche d'appâts), des mesures de gestion technique ou de la modification de la disponibilité pour la pêche de poissons de différentes tailles.

Incertitude	Données contradictoires
Relevé des larves	Le relevé des larves est destiné à servir d'indice de la biomasse du stock reproducteur, mais l'erreur de mesure ne concerne que la densité des larves et non la biomasse du stock reproducteur à partir de laquelle les larves ont été produites.
	La relation entre l'indice et la biomasse du stock reproducteur est une source clé d'incertitude et un déterminant puissant des tendances précoces du stock lorsque seul cet indice était disponible, sans aucune donnée sur la composition.
Non-déclaration (appâts)	Étroitement liée aux incertitudes relatives aux prises et à la sélectivité future, la déclaration des prises influe à la fois sur la reconstitution de la dynamique historique des pêches, mais aussi sur le succès des procédures de gestion si les données simulées ne représentent pas l'exploitation. L'incertitude entourant la non-déclaration découle de la pénurie récente d'appâts dans l'est du Canada et aux États-Unis.
Données d'entrée	En plus du relevé des larves, les données disponibles sur les pêches peuvent être incluses de diverses façons dans le conditionnement du modèle opérationnel. Par exemple, le conditionnement du modèle opérationnel peut mener à des conclusions différentes sur l'état du stock et les projections compte tenu des ajustements aux données supplémentaires sur la composition selon la longueur ou de la pondération variable des indices de l'abondance relative.
Fécondité	Les changements hypothétiques de la croissance et de la mortalité attribuables aux conditions environnementales peuvent également être liés à des changements du coefficient de condition et de la taille à la maturité qui peuvent influencer la productivité estimée du stock et les résultats futurs des procédures de gestion possibles. Une incertitude entoure aussi l'effet des changements du poids selon l'âge sur la capacité de reproduction du stock (par exemple, les changements de la capacité de reproduction ne sont pas nécessairement proportionnels aux changements de la biomasse du stock reproducteur parce que les poissons sont plus petits).

ÉVALUATION DE LA STRATÉGIE DE GESTION

L'évaluation de la stratégie de gestion (ESG) est une approche visant à établir des règles simples pour la gestion d'une pêche en mettant à l'essai leur robustesse par simulation en fonction de divers scénarios hypothétiques de la dynamique de la pêche (Butterworth et Punt 1999; Cochrane *et al.* 1998) (figure 4). Souvent appelées procédures de gestion (PG, ou stratégies de pêche), ces règles utilisent habituellement des données simplifiées comme les prises et un indice de l'abondance relative pour produire des avis de gestion comme le total autorisé des captures (TAC).

L'évaluation de la stratégie de gestion diffère considérablement de l'évaluation classique des stocks de par la façon dont on utilise les modèles de dynamique des pêches (c'est-à-dire la dynamique approximative des stocks et de l'exploitation) pour en tirer des avis de gestion. Dans l'évaluation classique des stocks, on dérive directement les avis de gestion des modèles de dynamique des pêches (« évaluations des stocks »). Par exemple, établir un TAC en fonction du taux de mortalité par pêche au rendement maximal durable (niveaux de F_{RMD}). Les évaluations de la stratégie de gestion utilisent généralement un plus grand nombre de modèles de dynamique des pêches ajustés (« modèles opérationnels ») qui couvrent un éventail beaucoup plus large d'incertitudes afin de tester la robustesse des procédures de gestion. Elles

permettent ainsi aux gestionnaires et aux intervenants d'établir une règle de gestion comparativement simple (la procédure de gestion), de comprendre son rendement et d'avoir l'assurance qu'elle peut le faire adéquatement, même lorsque l'incertitude de la dynamique peut être élevée.

L'évaluation de la stratégie de gestion comporte une simulation en boucle fermée qui applique une procédure de gestion possible de façon récursive dans la prise en compte future simulée des rétroactions avec le modèle opérationnel (E, figure 4). La simulation en boucle fermée exige non seulement un modèle opérationnel et des procédures de gestion, mais aussi un modèle d'erreur d'observation qui peut générer des données simulées à entrer dans la procédure de gestion, ainsi qu'un modèle d'erreur de mise en œuvre qui détermine dans quelle mesure les avis de gestion fournis par la procédure de gestion sont suivis dans la simulation.

Punt et ses collaborateurs (2014) donnent un résumé complet de l'historique des mises en œuvre de l'évaluation de la stratégie de gestion qui, à partir des années 1980, couvre plus de 30 stocks, y compris plusieurs espèces pélagiques à courte durée de vie comme le hareng. Compte tenu des difficultés d'établir des modèles d'évaluation des stocks défendables (y compris les biais rétrospectifs, les données contradictoires, les problèmes de convergence numérique) et des incertitudes qui ne peuvent être prises en compte pour produire des avis dans le paradigme d'évaluation, on recourt de plus en plus à l'évaluation de la stratégie de gestion comme cadre pour choisir des procédures de gestion des pêches au Canada (Kronlund *et al.* 2013), dans l'Atlantique Nord (OPANO 2010, 2018) et en Californie (Hordyk *et al.* 2017, California Department of Fish and Wildlife, CDFW 2018). De plus, une fois qu'une procédure de gestion est adoptée, on peut recueillir des données empiriques et les comparer aux données prédites par le modèle opérationnel afin d'indiquer s'il faut réviser les modèles opérationnels (ou, Carruthers et Hordyk 2018a).

Figure 4. Un processus d'évaluation de la stratégie de gestion (ESG) comprenant une simulation en boucle fermée. Le présent document porte sur la structure du modèle opérationnel (MO) (mis en évidence par une case en pointillés) et sa capacité à accepter les types de données actuellement disponibles pour le hareng (A) en fonction de différentes incertitudes du système (B) dans un cadre de conditionnement approprié du modèle (C) compatible avec le logiciel existant (MSEtool) pour effectuer les tests de simulation en boucle fermée des procédures de gestion (D et E).

L'ÉVALUATION DE LA STRATÉGIE DE GESTION DANS LE CONTEXTE DU HARENG DE L'ATLANTIQUE

Pour plusieurs raisons, la pêche du hareng dans le sud-ouest de la Nouvelle-Écosse et la baie de Fundy est un excellent candidat pour l'évaluation de la stratégie de gestion et l'approche par procédure de gestion. L'évaluation de la stratégie de gestion a été spécialement conçue pour naviguer dans des situations où il est difficile d'établir une évaluation des stocks défendable pour fournir des avis et où les incertitudes dans la dynamique de l'évaluation supplémentaire sont relativement élevées (Punt et Donovan 2007) (par exemple, modification de la productivité des frayères, scénarios de taux de mortalité naturelle). On peut aussi utiliser des modèles opérationnels pour mettre en place des procédures de gestion pour des inférences différentes des données disponibles (par exemple, le thon rouge du Sud), offrant une voie à suivre en cas de données dominantes contradictoires (par exemple, le relevé acoustique et les données sur la composition des prises selon l'âge).

L'évaluation de la stratégie de gestion présente l'avantage que le rendement de la procédure de gestion est évalué par rapport au modèle opérationnel (le système « réel ») dont les niveaux de biomasse et les points de référence sont connus. Par conséquent, même dans des situations comme celle du hareng, où les évaluations, les points de référence et, par conséquent, les estimations *explicit*es de l'état actuel du stock peuvent être très incertains, on peut encore évaluer le rendement *implicit*e des procédures de gestion (comme le montrent des énoncés tels que « la procédure de gestion X devrait dépasser le point de référence limite après 15 ans pour tous les modèles opérationnels »).

Certaines pêches, par exemple les pêches transfrontalières d'espèces de thonidés très migratoires, sont souvent de piètres candidates pour l'évaluation de la stratégie de gestion. Ces pêches peuvent avoir des prises excédentaires très élevées, ce qui écarte les décisions de gestion du rendement de la pêche et, par conséquent, affaiblit l'avantage potentiel résultant de la mise en place d'une procédure de gestion. En revanche, le hareng présente l'avantage important que les avis de gestion sont généralement bien suivis; de plus, il existe des liens étroits avec une flotte locale et des groupes industriels organisés.

Enfin, et ce n'est pas négligeable, le cas du hareng est inhabituel en ce sens que le produit final d'une évaluation de la stratégie de gestion – une procédure de gestion (informelle) liée à un indice et un point de référence limite fondé sur un indice – est déjà utilisé, mais on en ignore relativement le rendement théorique.

L'évaluation de la stratégie de gestion s'est traditionnellement concentrée sur le rendement des procédures de gestion dans les essais en boucle fermée (E, figure 4), mais l'établissement d'un ensemble fonctionnel de modèles opérationnels offre également des avantages supplémentaires aux gestionnaires, comme la mise à l'essai des coûts-avantages théoriques d'autres protocoles de collecte de données (simulés dans le modèle d'observation), les stratégies de mise en application (simulées dans le modèle de mise en œuvre) et la détermination des lacunes les plus importantes dans les connaissances (les incertitudes du modèle opérationnel qui déterminent le plus le rendement de la gestion).

TROUSSE D'ÉVALUATION DE LA STRATÉGIE DE GESTION (OUTIL MSETOOL)

Bien que l'évaluation de la stratégie de gestion présente de nombreux avantages importants par rapport à la gestion traditionnelle fondée sur l'évaluation des stocks, les processus d'évaluation de la stratégie de gestion étaient autrefois relativement coûteux, techniquement complexes et chronophages.

Toutefois, depuis 2017, une entente de partenariat entre le MPO et l'UCB (MPO 2017) a soutenu l'élaboration de progiciels sophistiqués en R à accès libre pour l'évaluation de la stratégie de gestion : la trousse Data Limited Methods (outil DLMtool; Carruthers et Hordyk 2018b, 2019) et la trousse d'évaluation de la stratégie de gestion (outil MSEtool; Huynh *et al.* 2019). Après des années de développement, ils comptent parmi les progiciels à accès libre les plus souples et les plus extensibles pour réaliser des évaluations de la stratégie de gestion pour les pêches dans l'ensemble du spectre, des cas où les données sont rares (par exemple, gestion prescriptive comme les limites de taille et les fermetures temporelles de zones) à ceux riches en données (par exemple, modèles de prises statistiques selon l'âge liés à des règles de contrôle des prises).

L'outil MSEtool contient des fonctions informatiques efficaces pour conditionner les modèles opérationnels en fonction d'un large éventail de types de données sur les pêches (de plus amples détails sur l'analyse de réduction des stocks utilisée pour conditionner les modèles du hareng sont fournis dans la section Méthodes et l'annexe B). L'outil MSEtool contient aussi de nombreuses procédures de gestion riches en données fondées sur l'analyse de population virtuelle, l'analyse de réduction des stocks, les prises statistiques selon l'âge, le modèle de type différence-délai et les évaluations de la production excédentaire. Celles-ci fournissent une base pour évaluer les coûts-avantages qu'offre l'utilisation d'approches plus complexes pour produire des avis de gestion. De plus, l'outil MSEtool contient des protocoles de pointe relatifs aux circonstances exceptionnelles pour évaluer de façon empirique si une procédure de gestion est adéquate lorsqu'elle est utilisée (Carruthers et Hordyk 2018a).

L'un des avantages du logiciel MSEtool est qu'il est efficace sur le plan des calculs (on peut dire qu'il s'agit du cadre d'évaluation de la stratégie de gestion le plus rapide jamais développé) et qu'il offre une grande flexibilité dans la structure du modèle opérationnel, par exemple en permettant une dynamique spatiale complexe, des déplacements fondés sur l'âge, une dynamique de plusieurs stocks et des règles de contrôle de plusieurs flottes. On peut ainsi utiliser le progiciel pour examiner la robustesse des procédures de gestion possibles par rapport aux incertitudes qui peuvent être pertinentes pour la pêche du hareng (par exemple, tableau 1). Étant donné que l'outil MSEtool permet de faire le suivi de nombreuses données différentes de l'évaluation de la stratégie de gestion, il est simple d'élaborer des procédures de gestion personnalisées qui reflètent les intérêts de divers intervenants et la valeur différentielle des poissons de tailles variables (par exemple, les prix plus élevés des petits poissons transformés pour les appâts ou en sardines en conserve). La mise au point des procédures de gestion est également facilitée par plus de 100 exemples de procédures de gestion qui sont inclus dans les progiciels en R, à partir desquels on peut adapter des procédures de gestion personnalisées. De plus, une bibliothèque en ligne de modèles opérationnels est disponible et fournit un banc d'essai complet pour une procédure de gestion possible.

L'outil MSEtool est accompagné d'une documentation d'aide exhaustive et de guides de l'utilisateur qui permettent aux scientifiques et aux intervenants du MPO de se perfectionner dans son utilisation et constituent des documents de référence à l'appui des futures personnalisations. Il est important de noter que l'outil MSEtool demeurera à accès libre et que le modèle opérationnel a été publié dans les ouvrages de référence primaires (MSEtool partage le même modèle opérationnel que DLMtool; Carruthers et Hordyk 2018b, 2019). Tous les produits mis au point à l'aide de ce logiciel sont disponibles gratuitement. Un manuel complet pour le cadre de l'évaluation de la stratégie de gestion du hareng sera fourni afin que d'autres analystes puissent l'exécuter et qu'il soit facile à adapter pour les données futures, les paramètres de rendement de rechange et les procédures de gestion révisées.

Les outils DLMtool et MSEtool sont actuellement utilisés par le MPO, le California Department of Fish and Wildlife (Hordyk *et al.* 2017), le Marine Stewardship Council, la Commission

internationale pour la conservation des thonidés de l'Atlantique et la NOAA des États-Unis comme cadres de l'évaluation de la stratégie de gestion pour mettre à l'essai les procédures de gestion, déterminer les priorités de la collecte des données et quantifier les points de référence de gestion.

Dans le cadre de ces collaborations, les outils MSEtool et DLMtool ont fait l'objet d'un examen indépendant par la NOAA des États-Unis et d'un examen par les pairs dans les ouvrages de référence primaires (Carruthers et Hordyk 2018b). Ces progiciels ont été utilisés par la NOAA des États-Unis pour établir des modèles opérationnels pour six récifs tropicaux dans les Caraïbes (SEDAR 2016a) et huit stocks dans le golfe du Mexique (SEDAR 2016b); la procédure de gestion pour le vivaneau rayé a été utilisée pour définir la limite de prises actuellement mise en œuvre dans cette pêche. Le Mid-Atlantic Fisheries Management Council des États-Unis a également utilisé l'outil DLMtool pour déterminer les limites de prises biologiques acceptables (McNamee *et al.* 2016) et élaborer des modèles opérationnels pour tester les procédures de gestion du bar noir, du maquereau et du *Caulolatilus microps* (Miller 2016; Wiedenmann *et al.* 2019).

L'outil MSEtool a récemment été utilisé comme cadre de l'évaluation de la stratégie de gestion pour le hareng dans la baie de San Francisco (A.R. Hordyk, UBC, comm. pers.), à partir duquel on a maintenant adopté une procédure de gestion. De plus, le California Department of Fish and Wildlife est en train d'établir des procédures de gestion pour neuf autres pêches côtières en Californie (A.R. Hordyk, UBC, comm. pers.). L'outil MSEtool est actuellement appliqué pour l'espadon de l'Atlantique (Commission internationale pour la conservation des thonidés de l'Atlantique) et le sébaste aux yeux jaunes de la Colombie-Britannique (MPO).

L'applicabilité de l'outil MSEtool aux poissons fourrages à courte durée de vie, comme le hareng, a été démontrée dans la spécification d'exemples de modèles opérationnels pour deux stocks de hareng dans la division 4T (Carruthers 2019a, b), le capelan dans le golfe du Saint-Laurent (Carruthers 2017) et le stromaté dans le centre de l'Atlantique (Carruthers *et al.* 2014).

EXIGENCES DES MODÈLES OPÉRATIONNELS

Aucun modèle opérationnel unique n'est une représentation définitive du véritable système de pêche (c.-à-d. une évaluation des stocks); l'éventail des modèles opérationnels établis devrait plutôt viser à englober un ensemble plausible de scénarios de pêche. Ces scénarios servent de banc d'essai pour les procédures de gestion possibles, de sorte que si une procédure de gestion était adoptée, on aurait confiance en sa solidité face aux incertitudes dans le système des pêches (par exemple, tableau 1).

Les processus d'évaluation de la stratégie de gestion séparent généralement les modèles opérationnels en un **ensemble de référence** et un **ensemble de robustesse**. Le rendement des procédures de gestion possibles dans l'ensemble de référence est au centre de la sélection de la procédure de gestion et représente des incertitudes fondamentales. Un seul modèle de l'ensemble de référence, appelé ici le modèle opérationnel du **scénario de référence**, est défini et présente une combinaison plausible d'hypothèses (un « cas de référence ») et peut servir de base à la comparaison avec divers autres modèles opérationnels. Les modèles opérationnels de l'ensemble de robustesse permettent de tenir compte de scénarios pour lesquels il existe des preuves empiriques plus faibles, mais qui pourraient être utiles pour mieux différencier les procédures de gestion possibles qui produisent un rendement similaire pour des modèles opérationnels de l'ensemble de l'ensemble de référence.

Les modèles opérationnels peuvent avoir besoin d'une plus grande souplesse au niveau de la structure et des hypothèses qu'un modèle d'évaluation type, car ils doivent être en mesure de recréer des scénarios de robustesse qui n'entreraient généralement pas dans un processus

d'évaluation des stocks conventionnel (« meilleures données scientifiques disponibles »). Il est donc important que la structure, le paramétrage et les types de données du modèle opérationnel soient particulièrement souples pour le conditionnement.

Bien que le processus de conditionnement des modèles opérationnels soit comparable à celui des modèles d'évaluation, il comporte des considérations plus précises qui ont trait à l'utilisation des données et à la spécification des procédures de gestion. Par exemple, il est généralement admis dans l'évaluation des stocks qu'il est prioritaire d'ajuster les tendances des indices d'abondance relative (Francis 2011), mais cela peut être plus important pour les modèles opérationnels qui visent à mettre à l'essai des procédures de gestion fondées sur des indices. Dans le cas du hareng, le seul indice disponible pour une utilisation future dans une procédure de gestion est le relevé acoustique, qui est le principal intrant de l'approche de gestion actuelle fondée sur les indices, y compris le point de référence limite dérivé. Implicitement, ces données sont donc indicatives de la biomasse vulnérable et, par conséquent, les modèles opérationnels ne devraient pas présenter de mauvais ajustement problématique à ces données. La définition de « problématique » n'a pas été clairement résolue dans les processus antérieurs d'évaluation de la stratégie de gestion; toutefois, s'il est possible de s'assurer qu'un indice est positivement corrélé avec la biomasse vulnérable, d'autres propriétés statistiques peuvent encore être estimées et préservées dans les simulations futures, comme l'erreur, l'autocorrélation temporelle des erreurs et l'hyperstabilité/hyperépuisement (un indice qui réagit plus lentement ou plus rapidement que les tendances réelles de la biomasse vulnérable, respectivement).

Dans la plupart des évaluations de la stratégie de gestion, on utilise un modèle d'estimation spécialisé pour le conditionnement et la dynamique estimée de la pêche est ensuite « copiée » dans un cadre de l'évaluation de la stratégie de gestion pour les essais en boucle fermée des procédures de gestion. Il peut s'agir d'un processus non négligeable qui repose sur la parité exacte des équations de la dynamique, y compris l'ordre des équations, et qui peut être perturbé par des phénomènes qui sont faciles à surveiller, comme l'arrondissement des paramètres estimés et la mise à l'échelle des paramètres internes du logiciel d'estimation. De ce fait, lors de l'examen du conditionnement du modèle opérationnel aux fins de l'évaluation de la stratégie de gestion, il peut être utile de démontrer la reconstitution de la dynamique estimée de la pêche dans le cadre prévu d'évaluation de la stratégie de gestion.

Étant donné que les évaluations de la stratégie de gestion sont définies comme des processus ouverts auxquels participent les intervenants, il est essentiel que les aspects techniques du processus (les modèles opérationnels, les procédures de gestion, les définitions du rendement et les résultats) soient tous disponibles pour l'examen. La force d'une approche proposée pour conditionner les modèles opérationnels devrait donc également être évaluée en fonction de son accessibilité, de sa transparence, de sa facilité d'utilisation et de la qualité de la documentation.

ORGANISATION DES DOCUMENTS

Les analyses de ce document sont présentées en une série d'étapes :

- 1. Spécifier et conditionner un modèle opérationnel du scénario de référence :
 - a. les types et le formatage des données pour le conditionnement;
 - b. la dynamique présumée du système de pêche (équations pour la dynamique de la population et de la pêche) et les fonctions de vraisemblance et les algorithmes numériques pour conditionner les modèles opérationnels aux données;
- 2. Effectuer des analyses de sensibilité afin de déterminer les incertitudes fondamentales pour définir un ensemble de référence de modèles opérationnels;

- 3. Spécifier et conditionner un ensemble de référence de modèles opérationnels;
- 4. Tenir compte des autres incertitudes dans la spécification et le conditionnement des modèles opérationnels de l'ensemble de robustesse.

Il faut beaucoup de détails écrits pour assurer la reproductibilité de chacune de ces étapes qui pourraient obscurcir une description claire et concise des approches adoptées. Pour permettre les deux, nous présentons un aperçu de chaque composante dans le texte principal, en expliquant les diverses décisions qui ont été prises (approches de formatage des données, structure du modèle opérationnel, logiciel d'estimation). Cette description plus concise est complétée par l'annexe B, qui contient les descriptions mathématiques de l'approche de modélisation.

BUT ET OBJECTIFS DU PRÉSENT DOCUMENT

Le présent document vise à décrire la détermination et le conditionnement d'un ensemble de référence et d'un ensemble de robustesse potentiels des modèles opérationnels pour le hareng, en tenant compte des incertitudes qui ont déjà été cernées pour la dynamique de la pêche du hareng (tableau 1).

La liste des principaux objectifs est donnée dans le tableau 2. Étant donné que ces objectifs sont abordés dans les descriptions de la méthodologie et dans les résultats du conditionnement du modèle opérationnel, le tableau 2 indique également les sections pertinentes du document.

Afin d'assurer davantage la transparence et de faciliter l'examen, le code informatique en R a été fourni aux intervenants et aux examinateurs sur un lecteur partagé pour toutes les méthodes et tous les résultats présentés ici.

Objectif	Section pertinente
 Présenter de manière détaillée la dynamique du modèle opérationnel, les protocoles d'ajustement et le code à accès libre pour effectuer les ajustements aux fins de l'examen. 	 Aperçu : Sections « Aperçu du modèle opérationnel et du conditionnement » et « Élaboration d'un modèle opérationnel du scénario de référence » dans la partie Méthodes. Détails : Annexe B.
2. Établir un modèle opérationnel du scénario de référence qui fournit une base appropriée pour le conditionnement compte tenu des divers types de données (voir le tableau 3), notamment : les indices absolus de l'abondance (relevé acoustique), les indices relatifs de la biomasse du stock reproducteur (relevé des larves), l'estimation de la sélectivité pour les relevés à l'aide de données sur la composition selon l'âge (relevé acoustique), ajustement à plusieurs flottes avec estimation de la sélectivité selon la longueur.	Aperçu : Section « Conditionnement du modèle du scénario de référence » dans la partie Résultats.

Tableau 2. Principaux objectifs du présent document et documents pertinents.

Objectif	Section pertinente
 Étudier la sensibilité du modèle opérationnel pour établir un ensemble de référence des modèles opérationnels. 	Aperçu : Section « Spécification des modèles opérationnels de sensibilité » dans la partie Méthodes.
	Section « Modèles opérationnels de sensibilité » dans la partie Résultats.
 Préciser et conditionner l'ensemble de référence des modèles opérationnels. 	Aperçu : Section « Établissement d'une grille de référence des modèles opérationnels » dans la partie Méthodes.
	Partie Résultats : « Modèles opérationnels de l'ensemble de référence ».
 Spécifier et conditionner l'ensemble de robustesse des modèles opérationnels. 	Aperçu : Section « Modèles opérationnels de robustesse » dans la partie Méthodes.
	Section« Modèles opérationnels de l'ensemble de robustesse » dans la partie Résultats.
6. Démontrer que le conditionnement du modèle opérationnel est suffisamment efficace sur le plan des calculs pour permettre d'explorer en temps réel d'autres configurations du modèle, données d'entrée et pondérations dans le contexte d'un atelier, par exemple.	Aucune
7. Fournir un code informatique à accès libre pour la reproduction de tous les résultats.	https://github.com/z5a1n/herring_OM_conditioning

HORS DE LA PORTÉE DU PRÉSENT DOCUMENT

Tout le conditionnement du modèle opérationnel présenté dans ce rapport sert à la spécification de scénarios de rechange pour la dynamique de la pêche comme banc d'essai (test de contingence) des procédures de gestion possibles. Ce document ne doit pas être interprété comme une évaluation de l'état du stock.

Il porte sur la reconstitution historique de la dynamique de la pêche par conditionnement des données. Les aspects de l'évaluation de la stratégie de gestion liés à la projection prospective et aux essais de simulation des procédures de gestion seront évalués dans des processus d'examen ultérieurs, y compris la plausibilité du modèle opérationnel, les paramètres de rendement de la gestion et les modèles statistiques pour la projection future des modèles de mise en œuvre des données (parties D et E de la figure 4).

MÉTHODES

APERÇU DES DONNÉES

Les données de la pêche utilisées pour le conditionnement du modèle opérationnel correspondent aux portions canadiennes de la division 4X (ligne à l'ouest de Baccaro dans le sud-ouest de la Nouvelle-Écosse) et de la division 5Yb de l'OPANO (figure 5).

Figure 5. Carte des zones de pêche du hareng dans les divisions 4VWX. La zone canadienne à l'ouest de la ligne verticale verte (Baccaro) (le polygone orange) est la zone de pêche du hareng dans le sudouest de la Nouvelle-Écosse et la baie de Fundy. BS = baie Scots; BG = banc German; RT = récif de la Trinité; SONB = sud-ouest du Nouveau-Brunswick; RS = rive sud de la zone côtière; RE = rive est de la zone côtière.

De 1968 à 2002, les données sur les débarquements proviennent de la base de données COMLAND. Entre 2003 et 2018, elles ont été tirées de la base de données du SIPMAR. Les données annuelles sur les prises comprenaient un ajustement pour les prises non déclarées (tableau A3) et étaient disponibles pour chaque année de 1968 à 2018 (tableau 3; figure 6). Les débarquements ont été calculés par flotte à l'aide de deux structures de flotte différentes (tableau A9). Les flottes étaient les suivantes : pêche au filet maillant (FILET MAILLANT), à la senne coulissante (SENNE COULISSANTE), à la fascine et à la senne de plage (FASCINE/SENNE DE PLAGE) au Nouveau-Brunswick, et AUTRE, qui comprend la pêche à la fascine et à tous les autres types d'engins de la Nouvelle-Écosse. La deuxième structure de flotte évaluée comptait cinq flottes, avec la flotte à la senne coulissante (SENNE COULISSANTE) divisée en deux flottes en fonction de la taille du poisson débarqué à chaque lieu de pêche (figure A17). Les deux flottes de pêche à la senne coulissante (SENNE COULISSANTE _juvéniles et SENNE COULISSANTE _reproducteurs) ont été définies comme des débarquements de la pêche à la senne coulissante constitués principalement de poissons juvéniles et adultes, respectivement, d'après les distributions de fréquences de longueurs des prises (figure A16).

Les données sur les fréquences de longueurs étaient disponibles de 1968 à 2018 (tableau 3; figure 6). Les données sur la composition des prises selon la longueur ont été converties à partir du poids en nombres à l'aide d'une relation longueur-poids, les paramètres étant estimés par mois, année et flotte. On a utilisé des tranches de 1 cm de longueur pour les calculs des prises selon la longueur et des tranches de 0,5 cm de longueur pour évaluer les prises selon l'âge (figures A10b et A10c). La taille effective des échantillons a été calculée à l'aide de la méthode de Pennington et ses collaborateurs (2002). Lorsqu'un seul échantillonnage détaillé a été effectué pour une combinaison année/flotte (ce qui s'est produit certaines années pour des pêches au filet maillant), la taille effective de l'échantillon a été estimée à partir du nombre réel de poissons mesurés, ajusté à l'aide du ratio moyen du nombre réel de poissons capturés sur la taille effective où plusieurs activités d'échantillonnage détaillé au filet maillant ont été réalisées.

Des échantillons de l'âge étaient disponibles de 1970 à 2018, de sorte que la série chronologique des prises selon l'âge a commencé en 1970. Ces données ont été générées en convertissant les nombres selon la longueur en nombres selon l'âge à l'aide d'une clé âge-longueur (CAL), définie par année et saison. Les saisons ont été définies de manière à avoir suffisamment de données sur l'âge pour les clés âge-longueur, comme suit :

- 1. Printemps (janvier à mai)
- 2. Juin
- 3. Juillet
- 4. Août
- 5. Septembre/octobre
- 6. Novembre/décembre

Les âges manquants dans la clé âge-longueur ont été estimés comme suit dans l'ordre de la liste. S'il n'y a pas d'âge pour une tranche de longueur après l'étape n, passer à l'étape n+1 :

- 1. Combinaison des données pour la longueur définie d'après la saison précédente et la saison suivante;
- 2. Les poissons de moins de 10 cm sont âgés d'un an et les poissons de 40 cm ou plus sont âgés de 11 ans;
- 3. Combinaison des données pour la longueur donnée d'après le groupe de longueur précédent et le groupe de longueur suivant;
- 4. Addition manuelle des âges estimés.

La taille effective des échantillons a été calculée selon les mêmes méthodes que celles décrites ci-dessus pour les données sur les prises selon la longueur, mais elle était fondée sur le nombre de poissons dont l'âge avait été déterminé. Il n'y avait pas d'échantillon détaillé (âge et poids) pour certaines années dans la pêche au filet maillant. Les échantillons détaillés de l'année précédente ont été utilisés pour ces années. Les prises selon l'âge ont été calculées et converties en proportions selon l'âge, puis ajustées en fonction de la taille effective de l'échantillon.

Un indice acoustique est disponible de 1999 à 2018 (tableau 3; figure 6). Il a été généré en additionnant les estimations annuelles de la biomasse reproductrice tirée des relevés acoustiques dans la baie Scots et sur le banc German. L'indice acoustique a également été calculé comme la somme de tous les relevés acoustigues effectués dans la division 4X et en n'utilisant que la somme des relevés maximaux effectués dans la baie Scots et sur le banc German une année donnée. L'épuisement implicite (estimé en comparant les estimations moyennes de la biomasse de 1999 à 2001 aux estimations moyennes de 2016 à 2018) était semblable à l'indice actuel accepté; de ce fait, ces deux indices acoustiques de rechange n'ont pas été évalués davantage. Le relevé acoustigue contient des données sur les nombres selon la longueur pour la fravère du banc German et la zone de capture de la baie Scots. Les périodes pour l'attribution des données biologiques aux relevés afin d'estimer les nombres selon l'âge et la biomasse selon l'âge étaient de +/- un jour pour les fréquences de longueurs et de +/- cinq jours pour les échantillons détaillés. Lorsqu'aucun échantillon n'était disponible dans ces périodes, on a utilisé les échantillons les plus proches en date. Les nombres selon l'âge dans les relevés ont été calculés à partir des nombres selon la longueur selon le même processus que celui décrit ci-dessus pour les prises selon l'âge dans la pêche.

On a estimé les matrices empiriques de la longueur selon l'âge et du poids selon l'âge par année (1970 à 2018) pour qu'elles puissent être utilisées par le modèle. L'âge à la maturité et la longueur à la maturité ont été estimés au moyen de régressions logistiques binaires à partir d'estimations de l'âge et de la longueur propres à une année. Tableau 3. Tableau récapitulatif des données disponibles. La colonne « Utilisation » indique si les données ont été utilisées dans le conditionnement d'un ou de plusieurs scénarios du modèle opérationnel. Ces données constituent les exigences de l'objectif O2 : un cadre de conditionnement qui peut accepter toutes les combinaisons de ces types de données ou plusieurs d'entre elles.

Type de données	Description	Portée spatiale	Intervalle temporel	Utilisation*
Prises annuelles (par flotte)	Débarquements par engin et par zone. Débarquements dans les divisions 4WX ajustés pour les prises non déclarées.	4VWX	1963 à 2018	1968 à 2018
Données sur les fréquences de longueurs dans la pêche (par flotte)	Comprend les sites du relevé (baie Scots et banc German) et les zones à l'extérieur de ces sites pour la zone du stock.	Sud-ouest de la Nouvelle- Écosse et baie de Fundy	1965 à 2018	1968 à 2018
Données sur la composition selon l'âge dans la pêche (par flotte)	Données sur les prises selon l'âge (en nombre et en poids) pour l'ensemble de la composante stock du sud-ouest de la Nouvelle-Écosse et de la baie de Fundy par flotte.	Sud-ouest de la Nouvelle- Écosse et baie de Fundy	1965 à 2018	1970 à 2018
Données sur la composition selon l'âge dans le relevé	Ventilation de l'âge selon le nombre et le poids des harengs échantillonnés dans les frayères pendant les relevés acoustiques.	Baie Scots et banc German	1999 à 2018	1999 à 2018
Indice larvaire	Des relevés de recherche annuels sur le plancton ont été effectués à la fin du mois d'octobre et au début du mois de novembre dans la zone du sud- ouest de la Nouvelle-Écosse et de la baie de Fundy pour déterminer l'abondance des larves de hareng. Cette série a été interrompue pour des raisons financières et parce que la relation entre l'abondance des larves et la biomasse reproductrice était médiocre et qu'elle était peu utile pour les prédictions dans l'analyse de population virtuelle (MPO 2007).	Sud-ouest de la Nouvelle- Écosse et baie de Fundy	1972 à 1998, 2009	1972 à 1998, 2009
Indice acoustique	Relevés acoustiques structurés dans certaines frayères (baie Scots et banc German). Parfois, les transects sont réalisés juste à l'extérieur de ces frayères. Des estimations de la biomasse sont disponibles pour ces zones dans certaines frayères et dans d'autres, extérieures. Il existe également des données pour le récif de la Trinité, mais cette zone n'est plus une frayère importante.	Baie Scots et banc German	1999 à 2018	1999 à 2018
Données de marquage	Plusieurs rapports du MPO (voir la liste de référence).	4VWX	1982 à 2018	

* Les données brutes pour les débarquements et les fréquences de longueurs avant 1968 ne figuraient pas dans la base de données. De même, les données sur l'âge avant 1970 ne figuraient pas dans la base de données.

Figure 6. Types et disponibilité des données (en bleu pâle) et plages d'années utilisés pour le conditionnement des modèles opérationnels (en bleu foncé).

APERÇU DU MODÈLE OPÉRATIONNEL ET DU CONDITIONNEMENT

Une analyse de réduction des stocks pour plusieurs flottes (ARS; Walters *et al.* (2017b) a été élaborée dans Template Model Builder (TMB; Kristensen *et al.* 2016) (voir plus de détails sur les équations et le conditionnement des modèles à l'annexe B). L'analyse de réduction des stocks exige des données complètes (pour toutes les années, toutes les flottes) sur les prises et toutes les éventuelles combinaisons d'autres types de données (qui peuvent être temporairement inégales), y compris des indices d'abondance, des données sur la composition des prises selon l'âge, des données sur la composition des prises selon la longueur et des données sur la longueur moyenne. Le modèle peut interpréter les indices de diverses façons, y compris des mesures relatives/absolues de la biomasse vulnérable/de l'ensemble du stock/des nombres/de la biomasse reproductrice/de la biomasse. Compte tenu des données sur la composition selon l'âge ou la longueur, le modèle estime les sélectivités invariables dans le temps pour les flottes et les relevés qui sont soit logistiques (asymptotiques, « platikurtiques »), soit doubles-normales (« en forme de dôme »).

Les indices et les prises ont été ajustés par des fonctions log-normales de vraisemblance et on a présumé que les données sur la composition selon l'âge (et éventuellement la composition selon la longueur) étaient distribuées selon la loi multinomiale (compte tenu de la correction de la taille effective de l'échantillon décrite dans Pennington *et al.* 2002).

Le modèle d'analyse de réduction des stocks appliqué ici est comparable aux précédents modèles de prises statistiques selon l'âge appliqués au hareng, comme iSCAM (Martell 2017). En tant qu'analyse de réduction des stocks, le modèle suppose que les prises historiques sont connues exactement. Il convient de noter que les cadres d'évaluation couramment appliqués, comme Stock Synthesis (Methot et Wetzel 2013), sont souvent cités comme des prises statistiques selon l'âge; cependant, dans la plupart des applications, les captures sont ajustées avec une telle précision qu'ils fonctionnent de façon identique à leurs homologues les plus efficaces sur le plan des calculs, les analyses de réduction des stocks. Pour tous les modèles opérationnels conditionnés dans ces analyses, la seule différence notable dans l'ajustement en mode prises statistiques selon l'âge ou analyse de réduction des stocks était une amélioration importante de la stabilité et du temps d'estimation avec la formule de l'analyse de réduction des stocks.

Compte tenu de l'amélioration substantielle de l'efficacité de calcul de TMB par rapport aux logiciels d'estimation précédents comme ADMB (de iSCAM et SS3), le modèle d'analyse de réduction des stocks utilisé dans ce conditionnement est au moins un ordre de grandeur plus rapide que les évaluations précédentes, convergeant généralement vers une valeur hessienne positive définie des paramètres du modèle (ou non) en quelques secondes sur un ordinateur portable moderne. Cette vitesse est importante pour l'élaboration de modèles opérationnels puisqu'elle permet d'explorer pendant une réunion d'autres scénarios du modèle opérationnel (les 58 modèles opérationnels conditionnés dans ces analyses peuvent être réajustés en moins de 5 minutes avec un ordinateur mobile).

Un autre avantage de TMB est qu'il s'agit d'un système natif de l'environnement statistique R et donc directement lié au progiciel MSEtool et aux modèles opérationnels proposés pour effectuer les analyses de l'évaluation de la stratégie de gestion.

Des rapports normalisés sur le conditionnement des modèles opérationnels sont également disponibles pour tous les modèles opérationnels décrits ici; ils fournissent un récapitulatif des estimations des modèles, des ajustements aux données et montrent l'exactitude de la conversion au cadre de l'évaluation de la stratégie de gestion en R.

ÉLABORATION D'UN MODÈLE OPÉRATIONNEL DU SCÉNARIO DE RÉFÉRENCE

Un ajustement du modèle du scénario de référence a été établi comme base pour étudier diverses sensibilités à la pondération des données, aux types de données et aux valeurs des paramètres décrites dans le tableau 1 afin de déterminer un ensemble de référence de modèles opérationnels.

Le modèle du scénario de référence a été ajusté aux données sur la composition des prises et de l'âge pour les quatre flottes (filet maillant, senne coulissante, fascine et « autres engins ») et aux relevés larvaires et acoustiques pour la période de 1968 à 2018. Le modèle suppose des conditions de stock vierge inexploité avant la première année du modèle (inexploité en 1967, mais voir les modèles opérationnels de sensibilité plus loin).

Toutes les évaluations antérieures de ce stock ont exclu les prises à la fascine dans le sudouest du Nouveau-Brunswick des débarquements du sud-ouest de la Nouvelle-Écosse et de la baie de Fundy en supposant que les prises à la fascine sont des poissons juvéniles migrateurs provenant des États-Unis. Une recommandation du cadre d'évaluation de 2006 (MPO 2007) était de modifier cette hypothèse et d'inclure une fraction des débarquements dans le stock du sud-ouest de la Nouvelle-Écosse et de la baie de Fundy. Ce changement n'a jamais été mis en œuvre en raison de la baisse importante subséquente des prises à la fascine. Le groupe de travail sur le hareng de l'Atlantique a discuté de cette question à sa réunion de janvier 2020 et pense, d'après les données de marquage, qu'une partie des prises à la fascine provient de la composante de reproducteurs du sud-ouest de la Nouvelle-Écosse et de la baie de Fundy. Le scénario de référence a été défini comme étant « aucune prise à la fascine incluse dans les débarquements (statu quo) » avec un extrême de 100 % de prises à la fascine utilisé pour évaluer l'influence de cette incertitude en tant que modèle opérationnel de sensibilité. On a supposé que le relevé acoustique était un indice de la biomasse vulnérable (avec une sélectivité estimée) et que le relevé larvaire correspondait au nombre d'individus du stock reproducteur dans la population. Bien qu'elles aient été ajustées aux données sur la composition des prises selon l'âge, les données sur les prises selon la longueur ont tout de même été soumises au modèle (avec un poids nul) afin que l'ajustement implicite puisse être évalué (potentiellement pour déterminer un profil systématique dans les conversions longueur-âge).

Étant donné qu'il a entraîné moins de conflits de données et une plus grande stabilité du modèle, le modèle du scénario de référence a estimé la capturabilité q pour le relevé acoustique (mais voir les modèles opérationnels de sensibilité plus loin).

Les évaluations précédentes de ce stock ont utilisé une valeur constante de M de 0,2 (MPO 2004). Le groupe de travail sur le hareng de l'Atlantique a convenu que la valeur de M était probablement supérieure à 0,2 à sa réunion de janvier 2020. Un examen a été effectué pour évaluer d'autres scénarios de M à prendre en considération. Une valeur constante de M de 0,35 a été utilisée dans la dernière évaluation américaine pour le hareng de l'Atlantique (NEFSC 2018).

Guénette et Stephenson (2012) ont effectué une analyse de population virtuelle plurispécifique (APVPS) pour estimer la mortalité par prédation (M2) du hareng dans le sud-ouest de la Nouvelle-Écosse et la baie de Fundy résultant de la consommation par des poissons, des oiseaux et des mammifères marins. L'abondance des prédateurs était fixée et le nombre de harengs consommés selon l'âge était le résultat de la biomasse des proies disponibles divisée par la biomasse totale appropriée des proies et la biomasse totale d'autres proies. Les principales sources d'incertitude dans le modèle déterminées étaient la mortalité résiduelle (M1), le taux de consommation et la proportion de hareng consommée par les prédateurs, ainsi que les tendances de l'abondance des prédateurs. Plusieurs scénarios ont été utilisés pour explorer l'incertitude au sujet du pourcentage de hareng dans les régimes alimentaires. Le scénario de base a été exécuté avec une faible mortalité résiduelle M1=0.01 (en supposant que la plupart des prédateurs étaient pris en compte dans le modèle). Le taux de mortalité des juvéniles (de 1 à 2 ans) attribuable à la prédation a été estimé à 0,64 et le taux de mortalité des adultes à 0,37. Comme l'estimation du hareng dans le régime alimentaire des poissons variait de 20 % à 130 % pour une moyenne de 50 % (Bundy et al. 2011), les scénarios « plus50 » et « minus50 » supposaient que la consommation de hareng était surestimée ou sous-estimée de 50 %, et l'ont utilisée comme première estimation de l'incertitude. La consommation de hareng par les prédateurs les plus importants entrés dans le modèle a respectivement augmenté et diminué de 50 %. Pour les juvéniles, minus50 = 0,49 et plus50 = 0,72. Pour les adultes, minus50 = 0,26 et plus 50 = 0,45.

L'évaluation de la stratégie de gestion des États-Unis pour le hareng de l'Atlantique dans le golfe du Maine menée en 2017 (Deroba 2017) a utilisé une valeur élevée et une valeur faible de M variable selon l'âge. La mortalité naturelle a varié selon les années et les âges dans les évaluations précédentes des stocks aux États-Unis, la valeur de M étant plus élevée de 1996 à 2014 comparativement aux années précédentes (NEFSC 2012; Deroba 2015). M a été considérée comme une incertitude dans l'évaluation de la stratégie de gestion des États-Unis, et un scénario de M élevée a été défini comme les moyennes de M par âge entre 1996 et 2014 et un scénario de M faible comme les moyennes de M par âge de 2005 à 2014.

Les scénarios de M élevée et de M faible définis par Deroba (2017) et Guénette et Stephenson (2012) sont dérivés indépendamment au moyen de différentes méthodes, mais sont assez cohérents (figure 7) et corroborent leur applicabilité pour être utilisés pour le hareng. Trois scénarios du modèle opérationnel ont été sélectionnés pour M aux fins d'évaluation dans les

modèles opérationnels de sensibilité : une constante de 0,35 et une valeur de M variable selon l'âge avec un scénario de M élevée et un scénario de M faible utilisant les valeurs proposées par Guénette et Stephenson (2012).

Figure 7. Taux de mortalité naturelle utilisés dans l'évaluation de la stratégie de gestion des États-Unis (Deroba 2017), l'analyse de population virtuelle plurispécifique (Guénette et Stephenson 2012) et l'évaluation américaine (NEFSC 2018).

Pour le scénario de référence, la croissance a été estimée à l'aide du poids empirique selon l'âge pour la série chronologique (1970 à 2018) et du poids moyen selon l'âge pour les trois dernières années de la série chronologique pour les projections (figure 8a) et du poids moyen selon l'âge pour les trois premières années pour 1968 et 1970. Un autre scénario de croissance a été pris en compte dans l'évaluation du modèle opérationnel de sensibilité. Ce scénario poursuit la diminution observée du poids selon l'âge chez les 4 ans et plus et l'augmentation observée du poids chez les 1 et 2 ans (figure 8b). Une régression linéaire du log₁₀ (poids) sur l'année a été effectuée séparément pour chaque classe d'âge, puis on a ajusté les pentes et les intersections pour corriger les interactions entre les classes d'âge qui auraient entraîné une croissance négative d'une classe d'âge à la suivante dans les projections.

Figure 8a. Poids empirique selon l'âge de 1970 à 2018 avec projections jusqu'en 2068 d'après le poids moyen selon l'âge de 2016 à 2018.

Figure 8b. Poids empirique selon l'âge de 1970 à 2018 avec des projections jusqu'en 2068 d'après les régressions du log₁₀ (poids) par année à l'aide des pentes et des intersections ajustées de la régression.

Pour ajuster le modèle opérationnel du scénario de référence sans ignorer les tendances récentes de l'indice du relevé acoustique, il a fallu pondérer à la baisse les données sur la composition selon l'âge. Dans le modèle opérationnel du scénario de référence, la taille

effective de l'échantillon de toutes les données sur la composition selon l'âge a été réduite d'un facteur de 20 (la sensibilité à d'autres scénarios est démontrée dans les modèles opérationnels de sensibilité plus loin). Cette réduction de la pondération n'a pas réduit de façon appréciable l'ajustement aux données sur la composition, mais elle a bloqué la corrélation négative dans le relevé acoustique observé et prévu qui empêcherait de l'utiliser comme principal intrant d'une procédure de gestion fondée sur un indice.

Toutes les sélectivités des flottes et des relevés ont été estimées par classe de longueur. À l'exception de la flotte de pêche à la senne coulissante, on a supposé que la flotte suivait une fonction de sélectivité double normale de la longueur, ce qui permettait des réductions « en forme de dôme » de la sélectivité pour les poissons plus gros. On a supposé que la sélectivité dans la flotte à la senne coulissante était logistique (« platikurtique », asymptotique), augmentant avec la longueur et étant de 1 pour les gros poissons.

La rareté des données sur la composition selon l'âge pour les classes d'âge 1 et 2 ne permet pas d'estimer avec fiabilité le recrutement annuel les deux dernières années de la période historique (2017 et 2018). Pour ces années, on présume que le recrutement est égal à celui prévu à partir de la relation stock-recrutement sans erreur de processus (les écarts de recrutement sont nuls). Pour les projections futures de l'évaluation de la stratégie de gestion, les résidus du recrutement de l'année estimée finale (à partir de 2017) ont été estimés avec des propriétés statistiques (variance et autocorrélation) déterminées par les estimations de 1968 à 2016.

Lors du conditionnement des modèles opérationnels, l'optimisation numérique obtient d'abord l'estimation du maximum de vraisemblance (EMV) des paramètres du modèle. Ensuite, pour chaque modèle opérationnel, on génère 48 simulations stochastiques par échantillonnage à partir de la distribution normale conjointe tirée de la matrice de covariance des paramètres (obtenue en inversant la matrice hessienne). Des rapports détaillés sur les modèles opérationnels sont disponibles pour tous les modèles opérationnels et montrent à la fois l'ajustement de l'estimation du maximum de vraisemblance et la fourchette des résultats pour les simulations stochastiques. Nous avons utilisé ici un total de 48 simulations par modèle opérationnel à des fins d'illustration. Pour suivre les analyses de l'évaluation de la stratégie de aestion, il est simple d'augmenter le nombre de simulations stochastiques par modèle opérationnel, au besoin. Toutefois, pour 24 modèles opérationnels de l'ensemble de référence, 48 simulations par modèle opérationnel donnent un total de 1 152 simulations. Habituellement, les évaluations de l'évaluation de la stratégie de gestion n'utilisent qu'environ 150 simulations pour obtenir un classement stable du rendement des procédures de gestion possibles et moins de 300 simulations pour obtenir des estimations stables (précises) des paramètres de rendement, comme le rendement à long terme et la probabilité de surpêche.

SPÉCIFICATION DES MODÈLES OPÉRATIONNELS DE SENSIBILITÉ

Au total, nous avons examiné 22 scénarios de sensibilité afin de mieux comprendre le comportement du modèle du scénario de référence et de déterminer les incertitudes qui en découlent pour la formulation des modèles opérationnels de l'ensemble de référence (voir les détails de leur spécification dans le tableau 4). Toutes les incertitudes n'ont pas été prises en compte pour l'étude de la sensibilité en vue de leur inclusion dans l'ensemble de référence des modèles opérationnels, car on avait déterminé au préalable que certaines devaient être incluses comme modèles opérationnels de robustesse (par exemple, certains scénarios de prise de rechange).

Nous avons évalué la sensibilité en examinant les estimations modélisées de la biomasse historique du stock reproducteur en termes absolus (figure 20a), de la biomasse reproductrice par rapport aux conditions sans exploitation (figure 20b) et par rapport aux niveaux du rendement maximal durable (figure 20c). Les points de référence du rendement maximal durable ont été calculés en fonction des paramètres actuels du modèle (2018) et de la sélectivité agrégée de la pêche selon l'âge à l'aide de l'approche de Walters et Martell (2004).

De plus, nous avons utilisé la projection du taux actuel de mortalité par pêche selon l'âge pour évaluer l'incidence des hypothèses de sensibilité sur la biomasse future du stock reproducteur par rapport aux niveaux du rendement maximal durable (figure 21). Pour les années à venir, le rendement maximal durable est recalculé chaque année pour tenir compte de l'évolution des paramètres de la population, comme la croissance (modèle opérationnel de sensibilité S4, « G_ChangeGrowth »). Il est préférable d'utiliser un taux fixe de mortalité par pêche dans la projection plutôt qu'un scénario de prise fixe parce qu'il fournit une dynamique compensatoire qui imite mieux les procédures de gestion qui réagissent aux niveaux de l'indice (qui sont le type le plus probable de procédures de gestion à appliquer dans le cas du hareng de l'Atlantique).

N° du modèle opérationnel	Code	Description de l'écart d'un seul facteur par rapport au scénario de référence
S1	RefCase	Comme décrit précédemment.
S2	M_LowMv	Le taux de mortalité naturelle varie avec l'âge : 0,49 (âges 1 et 2), 0,26 âges 3 et plus).
S3	M_HighMv	Le taux de mortalité naturelle varie avec l'âge : 0,72 (âges 1 et 2), 0,45 âges 3 et plus).
S4	G_ChangeGrowth	Les paramètres de croissance sont extrapolés par un modèle linéaire qui suppose une poursuite de la diminution du poids selon l'âge chez les âges 4 et plus et une augmentation du poids selon l'âge chez les âges 1 et 2 (figure 8b).
S5	R_Steep90	Des valeurs plus faibles du taux de variation (0,9 à 0,7) ont été
S6	R_Steep85	précisées pour le modèle de stock-recrutement de Beverton-Holt, sous-entendant un stock moins résilient
S7	R_Steep80	
S8	R_Steep75	
S9	R_Steep70	
S10	C_WeirCat	Des prises à la fascine ont été incluses dans l'ajustement du modèle.
S11	C_EqCat	On utilise les prises à l'équilibre pour « accélérer » le modèle; on présume qu'elles se sont produites dans toutes les années du modèle précédant l'année initiale du modèle (1968). Les prises à l'équilibre ont été calculées aux prises moyennes sur les 30 années précédant l'année initiale du modèle (1938 à 1967) pour les flottes à la senne coulissante (4 482 t) et à la fascine (33 999 t).
S12	C_WeirEqCat	Le modèle inclut les prises à la fascine et les prises à l'équilibre.
S13	q_1	Quatre scénarios de sensibilité ont été examinés, qui fixaient q à
S14	q_1x4	1 (le relevé acoustique est un indice de la biomasse vulnérable

Tableau 4. Modèles opérationnels de sensibilité élaborés pour définir un ensemble de référence approprié de modèles opérationnels. Tous les modèles opérationnels de sensibilité constituent un changement d'un seul facteur par rapport au modèle opérationnel du scénario de référence.

N° du modèle opérationnel	Code	Description de l'écart d'un seul facteur par rapport au scénario de référence
S15	q_1x16	absolue) et ont tenté d'ajuster l'indice de relevé acoustique en
S16	q_1x36	élevées dans l'indice : augmentation de 1 x, 4 x 16 x et 36 x.
S17	Comp_AgeLength	Bien qu'on puisse considérer qu'il utilise la composition selon la longueur deux fois (puisqu'elle est utilisée dans la clé empirique âge-longueur), on a examiné un modèle opérationnel de sensibilité qui avait été ajusté aux données sur la composition selon la longueur et sur la composition selon l'âge (comme pour les données sur la composition selon l'âge, la composition selon la longueur a également été assujettie à un facteur de réduction de 20 de la taille effective de l'échantillon).
S18	PS_Two	Deux flottes de pêche à la senne coulissante ont été définies en fonction de la répartition spatiale des prises de poissons juvéniles (figures A16 et A17). Flotte « SENNE COULISSANTE_juvéniles » = prises à la senne coulissante sur des lieux de pêche où au moins 50 % des poissons étaient à au plus 23 cm des fréquences de longueurs entre 1995 et 2018. Flotte « SENNE COULISSANTE_reproducteurs » = toutes les autres zones.
S19	CompWt_01	Quatre autres pondérations (le scénario de référence est 0,05)
S20	CompWt_1	pour les données sur la composition des prises selon l'âge ont été
S21	CompWt_2	
S22	CompWt_5	

ÉTABLIR UNE GRILLE DE RÉFÉRENCE DES MODÈLES OPÉRATIONNELS

Quatre sources centrales d'incertitude

Les modèles opérationnels de sensibilité ont mis en évidence l'importance des quatre principaux axes d'incertitude :

- le taux de mortalité naturelle présumé;
- la croissance future;
- la résilience du stock;
- l'attribution correcte des prises historiques au stock.

Bien qu'aucun de ces quatre axes ne soit particulièrement corrélatif pour déterminer la taille absolue du stock reproducteur (figure 20a) ou la taille du stock reproducteur par rapport aux niveaux non exploités (figure 20b), leur incidence sur les points de référence de la pêche était importante (figure 20c) ou a fortement influencé les résultats attendus des projections futures (figure 21; tableau 10).

À 0,95, le taux de variation du modèle opérationnel du scénario de référence offrait un ajustement comparable du modèle à une valeur beaucoup plus faible de 0,75 (figure 22). Bien que le conditionnement du modèle ait révélé des renseignements très faibles pour distinguer les valeurs du taux de variation (comparativement à la mortalité naturelle, par exemple, figure 22), les modèles opérationnels ne convergeaient pas de façon fiable pour une valeur de 0,7 du taux de variation; c'est pourquoi une valeur de 0,75 a été choisie comme valeur inférieure par rapport à la valeur de 0,95 du modèle opérationnel du scénario de référence.

Plutôt que d'envisager plusieurs scénarios pour les prises historiques, les analyses de sensibilité ont révélé que le scénario combiné des prises à l'équilibre et de l'inclusion des prises à la fascine (S12) produisait généralement un plus grand contraste dans les estimations du modèle et les résultats des projections par rapport au modèle opérationnel du scénario de référence.

Capturabilité du relevé acoustique à estimer dans les modèles opérationnels de l'ensemble de référence avec des scénarios de q=1 inclus dans l'ensemble de robustesse

Les scénarios de sensibilité dans lesquels la capturabilité de l'indice du relevé acoustique était fixée à 1 (q_1, q_1x4, q_1x16, q_1x36) ont fourni des estimations de la biomasse absolue du stock reproducteur supérieures de 100 % et 180 % à celles du modèle opérationnel du scénario de référence (figure 20a).

Les scénarios avec une valeur fixe de q=1 ne pouvaient fournir une corrélation positive avec l'indice du relevé acoustique que lorsqu'une augmentation d'au moins 4 fois de la précision de l'indice était spécifiée. De ce fait, nous n'avons pas considéré comme plausible l'hypothèse selon laquelle l'indice du relevé acoustique est un indice absolu de l'abondance (q=1) et nous l'avons écartée des modèles opérationnels de l'ensemble de référence pour la transférer plutôt dans l'ensemble de robustesse des modèles opérationnels.

Les estimations du modèle et les résultats des projections sont insensibles au conditionnement en fonction des données sur la composition selon la longueur.

Le conditionnement du modèle en fonction des données sur la composition selon l'âge et la longueur (Comp_AgeLength) n'a pas eu d'effet significatif sur les estimations de la biomasse absolue du stock (figure 20a), de la taille relative du stock (figure 20b) ou du niveau du stock par rapport aux points de référence du rendement maximal durable (figure 20c). Cette sensibilité n'a pas non plus eu d'incidence importante sur le résultat prévu du maintien des niveaux de pêche de 2018 (figure 21) et n'a donc pas été incluse dans les modèles opérationnels de l'ensemble de référence.

Manque de soutien pour une structure plus complexe de la pêche à la senne coulissante

Le fait de diviser la flotte de pêche à la senne coulissante en deux flottes spatiales qui représentent les prises de poissons principalement juvéniles et de poissons principalement adultes (SENNE COULISSANTE_Deux) n'a pas amélioré le conflit dans l'échelle inférée entre l'indice acoustique et les données sur la composition selon l'âge. De plus, cela n'a pas permis d'améliorer nettement l'ajustement aux données sur la composition. Cet axe d'incertitude n'a pas fait l'objet d'un examen plus approfondi.

Pondérations de rechange sans conséquence pour les données sur la composition selon l'âge

L'augmentation de la pondération des données sur la composition selon l'âge (une pondération plus élevée que la pondération de 1/20 du modèle opérationnel du scénario de référence) a entraîné des tendances stables ou à la hausse de la biomasse du stock reproducteur (figure 20a) et des corrélations négatives avec l'indice du relevé acoustique (CompWt_1, CompWt_2, CompWt_5). La réduction de la pondération (CompWt_01) s'est traduite par une diminution plus importante de la biomasse du stock vulnérable que celle déduite du relevé acoustique. Quoi qu'il en soit, la pondération des données sur la composition n'a pas eu

d'incidence importante sur les résultats prévus des taux d'exploitation actuels (figure 21) et a donc été exclue de l'ensemble de référence et transférée dans l'ensemble de robustesse des modèles opérationnels.

Définition d'une grille de référence des modèles opérationnels

L'ensemble de référence proposé des modèles opérationnels comprend les trois niveaux de taux de mortalité naturelle (scénario de référence, S2, S3) tirés des analyses de sensibilité, deux niveaux de croissance future (scénario de référence, S4), deux niveaux de résilience du stock (scénario de référence, S8) et deux niveaux pour les niveaux de prises historiques (scénario de référence, S12). Ces niveaux sont décrits de manière plus détaillée dans le tableau 5.

Les résultats de l'évaluation de la stratégie de gestion sont souvent résumés avec plusieurs modèles opérationnels. À l'instar des cadres de l'évaluation de la stratégie de gestion établis ailleurs, l'ensemble de référence des modèles opérationnels suit un croisement factoriel complet des quatre principaux facteurs afin d'éviter une pondération *a priori* plus élevée pour un niveau de facteur. Le croisement complet mène à 24 modèles opérationnels de l'ensemble de référence (tableau 6) (actuellement présenté ici avec 48 simulations par modèle opérationnel, mais offrant la souplesse nécessaire pour apporter des modifications au besoin pour les futures analyses de l'évaluation de la stratégie de gestion).

Facteur	Niveaux			
Facteur 1 :	Niveau 1	Niveau 2	Niveau 3	
naturelle	M = 0,35 (tous les âges)	M = 0,49 (âges 1 et 2)	M = 0,79 (âges 1 et 2)	
	-	M = 0,26 (âges 3 et plus)	M = 0,45 (âges 3 et plus)	
Facteur 2 :	Niveau A	Niveau B	-	
Croissance	La croissance future est la moyenne des trois dernières années historiques (2016 à 2018).	La croissance future est déterminée par une extrapolation linéaire de la tendance temporelle du poids selon l'âge.	-	
Facteur 3 : Résilience	Niveau H	Niveau L	-	
	Le taux de variation de la fonction de stock-recrutement est de 0,95.	Le taux de variation de la courbe de stock-recrutement est de 0,75.	-	
Facteur 4 :	Niveau –	Niveau +	-	
Prises	Les prises à la fascine ne sont pas incluses dans le conditionnement du modèle et on suppose que le stock est dans un état vierge inexploité en 1967.	Les prises à la fascine sont incluses dans le conditionnement du modèle et les prises à l'équilibre pour la période de 30 ans précédant 1968 ont été incluses.	-	

Tableau 5. Facteurs et niveaux du modèle opérationnel de l'ensemble de référence. (-) = non applicable.

N° du modèle opérationnel	Mortalité naturelle	Croissance	Résilience	Prises
1	1	А	Н	-
2	2	А	Н	-
3	3	А	Н	-
4	1	В	Н	-
5	2	В	Н	-
6	3	В	Н	-
7	1	А	L	-
8	2	А	L	-
9	3	А	L	-
10	1	В	L	-
11	2	В	L	-
12	3	В	L	-
13	1	А	Н	+
14	2	A	Н	+
15	3	Α	Н	+
16	1	В	Н	+
17	2	В	Н	+
_18	3	В	Н	+
19	1	А	L	+
20	2	А	L	+
_21	3	А	L	+
22	1	В	L	+
23	2	В	L	+
24	3	В	L	+

Tableau 6. Grille des modèles opérationnels de l'ensemble de référence : un croisement factoriel des facteurs et des niveaux définis dans le tableau 5.

MODÈLES OPÉRATIONNELS DE ROBUSTESSE

Définition d'une grille de robustesse

Les modèles opérationnels de robustesse visent à refléter des scénarios moins plausibles pour la dynamique de la pêche ou, sinon, des scénarios pour lesquels il existe peu de preuves empiriques pour évaluer la plausibilité. Les scénarios de robustesse sont généralement des changements d'un seul facteur par rapport à d'autres modèles opérationnels. Si les scénarios de robustesse ne sont appliqués qu'au modèle opérationnel du scénario de référence, les résultats sont fortement limités à un seul ensemble relativement restreint de simulations. De même, si un scénario de robustesse est appliqué à toute la grille de l'ensemble de référence, la quantité d'extrants de l'évaluation de la stratégie de gestion devient ingérable compte tenu du très grand nombre de modèles opérationnels. La solution consiste à définir un petit sousensemble de modèles opérationnels de l'ensemble de référence (une « grille de robustesse ») qui englobe une gamme d'incertitudes et applique chaque scénario de robustesse à un seul facteur à ces modèles opérationnels.

L'examen des résultats prévus du taux actuel de mortalité par pêche selon l'âge pour l'ensemble de référence révèle que certains facteurs sont généralement attribuables à des résultats plus optimistes et d'autres à des résultats plus pessimistes, le scénario de référence fournissant un résultat intermédiaire (figure 24). Ces projections ont été utilisées pour déterminer un scénario pessimiste et un scénario optimiste d'après les diverses combinaisons de niveaux de facteurs (figure 26; tableau 7).

Les modèles opérationnels définis dans la grille de robustesse couvraient tous les niveaux de facteurs et un large éventail de résultats prévus.

Code	Modèle opérationnel de l'ensemble de référence	Description
R	1AH-	Scénarios de référence
0	3BH+	Optimiste Taux élevé de mortalité naturelle variable selon l'âge. La croissance future est déterminée par la tendance temporelle continue du poids selon l'âge. Résilience élevée (taux de variation = 0,95). Les prises à l'équilibre et les prises à la fascine sont incluses dans le conditionnement.
P	2AL-	 Pessimiste Faible taux de mortalité naturelle variable selon l'âge. La croissance future est la moyenne des trois dernières années (2016 à 2018). Résilience faible (taux de variation = 0,75). Aucune prise à l'équilibre ou prise à la fascine n'est incluse dans le conditionnement.

Tableau 7. Grille de robustesse. Trois modèles opérationnels de l'ensemble de référence avec des résultats contrastants pour la spécification de scénarios de robustesse à un seul facteur.

SPÉCIFICATION DE L'ENSEMBLE DE ROBUSTESSE DES MODÈLES OPÉRATIONNELS

L'ensemble de robustesse des modèles opérationnels englobait sept autres sources d'incertitude dans la dynamique de la pêche, en plus des quatre facteurs de l'ensemble de référence :

- la capturabilité des relevés acoustiques;
- une pondération de rechange pour les données sur la composition selon l'âge;
- l'hypothèse d'un niveau inférieur de résilience du stock;
- le conditionnement des données sur la composition selon la longueur;
- une forme fonctionnelle de rechange pour la relation stock-recrutement;
- un scénario de rétablissement dans lequel la biomasse du stock reproducteur en 2018 est plus appauvrie que l'ensemble de référence des modèles opérationnels (le tableau 8 fournit une description de ces facteurs supplémentaires);
- d'autres scénarios de prises qui comprennent une proportion des débarquements américains et des débarquements de toute la zone des divisions 4VWX de l'OPANO.

Dans certains cas, les combinaisons des hypothèses de robustesse et de la configuration pessimiste (P, 2AL-) ne convergeaient pas vers une valeur hessienne positive définie et ont donc été retirées de l'ensemble de robustesse.

Tableau 8. Ensemble de robustesse des modèles opérationnels. Les codes comprenant _R, _O et _P renvoient au même scénario de robustesse à un seul facteur appliqué aux trois membres de la grille de robustesse (tableau 7) : scénarios de référence, optimiste et pessimiste, respectivement.

Numéro	Codes	Description
R1	q1_R	La capturabilité du relevé acoustique est fixée à 1 et la précision du
		relevé acoustique est augmentée artificiellement d'un facteur de 16
R2	q1_0	afin d'obtenir encore un ajustement satisfaisant à l'indice du relevé
D 2		acoustique (par exemple, modèle opérationnel de sensibilité S15
RJ	q1_P	« q_1x16 »).
R4	AgeComp1_R	Les données sur la composition selon l'âge sont pondérées à la
		baisse de 1/10 (par exemple, modèle opérationnel de sensibilité S20
R5	AgeComp1_O	« CompWt_1 »), plutôt que selon la pondération à la baisse de 1/20
		du modèle opérationnel du scénario de référence.
R6	AgeComp1_P	
R7	Steep7_R	Un scénario de faible résilience. On suppose que le taux de variation
		est de 0,7. Ce modèle n'a pas convergé pour le modèle pessimiste
R8	Steep7_O	(P) de la grille de robustesse.
R9	Length R	Les modèles sont ajustés aux données sur la composition selon
	0 _	l'âge et la longueur (par exemple, modèle opérationnel de sensibilité
R10	Length_O	n° 17, 'Comp_AgeLength').
R11	Length_P	
R12	Ricker R	On présume la relation stock-recrutement de Ricker. Ce modèle n'a
	-	pas convergé pour le modèle pessimiste (P) de la grille de
R13	Ricker_O	robustesse.
R14	Reb_R	Exercices de conditionnement antérieurs tenant compte d'un taux
		plus bas de mortalité naturelle invariable selon l'âge et des niveaux
R15	Reb_O	estimes du stock à la moltie environ ou un peu moins de BRMD. A
		scénario do rétablissement qui commonce chaque projection
R16	Reb_P	prospective à la moitié des niveaux de BMDR pour le même profil
		historique des taux de mortalité par pêche
R17	US20 R	Les prises historiques comprennent 20 % des prises dans les eaux
		américaines adjacentes (Kanwit et Libby 2009).
R18	US20_O	, , , , , , , , , , , , , , , , , , ,
R19	US20 P	
R20	 US40_R	Les prises historiques comprennent 40 % des prises dans les eaux
		américaines adjacentes (Stobo et Fowler 2009).
R21	US40_O	, , , , , , , , , , , , , , , , , , , ,
	_	
R22	US40_P	
R23	ALL R	Toutes les prises historiques dans les divisions 4VWX sont incluses
	-	dans le conditionnement du modèle.
R24	All_O	
R25	ALL_P	
RÉSULTATS

MODÈLE DU SCÉNARIO DE RÉFÉRENCE

Ajustement du modèle de scénario de référence aux indices

En général, l'ajustement du modèle du scénario de référence au relevé acoustique était de bon à excellent, affichant une tendance comparable sans preuve d'un profil prononcé dans les résidus (figure 9).

Le relevé des larves présente une variance beaucoup plus élevée que le relevé acoustique et, pour la plupart des années, l'effectif estimé du stock vulnérable correspondait aux erreurs types (figure 10). Les exceptions évidentes sont 1974 et 1981, où le modèle sous-estime, puis surestime ensuite fortement l'effectif du stock vulnérable, respectivement.

L'échantillonnage des valeurs des paramètres à partir de la matrice des variances-covariances des paramètres a généralement donné des estimations de la taille du stock vulnérable avec une variance beaucoup plus faible que celle prescrite par les indices (figures 8 et 9).

Figure 9. Ajustement du modèle de base à l'indice du relevé acoustique. Les points noirs et la ligne noire sont des observations, la ligne rouge est l'estimation du modèle (le graphique de gauche illustre l'ajustement du maximum de vraisemblance et le graphique de droite, les 48 simulations stochastiques). Il convient de noter que le relevé acoustique observé est indiqué ici en kilotonnes; l'ajustement du modèle est converti à la même échelle que l'indice observé au moyen du coefficient de capturabilité estimé (q = 2,85).

Figure 10. Comme la figure 9, mais pour l'indice du relevé des larves.

Ajustement du modèle du scénario de référence aux données sur la composition selon l'âge dans le relevé acoustique

L'ajustement global à la composition selon l'âge dans le relevé acoustique était très bon (figure 11) et montrait peu de profils problématiques dans les résidus ou une incapacité de refléter la force variable de la cohorte (figure 11).

Figure 11. Ajustement du modèle de base à la composition selon l'âge dans le relevé acoustique. Les lignes noires et les points noirs sont des valeurs observées, les lignes rouges sont des prévisions modélisées. Les tailles d'échantillon (N) déclarées sont les valeurs utilisées dans le modèle après la pondération à la baisse.

Figure 12. Résidus normalisés pour les ajustements aux données sur la composition selon l'âge dans le relevé acoustique.

Ajustement du modèle aux compositions selon l'âge dans la flotte

L'ajustement du modèle du scénario de référence à la composition selon l'âge dans la flotte à la senne coulissante (la plus importante en nombre de prises) était bon pour les dernières années (2002 à 2018), mais moins bon pour certaines des premières années (par exemple, 1999 et 2000).

L'ajustement à la composition selon l'âge dans les flottes dont les prises sont plus faibles était considérablement moins bon, par exemple, dans la flotte au filet maillant et les « autres » flottes en 2017 et 2018. Étant donné que la composition selon l'âge mature dans le relevé acoustique et dans la flotte principale (la flotte de pêche à la senne coulissante représente plus de 95 % des prises en 2018, à l'exclusion de la pêche à la fascine, et environ 75 % des prises en 2018, y compris la pêche à la fascine; figure A1) sont bonnes, ces piètres ajustements dénotent une mauvaise spécification du modèle, dans laquelle la disponibilité pour les flottes secondaires est plus variable sur le plan temporel (ou spatial).

Figure 13. Ajustement aux données sur la composition selon l'âge dans la flotte à la senne coulissante. Les lignes noires et les points noirs sont des valeurs observées, les lignes rouges sont des estimations du modèle (ajustement des estimations des paramètres du maximum de vraisemblance).

Figure 14. Comme la figure 13, mais pour la flotte à la fascine.

Figure 15. Comme la figure 13, mais pour la flotte au filet maillant.

Figure 16. Comme la figure 13, mais pour la flotte aux « autres » engins de pêche.

Estimations du modèle du scénario de référence

Le modèle du scénario de référence (et, de façon générale, tous les modèles présentés dans ce document) montre une diminution importante de la biomasse du stock reproducteur de 1968 à 1978, suivie par un rétablissement marqué en deux phases bien au-dessus des niveaux initiaux en 1987, puis par un ralentissement qui se stabilise entre 2003 et 2018 (figure 17). Les

augmentations rapides de la biomasse reproductrice estimée vers 1980 sont causées par l'estimation d'un recrutement particulièrement fort les années suivantes (figure 18). Les baisses subséquentes dans les années 1980 sont attribuables à une reprise des niveaux moyens de recrutement et à une hausse initiale des taux de mortalité par pêche (figure 19).

Figure 17. Estimations modélisées de la biomasse absolue du stock reproducteur (kt) et de la biomasse du stock reproducteur par rapport aux niveaux inexploités (épuisement des reproducteurs).

Figure 18. Force estimée du recrutement (sans unité – nombre remis à l'échelle de poissons entrant dans la classe d'âge 1).

Figure 19. Estimations modélisées du taux de mortalité instantanée par pêche apicale (valeur maximale de F parmi les classes de longueur) (année⁻¹).

MODÈLES OPÉRATIONNELS DE SENSIBILITÉ

La principale utilisation des résultats du modèle opérationnel de sensibilité a été la spécification des modèles opérationnels de l'ensemble de référence. De ce fait, les résultats clés sont présentés dans la section méthodologique « Établir une grille de référence des modèles opérationnels » ci-dessus. Nous présentons ici des résultats secondaires qui ne sont pas liés à la sélection de l'ensemble de référence.

Parmi les analyses de sensibilité qui n'ont pas repondéré les données ou inclus de données supplémentaires (S1 à S8), les ajustements globaux résumés par la log-vraisemblance négative totale (nll; tableau 9) étaient généralement comparables (tous proches de la log-vraisemblance négative de 668,33 du modèle opérationnel). Les exceptions étaient les scénarios de taux faibles et élevés de mortalité naturelle variable selon l'âge (S2 et S3), qui présentaient un ajustement global plus mauvais (nll = 675) et bien plus mauvais (nll = 681), respectivement.

			Prises à l'équilibre		Com	position sel	on l'âge (compo s'il y a lieu	sition selon la ı)	Indices		Capturabilité de l'indice		
MO	Code	Total	Senne coulissante	Fascin e	Filet maillant	Autre	Senne coulissante	Fascine	Senne coulissante (juv)	Acoustique	Larvaire	q Acoustique	q Larvaire
S1	RefCase	668,33	-	-	58,38	100,33	142,56	154,43	-	-3,30	39,68	3,03	0,04
S2	M_LowMv	675,39	-	-	59,22	100,34	146,77	155,05	-	-3,23	38,00	3,48	0,04
S3	M_HighMv	680,78	-	-	58,82	100,82	146,11	158,33	-	-3,45	41,61	2,32	0,03
S4	G_ChangeGrowth	668,33	-	-	58,38	100,33	142,56	154,43	-	-3,30	39,68	3,03	0,04
S5	R_Steep90	668,23	-	-	58,41	100,27	142,60	154,42	-	-3,31	39,67	2,99	0,03
S6	R_Steep85	668,16	-	-	58,49	100,20	142,64	154,41	-	-3,34	39,66	2,93	0,03
S7	R_Steep80	668,15	-	-	58,61	100,12	142,67	154,38	-	-3,39	39,64	2,86	0,03
S8	R_Steep75	668,25	-	-	58,77	100,04	142,70	154,35	-	-3,45	39,60	2,78	0,03
S9	R_Steep70	668,50	-	-	58,96	99,95	142,75	154,30	-	-3,51	39,55	2,69	0,03
S10	C_WeirCat	663,69	-	-	56,36	99,79	144,05	152,10	-	-2,39	38,38	2,92	0,03
S11	C_EqCat	659,99	-3,67	-3,46	64,59	100,20	146,83	147,50	-	-2,13	38,13	3,16	0,04
S12	C_WeirEqCat	654,41	-3,69	-3,25	61,81	99,59	148,43	145,42	-	-1,20	36,72	3,00	0,04
S13	q_1	683,99	-	-	63,28	98,72	145,16	154,37	-	1,24	38,80	1	0,02
S14	q_1x4	701,20	-	-	64,60	98,69	145,58	154,96	-	10,99	38,88	1	0,02
S15	q_1x16	778,26	-	-	65,89	99,29	144,63	157,28	-	72,30	38,97	1	0,02
S16	q_1x36	888,74	-	-	67,27	99,81	145,79	161,21	-	151,45	39,13	1	0,03
S17	Comp_AgeLength	1 990,22	-	-	64,54 (107,60)	100,77 (199,66)	145,73 (404,64)	160,00 (469,07)	-	-2,50	39,33	3,55	0,05
S18	PS_Two	764,97	-	-	52,84	109,44	153,30	151,47	77,93	-0,76	36,12	2,88	0,05
S19	CompWt_01	260,92	-	-	16,13	23,74	37,03	38,80	-	-4,35	34,60	2,88	0,03
S20	CompWt_1	1 164,12	-	-	112,57	195,08	268,51	297,96	-	-2,14	42,95	2,98	0,04
S21	CompWt_2	2 148,86	-	-	223,39	384,72	518,75	584,98	-	-0,58	45,76	2,90	0,04
S22	CompWt_5	5 093,82	-	-	560,46	954,18	1 268,35	1 446,55	-	2,40	48,19	2,76	0,04

Tableau 9. Log-vraisemblances négatives pour l'ajustement selon le maximum de vraisemblance des modèles opérationnels de sensibilité (des valeurs plus faibles représentent un meilleur ajustement). Un tiret « --» indique qu'il n'y a pas de données.

Tableau 10. Estimations moyennes dérivées des modèles opérationnels de sensibilité. Les quantités au rendement maximal durable (RMD) ont été calculées selon la méthode de Walters et Martell (2004). FRMD est le taux de mortalité par pêche apicale au RMD (maximum sur les classes de longueur). BSRRMD = Biomasse du stock reproducteur au RMD. BRMD est la biomasse vulnérable totale au RMD. URMD est la fraction de la biomasse vulnérable capturée au RMD (taux de récolte). BSR0 est la biomasse du stock reproducteur inexploité. RRéf est le rendement de référence, le rendement maximal obtenu par un taux de pêche fixe compte tenu des conditions futures et de la sélectivité actuelle de la pêche. Bfaible est la biomasse pour laquelle il faudrait 2 durées de génération moyennes pour atteindre la moitié de BRMD compte tenu des paramètres biologiques et de la pêche actuels. DGM est la durée de génération moyenne, calculée à l'âge moyen d'un poisson mature dans la population non exploitée. BSR/BSRRMD est la biomasse reproductrice actuelle par rapport aux niveaux du RMD. D est l'épuisement actuel du stock, calculé comme la biomasse du stock reproducteur (BSR) actuelle divisée par la biomasse du stock reproducteur non exploitée (BSR0).

MO	Code	RMD (kt)	FRMD	BSRRMD (kt)	BSRRMD/BSR0	BRMD (kt)	URMD	BSR0 (kt)	RRéf (kt)	Bfaible (kt)	DGM (années)	BSR / BSRRMD	D
S1	RefCase	75,587	0,623	109,912	0,142	253,808	0,414	776,541	71,704	0,040	5,089	1,613	0,229
S2	M_LowMv	54,496	0,499	103,340	0,136	215,489	0,350	760,067	52,519	0,013	5,521	1,301	0,177
S3	M_HighM∨	122,781	1,076	90,120	0,110	412,151	0,582	822,642	113,433	13,982	4,691	3,045	0,335
S4	G_ChangeGrowth	76,134	0,621	111,218	0,143	256,498	0,413	776,541	67,437	0,040	5,089	1,601	0,229
S5	R_Steep90	71,931	0,524	127,735	0,163	269,809	0,360	783,404	66,070	0,077	5,089	1,368	0,223
S6	R_Steep85	68,575	0,455	142,646	0,180	282,974	0,320	790,681	61,247	0,281	5,089	1,206	0,217
S7	R_Steep80	65,331	0,401	156,169	0,196	294,794	0,288	798,307	56,800	0,745	5,089	1,082	0,212
S8	R_Steep75	62,089	0,355	168,986	0,210	305,906	0,259	806,246	52,515	1,633	5,089	0,986	0,207
S9	R_Steep70	58,764	0,316	181,472	0,223	316,632	0,234	814,386	48,251	3,196	5,089	0,906	0,202
S10	C_WeirCat	89,531	0,531	138,897	0,143	311,423	0,360	972,187	82,472	0,012	5,089	1,406	0,201
S11	C_EqCat	94,633	0,627	137,526	0,142	317,657	0,416	971,446	87,846	0,014	5,089	1,359	0,193
S12	C_WeirEqCat	104,516	0,534	161,572	0,143	362,794	0,361	1 130,042	94,695	0,013	5,089	1,238	0,177
S13	q_1	94,072	0,566	139,029	0,141	319,108	0,380	986,390	89,628	27,687	5,089	3,525	0,497
S14	q_1x4	92,969	0,565	137,445	0,141	315,429	0,379	975,224	88,511	17,981	5,089	3,014	0,425
S15	q_1x16	88,222	0,574	129,871	0,141	298,564	0,384	921,246	84,047	10,255	5,089	2,596	0,366
S16	q_1x36	85,415	0,586	125,249	0,141	288,33	0,391	887,290	81,430	7,407	5,089	2,404	0,339
S17	Comp_AgeLength	62,589	0,841	93,524	0,151	211,12	0,546	618,802	60,032	1,026	5,089	1,742	0,263
S18	PS_Two	86,560	0,746	120,070	0,135	281,334	0,480	891,608	86,033	0,154	5,089	1,844	0,249
S19	CompWt_01	91,240	0,633	133,148	0,142	306,596	0,420	935,005	87,023	0,215	5,089	1,345	0,191
S20	CompWt_1	70,384	0,616	102,448	0,141	236,545	0,410	724,765	66,725	0,034	5,089	1,865	0,263
S21	CompWt_2	67,275	0,611	98,019	0,141	226,275	0,407	694,128	63,755	0,034	5,089	2,163	0,305
S22	CompWt_5	65,422	0,606	95,404	0,141	220,193	0,404	676,201	61,990	0,043	5,089	2,624	0,370

Figure 20a. Biomasse du stock reproducteur (BSR) moyenne estimée (kt) pour les divers modèles opérationnels de sensibilité du tableau 4.

Figure 20b. Estimations moyennes de l'épuisement (D) pour les divers modèles opérationnels de sensibilité décrits dans le tableau 4.

Figure 20c. Biomasse du stock reproducteur (BSR) moyenne estimée par rapport aux niveaux du RMD (B_BRMD) pour les divers modèles opérationnels de sensibilité décrits dans le tableau 4.

Figure 21. Estimations moyennes de la biomasse du stock reproducteur projetée (B_BRMD_p) par rapport aux niveaux du RMD pour une projection sur 50 ans d'un scénario de taux de mortalité par pêche actuel constant (une projection du statu quo de la pêche). Il convient de noter que le RMD est recalculé pour chaque année ultérieure en fonction de la croissance correspondante pour l'année en question.

Taux de variation (stock-recrutement de Beverton-Holt)

Figure 22. Log-vraisemblance négative en ce qui concerne le taux de variation spécifié de la fonction stock-recrutement. Des valeurs plus faibles indiquent un meilleur ajustement du modèle. La ligne noire dans chaque graphique est identique et montre la valeur de la fonction objective globale du modèle dans la plage du taux de variation spécifié de 0,7 à 0,95. Les lignes verticales tiretées en bleu indiquent les valeurs proposées pour l'ensemble de référence (0,7 et 0,95; 0,95 est l'hypothèse du scénario de référence). Les graphiques diffèrent de par la mise à l'échelle de l'axe des ordonnées, le graphique à droite étant remis à l'échelle sur la plage de la fonction objective globale obtenue dans les diverses analyses de sensibilité pour le taux de mortalité naturelle, M (M_HighMv est une valeur élevée de M qui varie selon l'âge, M_LowMv est une valeur faible de M qui varie selon l'âge et le scénario de référence est une valeur fixe de M invariable selon l'âge, de 0,35). Il convient de noter que la ligne rouge et les points rouges qui indiquent les divers scénarios de M sont superposés pour montrer l'échelle et ne sont pas liés au taux de variation représenté par l'axe des abscisses.

MODÈLES OPÉRATIONNELS DE L'ENSEMBLE DE RÉFÉRENCE

Comme pour les modèles opérationnels de sensibilité, le plus grand déterminant de l'ajustement du modèle était la spécification du taux de mortalité naturelle. C'est l'hypothèse d'une valeur constante de M = 0,35 du modèle du cas de référence qui a donné le meilleur ajustement global aux données, suivie du scénario d'une valeur faible de M variable selon l'âge (niveau de facteur 2), puis du scénario d'une valeur élevée de M variable selon l'âge (niveau de facteur 3) (tableau 11).

Les modèles opérationnels de l'ensemble de référence couvrent une plage relativement grande de l'état actuel du stock (BSR par rapport aux niveaux de RMD entre 0,75 et 3), du taux de récolte durable (URMD dans la fourchette de 20 à 60 % de la biomasse vulnérable) et du rendement maximal durable asymptotique (50 à 150 kt), qui constituent un banc d'essai raisonnablement difficile pour les procédures de gestion étant donné qu'aucun étalonnage unique de l'indice du relevé acoustique ou du taux de prélèvement cible ne donnera nécessairement de bons résultats parmi tous les modèles opérationnels de l'ensemble de référence.

Les estimations de l'état actuel du stock (BSR par rapport aux niveaux de RMD) sont plus optimistes que les ajustements précédents du modèle, principalement en raison de la

spécification des taux de mortalité naturelle qui sont plus élevés dans les trois niveaux (un stock plus résilient) que les valeurs précédemment supposées.

La variance dans les estimations du modèle était plus élevée entre les configurations du modèle opérationnel que dans les simulations d'un modèle opérationnel individuel (voir la figure 25). Par exemple, l'état actuel du stock n'est pas sensiblement plus important lorsqu'on présente les estimations du modèle par simulation (figure 25) comparativement à la fourchette entre les estimations moyennes (moyennes calculées sur les simulations) des modèles de rechange (figure 23c).

			Prises à l'équilibre			Composi	ition selon l'âge	9	Indic	es	Capturabilité de l'indice		
MO	Code	Total	Senne coulissante	Fascine	Filet maillant	Autre	Senne coulissante	Fascine	Acoustique	Larvaire	q Acoustique	q Larvaire	
1	1 A H -	668,33	-	-	58,38	100,33	142,56	154,43	-3,30	39,68	3,03	0,04	
2	2 A H -	675,39	-	-	59,22	100,34	146,77	155,05	-3,23	38,00	3,48	0,04	
3	3 A H -	680,78	-	-	58,82	100,82	146,11	158,33	-3,45	41,61	2,32	0,03	
4	1 B H -	668,33	-	-	58,38	100,33	142,56	154,43	-3,30	39,68	3,03	0,04	
5	2 B H -	675,39	-	-	59,22	100,34	146,77	155,05	-3,23	38,00	3,48	0,04	
6	3 B H -	680,78	-	-	58,82	100,82	146,11	158,33	-3,45	41,61	2,32	0,03	
7	1 A L -	668,25	-	-	58,77	100,04	142,70	154,35	-3,45	39,60	2,78	0,03	
8	2 A L -	679,19	-	-	61,18	99,99	147,50	155,10	-3,89	37,52	2,99	0,04	
9	3 A L -	680,42	-	-	58,66	100,83	146,14	158,28	-3,39	41,75	2,29	0,03	
10	1 B L -	668,25	-	-	58,77	100,04	142,70	154,35	-3,45	39,60	2,78	0,03	
11	2 B L -	679,19	-	-	61,18	99,99	147,50	155,10	-3,89	37,52	2,99	0,04	
12	3 B L -	680,42	-	-	58,66	100,83	146,14	158,28	-3,39	41,75	2,29	0,03	
13	1 A H +	654,41	-3,69	-3,25	61,81	99,59	148,43	145,42	-1,20	36,72	3,00	0,04	
14	2 A H +	659,32	-3,67	-2,68	63,64	99,66	149,52	146,07	-1,70	36,21	3,22	0,05	
15	3 A H +	670,05	-3,69	-3,36	62,62	99,88	153,92	149,83	-1,21	37,89	2,38	0,03	
16	1 B H +	654,41	-3,69	-3,25	61,81	99,59	148,43	145,42	-1,20	36,72	3,00	0,04	
17	2 B H +	659,32	-3,67	-2,68	63,64	99,66	149,52	146,07	-1,70	36,21	3,22	0,05	
18	3 B H +	670,05	-3,69	-3,36	62,62	99,88	153,92	149,83	-1,21	37,89	2,38	0,03	
19	1 A L +	653,56	-3,67	-3,01	62,38	99,08	147,40	145,91	-2,06	36,60	2,58	0,04	
20	2 A L +	690,22	-3,55	-2,55	71,16	98,81	151,83	147,64	4,95	35,97	2,08	0,04	
21	3 A L +	669,67	-3,69	-3,36	61,96	99,85	154,51	149,93	-1,59	37,33	2,49	0,03	
22	1 B L +	653,56	-3,67	-3,01	62,38	99,08	147,40	145,91	-2,06	36,60	2,58	0,04	
23	2 B L +	690,22	-3,55	-2,55	71,16	98,81	151,83	147,64	4,95	35,97	2,08	0,04	
24	3 B L +	669,67	-3,69	-3,36	61,96	99,85	154,51	149,93	-1,59	37,33	2,49	0,03	

Tableau 11. Comme le tableau 9, mais pour les modèles opérationnels de l'ensemble de référence. Un tiret « --» indique qu'il n'y a pas de données.

M O	Code	RMD (kt)	FRM D	BSRRMD (kt)	BSRRMD/ BSR0	BRMD (kt)	VBRMD	URM D	BSR0 (kt)	RRéf (kt)	Bfaible (kt)	DGM (années)	BSR/ BSRRMD	D
1	1 A H -	75,587	0,623	109,912	0,142	253,808	182,764	0,414	776,541	71,704	0,040	5,089	1,613	0,229
2	2 A H -	54,496	0,499	103,340	0,136	215,489	155,627	0,350	760,067	52,519	0,013	5,521	1,301	0,177
3	3 A H -	122,781	1,076	90,120	0,110	412,151	211,220	0,582	822,642	113,433	13,982	4,691	3,045	0,335
4	1 B H -	76,134	0,621	111,218	0,143	256,498	184,563	0,413	776,541	67,437	0,040	5,089	1,601	0,229
5	2 B H -	54,921	0,498	104,662	0,138	217,934	157,309	0,349	760,067	47,145	0,013	5,521	1,283	0,177
6	3 B H -	123,591	1,074	91,113	0,111	416,624	213,042	0,581	822,642	114,936	13,982	4,691	3,018	0,335
7	1 A L -	62,089	0,355	168,986	0,210	305,906	239,636	0,259	806,246	52,515	1,633	5,089	0,986	0,207
8	2 A L -	44,562	0,281	156,658	0,200	261,079	207,044	0,215	784,036	38,103	2,219	5,521	0,950	0,190
9	3 A L -	95,262	0,509	171,647	0,203	477,972	290,812	0,328	847,383	79,099	1,317	4,691	1,488	0,302
10	1 B L -	62,571	0,355	170,800	0,212	309,021	241,927	0,259	806,246	42,993	1,655	5,089	0,976	0,207
11	2 B L -	44,944	0,281	158,333	0,202	263,790	209,065	0,215	784,036	29,348	2,250	5,521	0,941	0,190
12	3 B L -	95,929	0,508	173,420	0,205	482,994	293,392	0,327	847,383	69,483	1,334	4,691	1,473	0,302
13	1 A H +	104,516	0,534	161,572	0,143	362,794	289,771	0,361	1130,042	94,695	0,013	5,089	1,238	0,177
14	2 A H +	86,497	0,445	170,391	0,136	349,514	274,411	0,315	1254,164	79,679	0,016	5,521	0,926	0,126
15	3 A H +	150,166	0,872	114,101	0,110	503,533	311,525	0,483	1034,140	134,365	1,282	4,691	2,709	0,298
16	1 B H +	105,302	0,533	163,301	0,145	366,438	292,455	0,360	1130,042	91,664	0,013	5,089	1,221	0,177
17	2 B H +	87,186	0,445	172,348	0,137	353,252	277,143	0,315	1254,164	73,713	0,017	5,521	0,920	0,126
18	3 B H +	151,272	0,872	115,080	0,111	508,635	314,057	0,483	1034,140	141,384	1,282	4,691	2,685	0,298
19	1 A L +	87,775	0,317	252,739	0,210	451,023	376,212	0,233	1203,773	71,044	2,472	5,089	0,757	0,159
20	2 A L +	72,743	0,262	269,116	0,199	443,743	361,302	0,201	1351,531	58,736	3,682	5,521	0,889	0,177
21	3 A L +	117,835	0,437	217,560	0,202	597,332	417,343	0,283	1 078,546	94,585	1,714	4,691	1,282	0,259
22	1 B L +	88,463	0,316	255,331	0,212	455,479	379,666	0,233	1203,773	59,838	2,505	5,089	0,750	0,159
23	2 B L +	73,357	0,262	271,822	0,201	448,158	364,597	0,201	1351,531	46,859	3,731	5,521	0,881	0,177
24	3 B L +	118,707	0,437	219,679	0,204	603,448	421,040	0,282	1078,546	85,891	1,735	4,691	1,270	0,259

Tableau 12. Comme le tableau 10, mais pour les modèles opérationnels de l'ensemble de référence.

Figure 23a. Estimations de la biomasse du stock reproducteur (kt) des divers facteurs de la grille de l'ensemble de référence.

Figure 23b. Estimations de l'épuisement du stock reproducteur pour les divers facteurs de la grille de l'ensemble de référence.

Figure 23c. Estimations de la biomasse du stock reproducteur par rapport aux niveaux de RMD entre les divers facteurs des modèles opérationnels de l'ensemble de référence.

Figure 24. Biomasse projetée du stock reproducteur par rapport aux niveaux de RMD pour le taux estimé actuel (2018) de mortalité par pêche selon l'âge.

Figure 25. Estimations stochastiques du modèle (par simulation, 48 simulations par modèle opérationnel) agrégées en fonction de divers facteurs de la grille de référence des modèles opérationnels. Le rendement maximal durable (RMD), la biomasse du stock reproducteur (BSR) et le rendement de référence (RRéf) sont exprimés en kilotonnes. BSR_BSRRMD est la biomasse du stock reproducteur en 2018 par rapport aux niveaux de RMD. BSR est la biomasse actuelle (2018) du stock reproducteur. URMD est la fraction de la biomasse vulnérable en poids qui a été capturée en 2018. RRéf est le rendement maximal qui peut être obtenu à partir d'un taux fixe de mortalité par pêche compte tenu de la sélectivité de 2018 et des futures conditions de pêche (croissance et recrutement).

Figure 26. Projections de la biomasse du stock reproducteur par rapport aux niveaux de RMD compte tenu du taux actuel de mortalité par pêche selon l'âge pour l'ensemble de référence des modèles opérationnels (lignes grises). Les modèles opérationnels du scénario de référence (R) apparaissent en noir. Les lignes bleue et rouge représentent des modèles opérationnels de l'ensemble de référence qui couvrent un large éventail d'incertitudes dans les résultats et qui produisent des résultats relativement optimistes (O) et pessimistes (P). Ces trois scénarios, R (scénario de référence), O (optimiste, modèle opérationnel de l'ensemble de référence n° 18, « 3BH+ ») et P (pessimiste, modèle opérationnel de l'ensemble de référence n° 8, « 2AL+ ») forment la grille de robustesse qui est répliquée sur les niveaux des facteurs pour l'ensemble de robustesse.

MODÈLES OPÉRATIONNELS DE L'ENSEMBLE DE ROBUSTESSE

Les scénarios de robustesse qui présentaient le contraste le plus important par rapport à ceux de l'ensemble de référence étaient les scénarios de rechange pour la relation stock-recrutement (R12 et R13, en supposant un modèle de Ricker) et le rétablissement (R14 à R16) qui simulaient les niveaux actuels du stock à partir de niveaux de 50 % environ de BRMD (tableau 14; figure 27c). Les modèles R13 (Ricker_O) et R16 (Reb_P) étaient les deux seuls modèles opérationnels de robustesse qui n'entraîneraient pas une augmentation des niveaux du stock pour le taux actuel (2018) de mortalité par pêche selon l'âge (figure 28). Le scénario de rétablissement optimiste (R15, Reb_O) menait à des tendances à la hausse de la biomasse reproductrice ces dernières années, contrairement à l'indice du relevé acoustique, ce qui peut être considéré comme un ajustement suffisamment mauvais pour exclure ce modèle opérationnel des analyses suivantes.

La fonction de stock-recrutement de Ricker (Ricker_R) était légèrement mieux ajustée aux données (nll = 666,59) que la fonction de stock-recrutement de Beverton-Holt du modèle opérationnel du scénario de référence (nll = 668,33).

En général, les scénarios de prises de rechange (R17 à R25) ont tous donné des résultats plus pessimistes, mais sans avoir autant d'incidence sur les estimations et les projections du modèle que d'autres axes d'incertitude (par exemple, comparaison des lignes rouges et noires sur la figure 28). Ce sont les scénarios où toutes les prises dans les divisions 4VWX étaient incluses

dans l'ajustement historique qui ont eu la plus grande incidence parmi tous les scénarios de prises.

En général, les modèles opérationnels de l'ensemble de robustesse offraient une gamme semblable des valeurs de URMD, RMD et BSRRMD que les modèles opérationnels de l'ensemble de référence (tableau 14).

			Prises à l'équilibre			Composit	ion selon l'âge)	Indic	es	Capturabilité de l'indice		
MO	Code	Total	Senne coulissante	Fascine	Filet maillant	Autre	Senne coulissante	Fascine	Acoustique	Larvaire	q Acoustique	q Larvaire	
R1	q1_R	778,26	0	0	65,89	99,29	144,63	157,28	72,30	38,97	1	0,02	
R2	q1_O	755,10	-3,63	-2,99	66,88	99,25	150,70	155,35	55,23	38,24	1	0,03	
R3	q1_P	829,05	0	0	73,91	98,90	161,18	157,23	85,58	37,46	1	0,03	
R4	AgeComp1_R	1164,12	0	0	112,57	195,08	268,51	297,96	-2,14	42,95	2,98	0,04	
R5	AgeComp1_O	1172,95	-3,69	-3,46	117,97	193,92	284,28	293,30	1,08	42,15	2,11	0,03	
R6	AgeComp1_P	1178,82	0	0	116,69	195,07	274,32	299,38	-3,03	40,31	3,28	0,05	
R7	Steep7_R	668,50	0	0	58,96	99,95	142,75	154,30	-3,51	39,55	2,69	0,03	
R8	Steep7_O	669,53	-3,69	-3,36	61,79	99,82	154,40	149,99	-1,58	37,27	2,50	0,03	
R9	Length_R	1990,22	0	0	64,54	100,77	145,73	160,00	-2,50	39,33	3,55	0,05	
R10	Length_O	1985,99	-3,61	-3,29	68,44	100,89	148,09	156,09	-1,23	37,45	2,86	0,04	
R11	Length_P	2017,68	0	0	71,02	100,30	149,11	161,27	-3,98	37,70	3,39	0,05	
R12	Ricker_R	666,59	0	0	58,37	100,24	140,96	155,06	-3,60	42,69	2,83	0,04	
R13	Ricker_O	681,41	0	0	58,23	100,10	146,73	153,77	0,89	39,82	3,70	0,04	
R14	Reb_R	668,33	0	0	58,38	100,33	142,56	154,43	-3,30	39,68	3,03	0,04	
R15	Reb_O	670,05	-3,69	-3,36	62,62	99,88	153,92	149,83	-1,21	37,89	2,38	0,03	
R16	Reb_P	679,19	0	0	61,18	99,99	147,50	155,10	-3,89	37,52	2,99	0,04	
R17	US20_R	662,26	0	0	56,36	99,77	143,62	152,05	-2,37	37,97	2,68	0,03	
R18	US20_O	669,21	-3,69	-3,36	62,58	99,85	153,78	149,74	-1,20	37,68	2,20	0,03	
R19	US20_P	679,49	0	0	61,04	99,24	150,31	152,61	-2,94	35,89	2,43	0,04	
R20	US40_R	661,10	0	0	56,37	99,76	143,25	152,03	-2,34	37,63	2,48	0,03	
R21	US40_O	668,60	-3,69	-3,35	62,54	99,84	153,71	149,66	-1,18	37,51	2,06	0,03	
R22	US40_P	677,60	0	0	60,87	99,22	149,64	152,59	-2,91	35,59	2,25	0,03	
R23	ALL_R	662,03	0	0	54,90	99,69	143,62	152,26	-2,52	37,78	2,43	0,03	
R24	AII_O	669,08	-3,69	-3,36	61,50	99,76	153,56	150,03	-1,34	37,75	2,00	0,03	
R25	ALL_P	679,05	0	0	59,53	99,27	150,46	152,69	-3,09	35,93	2,29	0,03	

Tableau 13. Comme le tableau 9, mais pour les modèles opérationnels de l'ensemble de robustesse.

МО	Code	RMD (kt)	FRMD	BSRRMD (kt)	BSRRMD/BSR0	BMSY (kt)	URMD	BSR0 (kt)	RRéf (kt)	Bfaible (kt)	DGM (années)	BSR / BSRRMD	D
1	RefCase	75,587	0,623	109,912	0,142	253,808	0,414	776,541	71,704	0,040	5,089	1,613	0,229
R1	q1_R	88,222	0,574	129,871	0,141	298,564	0,384	921,246	84,047	10,255	5,089	2,596	0,366
R2	q1_O	158,785	0,849	120,618	0,111	533,058	0,472	1 088,918	148,774	8,607	4,691	2,757	0,306
R3	q1_P	51,727	0,258	185,969	0,200	308,640	0,198	931,460	44,386	2,628	5,521	2,075	0,415
R4	AgeComp1_R	70,384	0,616	102,448	0,141	236,545	0,410	724,765	66,725	0,034	5,089	1,865	0,263
R5	AgeComp1_O	147,305	0,853	111,790	0,111	494,537	0,473	1 009,464	137,737	2,246	4,691	3,099	0,344
R6	AgeComp1_P	40,463	0,281	142,312	0,200	237,158	0,215	712,171	34,613	2,059	5,521	0,980	0,196
R7	Steep7_R	58,764	0,316	181,472	0,223	316,632	0,234	814,386	48,251	3,196	5,089	0,906	0,202
R8	Steep7_O	112,005	0,384	240,746	0,220	622,041	0,254	1 093,969	76,177	3,405	4,691	1,127	0,248
R9	Length_R	62,589	0,841	93,524	0,151	211,120	0,546	618,802	60,032	1,026	5,089	1,742	0,263
R10	Length_O	122,703	1,261	99,287	0,120	420,665	0,688	828,804	112,457	1,621	4,691	2,717	0,326
R11	Length_P	37,510	0,340	127,888	0,202	213,514	0,259	633,785	32,137	1,915	5,521	0,970	0,196
R12	Ricker_R	96,090	0,399	235,338	0,303	440,512	0,287	776,802	76,657	6,504	5,089	0,630	0,191
R13	Ricker_O	55,147	0,241	228,739	0,300	364,909	0,188	762,374	41,663	17,733	5,521	0,650	0,195
R14	Reb_R	75,587	0,623	109,912	0,142	253,808	0,414	776,541	71,704	0,040	5,089	0,500	0,071
R15	Reb_O	151,272	0,872	115,080	0,111	508,635	0,483	1 034,140	141,384	1,282	4,691	0,505	0,056
R16	Reb_P	44,562	0,281	156,658	0,200	261,079	0,215	784,036	38,093	2,219	5,521	0,500	0,100
R17	US20_R	96,199	0,533	148,882	0,143	334,163	0,361	1 042,174	88,833	0,013	5,089	1,427	0,204
R18	US20_O	162,246	0,878	123,329	0,111	545,706	0,486	1 107,803	151,545	1,748	4,691	2,703	0,300
R19	US20_P	58,512	0,261	216,667	0,199	357,210	0,201	1 088,258	48,800	3,328	5,521	1,005	0,200
R20	US40_R	102,951	0,534	158,973	0,143	357,167	0,361	1 112,981	95,277	0,014	5,089	1,448	0,207
R21	US40_O	173,250	0,884	131,588	0,111	582,869	0,489	1 181,622	161,730	2,362	4,691	2,712	0,301
R22	US40_P	62,537	0,260	231,118	0,199	381,183	0,200	1 160,586	52,289	3,519	5,521	1,015	0,202
R23	All_R	99,808	0,699	159,721	0,151	351,698	0,472	1 059,433	93,578	0,014	5,089	1,391	0,210
R24	AII_O	164,918	1,283	128,871	0,115	560,000	0,713	1 119,614	153,243	3,391	4,691	2,687	0,309
R25	ALL_P	61,248	0,293	224,501	0,204	369,159	0,224	1 102,664	51,719	3,551	5,521	0,936	0,191

Tableau 14. Comme le tableau 10, mais pour les modèles opérationnels de l'ensemble de robustesse.

Impact sur les estimations parmi les axes d'incertitude pour les analyses de sensibilité

Figure 27a. Estimations moyennes de la biomasse du stock reproducteur (BSR; kt) par le modèle opérationnel de robustesse.

Impact sur les estimations parmi les axes d'incertitude pour les analyses de sensibilité

Figure 27b. Estimations moyennes de l'épuisement du stock (D, biomasse du stock reproducteur par rapport aux niveaux non exploités) par le modèle opérationnel de robustesse.

Annee

Figure 27c. Estimations de la biomasse du stock reproducteur par rapport aux niveaux de RMD (B_BRMD) par le modèle opérationnel de robustesse.

Impact sur les estimations parmi les axes d'incertitude pour les analyses de sensibilité

Figure 28. Biomasse moyenne projetée du stock reproducteur (BSR; kt) pour le taux actuel de mortalité par pêche selon l'âge pour les modèles opérationnels de robustesse.

DISCUSSION

CONSTATATIONS

L'approche de conditionnement du modèle opérationnel appliquée dans ces analyses était remarquablement stable dans un très large éventail de scénarios pour la dynamique de la pêche et les données d'entrée. Une approche du maximum de vraisemblance a permis d'ajuster le modèle très rapidement. Les échantillons stochastiques tirés de la matrice de variancecovariance des paramètres ont constitué un moyen de caractériser l'incertitude des paramètres à l'intérieur du modèle avec des preuves pour les quelques tirages fallacieux ou invraisemblables. Ces simulations stochastiques étaient relativement précises et se situaient souvent largement à l'intérieur des données observées. Néanmoins, l'approche actuelle va plus loin que d'autres cadres de l'évaluation de la stratégie de gestion, comme ceux qui ont été appliqués au thon rouge du Sud et de l'Atlantique, qui n'intègrent pas l'incertitude des paramètres du modèle et comprennent seulement les erreurs d'observation et de processus pour les projections de l'évaluation de la stratégie de gestion.

En général, la variance des estimations modélisées entre les types de modèle opérationnel (c.à-d. les ajustements de l'estimation du maximum de vraisemblance entre les modèles opérationnels) était nettement plus élevée que la variance entre les simulations stochastiques dans les modèles opérationnels. Il pourrait ainsi être peu avantageux d'échantillonner un très grand nombre de simulations autres que le calcul de paramètres de rendement de plus grande précision.

Globalement, les estimations de l'état actuel du stock dans la grille de référence des modèles opérationnels étaient un peu plus optimistes que les analyses précédentes présentées au groupe de travail sur le hareng de l'Atlantique, qui supposaient un taux de mortalité naturelle beaucoup plus bas (0,2). L'ensemble de robustesse des modèles opérationnels comportait toutefois au moins cinq scénarios qui testaient la capacité d'une procédure de gestion possible (PGP) d'assurer le rétablissement à partir de niveaux du stock nettement inférieurs aux niveaux cibles de RMD.

L'ajustement du modèle de base a révélé un conflit similaire entre l'échelle (taux de mortalité par pêche) déduite par les données sur la composition et le relevé acoustique. Dans ce cas, le modèle de base a estimé la biomasse vulnérable qui était environ trois fois plus petite que celle du relevé acoustique (*q* du relevé = 3,03). Ce résultat est moins grave que celui d'une étude précédente sur les modèles d'évaluation (l'écart moyen d'environ 5 entre les évaluations; MPO 2011).

Même si les ajustements à la composition selon l'âge du relevé et de la flotte principale (senne coulissante) étaient très bons, les données sur la composition selon l'âge pour cette flotte pourraient être médiocres pour d'autres flottes certaines années, dénotant une mauvaise spécification du modèle et l'incapacité d'estimer les processus liés à la sélectivité ou à la disponibilité des variables. Auparavant, on avait posé pour hypothèse que la répartition de la pêche à la senne coulissante entre des flottes pêchant les juvéniles et les reproducteurs permettrait de corriger cette mauvaise spécification et peut-être aussi le conflit d'échelle inférée entre les types de données. Le modèle opérationnel de sensibilité correspondant a prouvé que cette hypothèse est erronée.

Les scénarios du modèle opérationnel de l'ensemble de référence indiqués ici donnent des estimations extrêmement différentes de l'état actuel du stock (juste en dessous et au-dessus de BSR_{RMD}), ont des taux de récolte durables et des tailles absolues du stock actuel différents et un étalonnage variable par rapport à l'indice du relevé acoustique disponible (tableaux 11 et 12). À titre d'ensemble de référence des modèles opérationnels, ils constituent un test

raisonnablement difficile d'une procédure de gestion possible. Une procédure de gestion possible devrait gérer l'exploitation de manière à maximiser le rendement à long terme dans certains modèles opérationnels tout en maintenant ou en augmentant le taux d'exploitation dans d'autres. Une procédure de gestion possible qui suppose une proportion fixe de l'indice du relevé acoustique peut également éprouver des difficultés en raison du taux de récolte et de la valeur de *q* variables entre les modèles opérationnels. Il est probable que pour un ensemble de référence comparable des modèles opérationnels, il existe des possibilités de rendement pour les procédures de gestion possibles qui sont soit fondées sur un modèle (comportent un certain type d'estimation de l'état), soit adaptables, et qui ne dépendent pas de simples interprétations fixes de l'indice du relevé pour fournir des avis sur les TAC.

POINTS FORTS DE L'APPROCHE PROPOSÉE

L'outil MSEtool (Huynh *et al.* 2019) et son approche de conditionnement des modèles opérationnels qui a été utilisée ici, ont été élaborés pour répondre à bon nombre des principales critiques formulées à l'encontre des autres cadres de l'évaluation de la stratégie de gestion, notamment l'inefficacité des calculs (temps requis pour obtenir des résultats, étudier d'autres scénarios de modèle), le manque de transparence (le problème de la « boîte noire » dans les processus destinés à être ouverts), la difficulté à personnaliser les modèles opérationnels, les procédures de gestion et les paramètres de rendement, l'inaccessibilité et le manque de documentation, ainsi que la flexibilité insuffisante pour étudier un large éventail de scénarios du modèle opérationnel. On espère que les méthodes et la fourniture d'un code pour ces analyses démontrent les progrès réalisés dans l'élaboration de l'outil MSEtool.

FAIBLESSES DE L'APPROCHE PROPOSÉE

L'approche du modèle opérationnel ne permet toujours pas de concilier les conflits de données mentionnés précédemment (c.-à-d. q pour l'indice du relevé acoustique > 1) qui empêchaient auparavant d'utiliser des modèles d'évaluation pour fournir des avis de gestion. Le groupe de travail sur le hareng de l'Atlantique est d'accord pour dire que la valeur de q pourrait être supérieure à 1 en raison de l'incertitude entourant le taux de renouvellement dans les frayères et de l'indice de réflexion du poisson utilisé pour estimer la biomasse du hareng à partir de la rétrodiffusion acoustique.

En raison de contraintes de temps, il n'a pas été possible de fournir une évaluation plus approfondie du modèle opérationnel du scénario de référence dans le présent rapport. D'autres diagnostics, comme des analyses rétrospectives et des tests de simulation, pourraient être soumis plus tard.

L'approche de l'analyse de réduction des stocks ne tient pas compte des erreurs d'observation des prises et comprime donc l'incertitude dans les estimations des paramètres (et les points de référence de gestion) pour les ajustements de modèles individuels. Cela est toutefois moins important dans l'évaluation de la stratégie de gestion, où les incertitudes relatives aux estimations de la dynamique de la pêche entre les modèles opérationnels éclipsent généralement celles qui sont estimées dans un modèle opérationnel donné (comme c'était également le cas ici).

En regroupant deux frayères distinctes en une seule population, ces modèles risquent de ne pas tenir compte des changements régionaux de la productivité ou des variations de l'aire de répartition. Bien qu'il puisse être difficile d'estimer ces changements de façon empirique dans le conditionnement des modèles, l'outil MSEtool est de manière inhérente un modèle spatial et de tels scénarios peuvent être spécifiés théoriquement et examinés comme des modèles opérationnels de robustesse.

L'ensemble de référence des modèles opérationnels n'était pas beaucoup plus restreint dans les estimations et les résultats des projections des modèles que l'ensemble de robustesse, à l'exception peut-être des modèles opérationnels de stock-recrutement et de rétablissement de Ricker, dans lesquels l'état actuel du stock était nettement plus faible. L'ensemble de référence pourrait donc constituer une base relativement difficile pour tester une procédure de gestion possible par rapport à l'ensemble de robustesse. Ce n'est généralement pas la situation prévue pour ces deux ensembles de scénarios.

INCERTITUDES NON DÉCRITES DANS LES ENSEMBLES DE RÉFÉRENCE ET DE ROBUSTESSE ACTUELS DES MODÈLES OPÉRATIONNELS

Certains scénarios relatifs à la dynamique de la pêche ont fait l'objet de discussions lors de l'atelier d'évaluation de la stratégie de gestion consacré aux incertitudes en janvier 2020, mais ils n'ont pas été présentés dans les ensembles de référence et de robustesse actuels des modèles opérationnels. Certaines de ces incertitudes ont été explorées avant l'élaboration des modèles opérationnels et considérées comme faisant partie de l'ensemble existant de modèles opérationnels. D'autres analyses de sensibilité ont été demandées pendant et juste après les réunions des 23 et 24 mai 2020; ces résultats sont présentés à l'annexe D.

La relation entre la croissance et la température de l'océan a été étudiée en utilisant les températures de la surface et du fond à la station Prince 5 du PMZA et en prédisant les poids d'après les changements prévus des températures de l'océan pour la station Prince 5 du modèle de l'Atlantique Nord de l'Institut océanographique de Bedford (MANIOB) (Brickman *et al.* 2016). Le modèle MANIOB tient compte de quatre projections différentes de la température de l'océan (deux projections différentes pour les émissions de CO₂ et sur deux périodes (2055 et 2075). Les données sur la température pour Prince 5 ont été obtenues du PMZA et de la <u>base de données</u> océanographiques du MPO pour la période 1970 à 2018. Des régressions linéaires ont été réalisées entre le poids (log₁₀-transformé) et la température séparément selon l'âge. Les variables prédictives étudiées étaient les suivantes :

- température annuelle moyenne (surface et fond);
- température hivernale moyenne (mois 1 à 3);
- température printanière moyenne (mois 4 à 6);
- température estivale moyenne (mois 7 à 9);
- température automnale moyenne (mois 10 à 12).

Les températures moyennes pour la série chronologique de 1970 à 2018 ont été calculées comme la moyenne des moyennes des moindres carrés tirée d'une analyse de variance (ANOVA) de la température par rapport au mois (facteur catégorique) et à l'année (facteur catégorique), afin de tenir compte des données manquantes un mois particulier. La variable prédictive de la température automnale expliquait la plus grande variabilité du poids (sélectionnée en fonction de la moyenne r² entre les âges) qui a été retenue comme variable pour l'évaluation. Les projections de température pour les émissions de CO₂ les plus élevées en 2055 et 2075 ont été choisies comme les deux scénarios climatiques futurs à évaluer. Les écarts de température par rapport à la climatologie de référence (définie dans le modèle comme la température moyenne de 1986 à 2005) pour la zone où se trouve la station Prince 5 ont été fournis par David Brickman (D. Brickman, MPO, comm. pers.). Ces écarts ont été ajoutés à la climatologie de référence pour Prince 5 et utilisés comme projections des températures futures pour 2055 et 2075. Les températures moyennes projetées ont en fait chuté dans la fourchette des températures observées dans la série chronologique de 1970 à 2018. Les poids moyens prévus selon l'âge, fondés sur les projections des températures pour les âges 3 et plus du

hareng, étaient supérieurs aux deux scénarios inclus dans l'ensemble des modèles opérationnels de référence. Un scénario supplémentaire pour les projections du poids selon l'âge n'a donc pas été produit.

L'influence des changements de l'abondance des phoques par rapport aux changements de la mortalité naturelle a été explorée. Guénette et Stephenson (2012) ont estimé la biomasse de hareng consommée de 1970 à 2006 pour les principaux groupes de prédateurs (figure 29). En 2006, les prédations exercées par les phoques gris représentaient environ 15 % de la biomasse de hareng consommée par tous les prédateurs. En 2017, l'abondance des phoques gris avait augmenté de 68 % (Hammill *et al.* 2017) par rapport à 2006. En supposant que les taux de consommation demeurent inchangés et que la biomasse consommée est proportionnelle au taux de mortalité de 2006 à 2017, l'augmentation de l'abondance des phoques gris entraînerait une hausse d'environ 10 % du taux de mortalité naturelle. Il n'a pas été possible d'élaborer un scénario avec une valeur de M variable dans le temps tenant compte de la variation de l'abondance des phoques gris, car la contribution des phoques gris à la biomasse totale est relativement faible et un scénario doit tenir compte de la contribution des autres espèces. D'autres recherches seraient nécessaires pour estimer correctement une valeur de M variable dans le temps tenant compte de M variable dans le temps tenant sur le sautres espèces.

Figure 29. Biomasse de hareng consommée par les prédateurs dans le scénario de base (figure tirée de Guénette et Stephenson 2012).

L'atelier de janvier 2020 a examiné d'autres incertitudes, notamment les changements climatiques, les changements des conditions océaniques, le régime alimentaire, la phénologie, l'état des larves, l'état des adultes, la fécondité et la structure des sous-stocks (par exemple, le retour des reproducteurs dans certaines zones). Bien que ces incertitudes n'aient pas été directement incluses dans les modèles opérationnels de référence et de robustesse, certaines

des influences des changements dans ces incertitudes entraîneraient des variations de la mortalité naturelle, du recrutement et de la croissance qui ont été reflétés avec des limites supérieures et inférieures dans l'ensemble des modèles opérationnels de référence.

L'erreur dans la détermination de l'âge est une autre incertitude qui a été explorée. Des matrices d'erreurs de détermination de l'âge ont été définies pour la période 2010 à 2018 afin de pouvoir comparer plusieurs lectures du même otolithe. Melvin et Campana (2010) présentent une erreur plus grave dans la détermination de l'âge en sous-estimant l'âge réel des harengs de 5 ans ou plus. Un modèle opérationnel de robustesse sera examiné ultérieurement pour évaluer l'influence de cette incertitude.

Bien qu'elles ne soient pas entièrement démontrées ici, il est intéressant d'énumérer certaines fonctions du modèle opérationnel de l'outil MSEtool qui pourraient être pertinentes pour des scénarios possibles des modèles opérationnels du hareng. Le modèle opérationnel sous-jacent comprend des tableaux précis pour les déplacements propres à la zone, à l'âge et à l'année, ce qui permet des décalages complexes de l'aire de répartition qui varient selon les classes d'âge. On peut ainsi tester la robustesse des décalages du lieu de fraie, par exemple. Le modèle accepte également des matrices pour la force du recrutement, permettant de définir la portée des scénarios de productivité future. De plus, il est possible de spécifier la mortalité naturelle selon l'âge variable dans le temps afin de tenir compte, par exemple, de l'évolution du nombre de prédateurs marins dans les futurs modèles opérationnels de robustesse.

PRIORITÉS DE L'ÉVALUATION DE LA STRATÉGIE DE GESTION DU HARENG DE L'ATLANTIQUE

Objectifs et paramètres de rendement préliminaires

Idéalement, les intervenants et les gestionnaires auraient des objectifs de gestion des pêches réalisables, explicitement énoncés avant l'élaboration technique d'un cadre de l'évaluation de la stratégie de gestion (Punt *et al.* 2014); cependant, l'expérience de l'évaluation de la stratégie de gestion donne à penser que cette attente est irréaliste et que le processus est nécessairement itératif, offrant l'occasion aux intervenants et aux gestionnaires de voir quels sont les résultats possibles et la meilleure façon d'opérationnaliser les objectifs plus généraux (Nakatsuka 2017). Habituellement, les intervenants déterminent au départ un grand nombre d'objectifs (par exemple, des rendements élevés) et de paramètres correspondants (par exemple, le rendement moyen de 2026 à 2030), dont la plupart sont par la suite jugés redondants (alignés avec d'autres paramètres de rendement) lorsqu'ils sont considérés ensemble dans un cadre fonctionnel de l'évaluation de la stratégie de gestion. Au moins une itération est nécessaire pour visualiser les paramètres (expressions quantitatives des objectifs) et une autre pour comprendre les relations entre les paramètres proposés afin de simplifier les résultats dans un format plus concis et assimilable.

Le processus complet d'élaboration des procédures de gestion possibles requiert un ensemble convenu de paramètres de rendement, car les développeurs utilisent normalement des paramètres pour ajuster leurs procédures de gestion possibles aux fins de comparabilité et de rendement optimal.

Tests « du rougissement » et plausibilité du modèle opérationnel

La présentation des modèles opérationnels dans ce document fournit une base pour commencer à examiner quand un modèle opérationnel ne devrait pas être considéré comme une représentation plausible du système ou comme inapproprié pour tester les procédures de gestion possibles. Par exemple, une corrélation négative de la biomasse vulnérable prédite par

le modèle et du relevé acoustique correspondant (par exemple, scénario q1). C'est un exemple de ce qu'on appelle le « test du rougissement » : un énoncé qualitatif visant à exclure la prise en compte d'un modèle opérationnel. L'établissement d'une gamme de tests du rougissement est la première priorité. Plus tard, il pourrait être nécessaire d'envisager un système quantitatif pour évaluer la plausibilité du modèle opérationnel si une pondération égale des modèles opérationnels est jugée inacceptable.

CONCLUSIONS

Une approche de conditionnement des modèles opérationnels a été décrite et démontrée aux fins d'utilisation dans l'évaluation de la stratégie de gestion du hareng de l'Atlantique au large du sud-ouest de la Nouvelle-Écosse et de la baie de Fundy, dans les divisions 4VWX de l'OPANO, conformément aux objectifs 1 à 7 (tableau 2).

Le cadre d'estimation a démontré une souplesse suffisante pour construire des modèles opérationnels qui peuvent couvrir les principales incertitudes pour la pêche, et une efficacité sur le plan des calculs suffisante pour pouvoir être étudiée en temps réel pendant les ateliers.

Un ensemble de référence plausible de 24 modèles opérationnels a été spécifié et ajusté; il couvrait un éventail de scénarios pour l'état actuel du stock, l'ampleur du stock actuel et le taux d'exploitation durable. De plus, on a spécifié 25 modèles opérationnels de robustesse qui peuvent être utilisés pour différencier davantage les procédures de gestion possibles.

REMERCIEMENTS

Bien que les auteurs soient responsables de toute erreur ou inexactitude dans ce document, nous tenons à remercier le groupe de travail sur l'évaluation de la stratégie de gestion du hareng de l'Atlantique. Un grand merci à Gary Melvin, Michelle Greenlaw, Rob Stephenson, Christa Waters, Jenna Munden et Tara McIntyre pour leurs conseils et leur soutien dans ce travail. L'élaboration des outils MSEtool et DLMtool a été financée par le Natural Resources Defense Council, un accord de partenariat du MPO (PAC2016.12), le Marine Stewardship Council, la fondation David et Lucile Packard et l'Organisation des Nations Unies pour l'alimentation et l'agriculture.

RÉFÉRENCES CITÉES

- Brickman, D., Wang, Z., and Detracey, B. 2016. <u>High resolution future climate ocean model</u> <u>simulations for the Northwest Atlantic Shelf region</u>. Can. Tech. Rep. Hydrogr. Ocean Sci. 315: 1488–5417. [accessed July 2020]
- Bundy, A., Link, J.S., Smith, B.E., and Cook, A.M. 2011. You are what you eat, whenever or wherever you eat it: An integrative analysis of fish food habits in Canadian and U.S.A. waters. Journal of Fish Biology. 78: 514–539.
- Butterworth, D.S. and Punt, A.E. 1999. <u>Experiences in the evaluation and implementation of management procedures.</u> ICES J. Mar. Sci. 56: 985–998.
- Carruthers, T.R. 2017. <u>Capelin in the Gulf of St Lawrence: a DFO Case Study Operating model</u>. [accessed July 2020]
- Carruthers, T.R. 2019a. Fall Spawning Atlantic Herring in NAFO Region 4T: a DFO case study operating model.
- Carruthers, T.R. 2019b. <u>Spring Spawning Atlantic Herring in NAFO Region 4T: a DFO case</u> <u>study operating model</u>.
- Carruthers, T. R., Punt, A. E., Walters, C. J., MacCall, A., McAllister, M.K., Dick, E. J., and Cope, J. 2014. Evaluating methods for setting catch limits in data-limited fisheries. Fish. Res. 153: 48–68.
- Carruthers, T.R., and Hordyk, A.R. 2019. Using management strategy evaluation to establish indicators of changing fisheries. Can. J. Fish. Aquat. Sci.. 76: 1653–1668.
- Carruthers, T.R. and Hordyk, A.R. 2018a. <u>Using management strategy evaluation to establish</u> <u>indicators of changing fisheries</u>. Can. J. Fish. Aquat. Sci. 76(9): 1653–1668.
- Carruthers, T.R. and Hordyk, A.R. 2018b. <u>The Data-Limited Methods Toolkit (DLMtool): An R</u> <u>package for informing management of data-limited populations</u>. Methods in Ecology and Evolution. 9: 2307–2413.
- Carruthers, T.R. and Hordyk, A.R. 2019. <u>DLMtool: Data-limited methods toolkit. R package</u> version 5.4. [accessed July 2020]
- CDFW. 2018. <u>2018 Master plan for fisheries: A guide for implementation of the Marine Life</u> <u>Management Act. California Department of Fish & Wildlife.</u> [accessed July 2020]
- Clark, K.J. 2006. <u>An examination of turnover rate of herring on the spawning grounds of Scots</u> <u>Bay and German Bank using tagging data</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/47.
- Clark, D.S., Clark, K.J, Claytor, R., Leslie, S., Melvin, G.D., Porter, J.M., Power, M.J., Stone, H.H., and Waters, C. 2012. <u>Limit Reference Point for Southwest Nova Scotia / Bay of Fundy</u> <u>spawning component of Atlantic Herring</u>, *Clupea harengus* (German Bank and Scots Bay). DFO Can. Sci. Advis. Sec. Res. Doc. 2012/025. iii + 14 p.
- Cochrane, K L., Butterworth, D.S., De Oliveira, J.A.A., and Roel, B.A. 1998. Management procedures in a fishery based on highly variable stocks and with conflicting objectives: experiences in the South African pelagic fishery. Rev. Fish. Biol. Fisher. 8, 177–214.
- Deroba, J.J. 2015. <u>Atlantic Herring operational assessment report 2015</u>. US Dept. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 15–16; 30 p.
- Deroba, J.J. 2017. <u>Technical details of operating models and harvest control rules used in the</u> <u>Georges Bank/Gulf of Maine Atlantic Herring management strategy evaluation</u>. p.1–34.
- DFO. 2003. 2003–2006 Scotia-Fundy Fisheries Integrated Herring Management Plan, NAFO subdivisions 4WX, 4Vn and 5Z. Department of Fisheries and Oceans.
- DFO. 2004. <u>4VWX Herring</u>. Can. Science Advis. Sec. Stock Status Rep. 2004/034.
- DFO. 2005. <u>Stock Assessment Report on 4VWX Herring</u>. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2005/033 (Revised).
- DFO. 2007. <u>Proceedings of the Maritimes Provinces Regional Advisory Process on the</u> <u>Assessment Framework for 4VWX Herring; 31 October–1 November 2006 and 9–11</u> <u>January 2007</u>. DFO Can. Sci. Advis. Sec. Proceed. Ser. 2007/002.
- DFO. 2011. <u>Proceedings of the Maritimes Region Science Advisory Process on the Assessment</u> <u>Framework for Southwest Nova Scotia/Bay of Fundy Herring; 24–28 January 2011</u>. DFO Can. Sci. Advis. Sec. Proceed. Ser. 2011/031: iv + 28p.
- DFO. 2015. <u>2015 Assessment of 4VWX Herring</u>. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2015/040.

- DFO. 2017. <u>DLMtool Phase II: Developing a Management Strategy Evaluation Package for</u> <u>Advancing the Science and Management of Data-limited and At-risk Canadian Fish Stocks</u>. Project Number: PAC2016.12. [accessed July 2020]
- Foote, K.G. 1987. Fish target strengths for use in echo integrator surveys. The Journal of the Acoustical Society of America. 82: 981–987.
- Francis, R.I.C.C. 2011. Data weighting in statistical fisheries stock assessment models. Can. J. Fish. Aquat. Sci. 68(6): 1124–1138.
- Guénette, S. and Stephenson, R.L. 2012. Accounting for Predators in Ecosystem-Based Management of Herring Fisheries of the Western Scotian Shelf, Canada. *In*: G.H. Kruse, H.I. Browman, K.L. Cochrane, D. Evans, G.S. Jamieson, P.A. Livingston, D. Woodby, and C.I. Zhang (eds.), Global Progress in Ecosystem-Based Fisheries Management. Alaska Sea Grant, University of Alaska Fairbanks.
- Hammill, M.O., den Heyer, C.E., Bowen, W.D., and Lang, S.L.C. 2017. <u>Grey seal population</u> <u>trends in Canadian waters, 1960–2016 and harvest advice</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/052. v + 30 p.
- Hordyk, A.R, Newman, D., Carruthers, T., and Suatoni, L. 2017. <u>Applying Management Strategy</u> <u>Evaluation to California Fisheries: Case Studies and Recommendations</u>. [accessed July 2020]
- Huynh, Q., Hordyk, A., and Carruthers, T. 2019. <u>MSEtool: Management Strategy Evaluation</u> <u>Toolkit. R package version 1.4</u>. [accessed July 2020]
- Kanwit, J.K. and Libby, D.A. 2009. Seasonal movements of Atlantic Herring (*Clupea harengus*): results from a four year tagging study conducted in the Gulf of Maine and Southern new England. J. Northw. Atl. Fish. Sci. 40: 29–39.
- Kristensen, K., Nielsen, A., Berg, C.W., Skaug, H., and Bell, B.M. 2016. TMB: <u>Automatic</u> <u>Differentiation and Laplace Approximation</u>. Journal of Statistical Software. 70(5): 1–21.
- Kronlund, A.R., Holt, K.R., Cleary, J.S., and Shelton, P.A. 2013. <u>Current approaches for the provision of scientific advice on the precautionary approach for Canadian fish stocks:</u> <u>Sections 8 – Management Strategy Evaluation</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2013/081. v + 26 p. [accessed July 2019]
- Mace, P.M. 1985. <u>Catch rates and total removals in the 4WX herring purse seine fisheries</u>. Canadian Atlantic Fisheries Scientific Advisory Committee Research Document 85/74. [accessed July 2020]
- Martell, S. 2017. <u>Integrated Statistical Catch-at-Age Model. The iSCAM project</u>. [accessed July 2020]
- Melvin, G.D. and Campana, S.E. 2010. High resolution bomb dating for testing the accuracy of age interpretations for a short-lived pelagic fish, the Atlantic Herring. Environmental Biology of Fishes. 89: 297–311.
- Melvin, G.D., Martin, R., and Power, M.J. 2014. <u>Estimating German Bank and Scots Bay</u> <u>Herring Spawning Ground Turnover Rates from Tag Returns</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2014/068: iv + 22 p.
- Methot, R.D. and Wetzel, C.R. 2013. <u>Stock synthesis: A biological and statistical framework for</u> <u>fish stock assessment and fishery management</u>. Fish. Res. 142: 86–99.
- Miller, T. 2016. <u>Memorandum. Proposed blueline tilefish subcommittee report</u>. [accessed July 2020]

- McNamee, J., Fay, G., and Cadrin, S. 2016. <u>Data Limited Techniques for Tier 4 Stocks: An</u> <u>alternative approach to setting harvest control rules using closed loop simulations for</u> <u>management strategy evaluation</u>. SEDAR46-RD-08. [accessed July 2020]
- MPO. 2015. <u>Évaluation du hareng de 4VWX de 2015</u>. Secr. can. de consult. sci. du MPO, Avis sci. 2015/040.
- NAFO. 2010. Northwest Atlantic Fisheries Organization. <u>Report of the Working Group on</u> <u>Greenland Halibut Management Strategy Evaluation (WGMSE)</u>. NAFO/FC Doc. 11/8. [accessed July 2020]
- NAFO. 2018. Northwest Atlantic Fisheries Organization. <u>Management Strategy Evaluation –</u> <u>Harvest Control Rules</u>. [accessed July 2020]
- Nakatsuka, S. 2017. Management strategy evaluation in regional fishery management organizations How to promote robust fisheries management in international settings. Fish. Res. 187:127–138.
- NEFSC. 2012. <u>54th Northeast Regional Stock Assessment Workshop (54th SAW) Assessment</u> <u>Report</u>. US Department of Commerce, Northeast Fisheries Science Center Reference Document. 12-18; 600 p [accessed July 2020]
- NEFSC. 2015. Operational Assessment of 20 Northeast Groundfish Stocks, Updated Through 2014. US Department Commerce, Northeast Fisheries Science Center Reference Document. 15-24; 251 p. [accessed July 2020]
- NEFSC. 2018. <u>65th Northeast Regional Stock Assessment Workshop (65th SAW) Assessment</u> <u>Summary Report</u>. US National Marine Fisheries Services. Northeast Fisheries Science Center Reference Document. 18-08: 38 p.
- Neuenhoff, R., Swain, D. P., Cox, S. P., McAllister, M.K., Trites, A.W., Walters, C.J., and Hammill, M.O. 2018. Continued decline of a collapsed population of Atlantic cod (*Gadus morhua*) due to predation-driven Allee effects. Can. J. Fish. Aqua. Sci. 76 (1): 168–184.
- Pennington, M., Burmeister, L.-M., and Hjellvik, V. 2002. Assessing the precision of frequency distributions estimated from trawl-survey samples. Fish. Bull. 100:74–80.
- Power, M.J., Knox, D., MacIntyre, A., Melvin, G.D., and Singh, R. 2013. <u>2011 Evaluation of 4VWX Herring</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2012/085. iv + 85 p.
- Punt, A.E. and Donovan, G.P. 2007. Developing management procedures that are robust to uncertainty: lessons from the International Whaling Commission. ICES J. Mar. Sci. 64 603–612.
- Punt, A.E., Butterworth, D.S., de Moor, C.L., De Oliveira, J.A.A., and Haddon, M. 2014. Management strategy evaluation: best practices. Fish and Fisheries. 17(2): 303–334.
- SEDAR. 2016a. <u>Southeast Data, Assessment and Review. SEDAR 46: Caribbean Data-Limited</u> <u>Species</u>. US National Oceanic and Atmospheric Administration. [accessed July 2020]
- SEDAR. 2016b. <u>Southeast Data, Assessment and Review. SEDAR 49: Stock Assessment</u> <u>Report Gulf of Mexico Data-Limited Species</u>. US National Oceanic and Atmospheric Administration. [accessed July 2020]
- Singh, R., Dalton, A, Clay, A., and Melvin, G.D. 2016. <u>Summary of 2013 and 2014 Herring</u> <u>Acoustic Surveys in Northwest Atlantic Fisheries Organization (NAFO) Divisions 4VWX</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/005. v + 203 p.

- Singh, R., Knox, D., and MacIntyre, A. 2020. <u>2019 Southwest Nova Scotia/Bay of Fundy Atlantic</u> <u>Herring Framework: Data Inputs</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2020/028. v + 123 p.
- Stephenson, R.L., Lane, D.E., Aldous, D.G., and Nowak, R. 1993. Management of the 4WX Atlantic Herring (*Clupea harengus*) fishery: an evaluation of recent events. Can. J. Fish. Aquat. Sci. 50: 2742–2757.
- Stephenson, R.L., Power, M.J., Laffan, S.W., and Suthers, I.M. 2015. Tests of larval retention in a tidally energetic environment reveal the complexity of the spatial structure in herring populations. Fisheries Oceanography. 24: 553–570.
- Stobo, W.T. and Fowler, G.M. 2009. Herring tagging in the vicinity of the Scotian shelf and Gulf of St. Lawrence by the Maritimes region, 1973–1982. Can. Tech. Rep. Fish. Aquat. Sci. 2851: 69 p.
- Walters, C.J. and Martell, S.J.D. 2004. Fisheries ecology and management. Princeton University Press. 448 pp.
- Walters, C.J., Martell, S.J.D., and Korman, J. 2006. <u>A stochastic approach to stock reduction</u> <u>analysis</u>. Can. J. Fish. Aquat. Sci. 63(1): 212–223.
- Wiedenmann, J., Free, C.M., and Jensen, O.P. 2019. <u>Evaluating the performance of data-</u> <u>limited methods for setting catch targets through application to data-rich stocks: A case</u> <u>study using Northeast U.S. fish stocks</u>. Fish. Res. 209: 129–142.

ANNEXES

ANNEXE A. DONNÉES SUR LES PÊCHES ET PARAMÈTRES BIOLOGIQUES

Tableau A1. Débarquements historiques (t) par flotte pour la zone du stock du sud-ouest de la Nouvelle-Écosse et de la baie de Fundy (FILET MAILLANT, AUTRE, SENNE COULISSANTE) et pour le stock de juvéniles migrateurs du Nouveau-Brunswick (FASCINE/SENNE DE PLAGE), de 1968 à 2018, fondés sur l'année civile avec des ajustements pour les déclarations erronées des débarquements à la senne coulissante de 1968 à 1993.

	Sud avaat da		ndv	Juvéniles migrateurs du	
. <i>.</i>				nay	
Annee			SENNE COULISSANTE	I otal	FASCINE/SENNE DE PLAGE
1968	361	8 108	171 872	180 341	40 174
1969	417	5 4 1 3	117 534	123 364	33 748
1970	1 195	7 034	152 516	160 745	22 285
1971	2755	4 001	90 300	103 660	10 243
1972	2 344	4 058	122 / 5/	129 159	38 320
1973	4 157	7 004	90 761	102 602	25 209
1974	2 2 1 4	2 034	144 462	149 510	24 495
1975	4 455	519	10150	110 401	30 200
1970	10 176	0 223	104 303	04.265	29 294
1977	12 170	700	01 334	94 200	29 952
1970	4 500	9 145	95 2 10	100 922 52 740	39 290
1979	4 015	9 202	39 604	101 759	12 54
1900	14 769	4 420	02 309 110 576	101 / 00	13 544
1901	9 967	J 200	100 570	123 031	21 009
1982	5 400	2 203	106 400	114 003	24 /3/
1983	6 597	2 257	120 557	135 411	13 371
1984	4 199	3 246	127 181	134 627	8 676
1985	5474	5 298	135 642	146 414	27 862
1986	3 532	2 238	131 087	136 858	27 886
1987	2 290	7 114	134 034	143 438	27 319
1988	675	9 048	165 156	1/4 8/9	39 058
1989	100	4 193	140 687	144 980	44 103
1990	239	5 296	172 907	178 442	40 479
1991	147	1 555	132 356	134 058	24 582
1992	157	3 053	130 555	133 766	32 090
1993	138	3 013	100 254	103 406	31 540
1994	106	2 051	75 652	77 809	22 247
1995	71	3 248	56 338	59 656	18 278
1996	6 402	3 666	47 330	57 398	15 913
1997	6 781	4 209	42 976	53 966	20 618
1998	2 328	3 670	71 444	77 442	21 117
1999	1 693	4 613	73 482	79 789	19 589
2000	882	175	83 159	84 216	17 742
2001	1 932	1 544	66 005	69 481	22 583
2002	386	322	77 511	78 219	12 705
2003	725	15	85 763	86 504	10 861
2004	465	112	72 538	73 115	25 287
2005	1 127	185	44 160	45 471	15 153
2006	1 177	1 503	46 221	48 901	13 886
2007	1 466	11	48 380	49 857	32 063
2008	139	740	52 539	53 417	8 314
2009	287	264	52 693	53 245	4 374
2010	459	155	43 766	44 381	12 414
2011	778	63	47 404	48 244	4 399
2012	562	15	46 256	46 833	541
2013	1 352	233	46 304	47 889	6 243
2014	2 208	210	47 813	50 230	1 987
2015	1 944	2	47 462	49 408	146
2016	1 614	1	48 178	49 793	4 132
2017	797	1	39 199	39 997	2 133
2018	1 182	1	39 665	40 849	12 458

Tableau A2. Débarquements historiques (t) par flotte pour la zone du stock du sud-ouest de la Nouvelle-Écosse et de la baie de Fundy (FILET MAILLANT, AUTRE, SENNE COULISSANTE_juvéniles, SENNE COULISSANTE_reproducteurs) et pour le stock de juvéniles migrateurs du Nouveau-Brunswick (FASCINE/SENNE DE PLAGE), de 1968 à 2018, fondés sur l'année civile avec des ajustements pour les déclarations erronées des débarquements à la senne coulissante de 1968 à 1993.

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Su	Juvéniles migrateurs du Nouveau- Brunswick				
	Année	FILET MAILLANT	AUTRE	SENNE COULISSANTE juvéniles	SENNE COULISSANTE reproducteurs	Total	FASCINE/SENNE DE PLAGE
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1968	361	8 108	50 183	121 689	180 341	40 174
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1969	417	5 413	22 751	94 782	123 364	33 748
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1970	1 195	7 034	41 062	111 454	160 745	22 285
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1971	2 753	4 601	10 727	85 579	103 660	16 243
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1972	2 344	4 058	37 301	85 456	129 159	38 326
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1973	4 157	7 664	4 337	86 444	102 602	25 269
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1974	2 214	2 834	20 583	123 879	149 510	24 495
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1975	4 453	519	23 801	86 709	115 481	38 266
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1976	6 918	8 223	11 875	92 630	119 645	29 294
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1977	12 176	755	3 506	77 828	94 265	29 952
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1978	4 566	9 145	11 /20	83 491	108 922	39 298
	1979	4 615	9 262	10 863	29 000	53 740	37 254
	1980	14 769	4 420	19 674	62 895	101 758	13 544
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1981	9 967	3 288	65 178	45 398	123 831	21 059
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1982	5 400	2 203	82 686	23 715	114 003	24 /3/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1983	6 597	2 257	81 433	45 124	135 411	13 371
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1984	4 199	3 246	86767	40 414	134 627	8676
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1900	3 474	5 290 2 220	99 33 1	24 914	140 4 14	27 002
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1900	3 332	Z Z30 7 111	90 27 3	34 0 14	130 000	27 000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1907	2 290	0.048	100 320	23700	143 430	27 319
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1080	100	9 040 1 103	116 001	23 696	1/4 0/9	44 103
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1990	230	5 296	135 172	37 735	178 442	40 479
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1990	147	1 555	105 868	26 489	134 058	24 582
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1992	157	3 053	56 121	74 435	133 766	32 090
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1993	138	3 013	57 030	43 224	103 406	31 540
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1994	106	2 051	51 986	23 666	77 809	22 247
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1995	71	3 248	20 169	36 168	59 656	18 278
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1996	6 402	3 666	13 830	33 500	57 398	15 913
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1997	6 781	4 209	16 644	26 332	53 966	20 618
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1998	2 328	3 670	32 284	39 159	77 442	21 117
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1999	1 693	4 613	29 498	43 984	79 789	19 589
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2000	882	175	29 840	53 320	84 216	17 742
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2001	1 932	1 544	24 820	41 185	69 481	22 583
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2002	386	322	28 724	48 787	78 219	12 705
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2003	725	15	34 970	50 793	86 504	10 861
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2004	465	112	21 880	50 658	73 115	25 287
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2005	1 127	185	16 282	27 877	45 471	15 153
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2006	1 177	1 503	14 662	31 559	48 901	13 886
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2007	1 466	11	15 924	32 456	49 857	32 063
2009 287 264 20 116 32 578 53 245 4 374 2010 459 155 20 738 23 029 44 381 12 414 2011 778 63 16 576 30 827 48 244 4 399 2012 562 15 5 448 40 808 46 833 541 2013 1 352 233 19 435 26 869 47 889 6 243 2014 2 208 210 13 850 33 963 50 230 1 987 2015 1 944 2 11 953 35 510 49 408 146 2016 1 614 1 17 807 30 371 49 793 4 132	2008	139	740	16 062	36 477	53 417	8 314
2010 459 155 20 738 23 029 44 381 12 414 2011 778 63 16 576 30 827 48 244 4 399 2012 562 15 5 448 40 808 46 833 541 2013 1 352 233 19 435 26 869 47 889 6 243 2014 2 208 210 13 850 33 963 50 230 1 987 2015 1 944 2 11 953 35 510 49 408 146 2016 1 614 1 17 807 30 371 49 793 4 132	2009	287	264	20 116	32 578	53 245	4 374
20117786316 57630 82748 2444 3992012562155 44840 80846 83354120131 35223319 43526 86947 8896 24320142 20821013 85033 96350 2301 98720151 944211 95335 51049 40814620161 614117 80730 37149 7934 132	2010	459	155	20 / 38	23 029	44 381	12 414
2012562155 44840 80846 83354120131 35223319 43526 86947 8896 24320142 20821013 85033 96350 2301 98720151 944211 95335 51049 40814620161 614117 80730 37149 7934 132	2011	/78	63	16 576	30 827	48 244	4 399
2013 1 352 233 19 435 26 869 47 889 6 243 2014 2 208 210 13 850 33 963 50 230 1 987 2015 1 944 2 11 953 35 510 49 408 146 2016 1 614 1 17 807 30 371 49 793 4 132	2012	562	15	5 448	40 808	46 833	541
2014 2 208 210 13 850 33 963 50 230 1 987 2015 1 944 2 11 953 35 510 49 408 146 2016 1 614 1 17 807 30 371 49 793 4 132	2013	1 352	233	19 435	26 869	47 889	6 243
2015 1 944 2 1 953 35 510 49 408 146 2016 1 614 1 17 807 30 371 49 793 4 132	2014	2 208	210	13 850	33 963	50 230	1987
2010 1014 1 17807 30371 49793 4132	2015	1 944	2	11 953	35 510	49 408	140
	2010	707	1	17 00/	3U 3/1 25 762	49 / 93	4 132
2017 1 13 430 23 703 35 997 2 133 2018 1 182 1 17 720 21 045 40 840 12 459	2017	1 182	1	17 720	23703	40 849	12 458

Tableau A3. Multiplicateurs pour les débarquements à la senne coulissante afin de tenir compte des déclarations erronées de 1968 à 1993.

Année	Multiplicateur
1968	1,01
1969	1,11
1970	1,49
1971	1,26
1972	1,20
1973	1,35
1974	1,30
1975	1,35
1976	1,20
1977	1,15
1978	1,15
1979	1,20
1980	1,45
1981	1,55
1982	1,55
1983	1,63
1984	1,77
1985	1,37
1986	1,88
1987	1,49
1988	1,46
1989	1,61
1990	1,67
1991	1,49
1992	1,38
1993	1,08

Multiplicateurs de 1973 à 1984 tirés de Mace (1985). Multiplicateurs de 1985 à 1991 présentés dans Stephenson (1993). Multiplicateurs de 1968 à 1972 et de 1992 à 1993 estimés comme (T_{ajusté} – Filet maillant – Fascine de la Nouvelle-Écosse)/(Senne coulissante), où T_{ajusté} = débarquements ajustés du stock des divisions 4WX et Filet maillant, Fascine de la Nouvelle-Écosse et Senne de plage sont les débarquements nominaux des pêches au filet maillant, à la fascine de la Nouvelle-Écosse et à la senne coulissante fundiments du stock des divisions 4WX et Filet maillant, et la fascine de la Nouvelle-Écosse et à la senne service de plage sont les débarquements nominaux des pêches au filet maillant, à la fascine de la Nouvelle-Écosse et à la senne coulissante indiqués dans Singh et al. (2020).

Année	Biomasse totale (t)	CV (%)
1999	452 197	34,0
2000	443 637	24,9
2001	404 176	24,6
2002	455 631	15,3
2003	362 626	19,8
2004	431 807	16,0
2005	239 385	29,3
2006	284 839	18,4
2007	489 628	23,5
2008	236 892	25,5
2009	401 707	18,8
2010	254 625	13,4
2011	380 676	23,2
2012	386 759	10,4
2013	275 009	24,7
2014	380 885	21,3
2015	389 523	12,5
2016	264 147	17,4
2017	307 759	18,0
2018	234 520	27,1

Tableau A4. Indice du relevé acoustique de la biomasse du stock reproducteur (t) en tant que somme des relevés sur le banc German et dans la baie Scots, ajusté en fonction du taux de renouvellement, comme indiqué dans Melvin et al. (2014).

Année	Densité (nbre/m²)	CV (%)	CV ajusté (%)
1972	9,4	19,1	61,3
1973	6,6	19,7	63,6
1974	49,5	22,0	44,1
1975	11,7	12,8	58,0
1976	13,5	21,5	59,3
1977	6,3	15,9	62,7
1978	4,5	11,1	63,2
1979	7,1	29,6	66,9
1980	26,2	25,6	54,2
1981	2,7	11,1	64,8
1982	10,6	11,3	58,5
1983	13,9	11,5	56,2
1984	12,7	11,0	56,9
1985	40,8	11,3	42,8
1986	18,9	11,1	53,0
1987	27,9	11,5	48,3
1988	100,7	11,4	28,9
1989	54,5	11,2	38,4
1990	27,2	11,4	48,6
1991	48,2	11,4	40,3
1992	57	11,2	37,7
1993	55	11,3	38,2
1994	5,4	13,0	62,8
1995	20,3	22,7	55,8
1996	9,5	16,8	60,6
1997	23,3	11,6	50,7
1998	33,6	11,3	45,7
2009	19,9	21,1	55,4

Tableau A5. Densité moyenne des larves à l'automne (nombre/m² jusqu'au fond) de 1972 à 1998 et en 2009. Coefficient de variation (CV) ajusté en fonction de la régression de la BSR dans l'APV sur la densité des larves à la figure A4.

			•	
Année	Longueur b ₀	Longueur b ₁	Âge b₀	Âge b₁
1970	-21,803	0,80163	-3,5451	1,0259
1971	-21,994	0,81280	-4,7747	1,4913
1972	-21,408	0,79251	-5,1490	1,6038
1973	-27,262	1,0724	-8,2715	2,4651
1974	-24.644	0,95193	-12,072	3,4138
1975	-32,400	1.2096	-11.337	3,0653
1976	-26.731	1.0062	-8.9728	2.5563
1977	-30,485	1,1470	-10.548	2,8349
1978	-26 463	0 99777	-9 4820	2 6658
1979	-25.892	1.0024	-11.493	3.5233
1980	-26,446	1.0629	-11.618	3,4564
1981	-26 044	1 0168	-9 2417	2 6286
1982	-23 314	0.91934	-7 6284	2 4289
1983	-24 640	0.94462	-8 4333	2 5493
1984	-25 460	0.97982	-8.3763	2 5411
1985	-22 954	0.91121	-8 9318	2 9729
1986	-24 744	0.96808	-9 2282	2,9366
1987	-31 417	1 2337	-10 646	3 1732
1988	-29 020	1 1133	-9 9650	2 6615
1989	-20,020	1 1841	-8 7828	2,0010
1990	-28 495	1,1041	-9 4001	2,4002
1000	-20,400	0 90070	-9.0342	2,0004
1002	-22,001	0,30070	-9,0042	2,7303
1003	-22,323	1 3161	-3,2000	2,0040
100/	-32,037	1,0101	-9 5092	2 7671
1005	10 157	0 82321	9,0092	2,7071
1006	-31 80/	1 3//0	-12 500	2,3304
1007	-31,004	1,3448	-12,000	4,0090
1008	34 053	1,3124	13 738	4,3104
1000	-20 313	1,4525	-11 268	3 1 5 9 6
2000	30.845	1,2022	0 / 275	3 1525
2000	-50,045	1,2075	8 7/08	3,1525
2001	-23,000	1,0997	-0,7400	3,0814
2002	-21,914	1,1710	-11,073	5,7017
2003	-40,008	1 0701	13 005	5,2234 5 0022
2004	-20,993	1,2/01	13 654	0,000Z
2000	97 210	1,0040	-13,004	4,4001
2000	25 022	1,1421 1 /070	-12,370	4,0011
2007	-33,023	1,40/U 1 0027	-14,000	0,0020
2008 2000	-20,320 27 617	1,0937	-11,705	4,0000 2,61 <i>51</i>
2009	-21,041	1,1940	-10,907	3,0104
2010	-3U,200	1,3201	-11,084	3,1900
2011	-31,997	1,4030	-11,123	3,5858
2012	-30,448	1,3260	-7,4981	2,3669
2013	-35,988	1,5548	-10,749	3,6438
2014	-30,479	1,5/36	-14,850	5,1180
2015	-37,506	1,6071	-11,866	3,9797
2016	-28,076	1,2291	-10,285	3,4968
2017	-34,810	1,5270	-10,368	3,4678
2018	-39,000	1,7101	-11,711	4,2708

Tableau A6. Coefficients de régression pour la régression logistique binaire de la maturité (1 = mature; 0 = immature) par rapport à la longueur totale (cm) et à l'âge (années) de tous les poissons prélevés dans le sud-ouest de la Nouvelle-Écosse et la baie de Fundy par année (1970 à 2018).

Tableau A7. Poids empirique (g) selon l'âge pour tous les poissons échantillonnés dans le sud-ouest de la Nouvelle-Écosse et la baie de Fundy par année (1970 à 2018).

						Âae					
Année	1	2	3	4	5	6	7	8	9	10	11
1970	12,3	24,0	62,6	167	217	267	310	351	389	413	398
1971	8,59	35,1	123	189	228	264	298	343	390	384	429
1972	11,0	41,0	146	203	236	271	300	330	364	395	423
1973	12,1	28,5	95,7	167	231	266	303	342	367	393	409
1974	15,2	38,2	95,5	1/1	220	265	299	324	344	345	349
1975	12,4	36,2	87,6	1/3	216	254	289	312	344	364	414
1976	8,40 12 C	35,8	100	178	243	203	297	345	352	398	413
1977	9 71	31,3	99,4 115	102	221	219	297	330	375	410	414
1970	8 57	32,5	00.3	170	243	204	301	334	361	381	443
1980	11 1	42.2	102	179	246	203	323	365	369	395	389
1981	10.3	47.3	111	171	236	292	339	357	379	393	388
1982	12.6	44.9	127	192	235	268	300	359	385	378	416
1983	14.3	53.4	118	195	241	274	299	319	362	384	391
1984	13,3	50,0	126	191	237	270	297	331	364	393	421
1985	10,8	44,9	131	204	260	287	323	348	366	389	390
1986	22,9	47,2	115	181	231	262	290	316	332	358	383
1987	18,2	50,2	104	158	215	252	278	308	329	336	341
1988	13,5	33,0	98,1	150	203	260	295	321	336	361	395
1989	13,6	44,9	106	167	209	246	287	313	331	363	361
1990	12,2	36,5	96,5	156	197	235	254	296	322	334	348
1991	12,0	42,9	105	158	201	232	264	292	338	353	342
1992	15,7	26,7	85,3	152	193	226	264	289	316	348	375
1993	15,6	37,5	95,2	151	197	227	261	296	307	336	370
1994	13,9	41,8	97,6	143	180	212	238	258	299	313	324
1995	10,2	40,Z	05.4	1/0	201	239	273	216	342	340	370
1990	16.0	44,0 /1 3	90,4 86 3	149	200	240	281	304	310	309	304
1998	18.2	42.0	85.9	132	179	220	263	298	324	339	380
1999	25.6	55.3	101	148	185	218	242	257	298	289	356
2000	19.1	55.7	105	143	184	212	238	244	262	269	287
2001	20.0	51.6	110	161	191	232	254	268	278	304	292
2002	19,8	44,5	111	158	194	234	257	262	280	270	292
2003	17,4	41,2	100	152	186	214	243	262	266	261	270
2004	11,8	38,2	104	149	192	209	232	261	253	271	262
2005	19,2	39,7	87,7	136	169	210	233	236	250	279	263
2006	18,8	52,3	106	156	182	210	233	254	254	269	284
2007	18,2	53,9	116	154	195	215	248	276	262	316	246
2008	18,1	41,4	107	161	194	224	244	264	273	305	323
2009	7,45	42,2	97,4	150	181	216	249	266	275	282	326
2010	15,4	38,1	78,0	127	164	195	222	250	262	264	271
2011	18,3	45,3	85,2	128	160	186	210	251	257	259	2/2
2012	9,61	44,5 55 0	83,6	121	151	1//	199	231	248	243	260
2013	10,0	05,0 1/ 0	94,0 102	120	101	1/2	190	209 225	223	201 265	243 300
2014	12,1 21 /	44,0 16 0	95.2	1/0	160	202	201 216	220 228	∠43 2/12	200	277
2015	21, 4 10.6	48.3	93.4	134	160	189	210	220	240 240	200	273
2017	16.6	44.1	85.9	124	153	175	199	210	210	225	245
2018	23,0	54,7	99,0	128	151	180	199	216	227	225	256

Tableau A8. Longueurs empiriques (cm) selon l'âge pour tous les poissons échantillonnés dans le sudouest de la Nouvelle-Écosse et la baie de Fundy par année (1970 à 2018).

						Âgo					
Δnnée	1	2	3	4	5	Aye 6	7	8	9	10	11
1970	12.3	14 4	20.7	28.2	30.6	32.4	33.8	35.2	36.3	36.5	35.8
1971	10.6	16.4	25.1	29.0	30.9	32.4	33.6	35.0	36.2	37.0	37.7
1972	11.9	17.7	26.5	29.7	31.1	32.7	33.9	34.9	35.9	36.8	37.5
1973	12.4	16.2	23.6	28.1	31.0	32.5	33.8	35.0	35.8	36.7	37.1
1974	13.5	17.2	23.4	28.2	30.7	32.5	33.6	34.7	35.5	35.8	36.0
1975	12.3	17.1	23.0	28.6	30.7	32.4	33.9	35.2	35.9	36.3	36.8
1976	11,0	17,5	24,1	28.8	31,7	32,7	34,3	35,4	36.3	36,8	37,8
1977	12,5	15,8	23,0	28,2	30,4	32,6	33,5	35,0	36,2	37,4	37,6
1978	11,4	16,3	24,3	28,4	30,4	32,0	33,7	34,7	35,8	36,8	37,9
1979	11,4	17,3	24,1	28,5	31,2	32,3	33,4	34,6	35,5	36,4	37,7
1980	12,1	18,1	23,4	27,6	30,7	32,6	33,7	35,1	35,8	36,3	36,5
1981	11,8	18,6	24,4	27,7	30,4	32,6	34,7	35,5	36,3	36,7	37,4
1982	12,5	18,2	24,9	28,5	30,3	31,6	33,0	35,3	36,3	36,4	36,8
1983	12,9	19,3	24,8	28,8	31,0	32,1	33,0	34,4	35,7	37,4	37,0
1984	12,5	18,9	25,6	29,0	30,9	32,3	33,3	34,0	35,2	36,8	37,5
1985	11,8	18,1	25,3	29,1	31,3	32,5	33,6	34,2	34,8	36,5	36,8
1986	14,7	18,7	24,9	28,7	31,0	32,3	33,4	34,5	35,1	35,9	37,1
1987	13,7	19,3	24,4	27,5	30,2	32,0	33,2	34,3	35,3	35,9	36,4
1988	12,6	16,3	23,7	27,0	29,5	31,8	33,3	34,4	35,3	35,9	37,3
1989	12,5	18,5	24,1	27,8	29,7	31,2	32,9	34,0	34,8	35,7	36,1
1990	12,3	17,3	23,8	27,6	29,6	31,2	32,1	33,6	34,6	35,5	35,9
1991	12,0	18,1	24,2	27,3	29,6	31,1	32,3	33,1	34,5	35,3	35,7
1992	13,3	15,1	22,4	26,9	29,1	30,7	32,2	33,4	34,1	35,2	36,1
1993	13,4	17,7	23,6	27,0	29,2	30,7	32,1	33,7	34,3	35,0	35,9
1994	12,4	18,1	23,8	26,7	28,7	30,3	31,4	32,6	33,7	34,6	34,9
1995	10,8	17,9	23,8	27,3	29,4	31,0	32,3	34,1	35,0	35,6	36,3
1996	13,3	18,5	23,4	26,9	29,4	31,2	32,4	33,8	35,0	35,7	36,4
1997	13,0	17,7	22,5	27,0	28,7	31,0	32,0	33,0	35,1	35,6	35,5
1998		10,3	22,1	20,0	28,5	30,Z	32,0	33,4 21 5	34,5	35,1	30,5
2000	14,0	10,9	23,1	20,1	21,9	29,5	30,7	21.0	22 5	34,0	22.0
2000	14,2	19,0	24,1	20,5	20,0	29,0 20.4	31,0	31,0	32,5	32,Z	33,0 33.2
2001	14,4	19,2	24,Z 24 /	27,2	20,0	30,4 30.6	31,5	32, I 21 Q	32,3 32,3	33,1 22.2	33,∠ 32.9
2002	14,5	18.0	24,4	26.0	29,0	30,0	31,5	37,0	32,3	32,3	31.8
2003	11 7	17 7	23,0	26,3	20,5	29.5	30.6	31 7	32,5	32,2	31.8
2004	14 1	17.7	27,1	26,0	20,0	29,5	30,0	30.8	31 7	32,0	32.2
2005	13.8	19.4	23.9	26,1	28.1	29,0	30.3	30,0	31.6	30.9	32,2
2007	14.2	19.4	24.5	26.7	28.7	29.6	30.7	31.8	32.0	32.8	31.4
2008	14 1	17 7	23.9	27 1	28.5	29.7	30.5	31.3	31 7	32.4	33.5
2009	10.4	18.1	23.3	26.6	28.3	29.7	30.8	31.5	31.8	32.1	33.7
2010	13.0	17.9	22.2	25.8	27.6	29.1	30.2	31.4	31.8	31.9	32.1
2011	13.6	18.4	22.4	25.3	27.2	28.5	29.6	31.3	31.8	31.8	32.3
2012	11.4	18.6	22.7	25.2	26.7	28.1	29.1	31.1	31.7	32.2	32.4
2013	13.4	19.6	23.2	25.2	26.7	27.8	29.0	29.6	30.7	32.2	32.7
2014	12.0	18.2	23.9	25.9	27.2	28.1	29.0	30.0	30.5	31.0	32.2
2015	15.0	19,0	23,5	26,4	27.7	28.9	29,5	29,8	30,5	31,6	32,5
2016	11,0	18,7	23,2	25,9	27,4	28,7	29,6	29,8	30,6	30,5	31,8
2017	13,7	18,6	23,1	25,7	27,5	28,7	29,7	30,1	30,2	30,7	31,5
2018	15,2	19,9	23,8	25,8	27,1	28,7	29,6	30,2	30,7	30,8	31,6

Tableau A9	Classification	des flottes seloi	n les lieux de	nêche et les engins
1 40/044 / 10.	olaboliloalloll		1100 1100/ 00	poono or loo ongino.

Structure	Flotte(s)	Lieux de pêche	Engin(s)		
	FASCINE/SENNE DE PLAGE	FASCINE/SENNE DE PLAGE Grand Manan, bancs de Grand-Manan, côte du Nouveau-Brunswick			
	Senne coulissante	Tous	Senne coulissante		
	FILET MAILLANT	Tous	Filet maillant		
A		Écueil de Cannet Dry, île Long, baie Scots	Fascine		
	AUTRE	Tous	Engins autres que la fascine, la senne de plage, la senne coulissante, le filet maillant		
	FASCINE/SENNE DE PLAGE, FILET MAILLANT, AUTRE	Comme décrit pour la structure A			
В	SENNE COULISSANTE_juvéniles	Grand Manan, bancs de Grand-Manan, île Long, côte du Nouveau-Brunswick, Trinité, banc Yankee	Senne coulissante		
	SENNE COULISSANTE_reproducteurs	Hiver dans la division 4W, banc de Browns, écueil de Cannet Dry, Lurcher, baie Scots, île Seal, lieux de pêche du SO.	Senne coulissante		

Figure A1. Débarquements par flotte, de 1968 à 2018, d'après les données des tableaux A1 et A2.

Figure A2. Indice du relevé acoustique de la biomasse du stock reproducteur (t) en tant que somme des relevés sur le banc German et dans la baie Scots, ajusté en fonction du taux de renouvellement, comme indiqué dans Melvin et al. (2014). Les barres d'erreur représentent les intervalles de confiance à 95 %.

Figure A3. Densité moyenne des larves à l'automne (nombre/m² jusqu'au fond) de 1972 à 1998 et en 2009. Les barres d'erreur représentent les intervalles de confiance à 95 % pour la densité moyenne (en haut) et les intervalles de confiance à 95 % pour la densité moyenne après l'ajout de la variabilité de la relation entre la BSR tirée de l'APV et la densité larvaire (figure A4).

Figure A4. Diagramme de dispersion et régression linéaire de la BSR tirée de l'APV par rapport à la densité moyenne des larves à l'automne de 1972 à 1998 et en 2009. S = racine carrée de l'erreur quadratique moyenne.

Figure A5. Stations de relevé des larves de hareng dans la baie de Fundy (• n = 79 stations de relevé standard; \Box autres stations de relevé entre 1972 et 1998). Figure tirée de Bradford et al. (2015).

Figure A6. Prises relatives selon l'âge (nombres) pour la flotte à la senne coulissante dans le sud-ouest de la Nouvelle-Écosse et la baie de Fundy (SENNE COULISSANTE), de 1970 à 2018.

Figure A7. Prises relatives selon l'âge (nombres) pour la flotte au filet maillant dans le sud-ouest de la Nouvelle-Écosse et la baie de Fundy (FILET MAILLANT), de 1970 à 2018.

Figure A8. Prises relatives selon l'âge (nombres) pour la flotte AUTRE dans le sud-ouest de la Nouvelle-Écosse et la baie de Fundy, de 1970 à 2018.

Figure A9. Prises relatives selon l'âge (nombres) pour la flotte à la fascine dans le sud-ouest de la Nouvelle-Écosse et la baie de Fundy et à la senne de plage (FASCINE/SENNE DE PLAGE) (prises au Nouveau-Brunswick seulement), de 1970 à 2018.

Figure A10a. Prises relatives selon l'âge (nombres) pour les flottes à la senne coulissante (SENNE COULISSANTE), au filet maillant (FILET MAILLANT) et AUTRE (AUTRE) (c.-à-d. le total des prises contingentées) dans le sud-ouest de la Nouvelle-Écosse et la baie de Fundy. Certaines classes d'âge plus fortes apparaissent en jaune (1970, 1976, 1983, 1998, 2001, 2005, 2008 et 2013). Cette figure a été utilisée à des fins de comparaison avec les prises historiques selon l'âge.

Figure A10b. Prises relatives selon l'âge (nombres) pour les flottes à la senne coulissante (SENNE COULISSANTE), au filet maillant (FILET MAILLANT) et AUTRE (AUTRE) (c.-à-d. le total des prises contingentées) dans le sud-ouest de la Nouvelle-Écosse et la baie de Fundy, à l'aide de tranches de longueur de 0,5 cm dans les clés âge-longueur. Certaines classes d'âge plus fortes apparaissent en jaune (1970, 1976, 1983, 1998, 2001, 2005, 2008 et 2013). Contraste avec la figure A10a qui utilise des tranches de 1 cm.

Figure A10c. Différences dans les prises selon l'âge (calculées en fonction du nombre selon l'âge à l'aide de tranches de 0,5 cm de longueur moins le nombre selon l'âge à l'aide de tranches de 1 cm de longueur; en bleu = différence positive et en blanc = différence négative) pour les flottes à la senne coulissante, au filet maillant et autre (c.-à-d. le total des prises contingentées) dans le sud-ouest de la Nouvelle-Écosse et la baie de Fundy. L'échelle est la même que pour les prises relatives selon l'âge à la figure A10b.

Figure A11. Prises relatives selon l'âge (nombres) pour la flotte à la senne coulissante dans le sud-ouest de la Nouvelle-Écosse et la baie de Fundy (SENNE COULISSANTE_juvéniles), de 1970 à 2018.

Figure A12. Prises relatives selon l'âge (nombres) pour la flotte à la senne coulissante dans le sud-ouest de la Nouvelle-Écosse et la baie de Fundy (SENNE COULISSANTE_reproducteurs), de 1970 à 2018.

Figure A13. Nombre relatif de poissons sexuellement matures selon l'âge, estimé à partir des relevés acoustiques (somme du banc German et de la baie Scots) pour l'ensemble de la composante du stock du sud-ouest de la Nouvelle-Écosse et de la baie de Fundy, de 1999 à 2018. Remarques : Les nombres de poissons ont été déterminés à l'aide du taux de renouvellement pour un poisson par tranche de longueur et de la rétrodiffusion totale. Poissons d'âge 2 ou 3 : prélevés par relevé en utilisant la proportion de poissons matures d'âge 2 ou 3 provenant des échantillons détaillés utilisés pour le relevé individuel. Si des poissons d'âge 2 ans étaient présents, mais qu'il n'y avait pas d'échantillons détaillés de maturité pour un relevé particulier, on a utilisé un pourcentage de poissons matures de 48 % (pourcentage global de tous les poissons d'âge 2 provenant de tous les échantillons détaillés utilisés pour le relevé).

Figure A14. Poids empirique (g) et longueur (cm) selon l'âge pour tous les poissons échantillonnés dans le sud-ouest de la Nouvelle-Écosse et la baie de Fundy, par année (1970 à 2018).

Figure A15. Longueur totale (cm) et âge (années) à 50 % et 90 % de maturité pour tous les poissons prélevés dans le sud-ouest de la Nouvelle-Écosse et la baie de Fundy, par année (1970 à 2018).

Figure A16. Distributions de fréquences de longueurs des prises à la senne coulissante, par lieu de pêche, de 1995 à 2018.

Figure A17. Séparation spatiale des lieux de pêche en fonction de la proportion de poissons de 23 cm ou moins dans les prises à la senne coulissante (voir la figure A16). Bleu = zone spatiale pour la flotte SENNE COULISSANTE_juvéniles. Vert = zone spatiale pour la flotte SENNE COULISSANTE_reproducteurs.

ANNEXE B. ÉQUATIONS DU MODÈLE DE DYNAMIQUE DE LA POPULATION ET DE L'EXPLOITATION, Y COMPRIS LES FONCTIONS DE VRAISEMBLANCE ET LES ALGORITHMES NUMÉRIQUES POUR LE CONDITIONNEMENT DES MODÈLES OPÉRATIONNELS

Description Mathématique Du Modèle D'analyse De La Réduction Des Stocks

Sélectivité et mortalité

La sélectivité v repose sur la longueur et est modélisée comme une fonction exponentielle double (utilisant la base 2). Pour la flotte f avec sélectivité platikurtique, on utilise deux paramètres : la longueur de 5 % de la sélectivité (L_f^5) et la longueur de la sélectivité totale L_f^{FS} . Pour la sélectivité en forme de dôme, on utilise aussi un troisième paramètre, la sélectivité à L_{∞} , $V_f^{L_{\infty}}$. La sélectivité fondée sur la longueur est convertie en sélectivité fondée sur l'âge dans le modèle structuré selon l'âge comme suit :

$$v_{y a f} = \begin{cases} 2^{-[(L_{y a} - L_f^{\text{FS}})/(\sigma_f^{\text{asc}})]^2} & \text{si } L_{y a} < L_f^{\text{FS}} \\ 1 & \text{si logistique et } L_{y a} \ge L_f^{\text{FS}} \\ 2^{-[(L_{y a} - L_f^{\text{FS}})/(\sigma_f^{\text{des}})]^2} & \text{si en forme de dôme et } L_{y a} \ge L_f^{\text{FS}} \end{cases}$$
(B1)

où L_{ya} est la longueur moyenne selon l'âge l'année y, et $\sigma_f^{asc} = (L_f^5 - L_f^{FS})/\sqrt{-\log_2(0.05)}$ et $\sigma_f^{des} = (L_{\infty} - L_f^{FS})/\sqrt{-\log_2(V^{L_{\infty}})}$ contrôlent la forme des membres ascendant et descendant, respectivement, de la fonction de sélectivité. Dans ce paramétrage, la sélectivité fondée sur la longueur est constante dans le temps. La sélectivité correspondante fondée sur l'âge est constante dans le temps si la croissance ne varie pas dans le temps.

La mortalité totale *Z* l'année *y* et pour l'âge *a* est la somme de la mortalité par pêche *F* de toutes les flottes et de la mortalité naturelle M :

$$Z_{ya} = M_{ya} + \Sigma_f v_{yaf} F_{yf} \tag{B2}$$

Distribution de la population initiale

La distribution selon l'âge de la population la première année du modèle y = 1 est à l'équilibre, où

$$N_{y=1\,a} = \begin{cases} R^{\text{eq}} \exp\left(-\Sigma_{i=1}^{a-1} Z_{i}^{\text{eq}}\right) & a = 1 \dots A - 1\\ \frac{R^{\text{eq}} \exp\left(-\Sigma_{i=1}^{a-1} Z_{i}^{\text{eq}}\right)}{1 - \exp\left(-Z_{A}^{\text{eq}}\right)} & a = A \end{cases}$$
(B3)

où R^{eq} est le recrutement à l'équilibre et $Z_a^{eq} = M_{1a} + \Sigma_f v_{1af} F_f^{eq}$ est le taux de mortalité totale à l'équilibre. Les conditions sans exploitation sont modélisées en fixant $F_f^{eq} = 0$. Pour estimer F_f^{eq} , il faut fournir les prises à l'équilibre correspondantes en poids \tilde{C}_f^{eq} avant la première année du modèle. Dans la courbe de rendement à l'équilibre, F_f^{eq} serait la mortalité par pêche correspondant à une pêche à F_f^{eq} . Après avoir obtenu Z_a^{eq} , on calcule le recrutement à l'équilibre à l'aide d'une relations stock-recrutement de Beverton-Holt comme suit :

$$R^{\rm eq} = \frac{\alpha^{\rm BH} \phi^{\rm eq} - 1}{\beta^{\rm BH} \phi^{\rm eq}},\tag{B4}$$

où ϕ^{eq} est les reproducteurs par recrue au taux initial de mortalité à l'équilibre. À partir du taux de variation h, $\alpha^{\text{BH}} = \frac{4h}{(1-h)\phi_0}$, $\beta^{\text{BH}} = \frac{5h-1}{(1-h)B_0^S}$, où ϕ_0 et B_0^S sont respectivement les reproducteurs par recrue non pêchés et la biomasse reproductrice inexploitée.

Pour la relation stock-recrue de Ricker, le recrutement à l'équilibre est donné par la formule :

$$R^{\rm eq} = \frac{\log\left(\alpha^{\rm R}\phi^{\rm eq}\right)}{\beta^{\rm R}\phi^{\rm eq}},\tag{B5}$$

où $\alpha^{R} = \frac{(5h)^{1,25}}{\phi_{0}}$ et $\beta^{R} = \frac{\log (5h)}{B_{0}^{5}}$.

Équations des dynamiques

Après avoir établi la distribution selon l'âge de la population à l'équilibre pour la première année du modèle, l'abondance de la population N_{ya} pour les années suivantes est donnée par la formule :

$$N_{y,a} = \begin{cases} R_y & a = 1\\ N_{y-1,a-1} \exp(-Z_{y-1,a-1}) & a = 2, \dots, A-1, \\ N_{y-1,a-1} \exp(-Z_{y-1,a-1}) + N_{y-1,a} \exp(-Z_{y-1,a}) & a = A \end{cases}$$
(B6)

où R_y est le recrutement et v est l'âge maximal comme groupe plus. Le recrutement est modélisé comme suit :

$$R_{y} = \frac{\alpha^{\mathsf{BH}} B_{y-1}^{S}}{1 + \beta^{\mathsf{BH}} B_{y-1}^{S}} \exp(\delta_{y} - 0.5\tau^{2})$$
(B7)

où δ_{γ} sont les écarts aléatoires du recrutement et τ est l'écart-type des écarts aléatoires.

La biomasse reproductrice B_y^S est donnée par la formule :

$$B_{y}^{S} = \sum_{a} w_{y a} m_{y a} N_{y a}$$
(B8)

où m_{ya} et w_{ya} sont respectivement la maturité selon l'âge et le poids selon l'âge.

La prise (en nombre) C^N selon l'âge pour la flotte f est donnée par la formule :

$$C_{y\,a\,f}^{N} = \frac{v_{y\,a\,f}F_{y\,f}}{Z_{y\,a}}N_{y\,a}(1 - \exp[-Z_{y\,a}])$$
(B9)

Si le modèle est conditionné en fonction des prises avec des prises à l'équilibre de zéro avant la première année du modèle, F_{yf} sont résolus de manière à ce que les prises annuelles prévues (en poids) correspondent aux valeurs observées. Sinon, F_{yf} sont des paramètres estimés.

La prise selon la longueur est calculée en supposant une longueur selon l'âge à distribution normale $P(\ell a)$, où :

$$C_{y\,\ell\,f}^{N} = \sum_{a} C_{y\,a\,f}^{N} P(\ell|a)$$
(B10)

et

$$P(\ell|a) = \begin{cases} \phi(L'_{\ell+1}) & \ell = 1\\ \phi(L'_{\ell+1}) - \phi(L'_{\ell}) & \ell = 2 \dots L - 1\\ 1 - \phi(L'_{\ell}) & \ell = L \end{cases}$$
(B11)

où L'_{ℓ} est la longueur à la limite inférieure de la tranche de longueur ℓ et $\phi(L'_{\ell})$ est la fonction de distribution cumulative d'une variable normale dont la moyenne est \tilde{L}_{ya} (la longueur moyenne prévue selon l'âge *a*) et l'écart-type est $\tilde{L}_{ya} \times CV^L$ (CV^L est le coefficient de variation de la longueur moyenne selon l'âge).

La prise en poids \tilde{C} est donnée par la formule :

$$\tilde{C}_{yf} = \sum_{a} C_{yaf}^{N} w_{ya},$$
(B12)

La proportion des prises selon l'âge est donnée par la formule :

$$p_{y\,a\,f} = \frac{C_{y\,a\,f}^{N}}{\sum_{a} C_{y\,a\,f}^{N}} \tag{B13}$$

La proportion de prises selon la longueur est donnée par la formule :

$$p_{y\,\ell\,f} = \frac{C_{y\,\ell\,f}^{N}}{\sum_{\ell} C_{y\,\ell\,f}^{N}} \tag{B14}$$

Si le s^{e} relevé est fondé sur la biomasse, la valeur du relevé I_{ys} est calculée comme suit :

$$I_{ys} = q_s \sum_{a} v_{yas} N_{ya} w_{ya}$$
(B15)

où q est le coefficient d'échelle et s indexe le relevé.

Si le relevé est fondé sur l'abondance, alors :

$$I_{ys} = q_s \sum_{a} v_{yas} N_{ya}$$
(B16)

Les proportions selon l'âge vulnérables prédites sont données par la formule :

$$p_{y\,a\,s} = \frac{v_{a\,s}\,N_{y\,a}}{\sum_{a}v_{a\,s}\,N_{y\,a}} \tag{B17}$$

Vraisemblances

Si le modèle est conditionné en fonction des prises et que les taux de mortalité par pêche sont des paramètres estimés, alors la composante de log-vraisemblance Λ_1 des prises est donnée par la formule :

$$\Lambda_{1} = \sum_{f} \left[\lambda_{f}^{\tilde{C}} \sum_{y} \left(-\log(0.01) - \frac{[\log(\tilde{C}_{y,f}^{\text{obs}}) - \log(\tilde{C}_{y,f}^{\text{pred}})]^{2}}{2 \times 0.01^{2}} \right) \right]$$
(B18)

où obs et pred indiquent les quantités observées et prévues, respectivement, et λ sont les poids de la vraisemblance. Avec un petit écart-type pour la vraisemblance des prises par rapport à la variance dans d'autres composantes de la vraisemblance, les prises prévues devraient correspondre aux prises observées.

La composante de log-vraisemblance Λ_2 des données du relevé est donnée par la formule :

$$\Lambda_2 = \sum_{s} \left[\lambda_s^l \sum_{y} \left(-\log(\sigma_{ys}) - \frac{[\log(l_{ys}^{\text{obs}}) - \log(l_{ys}^{\text{pred}})]^2}{2\sigma_{ys}^2} \right) \right]$$
(B19)

La composante de log-vraisemblance Λ_3 des données sur les prises selon l'âge est donnée par la formule :

$$\Lambda_{3} = \sum_{f} \lambda_{f}^{A} \left[\sum_{y} O_{yf}^{A} \sum_{a} p_{yaf}^{\text{obs}} \log\left(p_{yaf}^{\text{pred}}\right) \right]$$
(B20)

où O^A est la taille des échantillons annuels pour les compositions selon l'âge.

La composante de log-vraisemblance Λ_4 des données sur les prises selon la longueur est donnée par la formule :

$$\Lambda_{4} = \sum_{f} \lambda_{f}^{L} \left[\sum_{y} O_{yf}^{L} \sum_{a} p_{y\ell f}^{\text{obs}} \log\left(p_{y\ell f}^{\text{pred}}\right) \right]$$
(B21)

où O^L est la taille des échantillons annuels pour les compositions selon la longueur.

La composante de log-vraisemblance Λ_5 des proportions selon l'âge dans le relevé est donnée par la formule :

$$\Lambda_{5} = \sum_{s} \lambda_{s}^{\text{IA}} \left[\sum_{y} \left(O_{ys}^{IA} \sum_{a} p_{yas}^{\text{obs}} \log\left(p_{yas}^{\text{pred}}\right) \right) \right]$$
(B22)

où 0^{IA} est la taille des échantillons annuels pour les compositions selon l'âge dans le relevé.

La composante de log-vraisemblance Λ_6 des écarts aléatoires annuels estimés du recrutement δ_y dans l'espace logarithmique est donnée par la formule :

$$\Lambda_6 = \sum_{\mathcal{Y}} \left(-\log(\tau) - \frac{\delta_{\mathcal{Y}}^2}{2\tau^2} \right) \tag{B23}$$

où τ est l'écart-type des écarts aléatoires du recrutement.

La composante de log-vraisemblance Λ_7 des prises à l'équilibre est donnée par la formule :

$$\Lambda_{7} = \sum_{f} \lambda_{f}^{\tilde{c}} \left(-\log(0.01) - \frac{[\log(\tilde{C}_{f}^{\text{eq,obs}}) - \log(\tilde{C}_{f}^{\text{eq,pred}})]^{2}}{2 \times 0.01^{2}} \right)$$
(B24)

La log-vraisemblance totale LL à maximiser est donnée par la formule :

$$\mathsf{LL} = \sum_{i=1}^{7} \Lambda_i \tag{B25}$$

ANNEXE C. AUTRES MODÈLES OPÉRATIONNELS DE SENSIBILITIÉ

D'autres modèles opérationnels de sensibilité ont été proposés pendant et après les réunions des 26 et 27 mai 2020. Les résultats des ajustements de ces modèles opérationnels de sensibilité sont indiqués ici pour permettre au groupe de travail sur le hareng de l'Atlantique de les examiner en vue des changements à apporter aux ensembles de référence et de robustesse des modèles opérationnels.

Tableau C1. Modèles opérationnels de sensibilité élaborés pour définir un ensemble de référence approprié de modèles opérationnels. Tous les modèles opérationnels de sensibilité constituent un changement d'un seul facteur par rapport au modèle opérationnel du scénario de référence.

N° du modèle opérationnel	Code	Description de l'écart d'un seul facteur par rapport au scénario de référence
Add1	RefCase	Comme décrit précédemment.
Add2	M_oldM	Ancien taux de mortalité naturelle de 0,2.
Add3	M_oldM-L	Ancien taux de mortalité naturelle de 0,2 avec un taux de variation de 0,75.
Add4	LS_none	Poids du relevé des larves = 0.
Add5	LS_none1	Poids du relevé des larves = 0; valeur de l'indice = 1 pour toute l'année (vérifier que le poids de zéro fonctionne).
Add6	R_post1994	Changement dans le recrutement après 1994. Recrutement pour les projections estimées à partir de 1994.
Add7	R_pre1994	Changement dans le recrutement après 1994. Recrutement pour les projections estimées de 1968 à 1993.
Add8	R_post2010	Changement dans le recrutement après 2010. Recrutement pour les projections estimées à partir de 2010.
Add9	G_0/5	La croissance future est une augmentation linéaire de 0,5 % de la moyenne des poids selon l'âge de 2016 à 2018 par année.
Add10	G_1	La croissance future est une augmentation linéaire de 1 % de la moyenne des poids selon l'âge de 2016 à 2018 par année.
Add11	Land_up25	Mélange et migration – les débarquements sont plus élevés de 25 %.
Add12	Land_down25	Mélange et migration – les débarquements sont plus bas de 25 %.
Add13	Lognorm_comp	Les distributions de la composition sont log-normales plutôt que multinomiales.

Figure C1a. Poids empirique selon l'âge de 1970 à 2018 avec projections jusqu'en 2068 fondées sur une augmentation de 0,5 % du poids moyen selon l'âge de 2016 à 2018.

Figure C1b. Poids empirique selon l'âge de 1970 à 2018 avec projections jusqu'en 2068 fondées sur une augmentation de 1 % du poids moyen selon l'âge de 2016 à 2018.

Impact sur les estimations parmi les axes d'incertitude pour les analyses de sensibilité

Figure C2a. Biomasse moyenne estimée du stock reproducteur (kt) pour les divers modèles opérationnels de sensibilité du tableau C1.

Impact sur les estimations parmi les axes d'incertitude pour les analyses de sensibilité

Figure C2b. Estimations moyennes de l'épuisement (D) pour les divers modèles opérationnels de sensibilité décrits dans le tableau C1.

Impact sur les estimations parmi les axes d'incertitude pour les analyses de sensibilité

Figure C2c. Biomasse moyenne estimée du stock reproducteur par rapport aux niveaux du RMD (B_BRMD) pour les divers modèles opérationnels de sensibilité décrits dans le tableau C1.

Impact sur les estimations parmi les axes d'incertitude pour les analyses de sensibilité

Figure C3. Estimations moyennes de la biomasse du stock reproducteur projetée (B_BRMD_p) par rapport aux niveaux du RMD pour une projection sur 50 ans d'un scénario de taux de mortalité par pêche actuel constant (une projection du statu quo de la pêche). Il convient de noter que le RMD est recalculé pour chaque année ultérieure en fonction de la croissance correspondante pour l'année en question.

МО	Code	Total	Composition selon l'âge (composition selon la longueur, s'il y a lieu)				Indices		Capturabilité de l'indice	
			Filet maillant	Autre	Senne coulissante	Fascine	Acoustique	Larvaire	q Acoustique	q Larvaire
Add1	RefCase	668,33	58,38	100,33	142,56	154,43	-3,30	39,68	3,03	0,04
Add2	M_oldM	685,54	63,51	100,01	150,05	153,18	-3,62	36,35	3,22	0,05
Add3	M_oldM-L	715,86	70,43	99,63	154,42	154,26	2,28	35,54	2,4	0,04
Add4	LS_none	623,71	57,82	99,35	140,85	154,71	-3,48	0	3,18	0,03
Add5	LS_none1	623,71	57,82	99,35	140,85	154,71	-3,48	0	3,18	0
Add6	R_post1994	668,33	58,38	100,33	142,56	154,43	-3,30	39,68	3,03	0,04
Add7	R_pre1994	668,33	58,38	100,33	142,56	154,43	-3,30	39,68	3,03	0,04
Add8	R_post2010	668,33	58,38	100,33	142,56	154,43	-3,30	39,68	3,03	0,04
Add9	R_1994-2009	668,33	58,38	100,33	142,56	154,43	-3,30	39,68	3,03	0,04
Add10	G_0/5	668,33	58,38	100,33	142,56	154,43	-3,30	39,68	3,03	0,04
Add11	G_1	668,33	58,38	100,33	142,56	154,43	-3,30	39,68	3,03	0,04
Add12	Land_up25	668,33	58,38	100,33	142,56	154,44	-3,30	39,68	2,43	0,03
Add13	Land_down25	668,33	58,38	100,33	142,56	154,43	-3,30	39,68	4,04	0,05
Add14	Lognorm comp	508,85	92,57	108,49	59,01	95,89	-3,80	34,22	1,99	0,03

Tableau C2. Log-vraisemblances négatives pour l'ajustement selon le maximum de vraisemblance des modèles opérationnels de sensibilité (des valeurs plus faibles représentent un meilleur ajustement).

Tableau C3. Estimations moyennes dérivées des modèles opérationnels (MO) de sensibilité. Les quantités au rendement maximal durable (RMD) ont été calculées selon la méthode de Walters et Martell (2004). FRMD est le taux de mortalité par pêche apicale au RMD (maximum sur les classes de longueur). BSRRMD = Biomasse du stock reproducteur au RMD. BRMD est la biomasse vulnérable totale au RMD. URMD est la fraction de la biomasse vulnérable capturée au RMD (taux de récolte). BSR0 est la biomasse du stock reproducteur inexploité. RRéf est le rendement de référence, le rendement maximal obtenu par un taux de pêche fixe compte tenu des conditions futures et de la sélectivité actuelle de la pêche. Bfaible est la biomasse pour laquelle il faudrait deux durées de génération moyennes pour atteindre la moitié de BRMD compte tenu des paramètres biologiques et de la pêche actuels. DGM est la durée de génération moyenne, calculée à l'âge moyen d'un poisson mature dans la population non exploitée. BSR/BSRRMD est la biomasse reproductrice actuelle par rapport aux niveaux du RMD. D est l'épuisement actuel du stock, calculé comme la biomasse du stock reproducteur (BSR) actuelle divisée par la biomasse du stock reproducteur non exploitée (BSR0).

МО	Code	RMD (kt)	FRMD	BSRRMD (kt)	BSRRMD/BSR0	BMSY (kt)	URMD	BSR0 (kt)	RRéf (kt)	Bfaible (kt)	DGM (années)	BSR / BSRRMD	D
Add1	RefCase	75,587	0,623	109,912	0,142	253,808	0,414	776,541	71,704	0,040	5,089	1,613	0,229
Add2	M_oldM	41,496	0,343	119,947	0,150	181,949	0,267	799,766	40,781	0,038	5,848	1,120	0,168
Add3	M_oldM-L	34,341	0,210	164,300	0,201	221,541	0,173	818,268	29,630	4,473	5,848	1,398	0,281
Add4	LS_none	78,957	0,613	115,290	0,141	265,802	0,408	814,774	74,905	0,013	5,089	1,489	0,210
Add5	LS_none1	78,957	0,613	115,290	0,141	265,802	0,408	814,774	74,905	0,013	5,089	1,489	0,210
Add6	R_post1994	75,587	0,623	109,912	0,142	253,808	0,414	776,541	47,264	0,039	5,089	1,613	0,229
Add7	R_pre1994	75,587	0,623	109,912	0,142	253,808	0,414	776,541	78,370	0,046	5,089	1,613	0,229
Add8	R_post2010	75,587	0,623	109,912	0,142	253,808	0,414	776,541	39,753	0,039	5,089	1,613	0,229
Add9	R_1994-2009	75,587	0,623	109,912	0,142	253,808	0,414	776,541	51,185	0,042	5,089	1,613	0,229
Add10	G_0/5	75,587	0,623	109,912	0,142	253,808	0,414	776,541	89,857	0,040	5,089	1,613	0,229
Add11	G_1	75,587	0,623	109,912	0,142	253,808	0,414	776,541	108,138	0,040	5,089	1,613	0,229
Add12	Land_up25	94,480	0,623	137,382	0,142	317,246	0,414	970,628	89,628	0,050	5,089	1,613	0,229
Add13	Land_down25	56,693	0,623	82,442	0,142	190,370	0,414	582,453	53,780	0,029	5,089	1,613	0,229
Add14	Lognorm_comp	98,251	0,532	164,315	0,152	353,855	0,366	1 079,303	93,953	2,109	5,089	1,783	0,271

ANNEXE D. TERMINOLOGIE ET ACRONYMES

Terme	Signification
ESG	Évaluation de la stratégie de gestion. Processus permettant de déterminer des procédures de gestion robustes qui peuvent répondre aux objectifs de rendement de la gestion au moyen d'essais de simulation par rapport à un éventail d'incertitudes du système.
PG	Procédure de gestion (ou stratégie de pêche). Une règle (algorithme) qui fournit des avis sur la gestion de la pêche à partir des données sur la pêche (généralement un ensemble de données simplifié par rapport à une évaluation classique du stock, comme les données sur les prises et un indice de l'abondance relative).
PGP	Procédure de gestion possible. L'une des multiples options pour fournir des avis de gestion, à évaluer de façon comparative au moyen d'une simulation en boucle fermée.
МО	Modèle opérationnel. Les dynamiques du stock et de l'exploitation simulées (« réelles ») pour tester le rendement des procédures de gestion. Souvent semblables à la structure d'une évaluation classique du stock, mais suffisamment souples pour couvrir un éventail de scénarios qui représentent les incertitudes du système de pêche.
Règle de contrôle des prises	Une fonction fournissant des règles supplémentaires pour le niveau d'exploitation cible, généralement appliquées aux extrants d'une évaluation du stock riche en données afin de fournir des avis de gestion (par exemple, une règle « 40-10 » qui prescrit la pêche à FRMD lorsque les stocks sont estimés à plus de 40 % de la biomasse non exploitée et qui impose une diminution linéaire jusqu'à une exploitation nulle entre 40 % et 10 % de la biomasse du stock non exploitée).
Simulation en boucle fermée	Une approche de simulation des systèmes de contrôle qui modélise la rétroaction entre une règle de contrôle (procédure de gestion) et un système (modèle opérationnel) en tenant compte des rétroactions.
Modèle d'erreur d'observation	Simule la collecte de données pour l'utiliser dans les essais en boucle fermée des procédures de gestion, y compris les propriétés statistiques fondées sur l'ajustement du modèle opérationnel aux données (par exemple, biais, imprécision, hyperstabilité des indices, etc.).
Modèle d'erreur de mise en œuvre	Simule la façon dont les avis de gestion fournis par une procédure de gestion sont suivis dans une simulation en boucle fermée (par exemple, sous- utilisations/surutilisations des TAC).
Épuisement	Biomasse du stock reproducteur une année donnée par rapport à la biomasse du stock reproducteur asymptotique (prévue ou moyenne) « non exploitée » (exploitation de zéro) calculée à partir de la croissance, de la survie et de la résilience cette même année.

Tableau D1. Terminologie et acronymes.

Terme	Signification
RMD	Rendement maximal durable : rendement à l'équilibre maximal (à long terme) atteint par la sélectivité, la croissance et la résilience de la pêche globale une année donnée. Ici, le RMD et les quantités connexes sont calculés selon l'approche numérique de Walters et Martell 2004.
F _{RMD}	Taux de mortalité par pêche instantanée apicale (maximum de toutes les classes d'âge) proportionnel au RMD.
TAC	Total autorisé des captures (dans le cas du hareng, un tonnage annuel).
ARS	Analyse de la réduction des stocks. Un modèle de dynamique de la pêche qui suppose que les prises déclarées ont été prises exactement (exige des prises complètes) et qui peut utiliser la composition selon l'âge, la composition selon la longueur et les données de l'indice de l'abondance relative (ou une combinaison de ces données).
Outil MSEtool	Trousse d'évaluation de la stratégie de gestion (Huynh <i>et al.</i> 2019) : progiciel en R à accès libre pour l'élaboration et la mise à l'essai de procédures de gestion possibles et la réalisation d'une évaluation de la stratégie de gestion pour les pêches riches en données.
Outil DLMtool	Trousse Data Limited Methods (Hordyk et Carruthers 2019 : progiciel en R à accès libre pour l'élaboration et la mise à l'essai de procédures de gestion possibles et la réalisation d'une évaluation de la stratégie de gestion pour les pêches à données modérées (par exemple, indice de l'abondance relative ou données sur la composition) et les pêches à données limitées (par exemple, données sur les prises seulement).
SRA_scope	Fonction de l'outil MSEtool qui conditionne un modèle opérationnel en fonction des données sur les pêches à l'aide de Template Model Builder.
Capturabilité, <i>q</i>	La constante de proportionnalité d'un indice de l'abondance (par exemple, biomasse vulnérable = q x indice). Lorsque q = 1, l'indice est un indice <i>absolu</i> de la biomasse vulnérable.
BSR	Biomasse du stock reproducteur. Somme du produit des nombres selon l'âge, de la maturité selon l'âge et du poids selon l'âge pour une année de modèle donnée.
ТМВ	Template Model Builder (Kristensen <i>et al.</i> 2016) : Bibliothèque en R pour l'estimation des paramètres numériques.
APV	Analyse de population virtuelle : approche de modélisation de l'évaluation des stocks qui suppose que les prises totales selon l'âge sont connues et qui reconstitue les cohortes en soustrayant les prises selon l'âge et en tenant compte des taux de mortalité naturelle et de mortalité par pêche.