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ABSTRACT 
In 2018, the Paamiut research vessel used to conduct the bottom trawl survey in Baffin Bay and 
Davis Strait was retired, with no possibility to conduct comparative tows with the new Tarajoq 
research vessel. With the transition between vessels and trawl types generating a new index 
series starting in 2022, alternative methods that could be used to improve management advice 
for Greenland Halibut in the Northwest Atlantic Fisheries Organization Subarea 0+1 (offshore) is 
sought. This paper describes a framework for developing a spatial operating model used to 
simulate surveys and indices of abundance. Fishery and survey data were used to condition a 
population model and a spatiotemporal model to develop an operating model to describe 
historical abundance and distribution trends of Greenland Halibut (Reinhardtius 
hippoglossoides). Using the SimSurvey software package, the current random, depth-stratified 
survey design (in Divisions 0A-South and 1CD) was simulated and compared to an alternative, 
hypothetical survey that also included Division 0B. Simulation studies can identify the relative 
benefit of various components of survey design, e.g, additional survey coverage, strata 
boundaries, and set density, towards index precision within the logistical constraints of the 
survey, for example, ship time.  
The exploratory nature of this work was presented to identify models for potential assessment of 
this stock in the future. These approaches can address the survey gap between 2018-2021 and 
subsequent vessel change in two ways. First, the spatiotemporal model could be used to 
calibrate the catchability between the RV Paamiut and RV Tarajoq which would allow stitching 
the indices of abundance from the two vessels into a single time series. Initial exploration of 
model-based calibration with the 2019 survey on the FV Helga Maria detected lower catchability 
in some depth strata and size classes of fish, consistent with field observations. Further 
simulation testing and validation of the approach is recommended prior to broader use. Second, 
retrospective simulation through SimSurvey of an index of abundance, using catchability and 
selectivity estimates of the RV Paamiut and RV Tarajoq, can demonstrate if the two surveys can 
hypothetically provide similar inference on stock trends and magnitude over the same time 
period. 
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1. INTRODUCTION 
Indices of abundance from biological surveys are valuable data used to inform stock 
assessments and management of fish stocks. Surveys use consistent sampling protocols to 
avoid preferential sampling of the stock and obtain unbiased estimates of stock trends over 
time. These indices can be used to fit a population assessment model and/or inform a harvest 
control rule for catch advice. 
Management of the offshore component of Northwest Atlantic Fisheries Organization (NAFO) 
Subarea 0+1 Greenland Halibut (Reinhardtius hippoglossoides) has been informed by an index 
of abundance time series developed from the trawl survey in Divisions 0A-South (south of 72º 
N) and 1CD. The Paamiut research vessel used for the trawl survey was slated for retirement 
and Fisheries and Oceans Canada (DFO) was planning to request additional ship time to 
conduct comparative tows with the new vessel and gear in order to provide empirical data for 
calibrating catchability. Unfortunately, early retirement of the RV Paamiut was necessitated in 
2018 with no ability to perform the comparative trawl sets. The Helga Maria fishing vessel was 
used for the 2019 survey, although catchability differences were observed with the gear that 
precluded the use of the 2019 survey to update the index time series (Nogueira and Treble 
2020). The new research vessel, the Tarajoq, conducted the 2022 survey and will be used in 
the future. However, the intervening gap between the RV Paamiut and RV Tarajoq surveys 
(2018-2022) creates an information gap until a new index time series with the RV Tarajog is 
established. 
For the short and medium term (up to 5 years), alternative methods are needed to inform 
management due to the survey gap. Recent development of software facilitating spatial 
modeling of fish populations provide an opportunity to develop spatial operating models and 
perform simulations to evaluate survey design. While there is currently no accepted stock 
assessment for NAFO Subarea 0+1 (offshore) Greenland Halibut, there is sufficient fishery-
dependent and fishery-independent data to develop operating models that explore hypotheses 
regarding stock abundance, with age-structured models, and the spatial distribution, with 
spatiotemporal models. Alternative sampling designs or catchability assumptions that reflect use 
of different vessel and gear types can then be simulated and evaluated through performance 
measures against the operating model.  
These models can then be used to address the survey gap in two ways. First, spatiotemporal 
models can accommodate survey data from several vessels in an attempt to estimate 
calibration factors in the absence of comparative towing. Second, retrospective simulation of 
index time series using catchability and selectivity estimates of the RV Paamiut and RV Tarajoq 
can demonstrate if the two surveys hypothetically provide similar inference on stock trends and 
magnitude over the same time period. 
This paper describes a framework for development of a spatial operating model and simulation 
for Greenland Halibut using various open source software packages, including SimSurvey 
(Regular et al. 2020), sdmTMB (Anderson et al. 2021), and openMSE (Hordyk et al. 2021). 
SimSurvey is the focal package used in the simulation framework, with the other supporting 
packages used to inform inputs required in SimSurvey. This paper demonstrates a comparison 
of two indices of abundance from surveys which differ in spatial coverage. A schematic of the 
simulation is provided in Figure 1. A demonstration of the model-based calibration with the 
sdmTMB spatiotemporal model using the 2019 survey data is provided in the appendices. Then 
a description of the approach with retrospective simulation is presented as future work in the 
discussion.  
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Figure 1. Schematic drawing of the simulation design that outlines the data inputs (white boxes) into the 
corresponding software packages (colored boxes).  
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2. METHODS 

2.1. AGE-STRUCTURED POPULATION MODEL 
The operating model for SimSurvey was developed in two steps. First, total stock abundance 
(𝑁𝑁𝑡𝑡,𝑎𝑎 by year t and age a) are needed to set up the population. Estimates of abundance were 
obtained using the Rapid Conditioning Model (RCM) implemented in the SAMtool package 
(Huynh et al. 2021), a component of the openMSE software ecosystem (Hordyk et al. 2021). 
RCM is a single-area, age-structured population model designed for conditioning operating 
models for management strategy evaluation (see Description at openMSE). 
Catches (1987–2019) from Divisions 0AB and 1ABCD and the index of abundance series from 
the trawl survey in Divisions 0A (south of 72o N) and 1CD were used (Treble and Nogueira 
2020). The index was developed from stratified total abundance estimates for years (1999, 
2001, 2004, 2008, 2010, 2012, 2014-2017) in which both 0A and 1CD were sampled using the 
RV Paamiut (i.e., the 2019 survey was excluded). The RCM was also fitted to the corresponding 
length frequencies from both the fishery and survey (Figures 2–4). Three fishery fleets (trawl, 
gillnet, and longline) were modeled in RCM as the length composition indicated that they caught 
different size classes of fish. 

 
Figure 2. Greenland Halibut fishery catches (kt) from the trawl (red line), gillnet (green line), and longline 
(blue line) fisheries in Divisions 0AB and 1A-D from 1987 to 2020. 

https://openmse.com/tutorial-rcm-eq/


 

4 

 
Figure 3. Greenland Halibut length composition from the trawl (red line), gillnet (green line), and longline 
(blue line) fisheries from 1987-2019 from Divisions 0AB and 1ABCD. Most longline length composition 
were collected from Norway. However, the 2015 longline composition does not include Norway catches 
and only include catch from Canada.  
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Figure 4. Greenland Halibut length composition from the trawl survey combined index (in Divisions 0A-
South and 1CD) from 1999-2019. 

Biological parameters, such as growth and maturity, were estimated from survey age and length 
samples (Table 1, Figures 5–7). Sex-specific parameters were estimated from length-at-age 
and maturity-at-length. Female parameters were used as it is assumed that population fecundity 
is constrained by female abundance and that most large fish observed are female (sex-specific 
data from the fishery were not available for this analysis). No sexual dimorphism was seen in 
weight-at-length so a single set of parameters were estimated from data from both sexes. 
Natural mortality was estimated to be 0.11 using the Then et al. (2015) estimator. This value 
was within the range of values used in the assessment for the southern Greenland Halibut stock 
(Subarea 2, Divisions 3KLMNO; Morgan et al. 2019).  

Table 1. Biological parameters used in the population model. 𝐿𝐿∞ is the von Bertalanffy asymptotic length, 
𝐾𝐾 is the von Bertalanffy growth coefficient, 𝑎𝑎0 is the theoretical age of length zero, 𝜏𝜏 is the coefficient of 
variation in length at age, 𝛼𝛼 and 𝛽𝛽 are length-weight conversion parameters, 𝐿𝐿50 and 𝐿𝐿95 are the length of 
50% and 95% maturity, respectively. 

Process Function Parameter 
Value 

Length at age; 𝐿𝐿(𝑎𝑎) 𝐿𝐿(𝑎𝑎) = 𝐿𝐿∞[1 − exp−𝐾𝐾(𝑎𝑎 − 𝑎𝑎0)] 𝐿𝐿∞= 93.6 cm 

𝐾𝐾 = 0.055  

𝑎𝑎0 = -2.2 

Standard deviation in 
length at age; 𝜎𝜎(𝐿𝐿(𝑎𝑎)) 

𝜎𝜎(𝐿𝐿(𝑎𝑎)) = 𝐿𝐿(𝑎𝑎) × 𝜏𝜏 𝜏𝜏 = 0.11 
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Process Function Parameter 
Value 

Weight at length; 𝑊𝑊(𝐿𝐿) 𝑊𝑊(𝐿𝐿) = 𝛼𝛼𝐿𝐿𝛽𝛽 log(𝛼𝛼) = −12.5 

𝛽𝛽 = 3.23 

Maturity at length; 𝑚𝑚(𝐿𝐿) 
𝑚𝑚(𝐿𝐿) = �1 + exp �− log(19) �

𝐿𝐿 − 𝐿𝐿50
𝐿𝐿95 − 𝐿𝐿50

���
−1

 
𝐿𝐿50 = 61 cm 

𝐿𝐿95 = 84 cm 

Natural mortality; 𝑀𝑀 𝑀𝑀 = 4.118 𝐾𝐾0.73𝐿𝐿∞−0.33 𝑀𝑀 = 0.11 

 
Figure 5. Length-at-age (females in red circles, males in blue triangles) of Greenland Halibut. Only the 
biological samples collected in the trawl survey in 2014 and 2017 have been aged to date. Lines indicate 
the predicted mean length-at-age (females in solid line, male in dotted line) from fitting the von Bertalanffy 
growth function.  
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Figure 6. Weight-at-length (females in red circles, males in green triangles, unsexed in blue squares) of 
Greenland Halibut from biological samples collected from the trawl survey from 1999-2019. The black line 
indicates the predicted weight-at-length from fitting a power function. A single model was fit to all 
samples.  

 
Figure 7. Maturity-at-length (females in red circles, males in blue triangles) of Greenland Halibut from 
biological samples collected from the trawl survey from 1999-2019. Lines indicate the predicted 
proportion mature at length (females in solid line, male in dotted line) from a logistic regression. 

From these data and parameters, RCM estimated the initial abundance and annual recruitment 
as deviations from mean recruitment, along with selectivity parameters for the fishery and 
survey, and fishing mortality by year and fleet. The selectivity function for the trawl gear was 
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dome-shaped as the length composition did not have large fish that were observed in the gillnet 
and longline fisheries, with the parameters specifying the extent of the dome estimated in the 
population model. In the absence of age composition, the model converted the predicted age 
composition to length composition for the likelihood of the observed length data.   

2.2. SPATIAL OPERATING MODEL 
Next, the spatial distribution of the stock was characterized in areas of 400–1500 m depth in 
Divisions 0AB and 1A-D, from 62–73º N and 50–75º W (Figure 8). The bathymetry raster data 
from the ETOPO1 Ice Surface Global Relief Model was downloaded from the NOAA National 
Centers for Environmental Information website. The raster data were aggregated into 10 km x 
10 km cells (𝑛𝑛𝑠𝑠 = 2,949 cells) with the depth calculated as the mean value from the smaller 
constituent cells. While there may be variation in depth especially in steep slope bathymetry, 
some approximation is needed based on the spatial resolution of the grid cells.  

 
Figure 8. NAFO Divisions for the spatial grid (between 400–1500 m of depth) of the survey simulation. 

The spatial distribution was obtained by fitting a spatiotemporal generalized linear mixed model 
(GLMM) to the RV Paamiut survey data (individual trawl sets) in Divisions 0A-South and 1CD. 
For this analysis, spatial coordinates were available for 1CD only during 2003-2017. The 
spatiotemporal GLMM was implemented in sdmTMB (see Appendix A for description). For each 
survey sample, the model predicted catch rate is comprised of fixed effects along with a spatial 
and spatiotemporal random effect. The fixed effects included an intercept, year, depth, and the 
square of depth terms, as catch rates were observed to be parabolic with depth (Figure 9). 

https://www.ncei.noaa.gov/maps/grid-extract
https://www.ncei.noaa.gov/maps/grid-extract
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Figure 9. Historical observed NPUE (numbers per sq. km swept area, in open points) by size class (rows) 
and depth (x-axis). Observed NPUE are shown separately for Divisions 0A-South and 1CD (columns). 
Solid, bold lines indicate the marginal effect of depth from the spatiotemporal model (averaged across 
years and excluding all spatial and spatiotemporal effects). The dotted lines denote the 95 percent 
confidence interval. Marginal effects are identical for both Divisions 0A-South and 1CD. The y-axis is 
transformed by taking the natural logarithm of NPUE + 1.  

The random effects component is intended to capture processes that affect abundance but are 
not accounted for in the fixed effects. The spatial effects vary in space but are constant through 
time and the spatiotemporal effects vary in both space and time. These effects are estimated as 
separate random fields estimated from a mesh of 438 vertices defined across the spatial 
domain (Figure 10). The spatial and spatiotemporal effects for sample 𝑖𝑖 are obtained by bilinear 
interpolation based on the UTM coordinates from the sample and the nearest vertices of the 
spatial mesh. 
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Figure 10. Left: a map of the spatial location of the trawl survey sets in the spatiotemporal model. Right: 
locations of the 438 points in the spatial mesh where the spatial and spatiotemporal random effects are 
estimated. The random effects for any other location is obtained by interpolation using the three nearest 
mesh points. For both, colored regions indicate the NAFO Division following Figure 8.  

Based on catch rates between 0A-South and 1CD, it was observed that distribution was not 
identical for all size classes, with smaller fish somewhat more abundant in 0A-South than in 
1CD. Conversely, larger fish are much more abundant in 1CD than in 0A-South (Figures 9, 11). 
To account for spatial heterogeneity in catch rates by size, catch rates (number caught per 
square km swept area) for each tow were calculated for three size classes: Small (0–45 cm), 
Medium (45–70 cm), and Large (70+ cm). This pattern implies an interaction effect between 
size class and the spatial random field. However, as this interaction could not be modeled in a 
single GLMM in sdmTMB, separate models were fit for each size class. This implicitly results in 
interaction effects between size class and all fixed effects and spatial fields, with separate 
nuisance parameters (dispersion parameter of the likelihood, marginal standard deviation of the 
random fields, Matérn range that controls the distance at which the random effects are 
correlated) by size class. 
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Figure 11. Stratified abundance estimates from the trawl survey by division (filled circles and solid lines 
for Division 0A-South; open circles and dotted line for Division 1CD) and size class. The y-axis for the 
three size classes are not identical. This figure includes the 2019 survey with the Helga Maria fishing 
vessel, the Paamiut research vessel was used in all other years. 

From the fitted spatial GLMMs, the population density (numbers per square km) was predicted 
across the full spatial domain. The distribution 𝑝𝑝𝑠𝑠,𝑡𝑡 was calculated as 

𝑝𝑝𝑠𝑠,𝑡𝑡,ℓ =
𝜇𝜇𝑠𝑠,𝑡𝑡,ℓ

∑ 𝜇𝜇𝑠𝑠,𝑡𝑡,ℓ𝑠𝑠
 

where 𝜇𝜇𝑠𝑠,𝑡𝑡,ℓ is the predicted density for size class ℓ in cell s. Distribution was calculated for all 
years of the age-structured model (1987-2020). For years for which there were no survey data 
(i.e., years not included in the spatiotemporal model), the abundance was predicted based on 
the intercept, depth, and spatial effects only (excluding the year fixed effect and spatiotemporal 
random effects). 
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These distributions were then used to generate the spatial abundance in the spatial operating 
model, with 

𝑁𝑁𝑠𝑠,𝑡𝑡,𝑎𝑎 = 𝑁𝑁𝑡𝑡,𝑎𝑎 × 𝑝𝑝𝑠𝑠,𝑡𝑡,𝑎𝑎 

Size classes were assigned to ages using the mean length-at-age function, with the Small size 
class assigned to ages 0–7, Medium to 8-22 years, and Large to 23+ years. Cohort slicing was 
used because annual age-length keys, specifying the probability of age-at-length, were not 
available.  
These inputs were provided to the SimSurvey package in the `sim_abundance()` and 
`sim_distribution()` functions. 

2.3. SURVEY SIMULATION 
The survey protocol was specified in SimSurvey by identifying the stratum and division of each 
spatial cell in the domain. In Division 0A-South and 0B, the strata were defined by both area and 
depth, the latter in increments of 200 m (Table 2). In 1C and 1D, the strata were only defined by 
depth. For each year, the sampling intensity was set to one sample per 750 sq. km, with a 
minimum of two samples, per stratum. The swept area was set to 0.08 sq. km, the median value 
from the historical data. These are input arguments to the `sim_survey()` function. 
One hundred simulations were run to generate stochastic samples of the random-stratified 
survey. The simulated catch 𝑛𝑛 was sampled from a binomial distribution 

𝑛𝑛𝑥𝑥,𝑡𝑡,𝑎𝑎,𝑖𝑖  ~ Bin�𝑁𝑁𝑠𝑠𝑥𝑥,𝑖𝑖,𝑡𝑡,𝑎𝑎 , 𝑞𝑞𝑎𝑎
𝐴𝐴𝑖𝑖  
𝐴𝐴𝑠𝑠𝑥𝑥,𝑖𝑖

� 

where 𝑠𝑠𝑥𝑥,𝑖𝑖 is the spatial cell (randomly chosen within strata) sampled in simulation 𝑥𝑥 and sample 
𝑖𝑖, 𝑞𝑞𝑎𝑎 is the catchability of the survey using the estimated selectivity from the age-structured 
model, 𝐴𝐴𝑠𝑠𝑥𝑥,𝑖𝑖 = 100 sq. km is the area of the sampled cell and 𝐴𝐴𝑖𝑖 = 0.08 sq. km is the swept area 
of individual survey tows. 
The simulation samples the entire spatial domain. Two indices were generated by adjusting the 
spatial coverage of the survey (i.e., filtering the SimSurvey output for the desired grid cells). The 
first index used samples from only Divisions 0A-South and 1CD following the historical coverage 
of the survey. The second index also included Division 0B, i.e., 0A-South, 0B, and 1CD, as an 
example of evaluating increased survey coverage into another division. The number of sets per 
stratum in Divisions 0A, 1C, and 1D were adjusted to match values in Table 2, based on the 
recent sampling of the actual surveys (Table 1 of Treble 2020; Table 4 of Nogueira and 
Estevez-Barcia 2020). Once the samples were filtered to match the desired spatial coverage, 
the stratified totals were calculated for the respective survey.  

Table 2. The number of sets simulated in each stratum per year.  

Division Stratum ID Depth Stratum Number of Sets 
0A A0 1000 2 
0A A0 1200 2 
0A A0 1400 2 
0A A0 400 2 
0A A0 600 2 
0A A0 800 2 
0A A1 1000 6 
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Division Stratum ID Depth Stratum Number of Sets 
0A A1 1200 3 
0A A1 1400 2 
0A A1 400 6 
0A A1 600 5 
0A A1 800 6 
0A A2 1000 3 
0A A2 1200 3 
0A A2 1400 3 
0A A2 400 5 
0A A2 600 3 
0A A2 800 3 
0A A3 1000 2 
0A A3 1200 2 
0A A3 1400 2 
0A A3 400 2 
0A A3 600 2 
0A A3 800 2 
0A A4 1000 2 
0A A4 1200 2 
0A A4 1400 2 
0A A4 400 2 
0A A4 600 4 
0A A4 800 2 
0A A5 1000 2 
0A A5 1200 2 
0A A5 1400 2 
0A A5 600 2 
0A A5 800 4 
0A DF 400 2 
0B A1 600 3 
0B B0 400 2 
0B B1 1000 10 
0B B1 1200 7 
0B B1 1400 2 
0B B1 400 22 
0B B1 600 9 
0B B1 800 13 
1C - 1000 2 
1C - 400 2 
1C - 600 10 
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Division Stratum ID Depth Stratum Number of Sets 
1C - 800 7 
1D - 1000 17 
1D - 1200 11 
1D - 1400 4 
1D - 400 2 
1D - 600 2 
1D - 800 4 

 2.4. PERFORMANCE MEASURES 
To compare the two surveys, four comparisons were made between the simulated indices and 
the operating model:  
1. the relative trends in the index vs. the relative trends in total abundance; 
2. the relative trends in the index vs. the relative trends in total vulnerable abundance 

(accounting for selectivity of the trawl gear); 
3. the r ratio in the index vs. in total abundance; and, 
4. the r ratio in the index vs. in total vulnerable abundance. 
Fishery total allowable catches (TACs) have recently been set according to a harvest control 
rule of the form TAC𝑡𝑡+1 = 𝑟𝑟𝑡𝑡  × TACt (Treble and Nogueira 2020), where 𝑟𝑟 is the ratio of index 
(𝐼𝐼𝑦𝑦) means over time: 

𝑟𝑟𝑡𝑡 =
1
3∑ 𝐼𝐼𝑦𝑦𝑡𝑡

𝑦𝑦=𝑡𝑡−2
1
4∑ 𝐼𝐼𝑦𝑦𝑡𝑡−3

𝑦𝑦=𝑡𝑡−6

�  

The values of 𝑟𝑟𝑡𝑡 are compared with the corresponding ratios in the population (replacing 𝐼𝐼𝑦𝑦 with 
abundance in the above equation). 
For each comparison, the relative root mean square error (RMSE) metric was used to gauge 
how well the index and control rule follow population trends. RMSE was calculated as 

Relative RMSE =
�∑ ∑ �

𝑆𝑆𝑥𝑥,𝑡𝑡 − 𝑂𝑂𝑥𝑥,𝑡𝑡
𝑂𝑂𝑥𝑥,𝑡𝑡

�𝑡𝑡𝑥𝑥

𝑋𝑋 𝑇𝑇
 

With the simulated index value 𝑆𝑆 compared to operating model value 𝑂𝑂 over 𝑋𝑋 = 100 
simulations and 𝑇𝑇 years. The relative RMSE was calculated on the relative trends for the 
operating model abundance and simulated indices, obtained by dividing annual values by the 
time series geometric mean.  

3. RESULTS 

3.1. OPERATING MODEL 
In the population model, the selectivity of the trawl was estimated to be dome shaped at the 
modal age of 13 years, and low selectivity of 0.1 and less for ages older than 30 years (Figure 
12). There was variability in the estimated recruitment over time with a peak in 2000, although 
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there did not appear to be any particular directional trend over time (Figure 13). This appears to 
be inferred by the relatively flat index over the course of the time series (Figure 14). 

 
Figure 12. Trawl survey selectivity-at-age estimated in the population model.  

 

 
Figure 13. Historical abundance of six age classes from the population model.  
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Figure 14. Observed (black points, with error bars indicating the 95% confidence interval) and predicted 
(red line) trawl survey index in the population model. The 2019 survey was excluded from the Rapid 
Conditioning (RCM) Model.  

Based on the predicted catch rates for the survey samples, the spatiotemporal GLMM captured 
the size class and spatial interaction effects, with smaller fish predicted to be more abundant in 
shallow waters and in 0A and less abundant in deep waters and 1CD (Figures 9, 15). This is 
consistent with Greenland Halibut distribution in other areas (Morgan et al. 2013, Wheeland and 
Morgan 2020). Conversely, larger fish were abundant in deep waters and 1CD. The depth fixed 
effects in the GLMM were significant at the 95% level (Table 2). This spatial effect is also 
apparent in the estimated spatial random field with a positive effect for small fish in 0A and for 
large fish in 1CD (Figure 15). The model interpolates the spatial random field in Divisions 0B, 
0A-North, and 1AB as there were no survey data informing abundance in these regions.  
The spatiotemporal field estimated year-specific deviations in abundance, particularly in the 
medium and large size classes (Figure 16). Notably, there was no spatiotemporal variation 
estimated for the small size class. The estimated standard deviation of the spatiotemporal 
random field was low (SD = 0.02, Table 3), presumably because the fixed effects and spatial 
field can account for most of the variation in catch rates.  
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Figure 15. The estimated spatial random field (in log space) in the GLMM by size class. Higher values of 
the random field predict higher abundance in the corresponding spatial cell. 

 

Figure 16. The estimated spatiotemporal random field (in log space) in the GLMM by size class for four 
years. Higher values of the random field predict higher abundance in the corresponding year and cell. 

Figure 17 shows the density predicted over the spatial domain for a subset of 4 different years 
from the model. Overall, there was no notable inter-annual changes in the predicted spatial 
density, supported by the lack of significance in the year effects in the GLMM (Table 3). Overall, 
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the model informs the spatial distribution through the depth and area effects and their 
interactions by size class. 

 
Figure 17. Estimated stock density (numbers per sq. km) over spatial area by size class for four historical 
years (1999, 2005, 2010, and 2017). 

Table 3. GLMM estimates of fixed effects (in log space) and nuisance parameters. Separate models were 
fit for survey catch rates for each size class (Small, Medium, Large). Asterisks indicate coefficients that 
were significant at the 95% level (null hypothesis of zero). `depth_z` is the tow depth converted to a Z-
score and `depth_z2` is the square of `depth_z`. Significance is not reported for nuisance parameters. 

Term Estimate 
Small Medium Large 

(Intercept) 7.16* 6.12* 2.62* 
year2001 -0.06 0.81 -0.19 
year2003 -0.06 1.26* 0.02 
year2004 -0.35 1.04* 0.79 
year2005 -0.22 0.79 0.87 
year2006 -0.52 0.90 0.08 
year2007 0.15 0.94 0.15 
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Term Estimate 
Small Medium Large 

year2008 -0.21 0.23 0.32 
year2009 -0.53 0.75 1.05 
year2010 0.01 0.17 0.43 
year2011 -0.33 0.87 0.83 
year2012 -0.44 0.61 0.46 
year2013 -0.13 0.59 -0.03 
year2014 -0.87* 0.44 0.62 
year2015 -0.58* 1.04* 0.87 
year2016 -0.41 0.73 0.56 
year2017 -0.57* 0.28 0.47 
depth_z -0.72* 0.46* 1.20* 
depth_z2 -0.58* -0.54* -0.56* 
Matérn range (km) 1463 1782 2125 
Dispersion (𝜙𝜙) 0.56 0.81 0.83 
Spatial SD 1.12 0.98 1.38 
Spatiotemporal SD 0.02 0.71 0.92 

3.2. SURVEY SIMULATION 
Figure 18 shows three simulated indices with index values generated for all years 1987-2020 
(years in the population model). Performance measures were calculated using simulated values 
from all years. A subset of values corresponding to years in which the survey was actually run 
can be used as a “Turing test” to visually evaluate if the simulation reasonably mimics the true 
index (Figure 19).  

 

Figure 18. Example index generated from three simulations in SimSurvey. The index was generated from 
sampling Divisions 0A-South and 1CD using the recent sampling intensity (by depth-area stratum). 
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Figure 19. Example index with 95% confidence intervals generated from three simulations, along with the 
historical stratified estimates from the RV Paamiut survey. A subset of values is plotted with years in 
which the actual survey took place. Differences in scaling between the simulated indices and historical 
index could be attributed to specification of catchability-at-age in SimSurvey. 

When comparing the index to total stock abundance, the precision of the simulated index was 
slightly more precise when 0B was sampled than when omitted from the survey (Figure 20). 
However, the reduction in relative RMSE was minor (0.18 vs. 0.175). More importantly, the 
index trend is out of phase with the operating model, presumably due to selectivity and the 
delay between recruitment of young animals to the population versus when they are vulnerable 
to the survey. When compared to vulnerable abundance, the relative RMSE is smaller, with 
greater reductions in error to 0.036 from 0.046 when Division 0B is included in the survey 
(Figure 21). 
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Figure 20. Comparison of total abundance in the operating model (thick black line) to two simulated 
surveys. Thin lines represent 100 simulated indices with the relative root-mean-square error (RMSE) in 
the lower left corner. There is little improvement in the relative RMSE with additional spatial coverage 
because the simulated index is out of phase with the population abundance due to dome selectivity. 
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Figure 21. Comparison of total vulnerable abundance in the operating model (thick black line) to two 
simulated surveys. Thin lines represent 100 simulated indices with the relative root-mean-square error 
(RMSE) in the lower left corner. It is expected that relative RMSE will reduce with additional spatial 
coverage; more information on survey constraints are needed to identify the cost and benefits of 
alternative sampling protocols. 

Lower RMSE values in 𝑟𝑟𝑡𝑡 indicated that the ratio was somewhat more precise than individual 
index values (Figure 22-23). Trends in 𝑟𝑟𝑡𝑡  remain out of phase with trends in total stock 
abundance and there was little reduction in error with increasing spatial coverage. Incorporating 
Division 0B in the survey reduces the error of 𝑟𝑟𝑡𝑡 in tracking vulnerable abundance by 21% 
(reduction in relative RMSE from 0.034 to 0.027). 
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Figure 22. Comparison of index ratio r from two simulated surveys to the ratio of total abundance means 
in the corresponding year from the operating model (thick black line). Thin lines represent 100 simulated 
indices with the relative root-mean-square error (RMSE) in the lower left corner. There is little 
improvement in the relative RMSE with additional spatial coverage because the simulated index is out of 
phase with the population abundance due to dome selectivity. 
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Figure 23. Comparison of index ratio r from two simulated surveys to the ratio of total vulnerable 
abundance means in the corresponding year from the operating model (thick black line). Thin lines 
represent 100 simulated indices with the relative root-mean-square error (RMSE) in the lower left corner. 
It is expected that relative RMSE will reduce with additional spatial coverage; more information on survey 
constraints are needed to identify the cost and benefits of alternative sampling protocols. 

4. DISCUSSION 
Factors such as ship availability, funding for survey operations, and access to ice-free waters 
can constrain the ability to sample the population. In turn, they may affect the spatial coverage 
and sampling intensity of the survey. With these logistical constraints, the recent change to a 
new survey vessel provides an opportunity to re-evaluate survey design and implement new 
protocols if desired. Given the high cost and complexity of implementing a survey, the ability to 
evaluate a survey design and its effect on estimating population trends is highly desirable and 
can be used to justify the change to a more effective sampling protocol.  
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This paper demonstrated the steps in setting up a simulation for evaluating survey design using 
Greenland Halibut as a case study. The spatial operating model was developed from two 
components: (1) a population model with estimates of historical stock abundance-at-age 
(conditioned on the data), and (2) a spatial distribution model conditioned on historical survey 
tows. Sampling protocols can then be implemented to simulate a survey to evaluate the 
performance and benefit of alternative survey designs that differ in spatial boundaries of 
sampling strata, sampling intensity, and spatial coverage.  

4.1. OPERATING MODEL SPECIFICATION AND EVALUATION OF SURVEY 
DESIGNS 
Conditioning the population model with catches from 0AB and 1A-D allowed for estimates of 
total abundance in a spatial region larger than those sampled by the offshore survey in 0A-
South and 1CD. Some assumption of the distribution in regions not sampled by the actual 
survey was needed. The species distribution model used here allows one to interpolate in 
missing regions. 
Use of the population and distribution models would allow one to evaluate robustness of a 
survey design with respect to abundance trends and spatial distribution. Alternative conditioning 
of population models can evaluate robustness with respect to productivity and stock depletion. 
The distribution model estimates the historical distribution of the stock. In this way, the 
simulation evaluates the retrospective performance of any survey design. This setup evaluates 
what sampling plan would generate the best index, given historical abundance and distribution. 
In the case study here, separate spatiotemporal models were fit to account for variation in 
spatial distribution by size. However, the data did not show much inter-annual variation in spatial 
distribution and patchiness, factors that can be expected to have notable impacts on a survey 
with respect to spatial coverage and sampling intensity. 
The SimSurvey operating model can be expanded to include historical survey data that is 
available for several years from 0A-North, 0B and 1AB as well as a longer time series from 
nearshore areas of Divisions 1A-F (Hedges and Raffoul 2023). These data could be 
incorporated into the spatiotemporal model to inform the spatial distribution of Greenland 
Halibut. It is known that that there is spatial structure of Greenland Halibut in Subarea 0+1 
between the offshore and nearshore component. Operating models can be updated to evaluate 
survey performance with consideration to these dynamics.  
More broadly, survey design should take into account the spatial dynamics of the sampled 
species. For example, the best survey design for a sessile species may not be the best for a 
mobile species. A mobile species may exhibit high variability in patchiness over space and time, 
in which case, broad survey coverage may be desirable. Functions in SimSurvey such as 
`sim_ays_covar()` allows for simulation of spatial patchiness over time in lieu of estimating 
distribution from sdmTMB. Mechanistically, distribution matrices derived from movement 
matrices would explicitly account for the ‘viscosity’ of a population (Carruthers et al. 2015). 
Tagging models can inform movement between offshore regions. Such movement matrices 
typically describe movement among large-scale spatial units, e.g., at the division level, with 
additional specification needed for individual fine-scale spatial cells within division.  
This paper evaluated two alternative survey designs using only root mean square error in the 
objective function to evaluate performance. Unsurprisingly, performance should always improve 
with additional sampling. For effective use of SimSurvey to inform survey planning, the logistical 
constraints of the survey should first be identified and subsequently operationalized within the 
simulation. For example, the number of available sea days in the survey season sets a 
constraint on the number of possible sets per year. Within those constraints, one can then 
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compare the benefits of various options, e.g., more sets within a concentrated area or fewer 
sets in a broader area. If budgetary costs are a concern, then a cost-benefit tradeoff can be 
incorporated into the analysis to justify expenditures of additional sampling. 

4.2. DISCONTINUITY IN SURVEY PROTOCOLS  
The SimSurvey simulation model was developed to address the opportunity for potential 
revisions to survey design that arose from the change to a new vessel. However, there is a 
break in the index series that cannot be bridged by a calibration factor typically derived from 
gear comparative studies. We propose two methods to address this index gap.  
First, the spatiotemporal model can be modified to estimate a calibration factor without 
comparative towing. By constraining the year effect explicitly (intercepts as a random walk), or 
implicitly (year-over-year random walk in the spatiotemporal random effects), abundance may 
not be confounded with catchability. In essence, the random walk models the population 
process (changes in abundance) as informed by the older index series. The statistical properties 
of the random walk, i.e., how much the abundance can change, informs the predicted 
abundance after the end of the old index series (including the intervening years between 
surveys). Deviations in catch rates observed in the new survey from the predicted abundance 
inform catchability differences. A demonstration of the model-based calibration technique on the 
2019 survey that used the Helga Maria fishing vessel is provided in Appendix B, which 
estimated lower catchability in several depth strata, as supported by field observations 
(Nogueira and Treble 2020). Further analysis by simulation is desirable. It is expected that life 
history and the length of the survey gap affects performance of the model-based calibration 
approach. For example, this technique may perform better for long lived species like Greenland 
Halibut compared to short-lived species which experience rapid turnover in the population. 
Validation with surveys that have comparative towing (e.g., Miller et al. 2010) will also provide 
support for using spatiotemporal modeling to estimate calibration factors.  
Second, SimSurvey can be used to create a retrospective index from the new survey series to 
compare with the old series (Figure 24). With population models conditioned on historical data, 
simulated indices of abundance are generated from the estimated historical abundance. If the 
old index series was used to condition the operating model, then the simulated indices should 
resemble the historical index generated from the old vessel. A second set of indices can be 
simulation using the properties of the new index, i.e., selectivity and catchability estimates of the 
new vessel. If the two series differ only in magnitude, if at all, then a calibration factor could be 
derived, for example, using the ratio in the time series geometric mean, to join the two series. If 
trends appear to differ between the two series within the same historical period, then there is 
less support to stitch the two indices. Selectivity and catchability estimates can be obtained from 
either the model-based calibration in the spatiotemporal model or from an age-structured model 
that fits to the new index series. The extent to which the two series differ in magnitude is 
expected to be explained by catchability, while selectivity differences may affect trends. 
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Figure 24. Schematic of the proposed retrospective calibration with SimSurvey. Top: a historical index 
(Paamiut research vessel) until 2017 (black lines) followed by a hypothetical new index series starting in 
2022. Bottom: SimSurvey can be used to simulate a retrospective index series, i.e., the hypothetical index 
if the new survey vessel could have sampled the population in the past. A calibration factor can be 
identified if the two indices are similar in trend (bottom left panel). Otherwise, there is less support for 
stitching the two index series if the two differ in trend (bottom right panel). 

4.3. EVALUATION OF HARVEST STRATEGIES 
While this study used relative RMSE to evaluate whether an index tracks historical population 
trends, management strategy evaluation can answer the broader question of whether survey 
design impacts broader management objectives. It is critical to distinguish between scientific 
objectives (e.g., accuracy and precision of a survey or stock assessment) and management 
objectives (e.g., fishery catch and risk of falling below the limit reference point). For example, it 
is possible that a much more extensive and expensive survey may provide a substantially more 
precise index of abundance but does not significantly improve a harvest strategy.  
Previous catch advice for the stock has been provided from an index-based harvest control rule. 
With respect to the harvest control rule, two considerations moving forward with the new survey 
vessel would be (1) how to identify if an alternative survey design supports management, and 
(2) how to provide catch advice in the interim time period when the control rule would use index 
values from two separate vessels. We envision that SimSurvey can be incorporated into any 
management strategy evaluation software such as openMSE for testing in closed-loop 
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projections. The simulated stock abundance and distribution information can be provided to 
SimSurvey to generate and update an index of abundance following a specified sampling 
design at any time step during the projection. This index can be used to specify catch advice in 
a management procedure that is sequentially implemented in the operating model over time. In 
this way, error in the index is an emergent property of the stock dynamics and sampling design 
rather than a pre-specified parameter such as a hyperstability or observation error term. This 
allows one to evaluate implementation of survey design with respect to management outcomes 
such as the risk of breaching limit reference points and catch objectives.  
Under stationary productivity, the sampling error of the index may be derived from the 
stratification plan and set density to inform management strategy evaluation simulations. A 
spatially explicit setup of the operating model with the SimSurvey component would be valuable 
to evaluate the index when there are systematic changes in stock distribution. Extending this 
work to undertake closed-loop projections in an MSE framework also allows for robustness 
testing of management strategies (combined survey design, assessment and harvest control 
rules) under changing ocean conditions, for example systematic spatial shifts due to climate 
change. Scenarios can be developed where bottom temperature changes distribution of 
Greenland Halibut from the historical baseline, which would affect the availability of the stock to 
the survey. In doing so, it may be possible to establish dynamic survey rules or harvest control 
rules that are ‘climate ready’. Alternatively, scenarios for climate or ecosystem impacts could be 
used to develop early warning indicators of important changes in population dynamics.  
Finally, construction of operating models provides access to the calculation and comparison of 
alternative reference point systems in order to identify those that are most appropriate, for 
example, definitions of a biological limit reference point that is responsive to 
sustainable/unsustainable fishing or has a low likelihood of being exceeded even with low 
catches.  
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APPENDIX A: DESCRIPTION OF THE SPATIOTEMPORAL MODEL 
The spatiotemporal GLMM implemented here is of the form: 

log 𝜇𝜇𝑖𝑖 = 𝑋𝑋𝑖𝑖,𝑗𝑗𝛽𝛽𝑗𝑗 + 𝑂𝑂𝑖𝑖 + 𝜔𝜔𝑖𝑖 + 𝜀𝜀𝑖𝑖 

where 𝜇𝜇𝑖𝑖 is the predicted abundance from sample 𝑖𝑖, 𝑋𝑋𝑖𝑖,𝑗𝑗 is the design matrix of covariates, 𝛽𝛽𝑗𝑗 is 
the vector of fixed effects, 𝑂𝑂𝑖𝑖 is the offset term (with a fixed coefficient of 1), 𝜔𝜔𝑖𝑖 is the spatial 
effect, and 𝜀𝜀𝑖𝑖 is the spatiotemporal effect. The fixed effects used here were the intercept, year, 
depth, and the square of depth. The offset term was the log of the swept area. The natural 
logarithm is the link function to map observed values to their linear predictors. 
In the GLMM, a spatial mesh of 𝑛𝑛𝑚𝑚 = 438 points is defined across the spatial domain. The 
spatial effects 𝜔𝜔𝑚𝑚 estimated at the vertices of the mesh is parameterized as a Gaussian random 
field (multivariate normal distribution): 

𝜔𝜔𝑚𝑚 ~ MVN(0, Σω) 

Similarly, the spatiotemporal random field 𝜀𝜀𝑚𝑚,𝑡𝑡, independent among years 𝑡𝑡, is also a Gaussian 
random field 

𝜀𝜀𝑚𝑚,𝑡𝑡  ~ MVN(0, Σ𝜀𝜀) 

where Σ is the corresponding 𝑛𝑛𝑚𝑚 x 𝑛𝑛𝑚𝑚 covariance matrix. For each pair of points in the spatial 
mesh, the correlation is defined by a Matérn function and decays as distance between points 
increases. The Matérn function is defined by the range parameter, the distance at which spatial 
points are effectively independent, and is shared between both Σ𝜔𝜔 and Σ𝜀𝜀. The covariance is 
scaled from the correlation by the marginal standard deviation, with separate parameters 
estimated for the two fields. 

The spatial and spatiotemporal effects for sample 𝑖𝑖 are interpolated from the corresponding 
random field based on the UTM coordinates of the sample and the vertices of the spatial mesh. 
The marginal likelihood of the model is 

𝑦𝑦𝑖𝑖  ~ NegBin(𝜇𝜇𝑖𝑖 ,𝜙𝜙) 

where 𝑦𝑦𝑖𝑖 is the observed abundance from sample 𝑖𝑖, and 𝜙𝜙 is a dispersion parameter such that 
the variance of 𝑦𝑦𝑖𝑖 = 𝜇𝜇𝑖𝑖 + 𝜇𝜇𝑖𝑖2/𝜙𝜙. The objective function integrates across the likelihood of the 
random effects. 
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APPENDIX B: SPATIOTEMPORAL MODEL CALIBRATION OF SURVEY 
CATCHABILITY 

To join time series of survey data where catchability has changed over time, typical index 
standardization procedures rely on comparative tow studies in order to estimate a calibration 
factor and link an index from two different gears (otherwise, the year effect is confounded with 
catchability changes). Autoregressive spatiotemporal models provide an opportunity to explore 
calibration of catchability in the absence of comparative tow studies.  
This approach is possible when a process controlling population abundance is constrained, i.e., 
the spatiotemporal random field, through a random walk over individual time steps. 
Spatiotemporal fields estimate time-area effects that describe inter-annual variability in stock 
distribution. For example, a hotspot that persists only in part of the time series would be 
separate from the time-invariant spatial field. The variance of the random walk should in theory 
be informed by biological considerations. A sedentary, long-lived species would be expected to 
have a lower variance (slower changes over time) in the spatiotemporal field compared to a 
short-lived, mobile species.  
In the context of a gear calibration model, the random walk structure of the spatiotemporal field 
is first informed from a historical survey time series. Projections on stock abundance can be 
made based on the statistical properties of the random walk. Unlike a lag-1 autoregressive 
process, the mean of the spatiotemporal field does not approach zero, although the standard 
error increases (Thorson 2019; Sean Anderson, pers. comm.). With this behaviour, the model 
could estimate catchability of a new vessel based on the differences between the projected 
random walk and new survey data.  
Model-based calibration was attempted for the 2019 trawl survey in 0A1CD in which the Helga 
Maria fishing vessel was contracted for the survey instead of the RV Paamiut. Although the 
Alfredo trawl gear was used on both vessels, it is believed that the gear interacted with the sea 
floor differently based on doorspread and trawl height (Nogueira and Treble 2020). Reduced 
contact of the trawl on the floor bottom would reduce catchability through fish outswimming or 
escaping the gear. It is also believed that the behavior of the Alfredo trawl on the FV Helga 
Maria relative to the RV Paamiut varied by depth.  
The model is of the form: 

log 𝜇𝜇𝑖𝑖 = 𝑋𝑋𝑖𝑖,𝑗𝑗𝛽𝛽𝑗𝑗 + 𝑂𝑂𝑖𝑖 + 𝜔𝜔𝑖𝑖 + 𝜀𝜀𝑖𝑖 

where the design matrix 𝑋𝑋𝑖𝑖,𝑗𝑗 included depth (as a quadratic term), a global intercept 
(corresponding to the catchability of the RV Paamiut), and additional vessel effects for the FV 
Helga Maria (2019 only). Three FV Helga Maria intercepts were included, corresponding to the 
catchability difference at three different depth strata (400–700 m, 701–1000 m, and 1000+ km). 
No year effect is included in the design matrix. 

Year effects are implicit in the random walk structure of the spatiotemporal field 𝜀𝜀𝑖𝑖,𝑡𝑡 (an extra 
subscript indexes by time step 𝑡𝑡) where 

𝜀𝜀𝑖𝑖,𝑡𝑡+1 = 𝜀𝜀𝑖𝑖,𝑡𝑡 + 𝛿𝛿𝑖𝑖,𝑡𝑡 

𝛿𝛿∙,𝑡𝑡  ~ MVN(0, Σ𝜀𝜀) 

All other variables are defined as in Appendix A.  
Models were fitted separately for three different size classes based on the size-area distribution 
observed in the data. The likelihood of the model used the Tweedie distribution where the 
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variance is a power function of the mean, and provides more flexibility in the variance structure 
compared to the Poisson and negative binomial distributions. 

The vessel effect was negative and significantly different at the α = 0.05 level for the Small size 
category in the two deepest strata (701–1000, and 1000+ m) (Figure B.1, Table B.1). This is 
apparent in the 2019 catch rates containing values lower than the range of values seen in the 
RV Paamiut series (Figure B.2). 
Once the model is fitted, the index is developed by predicting and summing the density over a 
spatial grid over 0A-South and 1CD (Figure B.3). By excluding the vessel effects in the 
prediction, the 2019 index is the value the Paamiut would have theoretically generated had the 
vessel performed the survey, although the confidence interval may be higher when there are no 
comparative gear studies.  
Differences between the prediction grid of the spatiotemporal model and expansion factors of 
design-based estimates could explain the differences in scaling between the two indices (Figure 
B.3). Alternative configurations, for example, addition of a delta-model to incorporate 
presence/absence of the spatiotemporal model, could resolve scaling issues. The fitted model 
assumed that the encounter rate is one over the entire prediction grid which can contribute to 
higher abundance estimates. Finally, if index standardization were to use catch rates stratified 
by size, it would be desirable to fit a single model to account for correlations in catch rates and 
parameter estimates by size (rather than three separate models by size class). In this case, use 
of the spatiotemporal modeling facilitating multivariate regression available in the VAST 
software (Thorson 2019) is advised.  
There were additional concerns regarding the timing of the 2019 survey, which occurred earlier 
in the season compared to prior years (Nogueira and Treble 2020), in which case seasonality 
would be confounded with the vessel effect. This confounding would be eliminated if the RV 
Tarajoq survey is held in the same season as the RV Paamiut. There were also concerns that 
too much time (five years) will have passed between the RV Paamiut and RVTarajoq surveys to 
calibrate the index with sufficient precision. While it is possible to fit a model with one year of 
data from a new survey, it is not known whether the model will perform better with additional 
years of data. 
Spatiotemporal modeling is a potential tool for model-based calibration in the absence of 
comparative towing. Simulation testing of the method is recommended and performance should 
be evaluated against the magnitude of various parameters: the spatial standard deviation (SD), 
the spatiotemporal SD, the time gap between surveys (relative to species longevity), and vessel 
effect. Case studies with comparative tow studies (e.g., Miller et al. 2010) can empirically 
validate this approach to estimate calibration factors.  
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Figure B.1. Fixed effect coefficients from the sdmTMB model incorporating calibration of the 2019 FV 
Helga Maria survey without comparative towing. Points indicate the maximum likelihood estimate and the 
line range indicates the 95 percent confidence interval using the standard error. Estimates are 
significantly different if the confidence interval does not include zero (dotted horizontal line). The intercept 
is interpreted as the catchability of the RV Paamiut. Three calibration factors are estimated for the FV 
Helga Maria (by depth strata of 400, 700, and 1000 m). Year effects are incorporated to the random walk 
of the spatiotemporal field and are not included here. 

Table B.1. Estimates of fixed effects (in log space) and nuisance parameters in the sdmTMB model 
incorporating calibration of the 2019 survey. Separate models were fit for survey catch rates for each size 
class (Small, Medium, Large). Asterisks indicate coefficients that were significant at the 95% level (null 
hypothesis of zero). `depth_z` is the tow depth (m) converted to a Z-score and `depth_z2` is the square of 
`depth_z`. Significance is not reported for nuisance parameters. `Tweedie p` is the exponent of the 
variance function of the mean.  

Term 
Estimate 

Small Medium Large 
(Intercept) 7.19* 6.82* 2.27* 
vesselHM_400 0.14 1.31* 0.98 
vesselHM_700 -0.92* 0.35 0.53 
vesselHM_1000 -1.07* -0.51 0.79 
depth_z -0.68* 0.37* 0.91* 
depth_z2 -0.64* -0.53* -0.60* 
Matérn range (km) 1386 2756 3473 

Dispersion (𝜙𝜙) 6.95 6.82 5.15 
Spatial SD 0.89 0.54 0.01 
Spatiotemporal SD 0.29 0.47 0.67 
Tweedie p 1.46 1.43 1.47 
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Figure B.2. Historical observed and model-predicted NPUE (numbers per sq. km swept area) by size 
class (Small, Medium, and Large) and depth in Division 0A-South and 1CD. Colors indicate the year and 
vessel of the set (purple for 2019 FV Helga Maria, and yellow for RV Paamiut in all other years). The y-
axis is transformed by taking the natural logarithm of NPUE + 1. The y-axis for the three size classes are 
not identical. Dotted vertical lines delineate the three depth strata for which the 2019 vessel calibration 
factor was estimated. Catchability differences are estimated in part by 2019 NPUE in some strata, e.g., 
for small fish in 0A, that is lower than the range observed in the RV Paamiut time series. 
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Figure B.3. Comparison of the natural logarithm of the index of abundance in 0A-South and 1CD derived 
from the spatiotemporal model and the stratified design-based estimate. For the spatiotemporal model, 
the 95% confidence interval is provided (not available for the design estimate). The design-based 
estimate can only be calculated when both 0A-South and 1CD are sampled in a given year, while the 
spatiotemporal model can impute in missing years and area strata if there is a random walk on the year 
effect. Index series include the 2019 survey (black point). In the spatiotemporal model, the 2019 estimate 
is the “RV Paamiut equivalent” after accounting for the estimated calibration factor for the FV Helga 
Maria. The confidence interval of the 2019 value is expected to be wider in the absence of comparative 
towing. The design-based estimate does not (and cannot) account for the catchability difference. 
Differences in scaling between the model-based and design-based index may be attributed to various 
factors, including (1) differences in the spatial grid used in the spatiotemporal model vs. the expansion 
factors in the stratified estimate, or (2) presence-absence assumption of the spatiotemporal model 
(assumed presence in all areas for all size classes). The spatiotemporal model estimate was generated 
by predicting the density in spatial cells in 0A-South and 1CD, see Figure 10 of the main text. No data 
from the 1CD survey prior to 2003 was used in the spatiotemporal model, which appreciably changes the 
index trend of the Large size class during these years. 
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