

Fisheries and Oceans Canada

Sciences des écosystèmes et des océans

Ecosystems and Oceans Science

Secrétariat canadien des avis scientifiques (SCAS)

Document de recherche 2023/026

Terre-Neuve-et-Labrador

Examen pré-COSEPAC du saumon atlantique (*Salmo salar*) anadrome au Canada, partie 1 : Unités désignables

Lehnert, S.J.¹, Bradbury, I.R.¹, April, J.², Wringe, B.F.³, Van Wyngaarden, M.¹, Bentzen, P.⁴

 ¹ Centre des pêches de l'Atlantique Nord-Ouest Pêches et Océans Canada,
C.P. 5667, 80, route East White Hills,
St. John's (Terre-Neuve-et-Labrador) A1C 5X1

² Direction de l'expertise sur la faune aquatique ministère des Forêts de la Faune et des Parcs du Québec, 880, chemin Sainte-Foy, 4^e étage Québec (Québec) G1S 4X4

> ³ Institut océanographique de Bedford Pêches et Océans Canada,
> 1, promenade Challenger
> Dartmouth (Nouvelle-Écosse) B2Y 4A2

 ⁴ Département de biologie Université Dalhousie
1355, rue Oxford, C.P. 15000
Halifax (Nouvelle-Écosse) B3H 4R2

Avant-propos

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon des échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Publié par :

Pêches et Océans Canada Secrétariat canadien des avis scientifiques 200, rue Kent Ottawa (Ontario) K1A 0E6 Canada

https://www.dfo-mpo.gc.ca/csas-sccs/ csas-sccs@dfo-mpo.gc.ca

© Sa Majesté le Roi du chef du Canada, représenté par le ministre du ministère des Pêches et des Océans, 2023 ISSN 2292-4272 ISBN 978-0-660-48034-3 N° cat. Fs70-5/2022-026F-PDF

La présente publication doit être citée comme suit :

Lehnert, S.J., Bradbury, I.R., April, J., Wringe, B.F., Van Wyngaarden, M., et Bentzen, P. 2023. Examen pré-COSEPAC du saumon atlantique (*Salmo salar*) anadrome Canada, partie 1 : Unités désignables. Secr. can. des avis sci. du MPO. Doc. de rech. 2023/026. iv + 177 p.

Also available in English:

Lehnert, S.J., Bradbury, I.R., April, J., Wringe, B.F., Van Wyngaarden, M., and Bentzen, P. 2023. Pre-COSEWIC Review of Anadromous Atlantic Salmon (Salmo salar) in Canada, Part 1: Designatable Units. DFO Can. Sci. Advis. Sec. Res. Doc. 2023/026. iv + 156 p.

TABLE DES MATIÈRES

RÉSUMÉ	iv
INTRODUCTION	1
OBJET	1
SAUMON ATLANTIQUE : INFORMATION SUR L'ESPÈCE SAUVAGE	1
DÉFINITION DES UNITÉS DÉSIGNABLES DU SAUMON ATLANTIQUE ANADROME	2
Définition des unités désignables	2
Incorporation des données génétiques et génomiques dans les désignations	2
Critères de définition des UD de saumon atlantique : arbre de décision	4
RÉSULTATS	. 10
APERÇU	.10
MODIFICATIONS DES UNITÉS DÉSIGNABLES DU SAUMON ATLANTIQUE ANADROM	E .10
UD 1 Nunavik (ancienne UD) – Inchangée	.10
UD 2 Labrador (ancienne UD) – Trois UD proposées : nord du Labrador, lac Melville et s du Labrador	sud . 11
UD 3 Nord-est de Terre-Neuve (ancienne UD) – Modification de la limite	.15
UD 4 Sud de Terre-Neuve (ancienne UD) – Deux UD proposées : sud de Terre-Neuve (est) et sud de Terre-Neuve (ouest)	.20
UD 5 Sud-ouest de Terre-Neuve (ancienne UD) – Inchangée	.24
UD 6 Nord-ouest de Terre-Neuve (ancienne UD) – Modification de la limite	.26
UD 7 Est de la Côte-Nord du Québec (ancienne UD) – Ajout d'une rivière	.27
UD 8 Ouest de la Côte-Nord du Québec (ancienne UD) – Modification de la limite	.28
UD 9 Anticosti (ancienne UD) – Inchangée	.31
UD 10 Intérieur du Saint-Laurent (ancienne UD) – Modification de la limite	.32
UD 12 Gaspésie-sud du golfe du Saint-Laurent (ancienne UD) – Deux UD proposées : Gaspésie et sud du golfe du Saint-Laurent-Cap-Breton	.32
UD 13 Est du Cap-Breton (ancienne UD) – UD proposée (fusionnée) : sud du golfe du Saint-Laurent-Cap-Breton	.35
UD 14 Hautes terres du sud de la Nouvelle-Écosse (ancienne UD) – Deux UD proposée hautes terres du sud de la Nouvelle-Écosse (ouest) et hautes terres du sud de la Nouvel Écosse (est)	s : lle- .36
UD 15 Intérieur de la baie de Fundy (ancienne UD) – Retrait d'une rivière	. 39
UD 16 Extérieur de la baie de Fundy (ancienne UD) – Ajout d'une rivière	.43
Possibilité de sauvetage de l'extérieur du Canada	.44
CONCLUSIONS	.45
REMERCIEMENTS	.45
RÉFÉRENCES CITÉES	.46
TABLEAUX	. 54
FIGURES	.69
ANNEXE	. 82

RÉSUMÉ

Le Comité sur la situation des espèces en péril au Canada (COSEPAC) reconnaît 16 unités désignables (UD) de saumon atlantique (Salmo salar), dont 15 représentent les populations anadromes existantes. Évaluée pour la dernière fois par le COSEPAC en 2010, cette espèce doit actuellement être réévaluée. En tant que principal producteur et archiviste des données sur le saumon atlantique, Pêches et Océans Canada (MPO) est chargé de compiler et d'examiner l'information sur l'espèce pour éclairer la nouvelle évaluation à venir. Ici, dans la première partie de l'examen du saumon atlantique préalable à l'évaluation du COSEPAC, nous nous concentrons sur la réévaluation de la structure des UD. Au cours de la dernière décennie, nous avons eu accès à de nouvelles données génétiques et génomiques qui peuvent nous permettre d'améliorer notre compréhension de la structure des UD. La définition du COSEPAC exige qu'une UD représente une unité distincte et importante sur le plan de l'évolution de l'espèce; nous élaborons donc un cadre utilisant une approche fondée sur le poids de la preuve pour nous assurer que toutes les UD proposées ici répondent aux critères de distinction et d'importance. Notre approche intègre des ensembles de données génétiques et génomigues, ainsi que de l'information sur le cycle biologique et le climat. Elle a conduit à la subdivision de quatre des UD du COSEPAC précédemment définies en plusieurs unités, notamment la subdivision du Labrador, du sud de Terre-Neuve, de la Gaspésie et du sud du golfe du Saint-Laurent, et des hautes terres du sud de la Nouvelle-Écosse. De plus, en nous fondant sur le poids de la preuve, nous avons déterminé qu'il était nécessaire de réévaluer les limites de certaines UD, ce qui a entraîné la modification des limites des UD précédemment reconnues au Québec (entre l'ouest de la Côte-Nord et l'intérieur du Saint-Laurent) et à Terre-Neuve (entre le nord-ouest et le nord-est de Terre-Neuve). La réévaluation des limites a également confirmé que les populations du sud du Golfe n'étaient pas distinctes des populations de l'est du Cap-Breton, et ces populations ont donc été combinées en une seule UD. De plus, nous avons identifié deux populations qui appartiennent à des UD adjacentes, ce qui donnerait des limites non contiguës : celle de la rivière de la Corneille au Québec (située physiquement dans l'UD de l'ouest de la Côte-Nord, mais regroupée avec l'UD de l'est de la Côte-Nord) et celle de la rivière Gaspereau dans la baie de Fundy (située physiquement dans l'UD de l'intérieur de la baie de Fundy, mais regroupée avec l'UD de l'extérieur de la baie de Fundy). Dans l'ensemble, à partir des nouvelles données disponibles, nous estimons qu'il y a 19 UD de saumon atlantique anadrome existantes, notre proposition étant appuyée par des preuves de leur distinction et de leur importance, et nous suggérons de nouveaux noms et une nouvelle numérotation pour ces 19 UD présumées.

INTRODUCTION

OBJET

En vertu de la *Loi sur les espèces en péril* (LEP), le Comité sur la situation des espèces en péril au Canada (COSEPAC) mène une évaluation indépendante de la situation du saumon atlantique (*Salmo salar*) au Canada. La dernière évaluation des unités désignables (UD) de saumon atlantique par le COSEPAC remonte à 2010 et les rapports de situation pour chaque espèce sont mis à jour tous les 10 ans. En tant que principal producteur et archiviste des données sur le saumon atlantique, Pêches et Océans Canada (MPO) doit compiler et examiner les renseignements qu'il détient avant de les fournir au COSEPAC, sous la forme d'un examen pré-COSEPAC. Dans ce document, nous examinons les données qui faisaient partie de l'évaluation de 2010, ainsi que les informations actualisées sur les populations de saumon atlantique qui ont été recueillies et produites dans l'intervalle, afin d'évaluer la structure des UD. Au cours des dix dernières années, de nouvelles données génétiques et génomiques sont devenues disponibles et peuvent permettre d'améliorer notre compréhension actuelle de la distinction et de l'importance sur le plan de l'évolution des populations de saumon au Canada, ce qui est essentiel pour définir des unités appropriées pour la conservation.

SAUMON ATLANTIQUE : INFORMATION SUR L'ESPÈCE SAUVAGE

Le saumon atlantique est un poisson à nageoires rayonnées de la famille des salmonidés. Il a un corps fusiforme et sa taille à maturité est extrêmement variable, allant de 10 à 100+ cm. Le saumon atlantique, comme d'autres salmonidés, se caractérise par la diversité des stratégies de son cycle biologique, qui peut se traduire par de multiples phénotypes reproducteurs et migratoires dans une population. Il peut s'agir de formes résidentes d'eau douce (ouananiche) et de formes migrantes océaniques (anadromes). Toutes les formes de saumon atlantique se reproduisent en eau douce. La forme anadrome est le phénotype le mieux connu et la seule forme considérée dans ce rapport. Par conséquent, nous n'évaluons pas ici la population potamodrome disparue du lac Ontario (Guiry et al. 2016), qui a fait l'objet de récents efforts de réintroduction avec des populations sources de l'extérieur du lac Ontario (Dimond et Smitka 2005). Dans les populations anadromes, les juvéniles du saumon atlantique peuvent passer un à huit ans en eau douce avant de migrer dans le milieu marin (océan Atlantique Nord), où ils vivent ensuite pendant un à quatre ans supplémentaires avant leur première maturation. Lorsqu'ils remontent en eau douce pour se reproduire, les saumons atlantiques présentent généralement des niveaux élevés de philopatrie natale, ce qui entraîne de faibles niveaux d'errance parmi les populations (<10 %). La philopatrie natale réduit le flux génétique entre les populations, permettant une adaptation locale et créant des populations de saumon atlantique très structurées génétiquement à plusieurs échelles spatiales, la division génétique la plus profonde s'observant entre les populations européennes et nord-américaines. En raison des faibles niveaux d'errance, la structure génétique est également présente en Amérique du Nord, où les populations peuvent être différenciées à l'échelle régionale, et dans certains cas à l'échelle de la rivière. Des différences génétiques peuvent également exister dans les bassins hydrographiques, mais les preuves en sont généralement limitées. Dans l'ensemble de l'aire de répartition canadienne du saumon atlantique, le COSEPAC a reconnu un total de 16 UD en 2010 (voir la figure 1) en fonction des données génétiques et des grands profils de variation du cycle biologique, des variables environnementales et de la séparation géographique (COSEPAC 2010). Au total, 15 de ces 16 UD représentent des populations anadromes existantes de saumon atlantique. Nous réévaluons la structure de ces 15 UD à l'aide des nouvelles données disponibles et, sur la base du poids de la preuve, nous proposons des UD révisées pour l'espèce.

DÉFINITION DES UNITÉS DÉSIGNABLES DU SAUMON ATLANTIQUE ANADROME

Définition des unités désignables

Dans sa définition d'une UD, le COSEPAC indique que l'UD doit représenter une unité distincte et importante sur le plan de l'évolution de l'espèce. Il fournit diverses lignes directrices sur la façon dont ces critères peuvent être respectés et nous les résumons ici.

Caractère distinct

Les populations d'une UD doivent être distinctes des autres populations de l'espèce. Les critères relatifs au caractère distinct peuvent être satisfaits sur la base de preuves génétiques qui peuvent inclure, sans s'y limiter, des différences associées à des caractères héréditaires (c'est-à-dire la phénologie, les voies de migration, le cycle biologique) et divers marqueurs génétiques. Le caractère distinct peut également être soutenu lorsque les populations sont naturellement séparées des autres populations présentes dans l'aire de répartition de l'espèce, ce qui devrait limiter le flux génétique entre ces populations. En outre, le caractère distinct peut également être déduit lorsque les populations occupent des régions écogéographiques différentes qui sont pertinentes pour l'espèce et reflètent des différences historiques ou génétiques.

Importance sur le plan de l'évolution

Si les critères relatifs au caractère distinct sont remplis, l'étape suivante consiste à évaluer l'importance de l'unité sur le plan de l'évolution selon plusieurs types de critères. L'importance peut résulter d'une période d'isolement significative qui devrait générer une histoire évolutive indépendante ou de la présence de caractères adaptatifs précis et héréditaires qui peuvent se développer sur une période plus courte. Les critères relatifs à l'importance peuvent être satisfaits en montrant de fortes différences dans les caractéristiques qui révèlent une profonde divergence phylogénétique intraspécifique. Il peut s'agir de différences significatives au niveau des gènes fonctionnels, des associations entre la génétique et l'environnement, du comportement, ou de différences dans des marqueurs génétiques à évolution lente. Les conditions écologiques peuvent également étayer les preuves de l'importance lorsqu'un régime sélectif a probablement entraîné une adaptation à l'échelle de l'UD. L'importance peut également être prouvée si les populations représentent les seules populations naturelles de l'espèce dans l'aire de répartition indigène. De plus, l'importance peut être soutenue s'il existe des preuves que la perte de la ou des populations distinctes considérées entraînerait une disjonction importante dans l'aire de répartition de l'espèce. Les lignes directrices ci-dessus permettent d'étayer l'importance, mais d'autres critères peuvent également être pris en compte.

Incorporation des données génétiques et génomiques dans les désignations

Les progrès de la technologie de séquençage de l'ADN fournissent des quantités sans précédent de données génomiques pour les espèces non-modèles et sont directement applicables aux critères de caractère distinct et d'importance. Cependant, l'utilisation de données génomiques à grande échelle pour guider la structure des UD du COSEPAC a rarement été tentée chez d'autres espèces à ce jour. Pourtant, il est probable qu'au fur et à mesure que des données génomiques seront disponibles, de nombreuses évaluations commenceront à les intégrer dans leurs analyses des UD. Il est donc nécessaire d'examiner attentivement comment les données génétiques et génomiques peuvent être intégrées au processus d'identification des UD. Pour le saumon atlantique, l'une des espèces de poissons les plus étudiées au monde, il existe divers ensembles de données génétiques et génomiques qui comprennent des données pour de nombreuses populations au Canada. Nous passons ici en revue les types de données disponibles et fournissons des lignes directrices claires sur la manière de les intégrer dans un cadre décisionnel pour évaluer les UD (voir Critères de

définition des UD de saumon atlantique : arbre de décision). Chacun de ces ensembles de données présente des limites inhérentes en termes de résolution spatiale et génomique, qui sont discutées plus loin. Étant donné que les preuves à l'appui de chaque critère peuvent provenir de divers types de données génétiques ou génomiques, nous appliquons une approche fondée sur le poids de la preuve, où chaque source de données pour le critère pertinent est évaluée, puis nous évaluons le caractère distinct et l'importance pour l'ensemble des données probantes.

Microsatellites

Les microsatellites se comportent habituellement comme des marqueurs génétiques neutres et ségrègent selon les lois de l'hérédité mendélienne. Ils sont présents dans tout le génome et sont représentés par de courtes répétitions en tandem de séguences d'ADN (p. ex. ATATATATAT). En général, les microsatellites se caractérisent par des taux de mutation plus élevés que les autres régions génomiques, ce qui permet aux allèles d'évoluer rapidement et d'afficher des niveaux élevés de diversité génétique. En outre, comme ils sont généralement non fonctionnels et se comportent de manière neutre (c'est-à-dire qu'ils ne sont pas soumis à la sélection), la dérive génétique peut entraîner des différences dans la fréquence allélique entre des populations qui sont physiquement ou reproductivement isolées les unes des autres ou entre des populations ayant un faible flux génétique. Cependant, comme on examine normalement des dizaines de loci, la couverture génomique des loci microsatellites est généralement faible dans de nombreuses études, souvent limitée à quelques marqueurs par chromosome. Ainsi, on peut utiliser les différences de fréquences alléliques aux loci microsatellites pour déterminer le niveau de distinction génétique entre les populations. Cependant, étant donné que ces marqueurs n'influencent généralement pas le phénotype et qu'ils ont une faible couverture génomique, ils ne sont généralement pas informatifs pour le critère de l'importance.

Deux ensembles de données sur les microsatellites sont applicables au saumon atlantique au Canada. Le premier est constitué de 15 loci microsatellites (voir Bradbury *et al.* 2016) qui ont été génotypés pour près de 200 emplacements au Canada et qui offrent donc une couverture géographique élevée dans les UD de saumon reconnues (figure 2A; tableau A1 de l'annexe). Les emplacements ou sites sont souvent désignés comme des rivières; néanmoins, dans certains cas, plusieurs affluents ont été échantillonnés dans certains réseaux hydrographiques plus grands. Pour cet ensemble de données, la taille de l'échantillon, l'emplacement, l'année d'échantillonnage et le stade biologique échantillonné sont fournis dans le tableau A1 de l'annexe. Le deuxième ensemble de données comprend 101 loci microsatellites à l'échelle du génome, décrits en détail dans Bradbury *et al.* (2018). La couverture géographique de cet ensemble de données peut donc être utile pour déduire le caractère distinct dans certaines régions géographiques. La couverture génomique de cet ensemble de données peut donc être utile pour déduire le caractère distinct dans certaines régions géographiques. La couverture génomique de cet ensemble de données peut donc être utile pour déduire le caractère distinct dans certaines régions géographiques. La couverture génomique de cet ensemble de données est également faible, mais en moyenne, il comprend 3,4 loci par chromosome (fourchette : 1 à 7 loci) (Bradbury *et al.* 2018).

Polymorphismes touchant un nucléotide unique

Un polymorphisme nucléotidique simple (SNP) est représenté par un changement dans une seule paire de bases (A, G, C ou T) dans la séquence d'ADN. Par exemple, pour une position précise dans le génome, une population peut être composée d'individus porteurs de copies de deux nucléotides différents (allèles), tels que les individus porteurs de copies de l'allèle « A » et ceux porteurs de copies de l'allèle « T », ainsi que d'individus porteurs d'une copie des deux allèles (hétérozygotes). Dans ce cas, on peut utiliser les différences des fréquences alléliques A et T entre les populations pour quantifier les différences entre ces populations. Étant donné que les SNP sont bi-alléliques (seulement deux allèles), ils fournissent moins d'informations par

locus que les microsatellites, mais ils offrent une couverture génomique généralement plus grande, car les méthodes permettent le génotypage de centaines, voire de millions, de SNP sur le génome. À mesure que la couverture génomique augmente, il est également plus probable que les SNP soient situés à l'intérieur ou à proximité de parties du génome qui influencent directement le phénotype. De ce fait, les SNP peuvent donner des informations sur les différences neutres entre les populations et sur les différences adaptatives (Barson *et al.* 2015; Sylvester *et al.* 2018; Lehnert *et al.* 2019a; Lehnert *et al.* 2019b), ce qui permet d'utiliser les ensembles de données sur les SNP pour déduire à la fois le caractère distinct et l'importance sur le plan de l'évolution.

Trois ensembles de données sur les SNP sont applicables au saumon atlantique au Canada. Le premier comprend 96 SNP et a été élaboré en tant que groupe de référence à l'échelle de l'aire de répartition pour l'identification génétique des stocks (IGS) (see Jeffery et al. 2018). Ces 96 loci ont été sélectionnés comme étant très informatifs pour différencier les groupes régionaux nord-américains de saumon atlantique (Jeffery et al. 2018; Bradbury et al. 2021). La couverture génomique de cet ensemble de données est relativement faible, puisque nous prévoyons une moyenne de 3 loci par chromosome. La couverture géographique de ce groupe est toutefois élevée, avec plus de 200 emplacements génotypés au Canada (figure 2B; tableau A2 de l'annexe). Comme indiqué ci-dessus, les emplacements ou sites sont souvent désignés comme des rivières. Pour cet ensemble de données, la taille de l'échantillon, l'emplacement, l'année d'échantillonnage et le stade biologique échantillonné sont fournis dans le tableau A2 de l'annexe. Le deuxième ensemble de données sur les SNP repose sur une matrice de 220 000 SNP mise au point à l'aide d'une matrice Affymetrix Axiom de SNP bi-alléliques ciblés par le CIGENE (Centre for Integrative Genetics, Ås, Norvège). La couverture génomique de cet ensemble de données est élevée, avec une moyenne de 7 521,5 loci par chromosome et de nombreux SNP situés à l'intérieur ou à proximité des régions codantes des gènes. La couverture géographique de la matrice de 220 000 SNP est moyenne, avec plus de 100 emplacements génotypés dans tout le Canada atlantique (figure 2C; tableau A3 de l'annexe). Ici encore, les emplacements (ou sites) sont souvent désignés comme des rivières, mais dans certains cas, plusieurs affluents ont été échantillonnés dans certains réseaux hydrographiques plus grands, tels que les rivières Miramichi, Restigouche et Margaree. Pour cet ensemble de données, la taille de l'échantillon, l'emplacement, l'année d'échantillonnage et le stade biologique échantillonné sont fournis dans le tableau A3 de l'annexe. Cet ensemble de données a été utilisé pour relever les différences adaptatives entre les individus et les populations de saumon atlantique (Barson et al. 2015; Sylvester et al. 2018; Lehnert et al. 2019a; Lehnert et al. 2019b). Enfin, il existe également un ensemble de données de reséquençage du génome entier (données inédites) dont la couverture géographique est généralement faible en Amérique du Nord, car les emplacements génotypés sont principalement situés au Québec (figure 2C; tableau A3 de l'annexe). Il compte plus de deux millions de SNP à l'échelle du génome, et présente donc une couverture génomique élevée. Étant donné la faible couverture géographique de ces données, elles ne sont pas informatives pour de nombreuses UD; cependant, dans certains cas, il est possible de combiner les données de cet ensemble et de la matrice de 220 000 SNP pour améliorer la couverture géographique des analyses génomiques.

Critères de définition des UD de saumon atlantique : arbre de décision

Nous utilisons les critères présentés dans l'arbre de décision de la figure 3 pour définir les UD de saumon atlantique anadrome au Canada. Ce processus suppose généralement que les UD du COSEPAC déjà reconnues sont équivalentes à au moins une UD. Nous posons cette hypothèse, car l'évaluation précédente a étayé le caractère distinct et l'importance pour définir les UD (COSEPAC 2010). Bien que cela puisse sembler contraignant, plusieurs études continuent de soutenir largement le caractère distinct des UD en fonction de leurs limites

antérieures (voir ci-après; Bradbury *et al.* 2014, 2021; Moore *et al.* 2014; Jeffery *et al.* 2018). De plus, cette hypothèse a fait l'objet d'une évaluation critique (voir plus loin) et dans plusieurs cas, les limites des UD sont modifiées lorsque cela est nécessaire après une analyse à plus grande échelle.

Au cours de la dernière décennie, le caractère distinct des UD de saumon atlantique selon le COSEPAC a été largement étayé par les ensembles de données sur les microsatellites et les SNP. Moore et ses collaborateurs (2014) ont identifié un total de 29 groupes génétiques distincts pour le saumon atlantique en utilisant une analyse non supervisée des données des microsatellites avec 149 lieux d'échantillonnage, certains groupes génétiques ne contenant qu'une seule rivière. Moore et ses collaborateurs (2014) ont conclu qu'il existait 11 grands groupes génétiques régionaux de saumon atlantique au Canada. Le regroupement a confirmé le caractère distinct de la majorité des UD définies par le COSEPAC (2010). Certaines divergences comprenaient des différences dans l'emplacement des limites entre les UD (p. ex. au Québec) et la division potentielle des UD en raison de preuves du caractère distinct (p. ex. en Gaspésie et dans le sud du golfe du Saint-Laurent) [Moore et al. 2014]. En particulier, à l'époque, les seules UD dont le caractère distinct était peu confirmé étaient celles situées à Terre-Neuve (4 UD), dans l'est de la Côte-Nord du Québec (1 UD), dans l'est du Cap-Breton (1 UD) et dans l'extérieur de la baie de Fundy (1 UD). Les rivières de l'est du Cap-Breton sont regroupées avec celles du sud du golfe du Saint-Laurent, ce qui donne à penser que les critères de caractère distinct n'ont pas été respectés ici. De plus, bien que quatre UD soient reconnues à Terre-Neuve, le caractère distinct n'a pas été étayé pour toutes. Il convient néanmoins de noter que l'analyse a révélé des niveaux élevés de structure à Terre-Neuve, car de nombreux groupes génétiques distincts ne contenaient qu'une seule rivière. Des travaux supplémentaires utilisant des microsatellites et un échantillonnage à une échelle plus fine ont soutenu au moins quatre groupes génétiques à Terre-Neuve (Bradbury et al. 2014). En outre, à l'aide des SNP, Moore et ses collaborateurs (2014) ont détecté des groupes génétiques supplémentaires soutenant certaines des UD de Terre-Neuve et l'UD de l'est de la Côte-Nord du Québec.

De même, à l'aide des données sur les SNP (Jeffery *et al.* 2018; Bradbury *et al.* 2021), le caractère distinct entre les UD du COSEPAC pour le saumon atlantique en 2010 a été confirmé. Bradbury et ses collaborateurs (2021) ont identifié 20 groupes génétiques distincts au Canada, chacun englobant plusieurs rivières. La majorité des groupes identifiés dans Moore *et al.* (2014) ont été soutenus, mais avec des preuves supplémentaires du caractère distinct entre les rivières dans certaines UD reconnues (p. ex. au Labrador) [Bradbury *et al.* 2021]. Contrairement aux données présentées dans Moore *et al.* (2014), les données sur les SNP ont révélé sept groupes génétiques à Terre-Neuve, ce qui appuie le caractère distinct des UD reconnues par le COSEPAC, avec la possibilité d'une division supplémentaire de ces UD. Les données sur les SNP ont également confirmé le caractère distinct de l'UD de l'extérieur de la baie de Fundy. Les seules UD pour lesquelles on ne disposait pas de preuve de leur caractère distinct des UD voisines étaient à nouveau l'UD de l'est du Cap-Breton (voir précédemment) et deux UD le long de la Côte-Nord du Québec qui contrastaient avec les données sur les microsatellites.

Dans l'ensemble, ces études continuent de soutenir le caractère distinct des UD du COSEPAC (2010), à quelques exceptions près. Compte tenu de ces exceptions, nous avons également intégré la possibilité de réévaluer les limites des UD dans le cadre de l'arbre de décision. Nous passons ici en revue le cadre de l'arbre de décision et discutons de la manière dont ces données étayent les preuves du caractère distinct et de l'importance. Notre arbre de décision met en évidence les différentes voies qui peuvent conduire à des changements ou à l'absence de changements dans la structure actuelle des UD (voir la figure 3).

Caractère distinct

La première étape de l'arbre de décision a consisté à examiner les preuves de caractère distinct dans les UD précédemment reconnues. Dans chaque UD du COSEPAC, nous avons d'abord évalué les données génétiques pour déterminer s'il est nécessaire de réévaluer les limites antérieures des UD. Les arguments en faveur d'une réévaluation comprenaient généralement des preuves de l'existence de groupes génétiques distincts près de la limite de l'UD, des preuves existantes de similitudes génétiques entre les sites dans les UD adjacentes ou une suggestion antérieure d'ambiguïté dans la limite de l'UD. Pour réévaluer les limites, nous avons combiné les sites des UD adjacentes et analysé le caractère distinct en suivant l'arbre de décision, où nous avons ensuite évalué si un seul ou plusieurs groupes génétiques étaient présents.

Les données utilisées pour ces analyses étaient à la fois des données sur les microsatellites et les SNP avec une couverture géographique élevée. Nous avons utilisé deux ensembles de données sur les microsatellites, qui comprenaient

- 1. 15 séquences microsatellites (Bradbury *et al*. 2016) et
- 2. 101 séquences microsatellites (Bradbury et al. 2018).

Dans chaque UD, nous avons utilisé la séquence microsatellite offrant la plus grande couverture géographique pour l'analyse. Pour l'ensemble de données sur les SNP, nous avons utilisé l'ensemble de données de référence sur 96 SNP (Jeffery *et al.* 2018; Bradbury *et al.* 2021). Nous avons considéré que les critères de groupes génétiques multiples (unités distinctes) étaient remplis si l'analyse d'un des ensembles de données (microsatellites ou SNP) ou des deux identifiait plusieurs groupes génétiques. En fonction de ces critères, un seul des ensembles de données doit présenter des preuves de l'existence de plusieurs groupes génétiques. Nous partons du principe que si un ensemble de données présente des groupes génétiques et l'autre non, cela n'indique pas l'absence de structure génétique. Au contraire, il est plus probable que les allèles ou les loci présents dans un seul des ensembles de données de données de données soient importants pour différencier les populations, ce qui justifie une étude plus approfondie des différences importantes sur le plan de l'évolution entre les groupes génétiques distincts.

Pour évaluer la présence de « groupes génétiques multiples », nous nous sommes appuyés sur une analyse de regroupement dans le programme STRUCTURE (Pritchard et al. 2000). STRUCTURE utilise une approche de regroupement bayésienne dans laquelle les échantillons sont placés dans des groupes (groupes génétiques) en fonction d'une similarité partagée de la variation génétique. Nous avons procédé à des exécutions indépendantes de la méthode de Monte Carlo par chaîne de Markov (MCCM) dans STRUCTURE v 2.3.4, mises en œuvre par le progiciel en R parallelstructure (Besnier et Glover 2013). Pour chaque exécution, nous avons effectué un rodage de 100 000 et 500 000 itérations, et avons répété trois fois cette procédure pour chaque valeur de K (groupes génétiques, qui varient selon l'UD). Afin de déterminer le soutien pour le nombre de groupes génétiques (K), nous avons déterminé ici le nombre optimal de groupes génétiques (K) à partir de la statistique ∆K (Evanno et al. 2005). Cependant, cette statistique peut s'avérer peu fiable dans des scénarios d'évolution complexes (Janes et al. 2017), qui sont souvent le cas pour les salmonidés. Par conséquent, en utilisant STRUCTURE HARVESTER (Earl et vonHoldt 2012), nous avons pris en compte la statistique ΔK , mais nous avons également examiné le plateau des estimations moyennes de LnPr(X|K) afin d'évaluer le soutien pour le nombre de groupes génétiques (Janes et al. 2017). Nous avons inspecté visuellement tous les résultats de STRUCTURE pour confirmer la présence de la structure dénétique. Dans l'ensemble, cette analyse dans STRUCTURE nous permet d'étudier plusieurs niveaux de structure (c'est-à-dire la structure hiérarchique), où nous nous concentrons principalement sur les différences géographiques à plus grande échelle de la génétique dans l'UD reconnue.

Si nous déterminions la présence d'un seul groupe génétique, nous ne tenions pas compte des changements apportés à l'UD précédemment reconnue (figure 3; chemin 4). En effet, nous ne prévoyons pas de changements significatifs dans les informations sur le cycle biologique ou les données climatiques dans l'UD depuis la dernière évaluation et donc, sans nouvelle preuve de distinction génétique, nous n'avons pas cherché de preuves de l'importance sur le plan de l'évolution. Nous reconnaissons qu'en l'absence de distinction génétique, il peut encore y avoir des gènes uniques à grand effet pouvant entraîner des différences importantes dans les phénotypes adaptatifs entre les individus de l'UD. Les gènes qui influencent l'âge à la maturité chez le saumon atlantique (vgll3) (Barson et al. 2015) et ceux qui influencent le moment de la migration chez le saumon du Pacifique (GREB1L) (Prince et al. 2017) sont des exemples de gènes à grand effet chez les salmonidés. Si les critères de caractère distinct ne sont pas remplis, ces allèles ségrègent alors librement dans la population. Bien que ces allèles puissent contribuer à des différences importantes dans le phénotype, nous ne pensons pas que cela constitue une preuve d'unités distinctes et importantes sur le plan de l'évolution selon les critères actuels du COSEPAC. Par exemple, alors que le gène *vgll3* peut contribuer à plus de 39 % de la variation de l'âge à la maturité chez le saumon atlantique, nous ne considérerions pas pour l'instant que les saumons d'âges différents (par exemple, unibermarins et dibermarins) sont des unités distinctes et importantes sur le plan de l'évolution dans une population hybride.

Dans le cas du saumon atlantique, il a été démontré à maintes reprises que la structure génétique spatiale est hiérarchique, avec une grande différenciation génétique couvrant l'océan Atlantique Nord (Lehnert *et al.* 2019a; Lehnert *et al.* 2020), une différenciation régionale modérée (Moore *et al.* 2014; Jeffery *et al.* 2018; Bradbury *et al.* 2021) et même des preuves nettes d'une structuration importante entre les différentes rivières (p. ex., Bradbury *et al.* 2018). Ici, pour le cas du caractère distinct, comme indiqué précédemment, nous nous concentrons principalement sur les grandes coupures géographiques ou les groupes régionaux. Bien qu'il soit possible que certaines rivières répondent aux critères du caractère distinct, dans la plupart des cas, les données disponibles sont insuffisantes pour fournir des preuves de « l'importance » (voir la section suivante) au niveau des rivières individuelles. Nous reconnaissons néanmoins que de nombreuses rivières à saumon pourraient éventuellement constituer des unités distinctes et importantes sur le plan de l'évolution, et que cela pourrait devenir plus évident à mesure que davantage de données seront disponibles.

Importance sur le plan de l'évolution

Si la présence de plusieurs groupes génétiques a été déterminée, l'étape suivante de l'arbre de décision repose sur l'utilisation de données génomiques à haute densité pour définir les différences adaptatives entre les groupes génétiques. Nous utilisons ici l'ensemble des données génomiques compilé à l'aide d'une matrice de 220 000 SNP ou du reséquençage du génome entier. Si les deux ensembles de données étaient disponibles pour l'UD, nous les avons combinés sur la base des loci qui se chevauchent; sinon, nous avons utilisé un seul ensemble de données (principalement la matrice de 220 000 SNP). Nous avons d'abord examiné les différences adaptatives entre les groupes d'après les données génomiques à l'aide du progiciel en R *pcadapt* (Luu *et al.* 2017), une méthode fondée sur l'analyse en composantes principales (ACP) utilisée pour détecter les loci soumis à la sélection. Cette analyse nous permet de déterminer quels loci contribuent aux différences entre les groupes distincts. Pour satisfaire aux critères « d'importance » fondés sur cette analyse génomique, nous avons besoin de preuves montrant que les loci contribuant aux différences sont associés à l'adaptation. Plusieurs sources de données peuvent être utilisées pour étayer le lien entre les loci identifiés et l'adaptation, notamment :

1. Les loci sont situés dans des variantes structurelles connues qui sont associées à l'adaptation chez le saumon atlantique : Grâce aux progrès de la génomique, il devient évident que les variantes structurelles, comme les réarrangements chromosomiques, sont

souvent à l'origine de phénotypes complexes (Wellenreuther et Bernatchez 2018). Par exemple, chez les salmonidés, un réarrangement chromosomique influence les écotypes migratoires (truite arc-en-ciel et saumon arc-en-ciel) chez Oncorhynchus mykiss (Pearse et al. 2019). Les réarrangements chromosomiques connus chez le saumon atlantique comprennent des fusions, des translocations et des inversions chromosomiques. Ces variantes entraînent des changements dans la structure des chromosomes, influencent l'ordre et la position des gènes et peuvent supprimer la recombinaison. Trois réarrangements chromosomiques connus ont été associés à l'adaptation chez le saumon atlantique. Des différences dans une translocation chromosomique entre les chromosomes Ssa01 et Ssa23 du saumon de l'Atlantique sont associées à une introgression européenne historique dans les populations nord-américaines (Lehnert et al. 2019a) et des preuves suggèrent que cette translocation est soumise à la sélection et associée à l'adaptation au climat (Watson et al. 2022). La variation d'une fusion chromosomique entre les chromosomes Ssa08 et Ssa29 a également été identifiée parmi les populations d'Amérique du Nord (Lehnert et al. 2019a) et cette fusion a été associée à la variation climatique (Wellband et al. 2019). Enfin, un réarrangement chromosomique présumé sur le chromosome Ssa18 est fortement associé à l'âge des saumoneaux et au climat en Amérique du Nord (Lehnert et al. en prép.¹).

- 2. Les loci sont situés dans des gènes dont le rôle dans l'adaptation est connu ou qui sont associés au climat : Plusieurs gènes ont été associés à l'adaptation chez le saumon atlantique. Il s'agit notamment (mais pas exclusivement) de vgl/3 qui influence l'âge à la maturité (Barson et al. 2015), du sexe qui est associé à l'âge et à la taille à la maturité, de la taille du bassin hydrographique et de la période de la montaison (Cauwelier et al. 2018; Pritchard et al. 2018; Sinclair-Waters et al. 2020), ainsi que des gènes majeurs d'histocompatibilité (MHC) qui sont associés à la fonction immunitaire et à la température (Dionne et al. 2007). D'autres gènes sont associés à des phénotypes adaptatifs, notamment le taux de croissance (Gutierrez et al. 2015), la fonction immunitaire (Kjærner-Semb et al. 2016) et la pigmentation des caroténoïdes (Helgeland et al. 2019). En outre, des margueurs génétiques associés à l'adaptation au climat ont également été identifiés chez le saumon atlantique, et ces associations s'avèrent généralement polygéniques (Jeffery et al. 2017; Sylvester et al. 2018). Les gènes associés à des caractères fonctionnels connus et à l'adaptation chez d'autres salmonidés peuvent également fournir des informations sur le saumon atlantique, car des preuves récentes dénotent un rôle pour le même gène influencant le même trait chez les espèces de saumon du Pacifique et de l'Atlantique (Waters et al. 2021).
- 3. Les loci se trouvent à l'intérieur ou à proximité de gènes et cet ensemble de gènes est associé à des processus biologiques surreprésentés : Comme indiqué ci-dessus, les loci qui contribuent aux différences entre des groupes ou des populations peuvent être situés à l'intérieur ou à proximité de gènes ayant des fonctions présumées. Dans de nombreuses études, les processus biologiques associés à cet ensemble de gènes sont examinés à l'aide de l'enrichissement du terme d'ontologie génique (GO). Cette approche peut aider à déterminer les types de processus biologiques qui sont surreprésentés par l'ensemble des gènes (associés aux SNP aberrants) par rapport au fond génomique. Dans les études sur le saumon atlantique, l'analyse de l'enrichissement du terme d'ontologie génique a aidé à comprendre les différences fonctionnelles entre les groupes qui peuvent contribuer à l'adaptation (Wringe *et al.* 2018; Wellband *et al.* 2019; Lehnert *et al.* 2020).

¹ Lehnert, S.J., Kess, T., Layton, K.K.S., Bentzen, P., Paterson, I.G., Barson, N.J., et al. In prep. Divergent supergene explains age of seaward migration in multiple lineages of Atlantic salmon.

Les sources de données ci-dessus indiquent un rôle pour l'adaptation locale chez le saumon. En plus de nos analyses, des informations génomiques issues de la documentation publiée seront incluses et prises en compte ici lorsqu'elles seront disponibles pour les UD.

Si les preuves génomiques de l'adaptation sont réunies, nous examinons également des preuves supplémentaires à l'appui de l'importance. Les différences dans le cycle biologique ou les différences liées au climat sont également prises en compte dans cette décision (voir plus loin). Nous exigeons que deux de ces trois critères

- 1. preuve génomique de l'adaptation,
- 2. différences dans le cycle biologique et
- 3. différences liées au climat susceptibles de produire une adaptation locale) soient remplis pour soutenir l'importance (figure 3; chemin 1 ou 2).

En l'absence de données génomiques à haute densité ou lorsque nous n'avons pas trouvé de différences adaptatives associées aux données génomiques, nous nous fonderons sur le cycle biologique et la variation liée au climat entre les groupes distincts pour fournir des preuves de l'importance (figure 3; chemin 2). Le saumon atlantique passe la première partie de sa vie en eau douce, où il peut rester un à huit ans avant de migrer vers l'océan (Klemetsen et al. 2003). Par conséguent, les adaptations aux conditions rencontrées durant ce premier stade biologique peuvent refléter les conditions locales et régionales, qui peuvent inclure, mais sans s'y limiter, la température, les précipitations, le gradient de la rivière, la durée de la saison de croissance, la taille de la rivière, la communauté bactérienne, les assemblages de poissons et le pH. Une variation adaptative supplémentaire peut concerner l'âge de la maturation, y compris la proportion de la population qui arrive précocement à maturité en tant que tacons mâles ou en tant que saumons unibermarins ou pluribermarins. D'autres sources de variation adaptative peuvent résulter de la vie dans le milieu marin, comme des différences dans les voies de migration vers les zones d'alimentation et des différences dans les communautés de pathogènes. La plupart des variations connues du cycle biologique du saumon atlantique ont été résumées dans plusieurs études (Hutchings et Jones 1998; Chaput et al. 2006; MPO et MRNF 2008; COSEPAC 2010) et nous nous appuyons donc sur ces données pour étayer les différences dans le cycle biologique entre les groupes distincts, à moins que de nouvelles données soient disponibles.

En plus des données sur le cycle biologique, nous utilisons également les variations climatiques pour déterminer l'importance, car le climat peut jouer un rôle dans la variation du cycle biologique et l'adaptation locale (Schaffer and Elson, 1975; Metcalfe et Thorpe, 1990; King et al. 2001; Klemetsen et al. 2003). Afin d'évaluer quantitativement les différences de climat entre les groupes distincts, nous avons extrait 19 variables bioclimatiques de WorldClim (Fick et Hijmans 2017) pour les rivières à saumon connues, d'après les coordonnées géographiques figurant dans la base de données sur les rivières de l'Organisation pour la Conservation du Saumon de l'Atlantique Nord (OCSAN). Les rivières ont été divisées en groupes (représentant les UD présumées) en fonction des preuves de distinction génétique. L'analyse de redondance (AR) a permis d'identifier les variables climatiques associées aux groupes à l'aide du progiciel en R vegan (Oksanen et al. 2017). Un modèle de l'importance indiquerait des différences climatiques entre les groupes, ce que nous déduisons comme une preuve d'adaptation locale. Dans ce cas, il suffirait de soutenir la division de l'UD précédemment reconnue en plusieurs. Nous précisons que cette analyse ne peut être réalisée que si plusieurs rivières sont situées dans chaque UD présumée, et qu'elle ne sera donc pas tentée si un seul emplacement répond aux critères de caractère distinct. D'autres informations (données sur le cycle biologique et données génomiques) sont plutôt nécessaires pour déterminer l'importance.

Les UD doivent être distinctes et importantes sur le plan de l'évolution. Par conséquent, en l'absence de preuve pour au moins deux de nos trois critères de l'importance (différences dans l'adaptation génomique, différences dans le cycle biologique ou différences liées au climat) associés aux groupes génétiques distincts détectés, l'UD précédemment reconnue restera classée comme une seule UD.

RÉSULTATS

APERÇU

Nous avons examiné chacune des 15 UD de saumon atlantique anadrome à l'aide d'un arbre de décision (figure 3). Nous avons intégré les nouvelles informations génétiques et génomiques ainsi que les données disponibles sur le cycle biologique et le climat afin d'évaluer s'il faut subdiviser ou modifier les UD précédemment reconnues. Dans l'ensemble, nous avons identifié quatre UD existantes à subdiviser. En outre, en fonction du poids de la preuve, nous avons réévalué les limites entre certaines UD précédemment reconnues et avons jugé qu'elles devaient être modifiées. D'après notre évaluation, nous proposons de représenter le saumon atlantique anadrome par un total de 19 UD au Canada (voir les tableaux 1 et 2). Les analyses pour toutes les UD reconnues précédemment et les modifications apportées à leur structure sont présentées dans cette section. Pour chaque sous-section, nous indiquons le numéro et le nom de l'ancienne UD d'après la dernière évaluation (COSEPAC 2010), ainsi que les changements proposés pour ces UD. Il convient de noter que dans le texte, nous faisons référence aux numéros des UD du COSEPAC définies en 2010, et que les nouveaux noms et numéros des UD proposées ne sont fournis que dans les tableaux 1 et 2 pour éviter toute confusion.

MODIFICATIONS DES UNITÉS DÉSIGNABLES DU SAUMON ATLANTIQUE ANADROME

UD 1 Nunavik (ancienne UD) – Inchangée

Cette UD s'étend de la pointe du Labrador (environ 60°29' N, 64°40' O) vers l'ouest, le long de la baie d'Ungava, jusqu'à la limite occidentale de l'aire de répartition de l'espèce. Les populations de saumon atlantique les plus septentrionales connues en Amérique du Nord se trouvent dans cette UD et sont géographiquement séparées des populations de saumon de l'UD voisine (Labrador) par environ 650 km de côte (d'après des relevés limités et les connaissances traditionnelles des peuples autochtones, il n'y a pas de population autonome entre les UD 1 et 2). Dans la baie d'Ungava, certaines parties des populations semblent afficher des habitudes migratoires locales (Power, 1969; Robitaille *et al.* 1986), tandis que d'autres ont une vaste aire de répartition (Power *et al.* 1987).

Au moment de la dernière évaluation du COSEPAC, les données génétiques permettaient de penser que ces populations étaient distinctes de celles du Labrador et il y avait peu de preuves génétiques d'errance entre la baie d'Ungava et les autres régions (Fontaine *et al.* 1997; Dionne *et al.* 2008). Des études génétiques supplémentaires continuent de confirmer que cette UD est distincte des autres régions (Moore *et al.* 2014; Jeffery *et al.* 2018).

Il y a cinq rivières à saumon connues dans l'UD du Nunavik (COSEPAC 2010) et nos ensembles de données génétiques comprennent trois de ces populations, celles des rivières Koksoak, George et aux Feuilles. À l'aide de 15 marqueurs microsatellites, le regroupement dans STRUCTURE a permis de séparer les populations des rivières Koksoak et George de celle de la rivière aux Feuilles (figure A1 de l'annexe); cependant, en utilisant l'ensemble de données sur 96 SNP, il n'y avait aucune preuve de structure génétique dans cette UD (figure A2 de l'annexe). Sur la base de ces analyses et de notre arbre de décision, les critères pour plusieurs groupes génétiques (caractère distinct) dans l'UD 1 sont remplis, la population de la rivière aux Feuilles étant considérée comme distincte de celles des rivières Koksoak et George.

Pour évaluer les preuves de l'importance sur le plan de l'évolution, nous nous appuyons sur des données génomiques à haute densité, sur le cycle biologique et sur les données climatiques. Les données génomiques à haute densité (matrice de 220 000 SNP ou reséquençage du génome entier) n'étaient pas disponibles pour l'UD 1. Les données sur le cycle biologique sont limitées pour les populations de la baie d'Ungava et les données disponibles pour quatre populations sont résumées dans Hutchings et Jones (1998). Les données utilisées ici datent de 1986 et avant. Bien qu'il soit possible que les caractéristiques du cycle biologique aient changé depuis la réalisation de ces études, des données inédites du ministère des Forêts, de la Faune et des Parcs du Québec permettent de penser que ce n'est pas le cas. Pour de nombreuses caractéristiques du cycle biologique sur lesquelles des données sont disponibles, les valeurs pour la rivière aux Feuilles se situent entre celles des rivières Koksoak et George (âge en mer, longueur des saumons dibermarins, proportion de madeleineaux). Les données disponibles ne permettent donc pas d'affirmer que les caractéristiques du cycle biologique dans la rivière aux Feuilles sont différentes de celles du reste de ces populations. Les différences liées au climat n'ont pas été évaluées ici, car une seule rivière répondait aux critères de caractère distinct et il n'est donc pas possible de comparer statistiquement les données climatiques de manière fiable. Selon nos analyses, le saumon de la rivière aux Feuilles ne répond pas aux critères d'une unité distincte et importante sur le plan de l'évolution. D'après les données actuelles, l'UD du Nunavik (UD 1) devrait demeurer une seule unité désignable (tableau 1).

UD 2 Labrador (ancienne UD) – Trois UD proposées : nord du Labrador, lac Melville et sud du Labrador

Cette UD s'étend de la pointe nord du Labrador (environ 60°29' N, 64°40' O) vers le sud, le long de la côte du Labrador, jusqu'à la rivière Napitipi au Québec. Compte tenu de la grande taille de cette région géographique, la dernière évaluation du COSEPAC a laissé entendre qu'il existait un potentiel important de regroupements régionaux plus petits dans l'UD, en particulier dans la région du lac Melville. Toutefois, à l'époque, les informations disponibles ne permettaient d'établir une séparation nette avec les autres régions que dans la partie sud de l'UD. De plus, les données sur le cycle biologique ont révélé une variation des caractéristiques du cycle biologique dans l'UD reconnue, mais sans profil géographique clair; cependant, il existe de nettes différences entre les UD du Labrador et les UD voisines (Chaput *et al.* 2006). Les données génétiques ont également confirmé une divergence marquée entre les populations du Labrador et celles des autres UD proches au Québec et à Terre-Neuve (Adams 2007; Dionne *et al.* 2008).

Au moment de la dernière évaluation du COSEPAC, les données génétiques suggéraient un potentiel raisonnable de flux génétique dans la majeure partie de la portion sud de l'UD du Labrador (King *et al.* 2001; Verspoor 2005; Adams 2007; Dionne *et al.* 2008). À l'époque, des études de marquage ont montré que les individus de la partie sud de l'UD ne migraient pas au nord du lac Melville (Anderson 1985; Reddin et Lear 1990). Toutefois, les données génétiques limitées disponibles n'ont généralement pas permis d'établir des différences entre le sud et le nord du Labrador (King *et al.* 2001; Verspoor 2005). Il y avait une différence génétique prononcée entre les échantillons du lac Melville et les autres échantillons du Labrador; cependant, seul un petit échantillon de tacons du lac Melville (rivière Cap Caribou) était disponible à ce moment-là et les données n'étaient donc pas suffisantes pour justifier la séparation du lac Melville.

Des études génétiques et génomiques récentes confirment que le réseau du lac Melville est distinct du reste du Labrador (Jeffery *et al.* 2018; Sylvester *et al.* 2018) et qu'il existe des

différences entre les populations du nord et du sud du lac Melville (Bradbury *et al.* 2021). Alors que les études précédentes suggéraient une structure génétique généralement faible au Labrador, des travaux plus récents utilisant des microsatellites (Bradbury *et al.* 2018) ont démontré des différences à petite échelle entre les populations, où la majorité des rivières individuelles peuvent être considérées comme des unités distinctes.

Il y a 91 rivières à saumon connues dans l'UD 2 (COSEPAC 2010) et nos ensembles de données génétiques comprennent des échantillons provenant de 34 (microsatellites) et 40 (SNP) emplacements. En utilisant 101 margueurs microsatellites, le nombre optimal de groupes génétiques (K) était de 2, mais une structure plus poussée allant jusqu'à 10 groupes était soutenue (figure A3 de l'annexe). Pour K=2, les sites du lac Melville étaient clairement séparés des autres sites du Labrador. Des valeurs plus élevées du regroupement génétique (K) ont continué à séparer les groupes de populations. Pour K=10, environ cinq groupes étaient présents au sud du lac Melville, où les sites se sont généralement regroupés en fonction de la géographie. Les sites au nord du lac Melville étaient regroupés en trois groupes distincts. Les sites du lac Melville sont restés distincts, certains formant un groupe séparé (ruisseau Main. rivière Mulligan, rivière Sebaskachu). En utilisant 96 SNP, le nombre optimal de groupes génétiques (K) était également de 2, séparant les sites au sud du lac Melville du reste du Labrador (figure A4 de l'annexe). Une autre structure était soutenue, dans laguelle avec K=3, les sites ont été séparés en trois groupes correspondant généralement au sud du Labrador, au lac Melville et au nord du Labrador. Un regroupement supplémentaire de différentes rivières et de régions géographiques était apparent à des valeurs plus élevées de K et la structure était soutenue au-delà de K=10, comme avec les microsatellites (figure A4 de l'annexe).

Sur la base de ces analyses et de notre arbre de décision, les critères pour plusieurs groupes génétiques (caractère distinct) au Labrador (l'UD 2 précédemment reconnue) sont remplis. Il existe des preuves nettes du caractère distinct du lac Melville par rapport au reste du Labrador, ainsi que du caractère distinct entre les populations au nord et au sud du lac Melville (voir la figure 4). En plus de ces trois principaux groupes génétiques, une structure supplémentaire séparant des rivières individuelles ou des régions géographiques dans ces groupes a été observée.

Pour évaluer les preuves de l'importance sur le plan de l'évolution, nous nous appuyons sur des données génomiques à haute densité, sur le cycle biologique ou sur les données climatiques. Au Labrador, des données génomiques à haute densité (matrice de 220 000 SNP) étaient disponibles pour 19 sites couvrant toutes les régions de l'UD 2. Avec *pcadapt*, les populations du lac Melville étaient clairement séparées des sites côtiers le long du premier axe des composantes principales (figure A5 de l'annexe). Une séparation supplémentaire sur l'axe 2 des composantes principales a séparé davantage certains sites du réseau du lac Melville (ruisseau Main, rivière Mulligan, rivière Sebaskachu) d'autres sites du Labrador, notamment d'autres sites du lac Melville. En tout, 314 loci ont contribué de manière importante à la différenciation sur les deux axes des composantes principales (valeur ajustée *p* [valeur *q*] <0,05) et ces loci étaient répartis sur 27 chromosomes (sur 29). Nous avons examiné la surreprésentation des processus biologiques associés aux gènes situés près des loci aberrants à l'aide du progiciel topGO (Alexa et Rahnenfuhrer 2016). Au total, 86 processus biologiques étaient surreprésentés de manière significative (p<0,05) d'après l'ensemble de données aberrantes, avec une grande proportion de processus liés à « l'homéostasie des acides gras » (figure A6 de l'annexe).

En outre, des études génomiques récentes ont révélé des différences génétiques associées à l'environnement entre le lac Melville et les sites côtiers (Sylvester *et al.* 2018). En utilisant les ensembles de données sur les SNP et sur les microsatellites, Sylvester *et al.* (2018) ont trouvé des preuves que l'exposition à des températures plus chaudes et à de larges plages de températures peut fortement influencer l'isolement des populations du lac Melville par rapport aux sites côtiers adjacents du Labrador. Les SNP associés au clivage

cénétique/environnemental entre le lac Melville et les sites côtiers étaient liés à une grande variété de processus moléculaires, y compris la régulation de l'expression génique, la réponse immunitaire, ainsi que le développement et la différenciation des cellules. Lehnert et al. (2019a) ont découvert des différences dans un réarrangement chromosomique (translocation des chromosomes Ssa01 et Ssa23) associé à l'introgression européenne dans les populations du Labrador et ont signalé que les sites du lac Melville (n=10 sites; la rivière Peter's a été exclue en raison de l'inclusion potentielle de ouananiches dans l'échantillon) présentaient une fréquence plus élevée (2 fois plus grande) de l'arrangement chromosomique de type « européen » (chromosome non transloqué) par rapport aux sites côtiers du Labrador (n=6 sites). La fréquence moyenne du type européen était de 32 % au lac Melville, contre 15 % dans les sites côtiers. Même si la fréquence de ce réarrangement chromosomique variait dans chaque groupe, 60 % des sites échantillonnés dans le lac Melville présentaient une fréquence de 30 % ou plus de l'arrangement de type européen, alors qu'un seul site de la côte du Labrador atteignait une fréquence de 30 % (Lehnert et al. 2019a). Cela confirme l'existence de différences génétiques associées à de grands changements structurels dans les chromosomes, ainsi que des taux plus élevés d'introgression européenne historique dans les populations du lac Melville. Ces grandes différences génétiques peuvent contribuer à des différences adaptatives, car cette région génomique associée à la translocation contient plus de 250 gènes et est soumise à la sélection (Lehnert et al. 2019a); des travaux récents indiquent que cette translocation chromosomique est associée à des variations climatiques (Watson et al. 2022).

Les données génétiques et génomiques soutiennent clairement le caractère distinct et l'importance sur le plan de l'évolution du réseau du lac Melville. Sur la base de notre arbre de décision, nous avons également examiné les preuves de différences liées au cycle biologique et au climat au Labrador. Alors que les données génomiques soutiennent l'importance du réseau du lac Melville par rapport aux autres régions, nous avons utilisé les différences liées au cycle biologique et au climat pour étayer une nouvelle division du Labrador (l'ancienne UD 2) fondée sur trois groupes génétiques distincts (sud du Labrador, lac Melville et nord du Labrador).

Le MPO et le MRFN (2009) suggèrent que ces trois groupes génétiques représentent différentes unités de conservation (UC) de saumon atlantique, qui sont définies comme des « groupes d'individus susceptibles d'afficher des caractéristiques d'adaptation uniques, qui sont largement isolés des autres groupes sur le plan de la reproduction et qui peuvent représenter une composante importante de la biodiversité d'une espèce » (MPO 2008). Nous notons que le rapport sur les UC sépare également la partie la plus méridionale de l'UD (à la frontière entre le Labrador et le Québec) en une autre UC, même s'il présente un soutien limité pour cette UC séparée; nous nous concentrons donc sur les trois principaux groupes identifiés ici. Outre les différences génétiques relevées dans le rapport sur les UC, il existe aussi des différences dans le cycle biologique, notamment des différences dans l'incidence de la maturation après un hiver en mer (MPO et MRNF 2008). D'après le MPO et le MRNF (2008), l'incidence de la maturation après un hiver en mer est plus élevée dans le lac Melville et au sud du Labrador que dans le nord du Labrador. Des différences dans la période de la montaison sont également signalées. la montaison étant la plus précoce dans le lac Melville, puis dans le sud du Labrador, et la plus tardive dans le nord du Labrador (MPO et MRNF 2008). Des différences dans les routes de migration sont également mentionnées (MPO et MRNF 2008) et reflètent probablement les distances différentes par rapport aux zones d'alimentation. D'autres sources indiquent des variations du cycle biologique au Labrador, comme Hutchings et Jones (1998), qui incluaient quatre populations dans le sud du Labrador et une dans le nord. L'âge moyen en mer de la population du nord du Labrador (Hunt) était de 1,75 an, ce qui contraste avec les âges en mer plus jeunes indiqués pour le sud du Labrador (fourchette de 1,03 à 1,16 an). De même, les seules autres données présentées étaient la taille (longueur) des saumons unibermarins et dibermarins, qui était plus grande pour la population du nord du Labrador (57,8 et 76,6 cm, respectivement) par rapport aux populations du sud (53,2 à 54,4 cm et 72,9 à 74,7 cm). Allant

dans le même sens, des données récentes tirées des pêches alimentaires, sociales et rituelles (ASR) du Labrador (2017 à 2019) semblent indiquer un âge en mer plus jeune des poissons vierges dans le sud du Labrador, puis dans lac Melville, les saumons plus âgés se trouvant dans le nord du Labrador, ce dont on pourrait déduire des différences dans l'âge en mer des poissons vierges entre les UD, l'âge augmentant avec la latitude (Kelly *et al.* en prép.²). D'autres données sur le cycle biologique étaient également disponibles pour d'autres populations du sud et du nord du Labrador, bien qu'il n'y ait pas de différences claires entre les régions en fonction de l'âge ou de la taille des saumoneaux (voir les annexes 1 et 2 dans Caput *et al.* 2006). Cependant, Kelly et ses collaborateurs (en prép.²) apportent certaines preuves montrant que le lac Melville a des saumoneaux plus jeunes par rapport à la côte du Labrador. Dans l'ensemble, bien que les informations sur la variation du cycle biologique du saumon au Labrador soient rares, elles confirment les différences entre les trois régions.

Outre le cycle biologique, des différences écologiques entre les trois régions ont également été décrites dans le rapport du MPO et du MRNF (2009). Elles comprennent des différences dans les communautés de salmonidés, les rivières du nord étant dominées par l'omble chevalier (*Salvelinus alpinus*), alors que l'on trouve principalement le saumon atlantique et l'omble de fontaine anadrome (*Salvelinus fontinalis*) dans le lac Melville (MPO et MRNF 2008). À l'inverse, ces trois espèces sont représentées de manière égale dans les populations du sud du Labrador (MPO et MRNF 2008). De plus, on a découvert des différences dans les gradients des rivières entre les trois régions, le lac Melville ayant le gradient le plus faible, suivi du sud du Labrador et le gradient le plus élevé se trouvant dans le nord (MPO et MRNF 2008). Bien que ces facteurs ne soient pas directement inclus dans notre arbre de décision, ces variables, telles que le gradient ou l'élévation (Pritchard *et al.* 2018; Wellband *et al.* 2019), peuvent influencer la variation adaptative des populations de saumon et sont donc présentées ici.

Les données climatiques pour le Labrador confirment également les différences entre les trois groupes génétiques (figure A7 de l'annexe). L'analyse de redondance a été réalisée avec 19 variables bioclimatiques (voir le tableau A4 de l'annexe) pour toutes les rivières de l'UD 2 comme réponse et les groupes présumés de l'UD (trois groupes génétiques) comme variable contraignante. L'analyse de la variance (ANOVA) sur l'analyse de redondance a montré que le modèle était significatif (p <0,001) avec un R² ajusté de 0,61. L'axe 1 de l'analyse de redondance expliquait 74,8 % de la variance du modèle, et l'axe 2 en expliquait 25,2 %. On voit aussi clairement sur le graphique de l'analyse de redondance qu'il est possible de diviser les populations du Labrador en trois UD distinctes (figure A7 de l'annexe). L'axe 1 de l'analyse de redondance sépare principalement le sud du Labrador du lac Melville et du nord du Labrador. Cette différence est due à la variation de la température (température minimale, température du trimestre le plus froid, saisonnalité de la température, amplitude thermique annuelle) et des précipitations (précipitations du trimestre le plus froid, précipitations du trimestre le plus sec, saisonnalité des précipitations). D'après ces analyses, les températures étaient généralement plus élevées et moins variables dans le sud du Labrador que dans les autres régions. En outre, les précipitations étaient plus fortes dans le sud du Labrador, bien que moins variables. L'axe 2 de l'analyse de redondance sépare le lac Melville du nord du Labrador, une séparation principalement déterminée par la température (température moyenne du trimestre le plus sec. température maximale et température moyenne du trimestre le plus chaud) et les précipitations du mois le plus humide. En général, la température et les précipitations étaient plus élevées au lac Melville qu'au nord du Labrador, mais la température pendant le trimestre le plus sec était plus élevée au nord du Labrador qu'au lac Melville. Ces résultats confirment l'existence de

² Kelly, N.I., Burke, C., Lancaster, D., Lehnert, S., Loughlin, K., Van Leeuwen, T., Dempson, B., Poole, R., Robertson, M., and Bradbury, I. In prep. Updated information on Atlantic Salmon (*Salmo salar*) populations in Labrador of relevance to the COSEWIC status report. DFO Can. Sci. Advis. Sec. Res. Doc.

différences claires dans le climat, liées aux trois groupes génétiques, qui peuvent conduire à une adaptation locale.

Dans l'ensemble, nos analyses semblent indiquer qu'il existe trois unités (UD) distinctes et importantes sur le plan de l'évolution au Labrador (l'ancienne UD 2) : 1) le nord du Labrador, 2) le lac Melville et 3) le sud du Labrador. Le caractère distinct de ces trois UD est étayé par des données génétiques, et l'importance sur le plan de l'évolution par des preuves génomiques d'adaptation, des différences de cycle biologique, des différences liées au climat, ainsi que des différences écologiques. Une carte des rivières (figure 5) et la liste de toutes les rivières de cette région et de leurs UD proposées sont fournies (tableau A5 de l'annexe) pour mettre en évidence les limites entre ces UD proposées.

UD 3 Nord-est de Terre-Neuve (ancienne UD) – Modification de la limite

Cette UD s'étend de l'extrémité nord de Terre-Neuve (environ 51°37' N, 55°25' O) vers le sud et à l'est, le long de la côte nord-est de l'île jusqu'à l'extrémité sud-est de la presqu'île Avalon (environ 46°38' N, 53°10' O). Des données antérieures laissaient croire que la variation du cycle biologique de cette UD était distincte de celle des autres UD voisines (Chaput *et al.* 2006). Par exemple, on a indiqué précédemment que l'âge moyen des saumoneaux dans cette UD est intermédiaire entre celui du Labrador et celui du reste de l'île de Terre-Neuve (trois à cinq ans contre cinq à sept ans au Labrador et deux à quatre ans dans les UD du sud de Terre-Neuve). En outre, une forte proportion de madeleineaux sont des femelles unibermarines relativement petites, et il y a une forte incidence des reproducteurs qui frayent plusieurs fois dans cette zone de l'aire de répartition canadienne. Les saumons juvéniles de cette UD utilisent beaucoup l'habitat lacustre pendant leur croissance (Hutchings 1986).

Au moment de la dernière évaluation du COSEPAC, les travaux de génétique donnaient à penser que le saumon de la côte nord-est de Terre-Neuve est unique en Amérique du Nord, car il semble avoir un profil génétique intermédiaire entre celui du saumon européen et celui du saumon nord-américain (King *et al.* 2000). Cependant, d'après des travaux génétiques récents, de nombreuses autres populations d'Amérique du Nord (notamment à Terre-Neuve et au Labrador) présentent une introgression à partir du saumon européen (Bradbury *et al.* 2015; Lehnert *et al.* 2019a). Néanmoins, au moment de l'évaluation de 2010, d'autres travaux génétiques soutenaient l'existence de différences distinctes entre les populations de saumon du nord-est de Terre-Neuve (UD 3) et celles du Labrador, ainsi que du sud et de l'ouest de Terre-Neuve (Verspoor 2005, Adams 2007, Palstra *et al.* 2007).

Des études récentes de génétiques et de génomique confirment les différences entre cette UD et les populations voisines de la presqu'île Avalon (Moore *et al.* 2014; Jeffery *et al.* 2018) et les populations du sud et de la côte ouest (Bradbury *et al.* 2021). Cependant, il convient de noter que selon les travaux de génétique, certaines populations le long de la péninsule nord dans l'UD 3 pourraient être distinctes des autres populations de l'UD 3 et être plutôt génétiquement similaires à d'autres populations de la péninsule nord qui se trouvent dans l'UD 6 du nord-ouest de Terre-Neuve (Moore *et al.* 2014; Jeffery *et al.* 2018; Bradbury *et al.* 2021). De plus, certaines études ont relevé des similitudes entre des populations géographiquement isolées dans l'UD 3 et la côte sud (Moore *et al.* 2014; Jeffery *et al.* 2018; Bradbury *et al.* 2021); cependant, nous posons l'hypothèse que ces similitudes génétiques représentent une colonisation historique de Terre-Neuve. En effet, si les embouchures de ces rivières sont géographiquement séparées, certains de leurs affluents peuvent entrer en contact étroit dans les régions intérieures de l'île, ce qui peut suggérer une connectivité historique. Il est peu probable que les saumons de ces rivières continuent à échanger des variantes génétiques aujourd'hui, et ces signaux génétiques représentent plutôt des signaux historiques qui n'ont pas encore été effacés du génome.

Il existe 127 rivières à saumon connues dans l'UD 3 (COSEPAC 2010) et nos ensembles de données génétiques comprennent neuf emplacements (96 SNP) et 13 emplacements (microsatellites), dont certains sont situés dans le même réseau hydrographique. En utilisant 15 marqueurs microsatellites, le nombre optimal de groupes génétiques (K) était de 5 (figure A8 de l'annexe). Le ruisseau Beaver (BVB) était clairement séparé des autres sites, où on a observé moins de structure. Certaines différences sont apparues entre Sop's Arm-Main River (MNR) à des valeurs plus élevées de K. En utilisant l'ensemble de données de 96 SNP, nous avons encore obtenu des preuves de deux groupes génétiques distincts, BVB et MNR (sites les plus à l'ouest) se regroupant séparément des autres sites à K=2 et pouvant être séparés en leurs propres groupes distincts à K=4, après quoi il n'y avait pas de structure supplémentaire (figure A9 de l'annexe).

Sur la base de ces analyses et de notre arbre de décision, les critères pour plusieurs groupes génétiques (caractère distinct) dans l'UD 3 sont remplis. Un signal constant se dégage des ensembles de données : une différence génétique claire entre les sites les plus à l'ouest (MNR et BVB) et les autres sites de l'UD, ainsi qu'entre eux. Cette différence est conforme à une étude de génétique récente qui regroupe le ruisseau Beaver avec les sites septentrionaux du nord-ouest de Terre-Neuve (comme le ruisseau Western Arm) sur la péninsule nord, bien que la rivière Main se regroupe avec les populations de la côte sud-ouest et que tous les autres sites de l'UD 3 se regroupent et se séparent des autres régions (Bradbury *et al.* 2021). De même, Moore *et al.* (2014) ont constaté, à l'aide des SNP, que les sites de la péninsule nord étaient distincts des autres régions de Terre-Neuve.

Sur la base des preuves de caractère distinct et d'autres études récentes, il semble que les sites les plus à l'ouest dans nos données (BVB et MNR) puissent appartenir à l'UD adjacente (nord-ouest de Terre-Neuve; précédemment reconnue comme UD 6). Cette conclusion correspond à d'autres études génétiques regroupant des sites dans cette région de la péninsule nord (Moore *et al.* 2014; Jeffery *et al.* 2018; Bradbury *et al.* 2021). Par conséquent, compte tenu des diverses sources de données, nous avons réévalué la limite entre les UD du nord-ouest et du nord-est de Terre-Neuve (UD 3 et 6).

Réévaluation de la limite entre l'UD 3 et l'UD 6

Pour réévaluer la limite entre les UD 3 (nord-est de Terre-Neuve) et 6 (nord-ouest de Terre-Neuve), nous avons exécuté STRUCTURE pour les ensembles de données sur les 96 SNP et les 15 microsatellites avec des sites des deux UD. Pour les deux ensembles de données, les différences génétiques étaient cohérentes avec une limite révisée entre les UD 3 et 6 (figures 6 et 7). Lorsque nous avons examiné les deux groupes génétiques (K=2), le ruisseau Beaver (site se trouvant actuellement dans l'UD 3) était regroupé plus étroitement avec les sites de l'UD 6, et la rivière Main (dans l'UD 3) présentait des signes de mélange entre ces deux UD. Cependant, à des valeurs plus élevées de regroupement génétique (K), la rivière Main est regroupée plus étroitement avec les rivières du nord-est (UD 3), mais le ruisseau Beaver est systématiquement regroupé plus étroitement avec les rivières du nord-ouest (UD 6). D'après ces analyses, le caractère distinct appuie une limite révisée des UD près du ruisseau Beaver (figures 6 et 7).

Nous avons également évalué si cette nouvelle limite pouvait répondre aux critères d'importance sur le plan de l'évolution. Des données génomiques à haute densité (matrice de 220 000 SNP ou reséquençage du génome entier) étaient disponibles pour sept populations des UD 3 et 6. Avec *pcadapt*, les sites de la nouvelle UD 3 présumée se sont séparés des sites de l'UD 6 le long du premier axe des composantes principales (figure A10 de l'annexe). Ces sites de l'UD 3 (y compris Campbellton, Terra Nova et le ruisseau Great Rattling - Exploits) étaient regroupés très étroitement, mais le ruisseau Beaver (précédemment dans l'UD 3) était regroupé plus étroitement avec les sites de l'UD 6, y compris la rivière Trout et le ruisseau Western Arm, sur les premier et deuxième axes des composantes principales. Le regroupement plus étroit du ruisseau Beaver avec la rivière Trout et le ruisseau Western Arm va dans le sens de la nouvelle limite des UD. Par exemple, la rivière Trout est située près de l'autre limite (sud) de l'UD 6, ce qui suggère une similarité génétique entre ces sites de l'UD 6 malgré une séparation géographique importante (plus de 300 km). Un autre site de l'UD 6, la rivière Big East, est clairement séparé de tous les sites sur l'axe 1 des composantes principales. En tout, 1 189 loci ont contribué de manière significative à la différenciation entre les sites sur les axes 1 et 2 des composantes principales (valeur ajustée p [valeur q] <0,05); ces loci étaient répartis sur tous les chromosomes (figure A10 de l'annexe). Nous avons examiné la surreprésentation des processus biologiques associés aux gènes situés près des loci aberrants à l'aide du progiciel topGO (Alexa et Rahnenfuhrer 2016). Au total, 200 processus biologiques étaient surreprésentés de manière significative (p<0,05) d'après l'ensemble de données aberrantes, avec une grande proportion de processus liés à la « migration des neurones de la colonne motrice latérale » et à la « myristoylation des protéines N-terminales » (figure A11 de l'annexe). Les neurones de la colonne motrice latérale sont des motoneurones qui innervent les muscles des membres (Luria et Laufer 2007). La myristoylation des protéines peut réguler les voies de signalisation cellulaire associées à différents processus biologiques, y compris la fonction immunitaire (Udenwobele et al. 2017).

En plus des preuves de différences génomiques entre les nouvelles UD présumées, il existe également des différences de cycle biologique entre ces régions. L'âge des saumoneaux (fondé sur la catégorie des petits saumons) tend à être plus avancé pour les populations de la région de la péninsule nord, y compris le ruisseau Salmon, le ruisseau Western Arm et la rivière St. Genevieve (Chaput et al. 2006). Ces populations comptent une proportion élevée de saumoneaux de quatre ans (plus de 60 %). Ces similitudes dans l'âge des saumoneaux sont cohérentes avec des signaux génétiques similaires parmi ces populations. Les saumoneaux des populations du nord-est ont tendance à être plus jeunes que ceux du nord de la péninsule; cependant, des saumoneaux plus jeunes ont également été signalés pour d'autres populations de l'UD 6 (Chaput et al. 2006). Dans l'ensemble, Kelly et ses collaborateurs (en prép.³) suggèrent que les saumoneaux sont en moyenne légèrement plus âgés dans l'UD 6 du nord-ouest que dans l'UD 3 du nord-est. Kelly et ses collaborateurs (en prép.³) ont également constaté que l'UD 3 du nord-est de Terre-Neuve abritait une proportion plus faible de reproducteurs vierges (basée sur les petits saumons) avec une moyenne de 89 % (fourchette de 81 à 95 %), différente de celle de l'UD 6 voisine, du nord-ouest de Terre-Neuve (moyenne : 98 %; fourchette de 93 à 100 %). On peut en déduire qu'il y a une plus grande proportion de petits reproducteurs qui fravent plusieurs fois dans l'UD du nord-est que dans l'UD du nordouest, d'après la limite proposée (Kelly et al. en prép.3).

Les données climatiques pour les UD 3 et 6 confirment également les différences entre les nouvelles UD présumées (figure A12 de l'annexe). L'analyse de redondance a été réalisée avec 19 variables bioclimatiques (voir le tableau A4 de l'annexe) pour toutes les rivières de l'UD 3 et de l'UD 6 comme réponse et les groupes présumés de l'UD (d'après la limite révisée) comme variable contraignante. La limite révisée fait passer 11 rivières de l'UD 3 à l'UD 6 (selon la base de données sur les rivières de l'OCSAN). L'analyse de la variance (ANOVA) sur l'analyse de redondance a montré que le modèle était significatif (p<0,001) avec un R² ajusté de 0,23 et l'axe 1 de l'analyse de redondance expliquait 23,2 % de la variance du modèle. Le graphique de l'analyse de redondance soutient la limite révisée entre l'UD 3 et l'UD 6 (figure A12 de l'annexe). Cette différence est déterminée par la température, la température moyenne,

³ Kelly, N.I., Burke, C., Lancaster, D., Lehnert, S., Loughlin, K., Van Leeuwen, T., Dempson, B., Poole, R., Robertson, M., and Bradbury, I. In prep. Updated information on Atlantic Salmon (*Salmo salar*) populations in insular Newfoundland of relevance to the COSEWIC status report. DFO Can. Sci. Advis. Sec. Res. Doc.

l'isothermie, la température du trimestre le plus froid, la température du trimestre le plus sec, la température du trimestre le plus chaud et la température minimale se trouvant haut sur l'axe. D'après l'analyse de redondance, l'UD 3 connaît des températures généralement plus élevées que l'UD 6. De plus, la nouvelle limite proposée correspondrait à une coupure géologique majeure (Honsberger *et al.* 2019), où l'UD 6 proposée serait caractérisée par une géologie généralement unique par rapport à l'UD 3 et à la plupart des autres régions de Terre-Neuve.

Dans l'ensemble, nos analyses soutiennent une unité (UD) distincte et importante sur le plan de l'évolution dans l'UD 3; cependant, il faudrait revoir la limite de cette unité avec l'UD 6. La limite de l'UD 3 devrait s'étendre de la pointe sud-est de la presqu'île Avalon à une nouvelle limite proposée près du ruisseau Beaver. Avec cette limite, les critères de caractère distinct et d'importance du nord-est de Terre-Neuve (UD 3) par rapport au nord-ouest de Terre-Neuve voisin (UD 6) étaient respectés. Nous discutons plus loin de la façon dont nos analyses soutiennent davantage une limite entre l'UD 6 et l'UD 3 par rapport au rapport précédent du COSEPAC.

Appui à l'emplacement proposé de la limite par rapport à son emplacement précédent

Nous examinons ici les preuves à l'appui de l'ancienne limite et de la nouvelle proposée entre le nord-est et le nord-ouest de Terre-Neuve (UD 3 et UD 6). Ces preuves sont résumées dans le tableau 3. D'après le précédent rapport de 2010 du COSEPAC, il ne semble pas que des éléments particuliers aient soutenu l'emplacement précis de la limite entre l'UD 3 et l'UD 6. Auparavant, il avait été suggéré que l'UD 3 était génétiquement unique par rapport aux autres populations canadiennes, car les saumons de cette région présentaient des profils intermédiaires entre les saumons européens et nord-américains (COSEPAC 2010). Cependant, des travaux récents ont montré que d'autres zones de l'île de Terre-Neuve affichent également ces profils (Bradbury et al. 2015; Lehnert et al. 2019a). Il existe des preuves d'ADN mitochondrial du type européen dans de nombreuses populations de Terre-Neuve, notamment dans le nord-est et le nord-ouest (Bradbury et al. 2015). L'évaluation précédente du COSEPAC suggérait également que d'autres données génétiques fournissaient des preuves que le saumon de l'UD 3 Nord-est de Terre-Neuve était génétiquement différent du saumon de l'UD 6 ouest de Terre-Neuve. Cependant, le COSEPAC a jugé que les données sur l'UD 6 étaient insuffisantes sur la base de ces études génétiques, ce qui donne à penser que les différences génétiques entre les populations de l'UD 6 et de l'UD 3 n'ont pas été pleinement évaluées. L'une de ces études précédentes, citée par le COSEPAC (2010), était fondée sur les données relatives aux allozymes (Verspoor 2005). Cependant, un seul site a été échantillonné dans le nord-ouest (UD 6) et il ne semble pas présenter de fortes différences par rapport à tous les sites du nord-est (UD 3) pour la plupart des allozymes. Il faut néanmoins remarquer que certains sites de la péninsule nord dans l'UD 3 précédemment reconnue (Northeast Roddington et rivière Main) étaient plus divergents des autres sites du reste de l'UD 3 à guelques margueurs. D'autres données génétiques citées dans le rapport précédent ne comportaient pas suffisamment d'emplacements d'échantillons pour appuyer un emplacement précis de la limite sur la péninsule nord (Palstra, O'Connell et Ruzzante 2007). Nos données génétiques fournissent donc un meilleur soutien pour la limite révisée. Dans nos analyses, les ensembles de données sur les microsatellites et les 96 SNP confirment qu'une rivière située à l'est de la péninsule nord (le ruisseau Beaver) est plus proche génétiquement des populations de l'UD du nord-ouest que de celle du nord-est. On peut en déduire une solide preuve de la distinction génétique entre les deux régions (UD proposées) avec une limite révisée. D'après cette limite révisée, la différenciation génétique semble moindre dans l'UD 3 du nord-est par rapport à l'UD 6 du nord-ouest, où il existe une structure génétique importante entre les rivières de la région. Dans l'ensemble, le caractère distinct soutient fortement la limite révisée.

L'évaluation précédente du COSEPAC semblait également indiquer des différences dans le cycle biologique entre les régions de l'UD. Cependant, nous dirions que cela ne confirme pas

l'emplacement précis de la limite (pointe de la péninsule nord), mais les différences générales entre les régions nord-est et nord-ouest de Terre-Neuve en général. Selon les données, la smoltification dans le nord-est (UD 3) était différente de celle du reste de Terre-Neuve (COSEPAC 2010). Les données compilées par Chaput et al. (2006) comprennent des sites du côté est de la péninsule nord et indiquent que les âges des saumoneaux dans les populations de saumon de la péninsule nord (est et ouest) sont plus avancés que dans les populations du nord-est et plus au sud de la région nord-ouest. L'âge des saumoneaux (selon la catégorie des petits saumons) tend à être plus avancé pour les populations de la région de la péninsule nord, qui comprend le ruisseau Salmon, le ruisseau Western Arm, la rivière St. Genevieve, ainsi que la rivière Main (Chaput et al. 2006). La proportion de saumoneaux de quatre ans est plus faible dans les autres populations du nord-est, allant de 25 à 57 % (Chaput et al. 2006). Cependant, nous notons que les saumoneaux étaient plus jeunes (proportion de saumoneaux de quatre ans comprise entre 4 % et 13 %) dans d'autres sites du nord-ouest (UD 6), y compris Torrent et Lomond, bien que les données ne soient pas disponibles pour les autres réseaux. D'après les données sur l'âge des saumoneaux compilées par le MPO (tableau A6 de l'annexe), les saumoneaux des rivières Lomond et Torrent semblent plus jeunes que dans les autres rivières du nord-ouest. Ensuite, nous avons examiné les données sur le cycle biologique des saumons des rivières échantillonnées au cours de plusieurs périodes (avant 1980, de 1980 à 1999 et après 2000). Pour les rivières avec plus de 100 échantillons individuels pour des périodes précises (voir le tableau A6 de l'annexe), l'âge moyen en rivière variait de 3,34 à 3,79 ans entre les périodes (plage complète : 2,99 à 4,13) dans l'UD 6 Nord-ouest, et était légèrement plus élevé que dans l'UD 3 voisine Nord-est, où l'âge moyen en rivière allait de 3,45 à 3,58 ans entre les périodes (plage complète : 3,16 à 3,95) (Kelly et al. en prép.³). Aucune donnée n'est disponible pour le côté est de la péninsule nord, ce qui ne permet ni d'appuyer, ni de rejeter l'ancienne limite ou la nouvelle.

De plus, dans son rapport précédent, le COSEPAC laissait entendre que la région nord-est de Terre-Neuve avait l'incidence la plus élevée de géniteurs avant fravé plusieurs fois. Dans l'UD nord-est, leur proportion semble plus élevée dans les rivières échantillonnées, avec plus de 50 individus. La proportion de grands saumons qui frayent plusieurs fois varie de 66 % (rivière Exploits; 1980 à 1999) à 100 % (rivière Campbellton; 1980 à 1999) [tableau A7 de l'annexe]. Pour le nord-ouest (UD 6), peu de rivières ont été échantillonnées, mais la fourchette va de 34 % (rivière Lomond; 1980 à 1999) à 92 % (rivière West; après 2000) [tableau A7 de l'annexe]. Dans le cas des petits saumons, la proportion variait de 2 % (rivière Ragged Harbour; avant 1980) à 87 % (rivière Campbellton; 1980 à 1999) dans le nord-est, et dans le nord-ouest, elle allait de 0 % (rivières Castors et St. Genevieve; 1980 à 1999) à 68 % (rivière West; après 2000) [tableau A8 de l'annexe]. Encore une fois, aucune donnée n'est disponible pour les rivières du côté est de la péninsule nord près de la limite proposée, et la proportion de géniteurs qui frayent plusieurs fois semble élevée dans certaines zones du nord-ouest et faible dans certaines zones du nord-est; ces données ne permettent donc pas d'étayer fortement la limite précise à la pointe de la péninsule nord. Néanmoins, le manque de données pour le côté est de la péninsule nord ne permet pas non plus d'appuyer ou de rejeter une nouvelle limite révisée.

Un autre argument pour différencier précédemment le nord-ouest (UD 6) était que cette zone avait une petite composante de poissons pluribermarins; cependant, d'après les données du MPO, les rivières du nord-est (UD 3) comptent également une petite composante de saumons pluribermarins. Par exemple, dans l'UD 6, pour les rivières où plus de 100 individus ont été échantillonnés, le pourcentage de pluribermarins (fondé sur les saumons vierges; grands et petits) varie de 0 (rivière St. Genevieve; 1980 à 1999) à 6 % (rivière Lomond; 1980 à 1999) [tableau A9 de l'annexe]. Pour les rivières du nord-est (UD 3), cette valeur va de 0 (ruisseau Middle et rivière Northwest; 1980 à 1999) à 4 % (Terra Nova; après 2000) [tableau A9 de l'annexe]. Par conséquent, il semble qu'une petite composante de pluribermarins est présente dans les rivières du nord-est et du nord-ouest, ce qui ne permet pas de soutenir ou de rejeter

une limite précise entre ces régions, et encore une fois, il n'y a pas de données pour le côté est de la péninsule nord.

Des différences d'habitat avaient également été suggérées précédemment entre les UD nord-est et nord-ouest; on pensait en effet que l'habitat du nord-ouest (UD 6) était nettement plus alcalin que dans le reste de l'île de Terre-Neuve en raison de la géologie calcaire (COSEPAC 2010). Cependant, d'après la géologie de la région (Honsberger *et al.* 2019), la chimie de l'eau devrait être similaire dans de nombreuses rivières du nord de la péninsule (côtés est et ouest), possiblement différente de celle des autres parties du nord-est. Ainsi, cela ne vient pas soutenir fortement la limite précise sur la pointe de la péninsule nord, mais plutôt la limite révisée proposée ici.

En outre, la frontière proposée est également étayée par des différences liées au climat et des différences fondées sur la génomique (comme discuté en détail précédemment). Cette information n'était pas disponible dans le rapport du COSEPAC (2010); cependant, elle apporte un appui supplémentaire pour les différences importantes sur le plan de l'évolution entre l'UD 3 et l'UD 6 en fonction de la limite modifiée.

Alors que le soutien était limité pour l'emplacement spécifique de la limite précédente entre les UD 3 et 6, nos données fournissent un meilleur argument en faveur d'une limite précise. La limite que nous proposons est étayée par des données génétiques (microsatellites et 96 SNP) qui confirment le caractère distinct entre les régions révisées. En outre, nous démontrons un fort soutien pour les différences génomiques, les différences liées au climat et les différences entre la géologie des régions. Dans l'ensemble, nous affirmons que les nouvelles données présentées ici étayent davantage les différences entre les régions du nord-est et du nord-ouest (voir le récapitulatif dans le tableau 3).

UD 4 Sud de Terre-Neuve (ancienne UD) – Deux UD proposées : sud de Terre-Neuve (est) et sud de Terre-Neuve (ouest)

Cette UD s'étend de Mistaken Point (environ 46°38' N, 53°10' O) à l'extrémité sud-est de la presqu'île Avalon, vers l'ouest le long de la côte sud de Terre-Neuve jusqu'au cap Ray (environ 47°37' N, 59°19' O). Dans cette UD, les habitats d'eau douce ont généralement des valeurs de pH plus basses (5,0 à 6,0) que dans l'UD voisine du nord-est de Terre-Neuve. Les conditions présentes dans l'océan sont aussi généralement différentes de celles des UD voisines, puisque le saumon du sud de Terre-Neuve est exposé à des conditions océaniques influencées par le Gulf Stream plutôt que par le courant du Labrador. Au moment de la dernière évaluation du COSEPAC, les tendances de l'abondance des populations des rivières du sud de Terre-Neuve différaient de celles observées dans d'autres régions de l'île de Terre-Neuve. Sur la côte sud de l'île, on observe des variations dans le cycle biologique, notamment dans la période de la montaison, l'âge des saumoneaux, la proportion de madeleineaux femelles et les routes de migration le long de la côte; cependant, les rapports précédents indiquent qu'il n'y a pas de profil géographique clair dans l'UD (Chaput *et al.* 2006).

Lors de la dernière évaluation du COSEPAC, les données génétiques permettaient de penser que le flux génétique des populations le long de cette côte était réduit entre les rivières locales (de la côte sud), ainsi qu'entre ces rivières et d'autres régions de Terre-Neuve (Palstra *et al.* 2007). Diverses études ont suggéré une forte structure des populations dans le sud de Terre-Neuve par rapport à d'autres parties de l'île (Verspoor 2005; Adams 2007; Palstra *et al.* 2007), et bien que les données disponibles ne l'aient pas confirmé, le rapport de situation mentionnait la possibilité d'une subdivision future de l'UD du sud de Terre-Neuve (COSEPAC 2010). Des études génomiques et génétiques récentes continuent de confirmer cette forte structure des populations dans le sud de Terre-Neuve. Diverses études soutiennent les différences génétiques entre les sites de l'est et de l'ouest (Moore *et al.* 2014; Bradbury *et al.* 2015) et des travaux récents indiquent jusqu'à trois ou quatre groupes génétiquement distincts dans le sud de Terre-Neuve (Jeffery *et al.* 2018; Bradbury *et al.* 2021).

Il y a 104 rivières à saumon connues dans l'UD 4 Sud de Terre-Neuve (COSEPAC 2010) et nos ensembles de données génétiques comprennent 46 et 35 emplacements (96 SNP et microsatellites, respectivement). Avec 15 marqueurs microsatellites, le nombre optimal de groupes génétiques (K) était de 2; cependant, plus de 10 groupes génétiques étaient également possibles (figure A13 de l'annexe). Pour K=2, le site du ruisseau Northeast (Trepassey) est regroupé séparément des autres sites. Pour K=3, un regroupement supplémentaire sépare les sites à l'est et à l'ouest de la péninsule Burin, où les sites de Garnish vers l'est forment un groupe génétique distinct de ceux vers l'ouest. D'autres regroupements commencent à séparer les sites de la baie Fortune et de la baie d'Espoir des autres régions, et à des valeurs plus élevées de K, de nombreuses rivières forment leurs propres groupes génétiques. Avec l'ensemble de données sur les 96 SNP, nous avons obtenu des preuves de l'existence de deux groupes génétiques distincts (K=2) séparant les sites à l'est et à l'ouest de la péninsule Burin, la rupture se produisant près de Garnish (figure A14 de l'annexe). Une structure supplémentaire était soutenue et trois groupes génétiques principaux sont apparus à des valeurs plus élevées de K :

- 1. des sites à l'ouest de Garnish,
- 2. des sites de Garnish vers l'est jusqu'à la presqu'île Avalon et
- 3. des sites sur la presqu'île Avalon.

Ces regroupements étaient apparents pour K=3, avec certaines populations s'écartant de ce profil général. Des valeurs plus élevées de regroupement génétique (K) semblaient généralement séparer certaines populations spécifiques en groupes distincts.

Sur la base de ces analyses et de notre arbre de décision, les critères pour plusieurs groupes génétiques (caractère distinct) dans le sud de Terre-Neuve sont remplis. Il existe des preuves évidentes du caractère distinct entre l'est et l'ouest, avec une rupture génétique à la rivière Garnish, ainsi que d'autres preuves de ce caractère dans la presqu'île Avalon et à l'ouest de la baie d'Espoir (voir la figure 8). En outre, une structure supplémentaire a été observée, qui séparait des rivières individuelles ou des régions géographiques dans ces groupes.

Pour évaluer les preuves de l'importance sur le plan de l'évolution, nous nous appuyons sur des données génomiques à haute densité, sur le cycle biologique ou sur les données climatiques. Dans l'UD 4 Sud de Terre-Neuve, des données génomiques à haute densité (matrice de 220 000 SNP) étaient disponibles pour 33 sites couvrant toutes les régions, bien que de nombreux sites se trouvent vers l'est à partir de la rivière Conne, avec seulement deux sites à l'ouest de la rivière Conne. À l'aide de *pcadapt*, nous avons séparé les populations sur les deux axes des composantes principales, les populations semblant être séparées entre l'est et l'ouest de la baie Placentia, ainsi qu'entre le nord et le sud de la baie Placentia (figure A15 de l'annexe). En tout, 1 582 loci ont contribué de manière importante à la différenciation sur les deux axes des composantes principales (valeur ajustée p [valeur q] <0,05) et ces loci étaient répartis sur 28 des 29 chromosomes (figure A15 de l'annexe). En particulier, plus de 70 % de ces valeurs aberrantes étaient situées sur Ssa01 et Ssa23, qui font partie d'un réarrangement chromosomique connu (translocation chromosomique) avec une variation qui existe entre les individus et qui est associée à l'introgression européenne en Amérique du Nord (Lehnert *et al.* 2019a) (voir le schéma décrivant ces différences chromosomiques à la figure A16 de l'annexe).

Nous avons également exploré davantage la variation de cette translocation dans le sud de Terre-Neuve en utilisant l'analyse en composantes principales (*pcadapt*) avec des loci de la région transloquée sur Ssa01 et Ssa23. Comme dans les travaux précédents (Lehnert *et al.* 2019a; Watson *et al.* 2022), le premier axe des composantes principales a séparé les trois

groupes de génotypes représentant les différentes dispositions (caryotypes) de la translocation Ssa01/23 (voir plus de détails à la figure A17 de l'annexe). La fréquence du chromosome du type européen (Ssa01/23 non transloqué; caryotype européen standard) était faible à l'ouest de la péninsule Burin, dénotant une faible introgression historique européenne dans cette région du génome dans ces rivières. Par exemple, la rivière Conne avait la fréquence la plus faible (moins de 2 %) et d'autres sites à l'ouest de la péninsule Burin avaient une fréquence inférieure à 15 %. La fréquence du type européen augmente à la péninsule Burin (et vers l'est), la plus grande fréquence étant observée dans la partie orientale de la baie Placentia - traduisant une introgression européenne historique élevée (dans cette région du génome) dans cette région géographique. Aux sites comprenant Ship Harbour (SHI), le ruisseau Little Barasway (LBB), le ruisseau Great Barasway (GBW), la rivière Little Salmonier (LSR), la rivière Branch (BRA), la rivière South Placentia (SPR) et la rivière Lance (LAN), la fréquence du type du chromosome européen dans la population était supérieure à 70 %. Alors que ce réarrangement est clairement associé à un contact secondaire européen, avec des preuves de sélection agissant sur cette région génomique (Lehnert et al. 2019a), ce réarrangement est également associé à la variation climatique dans le sud de Terre-Neuve (Watson et al. 2022). Cette augmentation de la fréquence de la translocation à la péninsule Burin est également cohérente avec l'augmentation d'un haplotype mitochondrial européen dans la même région géographique (Bradbury et al. 2015).

Dans l'ensemble, la présence de différences à grande échelle dans la fréquence de ce réarrangement chromosomique, qui est lié à l'introgression européenne, à la sélection et au climat, entre les parties orientale et occidentale de l'UD 4 Sud de Terre-Neuve vient fortement soutenir les différences dans l'adaptation génomique et appuie les critères de différences importantes sur le plan de l'évolution entre l'est et l'ouest du sud de Terre-Neuve. Sur la base de notre arbre de décision, nous avons également examiné les preuves de différences liées au cycle biologique et au climat dans l'UD.

Selon le MPO et le MRNF (2009), le sud de Terre-Neuve est représenté par deux UC de saumon atlantique, qui sont séparées à la péninsule Burin, conformément à nos preuves génétiques et génomiques. Ce rapport indique des différences potentielles dans l'âge modal des saumoneaux entre les régions (MPO et MRNF 2008). Toutefois, d'après les données compilées pour les petits saumons (la majorité des remontes), les fourchettes de l'âge moyen des saumoneaux sont similaires pour les sites à l'est et à l'ouest de la péninsule Burin (est : 2,93 à 3,57 ans; ouest : 2,92 à 3,51 ans) (Chaput et al. 2006). Toujours dans le rapport du MPO et du MRNF (2009), on trouve une variation de la période de la montaison, plus précoce dans certaines rivières de l'ouest que dans d'autres rivières de l'est, où cette période est comparable à celle des populations du sud du Labrador, ce qui est cohérent avec les indications figurant dans Dempson et al. (2017). Par exemple, parmi les populations échantillonnées à Terre-Neuve-et-Labrador, la montaison était la plus précoce dans la rivière Conne (à l'ouest) et similaire à une autre rivière proche (la rivière Little); à l'inverse, la montaison est la plus tardive dans une rivière à l'est (ruisseau Northeast [Trepassey]), environ cinq semaines plus tard, bien qu'aucune autre rivière n'ait été échantillonnée à l'est (Dempson et al. 2017). Selon le MPO et le MRNF (2009), les sites à l'ouest de la péninsule Burin seraient caractérisés par des madeleineaux de plus petite taille et les sites à l'est de la péninsule par des stocks de petits madeleineaux, ainsi que de madeleineaux plus grands. Selon les données, la proportion de petits géniteurs ayant frayé plusieurs fois est également plus grande dans l'est (moyenne ~13 %) que dans l'ouest (moyenne ~5 %) [voir des détails dans Kelly et al. en prép.3]. Dans l'ensemble, les données compilées suggèrent certaines différences dans le cycle biologique entre l'est et l'ouest de l'UD sud de Terre-Neuve; toutefois, en général, il existe peu de données sur le cycle biologique des rivières de ces deux régions (Hutchings et Jones 1998).

Outre le cycle biologique, des différences écologiques entre les deux régions ont également été décrites dans le rapport du MPO et du MRNF (2009). Elles incluent des différences d'alcalinité, les rivières à l'ouest de la péninsule Burin ayant des alcalinités moyennes faibles avec des valeurs de pH moyennes souvent inférieures à 5,5 et donc plus basses que celles des rivières situées à l'est de la péninsule Burin (MPO et MRNF 2008). En outre, des différences dans la taille des rivières ont été signalées : les rivières situées à l'est de la péninsule Burin ont des bassins hydrographiques relativement petits (moins de 300 km²) et seules quelques-unes ont des bassins de plus de 400 km²; alors qu'à l'ouest de la péninsule, les bassins hydrographiques des rivières vont de moyen (1 000 à 2 500 km²) à petits (moins de 300 km²). Bien que ces facteurs ne soient pas directement inclus dans notre arbre de décision, ces variables, telles que la taille du bassin récepteur et la chimie de l'eau (Bradbury *et al.* 2014; Pritchard *et al.* 2018), peuvent influencer la variation adaptative des populations de saumon et sont donc présentées ici.

Les données climatiques pour le sud de Terre-Neuve appuient également les différences entre les deux principaux groupes génétiques qui se séparent près de la rivière Garnish (figure A18 de l'annexe). L'analyse de redondance a été réalisée avec 19 variables bioclimatiques (voir le tableau A1 de l'annexe) pour toutes les rivières du sud de Terre-Neuve comme réponse et les groupes présumés de l'UD (deux groupes génétiques) comme variable contraignante. L'analyse de la variance (ANOVA) sur l'analyse de redondance a montré que le modèle était significatif (p<0,001) avec un R² ajusté de 0,40. L'axe 1 de l'analyse de redondance expliquait 38,4 % de la variance du modèle et montre clairement la division entre les nouvelles UD présumées (rivières à l'est et à l'ouest de Garnish). Cette différence sur l'axe 1 de l'analyse de redondance est due à la variation des températures (amplitude thermique annuelle, température minimale, température moyenne du trimestre le plus froid et variables associées à la variation des températures) et des précipitations (précipitations du trimestre le plus humide). De manière générale, les précipitations étaient plus importantes, la variabilité des températures plus grande et les températures hivernales plus froides à l'ouest de Garnish. Une séparation supplémentaire sur l'axe 2 de l'analyse en composantes principales a permis de séparer les sites de l'UD de l'ouest présumée. Pris ensemble, ces résultats confirment l'existence de nettes différences climatiques liées aux deux principaux groupes génétiques.

Globalement, nos analyses semblent indiquer qu'il existe deux unités (UD) distinctes et importantes sur le plan de l'évolution dans le sud de Terre-Neuve (l'ancienne UD 4), qui sont séparées le long de la péninsule Burin et comprennent :

- 1. les sites de la rivière Garnish (inclusivement) vers l'est et
- 2. les sites à l'ouest de la rivière Garnish.

Le caractère distinct de ces deux UD proposées est étayé par des données génétiques et leur importance sur le plan de l'évolution par des preuves génomiques d'adaptation, des différences liées au climat, l'habitat et, dans une certaine mesure, des différences dans le cycle biologique.

Certains arguments en faveur des UD supplémentaires (sites sur la presqu'île Avalon et à l'ouest de la baie d'Espoir) étaient évidents et pourraient justifier une séparation à l'avenir lorsque davantage de données seront disponibles. Il est intéressant de noter que la limite orientale actuelle dans le sud de Terre-Neuve se situe à l'extrémité sud-est de la presqu'île Avalon, près du cap Race, mais que l'échantillonnage est limité au-delà de cette limite (c'est-à-dire la partie nord de la presqu'île). Il est possible que la presqu'île Avalon dans son ensemble (y compris la partie nord) constitue sa propre UD à l'avenir, compte tenu de sa géologie sous-jacente unique et de l'incidence plus élevée de l'ascendance européenne, ainsi que des populations présentant des caractéristiques divergentes du cycle biologique. Cependant, à l'heure actuelle, nous ne disposons pas de données (y compris de données génétiques/génomiques et de données sur le cycle biologique) sur les rivières dans les autres

parties de la presqu'île Avalon (c'est-à-dire la partie nord), ce qui limite notre capacité à tirer des déductions ici. Pour l'instant, nous suggérons qu'il n'y a pas assez de données pour désigner la presqu'île Avalon comme sa propre UD.

En outre, nous reconnaissons que le ruisseau Northeast (Trepassey) représente un cas particulier et que cette rivière pourrait être caractérisée comme sa propre UD. De nombreuses études génétiques ont mis en évidence le caractère génétique unique et distinct de cette rivière par rapport aux autres réseaux hydrographiques de Terre-Neuve (Palstra et al. 2007; Bradbury et al. 2014; Bradbury et al. 2015). D'après les valeurs par paire de F_{ST} à 15 loci microsatellites, il est fortement divergent de tous les autres sites du sud de Terre-Neuve (F_{ST} >0,091). Cette population se caractérise par une petite remonte de saumons anadromes (Robertson et al. 2013) et on soupconne qu'elle contient une forte proportion de tacons mâles précoces, comme les autres populations de cette région (Dalley et al. 1983; Johnstone et al. 2013). C'est dans cette rivière que l'on trouve la plus grande proportion d'haplotype mitochondrial européen dans la région, selon un SNP qui différencie les saumons européens et nord-américains (Bradbury et al. 2015). Cependant, cette rivière n'est pas caractérisée par une forte proportion d'ascendance européenne d'après le réarrangement chromosomique (Ssa01/23) examiné ici (voir la figure A17 de l'annexe). Des données supplémentaires sont nécessaires pour mieux comprendre l'ascendance européenne de cette population. Alors que les données sur les microsatellites montrent que cette population est génétiquement unique, les données pangénomiques ne détectent pas de différences entre le ruisseau Northeast (Trepassey) et les rivières voisines (Bradbury et al. 2015), ce qui permet de penser que les différences génétiques peuvent être dues à une dérive génétique et au petit effectif de la population plutôt qu'à des différences adaptatives. En effet, nous avons réévalué notre analyse en composantes principales (pcadapt) sans inclure les SNP Ssa01/23 qui étaient responsables des différences dans le sud de Terre-Neuve. D'après cette analyse, nous n'avons pas trouvé que le ruisseau Northeast (Trepassey) était différencié des rivières voisines, ce qui suggère à nouveau des différences limitées dans l'adaptation fondée sur la génomique. L'absence de différences fondées sur les données génomiques concorde avec des travaux antérieurs qui avaient utilisé d'autres ensembles de données génomiques, notamment le séguençage RAD et une matrice de 6 000 SNP (Bradbury et al. 2015). Les caractéristiques du cycle biologique qui rendent cette population importante sur le plan de l'évolution sont la période de la montaison plus tardive par rapport aux autres populations de la région (B. Dempson, communication personnelle), bien que ces différences ne soient pas statistiquement significatives (Dempson et al. 2017). En outre, pour la catégorie des petits saumons, l'âge moyen des saumoneaux pour cette rivière était de 3,57 ans, l'âge le plus avancé dans cette région (fourchette pour les autres sites à l'est de Garnish [10 rivières] : 2,93 à 3,33 ans) (Chaput et al. 2006). Pour les grands et petits saumons combinés, la proportion de saumoneaux de quatre ans était de 0,489 (la classe d'âge dominante des saumoneaux pour cette rivière), mais elle était inférieure à 0,354 pour d'autres sites de la région et la majorité des saumoneaux dans ces rivières avaient trois ans (Chaput et al. 2006). Les caractéristiques de l'habitat sont généralement similaires entre le ruisseau Northeast (Trepassey) et les autres rivières de la côte sud (température, turbidité, pH, précipitations et autres variables), à l'exception de la taille du bassin hydrographique, le ruisseau Northeast (Trepassey) étant une très petite rivière (Bradbury et al. 2014). Bien que cette population soit génétiquement distincte, il n'y a pas assez de données pour étayer son importance sur le plan de l'évolution à l'heure actuelle.

UD 5 Sud-ouest de Terre-Neuve (ancienne UD) – Inchangée

Cette UD s'étend du cap Ray (environ 47°37' N, 59°19' O) vers le nord le long de la côte ouest de Terre-Neuve jusqu'à environ 49°24' N, 58°15' O. C'est la seule région de l'île de Terre-Neuve où l'on trouve un grand nombre de saumons pluribermarins (Dempson et Clarke 2001) et un habitat lacustre limité. En outre, cette UD présente également les âges moyens les plus

jeunes (trois ans) des saumoneaux et la plus faible proportion de madeleineaux femelles de l'île de Terre-Neuve.

Au moment de la dernière évaluation du COSEPAC, les comparaisons génétiques donnaient à penser que l'UD 5 était génétiquement distincte des autres populations de l'île et que les populations de l'UD semblaient avoir des taux de flux génétique plus élevés que les populations de l'UD 3 et de l'UD 4 (Verspoor 2005; Palstra *et al.* 2007). Des études génétiques et génomiques récentes continuent de soutenir la spécificité génétique de cette UD (Bradbury *et al.* 2014; Jeffery *et al.* 2018; Bradbury *et al.* 2021).

Il existe 40 rivières à saumon connues dans l'UD 5 (COSEPAC 2010) et nos ensembles de données génétiques comprennent sept emplacements pour les microsatellites et cinq emplacements pour les 96 SNP. En utilisant 15 marqueurs microsatellites, le nombre optimal de groupes génétiques (K) était de 2; toutefois, on a pu observer une structure supplémentaire jusqu'à K=7, qui confirmait généralement que chaque site représentait un groupe distinct, avec des preuves de mélange entre de nombreux sites suggérant que la plupart des groupes n'étaient pas clairement distincts (figure A19 de l'annexe). Avec l'ensemble de données sur les 96 SNP, le nombre optimal de groupes (K) était de 2, ce qui séparait la rivière Pinchgut (rivière Harry) des autres sites. Une structure supplémentaire a été observée jusqu'à K=4, qui commencait à séparer la plupart des sites, bien que les groupes ne soient généralement pas clairement distincts (figure A20 de l'annexe). Sur la base de ces analyses et de notre arbre de décision, les critères pour plusieurs groupes génétiques (caractère distinct) dans l'UD 5 sont remplis. Cependant, nous notons que si certains sites affichaient une différenciation génétique par rapport à d'autres sites de l'UD dans différentes analyses, aucune rupture génétique cohérente n'était associée à la géographie. Néanmoins, pour nous assurer que les limites actuelles de l'UD sont appropriées, nous avons réévalué la limite avec l'UD 6 (nord-ouest de Terre-Neuve), car il a été prouvé qu'une rivière de l'UD 6 (Lomond) située près de la limite pouvait présenter une affinité génétique avec les rivières de l'UD 5 (Jeffery et al. 2018; Bradbury et al. 2021). Nous avons exécuté STRUCTURE avec les microsatellites et 96 SNP pour tous les emplacements dans l'UD 6 et l'UD 5. Pour les microsatellites, le nombre optimal de groupes génétiques (K) était de 8, dénotant une structure génétique importante sur cette côte et démontrant que les sites de l'UD 6 sont distincts de ceux de l'UD 5 (figure A21 de l'annexe). Pour des valeurs plus faibles du regroupement génétique (K), nous avons relevé quelques similarités génétiques entre certains sites dans l'UD 6 et l'UD 5. Cependant, ces sites ne se trouvaient pas à la limite des deux UD et nous avons observé des différences génétiques à des niveaux plus élevés de K. Pour les 96 SNP, le nombre optimal de groupes génétiques (K) était de 2, séparant la majorité des sites de l'UD 6 de ceux de l'UD 5 (figure A22 de l'annexe), y compris les sites les plus proches de la limite entre ces UD. Un site de l'UD 5 (rivière Harry-Pinchaut) présentait une affinité génétique avec les sites de l'UD 6. bien que des différences génétiques entre ces régions aient été constatées à des valeurs plus élevées du regroupement génétique (K=6). Bien que ces résultats suggèrent une certaine hétérogénéité dans les signaux génétiques sur la côte ouest de Terre-Neuve, ils n'apportent pas d'argument fort pour modifier la limite. Pour les deux ensembles de données, les échantillons des sites les plus proches de la limite (rivières Lomond et Humber) présentent des différences génétiques. De plus, la limite entre l'UD 6 et l'UD 5 représente la région d'un point de rupture important dans le phénotype de migration. Dans cette région proche de la frontière, les saumons adultes des populations de l'UD 6 migrent du nord vers les rivières par le détroit de Belle Isle, tandis que les adultes des populations de l'UD 5 migrent vers les rivières à partir du sud (Pippy 1982). Les saumoneaux suivent probablement des voies de migration similaires. Même si le point de rupture exact est inconnu, ces différences à grande échelle dans la migration océanique influencent les conditions rencontrées en mer et représentent une différence importante sur le plan de l'évolution entre ces régions, qui confirme la limite actuelle et appuie les critères de caractère distinct entre l'UD 6 et l'UD 5. D'autres arguments soutiennent l'importance de l'UD 5 par

rapport aux autres UD, notamment le fait que c'est dans cette UD que se trouve la plus grande proportion de géniteurs vierges de grande taille (plage de 19 à 87 %) par rapport aux autres UD de Terre-Neuve, ce qui correspond à une plus grande proportion de grands saumons pluribermarins dans cette région (Kelly *et al.* en prép.³). De plus, comme indiqué ci-dessus, c'est également dans cette UD que l'on trouve les âges les plus jeunes des saumoneaux et les proportions les plus faibles de femelles unibermarines (ou petites) sur l'île de Terre-Neuve (COSEPAC 2010; Kelly *et al.* en prép.³).

De ce fait, étant donné la confirmation du caractère distinct et de l'importance de l'UD 5, nous nous concentrons ensuite sur les différences dans cette UD. Nous avons relevé dans l'UD 5 quelques différences génétiques entre les sites, mais sans rupture génétique cohérente associée à la géographie. Pour évaluer les preuves de l'importance sur le plan de l'évolution, nous nous appuyons sur des données génomiques à haute densité ou sur les données sur le cycle biologique et les données climatiques. Les données génomiques à haute densité (matrice de 220 000 SNP ou reséquençage du génome entier) n'étaient disponibles que pour trois sites de l'UD 5 et nous n'avions donc pas une couverture géographique suffisante pour les évaluer. Les données sur le cycle biologique étaient généralement limitées pour les populations de I'UD 5. On a constaté que l'âge des saumoneaux était plus avancé à des latitudes plus élevées dans l'UD, avec une fourchette de 2,7 à 3,8 ans (Hutchings et Jones 1998; Chaput et al. 2006). L'âge moyen en mer parmi les populations varie de 1,02 à 1,47 an, mais peu de rivières étaient incluses, ce qui rend les inférences difficiles (Hutchings et Jones 1998). Étant donné l'absence d'une rupture génétique claire associée à la géographie dans l'UD 5, nous n'avons pas poursuivi l'évaluation des différences climatiques, car des groupes géographiques clairs n'ont pas été définis.

Dans l'ensemble, nos analyses confirment l'existence d'une unité distincte et importante sur le plan de l'évolution (UD) dans l'UD 5. Les critères de caractère distinct étaient respectés pour certaines rivières, mais il n'y avait aucune rupture génétique cohérente associée à la géographie et pas de données à l'appui de l'importance.

UD 6 Nord-ouest de Terre-Neuve (ancienne UD) – Modification de la limite

Cette UD s'étend vers le nord à partir d'environ 49°24' N, 58°15' O le long de la côte ouest de Terre-Neuve, jusqu'à l'extrémité de la péninsule Great Northern (environ 51°37' N, 55°25' O). Les saumoneaux des populations de cette UD devraient migrer vers le nord par le détroit de Belle Isle (COSEPAC 2010). Il existe des variations dans les cycles biologiques des populations de cette UD, qui sont généralement intermédiaires entre le Labrador (l'ancienne UD 2) et le sud-ouest de Terre-Neuve (l'ancienne UD 5) (Chaput *et al.* 2006). Dans l'UD 6, l'habitat d'eau douce est nettement plus alcalin que dans le reste de l'île de Terre-Neuve, en raison de la prédominance du calcaire dans la région. Plusieurs populations de cette UD ont une composante de pluribermarins, comme les rivières Big East, St. Genevieve et River of Ponds.

Au moment de la dernière évaluation du COSEPAC, les données génétiques pour cette UD étaient rares. Des études génétiques et génomiques récentes soutiennent l'existence d'un groupe génétique distinct sur la péninsule nord, bien qu'un site dans la partie sud de l'UD 6 (rivière Lomond) soit regroupé avec l'UD 5 (Bradbury *et al.* 2014; Bradbury *et al.* 2021). Cependant, peu de rivières ont été échantillonnées entre la rivière Lomond et les régions plus septentrionales (River of Ponds). En outre, ce groupe génétique de la péninsule nord comprenait également un site de l'UD 3 (ruisseau Beaver) (Bradbury *et al.* 2014; Bradbury *et al.* 2014; Bradbury *et al.* 2014; Bradbury *et al.* 2021). Jeffery *et al.* (2018) ont signalé des groupes de population similaires, avec une subdivision supplémentaire des sites du nord (ruisseau Arm Brook et rivière St. Genevieve) par rapport aux autres sites de l'UD 6.

En nous fondant sur notre évaluation du nord-est de Terre-Neuve (UD 3), nous avons réévalué et modifié la limite entre les UD du nord-est et du nord-ouest de Terre-Neuve, comme décrit en détail précédemment (voir la section Réévaluation de la limite entre l'UD 3 et l'UD 6). Dans l'ensemble, nos analyses confirment une unité distincte et importante sur le plan de l'évolution (UD) dans l'UD 6; cependant, en fonction de la réévaluation de la limite de l'UD (voir plus de détails précédemment), nous avons modifié la limite pour le nord-ouest de Terre-Neuve afin d'incorporer des sites du nord-est de Terre-Neuve (le long de la péninsule nord) [figures 6 et 7]. Les arguments en faveur du caractère distinct et de l'importance sur le plan de l'évolution de ces deux UD avec des limites révisées sont présentés en détail plus haut. Dans l'UD du nord-ouest de Terre-Neuve proposée, la limite nord s'étend maintenant aux sites proches du ruisseau Beaver. Les données appuyant la modification de la limite sont détaillées ci-dessus et résumées dans le tableau 3, et comprennent les différences génétiques et génomiques, les différences liées au climat, les différences de cycle biologique et les différences entre la géologie des régions. De plus, nous avons également réévalué la limite entre les UD 6 et 5; toutefois, elle n'a pas été modifiée (voir la section UD 5 Sud-ouest de Terre-Neuve [ancienne UD] – Inchangée).

UD 7 Est de la Côte-Nord du Québec (ancienne UD) – Ajout d'une rivière

Cette UD s'étend de la rivière Napitipi (non inclusivement) vers l'ouest le long de la rive nord du Saint-Laurent jusqu'à la rivière Kegaska (inclusivement) à l'ouest. Auparavant, Dionne *et al.* (2008) ont utilisé des marqueurs microsatellites, la température, la difficulté de la montaison de la rivière (migration) et le pourcentage de poissons qui arrivent à maturité au stade d'unibermarin pour différencier les régions de la Côte-Nord. Cette UD est caractérisée par des populations contenant des proportions plus grandes de saumons unibermarins et des rivières ayant un régime de température plus bas que l'UD voisine de la Côte-Nord (reconnue comme UD 8). Les populations de cette UD sont généralement caractérisées par une durée de génération plus courte (cinq ans) par rapport aux populations voisines de l'UD du sud du Labrador (six ans) en raison des différences d'âge au moment de la smoltification (April *et al.* 2023).

Au moment de la dernière évaluation du COSEPAC, les données génétiques suggéraient également que ces populations présentaient les niveaux de flux génétique plus faibles dans l'UD que dans les autres zones de la Côte-Nord (Dionne *et al.* 2008) (valeur moyenne de F_{ST} =0,037 contre 0,027 dans l'UD 8). Des études génétiques récentes confirment que cette UD est distincte du Labrador (UD 2), mais elles n'ont pas déterminé de différences entre cette UD et l'UD voisine de la Côte-Nord (UD 8) (Jeffery *et al.* 2018; Bradbury *et al.* 2021). Néanmoins, les différences entre l'UD 8 et l'UD 7 sont étayées par un ensemble de données sur les SNP plus grand (Moore *et al.* 2014).

Il existe 20 rivières à saumon connues dans l'UD 7 (COSEPAC 2010) et nos ensembles de données génétiques comprennent cinq emplacements pour les 96 SNP et trois emplacements pour les microsatellites. Avec 15 marqueurs microsatellites, le nombre optimal de groupes génétiques (K) était de 2 et aucune structure supplémentaire n'a été observée au-delà (figure A23 de l'annexe). Pour K=2, le site le plus occidental, Musquaro (MUQ), formait un groupe séparément des deux autres sites (Etamamiou, ET; Gros Mecatina, MEC). En utilisant 96 SNP, le nombre optimal de groupes génétiques (K) était de 4 (figure A24 de l'annexe). Le regroupement a séparé les sites les plus à l'ouest, Musquanousse (MUS) et Musquaro (MUQ), des autres sites ainsi que l'un de l'autre, mais les profils de regroupement ont montré que les populations n'étaient pas clairement distinctes dans cette UD. Sur la base de ces analyses et de notre arbre de décision, les critères pour plusieurs groupes génétiques (caractère distinct) dans l'UD 7 sont remplis.

Pour évaluer les preuves de l'importance sur le plan de l'évolution, nous nous appuvons sur des données génomiques à haute densité ou sur les données sur le cycle biologique et les données climatiques. Aucune donnée génomique à haute densité (matrice de 220 000 SNP ou reséquencage du génome entier) n'était disponible pour les sites de l'UD 7 selon les limites du COSEPAC (2010). Les données sur le cycle biologique étaient généralement limitées pour les populations de l'UD 7. Les données sur trois populations (Gros Mecatina, Etamamiou et Olomane) ont révélé des similarités dans l'âge des saumoneaux (3,43 à 3,66 ans), avec quelques différences dans l'âge en mer (1,08 à 1,93 an) (Hutchings et Jones 1998). Dionne et al. (2008) ont signalé des différences entre les UD du Québec en ce qui a trait à la proportion d'unibermarins en se basant sur les données du ministère des Ressources Naturelles et de la Faune du Québec (MRNF) de 2004 (Caron et al. 2005). Cet ensemble de données englobe 16 rivières de l'UD 7 et, bien qu'il montre une proportion variable de saumons unibermarins entre les rivières, aucun profil géographique clair ne se dessine (Caron et al. 2005). Dans l'ensemble, il n'existe pas de preuves nettes des différences de cycle biologique dans l'UD 7. Étant donné l'absence d'une rupture géographique claire associée génétiquement dans l'UD 7. nous n'avons pas poursuivi l'évaluation des différences climatiques (mais voir la section ci-après Réévaluation de la limite entre les UD 7, 8 et 10).

Dans l'ensemble, nos analyses confirment l'existence d'une unité distincte et importante sur le plan de l'évolution (UD) dans l'UD 7 reconnue. Bien que les critères de caractère distinct aient été respectés pour certains cours d'eau, les données disponibles n'ont pas permis de démontrer l'importance. Par conséquent, nous proposons que l'UD 7 reste une UD unique. En outre, d'après notre analyse et celles d'études antérieures (Dionne *et al.* 2008), nous suggérons de faire passer la rivière de la Corneille (actuellement dans l'UD 8) dans l'UD 7, ce qui donne une limite non contiguë (voir plus de détails dans la section ci-après *Réévaluation de la limite entre les UD 7, 8 et 10*).

UD 8 Ouest de la Côte-Nord du Québec (ancienne UD) – Modification de la limite

Cette UD s'étend vers l'est depuis la rivière Natashquan (inclusivement) le long de la Côte-Nord du Québec jusqu'à la rivière des Escoumins à l'ouest (inclusivement). Les saumons de l'UD 8 présentent la plus forte proportion de pluribermarins par rapport aux populations des autres UD du Québec (COSEPAC 2010; April *et al.* 2023).

Au moment de la dernière évaluation du COSEPAC, les données génétiques sur les microsatellites, de même que les données sur l'habitat et le cycle biologique séparaient cette région de la Côte-Nord des UD 7 et 10 (Dionne *et al.* 2008). Les limites est et ouest de l'UD semblent être une zone de transition vers l'UD 7 et l'UD 10, respectivement (Dionne *et al.* 2008), et n'ont pas de caractéristique géographique claire comme limite. Des études génétiques récentes montrent que des sites de l'UD 8 et de l'UD 7 (est de la Côte-Nord du Québec) constituent un groupe génétique (Jeffery *et al.* 2018; Bradbury *et al.* 2021), mais d'autres études suggèrent des différences génétiques entre les sites de l'UD 8 et de l'UD 7 (Dionne *et al.* 2008; Moore *et al.* 2014). De plus, deux sites à la limite ouest de l'UD 8 (Laval et Escoumins) affichent souvent une affinité avec l'UD 10 ou représentent leur propre groupe génétique (Moore *et al.* 2014; Jeffery *et al.* 2018; Bradbury *et al.* 2021). Dans l'ensemble, une certaine ambiguïté est évidente quant aux limites de l'UD 8.

Il y a 25 rivières à saumon connues dans l'UD 8 (COSEPAC 2010) et nos ensembles de données génétiques comprennent 11 sites pour les microsatellites et 12 sites pour les 96 SNP. En utilisant 15 marqueurs microsatellites, le nombre optimal de groupes génétiques (K) était de 3, mais une structure supplémentaire était confirmée jusqu'à K=6 (figure A25 de l'annexe). Pour K=3, les rivières Laval, aux Anglais et de la Corneille ont commencé à se séparer les unes des autres ainsi que des autres sites, malgré la présence de signaux de mélange. Ces sites sont restés la principale source de séparation à des valeurs plus élevées de K. Certaines différences

ont pu être observées entre les sites est et ouest; cependant, les sites présentaient des niveaux élevés de mélange. En utilisant 96 SNP, le nombre optimal de groupes génétiques (K) était de 2, mais une structure supplémentaire était confirmée jusqu'à K=8 (figure A26 de l'annexe). Ici, les sites les plus à l'ouest (Escoumins et Laval) étaient regroupés et séparés des autres sites. En outre, comme pour les microsatellites, les rivières de la Corneille et aux Anglais étaient regroupées séparément l'une de l'autre et des autres sites. Les sites à l'est et à l'ouest de la rivière de la Corneille ont formé des groupes distincts avec des signaux mélangés, mais la structure supplémentaire au-delà n'était pas aussi claire. Sur la base de ces analyses et de notre arbre de décision, les critères pour plusieurs groupes génétiques (caractère distinct) dans l'UD 8 sont remplis.

D'après les preuves de caractère distinct et de récentes études génétiques (Bradbury *et al.* 2021), il semble que les sites les plus à l'ouest (Laval et Escoumins) puissent appartenir à l'UD 10. Nous avons donc réévalué les limites de l'UD 8. La poursuite de cette analyse s'appuie également sur l'évaluation précédente du COSEPAC, qui indiquait que l'UD 8 ne présentait pas de caractéristiques géographiques claires aux limites avec l'UD 7 et l'UD 10, et que celles-ci étaient donc quelque peu ambiguës (COSEPAC 2010).

Réévaluation de la limite entre les UD 7, 8 et 10

Pour réévaluer la limite entre les UD 7, 8 et 10, nous avons exécuté STRUCTURE séparément pour les ensembles de données sur les 96 SNP et les 15 microsatellites avec des sites des trois UD précédemment reconnues en utilisant K=3. Pour les deux ensembles de données, les différences génétiques correspondaient à une limite révisée entre les UD 10 et 8, mais aucune modification de la limite entre les UD 7 et 8 n'était justifiée (figures 9 et 10). Les sites de Laval et des Escoumins étaient plus étroitement liés aux sites de l'UD 10 (intérieur du Saint-Laurent). En outre, nous notons qu'un site de l'UD 8, la rivière de la Corneille, était génétiquement similaire à des sites de l'UD 7 (comme discuté ci-avant). La rivière de la Corneille ne se distinguait pas des sites de l'UD 7 jusqu'à des valeurs beaucoup plus élevées du regroupement génétique (K=6 pour les deux ensembles de données). Sur la base de ces analyses, le caractère distinct appuie une limite révisée entre les UD 8 et 10 et des arguments appuyaient le déplacement de la rivière de la Corneille dans l'UD 7.

Nous avons également évalué si ces changements pouvaient répondre aux critères d'importance sur le plan de l'évolution. Des données génomiques à haute densité (matrice de 220 000 SNP ou reséquençage du génome entier) étaient disponibles pour huit populations au total dans les UD 8 et 10, mais pour aucun site de l'UD 7 selon les limites du COSEPAC (2010). Avec pcadapt, la rivière de la Corneille était clairement séparée de tous les autres sites le long du premier axe des composantes principales et les autres sites de l'UD 8 (limite modifiée) étaient regroupés étroitement, mais séparément, des sites de l'UD 10 (révisée) sur le deuxième axe des composantes principales (figure A27 de l'annexe). Étant donné que la rivière de la Corneille semble être génétiquement similaire aux sites de l'UD 7, cette analyse appuie davantage la division des trois UD le long de la Côte-Nord du Québec (UD 7, 8 et 10) et soutient le placement de la rivière de la Corneille dans l'UD 7. Nous avons supprimé la rivière de la Corneille et relancé l'analyse afin de mieux évaluer les différences entre l'UD 8 et l'UD 10. Sans la rivière de la Corneille, les différences entre l'UD 8 révisée et l'UD 10 étaient nettes, car les populations étaient séparées le long du premier axe des composantes principales (figure A28 de l'annexe). Une séparation supplémentaire des sites de l'UD 8 est apparue le long du deuxième axe des composantes principales, les sites de l'UD 10 étant généralement étroitement regroupés sur les deux axes. En tout, 222 loci ont contribué de manière importante à la différenciation sur le premier axe des composantes principales, différenciant ainsi les deux UD sur la base des limites révisées (valeur ajustée p [valeur q] <0,05) et ces loci étaient répartis sur tous les chromosomes (figure A28 de l'annexe). Nous avons examiné la surreprésentation des processus biologiques associés aux gènes situés près des loci aberrants à l'aide du

progiciel topGO (Alexa et Rahnenfuhrer 2016). Au total, 79 processus biologiques étaient largement surreprésentés (p <0,05) d'après l'ensemble de données aberrantes, avec une grande proportion de processus liés à la « régulation de la biosynthèse des métabolites secondaires » et à la « détermination maternelle de l'axe antérieur/postérieur, embryon » (figure A29 de l'annexe). Les métabolites secondaires sont produits par les plantes et les micro-organismes et peuvent influencer la nutrition des poissons. Ce terme dans GO peut donc être lié au métabolisme des poissons (Vera *et al.* 2017). La détermination maternelle de l'axe antérieur/postérieur est liée au développement embryonnaire guidé par des gènes exprimés par la mère.

Pour les UD 8 et 10, les données sur le cycle biologique de 13 rivières (catégorie des grands saumons) et de neuf rivières (catégorie des petits saumons) ont révélé une augmentation de l'âge des saumoneaux de l'ouest vers l'est (Chaput *et al.* 2006). Par exemple, les sites les plus à l'ouest (Betsiamites, Laval et Escoumins) comptaient plus de 40 % et plus de 60 % de saumoneaux de deux ans pour les catégories de grands et de petits saumons, respectivement (Chaput *et al.* 2006), alors que le pourcentage de saumoneaux de deux ans dans les autres populations (à l'est de Betsiamites) était inférieur à 34 % (fourchette : 0 à 34 %) et à 29 % (fourchette : 0 à 29 %) pour les catégories de grands et de petits saumons, respectivement (Chaput *et al.* 2006). L'âge moyen en mer était variable, sans tendance claire en fonction de la géographie, d'après les 17 rivières pour lesquelles des données étaient disponibles (Hutchings et Jones 1998). Dionne *et al.* (2008) ont signalé des différences entre l'UD 8 et l'UD 10 en ce qui concerne la proportion de saumons unibermarins; cette différence n'était toutefois pas significative. Dans l'ensemble, les preuves d'une smoltification plus précoce dans le site le plus à l'ouest soutiennent les différences de cycle biologique entre l'UD 8 et l'UD 10 avec les limites modifiées.

À partir des différences génétiques, génomiques et du cycle biologique, nous proposons de déplacer la limite entre les UD 8 et 10 vers l'est. En vue d'évaluer les différences climatiques entre les UD révisées avec les nouvelles limites, nous suggérons de faire passer les rivières Betsiamites, Laval et des Escoumins dans l'UD 10 pour l'analyse. Les données climatiques pour les UD 8 et 10 confirment également les différences lorsqu'on utilise les limites révisées des UD (figure A30 de l'annexe). L'analyse de redondance a été réalisée avec 19 variables bioclimatiques (voir le tableau Á1 de l'annexe) pour toutes les rivières de l'UD 8 et de l'UD 10 comme réponse et les groupes présumés de l'UD (deux groupes – d'après la limite révisée) comme variable contraignante. L'analyse de la variance (ANOVA) sur l'analyse de redondance a montré que le modèle était significatif (p <0,001) avec un R² ajusté de 0,22. L'axe 1 de l'analyse de redondance explique 24,3 % de la variance du modèle et montre clairement qu'il faut déplacer les rivières des Escoumins, Laval et Betsiamites de l'UD 8 à l'UD 10 (figure A30 de l'annexe). Cette différence sur l'axe 1 de l'analyse de redondance est due à la température pendant les périodes les plus chaudes de l'année, la température maximale, la température moyenne du trimestre, la température moyenne du trimestre le plus humide et la saisonnalité de la température se trouvant haut sur l'axe. Cela indigue que les températures estivales sont plus élevées dans l'UD 10 que dans l'UD 8, ce qui est cohérent avec l'évaluation précédente de ces UD qui a révélé des températures plus élevées pendant la saison de croissance dans l'UD 10 que dans l'UD 8 (COSEPAC 2010), ce qui peut également être lié aux différences d'âge des saumoneaux entre ces régions.

Dans l'ensemble, nos analyses soutiennent une unité (UD) distincte et importante sur le plan de l'évolution dans l'ouest de la Côte-Nord du Québec (UD 8); cependant, il faudrait revoir la limite de cette unité avec celle de l'intérieur du Saint-Laurent (UD 10). La limite de l'UD 8 devrait s'étendre de la rivière Natashquan (inclusivement) à la rivière Betsiamites (exclusivement). La position exacte de cette limite ne peut être que déduite des données actuelles, qui sont étayées par les différences de cycle biologique, les données génétiques et les différences climatiques.

Sur la base de cette limite révisée, les critères de caractère distinct et d'importance de l'UD 8 par rapport à l'UD 10 voisine étaient respectés.

En outre, d'après notre analyse et celles d'études antérieures (Dionne *et al.* 2008), nous proposons de faire passer la rivière de la Corneille (actuellement et physiquement dans l'UD 8) dans l'UD 7, ce qui donne une limite non contiguë. Il existe des preuves claires que la rivière de la Corneille est génétiquement similaire aux populations de l'UD 7. De surcroît, il existe des preuves de différences fondées sur le génome entre la rivière de la Corneille et les populations des UD 8 et 10. Ces différences ne peuvent pas être expliquées par l'empoissonnement entre ces régions, puisqu'il n'y a pas eu d'empoissonnement dans la rivière de la Corneille (ministère de la Faune et des Parcs du Québec, données inédites). De plus, le cours supérieur de la rivière de la Corneille est petit et n'atteint pas les bassins hydrographiques situés dans l'UD 7, ce dont on peut déduire qu'il n'y a pas de connectivité physique. Sur la base des données actuelles, il n'y a pas de différences claires dans le cycle biologique de la rivière de la Corneille par rapport aux autres populations voisines.

UD 9 Anticosti (ancienne UD) – Inchangée

Cette UD englobe l'île d'Anticosti. L'habitat d'eau douce de cette UD est caractérisé par un gradient plus faible que celui des rivières voisines de l'est de la Côte-Nord du Québec (UD 7 précédemment reconnue) et des températures plus basses par rapport à plusieurs UD adjacentes (COSEPAC 2010).

Au moment de la dernière évaluation du COSEPAC, les données génétiques disponibles dans Dionne *et al.* (2008) montraient une divergence entre les populations d'Anticosti et celles des UD voisines. Ces données donnaient également à penser que le flux génétique entre les populations d'Anticosti était élevé, sans différences significatives dans la différenciation génétique entre plusieurs rivières (F_{ST} =0,002). La distinction génétique des populations d'Anticosti par rapport à celles des autres régions est également étayée par d'autres études récentes (Moore *et al.* 2014; Jeffery *et al.* 2018; Bradbury *et al.* 2021).

Il y a 25 rivières à saumon connues sur l'île d'Anticosti (COSEPAC 2010) et nos ensembles de données génétiques comprennent trois de ces populations : les rivières Jupiter, aux Saumons et Chaloupe. Plus de la moitié des saumons de cette UD sont concentrés dans ces trois populations. En utilisant 15 marqueurs microsatellites et l'ensemble de données sur les 96 SNP, nous n'avons trouvé aucune preuve de structure génétique dans l'UD d'Anticosti (figures A31 et A32 de l'annexe, respectivement). Sur la base de ces analyses et de notre arbre de décision, les critères pour plusieurs groupes génétiques (caractère distinct) dans l'UD ne sont pas remplis et Anticosti devrait donc rester une seule UD.

Des preuves continuent de soutenir l'importance de l'UD d'Anticosti sur le plan de l'évolution. Par exemple, Bourret et ses collaborateurs (2013) ont démontré que les paramètres géologiques des rivières d'Anticosti étaient distincts de ceux des rivières du Québec et du Labrador. En outre, la divergence génétique d'Anticosti par rapport à d'autres populations était fortement liée à ces paramètres géologiques, lorsque les analyses ont été effectuées avec des SNP aberrants présumés soumis à une sélection divergente (Bourret *et al.* 2013). De plus, le COSEPAC (2010) indique que l'habitat d'eau douce de cette île est caractérisé par un gradient plus faible que celui des rivières voisines et par des températures plus basses que dans plusieurs UD adjacentes. Cependant, sur le plan de la température, l'habitat d'eau douce d'Anticosti est similaire à celui de l'est de la Côte-Nord du Québec (d'après les degrés-jours : 945 contre 938), mais plus frais que celui des autres UD du Québec (UD 8, 10, 12) [COSEPAC 2010]. Les saumons des rivières d'Anticosti sont également plus petits que ceux des autres UD du Québec (April *et al.* 2023).

UD 10 Intérieur du Saint-Laurent (ancienne UD) – Modification de la limite

D'après la dernière évaluation du COSEPAC, cette UD s'étend vers l'ouest le long de la rive nord du Saint-Laurent, depuis la rivière des Escoumins (non incluse) jusqu'au bas Saint-Laurent, et revient vers l'est le long de la rive sud du Saint-Laurent jusqu'à la rivière Quelle (incluse). Elle est caractérisée par une proportion plus élevée de saumons unibermarins par rapport à l'UD 8 voisine et l'âge moyen de smoltification y est également plus bas. Des données récentes continuent de confirmer que les saumoneaux sont plus jeunes dans l'UD Intérieur du Saint-Laurent (moyenne de 2.22 ans dans quatre rivières) que dans les autres rivières du Québec, et les plus jeunes saumoneaux rapportés (âge moyen des saumoneaux) au Québec se trouvent dans la rivière Jacques-Cartier (2,00 ans), dans cette UD (April et al. 2023). Cela contraste avec les deux UD voisines, où les saumoneaux sont plus âgés (moyenne de 3,15 ans pour la Gaspésie; moyenne de 3,08 ans pour l'ouest de la Côte-Nord) [April et al. 2023]. Conformément aux saumoneaux plus jeunes et à la proportion plus élevée de saumons unibermarins, cette UD affiche la durée de génération la plus courte (guatre ans) par rapport aux autres UD du Québec (April et al. 2023). Elle est également caractérisée par les habitats d'eau douce les plus chauds de la Côte-Nord du Québec. Cette UD englobe quatre UC; cependant, les preuves de la séparation de ces UC reposaient sur des données génétiques préliminaires et non sur des différences écologiques ou de cycle biologique (MPO et MRNF 2008).

Au moment de la dernière évaluation du COSEPAC (COSEPAC 2010), les données génétiques tirées de Dionne *et al.* (2008) suggéraient que le flux génétique était limité entre cette UD et les deux UD voisines (UD 8 et 12) et qu'il existait des différences de température entre les régions. Des études génétiques récentes confirment les différences entre cette UD et l'UD voisine en Gaspésie (Moore *et al.* 2014; Jeffery *et al.* 2018; Bradbury *et al.* 2021). Cependant, on a reconnu que la limite entre l'UD 10 et l'UD 8 n'était pas clairement définie (COSEPAC 2010). Sur la base de notre évaluation de l'UD 8 et des études génétiques récentes (Bradbury *et al.* 2021), nous avons réévalué et révisé la limite entre les UD 8 et 10, comme décrit en détail plus haut (voir *Réévaluation de la limite entre les UD 7, 8 et 10*). Compte tenu de l'analyse qui précède de l'UD 8 et de l'UD 10 ensemble, nous avons révisé les limites de cette UD pour englober trois rivières supplémentaires : les rivières des Escoumins, Laval et Betsiamites, déplaçant ainsi la limite entre les UD 10 et 8 vers l'est (figures 9 et 10).

UD 12 Gaspésie-sud du golfe du Saint-Laurent (ancienne UD) – Deux UD proposées : Gaspésie et sud du golfe du Saint-Laurent-Cap-Breton

Cette UD s'étend de la rivière Ouelle (exclue), dans l'ouest de la Gaspésie, jusqu'à la pointe nord du Cap-Breton (environ 47°02' N, 60°35' O). Au moment de la dernière évaluation du COSEPAC, les données génétiques figurant dans Dionne et al. (2008) permettaient de penser que les populations de la Gaspésie et du nord-est du Nouveau-Brunswick représentent un regroupement régional avec des niveaux élevés de flux génétique (movenne $F_{ST}=0.011$). Cependant, l'étude ne portait que sur un seul réseau hydrographique (Miramichi) au sud de la rivière Restigouche (Dionne et al. 2008), et donc presque tous les échantillons provenaient de la région de la Gaspésie. Néanmoins, au moment de l'évaluation précédente, rien ne prouvait que le sud-est du golfe présentait une divergence génétique ou de cycle biologique par rapport à l'ouest du golfe du Saint-Laurent. Certains éléments probants, fondées sur des marqueurs génétiques neutres, indiquaient que les rivières de l'ouest du Cap-Breton pouvaient diverger de celles de l'ouest du golfe, mais des données supplémentaires étaient nécessaires pour étayer cette affirmation. D'autres travaux génétiques ont fourni peu de preuves d'une divergence dans la région d'après les allozymes (Verspoor 2005) et les rivières du sud-est du golfe ont donc été incluses avec la Gaspésie dans cette UD. Aucune donnée génétique n'était disponible pour les populations de l'Île-du-Prince-Édouard (Î.-P.-É.). De nombreux grands cours d'eau de
l'Île-du-Prince-Édouard ont été fortement empoissonnés et les caractéristiques du cycle biologique du saumon dans ces cours d'eau sont généralement semblables à celles que l'on trouve ailleurs dans le sud-est du golfe (Cairns *et al*. 2010). Les populations de saumon de l'Île-du-Prince-Édouard ont donc été placées dans l'UD 12.

Des études génétiques récentes suggèrent que les sites de la Gaspésie sont génétiquement différenciés des sites du sud du golfe (Moore *et al.* 2014; Jeffery *et al.* 2018; Bradbury *et al.* 2021). Les différences génétiques entre les autres régions du sud du golfe n'ont pas été présentées dans ces études.

Il y a 78 rivières à saumon connues dans l'UD 12 précédemment reconnue (COSEPAC 2010) et nos ensembles de données génétiques comprennent 47 sites pour les microsatellites et 41 sites pour les 96 SNP, dont certains se trouvent dans les mêmes réseaux hydrographiques. Avec 15 marqueurs microsatellites, le nombre optimal de groupes génétiques (K) était de 2, ce qui séparait les sites en Gaspésie (incluant la rivière Restigouche) des sites du sud du golfe (figure A33 de l'annexe). Une structure limitée était confirmée au-delà de K=2, à l'exception d'une certaine différenciation observée dans quelques populations de l'Île-du-Prince-Édouard pour K=3 (figure A33 de l'annexe). Avec 96 SNP, le nombre optimal de groupes génétiques (K) était de 2 et aucune structure supplémentaire n'a été observée au-delà (figure A34 de l'annexe). Pour K=2, les sites de la Gaspésie (incluant la rivière Restigouche) étaient regroupés séparément des sites du sud du golfe. Sur la base de ces analyses et de notre arbre de décision, les critères pour plusieurs groupes génétiques (caractère distinct) dans l'UD 12 sont remplis (voir la figure 11).

Pour évaluer les preuves de l'importance sur le plan de l'évolution, nous nous appuyons sur des données génomiques à haute densité ou sur les données sur le cycle biologique et les données climatiques. Des données génomiques à haute densité (matrice de 220 000 SNP combinée au reséquençage du génome entier) étaient disponibles pour 23 sites de l'UD 12. Ces sites couvraient toutes les parties de l'UD, y compris des sites au Nouveau-Brunswick, à l'Île-du-Prince-Édouard, en Nouvelle-Écosse (y compris l'ouest du Cap-Breton) et au Québec (Gaspésie). Pcadapt sépare clairement la Gaspésie de tous les emplacements du sud dans I'UD 12 le long du premier axe des composantes principales (CP) en utilisant les SNP à l'échelle du génome (n=29 695 SNP - ensembles de données génomiques combinés). Une population de l'Île-du-Prince-Édouard (complexe NEP-Nord-Est) était séparée des autres sites le long du deuxième axe des composantes principales. En tout, 44 loci ont contribué de manière importante à la différenciation, sur le premier axe des composantes principales, entre la Gaspésie et le reste de l'UD (valeur ajustée p [valeur q] <0.05) et ces loci étaient répartis sur neuf chromosomes (figure A35 de l'annexe). Nous avons examiné la surreprésentation des processus biologiques associés aux gènes situés près des loci aberrants à l'aide du progiciel topGO (Alexa et Rahnenfuhrer 2016). Au total, 100 processus biologiques étaient surreprésentés de manière significative (p<0,05) d'après l'ensemble de données aberrantes, avec une grande proportion de processus liés à la « transduction du signal médiée par l'oxyde nitrique » (figure A36 de l'annexe). L'oxyde nitrique peut jouer un rôle dans le fonctionnement du cerveau, des neurones, de la physiologie cardiovasculaire, de la réponse immunitaire et du développement chez les poissons (Eddy 2005). Dans l'ensemble, les différences génomiques adaptatives entre les sites de la Gaspésie et du sud du golfe sont confirmées, ce qui constitue une preuve de l'importance sur le plan de l'évolution. Sur la base de notre arbre de décision, nous avons également examiné les preuves de différences liées au cycle biologique et au climat dans l'UD.

Dans le rapport du MPO et du MRNF (2009), les auteurs suggèrent que l'UD 12 reconnue est représentée par sept UC de saumon atlantique (UC 9, 10, 11, 12, 18, 19 et une partie de l'UC 20). Cependant, les preuves permettant de séparer ces régions en sept UC étaient limitées et reposaient uniquement sur certaines différences dans la migration océanique et des analyses

aénétiques préliminaires. Aucune différence écologique ou de cycle biologique n'a été signalée entre ces sept UC (MPO et MRNF 2008). Néanmoins, les données sur l'âge des saumoneaux indiquées dans Chaput et al. (2006) démontrent des différences entre les populations de la Gaspésie et du sud du golfe. En général, l'âge moyen de la smoltification est plus tardif dans les populations de la Gaspésie (petits saumons : 2,81 à 3,34 ans; grands saumons : 2,78 à 3,42 ans) par rapport aux populations du sud du golfe (petits saumons : 2,11 à 2,86 ans; grands saumons : 2,09 à 2,65 ans). Ce résultat est conforme aux données récentes selon lesquelles une population de la Gaspésie (rivière Restigouche) est dominée par des saumoneaux de trois ans (90 à 100 %) et une faible proportion de saumoneaux de deux ans (2 à 4 %) [Dauphin 2022]. De même, les données sur 14 autres rivières de la Gaspésie (au Québec) semblent indiquer une prédominance des saumoneaux de trois ans, avec un âge moyen de 3,15 ans (fourchette : 2,56 à 3,51 ans) [April et al. 2023]. Ceci contraste généralement avec les rivières du golfe du Saint-Laurent où les saumoneaux sont principalement âgés de deux et trois ans (Cairns et al. en prép.⁴; Daigle 2023; Douglas et al. 2023). De plus, bien que les données soient limitées, l'âge moyen en mer était souvent plus avancé pour les populations de la Gaspésie (1,67 à 2,16 ans) que pour celles du sud du golfe (1,29 à 2,05 ans) (Hutchings et Jones 1998). Dans l'ensemble, les preuves fondées sur l'âge des saumoneaux et, dans une certaine mesure, sur l'âge en mer, montrent des différences de cycle biologique entre les deux groupes génétiquement distincts.

Les différences climatiques entre les sites de la Gaspésie et du sud du golfe étaient également étavées (figure A37 de l'annexe). L'analyse de redondance a été réalisée avec 19 variables bioclimatiques (voir le tableau A1 de l'annexe) pour toutes les rivières de l'UD 12 précédemment reconnue comme réponse et les groupes présumés de l'UD (deux groupes génétiques : Gaspésie et sud du golfe) comme variable contraignante. L'analyse de la variance (ANOVA) sur l'analyse de redondance a montré que le modèle était significatif (p <0,001) avec un R² ajusté de 0,18. Le premier axe de l'analyse de redondance explique 18 % de la variance du modèle et sépare clairement les rivières dans les nouvelles UD présumées (Gaspésie et sud du golfe). Cette différence sur le premier axe de l'analyse de redondance est due à la variation de la température, y compris la température moyenne, la température moyenne du trimestre le plus chaud, la température maximale, la température du trimestre le plus froid et la température du trimestre le plus sec. Ces résultats permettent de penser que les températures sont plus élevées dans le sud du golfe qu'en Gaspésie. Pris ensemble, ces résultats confirment l'existence de nettes différences climatiques liées aux deux principaux groupes génétiques. En outre, il existe des différences dans la géologie sous-jacente entre ces deux régions (Tremblay et Pinet 2016).

Dans l'ensemble, selon nos analyses, il existe deux unités distinctes et importantes sur le plan de l'évolution (UD) dans l'UD 12 précédemment reconnue, qui séparent la Gaspésie (rivière Restigouche incluse) des sites du sud du golfe du Saint-Laurent. Le caractère distinct de ces deux UD est étayé par des données génétiques (voir la figure 11) et leur importance sur le plan de l'évolution par des preuves génomiques d'adaptation, des différences liées au climat, des différences dans la géologie sous-jacente et, dans une certaine mesure, des différences dans le cycle biologique. Nous notons ici que des changements supplémentaires ont été apportés à l'UD sud du golfe proposée sur la base des analyses de la section suivante (voir UD 13 Est du Cap-Breton).

⁴ Cairns, D.K., S.D. Roloson, R.E. MacFarlane, and D.L. Guignion. In prep. Atlantic salmon life history, population indicators, habitat, and threats on Prince Edward Island (SFA 17). DFO Can. Sci. Advis. Sec. Res. Doc.

UD 13 Est du Cap-Breton (ancienne UD) – UD proposée (fusionnée) : sud du golfe du Saint-Laurent-Cap-Breton

Cette UD s'étend de la pointe nord de l'île du Cap-Breton (environ 47°02' N, 60°35' O) au nord-est de la Nouvelle-Écosse (environ 45°39' N, 61°25' O). On reconnaissait auparavant une variation importante du cycle biologique dans cette UD, entre les rivières de la côte de l'Atlantique et celles qui se déversent dans le lac Bras d'Or. On a également signalé qu'il y avait une plus grande proportion de poissons unibermarins dans les rivières qui se jettent dans l'Atlantique que dans celles qui alimentent le lac Bras d'Or. Il existe aussi des différences dans le gradient fluvial entre ces régions, ainsi que des différences dans les tendances démographiques. C'est pourquoi, lors de la dernière évaluation, on a suggéré qu'une certaine structuration était possible dans l'UD, mais l'échantillonnage génétique était trop rare à l'époque pour soutenir un quelconque profil géographique de cette structuration.

Au moment de la dernière évaluation du COSEPAC (COSEPAC 2010), les données génétiques permettaient d'affirmer que les populations de l'UD de l'est du Cap-Breton étaient distinctes des populations voisines de l'UD des hautes terres du sud de la Nouvelle-Écosse (l'ancienne UD 14) (Verspoor 2005). La différence entre ces deux régions est encore confirmée par des études génétiques et génomiques récentes (Moore *et al.* 2014; Jeffery *et al.* 2018; Bradbury *et al.* 2021). Cependant, les études n'ont pas permis de relever des différences génétiques entre les sites du sud du golfe du Saint-Laurent et ceux de l'est du Cap-Breton (Moore *et al.* 2014; Jeffery *et al.* 2018; Bradbury *et al.* 2021). Capendant, les études n'ont pas permis de relever des différences génétiques entre les sites du sud du golfe du Saint-Laurent et ceux de l'est du Cap-Breton (Moore *et al.* 2014; Jeffery *et al.* 2018; Bradbury *et al.* 2021) et il pourrait s'avérer nécessaire d'apporter des changements à l'UD 13.

Il y a 30 rivières à saumon connues dans l'UD 13 (COSEPAC 2010) et nos ensembles de données génétiques comprennent six sites pour les microsatellites et trois sites pour les 96 SNP. En utilisant 15 marqueurs microsatellites et 96 SNP, nous n'avons pas trouvé de preuves pour soutenir la subdivision de cette UD (figures A38 et A39 de l'annexe). Cependant, nous notons également que d'après des travaux antérieurs, les sites de l'est du Cap-Breton se regroupent avec les sites du sud du golfe et que l'évaluation précédente du COSEPAC apportait un soutien limité pour séparer les sites de ces deux régions. Par conséquent, sur la base de notre arbre de décision, nous réévaluons les preuves de la distinction génétique entre le sud du golfe (UD nouvellement proposée) et l'est du Cap-Breton (UD 13 précédemment reconnue). En utilisant STRUCTURE avec deux groupes génétiques (K=2) pour tous les sites de l'est du Cap-Breton et du sud du golfe, nous n'avons trouvé aucune confirmation d'une distinction génétique entre ces deux régions, fondée sur les microsatellites ou l'ensemble de données sur les 96 SNP (figure A40 de l'annexe). Par conséquent, d'après les données génétiques, ces populations ne répondent donc pas aux critères de caractère distinct et nous proposons de regrouper ces sites (sud du golfe et est du Cap-Breton) en une seule UD.

Les données sur le cycle biologique confirment les similitudes entre les populations de l'est du Cap-Breton et celles du sud du golfe. Les saumoneaux sont principalement âgés de deux et trois ans dans ces populations (Cairns *et al.* en prép.⁴; Daigle 2023; Douglas *et al.* 2023; Taylor *et al.* en prép.⁵), ce qui contraste généralement avec les saumoneaux plus âgés des populations adjacentes de l'UD de la Gaspésie (April *et al.* 2023; Dauphin 2022). De plus, la proportion de pluribermarins est plus grande dans les rivières de l'est du Cap-Breton et du sud du golfe (Cairns *et al.* en prép.4; Daigle 2023; Douglas *et al.* 2023; Taylor *et al.* en prép.⁵) que

⁵ Taylor, A.D., Raab, D., Hardie, D.C., and Brunsdon, E.B. In prep. Updated DFO Science information for Atlantic Salmon (*Salmo salar*) populations in the Eastern Cape Breton region of Nova Scotia. DFO Can. Sci. Advis. Sec. Res. Doc.

dans les populations voisines des hautes terres du sud (Raab *et al.* en prép.⁶). Bien que des rapports antérieurs suggèrent une incidence plus élevée de poissons unibermarins dans certains secteurs de l'est du Cap-Breton (COSEPAC 2010), des données récentes indiquent que dans de nombreuses rivières (rivière Baddeck, rivière Middle, rivière North), la majorité des saumons passent deux hivers en mer avant de frayer (Taylor *et al.* en prép.⁵). Les données sur la rivière Clyburn montrent également une proportion plus élevée de grands saumons que de petits, bien que l'âge en mer n'ait pas été précisé (Taylor *et al.* en prép.⁵). La seule rivière surveillée dans l'est du Cap-Breton où prédominent les saumons unibermarins est la rivière Grand (Taylor *et al.* en prép.⁵). Les similarités dans l'âge des saumoneaux et l'âge en mer permettent de penser que la durée de génération est similaire pour les populations (généralement plus de 5 ans) du sud du golfe et de l'est du Cap-Breton (Cairns *et al.* en prép.⁴; Daigle 2023; Douglas *et al.* 2023; Taylor *et al.* en prép.⁶). La géologie de cette UD est également similaire (vastes dépôts de charbon). Dans l'ensemble, ces données appuient davantage le regroupement du sud du golfe et de l'est du Cap-Breton en une seule UD.

UD 14 Hautes terres du sud de la Nouvelle-Écosse (ancienne UD) – Deux UD proposées : hautes terres du sud de la Nouvelle-Écosse (ouest) et hautes terres du sud de la Nouvelle-Écosse (est)

Cette UD s'étend du nord-est de la Nouvelle-Écosse continentale (environ 45°39' N, 61°25' O) vers le sud et dans la baie de Fundy jusqu'au cap Split (environ 45°20' N, 64°30' O). Elle n'englobe qu'une seule UC (MPO et MRNF 2008). L'habitat d'eau douce de cette UD est souvent caractérisé par un pH relativement bas. Cette UD est également caractérisée par une plus faible proportion de saumons pluribermarins par rapport à l'UD voisine de l'est du Cap-Breton et du sud du golfe du Saint-Laurent (Raab *et al.* en prép.⁶). Les populations les plus au sud de cette UD présentent certains des âges de saumoneaux les plus jeunes dans l'aire de répartition canadienne du saumon atlantique (Chaput *et al.* 2006). L'âge plus jeune des saumoneaux et l'âge en mer favorisent une durée de génération plus courte (4,3 à 4,4 ans pour les populations échantillonnées; Raab *et al.* en prép.⁶) par rapport aux populations de l'est du Cap-Breton et du sud du golfe du Saint-Laurent, où elle est généralement supérieure à cinq ans (Cairns *et al.* en prép.⁴; Daigle 2023; Douglas *et al.* 2023; Taylor *et al.* en prép.⁵). Les saumons adultes de cette UD remontent dans les rivières au printemps (mai-juin) et en été (juillet-août), une période différente de celle de l'UD voisine de l'intérieur de la baie de Fundy (Raab *et al.* en prép.⁶).

Au moment de la dernière évaluation du COSEPAC, les données sur l'ADN mitochondrial et les microsatellites indiquaient un flux génétique minime entre cette UD et les UD voisines (UD 15 Intérieur de la baie de Fundy et UD 13 Est du Cap-Breton) (MPO et MRNF 2008). Des études génomiques et génétiques récentes continuent de confirmer que les populations de l'UD sont génétiquement distinctes de celles de ces UD voisines (Moore *et al.* 2014; Jeffery *et al.* 2018; Bradbury *et al.* 2021). Une autre étude génétique utilisant les microsatellites et se concentrant sur les rivières des hautes terres du sud a trouvé deux groupes génétiques dans l'UD des hautes terres du sud; ces deux groupes se divisaient généralement près de Halifax, en Nouvelle-Écosse, ce qui correspond aux limites des zones de pêche du saumon (ZPS) dans la région (O'Reilly *et al.* 2012).

⁶ Raab, D., Taylor, A.D., Hardie, D.C., and Brunsdon, E.B. In prep. Updated DFO Science information for Atlantic Salmon (*Salmo salar*) populations in the Southern Upland region of Nova Scotia (SFAs 20 and 21) of relevance to the COSEWIC status report. DFO Can. Sci. Advis. Sec. Res. Doc.

Il y a 31 rivières à saumon connues dans l'UD 14 Hautes terres du sud de la Nouvelle-Écosse (COSEPAC 2010) et nos ensembles de données génétiques comprennent des échantillons provenant de 13 sites pour les microsatellites et de neuf sites pour les 96 SNP. En utilisant 15 margueurs microsatellites, le nombre optimal de groupes génétiques (K) était de 2 et une structure supplémentaire était confirmée jusqu'à K=10 (figure A41 de l'annexe). Pour K=2, une rupture génétique apparaît clairement entre les sites à l'est et à l'ouest de la rivière Musquodoboit et ce profil de regroupement était encore présent pour K=3, mais avec la rivière Round Hill (ROH) formant son propre groupe nettement distinct. Des valeurs plus élevées de K séparaient de nombreux sites en leur propre groupe. En utilisant 96 SNP, le nombre optimal de groupes génétiques (K) était de 3 (figure A42 de l'annexe), mais une structure supplémentaire était confirmée jusqu'à K=4 (figure A42 de l'annexe). Pour K=3, la rivière Round Hill a formé un groupe séparé des autres sites et pour K=4, la rivière Musquodoboit s'est groupée séparément des autres sites; cependant, nous notons que les profils de regroupement n'étaient pas clairement distincts, sauf pour la rivière Round Hill. D'après ces ensembles de données, il existe des preuves de l'existence de groupes distincts à l'est et à l'ouest de la rivière Musquodoboit dans l'UD des hautes terres du sud de la Nouvelle-Écosse, la rivière Musquodoboit se regroupant avec les sites du sud et de l'ouest de cette région; les critères pour plusieurs groupes génétiques (caractère distinct) sont donc remplis (voir la figure 12). Cette différence était plus prononcée dans notre ensemble de données sur les microsatellites et cette division est similaire à une autre, entre les ZPS 21 et 20 près de Halifax, en Nouvelle-Écosse. Des travaux génétiques antérieurs ont confirmé l'existence de différences génétiques entre ces deux ZPS à partir de données sur les microsatellites (O'Reilly et al. 2012), et sont donc cohérents avec les différences signalées ici.

En outre, la rivière Round Hill était clairement distincte de tous les autres sites. Bien qu'elle ait été regroupée avec la rivière Gaspereau (située à l'intérieur de la baie de Fundy) dans certaines études axées sur les SNP (Jeffery et al. 2018; Bradbury et al. 2021), d'autres études indiquent que ces sites sont génétiquement distincts les uns des autres (O'Reilly et al. 2012; Moore et al. 2014). Dans notre ensemble de données sur les microsatellites, les rivières Gaspereau et Round Hill sont très distinctes l'une de l'autre (F_{ST} =0,112). Les rivières de l'UD des hautes terres du sud et de l'UD de l'intérieur de la baie de Fundy sont également séparées géographiquement les unes des autres (plus de 70 km) et nous ne pensons donc pas qu'il faille réévaluer la limite entre ces UD pour le moment. Nous reconnaissons qu'aucun autre site n'a été échantillonné près de la rivière Round Hill, les sites les plus proches dans les ensembles de données étant les rivières Tusket et Salmon (Digby). Selon la base de données sur les rivières de l'OCSAN, il y a neuf rivières à saumon entre les rivières Round Hill et Salmon (Digby), bien que le statut de plusieurs de ces populations soit inconnu ou perdu, ce qui permet de penser qu'il pourrait exister un nombre limité de rivières à saumon dans cette région. Dans l'ensemble, la rivière Round Hill semble unique parmi les rivières des hautes terres du sud, ainsi que dans la baie de Fundy (O'Reilly et al. 2012; Moore et al. 2014). Elle se différencie fortement de tous les sites de notre ensemble de données sur les microsatellites (F_{ST} >0,1036) et rien ne prouve donc que la rivière Round Hill appartiendrait à une UD proche. La forte divergence génétique de la rivière Round Hill peut être due à une dérive récente rapide et non au degré d'isolement reproductif à long terme compte tenu des faibles quantités de variation génétique et d'éventuels goulots d'étranglement génétiques (O'Reilly et al. 2012).

Pour évaluer les preuves de l'importance sur le plan de l'évolution en vue de diviser l'UD 14, nous nous appuyons sur des données génomiques à haute densité ou sur les données sur le cycle biologique et les données climatiques. Des données génomiques à haute densité (matrice de 220 000 SNP ou reséquençage du génome entier) n'étaient disponibles que pour deux sites dans l'UD 14 et la couverture géographique était donc limitée. Les analyses effectuées à l'aide d'une population de l'est et d'une population de l'ouest des hautes terres du sud ont révélé des différences génomiques auxquelles contribuaient des centaines de SNP (figure A43 de

l'annexe). Les analyses d'ontologie génique ont révélé que les loci aberrants contribuant à ces différences étaient associés à divers processus biologiques, en particulier à la « localisation du réticulum endoplasmique », ainsi qu'à des processus liés à la pigmentation et à la vision (c'est-à-dire la « biosynthèse de la mélanine » et « l'organisation structurelle du nerf optique »). Bien que les preuves génomiques soutiennent les différences entre l'est et l'ouest, nous reconnaissons que ces différences peuvent refléter des différences au niveau de la population plutôt qu'au niveau de l'UD.

Les données sur le cycle biologique étaient quelque peu limitées pour les populations de l'UD 14, même si des travaux antérieurs suggéraient que les populations les plus au sud présentent certains des âges de saumoneaux les plus jeunes dans l'aire de répartition canadienne (Chaput et al. 2006). Des données sur l'âge des saumoneaux étaient disponibles pour quatre (petits saumons) à six (grands saumons) populations (Chaput et al. 2006). C'est dans un site de la partie sud-ouest de l'UD (rivière Tusket) que l'on a observé la plus forte proportion de saumoneaux d'un an (34,7 %) au Canada (Chaput et al. 2006). Cependant, dans d'autres sites de l'UD, on trouvait généralement moins de 4 % de saumoneaux d'un an; la rivière Tusket pourrait donc être unique dans cette UD et ne pas refléter les différences géographiques entre la partie est et ouest de cette UD reconnue. Pour les autres sites de l'UD 14 précédemment reconnue, l'âge moyen des saumoneaux se situait entre 2,02 et 2,40 ans (selon le groupe de saumons), sans profil géographique net (Chaput et al. 2006), ce qui suggère des différences limitées entre l'est et l'ouest des hautes terres du sud. La proportion de petits saumons femelles était plus faible à partir de la rivière Musquodoboit en allant vers l'ouest (fourchette de 0,2 à 0,46) et légèrement plus élevée pour les sites vers l'est (0,59 à 0,63), d'après les cinq rivières pour lesquelles des données étaient disponibles. En outre, l'âge moyen en mer était disponible pour quatre rivières de l'UD, mais la fourchette était généralement limitée (1,08 à 1,29 an). Dans l'ensemble, il existe quelques preuves de différences de cycle biologique dans l'âge des saumoneaux et la proportion de saumons femelles entre l'est et l'ouest de l'UD 14.

Les différences climatiques entre les sites de l'est et de l'ouest des hautes terres du sud (à l'est et à l'ouest de la rivière Musquodoboit) ont également été confirmées (figure A44 de l'annexe). L'analyse de redondance a été réalisée avec 19 variables bioclimatiques (voir le tableau A1 de l'annexe) pour toutes les rivières de l'UD 14 précédemment reconnue comme réponse et les groupes présumés de l'UD (deux groupes génétiques : est et ouest) comme variable contraignante. L'analyse de la variance (ANOVA) sur l'analyse de redondance a montré que le modèle était significatif (p <0,001) avec un R² ajusté de 0,25. Le premier axe de l'analyse de redondance expliquait 25,5 % de la variance du modèle et séparait clairement les rivières dans les nouvelles UD présumées (est et ouest de la rivière Musquodoboit). Cette différence sur le premier axe de l'analyse de redondance est due aux précipitations estivales, les précipitations du trimestre le plus chaud, les précipitations du trimestre le plus sec se trouvant haut sur l'axe, ce qui confirme des niveaux de précipitations estivales plus élevés à l'est qu'à l'ouest. La température moyenne contribuait également aux différences et était plus élevée à l'ouest qu'à l'est. Pris ensemble, ces résultats confirment l'existence de nettes différences climatiques liées aux deux principaux groupes génétiques.

De plus, une analyse de regroupement fondée sur la variation environnementale pour 72 rivières de l'UD 14 a relevé trois groupes principaux (voir la figure 15 dans MPO 2013). Les sites à l'ouest de la rivière Musquodoboit forment deux groupes plus similaires, tandis que les sites à l'est de la rivière constituent un groupe distinct. Ce profil confirme encore que les groupes génétiques identifiés ici sont associés à des différences dans les caractéristiques des bassins hydrographiques qui pourraient entraîner une adaptation locale (MPO 2013). Une variable environnementale particulière qui diffère entre ces bassins hydrographiques est l'acidification (Bowlby *et al.* 2014). Les rivières à l'ouest de la rivière Musquodoboit ont tendance

à avoir un pH plus bas, avec plus de 60 % des rivières classées dans la catégorie 1 (pH<4.7) ou 2 (pH de 4,8 à 5,0); en revanche, environ 60 % des rivières à l'est de la rivière Musquodoboit sont classées dans la catégorie 3 (pH de 5,1 à 5,4) ou 4 (pH>5,4) (Bowlby et al. 2014). Enfin, chez de nombreuses espèces marines, on observe une rupture biogéographique majeure près de Halifax, en Nouvelle-Écosse, correspondant à un gradient de température océanique (Stanley et al. 2018). Cette rupture génétique se retrouve chez cing espèces de différents taxons, notamment la coquille Saint-Jacques (*Placopecten magellanicus*), le crabe vert (Carcinus maenas), la morue franche (Gadus morhua), le homard d'Amérique (Homarus americanus) et la crevette nordique (Pandalus borealis). On a constaté que ces différences étaient associées à la température au fond en hiver et à la température de la surface de la mer au printemps (Stanley et al. 2018). Les différences dans la température de la surface de la mer au printemps entre les deux groupes génétiques permettent de penser que les saumoneaux qui migrent en mer sont confrontés à des températures de la surface différentes. En général, on en déduit que les différences entre ces deux groupes génétiques dans les hautes terres du sud de la Nouvelle-Écosse peuvent être dues à une adaptation locale à divers facteurs environnementaux rencontrés dans l'eau douce et le milieu marin. De même, on a utilisé les différences environnementales dans les habitats marins et d'eau douce (c'est-à-dire les zones d'adaptation communes) pour délimiter les UD du saumon du Pacifique, ce qui étaye les preuves du caractère distinct et de l'importance sur le plan de l'évolution (Holtby et Ciruna 2007; COSEPAC 2018).

Dans l'ensemble, nos analyses suggèrent qu'il existe deux unités (UD) distinctes et importantes sur le plan de l'évolution dans les hautes terres du sud de la Nouvelle-Écosse, qui séparent les rivières de l'est (à l'est de la rivière Musquodoboit) de celles de l'ouest (de la rivière Musquodoboit [inclusivement] vers l'ouest) [voir la figure 12]. Le caractère distinct de ces deux UD est étayé par des données génétiques et leur importance sur le plan de l'évolution par de nombreuses différences environnementales, des différences génomiques et quelques preuves de différences de cycle biologique.

UD 15 Intérieur de la baie de Fundy (ancienne UD) – Retrait d'une rivière

Cette UD s'étend du cap Split (environ 45°20' N, 64°30' O) autour de l'intérieur de la baie de Fundy jusqu'à un point situé juste à l'est de l'estuaire du fleuve Saint-Jean (environ 45°12' N, 65°57' O). De nombreux empoissonnements ont eu lieu dans cette UD; récemment, ils étaient constitués de stocks de géniteurs provenant des populations de l'intérieur de la baie de Fundy (Gibson *et al.* 2003). Une grande partie des empoissonnements récents a eu lieu dans le cadre du programme de banque de gènes vivants du MPO, dont on pense qu'il a contribué à prévenir l'extinction du saumon dans cette UD (Gibson *et al.* 2008).

Au moment de la dernière évaluation du COSEPAC, les données génétiques suggéraient de fortes différences génétiques entre cette UD et les UD voisines (COSEPAC 2010). En outre, les saumons de cette UD semblent afficher un comportement migratoire unique (généralement limité à la baie de Fundy et au golfe du Maine) (COSEPAC 2010). Des études de génétique récentes confirment que les rivières de cette UD se distinguent des autres UD voisines (Moore *et al.* 2014; Jeffery *et al.* 2018; Bradbury *et al.* 2021). Cependant, nous notons qu'un site de l'UD, la rivière North, est souvent regroupé avec des sites de la région du Golfe (Jeffery *et al.* 2018; Bradbury *et al.* 2021). De plus, un autre site (la rivière Gaspereau) est souvent considéré comme unique (Moore *et al.* 2014) et parfois regroupé avec la rivière Round Hill dans l'UD 14 (Jeffery *et al.* 2018; Bradbury *et al.* 2021). En effet, selon Moore *et al.* (2014), de nombreux sites de cette UD sont uniques. De surcroît, Moore *et al.* (2014) suggèrent, d'après les données sur les microsatellites, qu'il existe deux groupes génétiques dans l'UD de l'intérieur de la baie de Fundy qui sont séparés par le cap Chignectou (séparant les sites de la baie de Chignectou et du bassin Minas). Cette indication est cohérente avec des travaux génétiques antérieurs

selon lesquels ces deux régions reflètent des lignées évolutives distinctes (Verspoor *et al.* 2002; Vandersteen Tymchuk *et al.* 2010). Cependant, d'après un ensemble plus important de données sur les SNP, Moore *et al.* (2014) ont constaté que les sites de cette UD semblent soit représenter leur propre groupe individuel unique, soit se regrouper avec les populations du Golfe.

Il existe 17 rivières à saumon connues dans l'UD 15 (COSEPAC 2010) et nos ensembles de données génétiques comprennent chacun sept sites. En utilisant 15 margueurs microsatellites, le nombre optimal de groupes génétiques (K) était de 6, mais une structure supplémentaire était confirmée jusqu'à K=7 (figure A45 de l'annexe). Pour K=2, une rupture génétique était évidente entre le bassin Minas et la baie de Chignectou, mais avec la rivière Gaspereau se regroupant avec la baie de Chignectou. Cependant, à des valeurs plus élevées de K, le site de la rivière Gaspereau et d'autres formaient leur propre groupe distinct ou étaient regroupés avec des sites voisins (figure A45 de l'annexe). En utilisant 96 SNP, le nombre optimal de groupes génétiques (K) était de 2 (figure A46 de l'annexe). Une structure supplémentaire était soutenue jusqu'à K=7 (figure A46 de l'annexe). Pour K=2, le profil géographique n'était pas aussi clair qu'avec l'ensemble de données sur les microsatellites, car certains sites du bassin Minas (rivières Gaspereau et North) étaient regroupés avec des sites de la baie de Chignectou (Point Wolfe et rivière Big Salmon), tandis que d'autres sites du bassin Minas formaient leur propre groupe. Pour des valeurs plus élevées de K, les sites peuvent finalement être essentiellement séparés en leur propre groupe. Sur la base des deux ensembles de données, il existe des preuves de l'existence de groupes génétiques distincts dans l'intérieur de la baie de Fundy, ainsi que des preuves d'une division géographique entre la baie de Chignectou et le bassin Minas. Cette différence était plus apparente dans les microsatellites et certaines populations s'en écartaient dans les 96 SNP (les rivières Gaspereau et North ne sont pas complètement séparées des sites de la baie de Chignectou jusqu'à des valeurs plus élevées de K). Il est important de noter que la majorité de ces échantillons ont été collectés au début des années 2000 (2000 à 2002), et nous prévoyons donc que les signaux de notre ensemble de données reflètent les signaux génétiques des populations sauvages avant les changements potentiels associés au programme de banque de gènes vivants.

Pour évaluer les preuves de l'importance sur le plan de l'évolution, nous nous appuyons sur des données génomiques à haute densité ou sur les données sur le cycle biologique et les données climatiques. Les données génomiques à haute densité (matrice de 220 000 SNP ou reséquençage du génome entier) n'étaient disponibles que pour quatre sites de l'UD 15. Bien que la couverture géographique soit assez limitée, ce qui rend les inférences difficiles, nous avons inclus cette analyse ici avec la mise en garde qu'il n'y a probablement pas assez de données pour répondre pleinement aux critères de l'importance. Avec pcadapt, la rivière Gaspereau formait un groupe séparé des autres sites de l'UD 15 le long du premier axe des composantes principales (figure A47 de l'annexe). Les autres sites étaient séparés le long du deuxième axe des composantes principales, la rivière North présentant une plus grande différenciation des autres sites. En tout, 441 loci ont contribué de manière importante à la différenciation sur les deux axes des composantes principales (valeur ajustée p [valeur q] <0.05) et ces loci étaient répartis sur 28 chromosomes (sur 29) [figure A47 de l'annexe]. Nous avons examiné la surreprésentation des processus biologiques associés aux gènes situés près des loci aberrants à l'aide du progiciel topGO (Alexa et Rahnenfuhrer 2016). Au total, 89 processus biologiques étaient largement surreprésentés (p<0,05) d'après l'ensemble de données aberrantes, avec une grande proportion de processus liés à la « régulation positive de la prolifération des cellules mésenchymateuses impliquées dans le développement de l'uretère » (figure A48 de l'annexe), qui concerne le développement embryonnaire de la connexion entre les reins et la vessie urinaire chez les poissons. Dans l'ensemble, bien que l'analyse en composantes principales soutienne la forte divergence génomique de la rivière Gaspereau, elle n'étaye pas les différences importantes sur le plan de l'évolution entre la baie

de Chignectou et le bassin Minas, car les rivières Big Salmon (baie de Chignectou) et Stewiacke (bassin Minas) étaient regroupées séparément, mais plus étroitement ensemble dans l'espace de l'analyse en composantes principales. Nous reconnaissons néanmoins qu'avec un seul site de la baie de Chignectou, il peut être difficile de trouver des preuves de différences importantes sur le plan de l'évolution.

En ce qui concerne le cycle biologique, des rapports précédents donnent à penser que les populations de saumon de l'intérieur de la baie de Fundy ont un cycle biologique similaire, différent de celui des populations de l'extérieur de la baie de Fundy, à l'exception de la rivière Gaspereau (MPO 2010). Le saumon de la rivière Gaspereau affiche des habitudes migratoires en mer différentes et des caractéristiques de cycle biologique plus semblables à celles du saumon de l'extérieur de la baie de Fundy (MPO 2010). De ce fait, nous ne soutenons pas ici les différences de cycle biologique entre la baie de Chignectou et le bassin Minas.

Les différences climatiques entre les sites séparés par le cap Chignectou (séparant les sites de la baie de Chignectou et du bassin Minas) étaient confirmées (figure A49 de l'annexe). Dans ce cas, une UD présumée couvre les sites du bassin Minas de la rivière Cornwallis à la rivière Fox (d'après la base de données sur les rivières de l'OCSAN) et l'autre UD présumée englobe les sites de la baie de Chignectou jusqu'à la fin de la limite de l'UD (de la rivière Apple à la rivière Mispec). L'analyse de redondance a été réalisée avec 19 variables bioclimatiques (voir le tableau A1 de l'annexe) pour toutes les rivières de l'UD 15 comme réponse et les groupes présumés de l'UD (bassin Minas et baie de Chignectou) comme variable contraignante. L'analyse de la variance (ANOVA) sur l'analyse de redondance a montré que le modèle était significatif (p=0,001) avec un R² ajusté de 0,15. Le premier axe de l'analyse de redondance expliquait 16,9 % de la variance du modèle et séparait clairement les rivières dans les nouvelles UD présumées (séparées au cap Chignectou). Cette différence sur le premier axe de l'analyse de redondance était principalement due aux variables de température, la température du trimestre le plus humide, la température du trimestre le plus froid, la température moyenne et la température minimale se trouvant haut sur l'axe. Ces variables avaient des valeurs plus élevées pour le bassin Minas, dénotant des températures plus chaudes dans cette région par rapport à la baie de Chignectou. Pris ensemble, ces résultats confirment l'existence de différences climatiques liées aux deux principaux groupes génétiques. En outre, l'environnement estuarien du bassin Minas est sablonneux, tandis que la baie de Chignectou est caractérisée par un estuaire vaseux (Amos et al. 1991). Dans le bassin Minas, l'habitat sablonneux combiné à une action intermédiaire des vagues et des courants forts donne des niveaux plus faibles de sédimentation (Shepherd et al. 1995). En revanche, l'habitat vaseux de la baie de Chignectou, plus exposé aux houles océaniques et à l'action des vagues, peut entraîner des niveaux d'érosion plus élevés, et donc des concentrations de sédiments en suspension plus importantes dans la baie de Chignectou que dans le bassin Minas (Shepherd et al. 1995).

En plus de ces différences, selon des études antérieures, ces deux régions reflètent des lignées évolutives distinctes (Verspoor *et al.* 2002; Vandersteen Tymchuk *et al.* 2010). Nous avons examiné ces données pour déterminer si elles étayent davantage les preuves de l'importance. Verspoor *et al.* (2002) ont identifié un haplotype mitochondrial unique qui était prévalent dans les populations du bassin Minas (présent chez plus de 35 % des individus) mais absent dans les populations de la baie de Chignectou. En dépit de leur grande proximité, cela confirme l'existence de différentes histoires de colonisation entre ces régions, probablement dues à des histoires glaciaires différentes, et suggère que le flux génétique a été restreint depuis la colonisation (Verspoor *et al.* 2002). Ces résultats plaident en faveur du caractère distinct, mais ils ne permettent pas nécessairement de répondre aux critères d'importance. Cependant, d'autres travaux ont été menés sur les populations de l'intérieur de la baie de Fundy pour examiner les différences d'expression génétique qui pourraient confirmer une adaptation locale (Vandersteen Tymchuk *et al.* 2010). Vandersteen Tymchuk et ses collaborateurs (2010) ont

constaté que davantage de gènes étaient exprimés de manière différentielle entre les rivières de la baie de Chignectou et du bassin Minas (164 gènes exprimés de manière différentielle) par rapport aux rivières de ces régions (29 gènes dans la baie de Chignectou et 46 gènes dans le bassin Minas). Les conditions environnementales entre les régions comprennent des différences dans le type et la quantité des sédiments, qui pourraient donner des niveaux différents d'exposition aux contaminants entre les populations de l'intérieur de la baie de Fundy dans la baie de Chignectou et le bassin Minas (Vandersteen Tymchuk *et al.* 2010). En effet, les gènes exprimés de manière différentielle entre les régions de l'intérieur de la baie de Fundy sont ceux liés à l'exposition aux contaminants, notamment les protéines de liaison des acides gras, d'autres gènes de transport des lipides et des gènes liés au stress oxydatif (Vandersteen Tymchuk *et al.* 2010). Néanmoins, l'étude reconnaît que les différences entre les régions n'étaient pas aussi bien étayées que dans Verspoor *et al.* (2002) et qu'elles sont compliquées par les conditions expérimentales.

Dans l'ensemble, les preuves de l'importance entre le bassin Minas et la baie de Chignectou se reflètent ici principalement dans les données sur le climat et l'habitat et l'importance n'est pas soutenue par les données sur le cycle biologique ou la génomique. Par conséquent, un seul des trois critères d'importance est rempli et la division des populations de la baie de Chignectou et du bassin Minas n'est pas confirmée pour le moment.

Bien que la division de cette UD ne soit pas étayée, nous trouvons de forts arguments en faveur de l'unicité génétique et le caractère distinct de la rivière Gaspereau par rapport aux autres réseaux hydrographiques de l'intérieur de la baie de Fundy, concordant avec d'autres études génétiques (Moore et al. 2014). D'après les valeurs par paire de F_{ST} à 15 loci microsatellites, la rivière Gaspereau est fortement divergente de tous les autres sites de l'intérieur de la baie de Fundy (F_{ST} >0,071). Nous trouvons également des preuves de fortes différences génomiques entre la rivière Gaspereau et tous les autres sites échantillonnés dans l'intérieur de la baie de Fundy (figure A47 de l'annexe). De plus, comme indiqué précédemment, les caractéristiques du cycle biologique du saumon de la rivière Gaspereau sont distinctes de celles des autres populations de l'intérieur de la baie de Fundy. Le saumon de la rivière Gaspereau affiche des habitudes migratoires en mer différentes de celles des autres populations de l'intérieur de la baie de Fundy et des caractéristiques de cycle biologique plus semblables à celles du saumon de l'extérieur de la baie de Fundy (DFO 2010). La proportion de saumons pluribermarins dans la rivière Gaspereau est similaire à celle des autres rivières de l'extérieur de la baie de Fundy. comme le cours supérieur du fleuve Saint Jean et la rivière Nashwaak (Reader et al. en prép.^{7,8}). La proportion de saumons pluribermarins (plus de 36 % de dibermarins) dans la rivière Gaspereau n'est pas la même que dans les autres rivières de l'intérieur de la baie de Fundy, comme la rivière Big Salmon, qui compte plus de 98 % de saumons unibermarins (Reader et al. en prép.⁸). La période de la montaison des adultes dans la rivière Gaspereau est également beaucoup plus précoce (début mai/juin) par rapport aux autres populations de l'intérieur de la baie de Fundy, qui remontent habituellement à la fin de l'été et à l'automne (Reader et al. en prép.⁸). Certaines populations de l'extérieur de la baie de Fundy ont aussi des montaisons plus précoces, par exemple celle du cours supérieur du fleuve Saint Jean, où l'on rapporte que la majorité des saumons remontent en juillet (Reader et al. en prép.⁷). Le saumon de la rivière Gaspereau entreprend également une migration marine vers des régions éloignées de l'océan

⁷ Reader, J.M., Hardie, D.C., McWilliam, S. Brunsdon, E., and Gautreau, M. In prep. Updated information on Atlantic Salmon (*Salmo salar*) populations in southwest New Brunswick (outer portion of SFA 23) of relevance to the COSEWIC status report. DFO Can. Sci. Advis. Sec. Res. Doc.

⁸ Reader, J.M., Hardie, D.C., McWilliam, S., Brunsdon, E., Notte, D., and Gautreau, M. In prep. Updated information on Atlantic Salmon (*Salmo salar*) Inner Bay of Fundy populations (IBoF; part of SFAs 22 and 23) of relevance to the COSEWIC status report. DFO Can. Sci. Advis. Sec. Res. Doc.

Atlantique Nord, comme les populations de l'extérieur de la baie de Fundy, qui diffère de la migration marine locale du saumon de l'intérieur de la baie de Fundy (Reader *et al.* en prép.⁸). Sur la base de ces informations, nous avons évalué si la rivière Gaspereau pouvait présenter plus de similitudes génétiques avec les sites de l'extérieur de la baie de Fundy. En utilisant STRUCTURE avec deux groupes génétiques (K=2) pour tous les sites de l'intérieur et de l'extérieur de la baie de Fundy, nous avons trouvé des arguments pour avancer pour le saumon de la rivière Gaspereau affiche une plus grande affinité génétique avec celui de l'extérieur de la baie de Fundy qu'avec celui de l'intérieur de la baie de Fundy dans les deux ensembles de données, sur les microsatellites et les 96 SNP (figure A50 de l'annexe). Nous proposons donc, plutôt que de classer la rivière Gaspereau comme formant sa propre UD, de déplacer cette population dans l'UD 16.

UD 16 Extérieur de la baie de Fundy (ancienne UD) – Ajout d'une rivière

Cette UD s'étend vers l'ouest depuis l'estuaire du fleuve Saint-Jean (environ 45°12' N, 65°57' O) jusqu'à la frontière avec les États-Unis d'Amérique. On y trouve une plus grande proportion de saumons pluribermarins qui migrent vers l'Atlantique Nord que dans l'UD voisine de l'intérieur de la baie de Fundy (Amiro 2003). Une des limites de cette UD se situe à la frontière avec les États-Unis, ce qui correspond à la portée de ce rapport, et les relations génétiques entre les populations de l'extérieur de la baie de Fundy et les populations américaines n'ont pas été examinées. Au moins une rivière de l'UD de l'extérieur de la baie de Fundy (la rivière Serpentine) présente des caractéristiques uniques du cycle biologique, avec une montaison tardive en automne dans l'estuaire et la fraie l'année suivante (Saunders 1981).

Au moment de la dernière évaluation du COSEPAC, les données génétiques suggéraient un flux génétique minime entre l'extérieur de la baie de Fundy et les populations voisines des hautes terres du sud de la Nouvelle-Écosse et de l'intérieur de la baie de Fundy (King *et al.* 2000, Verspoor *et al.* 2002 et Verspoor 2005). Des études génétiques récentes continuent de soutenir le caractère distinct des populations de l'extérieur de la baie de Fundy par rapport aux autres régions (Jeffery *et al.* 2018).

Cette UD précédemment reconnue compte 17 rivières à saumon connues et nos ensembles de données comprennent des échantillons de deux affluents du réseau du fleuve Saint-Jean (les rivières Tobique et Nashwaak), ainsi que de la rivière Gaspereau, que nous proposons de rattacher à cette UD (voir précédemment). En utilisant 15 marqueurs microsatellites et l'ensemble de données sur les 96 SNP, le nombre optimal de groupes génétiques (K) était de 2. Dans les deux cas, la rivière Gaspereau représentait un groupe distinct, et les rivières Tobique et Nashwaak étaient regroupées ensemble (figures A51 et A52 de l'annexe, respectivement). De plus, en utilisant l'ensemble de données sur les microsatellites, nous avons détecté une certaine sous-structure dans la rivière Tobique pour K=3, certains individus étant regroupés séparément des autres dans la rivière Tobique et la rivière Nashwaak. Bien que nous avons placé la rivière Gaspereau dans l'UD de l'extérieur de la baie de Fundy (UD 16 précédemment reconnue), il est clair qu'il s'agit d'une population génétiquement unique, comme le démontrent d'autres études génétiques (Moore et al. 2014). Cependant, la rivière Gaspereau montre une plus grande affinité génétique pour l'extérieur de la baie de Fundy que pour l'intérieur de la baie de Fundy d'après notre analyse dans STRUCTURE (voir la figure A50 de l'annexe). De même, pour l'ensemble de données sur les microsatellites, la divergence génétique est plus faible entre la rivière Gaspereau et les sites de l'extérieur de la baie de Fundy (F_{ST} <0,063) qu'avec les sites de l'intérieur de la baie de Fundy (F_{ST} >0,071). En outre, le saumon de la rivière Gaspereau présente des caractéristiques du cycle biologique et des habitudes migratoires qui sont différentes de celles des populations de l'intérieur de la baie de Fundy, mais plus semblables à celles des populations de l'extérieur de la baie de Fundy. Par exemple, la proportion de saumons pluriberrmarins dans la rivière Gaspereau est similaire à celle d'autres rivières de

l'extérieur de la baie de Fundy, comme le cours supérieur du fleuve Saint Jean et la rivière Nashwaak (Reader *et al.* en prép.^{7,8}). La proportion de saumons pluribermarins (plus de 36 % de dibermarins) dans la rivière Gaspereau n'est pas la même que dans les autres rivières de l'intérieur de la baie de Fundy, qui abritent généralement un faible nombre de pluribermarins (Reader *et al.* en prép.⁸). La montaison des adultes est également beaucoup plus précoce dans la rivière Gaspereau (début mai/juin) que celle des populations de l'intérieur de la baie de Fundy qui remontent habituellement à la fin de l'été et à l'automne (Reader *et al.* en prép.⁸). Certaines populations de l'extérieur de la baie de Fundy ont aussi des montaisons plus précoces, par exemple celle du cours supérieur du fleuve Saint Jean, où l'on rapporte que la majorité des saumons remontent en juillet (Reader *et al.* en prép.⁷). Ces différences de cycle biologique viennent étayer les similarités entre les populations de l'extérieur de la baie de Fundy (y compris la rivière Gaspereau), et contrastent généralement les populations de l'intérieur de la baie de Fundy (y compris la rivière Gaspereau), et contrastent généralement les populations de l'intérieur de la baie de Fundy (s

À l'heure actuelle, nous ne disposons pas de suffisamment de données pour affirmer que la rivière Gaspereau est une unité distincte, car nos données génomiques sont limitées pour les sites de l'extérieur de la baie de Fundy (seulement les rivières Gaspereau et Nashwaak) et aucune différence n'est signalée dans le cycle biologique. Par conséquent, dans l'UD de l'extérieur de la baie de Fundy (l'ancienne UD 16), la rivière Gaspereau ne satisfait pas aux critères d'importance en tant qu'UD individuelle (deux des trois critères d'importance doivent être satisfaits), mais cette situation pourrait changer à mesure que des données supplémentaires seront disponibles à l'avenir. Sur la base de ces analyses et de notre arbre de décision, l'UD de l'extérieur de la baie de Fundy devrait rester une seule unité qui inclut la rivière Gaspereau.

Possibilité de sauvetage de l'extérieur du Canada

Des populations de saumon à l'extérieur du Canada, au Groenland, aux États-Unis et à Saint-Pierre-et-Miguelon (France), pourraient offrir un potentiel de sauvetage. La population de saumon du Groenland est la plus proche des populations du nord du Labrador. Cependant, le Groenland n'abrite qu'une seule rivière à saumon et les échantillons génétiques de cette rivière indiguent qu'elle est plus similaire génétiquement aux populations européennes qu'aux populations nord-américaines (Arnekleiv et al. 2019); étant donné les grandes différences génomiques entre les saumons européens et nord-américains (Lehnert et al. 2020), elle n'est donc pas un candidat potentiel pour le sauvetage. Des populations du Maine, aux États-Unis, pourraient également venir en aide aux populations du Canada, puisque les États-Unis bordent la limite de l'UD de l'extérieur de la baie de Fundy. Nous ne disposons pas d'échantillons génétiques des populations les plus proches de la frontière entre les États-Unis et le Canada; cependant, nous avons des échantillons provenant de trois rivières du Maine : les rivières Penobscot, Narraguagus et Sheepscot. Ces populations se sont révélées génétiquement distinctes des populations du Canada (Jeffery et al. 2018; Bradbury et al. 2021). Ici, nous avons exécuté STRUCTURE en utilisant à la fois les ensembles de données sur les 15 microsatellites et les 96 SNP, et tous deux ont révélé que les populations de l'extérieur de la baie de Fundy (avec ou sans la rivière Gaspereau) et du Maine étaient génétiquement distinctes les unes des autres (K=2) [figures A53, 54 de l'annexe]. Bien que de nombreuses populations du Maine soient en voie de disparition, ce qui pourrait empêcher leur utilisation comme populations de sauvetage, des données supplémentaires sont nécessaires pour évaluer si d'autres populations du Maine pourraient assurer le sauvetage des rivières de l'extérieur de la baie de Fundy. De plus, Saint-Pierre-et-Miguelon est situé à proximité des populations du sud de Terre-Neuve. Une seule rivière de l'archipel, Belle-Rivière, possède un stock de saumon résident, mais son statut est actuellement inconnu (NASCO 2019). Les caractéristiques génétiques de cette population sont inconnues; cependant, étant donné la nature résiduelle de ce stock, il est peu probable qu'il constitue une source de sauvetage pour les populations du sud de Terre-Neuve.

CONCLUSIONS

Au moment de la dernière évaluation du COSEPAC, un total de 16 unités désignables de saumon atlantique étaient reconnues, dont 15 représentaient des populations anadromes existantes que nous avons réévaluées ici (COSEPAC 2010). Depuis l'évaluation précédente, de grandes quantités de données génétiques et génomiques ont été obtenues sur les populations de saumon atlantique du Canada. Nous avons incorporé ces divers ensembles de données afin d'étayer la définition des UD de saumon atlantique pour la prochaine réévaluation du COSEPAC. Nous avons proposé et utilisé une approche fondée sur le poids de la preuve pour réévaluer la structure des UD dans l'est du Canada afin de nous assurer que toutes les UD proposées répondent aux critères de caractère distinct et d'importance du COSEPAC (voir les tableaux 1 et 2). Cette approche a conduit à la subdivision de quatre UD précédemment reconnues en plusieurs unités, dont la subdivision de l'UD du Labrador en trois UD et celle de l'UD du sud de Terre-Neuve en deux UD. Nous proposons aussi de subdiviser l'UD des hautes terres du sud de la Nouvelle-Écosse en deux UD, ainsi que les sites de la Gaspésie et du sud du golfe du Saint-Laurent. De plus, en nous fondant sur le poids de la preuve, nous avons déterminé qu'il était nécessaire de réévaluer les limites de certaines UD, ce qui a entraîné la modification des limites d'UD au Québec (ouest de la Côte-Nord et intérieur du Saint-Laurent) et à Terre-Neuve (nord-ouest et nord-est de Terre-Neuve). La réévaluation des limites a également semblé indiquer que les populations du sud du Golfe n'étaient pas distinctes des populations de l'est du Cap-Breton, et ces populations ont donc été combinées en une seule UD. De plus, nous avons identifié deux populations qui appartiennent à des UD adjacentes, ce qui donnerait des limites non contiguës : la rivière de la Corneille au Québec (située physiquement dans l'UD de l'ouest de la Côte-Nord, mais regroupée avec l'UD de l'est de la Côte-Nord) et la rivière Gaspereau dans la baie de Fundy (située physiquement dans l'UD de l'intérieur de la baie de Fundy, mais regroupée avec l'UD de l'extérieur de la baie de Fundy). Nous recommandons donc de placer ces rivières dans l'UD adjacente. Dans l'ensemble, à l'aide des données nouvellement disponibles, nous pensons que 19 UD de saumon atlantique anadrome existant sont étayées par des preuves de caractère distinct et d'importance au Canada (voir la structure proposée dans les tableaux 1, 2 et la figure 13). Étant donné que les populations de saumon atlantique peuvent être structurées génétiquement à plusieurs échelles. y compris au niveau des rivières individuelles dans certains cas, nous reconnaissons la complexité de notre analyse pour réviser la structure des UD chez cette espèce. Nous pensons qu'à mesure que davantage de données et de technologies deviendront accessibles, les UD proposées ici seront probablement modifiées, car nous en saurons davantage sur les différences génétiques et adaptatives sous-jacentes des populations à des échelles spatiales plus fines. Néanmoins, le cadre élaboré ici a guidé d'importantes révisions des UD de saumon atlantique, et la nouveauté et la puissance de notre approche seront très utiles pour définir les UD du COSEPAC pour diverses espèces dans l'avenir.

REMERCIEMENTS

Nous remercions le personnel du MPO des régions de Terre-Neuve-et-Labrador, des Maritimes et du Golfe pour la collecte des échantillons utilisés dans le présent rapport, et en particulier S. Duffy et A. Messmer pour leur aide dans la collecte et l'extraction d'ADN. Nous remercions également le ministère des Forêts, de la Faune et des Parcs pour la collecte des échantillons dans la région du Québec. Nous remercions le gouvernement du Nunatsiavut, la Sivunivut Inuit Community Corporation, la Nation Innu, la Labrador Hunting and Fishing Association et les pêcheurs locaux pour leur soutien et leur participation active à la collecte d'échantillons dans la région du Labrador. Nous remercions le CIGENE (Centre for Integrative Genetics), qui a effectué le génotypage des données génomiques à haute densité. Nous reconnaissons le financement fourni par divers organismes qui ont permis la compilation de ces données,

notamment l'Initiative de recherche et développement en génomique, la Stratégie de gouvernance internationale de Pêches et Océans Canada et une subvention de projet stratégique du Conseil de recherches en sciences naturelles et en génie du Canada. Nous remercions également le Marine Gene Probe Laboratory de l'Université Dalhousie pour le génotypage d'une partie des données sur les microsatellites utilisées dans la présente étude et le personnel du laboratoire de biotechnologie aquatique de l'Institut océanographique de Bedford du MPO pour les extractions d'ADN et le génotypage de la base de référence des SNP.

RÉFÉRENCES CITÉES

- Adams, B.K. 2007. Migratory strategies of Atlantic salmon (*Salmo salar*) of Newfoundland and Labrador. Ph.D. thesis, Dalhousie University, Halifax, NS.
- Alexa, A., and Rahnenfuhrer, J. 2016. topGO: Enrichment analysis for Gene Ontology. R package version 2.28.0.
- Amiro, P.G. 2003. Population Status of Inner Bay of Fundy Atlantic Salmon, *Salmo Salar*, to 1999. Can. Tech. Rep. Fish. Aquat. Sci. No. 2488. 44 p.
- Amos, C.L., Tee, K.T., and Zaitlin, B.A. 1991. The post-glacial evolution of Chignecto Bay, Bay of Fundy, and its modern environment of deposition. In Clastic Tidal Sedimentology. Edited by D.G. Smith, G.E. Reinson, B.A. Zaitlin, and R.A. Rahmani. Canadian Society of Petroleum Geologists Memoir. 16: 59–90.
- Anderson, T.C. 1985. The rivers of Labrador. Can. Spec. Publ. Fish. Aquat. Sci. 81: 117–129.
- April, J., Bujold, V., Cauchon, V., Doucet-Caron, J., Gagnon, K., Guérard, M., Le Breton, S., Nadeau, V., Plourde-Lavoie, P. et Bujold, J-N. 2023. <u>Information sur le saumon atlantique</u> <u>(Salmo salar) au Québec pour la préparation du deuxième rapport de situation du Comité</u> <u>sur la situation des espèces en péril au Canada</u>. Secr. can. des avis sci. du MPO. Doc. de rech. 2023/008. v + 81 p.
- Arnekleiv, J.V., Davidsen, J.G., Sheehan, T.F., Lehnert, S.J., Bradbury, I.R., Rønning, L., Sjursen, A.D., Kjaerstad. G, Lubinski, B.A, and Nilssen, K.J. 2019. Demographic and genetic description of Greenland's only indigenous Atlantic salmon *Salmo salar* population. J. Fish Biol. 94: 154–164.
- Barson, N.J., Aykanat, T., Hindar, K., Baranski, M., Bolstad, G.H., Fiske, P., Jacq, C., Jensen, A.J., Johnston, S.E., Karlsson, S., Kent, M., Moen, T., Niemelä, E., Nome, T., Næsje, T.F., Orell, P., Romakkaniemi, A., Sægrov, H., Urdal, K., Erkinaro, J., Lien, S., and Primmer, C.R. 2015. Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature. 528: 405–408.
- Besnier, F., and Glover, K.A. 2013. ParallelStructure: a R package to distribute parallel runs of the population genetics program STRUCTURE on multi-core computers. PLoS ONE. 8: e70651.
- Bosch, S., Tyberghein, L., and De Clerck, O. 2018. <u>sdmpredictors: Species distribution</u> <u>modelling predictor datasets. R package version 0.2.8</u>.
- Bourret, V., Dionne, M., Kent, M.P., Lien, S., and Bernatchez, L. 2013. Landscape genomics in Atlantic salmon (*Salmo salar*): searching for gene-environment interactions driving local adaptation. Evolution. 67: 3469–3487.

- Bowlby, H.D., Horsman, T., Mitchell, S.C., et Gibson, A.J.F. 2014. <u>Évaluation du potentiel de</u> <u>rétablissement du saumon de l'Atlantique des hautes terres du Sud : besoins en matière</u> <u>d'habitat et disponibilité, menaces pour les populations et faisabilité de la restauration de</u> <u>l'habitat</u>. Secr. can. des avis sci. du MPO. Doc. de rech. 2013/006. vi + 155 p.
- Bradbury, I.R., Hamilton, L.C., Dempson, B., Robertson, M.J., Bourret, V., Bernatchez, L., and Verspoor, E. 2015. Transatlantic secondary contact in Atlantic Salmon, comparing microsatellites, a single nucleotide polymorphism array and restriction-site associated DNA sequencing for the resolution of complex spatial structure. Mol. Ecol. 24: 5130–5144.
- Bradbury, I.R., Hamilton, L.C., Robertson, M.J., Bourgeois, C.E., Mansour, A., and Dempson, J.B. 2014. Landscape structure and climatic variation determine Atlantic salmon genetic connectivity in the Northwest Atlantic. Can. J. Fish. Aquat. Sci. 71: 246–258.
- Bradbury, I.R., Hamilton, L.C., Sheehan, T.F., Chaput, G., Robertson, M.J., Dempson, J.B., Reddin, D., Morris, V., King, T., and Bernatchez, L. 2016. Genetic mixed-stock analysis disentangles spatial and temporal variation in composition of the West Greenland Atlantic Salmon fishery. ICES J. Mar. Sci. 73: 2311–2321.
- Bradbury, I.R., Lehnert, S.J., Messmer, A.M., Duffy, S.J., Verspoor, E., Kess, T., Gilbey, J.,
 Wennevik, V., Robertson, M., Chaput, G., Sheehan, T., Bentzen, P., Dempson, J., and
 Reddin, D. 2021. Range-wide genetic assignment confirms long-distance oceanic migration in Atlantic salmon over half a century. ICES J. Mar. Sci. 78: 1434–1443.
- Bradbury, I.R., Wringe, B.F., Watson, B., Paterson, I., Horne, J., Beiko, R., Lehnert, S.J.,
 Clément, M., Anderson, E.C., Jeffery, N.W., Duffy, S., Sylvester, E., Robertson, M., and
 Bentzen, P. 2018. Genotyping-by-sequencing of genome-wide microsatellite loci reveals
 fine-scale harvest composition in a coastal Atlantic salmon fishery. Evol. Appl. 11: 918–930.
- Cairns, D.K., Guignion, D.L., Dupuis, T., et MacFarlane, R.E. 2010. <u>Historique</u> <u>d'empoissonnement, caractéristiques biologiques et état du saumon atlantique (*Salmo* <u>salar</u>) sur l'Île-du-Prince-Édouard. Secr. can. des avis sci. du MPO. Doc. de rech. 2010/104. iv + 50 p.</u>
- Caron, F., Fontaine, P.M., and Cauchon, V. 2005. États des stocks de saumon au Québec en 2005. Ministère des Ressources naturelles et de la Faune, Direction de la recherche sur la faune. 18 p.
- Cauwelier, E., Gilbey, J., Sampayo, J., Stradmeyer, L., and Middlemas, S.J. 2018. Identification of a single genomic region associated with seasonal river return timing in adult Scottish Atlantic salmon (*Salmo salar L.*) identified using a genome-wide association study. Can. J. Fish. Aquat. Sci. 75: 1427–1435.
- Chaput, G., Dempson, J.B., Caron, F., Jones, R., et Gibson, J. 2006. <u>Synthèse des</u> <u>caractéristiques biologiques et regroupement des stocks de saumon atlantique (Salmo salar</u> <u>L.) de l'est du Canada</u>. Secr. can. des avis sci. du MPO. Doc. de rech. 2006/015. iv + 47 p.
- COSEWIC. 2010. COSEWIC assessment and status report on the Atlantic Salmon Salmo salar (Nunavik population, Labrador population, Northeast Newfoundland population, South Newfoundland population, Southwest Newfoundland population, Northwest Newfoundland population, Quebec Eastern North Shore population, Quebec Western North Shore population, Anticosti Island population, Inner St. Lawrence population, Lake Ontario population, Gaspé-Southern Gulf of St. Lawrence population, Eastern Cape Breton population, Nova Scotia Southern Upland population, Inner Bay of Fundy population, Outer Bay of Fundy population) in Canada. Committee on the Status of Endangered Wildlife in Canada. Committee on the Status of Endangered Wildlife in Canada. 136 p.

- COSEWIC. 2018. COSEWIC assessment and status report on the Chinook Salmon Oncorhynchus tshawytscha, Designatable Units in Southern British Columbia (Part One – Designatable Units with no or low levels of artificial releases in the last 12 years), in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xxxi + 283 p.
- Daigle, A. 2023. Information sur le saumon atlantique (Salmo salar) de la zone de pêche au saumon 18 (Golfe de la Nouvelle-Écosse) pertinente pour l'élaboration d'un 2e rapport de situation du COSEPAC. Secr. can. des avis sci. du MPO. Doc. de rech. 2022/007. iv +48 p.
- Dalley, E., Andrews, C., and Green, J. 1983. Precocious male Atlantic salmon parr (*Salmo salar*) in insular Newfoundland. Can. J. Fish. Aquat. Sci. 40: 647–652.
- Dauphin, G. 2022. <u>Information sur le saumon atlantique (Salmo salar) de la zone de pêche au saumon 15 (Golfe du Nouveau-Brunswick) pertinente pour l'élaboration d'un 2e rapport de situation du COSEPAC</u>. Secr. can. des avis sci. du MPO. Doc. de rech. 2022/050. iv + 52 p.
- Dempson, B., Schwarz, C.J., Bradbury, I.R., Robertson, M.J., Veinott, G., Poole, R., and Colbourne, E. 2017. Influence of climate and abundance on migration timing of adult Atlantic salmon (*Salmo salar*) among rivers in Newfoundland and Labrador. Ecol. Freshw. Fish. 26: 247–259.
- Dempson, J.B., et Clarke, G. 2001. <u>État du stock de saumon atlantique de la rivière Highlands,</u> <u>tributaire de la baie St. George (ZPS 13), à Terre-Neuve</u>. Secr. can. des avis sci. du MPO. Doc. de rech. 2001/028. 32 p.
- Dimond, P., and Smitka, J. 2005. Evaluation of selected strains of Atlantic salmon as potential candidates for the restoration of Lake Ontario. Trout Unlimited Can. Tech. Rep. ON-012. 44 p.
- Dionne, M., Caron, F., Dodson, J.J., and Bernatchez, L. 2008. Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation. Mol. Ecol. 17(10): 2382–2396.
- Dionne, M., Miller, K.M., Dodson, J.J., Caron, F., and Bernatchez, L. 2007. Clinal variation in MHC diversity with temperature: evidence for the role of host–pathogen interaction on local adaptation in Atlantic salmon. Evolution. 61(9): 2154–2164.
- Douglas, S., Underhill, K., Horsman, M., et Chaput. G. 2023. <u>Renseignements sur le saumon</u> <u>atlantique (Salmo salar) de la zone de pêche du saumon 16 (golfe du Nouveau-Brunswick)</u> <u>utiles pour la préparation du deuxième rapport de situation du COSEPAC</u>. Secr. can. des avis sci. du MPO. Doc. de rech. 2023/033. vi + 81 p.
- Earl, D.A., and vonHoldt, B.M. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Res. 4: 359–361.
- Eddy, F. 2005. Role of nitric oxide in larval and juvenile fish. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 142(2): 221–230.
- Evanno, G., Regnaut, S., and Goudet, J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14(8): 2611–2620.
- Fick, S.E., and Hijmans, R.J. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12): 4302–4315.
- Fontaine, P.-M., Dodson, J.J., Bernatchez, L., and Slettan, A. 1997. A genetic test of metapopulation structure in Atlantic salmon (*Salmo salar*) using microsatellites. Can. J. Fish. Aquat. Sci. 54: 2434–2442.

- Gibson, A.J.F., Bowlby, H.D., Bryan, J.R., et Amiro, P.G. 2008. <u>Analyse de la viabilité des</u> populations du saumon atlantique de l'arrière-baie de Fundy avec et sans banques de gènes vivants. Secr. can. des avis sci. du MPO. Doc. de rech. 2008/057. iii + 71 p.
- Gibson, A.J.F., Bryan, J., and Amiro, P. 2003. Release of Hatchery-Reared Atlantic Salmon into Inner Bay of Fundy Rivers from 1900 to 2002. Can. Data Rep. Fish. Aquat. Sci. 1123. vi + 28 p.
- Guiry, E.J., Needs-Howarth, S., Friedland, K.D., Hawkins, A.L., Szpak, P., Macdonald, R., Courtemanche, M., Holm, E., and Richards, M.P. 2016. Lake Ontario salmon (*Salmo salar*) were not migratory: a long-standing historical debate solved through stable isotope analysis. Sci. Rep. 6: 36249.
- Gutierrez, A.P., Yáñez, J.M., Fukui, S., Swift, B., and Davidson, W.S. 2015. Genome-wide association study (GWAS) for growth rate and age at sexual maturation in Atlantic salmon (*Salmo salar*). PLoS ONE. 10: e0119730.
- Helgeland, H., Sodeland, M., Zoric, N., Torgersen, J. S., Grammes, F., von Lintig, J., Moen, T., Kjøglum, S., Lien, S., and Inge Våge, D. 2019. Genomic and functional gene studies suggest a key role of beta-carotene oxygenase 1 like (bco1l) gene in salmon flesh color. Sci. Rep. 9: 1–12.
- Holtby, L.B., et Ciruna, K.A. 2007. <u>Unités de conservation du saumon du Pacifique en vertu de</u> <u>la Politique concernant le saumon sauvage</u>. Secr. can. des avis sci. du MPO. Doc. de rech. 2007/070. v + 350 p.
- Honsberger, I., Bleeker, W., Sandeman, H., and Evans, D. 2019. Lithological and structural setting of structurally controlled gold mineralization in the Wilding Lake region, central Newfoundland. Targeted Geoscience Initiative: 2018 report of activities. Geological Survey of Canada, Open File 8549. 59–69.
- Hutchings, J.A. 1986. Lakeward migrations by juvenile Atlantic salmon, *Salmo salar*. Can. J. Fish. Aquat. Sci. 43: 732–741.
- Hutchings, J.A., and Jones, M.E. 1998. Life history variation and growth rate thresholds for maturity in Atlantic salmon, *Salmo salar*. Can. J. Fish. Aquat. Sci. 55: 22–47.
- Janes, J.K., Miller, J.M., Dupuis, J.R., Malenfant, R.M., Gorrell, J.C., Cullingham, C.I., and Andrew, R.L. 2017. The K= 2 conundrum. Mol. Ecol. 26(14): 3594–3602.
- Jeffery, N.W., Stanley, R.R.E., Wringe, B.F., Guijarro-Sabaniel, J., Bourret, V., Bernatchez, L., et al. 2017. Range-wide parallel climate-associated genomic clines in Atlantic salmon. R. Soc. Open Sci. 4: 171394.
- Jeffery, N.W., Wringe B.F., McBride, M.C., Hamilton, L.C., Stanley, R.R.E., Bernatchez, L., et al. 2018. Range-wide regional assignment of Atlantic salmon (*Salmo salar*) using genome wide single-nucleotide polymorphisms. Fish. Res. 206: 163–175.
- Johnstone, D.L., O'Connell, M.F., Palstra, F.P., and Ruzzante, D.E. 2013. Mature male parr contribution to the effective size of an anadromous Atlantic salmon (*Salmo salar*) population over 30 years. Mol. Ecol. 22: 2394–2407.
- King, T., Kalinowski, S.T., Schill, W., Spidle, A., and Lubinski, B. 2001. Population structure of Atlantic salmon (*Salmo salar L*.): a range-wide perspective from microsatellite DNA variation. Mol. Ecol. 10: 807–821.
- King, T., Spidle, A., Eackles, M., Lubinski, B., and Schill, W. 2000. Mitochondrial DNA diversity in North American and European Atlantic salmon with emphasis on the Downeast rivers of Maine. J. Fish Biol. 57: 614–630.

- Kjærner-Semb, E., Ayllon, F., Furmanek, T., Wennevik, V., Dahle, G., Niemelä, E., Ozerov, M., Vähä, J-P., Glover, K.A., Rubin, C.J., Wargelius A., and Edvardsen, R.B. 2016. Atlantic salmon populations reveal adaptive divergence of immune related genes-a duplicated genome under selection. BMC Genom. 17: 610.
- Klemetsen, A., Amundsen, P.A., Dempson, J.B., Jonsson, B., Jonsson, N., O'Connell, M. F., and Mortensen, E. 2003. Atlantic salmon *Salmo salar L.*, brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol. Freshw. Fish. 12: 1–59.
- Lehnert, S.J., Bentzen, P., Kess, T., Lien, S., Horne, J.B., Clement, M., and Bradbury, I.R. 2019a. Chromosome polymorphisms track trans-Atlantic divergence and secondary contact in Atlantic salmon. Mol. Ecol. 28: 2074–2087.
- Lehnert, S.J., Kess, T., Bentzen, P., Clement, M., and Bradbury, I.R. 2020. Divergent and linked selection shape patterns of genomic differentiation between European and North American Atlantic salmon (*Salmo salar*). Mol. Ecol. 29: 2160–2175.
- Lehnert, S.J., Kess, T., Bentzen, P., Kent, M.P., Lien, S., Gilbey, J., Clément, M., Jeffery, N.W., Waples, R.S., and Bradbury I.R. 2019b. Genomic signatures and correlates of widespread population declines in salmon. Nat. Comm. 10: 2996.
- Luria, V., and Laufer, E. 2007. Lateral motor column axons execute a ternary trajectory choice between limb and body tissues. Neural Dev. 2: 1–23.
- Luu, K., Bazin, E., and Blum, M.G. 2017. pcadapt: an R package to perform genome scans for selection based on principal component analysis. Mol. Ecol. Res. 17: 67–77.
- Metcalfe, N., and Thorpe, J. 1990. Determinants of geographical variation in the age of seaward-migrating salmon, *Salmo salar*. J. Anim. Ecol. 59: 135–145.
- Moore, J.S., Bourret, V., Dionne, M., Bradbury, I.R., O'Reilly, P., Kent, M., Chaput, G., and Bernatchez, L. 2014. Conservation genomics of anadromous Atlantic salmon across its North American range: outlier loci identify the same patterns of population structure as neutral loci. Mol. Ecol. 23: 5680–5697.
- MPO. 2008. Proceedings of a Second Workshop on the Conservation Status of Atlantic Salmon in Eastern Canada; 6-9 March 2007. DFO Can. Sci. Advis. Sec. Proceed. Ser. 2007/043. 45 p.
- MPO. 2010. <u>Programme de rétablissement du saumon atlantique (Salmo salar), populations de</u> <u>l'intérieur de la baie de Fundy [version finale]</u>. Coll. « Programmes de rétablissement en vertu de la Loi sur les espèces en péril ». Pêches et Océans Canada, Ottawa. xiii + 67 p. + annexes.
- MPO. 2013. <u>Évaluation du potentiel de rétablissement du saumon atlantique des hautes terres</u> <u>du Sud</u>. Secr. can. de consult. sci. du MPO, Avis sci. 2013/009.
- MPO et MRNF. 2008. <u>Conservation Status Report, Atlantic Salmon in Atlantic Canada and</u> <u>Québec: Part I – Species Information</u>. Can. MS. Rep. Fish. Aquat. Sci. No. 2861. 208 p.
- NASCO. 2019. Management and sampling of the St Pierre and Miquelon salmon fishery. CNL(19)19. 7 p.
- O'Reilly, P., Rafferty, S., et Gibson, J. 2012. <u>Variation génétique au sein des populations et</u> <u>entre les populations dans l'unité désignable du saumon de l'Atlantique des hautes terres du</u> <u>Sud, région des Maritimes (Salmo salar L.)</u>. Secr. can. des avis sci. du MPO. Doc. de rech. 2012/077. iv + 17 p.

- Oksanen, J., Simpson, G.L., Blanchet, F.G., Kindt, R., Legendre, P., McGlinn, P.R., O'Hara, R.B., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., Barbour, M., Bedward, M., Bolker, B., Borcard, D., Carvalho, G., Chirico, M., De Caceres, M., Durand, S., Evangelista, H.B.A., FitzJohn, R., Friendly, M., Furneaux, B., Hannigan, G., Hill, M.O., Lahti, L., McGlinn, D., Ouellette, M.-H., Cunha, E.R., Smith, T., Stier, A., Ter Braak, C.F.J., and Weedon, J. 2017. vegan: community ecology package. R package version 2.4-3.
- Palstra, F.P., O'Connell, M.F., and Ruzzante, D.E. 2007. Population structure and gene flow reversals in Atlantic salmon (*Salmo salar*) over contemporary and long-term temporal scales: effects of population size and life history. Mol. Ecol. 16: 4504–4522.
- Pearse, D.E., Barson, N. J., Nome, T., Gao, G., Campbell, M.A., Abadía-Cardoso, A., Anderson, E.C., Rundio, D.E., Williams, T.H., Naish, K.A., Moen, T., Liu, S., Kent, M., Moser, M., Minkley, D.R., Rondeau, E.B., Brieuc, M.S.O., Sandve, S.R., Miller, M.R., Cedillo, L., Baruch, K., Hernandez, A.G., Ben-Zvi, G., Shem-Tov, D., Barad, O., Kuzishchin, K., Garza, J.C., Lindley, S.T., Koop, B.F., Thorgaard, G.H., Palti, Y., and Lien, S. 2019. Sexdependent dominance maintains migration supergene in rainbow trout. Nat. Ecol. Evol. 3: 1731–1742.
- Pippy, J. 1982. Report of the working group on the interception of mainland salmon in Newfoundland. Can. Manuscr. Rep. Fish. Aquat. Sci. No. C/639.805 C3/1654. 196 p.
- Power, G. 1969. The salmon of Ungava Bay. Arctic Inst. N. Am. Tech. Rep. 22. 72 p.
- Power, G., Power, M., Dumas, R., and Gordon, A. 1987. Marine migrations of Atlantic salmon from rivers in Ungava Bay, Quebec. Amer. Fish. Soc. Symp. 1: 364–376.
- Prince, D.J., O'Rourke, S.M., Thompson, T.Q., Ali, O.A., Lyman, H.S., Saglam, I.K., Hotaling, T.J., Spidle, A.P., and Miller, M.R. 2017. The evolutionary basis of premature migration in Pacific salmon highlights the utility of genomics for informing conservation. Sci. Adv. 3: e1603198.
- Pritchard, J.K., Stephens, M., and Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics. 155: 945–959.
- Pritchard, V.L., Mäkinen, H., Vähä, J.P., Erkinaro, J., Orell, P., and Primmer, C.R. 2018. Genomic signatures of fine-scale local selection in Atlantic salmon suggest involvement of sexual maturation, energy homeostasis and immune defence-related genes. Mol. Ecol. 27: 2560–2575.
- Reddin, D.G., and Lear, W.H. 1990. Summary of marine tagging studies of Atlantic salmon (*Salmo salar L.*) in the Northwest Atlantic area. Can. Tech. Rep. Fish. Aquat. Sci. 1737. 115 p.
- Robertson, M.J., Weir, L.K., et Dempson, J.B. 2013. <u>Analyse de la viabilité de la population de saumon atlantique (*Salmo salar*) de l'unité désignable du sud de Terre-Neuve</u>. Secr. can. des avis sci. du MPO. Doc. de rech. 2013/090. vii + 26 p.
- Robitaille, J.A., Côté, Y., Shooner, G., and Hayeur, G. 1986. Growth and maturation patterns of Atlantic salmon, *Salmo salar*, in the Koksoak River, Ungava, Quebec. Can. Spec. Publ. Fish. Aquat. Sci. 89: 62–69.
- Saunders, R. L. 1981. Atlantic salmon (*Salmo salar*) stocks and management implications in the Canadian Atlantic provinces and New England, USA. Can. J. Fish. Aquat. Sci. 38: 1612–1625.
- Schaffer, W.M., and Elson, P.F. 1975. The adaptive significance of variations in life history among local populations of Atlantic salmon in North America. Ecology. 56: 577–590.

- Shepherd, P.C.F., Partridge, V.A., and Hicklin, P.W. 1995. Changes in Sediment types and Invertebrate Fauna in the Intertidal Mudflats of the Bay of Fundy Between 1977 and 1994. Canadian Wildlife Service, Environmental Conservation Branch. Technical Report Series No. 237. 49 p.
- Sinclair-Waters, M., Ødegård, J., Korsvoll, S.A., Moen, T., Lien, S., Primmer, C.R., and Barson, N.J. 2020. Beyond large-effect loci: large-scale GWAS reveals a mixed large-effect and polygenic architecture for age at maturity of Atlantic salmon. Genet. Sel. Evol. 52: 1–11.
- Stanley, R.R.E., DiBacco, C., Lowen, B., Beiko, R.G., Jeffery, N.W., Van Wyngaarden, M., Bentzen, P., Brickman, D., Benestan, L., Bernatches, L., Johnson, C., Snelgrove, P.V.R., Wang, Z., Wringe, B.F., and Bradbury, I.R. 2018. A climate-associated multispecies cryptic cline in the northwest Atlantic. Sci. Adv. 4(3)
- Sylvester, E.V.A., Beiko, R.G., Bentzen, P., Paterson, I.G., Horne, J.B., Watson, B., Lehnert, S., Duffy, S., Clément, M., Robertson, M.J., Bradbury, I.R. 2018. Environmental extremes drive population structure at the northern range limit of Atlantic salmon in North America. Mol. Ecol. 27: 4026–4040.
- Tremblay, A., and Pinet, N. 2016. Late Neoproterozoic to Permian tectonic evolution of the Quebec Appalachians, Canada. Earth-Sci. Rev. 160: 131–170.
- Udenwobele, D.I., Su, R.-C., Good, S.V., Ball, T.B., Varma Shrivastav, S., and Shrivastav, A. 2017. Myristoylation: An important protein modification in the immune response. Front. Immunol. 8: 751.
- Vandersteen Tymchuk, W., O'Reilly, P., Bittman, J., MacDonald, D., and Schulte, P. 2010. Conservation genomics of Atlantic salmon: variation in gene expression between and within regions of the Bay of Fundy. Mol. Ecol. 19: 1842–1859.
- Vera, L., Metochis, C., Taylor, J., Clarkson, M., Skjaerven, K.H., Migaud, H., and Tocher, D.R. 2017. Early nutritional programming affects liver transcriptome in diploid and triploid Atlantic salmon, *Salmo salar*. BMC Genom. 18: 886.
- Verspoor, E. 2005. Regional differentiation of North American Atlantic salmon at allozyme loci. J. Fish Biol. 67: 80–103.
- Verspoor, E., O'Sullivan, M., Arnold, A., Knox, D., and Amiro, P. 2002. Restricted matrilineal gene flow and regional differentiation among Atlantic salmon (*Salmo salar L.*) populations within the Bay of Fundy, eastern Canada. Heredity. 89: 465–472.
- Waters, C.D., Clemento, A., Aykanat, T., Garza, J.C., Naish, K.A., Narum, S., and Primmer, C.R. 2021. Heterogeneous genetic basis of age at maturity in salmonid fishes. Mol. Ecol. 30: 1435–1456.
- Watson, B., Lehnert, S.J., Bentzen, P., Kess, T., Einfeldt, A., Duffy, S.J., Perriman, B., Lien, S., Kent, M., and Bradbury, I.R. 2022. Environmentally associated chromosomal translocation influences fine-scale population structure of Atlantic salmon (*Salmo salar*). Mol. Ecol. 31: 1057–1075.
- Wellband, K., Mérot, C., Linnansaari, T., Elliott, J., Curry, R.A., and Bernatchez, L. 2019. Chromosomal fusion and life history-associated genomic variation contribute to within-river local adaptation of Atlantic salmon. Mol. Ecol. 28: 1439–1459.
- Wellenreuther, M., and Bernatchez, L. 2018. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol. Evol. 33: 427–440.

Wringe, B.F., Anderson, E.C., Jeffery, N.W., Stanley, R.R.E., and Bradbury, I.R. 2018. Development and evaluation of SNP panels for the detection of hybridization between wild and escaped Atlantic salmon (*Salmo salar*) in the western Atlantic. Can. J. Fish. Aquat. Sci. 76: 695–704.

TABLEAUX

Tableau 1. Unités désignables (UD) proposées pour le saumon atlantique. Nous proposons 19 UD de saumon atlantique anadrome existant et une UD non anadrome disparue supplémentaire, précédemment reconnue (UD 11) et non évaluée ici. Voir les détails à l'appui des UD proposées dans le tableau 2.

UD proposée	UD du COSEPAC (2010)	Changements globaux de l'UD précédemment reconnue	Chemin dans l'arbre de décision
UD 1 Nunavik	UD 1	Pas de changement	Chemin 3
UD 2 Nord du Labrador	UD 2	Subdivision de l'UD du Labrador	Chemin 1
UD 3 Lac Melville	UD 2	Subdivision de l'UD du Labrador	Chemin 1
UD 4 Sud du Labrador	UD 2	Subdivision de l'UD du Labrador	Chemin 1
UD 5 Nord-est de Terre-Neuve	UD 3	Limite révisée avec l'UD du nord- ouest de Terre-Neuve	Limite réévaluée; Chemin 1
UD 6 Sud de Terre-Neuve – Est	UD 4	Subdivision de l'UD du sud de Terre-Neuve	Chemin 1
UD 7 Sud de Terre-Neuve – Ouest	UD 4	Subdivision de l'UD du sud de Terre-Neuve	Chemin 1
UD 8 Sud-Ouest de Terre-Neuve	UD 5	Pas de changement	Chemin 3
UD 9 Nord-ouest de Terre-Neuve	UD 6	Limite révisée avec l'UD du nord- est de Terre-Neuve	Limite réévaluée; Chemin 1
UD 10 Est de la Côte-Nord du Québec	UD 7	Ajout d'une rivière (rivière de la Corneille) de l'UD de l'ouest de la Côte-Nord du Québec à cette UD.	Chemin 3
UD 11 Lac Ontario	UD 11	Pas de changement – L'UD est disparue (non évaluée ici; non anadrome)	-
UD 12 – Ouest de la Côte-Nord du Québec	UD 8	Limite révisée avec l'UD de l'intérieur du Saint-Laurent Déplacement d'une rivière (la rivière de la Corneille) de cette UD dans l'UD de l'est de la Côte-Nord du Québec.	Limite réévaluée; Chemin 1
UD 13 Anticosti	UD 9	Pas de changement	Chemin 4
UD 14 Intérieur du Saint-Laurent	UD 10	Limite révisée avec l'UD de l'ouest de la Côte-Nord du Québec.	Limite réévaluée; Chemin 1
UD 15 Gaspésie	UD 12	Subdivision de l'UD Gaspésie – sud du golfe du Saint-Laurent	Chemin 1
UD 16 Sud du golfe du Saint- Laurent et Cap-Breton	UD 12, UD 13	Subdivision de l'UD Gaspésie – Sud du golfe du Saint-Laurent Fusion avec l'UD de l'est du Cap-Breton	Chemin 1 pour séparer la Gaspésie et le golfe; puis réévaluation de la limite avec l'est du Cap-Breton – Chemin 4
UD 17 Hautes terres du sud de la Nouvelle-Écosse – Est	UD 14	Subdivision de l'UD Hautes terres du sud de la Nouvelle-Écosse	Chemin 1
UD 18 Hautes terres du sud de la Nouvelle-Écosse – Ouest	UD 14	Subdivision de l'UD Hautes terres du sud de la Nouvelle-Écosse	Chemin 1
UD 19 Intérieur de la baie de Fundy	UD 15	Déplacement d'une rivière (la rivière Gaspereau) de cette UD dans l'UD de l'extérieur de la baie de Fundy	Chemin 3, sauf la rivière Gaspereau (chemin 1)
UD 20 Extérieur de la baie de Fundy et rivière Gaspereau	UD 15, UD 16	Ajout d'une rivière (la rivière Gaspereau) de l'UD de l'intérieur de la baie de Fundy à cette UD	Chemin 3

Tableau 2. UD proposées (noms et numéros) pour le saumon atlantique. Les arguments étayant le caractère distinct et l'importance de l'UD sont précisés, y compris, pour certaines UD, les raisons de la désignation originale (2010) et, pour d'autres, les données actualisées indiquées dans ce rapport. L'UD 11 n'est pas incluse, car elle est disparue et n'est pas évaluée ici.

UD proposée COSEPAC		Changements globaux par	Justification de l'UD (d'après des preuves antérieures ou les nouvelles preuves entraînant des changements)		
(2010)	rapport à l'ancienne UD	Caractère distinct	Importance		
UD 1 Nunavik	UD 1	Pas de changement	Flux génétique limité avec d'autres UD d'après les microsatellites et les SNP.	Justification précédente : Preuve de voies migratoires locales. Séparée du reste de l'aire de répartition de l'espèce (~ 650 km de côtes). À l'extrémité nord de l'aire de répartition de l'espèce, au Canada, conditions semblables à celles de l'Arctique.	
UD 2 Nord du Labrador	UD 2	Subdivision de l'UD du Labrador	Les microsatellites séparent la côte du Labrador (nord et sud) du lac Melville pour K=2 L'ensemble de données sur les 96 SNP sépare le nord du Labrador des autres régions du Labrador pour K=3	 Preuve génomique de l'adaptation : L'analyse en composantes principales sépare le Labrador côtier du lac Melville Différences génomiques associées à l'homéostasie des acides gras Associations génétique-environnement distinguant le Labrador côtier du lac Melville. Fréquence plus faible du réarrangement chromosomique Ssa01/Ssa23 du type européen sur la côte du Labrador par rapport au lac Melville. Cycle biologique : Période de montaison plus tardive que dans les autres régions du Labrador. Incidence plus faible de la maturation après un hiver en mer par rapport au lac Melville. Différences dans les routes de migration. Âge en mer et taille à la maturité potentiellement plus élevés qu'au sud du Labrador. Saumoneaux plus âgés sur la côte du Labrador que dans le lac Melville. Différences liées au climat : Différences de température et de précipitations par rapport aux autres régions du Labrador. Facteurs supplémentaires : Différences dans les communautés de poissons – Les populations du nord du Labrador sont dominées par l'omble chevalier. 	

UD proposéo		Changements globaux par	Ar Justification de l'UD (d'après des preuves antérieures ou les nouvelles preuves entraînant des changements)		
op proposee	(2010) l'ancienne UD	Caractère distinct	Importance		
UD 3 Lac Melville	UD 2	Subdivision de l'UD du Labrador	Les microsatellites séparent la côte du Labrador (nord et sud) du lac Melville pour K=2 L'ensemble de données sur les 96 SNP sépare le lac Melville des autres régions du Labrador pour K=3.	 Preuve génomique de l'adaptation : L'analyse en composantes principales sépare le Labrador côtier du lac Melville Différences génomiques associées à l'homéostasie des acides gras. Associations génétique-environnement distinguant le Labrador côtier du lac Melville. Fréquence plus élevée du réarrangement chromosomique Ssa01/Ssa23 du type européen dans le lac Melville que sur la côte du Labrador. Cycle biologique : Période de montaison plus précoce que dans les autres régions du Labrador. Différences dans l'incidence de la maturation après un hiver en mer par rapport à la côte du Labrador. Différences liées au climat : Différences de température et de précipitations par rapport aux autres régions du Labrador. Facteurs supplémentaires : Différences dans les communautés de poissons – Les rivières qui se jettent dans le lac Melville contiennent généralement des saumons atlantiques et des ombles de fontaine anadromes. 	
UD 4 Sud du Labrador	UD 2	Subdivision de l'UD du Labrador	Les microsatellites séparent la côte du Labrador (nord et sud) du lac Melville pour K=2 L'ensemble de données sur les 96 SNP sépare le sud du Labrador des autres régions du Labrador pour K=3.	 Preuve génomique de l'adaptation : L'analyse en composantes principales sépare le Labrador côtier du lac Melville Différences génomiques associées à l'homéostasie des acides gras. Associations génétique-environnement distinguant le Labrador côtier du lac Melville. Fréquence plus faible du réarrangement chromosomique Ssa01/Ssa23 du type européen sur la côte du Labrador par rapport au lac Melville. Cycle biologique : Période de montaison intermédiaire par rapport aux autres régions du Labrador. 	

UD proposéo	UD du Changements D proposée COSEPAC globaux par		Justification de l'UD (d'après des preuves antérieures ou les nouvelles preuves entraînant des changements)		
ob proposee	(2010) (2010) (2010) (2010)	Caractère distinct	Importance		
				 Incidence plus faible de la maturation après un hiver en mer par rapport au lac Melville et au nord du Labrador. Différences dans les routes de migration. Âge en mer potentiellement plus jeune et taille à la maturité potentiellement plus petite que dans le nord du Labrador. Différences liées au climat : Différences de température et de précipitations par rapport aux autres régions du Labrador. Facteurs supplémentaires : Différences dans les communautés de poissons – L'omble de fontaine, l'omble chevalier et le saumon atlantique sont représentés de façon plus égale dans le sud du Labrador que dans les autres régions du Labrador. 	
				aux autres parties du Labrador. Preuve génomique de l'adaptation : L'analyse en composantes principales sépare les sites en fonction de la limite révisée entre l'UD 5 et l'UD 9. Différences génomiques associées au développement et à la régulation des voies de signalisation cellulaire. Différences dans le cycle biologique : Quelques différences dans l'âge des asumenesus entre les régions en fonction de la	
UD 5 Nord-est de Terre-Neuve	UD 3	Limite modifiée avec l'UD Nord-ouest de Terre-Neuve (UD 9 proposée).	D'après la limite révisée, preuve du caractère génétique distinct entre les UD 5 et 9 proposées (K=2) pour les ensembles de données sur les microsatellites et les 96 SNP.	ans l'age des saumoneaux entre les regions en lonction de la nouvelle limite (UD 5 et UD 9 proposées), avec des âges de saumoneaux généralement plus jeunes par rapport aux populations du nord dans l'UD 9 proposée. Proportion plus élevée de géniteurs ayant frayé plusieurs fois dans les rivières échantillonnées de l'UD 5 que dans l'UD 9. Composante de pluribermarins légèrement plus faible dans les rivières de l'UD 5 (jusqu'à 4 %) et de l'UD 9 (jusqu'à 6 %).	
				Différences liées au climat : Températures plus élevées dans cette région que dans l'UD voisine (UD 9 proposée). Facteurs supplémentaires : La nouvelle limite correspond à	
UD 6 Sud de Terre-Neuve – Est	UD 4	Subdivision de l'UD du sud de Terre-Neuve	Les microsatellites montrent que pour K=3, les sites à l'ouest de la rivière Garnish se	Original geologique majeure. Preuve génomique de l'adaptation : Fréquence plus élevée du réarrangement chromosomique Ssa01/Ssa23 du type européen à l'est qu'à l'ouest sur la côte sud. Des preuves	

UD proposée	UD du	Changements globaux par	Justification de l'UD (d'après d	des preuves antérieures ou les nouvelles preuves entraînant des changements)
	(2010)	rapport à l'ancienne UD	Caractère distinct	Importance
			séparent des sites vers l'est. Le ruisseau Northeast (Trepassey) forme son propre groupe. D'après les 96 SNP, pour K=3, les sites à l'ouest de la rivière Garnish se séparent des sites vers l'est. Sites de la presqu'île Avalon séparés des autres sites de la côte sud.	 suggèrent que le réarrangement fait l'objet d'une sélection et est lié au climat. Différences dans le cycle biologique : Montaison plus tardive par rapport aux rivières situées à l'ouest sur la côte sud. Les rivières à l'ouest de la péninsule Burin sont caractérisées par des madeleineaux de plus petite taille et les sites à l'est de la péninsule par des stocks de petits madeleineaux, ainsi que de madeleineaux plus grands. Proportion plus élevée de petits géniteurs ayant frayé plusieurs fois à l'est (moyenne ~13 %) qu'à l'ouest (moyenne ~5 %). Différences liées au climat : Preuve de précipitations plus faibles, d'une moindre variabilité des températures et de températures hivernales plus chaudes à l'est qu'à l'ouest sur la côte sud. Facteurs supplémentaires : pH plus élevé dans les rivières par rapport aux rivières situées à l'ouest sur la côte sud. Bassins hydrographiques plus petits (<300 km²) avec seulement quelques-uns >400 km² par rapport aux rivières
UD 7 Sud de Terre-Neuve – Ouest	UD 4	Subdivision de l'UD du sud de Terre-Neuve	Les microsatellites montrent que pour K=3, les sites à l'ouest de la rivière Garnish se séparent des sites vers l'est. D'après les 96 SNP, pour K=3, les sites à l'ouest de la rivière Garnish se séparent des sites vers l'est. Sites de la presqu'île Avalon séparés des autres sites de la côte sud.	 Preuve génomique de l'adaptation : Fréquence plus faible du réarrangement chromosomique Ssa01/Ssa23 du type européen à l'ouest qu'à l'est sur la côte sud. Des preuves suggèrent que le réarrangement fait l'objet d'une sélection et est lié au climat. Différences dans le cycle biologique : Montaison plus précoce par rapport aux rivières situées à l'est sur la côte sud. Les rivières à l'ouest de la péninsule Burin sont caractérisées par des madeleineaux de plus petite taille et les sites à l'est de la péninsule par des stocks de petits madeleineaux, ainsi que de madeleineaux plus grands. Proportion de petits géniteurs ayant frayé plusieurs fois plus faible à l'ouest (moyenne ~5 %) qu'à l'est (moyenne ~13 %). Différences liées au climat : Preuve de précipitations plus importantes, d'une plus grande variabilité des températures et

UD proposóo	UD du Changements GOSEPAC globaux par		Justification de l'UD (d'après d	des preuves antérieures ou les nouvelles preuves entraînant des changements)
ob proposee	(2010)	rapport à l'ancienne UD	Caractère distinct	Importance
				de températures hivernales plus froides à l'ouest qu'à l'est sur la côte sud de Terre-Neuve. Facteurs supplémentaires : pH plus bas dans les rivières par rapport aux rivières situées à l'est sur la côte sud de Terre- Neuve. La superficie du bassin hydrographique des rivières varie de movenne (1 000 à 2 500 km ²) à petite (<300 km ²), ce qui
				diffère des rivières situées à l'est sur la côte sud de Terre- Neuve.
UD 8 Sud-ouest de Terre-Neuve	UD 5	Pas de changement	Preuve de taux plus élevés de flux génétique dans cette UD que parmi les UD adjacentes et dans d'autres UD. Une certaine hétérogénéité dans les signaux génétiques a été notée entre les UD 8 et 9, mais les sites proches de la limite dans chaque UD présentaient des différences génétiques claires. Les modifications de la limite avec le nord-ouest de Terre-Neuve (UD 9) n'étaient pas soutenues.	Justification précédente : Âges les plus jeunes de smoltification sur l'île. Seule UD sur l'île de Terre-Neuve comptant une composante importante de pluribermarins. La route de migration est différente de celle de l'UD du nord- ouest de Terre-Neuve. Les rivières se déversent dans le détroit de Cabot et le golfe du Saint-Laurent. Nombreux cours d'eau à faible gradient, habitat lacustre limité.
UD 9 Nord- ouest de Terre- Neuve	UD 6	Limite révisée avec l'UD du nord-est de Terre-Neuve	D'après la limite révisée, preuve du caractère génétique distinct entre les UD 5 et 9 proposées (K=2) pour les ensembles de données sur les microsatellites et les 96 SNP. Une certaine hétérogénéité dans les signaux génétiques a été notée entre les UD 8 et 9, mais les sites proches de la limite dans chaque UD présentaient des différences	 Preuve génomique de l'adaptation : L'analyse en composantes principales sépare les sites en fonction de la limite modifiée entre l'UD 9 et l'UD 5. Différences génomiques associées au développement et à la régulation des voies de signalisation cellulaire. Différences dans le cycle biologique : Quelques différences dans l'âge des saumoneaux entre les régions en fonction de la nouvelle limite (UD 5 et UD 9 proposées), avec des âges de saumoneaux généralement plus jeunes par rapport aux populations du nord dans l'UD 9 proposée. Proportion plus élevée de géniteurs ayant frayé plusieurs fois dans les rivières échantillonnées de l'UD 5 que dans l'UD 9.

UD proposée	UD du COSEPAC	Changements globaux par	3 Justification de l'UD (d'après des preuves antérieures ou les nouvelles preuves entraînant des changements)		
	(2010)	rapport à l'ancienne UD	Caractère distinct	Importance	
			modifications de la limite avec le sud-ouest de Terre-Neuve (UD 8) n'étaient pas appuyées.	Composante de pluribermarins légèrement plus faible dans les rivières de l'UD 5 (jusqu'à 4 %) et de l'UD 9 (jusqu'à 6 %). La route de migration est différente de celle de l'UD du sud- ouest de Terre-Neuve. Différences liées au climat : Températures plus basses dans	
				cette région que dans l'UD voisine (UD 5 proposée).	
				Facteurs supplémentaires : La nouvelle limite correspond à une coupure géologique majeure.	
			D'après les marqueurs neutres, flux génétique plus élevé dans cette région que parmi les UD adjacentes.		
UD 10 Est de la Côte-Nord du	UD 7	Ajout d'une rivière (rivière de la Corneille) de l'UD de l'ouest de la	Il avait été suggéré auparavant que la limite de cette UD avec l'UD de l'ouest de la Côte-Nord du Québec était ambiguë, mais nous avons trouvé une justification pour le caractère distinct de cette UD de l'UD	Justification précédente : UD caractérisée par des populations comptant des proportions élevées de saumons unibermarins par rapport à l'UD du Québec voisine. Rivières dont le régime de température est inférieur à celui des UD voisines (ouest de la Côte-Nord du Québec, UD 12 proposée).	
Québec		Côte-Nord du Québec à cette UD.	voisine en utilisant à la fois les SNP et les microsatellites. Un site (la rivière de la Corneille) de l'UD voisine (UD 11 proposée) présentait une population génétiquement similaire à celles des sites de cette UD, et y a donc été déplacé.	Preuve génomique de l'adaptation : L'analyse en composantes principales sépare les sites en fonction de la limite modifiée et des changements entre les UD 10, 12 et 14 proposées – bien que l'on ne dispose de données génomiques que pour un seul site dans cette UD.	
UD 12 – Ouest de la Côte-Nord du Québec	UD 8	Modification de la limite avec l'UD de l'intérieur du Saint-Laurent à la rivière Betsiamites	Il avait été suggéré dans le passé que la limite de cette UD avec les UD voisines était ambiguë. Nous avons trouvé des arguments en faveur du	Justification précédente : Rivières à gradient plus élevé que celles des UD proches. Proportion la plus grande de saumons pluribermarins par rapport aux autres UD de la Côte-Nord.	

UD proposée	UD du COSEPAC	Changements globaux par	s Justification de l'UD (d'après des preuves antérieures ou les nouvelles preuves entraînant des changements)		
	(2010)	rapport à l'ancienne UD	Caractère distinct	Importance	
		Déplacement d'une rivière (la rivière de la Corneille) de cette UD dans l'UD de l'est de la Côte-Nord du Québec.	à partir des limites modifiées avec l'UD 14 (UD de l'intérieur du Saint-Laurent) en utilisant à la fois les SNP et les microsatellites. Un site (la rivière de la Corneille) physiquement situé dans cette UD présentait une population génétiquement similaire à celles de sites de l'UD de la Côte-Nord voisine, et a donc été déplacé dans l'UD 10 proposée (est de la Côte-Nord du Québec).	 Preuve génomique de l'adaptation : L'analyse en composantes principales sépare les sites en fonction de la limite modifiée avec l'UD 14 proposée. Les différences génomiques entre les UD fondées sur la limite révisée sont associées au métabolisme et au développement. Différences dans le cycle biologique : Âges plus avancés des saumoneaux par rapport à l'UD voisine (intérieur du Saint-Laurent; UD 14 proposée). Différences liées au climat : Températures estivales plus fraîches par rapport à l'UD voisine (intérieur du Saint-Laurent; UD 14 proposée). 	
UD 13 Anticosti	UD 9	Pas de changement	Faibles niveaux de distinction entre certaines rivières de l'UD, mais divergence claire par rapport au continent.	Justification précédente : Proportion plus élevée de saumons unibermarins que dans de nombreuses UD voisines. Système insulaire distinct dans le golfe du Saint-Laurent. Rivières à gradient plus faible. Températures plus basses par rapport à plusieurs UD adjacentes (UD 12, 14, 15 proposées). Justification supplémentaire : Les paramètres géologiques des rivières d'Anticosti sont distincts de ceux des rivières du Québec et du Labrador. La divergence génétique d'Anticosti par rapport à d'autres populations était fortement liée à ces paramètres géologiques, lorsque les analyses ont été effectuées avec des SNP aberrants présumés soumis à une sélection divergente (Bourret <i>et al.</i> 2013). Les saumons adultes des rivières d'Anticosti sont également	
UD 14 Intérieur du Saint- Laurent	UD 10	Limite révisée avec l'UD de l'ouest de la Côte-Nord du Québec à la rivière Betsiamites	Suggestion précédente selon laquelle la limite de cette UD avec l'UD Côte-Nord était ambiguë. Nous avons trouvé des arguments en faveur du caractère distinct de cette UD	plus petits que ceux des autres UD du Québec. Preuve génomique de l'adaptation : L'analyse en composantes principales sépare les sites en fonction de la limite révisée avec l'UD 12 proposée. Les différences génomiques entre les UD fondées sur la limite révisée sont associées au métabolisme et au développement. Différences dans le cycle biologique : Âge plus jeune des saumoneaux par rapport aux UD voisines (UD 12 proposée)	

UD proposée	UD du	Changements globaux par	Justification de l'UD (d'après des preuves antérieures ou les nouvelles preuves entraînant des changements)		
OD proposee	(2010)	rapport à l'ancienne UD	Caractère distinct	Importance	
		(inclusivement)	à partir des limites révisées en utilisant à la fois les SNP et les microsatellites.	pour l'ouest de la Côte-Nord du Québec et UD 15 proposée pour la Gaspésie). Différences liées au climat : Températures estivales plus chaudes par rapport à l'UD voisine (ouest de la Côte-Nord du Québec: UD 12 proposée).	
UD 15 Gaspésie	UD 12	Subdivision de l'UD Gaspésie – Sud du golfe du Saint- Laurent	D'après les microsatellites et les 96 SNP, les sites de la Gaspésie sont distincts des rivières du sud du golfe du Saint-Laurent (pour K=2).	 Preuve génomique de l'adaptation : L'analyse en composantes principales sépare les sites de la Gaspésie de ceux du sud du golfe du Saint-Laurent. Les différences génomiques entre la Gaspésie et le sud du golfe du Saint-Laurent sont liées à la « transduction du signal médiée par l'oxyde nitrique ». L'oxyde nitrique peut jouer un rôle dans le fonctionnement du cerveau, des neurones, de la physiologie cardiovasculaire, de la réponse immunitaire et du développement chez les poissons. Différences dans le cycle biologique : Preuve de l'âge plus avancé en mer et des saumoneaux en Gaspésie par rapport au sud du golfe. Saumoneaux plus âgés que dans l'UD Québec voisine (UD 12 proposée). Différences liées au climat : Températures plus froides en Gaspésie que dans le sud du golfe. Facteurs supplémentaires : Différences dans la géologie sous-jacente entre la Gaspésie et le sud du golfe – Cap-Breton. 	
UD 16 Sud du golfe du Saint- Laurent et Cap-Breton	UD 12, UD 13	Subdivision de l'UD Gaspésie – Sud du golfe du Saint- Laurent Fusion avec l'UD de l'est du Cap-Breton	D'après les microsatellites et les 96 SNP, les sites de la Gaspésie sont distincts des rivières du sud du golfe du Saint-Laurent (pour K=2). De plus, d'après les différences génétiques limitées entre le sud du golfe et l'est du Cap-Breton, nous avons réévalué le caractère distinct de ces sites. Aucune preuve	Preuve génomique de l'adaptation : L'analyse en composantes principales sépare les sites de la Gaspésie de ceux du sud du golfe du Saint-Laurent. Les différences génomiques entre la Gaspésie et le sud du golfe du Saint-Laurent sont liées à la « transduction du signal médiée par l'oxyde nitrique ». L'oxyde nitrique peut jouer un rôle dans le fonctionnement du cerveau, des neurones, de la physiologie cardiovasculaire, de la réponse immunitaire et du développement chez les poissons.	

UD proposée	UD du	Changements globaux par	s Justification de l'UD (d'après des preuves antérieures ou les nouvelles preuves entraînant des changements)		
	(2010)	(2010) rapport à l'ancienne UD	Caractère distinct	Importance	
			de caractère distinct entre ces deux régions n'a été trouvée et les sites de ces régions ont donc été fusionnés en une seule UD.	 Différences dans le cycle biologique : Quelques preuves de l'âge plus avancé en mer et des saumoneaux en Gaspésie par rapport au sud du golfe et à l'est du Cap-Breton. Proportions plus élevées de poissons pluribermarins par rapport aux populations des UD voisines dans les hautes terres du sud. L'âge plus avancé des saumoneaux et en mer dans cette UD par rapport aux populations voisines des hautes terres du sud entraîne une durée de génération plus longue (généralement >5 ans). Différences liées au climat : Températures plus élevées dans le sud du golfe par rapport à la Gaspésie. Facteurs supplémentaires : Différences dans la géologie sous-jacente entre la Gaspésie et le sud du golfe – Cap-Breton. La géologie sous-jacente du sud du golfe et de l'est du Breton est similaire (vastes gisements de charbon), ce qui justifie leur fusion. 	
UD 17 Hautes terres du sud de la Nouvelle- Écosse – Est	UD 14	Subdivision de l'UD des hautes terres du sud de la Nouvelle- Écosse	Les microsatellites prouvent le caractère distinct entre l'est et l'ouest des hautes terres du sud (K=2) – à l'exception de la rivière Round Hill (située dans l'UD 18 proposée). Les 96 SNP permettent d'observer une certaine séparation entre l'est et l'ouest des hautes terres du sud, mais pas aussi clairement que dans les microsatellites (K=4).	Justification précédente : Proportions plus faibles de poissons pluribermarins par rapport aux UD voisines du nord (sud du golfe et est du Cap-Breton). Preuve génomique de l'adaptation : Couverture géographique limitée, mais l'analyse en composantes principales sépare les populations de l'est et de l'ouest. Les différences génomiques entre l'est et l'ouest concernent la « localisation du réticulum endoplasmique », ainsi que les processus liés à la pigmentation et à la vision (c'est-à-dire la « biosynthèse de la mélanine » et « l'organisation structurelle du nerf optique »), d'après les analyses d'ontologie génique. Différences dans le cycle biologique : Quelques différences dans l'âge des saumoneaux, avec des saumoneaux plus âgés dans l'est des hautes terres du sud que dans l'ouest. Quelques différences dans la proportion de femelles – Proportion plus élevée de petits saumons femelles dans l'est que dans l'ouest des hautes terres du sud (entre les UD 17 et 18 proposées).	

UD proposée	UD du	Changements globaux par	Justification de l'UD (d'après d	des preuves antérieures ou les nouvelles preuves entraînant des changements)
ob proposee	(2010)	rapport à l'ancienne UD	Caractère distinct	Importance
				L'âge plus jeune des saumoneaux et en mer dans les populations des hautes terres du sud entraîne une durée de génération plus courte par rapport aux populations de l'UD voisine (sud du golfe et est du Cap-Breton).
				précipitations estivales et températures plus basses dans l'est que dans l'ouest des hautes terres du sud.
				 Facteurs supplémentaires : Différences de pH des rivières entre les UD proposées dans les hautes terres du sud – pH plus élevé à l'est qu'à l'ouest. Les deux UD proposées pour les hautes terres du sud sont délimitées par des différences dans les caractéristiques des bassins hydrographiques qui pourraient entraîner une adaptation locale. La délimitation entre les UD de l'est et de l'ouest des hautes terres du sud (UD 17 et 18 proposées) est associée à une rupture biogéographique majeure chez cinq espèces marines, qui correspond à un gradient de température océanique, y compris la température de la surface de la mer au printemps, qui peut indiquer des différences dans les températures marines subies par les saumoneaux.
UD 18 Hautes terres du sud de	UD 14	Subdivision de l'UD des hautes terres	Les microsatellites prouvent le caractère distinct entre l'est et l'ouest des hautes terres du sud (K=2) – à l'exception de la rivière Round Hill. Les 96 SNP permettent d'observer une certaine séparation entre l'est et l'ouest	Preuve génomique de l'adaptation : Couverture géographique limitée, mais l'analyse en composantes principales sépare les populations de l'est et de l'ouest. Les différences génomiques entre l'est et l'ouest concernent la « localisation du réticulum endoplasmique », ainsi que les processus liés à la pigmentation et à la vision (c'est-à-dire la « biosynthèse de la mélanine » et « l'organisation structurelle du nerf optique »), d'après les analyses d'ontologie génique.
la Nouvelle- Écosse – Ouest		du sud de la Nouvelle- Écosse	des hautes terres du sud, mais pas aussi clairement que dans les microsatellites (K=4). Dans cette UD, la rivière Round Hill était clairement distincte génétiquement de tous les autres sites, ce qui est cohérent avec d'autres études. Cette rivière ne semble pas	Différences dans le cycle biologique : Quelques différences dans l'âge des saumoneaux, avec des saumoneaux plus jeunes dans l'ouest des hautes terres du sud que dans l'est. Au moins un site de cette nouvelle UD proposée présente la plus forte proportion de saumoneaux d'un an au Canada (la rivière Tusket). Quelques différences dans la proportion de femelles – Proportion plus faible de petits saumons femelles dans l'ouest

UD proposée	UD du	Changements globaux par	S Justification de l'UD (d'après des preuves antérieures ou les nouvelles preuves entraînant des changements)		
	(2010)	0) l'ancienne UD	Caractère distinct	Importance	
			être plus semblable aux rivières des UD voisines. Il a été suggéré que cette rivière manque de diversité génétique, mais aucune autre donnée sur cette rivière n'est disponible à ce jour.	 que dans l'est des hautes terres du sud (entre les UD 17 et 18 proposées). La plupart des adultes remontent dans les rivières des hautes terres du sud au printemps (mai/juin) et en été (juillet/août), ce qui diffère des populations de l'intérieur de la baie de Fundy, qui remontent à la fin de l'été et à l'automne. Différences liées au climat : Niveaux plus faibles de précipitations estivales et températures plus élevées dans l'ouest (cette UD) que dans l'est (UD 17) des hautes terres du sud. 	
				 Facteurs supplémentaires : Différences de pH des rivières entre les UD proposées dans les hautes terres du sud – pH plus bas à l'ouest qu'à l'est. Les deux UD proposées pour les hautes terres du sud sont délimitées par des différences dans les caractéristiques des bassins hydrographiques qui pourraient entraîner une adaptation locale. La délimitation entre les UD de l'est et de l'ouest des hautes terres du sud (UD 17 et 18 proposées) est associée à une rupture biogéographique majeure chez cinq espèces marines, qui correspond à un gradient de température océanique, y compris la température de la surface de la mer au printemps, qui peut indiquer des différences dans les températures marines subies par les saumoneaux. 	
UD 19 Intérieur de la baie de Fundy	UD 15	Déplacement d'une rivière (la rivière Gaspereau) de cette UD dans l'UD de l'extérieur de la baie de Fundy	Certaines preuves du caractère distinct dans l'UD entre la baie de Chignectou et le bassin Minas, fondées sur les microsatellites et les 96 SNP – les preuves de l'importance ont été évaluées, mais n'ont pas satisfait aux critères (voir le corps du texte). La rivière Gaspereau divergeait des autres sites (F _{ST} >0,071) dans l'intérieur de la baie de Fundy. La rivière Gaspereau a été déplacée	Justification précédente : Le saumon de cette UD présente un comportement migratoire unique. Régime de marées unique de la baie de Fundy. Preuve génomique de l'adaptation : Quelques différences génomiques entre les sites de l'intérieur de la baie de Fundy. La plupart des sites se séparent dans l'analyse en composantes principales, la rivière Gaspereau (déplacée dans l'UD de l'extérieur de la baie de Fundy) étant la plus divergente des autres sites.	

UD proposée	UD du COSEPAC (2010)	Changements globaux par rapport à l'ancienne UD	Justification de l'UD (d'après des preuves antérieures ou les nouvelles preuves entraînant des changements)	
			Caractère distinct	Importance
			dans l'UD de l'extérieur de la baie de Fundy en raison de l'affinité génétique et de la similitude des variations du cycle biologique et des habitudes migratoires avec l'extérieur de la baie de Fundy.	Différences dans le cycle biologique : Dans l'intérieur de la baie de Fundy, les saumons ont un cycle biologique et des habitudes migratoires similaires à ceux de l'extérieur de la baie de Fundy, à l'exception des saumons de la rivière Gaspereau. Les saumons de la rivière Gaspereau affichent des habitudes migratoires marines différentes et les caractéristiques de leur cycle biologique sont plus semblables à celles des saumons de l'extérieur de la baie de Fundy (rivière déplacée dans l'UD de l'extérieur de la baie de Fundy), notamment une proportion plus élevée de pluribermarins, une période de montaison plus précoce et une migration marine plus lointaine (vers l'Atlantique Nord) que les saumons de l'intérieur de la baie de Fundy. Les populations de l'intérieur de la baie de Fundy se caractérisent par la présence de saumons principalement unibermarins, une période de montaison plus tardive et une migration marine locale dans la baie. La plupart des adultes remontent dans les rivières à la fin de l'été ou à l'automne, contrairement aux populations des hautes terres du sud, qui remontent au printemps (mai/juin) et en été (juillet/août).
UD 20 Extérieur de la baie de Fundy et rivière Gaspereau	UD 15, UD 16	Ajout d'une rivière (la rivière Gaspereau) de l'UD de l'intérieur de la baie de Fundy à cette UD	La rivière Gaspereau divergeait des autres sites (F_{ST} >0,071) dans l'intérieur de la baie de Fundy. La divergence génétique était plus faible entre la rivière Gaspereau et les sites de l'extérieur de la baie de Fundy (F_{ST} <0,063). En utilisant des microsatellites et des SNP, nous avons prouvé que les saumons de la rivière Gaspereau affichent une plus grande affinité génétique avec ceux de l'extérieur de la baie de Fundy qu'avec ceux de l'intérieur de la baie de Fundy.	 Justification précédente : Cette UD présente une proportion plus élevée de saumons pluribermarins migrant vers l'Atlantique Nord que l'UD voisine Intérieur de la baie de Fundy. Périodes de montaison inhabituelles dans plusieurs réseaux hydrographiques. Différences dans le cycle biologique : Les variations du cycle biologique et les habitudes migratoires des saumons de la rivière Gaspereau sont similaires à ceux des sites de cette UD, et la rivière Gaspereau a donc été déplacée dans cette UD en raison de ces similarités et de son affinité génétique avec les sites de cette UD, notamment une proportion plus élevée de pluribermarins, une période de montaison plus précoce et une migration marine plus lointaine (vers l'Atlantique Nord) que les saumons de l'intérieur de la baie de Fundy.

UD proposée	UD du COSEPAC (2010)	Changements globaux par rapport à l'ancienne UD	Justification de l'UD (d'après des preuves antérieures ou les nouvelles preuves entraînant des changements)	
			Caractère distinct	Importance
			Bien que les saumons de la rivière Gaspereau présentent une affinité génétique avec ceux de l'extérieur de la baie de Fundy, ils constituent toujours une population génétiquement unique qui pourrait justifier une désignation propre à l'avenir.	

Tableau 3. Examen des éléments probants (anciens et nouveaux) à l'appui de la limite entre le nord-est de Terre-Neuve (UD 3) et le nord-ouest de Terre-Neuve (UD 6). Nous indiquons si les données actuelles soutiennent davantage la limite proposée ici par rapport à la limite précédente.

Données	Différences proposées entre l'UD 3 et l'UD 6 (COSEPAC 2010)	Examen des éléments probants	Les données appuient- elles davantage la limite modifiée?
Génétique	 L'UD 3 est génétiquement unique en raison de : 1) Profils génétiques intermédiaires des saumons européens et nord-américains 2) Divergence génétique avec l'ouest de Terre-Neuve (UD 6) 	Pas unique sur le plan de l'introgression européenne : d'autres régions de Terre-Neuve présentent ces profils (Bradbury <i>et al.</i> 2015; Lehnert <i>et al.</i> 2019a). Le nombre et l'étendue géographique des populations échantillonnées sur lesquelles le COSEPAC (2010) disposait de données étaient limités : les différences génétiques entre les populations de l'UD 6 et de l'UD 3 n'ont pas été entièrement évaluées. Des données récentes provenant à la fois des ensembles de données sur les microsatellites et les 96 SNP indiquent qu'une rivière située à l'est de la péninsule nord (le ruisseau Beaver) est génétiquement similaire aux populations du nord-ouest par rapport à celles du nord-est, ce qui confirme la limite révisée.	Oui
Âge des saumoneaux	L'âge de la smoltification dans le nord-est (UD 3) est différent de celui du reste de Terre-Neuve.	Des âges plus avancés des saumoneaux ont été signalés pour les populations de la péninsule nord (est et ouest). L'âge des saumoneaux est légèrement plus avancé dans l'UD 6 que dans l'UD 3 (Kelly <i>et al.</i> en prép. ³).	Aucun soutien pour ou contre en raison de l'absence d'échantillonnage près de la limite proposée.
Géniteurs ayant frayé plusieurs fois	Cette partie de l'aire de répartition canadienne (nord-est de l'UD 3) présente l'incidence la plus élevée	Proportion plus élevée de géniteurs ayant frayé plusieurs fois dans les rivières échantillonnées de l'UD 3 que dans l'UD 6.	Aucun soutien pour ou contre en raison de l'absence d'échantillonnage près de la limite proposée.

Données	Différences proposées entre l'UD 3 et l'UD 6 (COSEPAC 2010)	Examen des éléments probants	Les données appuient- elles davantage la limite modifiée?
	de géniteurs ayant frayé plusieurs fois.		
Saumons pluriberrmarins	Certaines rivières du nord-ouest de l'UD 6 ont une petite composante de pluribermarins.	Petite composante de pluribermarins dans les rivières du nord-est (jusqu'à 4 %) et du nord-ouest (jusqu'à 6 %).	Ne fournit pas de soutien solide en raison de l'absence de différence claire entre les UD.
Géologie	L'habitat du nord-ouest de l'UD 6 pourrait être nettement plus alcalin que le reste de l'île de Terre-Neuve en raison de la géologie calcaire.	La nouvelle limite proposée correspondrait à une coupure géologique majeure (Honsberger <i>et al.</i> 2019), où l'UD 6 proposée serait caractérisée par une géologie généralement unique par rapport à l'UD 3 et à la plupart des autres régions de Terre-Neuve.	Oui
Génomique	SO. : Aucune donnée génomique n'avait été incluse dans l'examen du COSEPAC (2010).	Les différences génomiques soutiennent la limite modifiée, où le ruisseau Beaver est regroupé avec les sites de l'UD 6 et se sépare des sites de l'UD 3.	Oui
Climat	SO. : Les données climatiques n'avaient pas été incluses dans l'examen du COSEPAC (2010).	Différences climatiques importantes entre les rivières de l'UD 3 et de l'UD 6 en fonction de la limite modifiée. D'après l'analyse de redondance, l'UD 3 connaît des températures généralement plus élevées que l'UD 6.	Oui
FIGURES

Figure 1. Carte des 16 unités désignables (UD) reconnues pour le saumon atlantique d'après la dernière évaluation du COSEPAC en 2010. L'UD 11 (population du lac Ontario) est une population non anadrome disparue qui n'a pas été prise en compte dans notre analyse et n'est pas représentée sur la carte.

Figure 2. Carte des lieux d'échantillonnage pour les ensembles de données génétiques et génomiques; les lieux sont colorés en fonction des unités désignables (UD) reconnues de saumon atlantique d'après la dernière évaluation du COSEPAC en 2010. Les ensembles de données comprennent (A) 15 microsatellites, (B) 96 SNP et (C) 220 000 SNP et le séquençage du génome entier (SGE). La taille des points représente la taille relative de l'échantillon pour ce lieu. Des détails supplémentaires sur l'échantillonnage sont fournis dans les tableaux A1 à 3 de l'annexe.

Figure 3. Arbre de décision utilisé pour évaluer le caractère distinct et l'importance sur le plan de l'évolution des populations de saumon atlantique. Voir dans le corps du document les détails sur la façon dont l'arbre est appliqué dans notre analyse.

Figure 4. Cartes des résultats de STRUCTURE d'après (A) 101 microsatellites et (B) 96 SNP pour les rivières à saumon atlantique dans l'UD 2. Les graphiques circulaires montrent la proportion d'appartenance de chaque population (A) aux deux groupes génétiques (K=2) pour les microsatellites et (B) aux trois groupes génétiques (K=3) pour les SNP. Le contour des sites indique les populations qui se trouvent dans les limites des trois nouvelles UD proposées. Les abréviations des rivières et les informations sur l'échantillonnage se trouvent dans Bradbury et al. (2018) pour les microsatellites et dans le tableau A2 de l'annexe pour les 96 SNP.

Figure 5. Carte de la structure proposée des UD pour la région du Labrador. Chaque point représente une rivière de la base de données sur les rivières de l'Organisation pour la Conservation du Saumon de l'Atlantique Nord (OCSAN) et est coloré en fonction de l'UD proposée. Voir les noms des rivières et d'autres informations dans le tableau A5 de l'annexe.

Figure 6. Graphiques de STRUCTURE d'après (A) 15 microsatellites et (B) 96 SNP pour les rivières à saumon atlantique dans l'UD 6 (Nord-ouest de Terre-Neuve) et l'UD 3 (Nord-est de Terre-Neuve). Les couleurs indiquent la proportion d'appartenance aux groupes génétiques (K=2 à 4) pour chaque individu. Les lignes noires au-dessus des graphiques indiquent l'affectation précédente des rivières à l'UD 3 et à l'UD 6, les limites révisées étant indiquées en dessous par des lignes bleues. Les abréviations des rivières et les données d'échantillonnage pour les ensembles de données sur les 15 microsatellites et les 96 SNP se trouvent respectivement dans les tableaux A1 et A2 de l'annexe.

Figure 7. Cartes des résultats de STRUCTURE d'après (A, C) 15 microsatellites et (B, D) 96 SNP pour les rivières à saumon atlantique dans l'UD 3 et l'UD 6. Les graphiques circulaires montrent la proportion d'appartenance de chaque population (A, B) aux deux groupes génétiques (K=2) pour les microsatellites et (C, D) aux trois groupes génétiques (K=3) pour les SNP. Les abréviations des rivières et les données d'échantillonnage pour les ensembles de données sur les 15 microsatellites et les 96 SNP se trouvent respectivement dans les tableaux A1 et A2 de l'annexe.

Figure 8. Cartes des résultats de STRUCTURE d'après (A) 15 microsatellites et (B) 96 SNP pour les rivières à saumon atlantique dans l'UD 4. Les diagrammes circulaires montrent la proportion d'appartenance de chaque population aux trois groupes génétiques (K=3). La nouvelle subdivision proposée de l'UD près de la rivière Garnish (GAR) est indiquée par une ligne pointillée. Les abréviations des rivières et les données d'échantillonnage pour les ensembles de données sur les 15 microsatellites et les 96 SNP se trouvent respectivement dans les tableaux A1 et A2 de l'annexe.

Figure 9. Graphiques de STRUCTURE d'après (A) 15 microsatellites et (B) 96 SNP pour les rivières à saumon atlantique dans l'UD 7, l'UD 8 et l'UD 10. Les couleurs indiquent la proportion d'appartenance aux trois groupes génétiques (K=3) pour chaque individu. Les lignes noires audessus des graphiques indiquent l'affectation précédente des rivières à chaque UD, les limites modifiées étant indiquées en dessous par des lignes bleues. Les abréviations des rivières et les données d'échantillonnage pour les ensembles de données sur les 15 microsatellites et les 96 SNP se trouvent respectivement dans les tableaux A1 et A2 de l'annexe.

Figure 10. Cartes des résultats de STRUCTURE d'après (A) 15 microsatellites et (B) 96 SNP pour les rivières à saumon atlantique dans l'UD 7, l'UD 8 et l'UD 10. Les graphiques circulaires indiquent la proportion d'appartenance aux trois groupes génétiques (K=3) pour chaque individu. La limite révisée entre l'UD 10 et l'UD 8 est indiquée à l'est de la rivière Laval (LA). L'astérisque (*) au-dessus d'une population, la rivière de la Corneille (COR), indique que cette population a une signature génétique associée à l'UD voisine et nous proposons de déplacer ce site dans l'UD 7. Les abréviations des rivières et les données d'échantillonnage pour les ensembles de données sur les 15 microsatellites et les 96 SNP se trouvent respectivement dans les tableaux A1 et A2 de l'annexe.

Figure 11. Cartes des résultats de STRUCTURE d'après (A) 15 microsatellites et (B) 96 SNP pour les rivières à saumon atlantique dans l'UD 12. Les diagrammes circulaires montrent la proportion d'appartenance de chaque population aux deux groupes génétiques (K=2). La nouvelle subdivision proposée de l'UD divisant les régions de la Gaspésie et du golfe est indiquée par une ligne pointillée près de la rivière Restigouche. Les abréviations des rivières et les données d'échantillonnage pour les ensembles de données sur les 15 microsatellites et les 96 SNP se trouvent respectivement dans les tableaux A1 et A2 de l'annexe.

Figure 12. Cartes des résultats de STRUCTURE d'après (A) 15 microsatellites et (B) 96 SNP pour les rivières à saumon atlantique dans l'UD 14. Les graphiques circulaires montrent la proportion d'appartenance de chaque population (A) aux deux groupes génétiques (K=2) pour les microsatellites et (B) aux trois groupes génétiques (K=3) pour les SNP. La subdivision proposée de l'UD est indiquée par la ligne pointillée près de la rivière Musquodoboit (MSQ), qui est plus clairement soutenue par (A) les données sur les microsatellites. Les abréviations des rivières et les données d'échantillonnage pour les ensembles de données sur les 15 microsatellites et les 96 SNP se trouvent respectivement dans les tableaux A1 et A2 de l'annexe.

Figure 13. Carte des 19 UD proposées pour le saumon atlantique anadrome au Canada. Toutes les rivières à saumon d'après la base de données sur les rivières de l'OCSAN sont colorées en fonction de leur UD proposée. Deux rivières ont été placées dans une UD adjacente (les rivières de la Corneille et Gaspereau), ce qui entraîne des limites non contiguës des UD. Voir la justification de ces UD dans les tableaux 1 et 2, ainsi que dans le corps du document.

ANNEXE

Tableau A1 de l'annexe. Lieux d'échantillonnage pour l'ensemble de données sur les 15 microsatellites pour les rivières situées dans les unités désignables (UD) de saumon atlantique. Les coordonnées de l'emplacement et la taille de l'échantillon sont indiquées, ainsi que l'année d'échantillonnage et le stade biologique lorsque ces données étaient disponibles.

UD	Nom de la rivière	Code	Longitude	Latitude	Taille de l'échantillon	Année de l'échantillon	Stade biologique
1	Rivière George	GE	-66,17	58,82	48	2004	Adultes
1	Rivière aux Feuilles	AF	-70,07	58,77	50	2004	Adultes
1	Rivière Koksoak	KO	-68,17	58,53	50	2004	Adultes
2	Ruisseau Webbs	WBB	-61,93	56,80	43	2011	Tacons
2	Rivière Hunt	HUR	-60,67	55,57	28	2009	Tacons et saumoneaux
2	Rivière English	ENG	-59,75	54,97	99	2010	Tacons
2	Rivière Big	BIG	-58,94	54,84	94	2009	Tacons
2	Rivière Red Wine	RWR	-61,00	53,93	40	2009	Tacons
2	Ruisseau Muddy Bay	MBB	-57,07	53,64	106	2011 et 2004	Tacons et adultes
2	Cap Caribou	CAC	-60,42	53,62	76	2011	Tacons
2	Rivière Sandhill	SAN	-56,35	53,57	99	2010	Tacons
2	Rivière Sandhill	SHR	-56,35	53,57	50	2004	Adultes
2	Eagle	EAG	-57,47	53,53	176	2011	Adultes
2	Rivière Kenamu	KEN	-59,91	53,48	41	2009	Tacons
2	Ruisseau Southwest	PRB	-57,23	53,42	42	2011	Tacons
2	Rivière South Feeder	PRF	-57,23	53,42	40	2011	Tacons
2	Ruisseau South West	SW	-57,23	53,42	57	2004	Adultes
2	Rivière Traverspine	TSP	-60,28	53,28	10	2011	Tacons
2	Rivière Hawke	HWK	-56,06	53,03	31	2011	Tacons
2	Rivière Alexis	ALX	-56,53	52,60	81	2009	Tacons
2	Rivière Shinny	SHINNY	-56,34	52,59	65	2011	Tacons
2	Rivière St. Lewis	SLW	-56,17	52,43	64	2011	Tacons
2	Port Marum	PMR	-55,74	52,40	33	2011	Tacons
2	Mary's Harbour	MYH	-55,82	52,31	69	2011	Tacons

UD	Nom de la rivière	Code	Longitude	Latitude	Taille de l'échantillon	Année de l'échantillon	Stade biologique
2	Rivière St. Mary	SMR	-55,85	52,30	100	2010	Tacons
2	Rivière St. Charles	CHR	-55,84	52,23	60	2011	Tacons
2	Rivière Pinware	PIN	-56,69	51,63	100	2010	Tacons
2	Rivière L'Anse-au-Loup	LAL	-56,82	51,53	61	2011	Tacons
2	Rivière Forteau	FOR	-56,94	51,48	58	2011	Tacons
2	Rivière Saint-Paul	SPQ	-57,70	51,47	53	2004	Adultes
2	Rivière du Vieux Fort	VF	-58,02	51,32	49	2004	Adultes
2	Rivière Napetipi	NAP	-58,05	51,30	50	2004	Adultes
3	Ruisseau Beaver	BVB	-56,15	50,90	100	2009	Tacons
3	Rivière Main	MNR	-56,90	49,77	100	2010	Tacons
3	Rivière Campbellton – Bassin hydrographique de la rivière Campbellton	CMP	-54,92	49,28	50	2009	Tacons
3	Ruisseau Indian Arm – Bassin hydrographique de la rivière Campbellton	IAB	-54,92	49,28	50	2009	Tacons
3	Ruisseau Indian Bay	IBB	-53,88	49,04	99	2009	Tacons
3	Ruisseau Rocky – Bassin hydrographique de la rivière Exploits	RBR	-55,41	49,03	50	2009	Tacons
3	Rivière Salmon – Bassin hydrographique de la rivière Gander	SRN	-54,87	49,00	49	2009	Tacons
3	Ruisseau Badger – Bassin hydrographique de la rivière Exploits	BBR	-56,03	48,98	50	2009	Tacons
3	Ruisseau Great Rattling – Bassin hydrographique de la rivière Exploits	GRB	-55,55	48,97	98	2009	Tacons
3	Ruisseau Junction – Bassin hydrographique de la rivière Exploits	JUB	-56,02	48,97	50	2009	Tacons
3	Ruisseau Little Junction – Bassin hydrographique de la rivière Exploits	LJB	-56,02	48,97	50	2009	Tacons

UD	Nom de la rivière	Code	Longitude	Latitude	Taille de l'échantillon	Année de l'échantillon	Stade biologique
3	Rivière Gander/Ruisseau Soulis – Bassin hydrographique de la rivière Gander	GSB	-54,45	48,89	48	2009	Tacons
3	Rivière Terra Nova – Bassin hydrographique de la rivière Terra Nova	TNR	-54,00	48,67	100	2009	Tacons
4	Rivière Pipers Hole	PHR	-54,27	47,93	70	2009	Tacons
4	Ruisseau Southwest	SWB	-55,74	47,93	76	2002 et 2011	Tacons
4	Ruisseau Southeast	SBM	-55,74	47,92	76	2011	Tacons
4	Rivière North Harbour	NHR	-54,03	47,92	57	2011	Tacons
4	Rivière Conne	CNR	-55,70	47,91	137	1987 et 1988 et 2010	Tacons
4	Rivière Little	LRD	-55,70	47,85	82	2011	Tacons
4	Rivière Long Harbour	LHR	-54,94	47,82	68	2008	Tacons
4	Rivière LaPoile	LPR	-58,32	47,80	81	2008	Tacons
4	Rivière White Bear	WBR	-57,27	47,78	79	2008	Tacons
4	Rivière Grandy	GNR	-58,09	47,76	77	2011	Tacons
4	Ruisseau Northwest	NWB	-55,40	47,74	22	2002	Tacons
4	Rivière Bay du Nord	BDN	-55,44	47,73	188	2002, 2008 et 2011	Tacons
4	Ruisseau Dollard/Ruisseau Hare Bay	DHB	-56,58	47,73	78	2011	Tacons
4	Ruisseau Northeast	NEB	-55,36	47,73	24	2002	Tacons
4	Rivière Cinq Cerf	CCR	-58,15	47,70	80	2011	Tacons
4	Rivière Grey	GRR	-57,01	47,68	95	2008	Tacons
4	Ruisseau Simm	FBS	-55,48	47,67	73	2011	Tacons
4	Ruisseau Simm's	SMB	-55,48	47,67	20	2002	Tacons
4	Île Grady Burnt (en fait « île Great Burnt »)	GBI	-58,71	47,64	75	2011	Tacons
4	Ruisseau Rose Blanche	RBB	-58,70	47,62	75	2011	Tacons
4	Rivière Isle aux Morts	IAM	-59,01	47,59	75	2011	Tacons
4	Ruisseau Conne Mill	CMB	-55,59	47,59	77	2011	Tacons
4	Ruisseau Old Bay	OBB	-55,59	47,58	69	2011	Tacons
4	Rivière North Placentia	NPR	-53,80	47,29	101	2011	Tacons

UD	Nom de la rivière	Code	Longitude	Latitude	Taille de l'échantillon	Année de l'échantillon	Stade biologique
4	Rivière Garnish	GAR	-55,35	47,23	100	2009	Tacons
4	Rivière South Placentia	SPR	-53,88	47,23	73	2011	Tacons
4	Rivière Rocky	RKR	-53,57	47,22	100	2010	Tacons
4	Rivière Little Salmonier	LSR	-53,45	47,17	75	2011	Tacons
4	Rivière Salmonier	SLR	-53,45	47,17	92	2008	Tacons
4	Ruisseau Grand Bank	GBB	-55,75	47,10	100	2009	Tacons
4	Rivière Big Barachois	BBA	-53,78	47,05	68	2011	Tacons
4	Rivière Big Barachois	BSB	-53,28	46,79	73	2011	Tacons
4	Ruisseau Northeast (Trepassey)	NBT	-53,35	46,77	261	2010 et 2011	Tacons
4	Ruisseau Northwest (Trepassey)	NWT	-53,39	46,76	88	2011	Tacons
4	Rivière St. Shotts	STS	-53,58	46,64	75	2011	Tacons
5	Ruisseau Taylors – Bassin hydrographique de la rivière Humber	ТҮВ	-57,10	49,55	50	2009	Tacons
5	Ruisseau Dead Water – Bassin hydrographique de la rivière Humber	DWB	-57,32	49,40	50	2009	Tacons
5	Ruisseau Pinchgut – Bassin hydrographique de la rivière Harry's	PGB	-58,10	48,79	50	2009	Tacons
5	Ruisseau Black Duck – Bassin hydrographique de la rivière Harry's	BDB	-58,39	48,56	50	2009	Tacons
5	Ruisseau Flat Bay	FLB	-58,58	48,41	96	2009	Tacons
5	Rivière Middle Barachois	MBA	-58,83	48,24	98	2009	Tacons
5	Bassin hydrographique du ruisseau Grand Codroy	COD	-59,25	47,85	96	2009	Tacons
6	Ruisseau Western Arm	WAB	-56,76	51,19	99	2009	Tacons
6	Rivière Ste. Genevieve – Bras principal – Bassin hydrographique de la rivière Ste. Genevieve	SGR	-56,80	51,14	50	2009	Tacons
6	Roses Feeder – Bassin hydrographique de la rivière St. Genevieve	ROF	-56,62	51,13	50	2009	Tacons
6	Rivière Big East	BER	-57,17	50,63	99	2009	Tacons

UD	Nom de la rivière	Code	Longitude	Latitude	Taille de l'échantillon	Année de l'échantillon	Stade biologique
6	River of Ponds	ROP	-57,39	50,54	100	2009	Tacons
6	Rivière Lomond	LOM	-57,73	49,43	100	2009	Tacons
7	Rivière du Gros Mécatina	MEC	-59,08	50,77	50	2004	Adultes
7	Rivière Étamamiou	ET	-59,97	50,27	48	2004	Adultes
7	Rivière Musquaro	MUQ	-61,07	50,20	50	2004	Adultes
8	Rivière de la Corneille	COR	-62,88	50,28	60	2004	Adultes
8	Rivière Saint-Jean (Côte-Nord)	SJQ8	-64,33	50,28	50	2004	Adultes
8	Rivière Watshishou	WAT	-62,65	50,28	42	2004	Adultes
8	Rivière Aganus	AG	-62,10	50,22	48	2004	Adultes
8	Rivière Moisie	MOI	-66,07	50,20	68	2004	Adultes
8	Rivière Natashquan	NAT	-61,80	50,12	50	2004	Adultes
8	Rivière aux Rochers	ARO	-66,92	50,00	50	2004	Adultes
8	Rivière Trinité	TRI	-67,30	49,42	50	2004	Adultes
8	Rivière Godbout	GO	-67,60	49,30	50	2004	Adultes
8	Rivière aux Anglais	ANG	-68,12	49,27	45	2004	Adultes
8	Rivière Laval	LA	-69,05	48,77	50	2004	Adultes
9	Rivière Jupiter	JU	-63,58	49,47	50	2004	Adultes
9	Rivière aux Saumons	SU	-62,23	49,42	44	2004	Adultes
9	Rivière Chaloupe	СН	-62,53	49,13	46	2004	Adultes
10	Rivière Sainte-Marguerite	SM	-69,93	48,25	36	2004	Adultes
10	Rivière Petit-Saguenay	PS	-70,08	48,22	34	2004	Adultes
10	Rivière Malbaie	MAL	-70,13	47,65	50	2004	Adultes
10	Rivière du Gouffre	DG	-70,48	47,43	48	2004	Adultes
10	Rivière Ouelle	OU	-70,03	47,42	39	2004	Adultes
10	Rivière Jacques-Cartier	JC	-71,73	46,67	50	2004	Adultes
12	Rivière Madeleine	MAD	-65,32	49,23	49	2004	Adultes
12	Rivière Sainte-Anne	SA	-66,50	49,12	44	2004	Adultes
12	Rivière Cap-Chat	CC	-66,83	49,08	46	2004	Adultes
12	Rivière Dartmouth	DA	-64,55	48,87	50	2004	Adultes

UD	Nom de la rivière	Code	Longitude	Latitude	Taille de l'échantillon	Année de l'échantillon	Stade biologique
12	Rivière Matane	MAT	-67,53	48,85	50	2004	Adultes
12	Rivière York	YO	-64,55	48,80	50	2004	Adultes
12	Rivière Saint-Jean (Gaspésie)	SJQ2	-64,43	48,77	35	2004	Adultes
12	Rivière Mitis	MIT	-68,13	48,62	49	2004	Adultes
12	Rivière Causapscal1	CAU	-67,22	48,35	50	2004	Adultes
12	Rivière Grand Pabos	GP	-64,70	48,33	44	2004	Adultes
12	Rivière Grande Cascapédia	CS	-65,90	48,20	38	2004	Adultes
12	Rivière Petite Cascapédia	PCS	-65,85	48,15	67	2004	Adultes
12	Rivière Bonaventure	BO	-65,45	48,03	50	2004	Adultes
12	Rivière Restigouche	RES	-66,75	48,00	34	2004	Adultes
12	Rivière Matapédia1	MAP	-66,95	47,97	50	2004	Adultes
12	Rivière Jacquet	JT	-66,02	47,92	50	2010	Adultes
12	Rivière Upsalquitch 1*1	UP	-66,95	47,87	50	2004	Adultes
12	Rivière Upsalquitch 2*1	Up	-66,95	47,87	37	2004	Adultes
12	Rivière Patapédia1	PA	-67,37	47,84	47	2004	Adultes
12	Rivière Restigouche	RKRKED	-67,51	47,67	58	2004	Adultes
12	Rivière Restigouche	Um	-66,78	47,67	49	-	-
12	Rivière Little Main1	LMm	-67,49	47,65	8	2004	Adultes
12	Rivière Little Main1	LMp	-67,49	47,65	50	2004	Adultes
12	Rivière Tabusintac	ТВ	-65,10	47,34	50	2010	Adultes
12	Miramichi (barrière NO.) 2	MIRNWB	-66,24	47,25	50	2010	Adultes
12	Rivière Miramichi (Petite Sud- Ouest) 2	LSW	-66,53	46,97	50	2010	Adultes
12	Rivière Miramichi	NOm	-65,83	46,96	63	-	-
12	Rivière Miramichi	NOp	-65,83	46,96	46	-	-
12	Miramichi (NO.) 2	SOp	-65,77	46,94	51	2010	Adultes
12	Miramichi (SO.) 2	SOm	-65,67	46,87	57	2010	Adultes
12	Rivière Kouchibouguac	KC	-65,02	46,79	33	2010	Tacons
12	Rivière Kouchibouguacis	KC6	-64,98	46,74	9	2010	Adultes
12	Rivière Mill	MIL	-64,17	46,74	32	2010	Tacons

UD	Nom de la rivière	Code	Longitude	Latitude	Taille de l'échantillon	Année de l'échantillon	Stade biologique
12	Rivière Miramichi (Dungarvon) 2	DUN	-66,51	46,71	50	2010	Adultes
12	Rivière Richibouctou	RC	-64,86	46,67	20	2010	Adultes
12	Rivière Miramichi (Clearwater) 2	CLW	-66,72	46,59	50	2010	Adultes
12	Rivière Cross	CRO	-62,26	46,48	30	2010	Tacons
12	Ruisseau North Lake	NLC	-62,07	46,47	29	2010	Tacons
12	Rivière Margaree	MRG	-61,10	46,43	49	2001	Tacons
12	Rivière Morell	MOR	-62,69	46,42	50	2010	Tacons
12	Rivière Cocagne	COC	-64,72	46,31	44	2010	Tacons
12	Rivière West	WE	-63,16	46,21	37	2010	Tacons
12	Rivière Mabou	MAB	-61,41	46,09	80	2006	Tacons
12	Rivière Mabou 1*	MU	-61,41	46,09	50	2010	Tacons
12	Rivière Phillip	PH	-63,90	45,68	27	2010	Adultes
12	Rivière West (Antigonish)	ANW	-61,96	45,62	50	2010	Tacons
12	Rivière East (Pictou)	PE	-62,65	45,62	31	2010	Tacons
13	Rivière North Aspy	NRA	-60,53	46,89	44	2006	Tacons
13	Rivière North (comté de Victoria)	NRV	-60,62	46,30	73	2006	Tacons
13	Rivière Baddeck	BAD	-60,84	46,10	52	2010	Tacons
13	Rivière Middle (comté de Victoria)	MDV	-60,91	46,08	73	2006	Tacons
13	Rivière Indian (Eskasoni)	ESK	-60,60	45,94	52	2007	Tacons
13	Rivière Grand	GRA	-60,66	45,64	53	2010	Tacons
13	Rivière Inhabitants	INH	-61,23	45,60	53	2010	Tacons
14	Rivière Salmon (comté de Guysborough)	SAG	-61,51	45,35	30	2009	Tacons
14	Rivière St. Mary's East	smE	-62,06	45,31	59	2007	Tacons
14	Rivière St. Mary's West	smW	-62,06	45,25	41	2007	Tacons
14	Rivière Country Harbour	COU	-61,69	45,16	42	2000	Tacons
14	Rivière Saint Mary's	SMA	-61,95	45,08	78	2000	Tacons
14	Rivière Moser	MOS	-62,25	44,97	58	2000	Tacons
14	Rivière Musquodoboit	MSQ	-63,13	44,79	53	2000	Tacons
14	Rivière Round Hill	ROH	-65,43	44,77	28	2000	Tacons

UD	Nom de la rivière	Code	Longitude	Latitude	Taille de l'échantillon	Année de l'échantillon	Stade biologique
14	Rivière Gold	GLD	-64,32	44,55	84	2001	Tacons
14	Rivière LaHave	LAH	-64,50	44,37	49	2000	Tacons
14	Rivière Medway	MED	-64,63	44,13	83	2001	Tacons
14	Rivière Salmon (comté de Digby)	SAD	-66,15	44,05	44	2000	Tacons
14	Rivière Tusket	TSK	-65,98	43,86	60	1999	Tacons
15	Rivière Upper Salmon (Nouveau- Brunswick)	USR	-64,95	45,60	55	2001	Tacons
15	Rivière Pointe Wolfe	PWF	-65,02	45,55	46	2002	Tacons ou saumoneaux
15	Rivière Big Salmon	BSR	-65,41	45,42	81	2001	Tacons
15	Rivière Great Village	GRV	-63,61	45,39	37	2001	Tacons
15	Rivière Economy	ECO	-63,91	45,38	30	2001	Tacons
15	Rivière Stewiacke	STW	-63,38	45,14	82	2001	Tacons
15	Rivière Gaspereau (comté de Kings)	GAK	-64,27	45,10	66	2002	Tacons
16	Rivière Tobique	TOB	-67,70	46,77	84	2000 et 2001	Tacons
16	Rivière Nashwaak	NSH	-66,62	45,96	70	2000	Tacons
États-Unis	Rivière Narraguagus (Maine)	NGR	-67,92	44,60	119	2012 et 2013	-
États-Unis	Rivière Penobscot (États-Unis)	PEN	-68,80	44,52	100	2000 et 2001	Adultes
États-Unis	Rivière Sheepscot (Maine)	SHP	-69,69	43,80	119	2012 et 2013	-

Tableau A2 de l'annexe. Lieux d'échantillonnage pour l'ensemble de données sur les 96 SNP pour les rivières situées dans les unités désignables (UD) de saumon atlantique. Les coordonnées de l'emplacement, la source des données et la taille de l'échantillon sont indiquées, ainsi que l'année d'échantillonnage et le stade biologique lorsque ces données étaient disponibles.

UD du COSEPAC (2010)	Nom de la rivière	Code de la population	Latitude	Longitude	Taille de l'échantillon	Source des données	Année	Stade biologique
UD 1	Rivière George	GE	58,82	-66,17	18	Moore <i>et al</i> . 2014	2004	Adultes
UD 1	Rivière aux Feuilles	AF	58,77	-70,07	25	Moore <i>et al.</i> 2014	2004	Adultes
UD 1	Rivière Koksoak	KOK	58,53	-68,17	25	Moore <i>et al</i> . 2014	2004	Adultes
UD 2	Ruisseau Webbs	WBB	56,80	-61,91	31	Jeffery <i>et al</i> . 2018	2011	Tacons
UD 2	Rivière Hunt	HU	55,57	-60,67	20	Moore <i>et al</i> . 2014	2009	Tacons et saumoneaux

UD du COSEPAC (2010)	Nom de la rivière	Code de la population	Latitude	Longitude	Taille de l'échantillon	Source des données	Année	Stade biologique
UD 2	Rivière 72	R72	55,12	-60,10	50	Inédites	2017	Tacons
UD 2	Ruisseau Makkovik	MKB	55,05	-59,16	47	Inédites	2017	Tacons
UD 2	Rivière English	ENG	54,97	-59,75	33	Jeffery <i>et al</i> . 2018	2010	Tacons
UD 2	Rivière Makkovik	MKR	54,96	-59,43	50	Inédites	2017	Tacons
UD 2	Ruisseau Adlavik	ADL	54,84	-59,14	49	Inédites	2017	Tacons
UD 2	Rivière Big	BIG	54,84	-58,94	26	Jeffery <i>et al</i> . 2018	2009	Tacons
UD 2	Ruisseau Rattling	RAT	54,78	-58,95	50	Inédites	2017	Tacons
UD 2	Rivière Pamiulik	PAM	54,72	-58,58	46	Inédites	2017	Tacons
UD 2	Ruisseau Jeanette Bay	JBB	54,72	-58,09	42	Inédites	2017	Tacons
UD 2	Ruisseau South	SBR	54,71	-59,91	47	Inédites	2017	Tacons
UD 2	Rivière Michael	MIC	54,67	-57,84	50	Inédites	2017	Tacons
UD 2	Pottle's Bay	PBB	54,48	-57,73	21	Inédites	2016	Tacons
UD 2	Ruisseau West	WBL	54,40	-58,10	20	Inédites	2016	Tacons
UD 2	Rivière Tom Luscombe	ТОМ	54,34	-58,55	20	Inédites	2016	Tacons
UD 2	Ruisseau Main	MB	54,24	-57,87	21	Sylvester <i>et al</i> . 2018	2013 ou 2014	Tacons
UD 2	Partridge Point	PPB	54,10	-59,48	21	Inédites	2016	Tacons
UD 2	Rivière Double Mer	DBL	54,02	-59,65	21	Inédites	2016	Tacons
UD 2	Rivière Red Wine	RW	53,93	-61,00	22	Sylvester <i>et al</i> . 2018	2013 ou 2014	Tacons
UD 2	Rivière Mulligan	MU	53,87	-60,09	21	Sylvester <i>et al</i> . 2018	2013 ou 2014	Tacons
UD 2	Rivière Crooked	CR	53,87	-60,83	21	Sylvester <i>et al</i> . 2018	2013 ou 2014	Tacons
UD 2	Rivière Sebaskachu	SK	53,79	-60,14	22	Sylvester <i>et al</i> . 2018	2013 ou 2014	Tacons
UD 2	Rivière Susan	SR	53,74	-61,04	22	Sylvester <i>et al</i> . 2018	2013 ou 2014	Tacons
UD 2	Ruisseau Muddy Bay	MBB	53,64	-57,07	34	Jeffery <i>et al</i> . 2018	2011	Tacons
UD 2	Cap Caribou	СВ	53,62	-60,42	21	Sylvester et al. 2018	2013 ou 2014	Tacons
UD 2	Rivière Sand Hill	SH	53,57	-56,35	20	Sylvester et al. 2018	-	-
UD 2	Rivière Eagle	EA	53,53	-57,47	22	Sylvester <i>et al</i> . 2018	2011	Tacons
UD 2	Rivière Kenamu	KE	53,48	-59,91	22	Sylvester <i>et al</i> . 2018	2013 ou 2014	Tacons
UD 2	Rivière Paradise	PA	53,42	-57,25	20	Sylvester <i>et al.</i> 2018	2011	Tacons

UD du COSEPAC (2010)	Nom de la rivière	Code de la population	Latitude	Longitude	Taille de l'échantillon	Source des données	Année	Stade biologique
UD 2	Ruisseau Southwest	SW	53,42	-57,23	25	Moore <i>et al</i> . 2014	2004	Adultes
UD 2	Rivière Peter's	PR	53,34	-60,71	21	Sylvester et al. 2018	2013 ou 2014	Tacons
UD 2	Rivière Kenemich	KNM	53,32	-59,82	20	Inédites	2016	Tacons
UD 2	Rivière Traverspine	TR	53,28	-60,28	22	Sylvester et al. 2018	2013 ou 2014	Tacons
UD 2	Rivière Caroline	CL	53,25	-60,42	20	Sylvester et al. 2018	2013 ou 2014	Tacons
UD 2	Rivière Hawke	HWK	53,03	-56,06	31	Jeffery <i>et al</i> . 2018	2011	Tacons
UD 2	Rivière Alexis	ALX	52,60	-56,53	34	Jeffery <i>et al</i> . 2018	2009	Tacons
UD 2	Rivière Shinnys	SHR	52,59	-56,34	34	Jeffery <i>et al</i> . 2018	2011	Tacons
UD 2	Rivière St. Lewis	SLW	52,43	-56,17	34	Jeffery <i>et al</i> . 2018	2011	Tacons
UD 2	Port Marum	PMR	52,40	-55,74	33	Jeffery <i>et al</i> . 2018	2011	Tacons
UD 2	Rivière Saint-Charles	CHR	52,23	-55,84	34	Jeffery <i>et al</i> . 2018	2011	Tacons
UD 2	Rivière Pinware	PIN	51,63	-56,69	34	Jeffery <i>et al</i> . 2018	2010	Tacons
UD 2	Rivière L'Anse-au- Loup	LL	51,53	-56,82	22	Sylvester <i>et al</i> . 2018	2011	Tacons
UD 2	Rivière Forteau	FOR	51,48	-56,94	34	Moore <i>et al</i> . 2014	2011	Tacons
UD 2	Rivière St Paul	STP	51,47	-57,70	25	Bourret et al. 2013	2004	-
UD 2	Rivière du Vieux Fort	VF	51,32	-58,02	25	Moore <i>et al</i> . 2014	2004	Adultes
UD 2	Rivière Napetipi	NAP	51,30	-58,05	25	Moore <i>et al</i> . 2014	2004	Adultes
UD 3	Ruisseau Beaver	BVB	50,90	-56,15	34	Jeffery <i>et al</i> . 2018	2009	Tacons
UD 3	Ruisseau Sops Arm – Rivière Main	MNR	49,77	-56,90	34	Jeffery <i>et al</i> . 2018	2010	Tacons
UD 3	Campbellton (également IAB)	CMP	49,28	-54,92	20	Bradbury <i>et al</i> . 2015	2009	Tacons
UD 3	Ruisseau Indian Arm	IAB	49,28	-54,92	34	Jeffery <i>et al.</i> 2018	2009	Tacons
UD 3	Ruisseau Indian Bay	IBB	49,04	-53,88	34	Jeffery <i>et al</i> . 2018	2009	Tacons
UD 3	Rivière Exploits – Ruisseau Junction	JUB	49,03	-55,41	34	Jeffery <i>et al</i> . 2018	2009	Tacons
UD 3	Rivière Salmon à Terre-Neuve (aussi appelée ruisseau Salmon dans le bassin	SRN	49,00	-54,89	31	Jeffery <i>et al</i> . 2018	2009	Tacons

UD du COSEPAC (2010)	Nom de la rivière	Code de la population	Latitude	Longitude	Taille de l'échantillon	Source des données	Année	Stade biologique
	hydrographique de la rivière Gander)							
UD 3	Ruisseau Great Rattli ng – Rivière Exploits	GRB	48,97	-55,55	34	Jeffery <i>et al</i> . 2018	2009	Tacons
UD 3	Rivière Terra Nova	TNR	48,67	-54,00	34	Jeffery <i>et al</i> . 2018	2009	Tacons
UD 4	Rivière Come by Chance	CBC	47,97	-53,96	30	Inédites	2017	Tacons
UD 4	Ruisseau Pipers Hole	PHR	47,93	-54,27	34	Jeffery <i>et al.</i> 2018; inédites	2009 et 2017	Tacons
UD 4	Ruisseau Southwest, Milltown	SWB	47,93	-55,74	33	Jeffery <i>et al</i> . 2018	2011	Tacons
UD 4	Rivière Conne	CNR	47,91	-55,70	21	Bradbury <i>et al</i> . 2015	2010	Tacons
UD 4	Rivière Black	BLA	47,89	-54,17	24	Inédites	2017	Tacons
UD 4	Rivière Long Harbour	LHR	47,82	-54,94	20	Bradbury <i>et al</i> . 2015	2008	Tacons
UD 4	Rivière La Poile	LPR	47,80	-58,32	20	Bradbury et al. 2015	2008	Tacons
UD 4	Rivière White Bear	WBR	47,78	-57,27	31	Jeffery <i>et al</i> . 2018	2008	Tacons
UD 4	Rivière Bay du Nord	BDN	47,73	-55,44	18	Bradbury <i>et al</i> . 2015	2008	Tacons
UD 4	Rivière Dollards	DHB	47,73	-56,58	34	Bradbury <i>et al</i> . 2015	2011	Tacons
UD 4	Rivière Sandy Harbour	SHA	47,71	-54,36	30	Inédites	2017	Tacons
UD 4	Ruisseau Cinq Cerf	CCR	47,70	-58,15	34	Jeffery <i>et al</i> . 2018	2011	Tacons
UD 4	Rivière Grey	GRR	47,68	-57,01	20	Bradbury <i>et al</i> . 2015	2008	Tacons
UD 4	Ruisseau Simmons	SMB	47,65	-55,48	34	Jeffery <i>et al</i> . 2018	2002 et 2014	Tacons
UD 4	Ruisseau Grandys	GNR	47,62	-58,84	34	Jeffery <i>et al</i> . 2018	2011	Tacons
UD 4	Ruisseau Rose Blanche	RBB	47,62	-58,70	34	Jeffery <i>et al</i> . 2018	2011	Tacons
UD 4	Rivière Isle aux Morts	IAM	47,59	-59,01	34	Jeffery <i>et al</i> . 2018	2011	Tacons
UD 4	Ruisseau Old	OBB	47,58	-55,59	34	Jeffery <i>et al</i> . 2018	2011	Tacons
UD 4	Ruisseau Fair Haven	FHB	47,54	-53,89	30	Inédites	2017	Tacons
UD 4	Rivière Bay de l'Eau	BDL	47,51	-54,73	30	Inédites	2017	Tacons
UD 4	Rivière Nonsuch	NON	47,45	-54,64	28	Inédites	2017	Tacons
UD 4	Ruisseau Cape Roger	CRB	47,44	-54,69	30	Inédites	2017	Tacons

UD du COSEPAC (2010)	Nom de la rivière	Code de la population	Latitude	Longitude	Taille de l'échantillon	Source des données	Année	Stade biologique
UD 4	Rivière Rushoon	RUS	47,37	-54,92	25	Inédites	2017	Tacons
UD 4	Ruisseau Ship Harbour	SHI	47,35	-53,87	22	Inédites	2017	Tacons
UD 4	Rivière Red Harbour, est	RHA	47,33	-54,99	30	Inédites	2017	Tacons
UD 4	Rivière Red Harbour, ouest	RHW	47,30	-55,02	29	Inédites	2017	Tacons
UD 4	Rivière Northeast, Placentia	NPR	47,29	-53,80	18	Bradbury <i>et al.</i> 2015; inédites	2011 et 2017	Tacons
UD 4	Rivière Garnish	GAR	47,23	-55,35	22	Bradbury <i>et al</i> . 2015	2009	Tacons
UD 4	Rivière Southeast Placentia	SPR	47,23	-53,88	27	Inédites	2017	Tacons
UD 4	Rivière Rocky	RKR	47,22	-53,57	40	Bradbury <i>et al</i> . 2015	2010	Tacons
UD 4	Ruisseau Little Barasway	LBB	47,18	-54,03	16	Inédites	2017	Tacons
UD 4	Ruisseau Northwest (baie Mortier)	NMB	47,17	-55,32	28	Inédites	2017	Tacons
UD 4	Rivière Salmonier	LSR	47,17	-53,45	19	Bradbury <i>et al</i> . 2015	2011	Tacons
UD 4	Ruisseau Tides	TDS	47,13	-55,26	17	Inédites	2017	Tacons
UD 4	Ruisseau Great Barasway	GBW	47,12	-54,06	18	Inédites	2017	Tacons
UD 4	Ruisseau Big Salmonier	BSA	47,06	-55,22	30	Inédites	2017	Tacons
UD 4	Rivière Big Barachois	BBA	47,05	-53,78	34	Jeffery <i>et al</i> . 2018	2011	Tacons
UD 4	Ruisseau Cuslett	CUS	46,96	-54,16	30	Inédites	2017	Tacons
UD 4	Rivière Lawn	LWN	46,95	-55,54	28	Inédites	2017	Tacons
UD 4	Rivière Branch	BRA	46,89	-53,97	30	Inédites	2017	Tacons
UD 4	Ruisseau Piercey's	PBR	46,88	-55,86	30	Inédites	2017	Tacons
UD 4	Ruisseau Taylor Bay (Péninsule Burin)	TBR	46,88	-55,71	22	Inédites	2017	Tacons
UD 4	Rivière Lance	LAN	46,82	-54,07	9	Inédites	2017	Tacons
UD 4	Rivière Biscay Bay	BSB	46,79	-53,28	20	Bradbury <i>et al</i> . 2015	2011	Tacons
UD 4	Ruisseau Northeast (Trepassey)	NBT	46,77	-53,35	20	Bradbury <i>et al</i> . 2015	2010	Tacons
UD 4	Rivière St Shotts	STS	46,64	-53,58	33	Jeffery <i>et al</i> . 2018	2011	Tacons

UD du COSEPAC (2010)	Nom de la rivière	Code de la population	Latitude	Longitude	Taille de l'échantillon	Source des données	Année	Stade biologique
UD 5	Rivière Humber	TYB	49,55	-57,10	34	Jeffery <i>et al</i> . 2018	2009	Tacons
UD 5	Rivière Harrys – Pinchgut	PGB	48,79	-58,10	34	Jeffery <i>et al</i> . 2018	2009	Tacons
UD 5	Ruisseau Flat Bay	FLB	48,41	-58,58	33	Jeffery <i>et al</i> . 2018	2009	Tacons
UD 5	Rivière Middle Barachois	MBA	48,24	-58,83	34	Jeffery <i>et al</i> . 2018	2009	Tacons
UD 5	Rivière Little Codroy	COD	47,77	-59,27	33	Jeffery <i>et al</i> . 2018	2009	Tacons
UD 6	Ruisseau Western Arm	WAB	51,19	-56,76	20	Jeffery <i>et al</i> . 2018	-	-
UD 6	Rivière St. Genevieve	SGR	51,14	-56,80	16	Jeffery <i>et al</i> . 2018	2009	Tacons
UD 6	Rivière Big East	BER	50,63	-57,17	34	Jeffery <i>et al</i> . 2018	2009	Tacons
UD 6	River of Ponds	ROP	50,54	-57,39	34	Jeffery <i>et al</i> . 2018	2009	Tacons
UD 6	Rivière Lomond	LOM	49,43	-57,73	34	Jeffery <i>et al.</i> 2018	2009	Tacons
UD 7	Rivière Kecarpoui	KEC	51,09	-58,85	21	Jeffery <i>et al</i> . 2018	-	-
UD 7	Rivière du Gros Mécatina	MEC	50,77	-59,08	25	Bourret <i>et al</i> . 2013; Moore <i>et al</i> . 2014	2004	-
UD 7	Rivière Étamamiou	ET	50,27	-59,97	25	Moore <i>et al</i> . 2014	2004	Adultes
UD 7	Rivière Musquanousse	MUS	50,22	-60,95	15	Moore <i>et al.</i> 2014	-	-
UD 7	Rivière Musquaro	MUQ	50,20	-61,07	25	Moore <i>et al</i> . 2014	2004	Adultes
UD 8	Rivière de la Corneille	COR	50,28	-62,88	32	Jeffery <i>et al</i> . 2018	2004	Adultes
UD 8	Rivière Watshishou	RWA	50,28	-62,65	40	Jeffery <i>et al.</i> 2018	2004	Adultes
UD 8	Rivière Saint-Jean (Côte-Nord)	SJQ8	50,28	-64,33	24	Moore <i>et al</i> . 2014	2004	Adultes
UD 8	Rivière Aguanus	AGU	50,22	-62,10	33	Jeffery <i>et al</i> . 2018	-	-
UD 8	Rivière Moisie	MOI	50,20	-66,07	25	Moore <i>et al</i> . 2014	2004	Adultes
UD 8	Rivière Natashquan	NAT	50,12	-61,80	25	Moore <i>et al</i> . 2014	2004	Adultes
UD 8	Rivière aux Rochers	ARO	50,00	-66,92	40	Jeffery <i>et al</i> . 2018	2004	Adultes
UD 8	Rivière Trinité	TRI	49,42	-67,30	25	Moore <i>et al</i> . 2014	2004	Adultes
UD 8	Rivière Godbout	GOD	49,30	-67,60	40	Jeffery <i>et al</i> . 2018	2004	Adultes
UD 8	Rivière aux Anglais	AUA	49,27	-68,12	40	Jeffery <i>et al</i> . 2018	2004	Adultes
UD 8	Rivière Laval	LAV	48,77	-69,05	39	Jeffery <i>et al.</i> 2018	2004	Adultes

UD du COSEPAC (2010)	Nom de la rivière	Code de la population	Latitude	Longitude	Taille de l'échantillon	Source des données	Année	Stade biologique
UD 8	Rivière des Escoumins	ESC	48,35	-69,41	19	Jeffery <i>et al</i> . 2018	-	-
UD 9	Rivière aux Saumons	SU	49,42	-62,23	24	Moore <i>et al</i> . 2014	2004	Adultes
UD 9	Rivière Chaloupe	CHA	49,13	-62,53	23	Bourret <i>et al</i> . 2013	2004	-
UD 10	Rivière Sainte- Marguerite	SM	48,25	-69,93	25	Moore <i>et al.</i> 2014	2004	Adultes
UD 10	Rivière Petit- Saguenay	PSA	48,22	-70,08	34	Jeffery <i>et al.</i> 2018	2004	Adultes
UD 10	Rivière Malbaie	ML	47,65	-70,13	19	Moore <i>et al</i> . 2014	2004	Adultes
UD 10	Rivière du Gouffre	DG	47,43	-70,48	25	Bourret <i>et al</i> . 2013; Moore <i>et al</i> . 2014	2004	-
UD 10	Rivière Ouelle	OUE	47,42	-70,03	29	Jeffery <i>et al</i> . 2018	2004	Adultes
UD 12	Rivière Madeleine	MAD	49,23	-65,32	40	Jeffery <i>et al</i> . 2018	2004	Adultes
UD 12	Rivière Sainte-Anne	SA	49,12	-66,50	25	Moore <i>et al</i> . 2014	2004	Adultes
UD 12	Rivière Matane	ТМ	48,85	-67,53	25	Moore <i>et al</i> . 2014	2004	Adultes
UD 12	Rivière York	YOR	48,80	-64,55	40	Jeffery <i>et al</i> . 2018	2004	Adultes
UD 12	Rivière Saint-Jean (Gaspésie)	SJQ2	48,77	-64,43	25	Moore <i>et al</i> . 2014	2004	Adultes
UD 12	Rivière Mitis	MIT	48,62	-68,13	29	Jeffery <i>et al</i> . 2018	2004	Adultes
UD 12	Rivière Causapscal	CAU	48,35	-67,22	40	Jeffery <i>et al</i> . 2018	2004	Adultes
UD 12	Rivière Grand Pabos	GPA	48,33	-64,70	40	Jeffery <i>et al</i> . 2018	2004	Adultes
UD 12	Rivière Cascapédia	CAS	48,20	-65,90	40	Jeffery <i>et al</i> . 2018	2004	Adultes
UD 12	Rivière Grande Cascapédia	CS	48,20	-65,90	25	Moore <i>et al.</i> 2014	2004	Adultes
UD 12	Rivière Bonaventure	BON	48,03	-65,45	37	Jeffery <i>et al</i> . 2018	2004	Adultes
UD 12	Rivière Restigouche – Petite Main – M	RLM	47,99	-66,89	8	Jeffery <i>et al</i> . 2018	2004	Adultes
UD 12	Rivière Restigouche – Petite Main – P	RLP	47,99	-66,89	40	Jeffery <i>et al</i> . 2018	2004	Adultes
UD 12	Rivière Matapédia	MAP	47,97	-66,95	25	Bourret <i>et al.</i> 2013	2004	-
UD 12	Rivière Jacquet	JT	47,92	-66,02	20	Moore <i>et al</i> . 2014	2010	Adultes
UD 12	Rivière Patapédia	PAT	47,83	-67,37	40	Jeffery <i>et al</i> . 2018	2004	Adultes
UD 12	Rivière Restigouche – Upsalquitch – M	RUM	47,83	-66,88	40	Jeffery <i>et al</i> . 2018	2004	Adultes

UD du COSEPAC (2010)	Nom de la rivière	Code de la population	Latitude	Longitude	Taille de l'échantillon	Source des données	Année	Stade biologique
UD 12	Rivière Restigouche – Upsalquitch – P	RUP	47,83	-66,88	39	Jeffery <i>et al</i> . 2018	2004	Adultes
UD 12	Rivière Upsalquitch	UPS	47,83	-66,88	40	Jeffery <i>et al</i> . 2018	2004	Adultes
UD 12	Rivière Restigouche – Kedgewick – M	RKM	47,74	-67,43	10	Jeffery <i>et al</i> . 2018	2004	Adultes
UD 12	Rivière Restigouche – Kedgewick – P	RKP	47,74	-67,43	13	Jeffery <i>et al</i> . 2018	2004	Adultes
UD 12	Rivière Tabusintac	TAB	47,34	-64,95	40	Jeffery <i>et al</i> . 2018	2010	Adultes
UD 12	Barrière NO. rivière Miramichi Nord-Ouest	NNB	47,09	-65,35	40	Jeffery <i>et al</i> . 2018	2010	Adultes
UD 12	Rivière Miramichi Nord-Ouest, Petite Miramichi Sud-Ouest	NLS	47,06	-65,30	40	Jeffery <i>et al.</i> 2018	2010	Adultes
UD 12	Rivière Miramichi	MIR	46,87	-65,67	25	Moore <i>et al</i> . 2014	2010	Adultes
UD 12	Rivière Kouchibouguac	KOU	46,79	-65,02	30	Jeffery <i>et al</i> . 2018	2010	Tacons
UD 12	Rivière Miramichi Sud-Ouest, Dungarvon	SDU	46,76	-66,58	40	Jeffery <i>et al.</i> 2018	2010	Adultes
UD 12	Rivière Mill	MIL	46,74	-64,17	32	Jeffery <i>et al.</i> 2018	2010	Tacons
UD 12	Rivière Miramichi Sud-Ouest, Clearwater	SCL	46,68	-66,65	40	Jeffery <i>et al</i> . 2018	2010	Adultes
UD 12	Rivière Richibucto	RIC	46,67	-64,86	20	Jeffery <i>et al</i> . 2018	2010	Adultes
UD 12	Rivière Cross	CRO	46,48	-62,26	20	Moore <i>et al</i> . 2014	2010	Tacons
UD 12	Rivière Margaree	MGR	46,43	-61,10	20	Moore <i>et al</i> . 2014	2001	Tacons
UD 12	Rivière Morell	MOR	46,42	-62,69	40	Jeffery <i>et al</i> . 2018	2010	Tacons
UD 12	Rivière Cocagne	COS	46,31	-64,72	40	Jeffery <i>et al.</i> 2018	2010	Tacons
UD 12	Rivière West	WER	46,21	-63,16	37	Jeffery <i>et al</i> . 2018	2010	Tacons
UD 12	Rivière Mabou	MAB	46,07	-61,38	39	Jeffery <i>et al</i> . 2018	2010	Tacons
UD 12	Rivière Phillip	PHI	45,86	-63,72	26	Jeffery <i>et al.</i> 2018	2010	Adultes
UD 12	Rivière West (Antigonish)	ANW	45,62	-61,96	20	Moore <i>et al</i> . 2014	2010	Tacons
UD 12	Rivière East (Pictou)	PIE	45,62	-62,65	31	Jeffery <i>et al</i> . 2018	2010	Tacons
UD 13	Rivière North	NRV	46,30	-60,62	20	Moore <i>et al</i> . 2014	2006	Tacons

UD du COSEPAC (2010)	Nom de la rivière	Code de la population	Latitude	Longitude	Taille de l'échantillon	Source des données	Année	Stade biologique
UD 13	Rivière Eskasoni	ESK	45,94	-60,60	14	Jeffery <i>et al</i> . 2018	2007	Tacons
UD 13	Rivière Indian	IND	45,60	-61,23	34	Jeffery <i>et al</i> . 2018	-	-
UD 14	Rivière Country Harbour	COU	45,16	-61,69	32	Jeffery <i>et al</i> . 2018	2000	Tacons
UD 14	Rivière St. Mary's (Nouvelle-Écosse)	SMA	45,08	-61,95	20	Moore <i>et al</i> . 2014	2000	Tacons
UD 14	Rivière Moser	MOS	44,97	-62,25	33	Jeffery <i>et al</i> . 2018	2000	Tacons
UD 14	Rivière Musquodobit	MSQ	44,79	-63,14	32	Jeffery <i>et al</i> . 2018	2000	Tacons
UD 14	Rivière Round Hill	ROH	44,77	-65,43	28	Jeffery <i>et al</i> . 2018	2000	Tacons
UD 14	Rivière Gold	GLD	44,55	-64,32	34	Jeffery <i>et al</i> . 2018	2001	Tacons
UD 14	Rivière LaHave	LAH	44,37	-64,50	22	Moore <i>et al</i> . 2014	2000	Tacons
UD 14	Rivière Medway	MED	44,13	-64,63	10	Moore <i>et al</i> . 2014	2001	Tacons
UD 14	Rivière Tusket	TSK	43,86	-65,98	34	Jeffery <i>et al</i> . 2018	1999	Tacons
UD 15	Rivière Pointe Wolfe	PWF	45,55	-65,02	34	Jeffery <i>et al</i> . 2018	2002	Tacons ou saumoneaux
UD 15	Rivière Big Salmon	BSR	45,42	-65,41	19	Moore <i>et al</i> . 2014	2000	Tacons
UD 15	Rivière Great Village	GRV	45,39	-63,61	28	Jeffery <i>et al</i> . 2018	2001	Tacons
UD 15	Rivière Economy	ECO	45,38	-63,91	34	Jeffery <i>et al</i> . 2018	2001	Tacons
UD 15	Rivière North (Nouvelle-Écosse)	NRH	45,38	-63,31	22	Jeffery <i>et al</i> . 2018	-	-
UD 15	Rivière Stewiacke	STW	45,14	-63,38	27	Moore <i>et al</i> . 2014	2001	Tacons
UD 15	Rivière Gaspereau	GAK	45,10	-64,27	20	Moore <i>et al</i> . 2014	2001	Tacons
UD 16	Rivière Tobique	TOB	46,77	-67,70	16	Moore <i>et al</i> . 2014	2000 et 2011	Tacons
UD 16	Rivière Nashwaak	NSH	45,96	-66,62	15	Moore <i>et al</i> . 2014	2000	Tacons

Tableau A3 de l'annexe. Lieux d'échantillonnage pour les ensembles de données génomiques (matrice de 220 000 SNP et séquençage du génome entier) pour les rivières situées dans les unités désignables (UD) de saumon atlantique. Les coordonnées de l'emplacement et la taille de l'échantillon sont indiquées, ainsi que l'année d'échantillonnage et le stade biologique lorsque ces données étaient disponibles.

UD du COSEPAC (2010)	Nom de la rivière	Code	Latitude	Longitude	Taille de l'échantillon	Année de l'échantillon	Stade biologique
Matrice	de 220 000 SNP	-	-	-	-	-	-

UD du COSEPAC (2010)	Nom de la rivière	Code	Latitude	Longitude	Taille de l'échantillon	Année de l'échantillon	Stade biologique
UD 2	Rivière Hunt	HU	55,57	-60,67	20	-	-
UD 2	Rivière English	ENG	54,97	-59,75	28	2010	Tacons
UD 2	Rivière Big	BIG	54,84	-58,94	28	2009	Tacons
UD 2	Ruisseau Main	MB	54,24	-57,87	21	2013–2014	Tacons
UD 2	Rivière Red Wine	RW	53,93	-61,00	22	2013–2014	Tacons
UD 2	Rivière Mulligan	MU	53,87	-60,09	17	2013–2014	Tacons
UD 2	Rivière Crooked	CR	53,87	-60,83	21	2013–2014	Tacons
UD 2	Rivière Sebaskachu	SK	53,79	-60,14	22	2013–2014	Tacons
UD 2	Rivière Susan	SR	53,74	-61,04	22	2013–2014	Tacons
UD 2	Cap Caribou	СВ	53,62	-60,42	21	2013–2014	Tacons
UD 2	Rivière Sand Hill	SH	53,57	-56,35	20	-	-
UD 2	Rivière Eagle	EA	53,53	-57,47	22	-	-
UD 2	Rivière Kenamu	KE	53,48	-59,91	22	2013–2014	Tacons
UD 2	Rivière Paradise	PA	53,42	-57,25	20	2011	Tacons
UD 2	Rivière Peter's	PR	53,34	-60,71	21	2013–2014	Tacons
UD 2	Rivière Traverspine	TR	53,28	-60,28	22	2013–2014	Tacons
UD 2	Rivière Caroline	CL	53,25	-60,42	20	2013–2014	Tacons
UD 2	Rivière Saint-Charles	CHR	52,23	-55,84	27	2011	Tacons
UD 2	Rivière L'Anse-au-Loup	LL	51,53	-56,82	22	2011	Tacons
UD 2	Rivière Forteau	FO	51,48	-56,94	21	2011	Tacons
UD 3	Ruisseau Beaver	BVB	50,90	-56,15	29	2009	Tacons
UD 3	Ruisseau Great Rattling – Rivière Exploits	GRB	49,62	-56,17	26	2010	Tacons
UD 3	Rivière Campbellton	CMP	49,28	-54,93	25	2009	Tacons
UD 3	Rivière Terra Nova	TNR	48,67	-54,00	29	2009	Tacons
UD 4	Ruisseau North (Trepassey)	NBT	46,74	-53,36	25	2010	Tacons
UD 4	Rivière Little Salmonier	LSR	47,04	-53,75	17	2011	Tacons
UD 4	Rivière Northeast Placentia	NPR	47,29	-53,80	81	2017–2019	Tacons

UD du COSEPAC (2010)	Nom de la rivière	Code	Latitude	Longitude	Taille de l'échantillon	Année de l'échantillon	Stade biologique
UD 4	Ruisseau Ship Harbour	SHI	47,35	-53,87	84	2017–2019	Tacons
UD 4	Rivière Southeast Placentia	SPR	47,23	-53,88	97	2017–2019	Tacons
UD 4	Ruisseau Fair Haven	FHB	47,54	-53,89	103	2017–2019	Tacons
UD 4	Rivière Come by Chance	CBC	47,97	-53,96	79	2017–2019	Tacons
UD 4	Rivière Branch	BRA	46,89	-53,97	92	2017–2019	Tacons
UD 4	Rivière North Harbour	NHR	47,92	-54,03	88	2017–2019	Tacons
UD 4	Ruisseau Little Barasway	LBB	47,18	-54,03	15	2017–2019	Tacons
UD 4	Ruisseau Great Barasway	GBW	47,12	-54,06	89	2017–2019	Tacons
UD 4	Rivière Lance	LAN	46,82	-54,07	9	2017–2019	Tacons
UD 4	Ruisseau Cuslett	CUS	46,96	-54,16	99	2017–2019	Tacons
UD 4	Rivière Black	BLA	47,89	-54,17	83	2017–2019	Tacons
UD 4	Rivière Pipers Hole	PHR	47,93	-54,27	88	2017–2019	Tacons
UD 4	Rivière Sandy Harbour	SHA	47,71	-54,36	74	2017–2019	Tacons
UD 4	Rivière Nonsuch	NON	47,45	-54,64	93	2017–2019	Tacons
UD 4	Ruisseau Cape Roger	CRB	47,44	-54,69	86	2017–2019	Tacons
UD 4	Rivière Bay de l'Eau	BDL	47,51	-54,73	91	2017–2019	Tacons
UD 4	Rivière Rushoon	RUS	47,37	-54,92	85	2017–2019	Tacons
UD 4	Rivière Long Harbour	LHR	47,82	-54,94	20	2012	Tacons
UD 4	Rivière Red Harbour, est	RHA	47,33	-54,99	91	2017–2019	Tacons
UD 4	Rivière Red Harbour, ouest	RHW	47,30	-55,02	78	2017–2019	Tacons
UD 4	Ruisseau Big Salmonier	BSA	47,06	-55,22	84	2017–2019	Tacons
UD 4	Ruisseau Tides	TDS	47,13	-55,26	69	2017–2019	Tacons
UD 4	Ruisseau Northwest (baie Mortier)	NMB	47,17	-55,32	87	2017–2019	Tacons
UD 4	Rivière Garnish	GAR	47,23	-55,35	22	2009	Tacons
UD 4	Rivière Bay du Nord	BDN	47,73	-55,44	20	2008	Tacons
UD 4	Rivière Lawn	LWN	46,95	-55,54	81	2017–2019	Tacons
UD 4	Rivière Conne	CNR	47,91	-55,70	90	2017–2019	Tacons

UD du COSEPAC (2010)	Nom de la rivière	Code	Latitude	Longitude	Taille de l'échantillon	Année de l'échantillon	Stade biologique
UD 4	Ruisseau Taylor Bay (Péninsule Burin)	TBR	46,88	-55,71	80	2017–2019	Tacons
UD 4	Ruisseau Piercey's	PBR	46,88	-55,86	83	2017–2019	Tacons
UD 4	Ruisseau Dollards	DLR	48,02	-56,57	26	2016	Tacons
UD 4	Rivière Isle aux Morts	IAM	47,59	-59,01	28	2011	Tacons
UD 5	Rivière Humber	TYB	49,55	-57,10	29	2009	Tacons
UD 5	Ruisseau Flat Bay	FLB	48,41	-58,58	24	2009	Tacons
UD 5	Rivière Little Codroy	COD	47,77	-59,27	28	2009	Tacons
UD 6	Ruisseau Western Arm	WAB	51,19	-56,76	18	2016	Adultes
UD 6	Rivière Big East	BER	50,63	-57,17	27	2009	Tacons
UD 6	Rivière Trout	TRE, TRF, TRN, TRW	49,64	-57,75	27	2019	Tacons
UD 8	Rivière de la Corneille	COR	50,28	-62,88	28	2018	adultes
UD 8	Rivière Saint-Jean (Côte- Nord) SJQ8	SJQ	50,28	-64,33	28	2018	adultes
UD 8	Rivière Natashquan	NAT	50,12	-61,80	28	2018	adultes
UD 8	Rivière aux Rochers	ARO	50,00	-66,86	48	2012	adultes
UD 8	Rivière de la Trinité	TRI	49,42	-67,30	49	2012	adultes
UD 9	Rivière Jupiter	JUP	49,47	-63,58	28	2018	adultes
UD 10	Rivière à Mars	aMars	48,34	-70,88	26	2018	adultes
UD 12	Rivière Madeleine	MAD	49,23	-65,32	28	2018	adultes
UD 12	Rivière Matapédia	MAT	48,18	-67,14	15	2018	Tacons
UD 12	Rivière Kedgwick	KED	47,91	-67,91	15	2018	Tacons
UD 12	Rivière Patapédia	PAT	47,86	-67,39	24	2018	Tacons
UD 12	Rivière Upsalquitch	UPS	47,57	-66,54	28	2018	Tacons
UD 12	Cours supérieur de la rivière Miramichi-Nord- Ouest	MUN	47,17	-65,94	24	2016	Tacons
UD 12	Rivière Kouchibouguac	KOU	46,74	-65,20	31	2018	Tacons
UD 12	Rivière Chéticamp	CHT	46,64	-60,95	12	2018	Tacons

UD du COSEPAC (2010)	Nom de la rivière	Code	Latitude	Longitude	Taille de l'échantillon	Année de l'échantillon	Stade biologique
UD 12	Complexe du Nord-Ouest (ÎPÉ.)	NWP	46,63	-64,04	17	2018	Tacons
UD 12	Cours supérieur de la rivière Miramichi-Sud- Ouest	MSW	46,55	-66,04	23	2016	Tacons
UD 12	Rivière Northeast Margaree	MNE	46,47	-60,92	12	2018	Tacons
UD 12	Complexe Nord-Est-1 (Î PÉ.)	NEP	46,45	-62,21	27	2018	Tacons
UD 12	Complexe Nord-Est-2 (Î PÉ.)	NET	46,38	-62,57	24	2018	Tacons
UD 12	Rivière Richibucto	RIC	46,36	-65,15	31	2018	Tacons
UD 12	Rivière Morell	MOR	46,30	-62,71	18	2018	Tacons
UD 12	Centre-sud (ÎPÉ.)	SCP	46,28	-63,49	14	2018	Tacons
UD 12	Rivière Southwest Margaree	MRS	46,24	-61,12	14	2018	Tacons
UD 12	Rivière Mabou	MAB	46,04	-61,31	27	2018	Tacons
UD 12	Graham River	JGC	45,86	-61,49	11	2018	Tacons
UD 12	Rivière Phillip	RPH	45,59	-63,82	17	2018	Tacons
UD 12	Rivière East (Pictou)	PIE	45,54	-62,88	23	2018	Tacons
UD 13	Clyburn	CLY	46,66	-60,41	28	2019	-
UD 13	Rivière Baddeck	BAD	46,10	-60,84	28	2016	Tacons
UD 13	Rivière Inhabitants	INH	45,60	-61,23	28	2016	Tacons
UD 14	Rivière Sheet Harbour West	WES	44,95	-62,59	28	2019	Saumoneaux
UD 14	Rivière LaHave	LAH	44,37	-64,50	22	-	-
UD 15	Rivière Big Salmon	BSR	45,42	-65,41	22	2014	-
UD 15	Rivière North (Nouvelle- Écosse)	NRH	45,38	-63,31	22	-	-
UD 15	Rivière Stewiacke	STW	45,14	-63,38	22	2014	-
UD 15	Rivière Gaspereau	GAK	45,06	-64,38	26	2016	-
UD 16	Rivière Nashwaak	NSH	45,96	-66,62	20	2006–2009	-
Séquença	ge du génome entier	-	-	-	-	-	-
UD 2	Rivière du Vieux Fort	VF	51,32	-58,03	10	-	-

UD du COSEPAC (2010)	Nom de la rivière	Code	Latitude	Longitude	Taille de l'échantillon	Année de l'échantillon	Stade biologique
UD 2	Rivière Saint-Paul	SP	51,49	-57,69	10	-	-
UD 8	Rivière Laval	LA	48,77	-69,05	10	-	-
UD 9	Rivière de la Chaloupe	СН	49,14	-62,54	10	-	-
UD 9	Rivière Jupiter	JU	49,48	-63,61	10	-	-
UD 10	Rivière Malbaie (Charlevoix)	MA	47,66	-70,15	10	-	-
UD 12	Rivière Bonaventure	BO	48,04	-65,47	10	-	-
UD 12	Petite rivière Cascapédia	CP	48,16	-65,84	10	-	-

Tableau A4 de l'annexe. Variables bioclimatiques téléchargées de WorldClim (Fick et Hijmans 2017) à l'aide du progiciel en R sdmpredictors (Bosch et al. 2018). Les variables bioclimatiques ont été normalisées à une moyenne de 0 et un écart-type de 1 pour les analyses.

Variable BioClim	Description
WC_bio1_stand	Température moyenne annuelle
WC_bio2_stand	Fourchette des températures diurnes moyennes – Moyenne des températures mensuelles (température maximale - température minimale)
WC_bio3_stand	Isothermie – Fourchette des températures diurnes moyennes (bio2)/Fourchette des températures annuelles (bio7)
WC_bio4_stand	Saisonnalité de la température – Écart-type de la température moyenne annuelle
WC_bio5_stand	Température maximale – Température maximale du mois le plus chaud
WC_bio6_stand	Température minimale – Température minimale du mois le plus froid
WC_bio7_stand	Fourchette des températures annuelles – Température maximale (bio5) - Température minimale (bio6)
WC_bio8_stand	Température moyenne du trimestre le plus humide
WC_bio9_stand	Température moyenne du trimestre le plus sec
WC_bio10_stand	Température moyenne du trimestre le plus chaud
WC_bio11_stand	Température moyenne du trimestre le plus froid
WC_bio12_stand	Précipitations annuelles
WC_bio13_stand	Précipitations du mois le plus humide
WC_bio14_stand	Précipitations du mois le plus sec
WC_bio15_stand	Saisonnalité des précipitations – Coefficient de variation des précipitations mensuelles
WC_bio16_stand	Précipitations du trimestre le plus humide
WC_bio17_stand	Précipitations du trimestre le plus sec
WC_bio18_stand	Précipitations du trimestre le plus chaud
WC_bio19_stand	Précipitations du trimestre le plus froid

Tableau A5 de l'annexe. Liste des rivières de la base de données sur les rivières de l'Organisation pour la conservation du saumon de l'Atlantique Nord (OCSAN) pour les unités désignables (UD) proposées au Labrador (l'ancienne UD 2). Les informations sur les zones de pêche du saumon (ZPS) ou Q ainsi que les coordonnées et le code des rivières ont été extraits de la base de données de l'OCSAN. L'UD proposée dans laquelle se trouve chaque rivière est indiquée.

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Siugak	-62,1	57,58	R1	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Webb	-61,93	56,8	R2	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière Avakutak	-61,85	57,15	R3	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière Kogaluk	-61,73	56,2	R4	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière Notakwanon	-61,52	56,02	R5	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Sango	-61,18	55,89	R6	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 933	-61,14	55,85	R7	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière 80	-61,06	55,84	R8	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière 81	-61,06	55,84	R9	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière Flowers	-60,96	55,74	R10	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 930	-60,92	55,75	R11	Nord du Labrador
ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
--------	----------------------------------	---	-----------	----------	------	------------------
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 932	-60,89	55,85	R12	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 929	-60,87	55,73	R13	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 931	-60,84	55,76	R14	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 928	-60,72	55,75	R15	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière 78	-60,7	55,64	R16.	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière Adlatok (Ugjoktok et baie Adlatok)	-60,69	55,04	R17	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière 75	-60,69	54,98	R18	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière Hunt	-60,67	55,57	R19	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 927	-60,66	55,6	R20	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 912	-60,66	55,06	R21	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 914	-60,61	55,17	R22	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 911	-60,61	55,03	R23	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 913	-60,56	55,17	R24	Nord du Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 926	-60,54	55,73	R25	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 923	-60,53	55,58	R26	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 924	-60,49	55,67	R27	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 916	-60,49	55,35	R28	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 920	-60,46	55,52	R29	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 919	-60,46	55,5	R30	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 917	-60,46	55,44	R31	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 915	-60,46	55,3	R32	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 922	-60,43	55,62	R33	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 921	-60,42	55,57	R34	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 910 (rapides)	-60,41	55,13	R35	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 925	-60,38	55,71	R36	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 909	-60,36	55,17	R37	Nord du Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 918	-60,33	55,56	R38	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 904	-60,31	55,04	R39	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière Little Bay	-60,3	55,1	R40	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière Kanairiktok	-60,3	55,02	R41	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 907	-60,21	55,17	R42	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 905 (chutes)	-60,21	55,12	R43	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 908	-60,19	55,21	R44	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 903	-60,18	55,09	R45	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 906	-60,16	55,19	R46	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière 72	-60,12	55,12	R47	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 902	-60,09	55,14	R48	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 901	-59,95	55,16	R49	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière Kaipokok	-59,95	54,76	R50	Nord du Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau South	-59,93	54,74	R51	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Southeast (baie des Îles)	-59,87	55,11	R52	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Salmon	-59,87	54,84	R53	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière Little	-59,85	54,88	R54	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau sans nom	-59,81	54,82	R55	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Beaver	-59,79	54,79	R56	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière English	-59,75	54,97	R57	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Gouru	-59,7	54,91	R58	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau East (baie des îles)	-59,63	55,13	R59	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Libbies	-59,59	55,03	R60	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Alkami	-59,57	54,98	R61	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière Makkovik	-59,4	54,97	R62	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Southeast (baie Makkovik)	-59,37	54,98	R63	Nord du Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Big Island	-59,2	55,08	R64	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Makkovik	-59,16	55,07	R65	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Big Bight	-59,03	54,99	R66	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Muskrat Pond (rivière 65)	-59,03	54,89	R67	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Meshers Harbour (rivière 66)	-58,99	54,93	R68	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Adlavik	-58,99	54,87	R69	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière Big	-58,94	54,84	R70	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Rattling	-58,93	54,83	R71	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Stag Bay	-58,78	54,78	R72	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière Pamiulik	-58,58	54,75	R73	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Rivière Tukialik	-58,43	54,74	R74	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau sans nom (rivière 58)	-58,2	54,75	R75	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Tilt Cove Pond	-58,19	54,75	R76	Nord du Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau sans nom (Jeanette Bay_bottom)	-58,16	54,76	R77	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Jeanette Bay	-58,07	54,73	R78	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau sans nom (Jeanette Bay_mouth)	-57,92	54,74	R79	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Bobs	-57,88	54,74	R80	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Big (rivière Michaels)	-57,79	54,69	R81	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Tooktashina	-57,78	54,68	R82	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau sans nom 2 (baie Byron)	-57,72	54,64	R83	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau sans nom 1 (baie Byron)	-57,68	54,63	R84	Nord du Labrador
ZPS01A	MPO, Terre-Neuve- et-Labrador	Ruisseau Cap-Rouge (rivière 55)	-57,59	54,63	R85	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière Double Mer	-59,58	54,02	R114	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Rattling (Double Mer)	-59,56	54,02	R115	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Mocassin	-59,53	54,03	R117	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Coleys	-59,52	53,99	R118	Nord du Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Partridge Point (rivière 49)	-59,5	54,04	R120	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Long Point	-59,41	54,03	R121	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Goose Pt	-59,27	54,07	R124	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Big (Double Mer)	-58,92	54,14	R130	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Campbells Point	-58,84	54,14	R133	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Pompey	-58,8	54,11	R134	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Saltwater Pond	-58,68	54,12	R136	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Dennys Pond	-58,58	54,2	R138	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Moliak	-58,55	54,12	R139	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau sans nom	-58,48	54,2	R141	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Goose	-58,29	54,31	R144	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière Pottles Bay 53	-58,24446	54,3187	R145	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière Pottles Bay 54	-58,21456	54,34664	R147	Nord du Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Tom Luscombe	-58,21	54,35	R148	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau West (Fox Cove)	-58,09	54,38	R151	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Middle (Fox Cove)	-58,07	54,38	R152	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Corner	-58,06	54,39	R153	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Jules Head	-57,94	54,39	R155	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Trouting	-57,86	54,4	R157	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Northwest (rivière 54)	-57,57	54,49	R162	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Aerial Pond	-57,57	54,47	R163	Nord du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière Susan	-61	53,74	R86	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière Beaver	-60,94	53,74	R87	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière Naskaupi	-60,85	53,8	R88	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière Crooked	-60,84	53,8	R89	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 3 (lac Grand)	-60,76	53,71	R90	Lac Melville, Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 4 (lac Grand)	-60,74	53,75	R91	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière McKenzie	-60,73	53,24	R92	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 2 (lac Grand)	-60,72	53,7	R93	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 5 (lac Grand)	-60,54	53,72	R94	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Caroline	-60,52	53,26	R95	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière Cap Caribou	-60,42	53,62	R96	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Otter	-60,41	53,35	R97	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Ten Mile (lac Grand)	-60,36	53,63	R98	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière Goose	-60,36	53,36	R99	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière sans nom 1 (lac Grand)	-60,35	53,59	R100	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Peter Jackies	-60,35	53,27	R101	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Gosling	-60,33	53,4	R102	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière Traverspine	-60,28	53,28	R103	Lac Melville, Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière Churchill (Hamilton)	-60,18	53,32	R104	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Lac Mud et affluents	-60,17	53,32	R105	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière Sebaskachu	-60,12	53,76	R106	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Woody	-60,11	53,68	R107	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière Kenamu	-59,91	53,48	R108	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière Mulligan	-59,89	53,82	R109	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière Kenemich	-59,83	53,48	R110	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière Pearl	-59,8	53,85	R111	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Black Pt	-59,74	53,84	R112	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière Big	-59,67	53,52	R113	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Rabbit Pt	-59,56	53,55	R116	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière sans nom (lac Melville)	-59,51	53,56	R119	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Lowland Barren	-59,37	53,88	R122	Lac Melville, Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière Shoal	-59,28	53,67	R123	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Charley Cove	-59,11	53,95	R125	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Vallies	-59,06	54,02	R126	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Etagaulet Point	-59,05	53,79	R127	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière Etagaulet	-59,02	53,72	R128	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Swallow Hr	-58,98	53,75	R129	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Frenchman Point	-58,91	53,87	R131	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Rivière English	-58,86	53,89	R132	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Dinner	-58,72	54,03	R135	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Peter Lucys	-58,61	53,98	R137	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Grants	-58,51	54,01	R140	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Pease	-58,42	54,02	R142	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Longue Point	-58,37	54,04	R143	Lac Melville, Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Mackenzies	-58,22	54,07	R146	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Berry	-58,2	54,07	R150	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Main	-57,86	54,08	R158	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Mild	-57,83	54,07	R159	Lac Melville, Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau River of Sticks	-57,79	54,07	R160	Lac Melville, Labrador
Q09	Québec	Rivière Napetipi	-58,13	51,34	R1049	Sud du Labrador
Q09	Québec	Rivière du Vieux Fort	-58,03	51,33	R1050	Sud du Labrador
Q09	Québec	Rivière Saint-Paul	-57,7	51,47	R1051	Sud du Labrador
Q09	Québec	Ruisseau au Saumon	-57,58	51,47	R1052	Sud du Labrador
Q09	Québec	Ruisseau des Belles Amours	-57,45	51,48	R1053	Sud du Labrador
Q09	Québec	Rivière Brador Est	-57,23	51,5	R1054	Sud du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Cunninghams	-58,21	54,21	R149	Sud du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Nats	-58,02	54,23	R154	Sud du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Cranford Head	-57,93	54,21	R156	Sud du Labrador
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Flatwater	-57,6	54,19	R161	Sud du Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS01B	MPO, Terre-Neuve- et-Labrador	Ruisseau Broomfields	-57,54	54,18	R164	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Southwest	-57,53	53,58	R165	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Rivière White Bear	-57,53	53,58	R166	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Rivière Eagle	-57,45	53,57	R167	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Plances	-57,43	57,43 54,14		Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Dove	-57,43	53,64	R169	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Martins	-57,43	53,58	R170	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Bob'n Joyce	-57,42	53,64	R171	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Rivière Sticks	-57,37	53,44	R172	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Saddle Island	-57,34	53,55	R173	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Red Island	-57,3	53,52	R174	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Rivière Paradise	-57,25	53,42	R175	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Big	-57,22	53,92	R176	Sud du Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Wolfreys	-57,21	53,95	R177	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Duck Island	-57,21	53,5	R178	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Fancies	-57,16	53,76 R179		Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Coombes	-57,14	53,54 R180		Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Rivière North	-57,08	53,81	R181	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Muddy Bay (rivière Dykes)	-57,07	53,64	R182	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Burdetts (2)	-57,02	53,69	R183	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Goose Cove	-56,88	53,71	R184	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Burdetts (1)	-56,73	53,68	R185	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Table Bay	-56,72	53,68	R186	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Old Womans	-56,7	53,69	R187	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Isthmus Bay	-56,63	53,71	R188	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Southeast	-56,59	53,75	R189	Sud du Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS02	MPO, Terre-Neuve- et-Labrador	Rivière Alexis	-56,53	52,6	R190	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Bobbys	-56,42	52,57	R191	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Rivière Sand Hill	-56,35	53,59	R192	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Black Water	-56,29	52,54 R193		Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Salt Pond	-56,28	53,56	R194	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Roaches	-56,26	53,54	R195	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau sans nom (White Bear Arm)	-56,21	52,84	R196	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Rivière White Bear Arm	-56,2	52,84	R197	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Rivière St. Lewis	-56,19	52,44	R198	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau South (bras de mer St. Lewis)	-56,19	52,42	R199	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Southwest (rivière 14) Michaels	-56,18	52,81	R200	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau North (bras de mer St. Lewis)	-56,18	52,44	R201	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Bills	-56,17	53,5	R202	Sud du Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Notleys	-56,17	52,53	R203	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Cushes (Southarm)	-56,15	52,95	R204	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Tackers (Southarm)	-56,15	52,94	R205	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Meshers	-56,14	53,5 R206		Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau North (PHS)	-56,14	52,58	R207	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau West (PHS)	-56,14	52,58	R208	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Pumbley (Southarm)	-56,13	52,95	R209	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Rivière Gilbert	-56,12	52,66	R210	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Trout Pond	-56,1	52,95	R211	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau South (Backwater Arm)	-56,08	52,97	R212	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Peters (rivière 16)	-56,07	52,81	R213	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Rivière Hawke	-56,06	53,03	R214	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Birchy Narrows (baie de St. Michael)	-56,06	52,72	R215	Sud du Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Reeds Pond	-56,05	53,45	R216	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Shinneys Waters	-56,05	52,59	R217	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Rivière Porcupine Harbour	-56,04	53,37	R218	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Mungo Run	-56,03	52,52	R219	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Mussell (rivière 26)	-56,02	53,39	R220	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Southern Harbour	-56	52,99	R221	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Blubber Island	-55,99	52,82	R222	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Hoop Pole	-55,99	52,35	R223	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Caplin Bay	-55,97	53,1	R224	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Green Cove	-55,96	52,69	R225	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Chair	-55,94	53,49	R226	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Open Bay	-55,93	53,34	R227	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Rivière Black Bear	-55,93	53,3	R228	Sud du Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Effingham	-55,91	52,33	R229	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Trout Cove	-55,9	52,95	R230	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Long Pond	-55,88	53,14	R231	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Long Harbour	-55,88	52,36 R232		Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Shoal Bay (ruisseau Pollo)	-55,86	53,26	R233	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Smarts (rivière 22)	-55,86	53,26	R234	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Partridge Bay	-55,86	53,2	R235	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Ship Harbour	-55,85	52,48	R236	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Deer Harbour	-55,85	52,39	R237	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau sans nom (baie Shoal)	-55,84	53,27	R238	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Rivière St. Mary	-55,84	52,31	R239	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Rabbit	-55,84	52,23	R240	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Rivière St. Charles	-55,84	52,23	R241	Sud du Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Trout	-55,83	53,44	R242	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Edridges (rivière 20)	-55,83	53,24	R243	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Pallows Cove	-55,81	53,18	R244	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Salt	-55,78	52,25	R245	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Mungo	-55,76	52,49	R246	Sud du Labrador
ZPS02	MPO, Terre-Neuve- et-Labrador	Ruisseau Port Marnham	-55,72	52,39	R247	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau L'Anse-au-Clair	-57,06	51,43	R248	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau Forteau	-56,94	51,48	R249	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau L'anse-au-Loup	-56,82	51,53	R250	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau L'anse-au-Diable	-56,75	51,56	R251	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau Pinware Bay	-56,71	51,62	R252	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Rivière Pinware	-56,69	51,63	R253	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau Lilly Island	-56,65	51,64	R254	Sud du Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau Skipper Neds	-56,54	51,67	R255	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau North (baie Red)	-56,44	51,74	R256	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau Southwest (baie Red)	-56,44	51,73	R257	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau Wiseman	-56,36	51,74 R258		Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau Black Bay	-56,35	51,78	R259	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau Barge Bay	-56,21	51,81	R260	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau sans nom 1	-56,17	51,82	R261	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau South Green Bay	-56,14	51,85	R262	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau North Green Bay	-56,13	51,85	R263	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau sans nom 2	-56,08	51,87	R264	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau Woody Cove	-56,05	51,89	R265	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau Twin 1 ^{re} entrée	-56,01	51,9	R266	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau Twin 2 ^e entrée	-55,99	51,91	R267	Sud du Labrador

ZPS	Région	Nom de la rivière	Longitude	Latitude	Code	UD proposée
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau Temple	-55,98	52,02	R268	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau Barry Barns	-55,95	52,02	R269	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau Pitts Harbour	-55,89	52,02	R270	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Rivière St. Peter	-55,8	52,09	R271	Sud du Labrador
ZPS14B	MPO, Terre-Neuve- et-Labrador	Ruisseau Sound	-55,78	52,2	R272	Sud du Labrador
Q09	Québec	Rivière Napetipi	-58,13	51,34	R1049	Sud du Labrador
Q09	Québec	Rivière du Vieux Fort	-58,03	51,33	R1050	Sud du Labrador
Q09	Québec	Rivière Saint-Paul	-57,7	51,47	R1051	Sud du Labrador
Q09	Québec	Ruisseau au Saumon	-57,58	51,47	R1052	Sud du Labrador
Q09	Québec	Ruisseau des Belles Amours	-57,45	51,48	R1053	Sud du Labrador
Q09	Québec	Rivière Brador Est	-57,23	51,5	R1054	Sud du Labrador

Tableau A6 de l'annexe. Âge moyen des saumoneaux pour les rivières de l'UD 3 et de l'UD 6, selon les données fournies par la Section des salmonidés de la région de Terre-Neuve-et-Labrador du MPO. Les données ont été divisées en trois périodes (avant 1980, de 1980 à 1999 et après 2000). La taille de l'échantillon pour chaque période et chaque rivière est indiquée, et celles dont la taille de l'échantillon est supérieure à 100 individus sont surlignées en gris. Les cellules vides indiquent l'absence d'échantillons.

-	-	-	-	-	Avant 1980		De 1980 à 1999		Après 2000	
UD proposée	ZPS	Nom de la rivière	Latitude	Longitude	Âge moyen des saumoneaux	N	Âge moyen des saumoneaux	N	Âge moyen des saumoneaux	N
Nord-est de Terre-Neuve	ZPS04	Rivière Exploits	49,03	-55,41	3,37	4 986	3,39	24 154	3,38	4 788

-	-	-	-	-	Avant 198	0	De 1980 à	1999	Après 200)0
UD proposée	ZPS	Nom de la rivière	Latitude	Longitude	Âge moyen des saumoneaux	N	Âge moyen des saumoneaux	N	Âge moyen des saumoneaux	N
Nord-est de Terre-Neuve	ZPS04	Rivière Campbellton	49,28	-54,92	3,16	100	3,37	3 890	3,43	5 347
Nord-est de Terre-Neuve	ZPS04	Rivière Dog Bay	49,45	-54,56	-	-	3,50	6	-	-
Nord-est de Terre-Neuve	ZPS04	Rivière Gander	49,26	-54,49	3,77	114	3,70	4 190	3,69	1 211
Nord-est de Terre-Neuve	ZPS04	Rivière Ragged Harbour	49,43	-54,05	3,36	117	3,42	90	-	-
Nord-est de Terre-Neuve	ZPS04	Ruisseau Anchor	49,34	-53,70	3,09	11	4,00	1	-	-
Nord-est de Terre-Neuve	ZPS04	Ruisseau Deadman's	49,38	-53,74	-	-	3,28	36		-
Nord-est de Terre-Neuve	ZPS04	Ruisseau Windmill	49,28	-53,56	3,44	66	-	-	-	-
Nord-est de Terre-Neuve	ZPS05	Ruisseau Southwest	49,10	-53,70	-	-	-	-	4,00	2
Nord-est de Terre-Neuve	ZPS05	Ruisseau Indian Bay	49,04	-53,88	3,35	95	3,63	195	-	-
Nord-est de Terre-Neuve	ZPS05	Ruisseau Traverse	48,83	-54,08	-	-	3,39	23	-	-
Nord-est de Terre-Neuve	ZPS05	Ruisseau Middle	48,81	-54,21	3,64	42	3,53	1 132	3,52	435
Nord-est de Terre-Neuve	ZPS05	Ruisseau Gambo	48,77	-54,22	3,26	54	3,36	11	-	-
Nord-est de Terre-Neuve	ZPS05	Rivière Terra Nova	48,67	-54,00	3,43	205	3,47	3 380	3,53	685
Nord-est de Terre-Neuve	ZPS05	Ruisseau Wings	48,63	-53,92	-	-	3,69	16	-	-
Nord-est de Terre-Neuve	ZPS05	Ruisseau Bread Cove	48,48	-53,92	-	-	-	-	3,95	172
Nord-est de Terre-Neuve	ZPS05	Rivière Northwest	48,39	-54,20	3,31	239	3,73	649	3,19	69
Nord-est de Terre-Neuve	ZPS05	Ruisseau Salmon	48,39	-54,20	-	-	4,00	1	-	-
Nord-est de Terre-Neuve	ZPS06	Rivière Salmon Cove	48,39	-53,31	3,51	37	3,75	8	-	-
Nord-est de Terre-Neuve	ZPS06	Rivière Trouty	48,33	-53,40	3,25	53	-	-	-	-

-	-	-	-	-	Avant 198	30	De 1980 à	1999	Après 200	0
UD proposée	ZPS	Nom de la rivière	Latitude	Longitude	Âge moyen des saumoneaux	N	Âge moyen des saumoneaux	N	Âge moyen des saumoneaux	N
Nord-est de Terre-Neuve	ZPS06	Rivière Popes Harbour	48,24	-53,56	-	-	3,12	17	-	-
Nord-est de Terre-Neuve	ZPS07	Rivière North	47,55	-53,28	-	-	-	-	3,00	1
Nord-est de Terre-Neuve	ZPS08	Rivière Renews	46,93	-52,95	2,94	49	-	-	-	-
Nord-ouest de Terre-Neuve	ZPS14A	Rivière Lomond	49,43	-57,73	2,91	66	2,99	683	3,19	21
Nord-ouest de Terre-Neuve	ZPS14A	Rivière Parsons Pond	50,03	-57,71	-	-	3,50	2	-	-
Nord-ouest de Terre-Neuve	ZPS14A	Ruisseau Portland	50,18	-57,61	3,00	1	3,09	46	-	-
Nord-ouest de Terre-Neuve	ZPS14A	River of Ponds	50,54	-57,39	3,36	130	3,46	50	4,00	1
Nord-ouest de Terre-Neuve	ZPS14A	Ruisseau Little	50,55	-57,39	3,20	40	4,00	2	-	-
Nord-ouest de Terre-Neuve	ZPS14A	Rivière Torrent	50,61	-57,15	3,58	74	3,26	2 349	3,15	447
Nord-ouest de Terre-Neuve	ZPS14A	Rivière East	50,63	-57,17	3,80	209	3,45	29	3,00	1
Nord-ouest de Terre-Neuve	ZPS14A	Rivière Castors	50,92	-56,95	3,56	9	3,83	117	-	-
Nord-ouest de Terre-Neuve	ZPS14A	Rivière Ste. Genevieve	51,14	-56,79	4,13	166	3,83	382	-	-
Nord-ouest de Terre-Neuve	ZPS14A	Rivière West	51,19	-56,76	3,85	2 782	3,72	9 502	3,52	7 058
Nord-ouest de Terre-Neuve	ZPS14A	Rivière East	51,21	-56,74	-	-	4,00	7	-	-
Nord-ouest de Terre-Neuve	ZPS14A	Ruisseau Big	51,52	-56,15	-	-	4,00	1	-	-

Tableau A7 de l'annexe. Proportion de géniteurs ayant frayé plusieurs fois dans la catégorie des grands saumons pour les rivières de l'UD 3 et de l'UD 6, selon les données fournies par la Section des salmonidés de la région de Terre-Neuve-et-Labrador du MPO. Les données ont été divisées en trois périodes (avant 1980, de 1980 à 1999 et après 2000). La taille de l'échantillon pour chaque période et chaque rivière est indiquée, et celles dont la taille de l'échantillon est supérieure à 50 individus sont surlignées en gris. Les cellules vides indiquent l'absence d'échantillons.

-	Avant	1980	De 1980 à	1999	Après 2000			
Nom de la rivière	ZPS UD proposée		% reproducte urs frayant N plusieurs fois		% géniteurs ayant frayé plusieurs fois	N	% géniteurs ayant frayé plusieurs fois	N
Rivière Campbellton	4	Nord-est de Terre-Neuve	-	-	100,0	121	95,9	244
Rivière Exploits	4	Nord-est de Terre-Neuve	70	60	66,4	265	80,9	341
Rivière Gander	4	Nord-est de Terre-Neuve	100	1	87,0	177	46,8	47
Ruisseau Middle (Gambo)	5	Nord-est de Terre-Neuve	-	-	77,8	9	85,0	20
Rivière Northwest	5	Nord-est de Terre-Neuve	100 2		100,0 14		-	-
Rivière Ragged Harbour (New Pond)	4	Nord-est de Terre-Neuve	100	1	-	-	-	-
Rivière Terra Nova	5	Nord-est de Terre-Neuve	-	-	79,2	144	80,4	143
Rivière Castors	14A	Nord-ouest de Terre-Neuve	-	-	0,0	1	-	-
Rivière East	14A	Nord-ouest de Terre-Neuve	0	11	-	-	-	-
Rivière Lomond	14A	Nord-ouest de Terre-Neuve	25	4	34,0	53	-	-
Ruisseau Portland	14A	Nord-ouest de Terre-Neuve	-	-	28,6	7	-	-
River of Ponds	14A	Nord-ouest de Terre-Neuve	0	1	100,0	1	-	-
Rivière Ste. Genevieve	14A	Nord-ouest de Terre-Neuve	-	-	50,0	2	-	-
Rivière Torrent	14A	Nord-ouest de Terre-Neuve	-	-	66,4	208	100,0	2
Rivière West	14A	Nord-ouest de Terre-Neuve	100	4	85,8	134	92,4	397

Tableau A8 de l'annexe. Proportion de géniteurs ayant frayé plusieurs fois dans la catégorie des petits saumons pour les rivières de l'UD 3 et de l'UD 6, selon les données fournies par la Section des salmonidés de la région de Terre-Neuve-et-Labrador du MPO. Les données ont été divisées en trois périodes (avant 1980, de 1980 à 1999 et après 2000). La taille de l'échantillon pour chaque période et chaque rivière est indiquée, et celles dont la taille de l'échantillon est supérieure à 50 individus sont surlignées en gris. Les cellules vides indiquent l'absence d'échantillons.

-	Avant 1	980	De 1980 à	1999	Après 2000			
Nom de la rivière	ZPS	UD proposée	% géniteurs ayant frayé plusieurs fois	N	% géniteurs ayant frayé plusieurs fois	N	% géniteurs ayant frayé plusieurs fois	N
Ruisseau Anchor	4	Nord-est de Terre-Neuve	-	-	0 %	1	-	-
Ruisseau Bread Cove	5	Nord-est de Terre-Neuve	-			-	35 %	173
Rivière Campbellton	4	Nord-est de Terre-Neuve	-	-	87 %	2 124	51 %	1 348
Ruisseau Deadman's	4	Nord-est de Terre-Neuve	-	-	0 %	36	-	-
Rivière Dog Bay	4	Nord-est de Terre-Neuve	-	-	33 %	6	-	-
Rivière Exploits	4	Nord-est de Terre-Neuve	7 %	5 232	4 %	17 460	8 %	2 508
Rivière Gambo (North Pond)	5	Nord-est de Terre-Neuve	-	-	0 %	11	-	-
Rivière Gander	4	Nord-est de Terre-Neuve	9 %	77	10 %	3 160	7 %	1 125
Ruisseau Indian Bay	5	Nord-est de Terre-Neuve	32 %	19	6 %	101	-	-
Ruisseau Middle (Gambo)	5	Nord-est de Terre-Neuve	0 %	11	9 %	1 060	6 %	426
Rivière North	7	Nord-est de Terre-Neuve	-	-	-	-	0 %	1
Rivière Northwest	5	Nord-est de Terre-Neuve	8 %	39	11 %	639	25 %	52
Rivière Popes Harbour	6	Nord-est de Terre-Neuve	-	- 6%		17	-	-
Rivière Ragged Harbour (New Pond)	vière Ragged Harbour (New Pond) 4		2 %	51	0 %	31	-	-
Rivière Renews	8	Nord-est de Terre-Neuve	22 %	27	-	-	-	-
Ruisseau Salmon (Port Blandford)	5	Nord-est de Terre-Neuve	-	-	0 %	1	-	-

-	Avant 1	980	De 1980 à	1999	Après 2000			
Nom de la rivière	ZPS	UD proposée	% géniteurs ayant frayé plusieurs fois	N	% géniteurs ayant frayé plusieurs fois	N	% géniteurs ayant frayé plusieurs fois	N
Rivière Salmon Cove	6	Nord-est de Terre-Neuve	0 %	3	13 % 8		-	-
Ruisseau Southwest Arm	5	Nord-est de Terre-Neuve	-	-	-	-	50 %	2
Rivière Terra Nova	5	Nord-est de Terre-Neuve	11 %	121	18 %	3 390	18 %	586
Ruisseau Traverse	5	Nord-est de Terre-Neuve	-	-	0 %	23	-	-
Ruisseau Windmill	4	Nord-est de Terre-Neuve	3 %	29	-	-	-	-
Ruisseau Big	14A	Nord-ouest de Terre-Neuve	-	-	0 %	1	-	-
Rivière Castors	14A	Nord-ouest de Terre-Neuve	-	-	0 %	115	-	-
Rivière East	14A	Nord-ouest de Terre-Neuve	0 %	42	3 %	29	0 %	1
Rivière East	14A	Nord-ouest de Terre-Neuve	-	-	0 %	7	-	-
Étangs de Little Brook	14A	Nord-ouest de Terre-Neuve	0 %	8	0 %	2	-	-
Rivière Lomond	14A	Nord-ouest de Terre-Neuve	4 %	52	3 %	542	5 %	22
Rivière Parsons Pond (ruisseau Western)	14A	Nord-ouest de Terre-Neuve	-	-	0 %	2	-	-
Ruisseau Portland	14A	Nord-ouest de Terre-Neuve	0 %	1	3 % 38		-	-
River of Ponds	14A	Nord-ouest de Terre-Neuve	8 %	12	0 %	45	0 %	1
Rivière Ste. Genevieve	14A	Nord-ouest de Terre-Neuve	0 %	38	0 %	379	-	-
Rivière Torrent	14A	Nord-ouest de Terre-Neuve	0 %	4	7 %	1 731	4 %	230
Ruisseau Watts Bight (ruisseau Watsons)	14A	Nord-ouest de Terre-Neuve	-	-	0 %	3	-	-
Rivière West	14A	Nord-ouest de Terre-Neuve	41 %	1 225	60 %	5 712	68 %	3 435

Tableau A9 de l'annexe. Proportion de saumons pluribermarins (vierges; petits et grands) pour les rivières de l'UD 3 et de l'UD 6, selon les données fournies par la Section des salmonidés de la région de Terre-Neuve-et-Labrador du MPO. Les données ont été divisées en trois périodes (avant 1980, de 1980 à 1999 et après 2000). La taille de l'échantillon pour chaque période et chaque rivière est indiquée, et celles dont la taille de l'échantillon est supérieure à 100 individus sont surlignées en gris. Les cellules vides indiquent l'absence d'échantillons.

				980	De 1980 à	1999	Après 2000		
Nom de la rivière	ZPS	UD proposée	% pluribermar ins	N	% pluribermar ins	N	% pluriberma rins	N	
Rivière Exploits	ZPS04	Nord-est de Terre-Neuve	0,1 %	4 897	0,3 %	16 693	2,3 %	2 343	
Rivière Gander	ZPS04	Nord-est de Terre-Neuve	0,0 %	70	0,2 %	2 870	0,2 %	1 069	
Rivière Ragged Harbour	ZPS04	Nord-est de Terre-Neuve	0,0 %	50	0,0 %	31	-	-	
Ruisseau Windmill	ZPS04	Nord-est de Terre-Neuve	0,0 %	28	-	-	-	-	
Ruisseau Indian Bay	ZPS05	Nord-est de Terre-Neuve	0,0 %	13	0,0 %	93	-	-	
Ruisseau Middle	ZPS05	Nord-est de Terre-Neuve	0,0 %	0,0 % 11		0,0 % 968		404	
Rivière Terra Nova	ZPS05	Nord-est de Terre-Neuve	0,9 % 108		0,5 % 2 801		4,2 %	500	
Rivière Northwest	ZPS05	Nord-est de Terre-Neuve	2,8 %	36	0,0 %	563	0,0 %	38	
Rivière Salmon Cove	ZPS06	Nord-est de Terre-Neuve	0,0 %	3	0,0 %	7	-	-	
Rivière Renews	ZPS08	Nord-est de Terre-Neuve	0,0 %	21	-	-	-	-	
Rivière Lomond	ZPS14A	Nord-ouest de Terre-Neuve	3,8 %	53	6,1 %	559	0,0 %	21	
Ruisseau Portland	ZPS14A	Nord-ouest de Terre-Neuve	0,0 % 1		11,9 %	42	-	-	
River of Ponds	ZPS14A	Nord-ouest de Terre-Neuve	8,3 %	12	0,0 %	45	0,0 %	1	
Ruisseau Little	ZPS14A	Nord-ouest de Terre-Neuve	0,0 %	8	0,0 %	2	-	-	
Rivière Torrent	ZPS14A	Nord-ouest de Terre-Neuve	0,0 %	4	4,1 %	1 675	0,5 %	221	
Rivière East	ZPS14A	Nord-ouest de Terre-Neuve	20,8 %	53	0,0 %	28	0,0 %	1	
Rivière Ste. Genevieve	ZPS14A	Nord-ouest de Terre-Neuve	0,0 %	38	0,0 %	380	-	-	

	Avant 1	980	De 1980 à	1999	Après 2000			
Nom de la rivière	ZPS UD proposée p		% pluribermar ins	Ν	% pluribermar N ins		% pluriberma N rins	
Rivière West	ZPS14A	Nord-ouest de Terre-Neuve	0,3 %	721	0,5 %	2 290	1,1 %	1 134

Figure A1 de l'annexe. Résultats de STRUCTURE pour l'UD 1 (Nunavik) en utilisant l'ensemble de données sur les 15 microsatellites montrant des groupes génétiques pour K=2. Nous avons testé des valeurs de K allant de 1 à 3 et la valeur de K la mieux justifiée dans STRUCTURE était 2. Le regroupement a séparé les populations KO et GE de la population AF dans une certaine mesure.

K=2

Figure A2 de l'annexe. Résultats de STRUCTURE pour l'UD 1 (Nunavik) en utilisant la base de référence des 96 SNP montrant des groupes génétiques pour K=2. La meilleure valeur de K dans STRUCTURE était 2 et aucune structuration n'a été observée pour K=2 ou à des valeurs plus élevées. Nous avons testé des valeurs de K allant de 1 à 3.

Figure A3 de l'annexe. Résultats de STRUCTURE pour l'UD 2 en utilisant les 101 microsatellites montrant des groupes génétiques pour K=2 à K=10. Nous avons testé des valeurs de K allant de 1 à 10. La meilleure valeur de K dans STRUCTURE était 2, mais les valeurs de K au-delà de K=2 étaient justifiées et une structuration supplémentaire a été observée au-delà de K=10. Pour K=2, les sites du lac Melville étaient clairement séparés des autres sites du Labrador. Pour des valeurs plus élevées de K, diverses rivières ou régions géographiques formaient leur propre groupe.

Figure A4 de l'annexe. Résultats de STRUCTURE en utilisant la base de référence des 96 SNP avec des groupes génétiques pour K=2 à K=10. Nous avons testé des valeurs de K allant de 1 à 10. La meilleure valeur de K dans STRUCTURE était 2, mais les valeurs de K au-delà de K=2 étaient justifiées et une structuration supplémentaire a été observée. Les sites au sud du lac Melville étaient généralement regroupés séparément des sites du lac Melville et de ceux au nord pour K=2. Pour K=3, l'UD était séparée en trois groupes (sud du Labrador, lac Melville et nord du Labrador). D'autres regroupements de rivières et de régions géographiques étaient apparents à des valeurs plus élevées de K.

Figure A5 de l'annexe. (A, B) Dans l'UD 2, Pcadapt sépare les populations du lac Melville de celles de la côte du Labrador sur le premier axe des composantes principales en utilisant 85 745 SNP (MAF>0,05). Le graphique (A) met en évidence les différentes populations et le graphique (B), les emplacements du lac Melville et de la côte du Labrador. Le deuxième axe sépare davantage les populations dans le lac Melville. Les valeurs moyennes des premier et deuxième axes des composantes principales pour chaque population sont indiquées par les lignes. (B) En tout, 314 loci ont contribué de manière importante à la différenciation sur les deux axes des composantes principales (valeur ajustée p ou q <0,05) et ces loci étaient répartis sur 27 chromosomes (sur 29). Les loci aberrants sont ceux situés au-dessus de la ligne rouge.

homéostasie des acides gras	régulation posit de la transcript à partir du promoteur de l polymérase l	ive on de la ARN différenciation de cellules myéloïde	e régulation négativ de lapoptose de s fibroblastes	régulation positive de la transcription à partir du promoteur de IARN polymérase III	développement du proboscis	morphogenèse du cartilage de la trachée	développ de la gla surrén	ement ande ale	formation de la plaque de plancher	diffé de ao	erenciation s cellules dipeuses brunes	Response to anesthetic Response to	réaction à la contrainte de cisaillement anesthétic s	
régulation négativ de lactivité des canaux calciques dépendant du volta	e homéostasie ions magné: ge	régulation posi de la perméabi sium de la membra mitochondria	ive lité transport des ne ions magnésiu e	régulation négative de Iassemblage des adhésions focales	morphogenèse des membres postérieurs embryonnaires	dévelc développer de la face	migrati nerit du pr astrocyta	on de oboscis ^d tires	éveloppement lu cur adulte	diffé de: photo de I	renciation s cellules préceptrices il composé	réaction à la v	ernalisation	
régulation de		régulation de	régulation de	régulation de			-	dév	veloppement du distal pronéphr	u tubule 'ique	expansion des ailes	N-méthyla	tion de la	
Iorganisation des organelles	Lorganisation processus Lactivite de des organelles homéostatique hélicases homéostasje des		hérédité de Golgi	mitochondriale	formation de la plaque préchordale	determination du devenir des cellules épithéliales des canaux ramifiés, système trachéal ouvert	développe desnoc	ement sytes	t spécification de Iidentité		dérivée du disque imaginal	peptidyl-	idyi-arginine	
		négative de la pression	la sécrétion de lhormone	régulation positive de la croissance				segmentaire,		tëte				
macromolécules	métabolisme de IITP	artérielle systémique	de croissance	cellulaire		régulation d	du p	catabol protéines d	catabolisme des téines dépendant de Iubiquitine via la oie de tri des corps multivésiculaires		ation de	transport de transport des la D-alanine	transport des glycolipides glycolipides	
		potentiel postsynaptique	formation du réseau de	de la production du ligand 2 de la	biosynthèse du glycérol	des protéin	es	Iubiqu voie de tr multivé			otéolyse			
régulation de la	métabolisme	excitateur	filaments dactine	chimiokine (motif C–X–C)		higgunthàga								
dépolymérisation des protéines de la thymine		ymine activation des la voie de si zymogènes lhormone d		sécrétion de sérotonine par les plaquettes		biosynthèse de la biosynthèse du g L-méthiofillie a partir de la méthylthioadénosine		a du glycérol métabolisme du lactate sine		métabolisme des polyamines		activation des cellules endothéliales	métabolisme des oléfines	
métabolisme des pho acides nucléiques	phosphorylation	développement	réparation des	rénonse de défense	catabolisme de Iaspartate	métabolisme de		transt	ansformation		bolisme			
	de IAMP	de IAMP developpement du sporocarpe		cellulaire		Ioxaloacétate		des N–glycanes		de la valine		biosynthèse de la cire		

REVIGO Gene Ontology treemap

Figure A6 de l'annexe. Résultats de l'analyse de l'ontologie génique fondée sur les processus biologiques qui étaient largement surreprésentés dans les données aberrantes pour l'UD 2. Ces processus étaient associés à des gènes situés à moins de 10 000 pb des SNP aberrants (314 SNP sur la base de K=2 dans pcadapt). Les valeurs aberrantes sont celles qui différencient les sites du lac Melville des autres sites de l'UD 2. Les processus de plus haut niveau surreprésentés dans l'analyse sont indiqués par des carrés de couleur différente dans la carte proportionnelle en REVIGO.

Figure A7 de l'annexe. Analyse de redondance utilisant les données bioclimatiques de toutes les rivières de l'UD 2 comme réponse et les groupes présumés de l'UD (trois groupes génétiques) comme variable contraignante. Les trois nouvelles UD présumées sont le nord du Labrador (UD 2-A; rouge), les rivières se déversant dans le lac Melville (UD 2-B; bleu) et le sud du Labrador (UD 2-C; vert). Les centroïdes des groupes de l'UD sont indiqués par le texte, avec un point représentant chaque rivière. L'analyse de la variance (ANOVA) sur l'analyse de redondance a montré que le modèle était significatif (p < 0,001) avec un R² ajusté de 0,61. L'axe 1 de l'analyse de redondance expliquait 74,8 % de la variance du modèle, et l'axe 2 en expliquait 25,2 %. On voit clairement sur le graphique de l'analyse de redondance qu'il est possible de diviser l'UD 2 en trois UD distinctes.

Figure A9 de l'annexe. Résultats de STRUCTURE pour l'UD 3 en utilisant la base de référence des 96 SNP montrant des groupes génétiques pour K=2 à K=5. La meilleure valeur de K dans STRUCTURE était de 2 sur la base de la statistique ΔK d'Evanno. Nous avons testé des valeurs de K allant de 1 à 9. Pour K=2, la rivière Main (MNR) et le ruisseau Beaver (BVB) étaient regroupés séparément des autres sites de l'UD 3, et étaient séparés par K=4. Une structure supplémentaire était confirmée (K=5; moyenne de LnPr[X|K]), mais des groupes clairement distincts au-delà de K=3 n'étaient pas évidents.

Figure A10 de l'annexe. (A) Dans les UD 3 et 6,en utilisant 90 548 SNP (MAF>0,05), pcadapt a séparé les sites de la nouvelle UD 3 présumée des sites de l'UD 6 le long du premier axe des composantes principales. Ces sites de l'UD 3 étaient regroupés très étroitement (GRB, TNR et CMP), tandis que le ruisseau Beaver (BVB) (précédemment dans l'UD 3) était regroupé plus étroitement avec des sites de l'UD 6, notamment ceux de la rivière Trout (TRE, TRN, TRF, TRW) et du ruisseau Western Arm (WAB), sur le premier axe des composantes principales, ainsi que sur le deuxième axe des composantes principales. Un autre site de l'UD 6, la rivière Big East (BER), est clairement séparé de tous les sites sur le premier axe des composantes principales. (B) En tout, 1 189 loci ont contribué de manière importante à la différenciation sur les deux axes des composantes principales (valeur ajustée p ou q <0,05) et ces loci étaient répartis sur les 29 chromosomes. Les loci aberrants sont ceux situés au-dessus de la ligne rouge.

migration neurones o colonne mo latérale	des de la b otrice I	biosynthèse de interleukine-2	guidage axones neuro senso	e des s des m mes r priels	igration des nyoblastes	structuration de la moelle épinière	myristoyla protéine N	ition de la -terminale	régu positi dévelop de la antér régu	lation ive du opement a tête rieure lation	ubiquitination de lhistone H2B régulation positive de	régulation positive lagrégai des monocyt régulation d lactivité d	e régulation post-tradu	ion éine ction régulation né la h tégnospholies déphospholies de lactivité	ylation inositol gative de la térase	régulation positive de la iosynthèse de loxyde nitrique régulation gative de la	fatty acid elongation, saturated fatty acid	asparagin catabolic process vi L-aspartat	e very long-chain fatty acid biosynthetic process ation,
abscission de organes flora	es spermat	régu Iélor togénèse branche dans la du bourg	ation de S gation des ; impliquées ramification fro geon urétéral (spécification de laxe ostral/caud des somite	n régulation du développemer al des vaisseaux s sanguins	transport totas ions potassium	régulation Iactivité de transcrip	positive de du facteur otion CREB	positiv signal T(régu positiv	ve de la lisation OR lation (e de la myristo orviation	Iactivation du plasminogène régulation ylation de la	Ioxyde nitrio synthase régulation positive d la sécrétic protéine N	méthylation Ihistone H3 e generation production	de i–K4 régulation po de la fusion vésicules synap à la membr pré–synapti	tides Se s SO sitive des ptiques ane p	écrétion de matostatine ssemblage des odosomes	trans atura of mitotic <u>cell cycle</u> mitotic cytokinetic	ted fatty a beta-oxidatio using acyl-CoA oxidase	-choline
développement du gyrus denté	homéosta de la rét	asie développi ine des épi dendritio	n du ement nes jues	apédèse	morphogenèse du rhombomère 5	différenciation des cellules endocardiques	hydroxylation de la peptidyl-proline en 4-hydroxy-L-proline	déphosphorylation de la peptidyl-tyrosine	de peptidyl- raccourc de la poly(e la <u>-tyrosine</u> cissement queue (A) de	régulation positive de Iexplosion	transformat des O-glycane	transmission synaptique neurone-neuro	du comple du comple de tubulin désassemblag des complexe	ige exe ne s	cupération de IIMP	Traitement et préser de lantigène pepti endogène via le CM classe 1 via la voie dépendant de la	tation dique ER, AP médi	nway gulation itive de la otoxicité iée par les
organisation des flagelles	surface o cellule igration focalisat des proté	des développ s des neurone ion pharyn	ement s de la cc gés dévelops	lation positive des Dionne m operment de Lureten	développement otrice latéral cervicale	organisation structurelle du nerf facial	régulation la potenti	positive de ialisation	IARNm dans le sécr din	n transcrit <u>e noyau</u> :étion suline	regulation positive de Lactivité de LADN topoisomérase (tystrotyse de LATP)	phosphoryla des protéin processu cataboliqu	protéolyse s acétylatio e de lhisto	e protéiques cellulaires n transformatio ne des	m mobil	du processus métabolique	Traitement Iantigène p via le CMH voie ER, de	et présent peptidique I de classe pendant d	ation de ⊤ endogène 1 via la le la TAP
allongement du canal néphrique	régulatio du diamè cellulair	on différencia etre des cellu re gliales	tion de la pr des ce muscle	on positive rolifération ellules du cardiaque	spécification du devenir des cellules mésodermiques	régulation de la coagulation	synaptique à voie de signalisati	a long terme vo on signa	ie de disation	voie de signa apoptotic	signalis phospha	de IAMI ation de la tidylinositol	cascade JAK-STAT	N-glycanes réponse cellulai au stimulus du facteur de croissance de	ire ré nuc nég tra	léosomes égulation gative de la insduction	régulation po de la proliféra des lymphocy	sitive régul ation de la tes B des	ation positive a chimiotaxie neutrophiles
développement de Iépithélium utérin	spécificat du cham pronéphri	tion p regulation que of synap maturati	dévelo des c n mésa se	ppement cellules angiales	developpentent de lappendice dérivé du disque imaginal développement	protéines dans la membrane externe des mitochondries	médiée p la rééline régulatio	ar méd e les cy n _{régulatio}	iée par /tokines	à des lésions d	voie de s du réc facteur de	signalisation epteur du e croissance	réponse à une lésion	fibroblastes signalisation cellulaire – cyto matrice	questration pplasmiqu de	lu signal réponse cellulaire	repliement protéine	des de s gra	s acides s à longue chaîne
localisation cellulaire horizontale	régénérati de la projection des neuror	n Iactivit	de de la re de k ié loca	vésicule Kuppfer Ilisation	des muscles squelettiques extra-oculaires différenciation des	approximation and preconcered tool reference of the second second second reference of the second second second adaptation of the second second second patterneous disc collabor genuties we apport of the collabor genuties and apport of the second second second second apport of the second second second second second apport of the second s	négative o processu dapoptose lymphocyte	du de la signal des récepteu neuro	voie de isation du Ir TRK de la otrophine	réponse voie de protéi	ine répon lésions détec	n médiée pa se à des de IADN, m tion des	ar la rééline processus étabolique du étrachlorure	voie de signalisation de la protéine rrosine phosphatase	-kappa B voie de	aux UV	croissance	métabolisme des substances organiques	métabolisme des amines cellulaires
transport de protéines dans la bicouche lipidique	différenciat des cellule adipeuse	tion es es postsynapt	ge au kin ge morph du s que ce	iétochore hogenèse système erveux central	spongrotrophoblastes transport transmembranaire des ions	développement développement de tissu adipeux	voie de signalisati activée pa Iauxine	on ar des ré de lt	le de alisation cepteurs normone bissance	proces dapop des cell myéloï	sus lésions tose ules répo des IA	de IADN onse à .RNdb	ignalisation nédiée par IAMPc	du récepteur transmembranaire régulation négative le lassemblage du complexe protéique SMAD	répc acic	onse aux des gras	phase S mitotique	processus du système immunitaire	processus cellulaire

Carte proportionnelle de I...ontologie génique dans REVIGO

Figure A11 de l'annexe. Résultats de l'analyse de l'ontologie génique fondée sur les processus biologiques qui étaient largement surreprésentés dans les données aberrantes pour l'UD 3 et l'UD 6. Ces processus étaient associés à des gènes situés à moins de 10 000 pb des SNP aberrants (1 189 SNP sur la base de K=2 dans pcadapt). Les valeurs aberrantes sont celles qui différencient les sites des UD 3 et 6. Les processus de plus haut niveau surreprésentés dans l'analyse sont indiqués par des carrés de couleur différente dans la carte proportionnelle en REVIGO.

Figure A12 de l'annexe. Analyse de redondance utilisant les données bioclimatiques de toutes les rivières de l'UD 3 et de l'UD 6 comme réponse et les groupes présumés de l'UD (deux groupes génétiques) comme variable contraignante. Les centroïdes des groupes de l'UD sont indiqués par le texte, avec un point représentant chaque rivière. Les rivières que nous proposons de déplacer dans l'UD 6 sont indiquées en jaune. L'analyse de la variance (ANOVA) sur l'analyse de redondance a montré que le modèle était significatif (p <0,001) avec un R² ajusté de 0,23. L'axe 1 de l'analyse de redondance représentait 23,2 % de la variance expliquée par le modèle. Le graphique de l'analyse de redondance justifie clairement la division des UD d'après les nouvelles limites.

Figure A13 de l'annexe. Résultats de STRUCTURE pour l'UD 4 en utilisant l'ensemble de données sur les microsatellites montrant des groupes génétiques pour K=2 et K=10. Nous avons testé des valeurs de K allant de 1 à 10 et la meilleure valeur de K dans STRUCTURE était 2, bien qu'une structure claire ait été observée au-delà de K=2. Le regroupement pour K=3 séparait les populations à l'est et à l'ouest de la rivière Garnish.

Figure A14 de l'annexe. Résultats de STRUCTURE pour l'UD 4 en utilisant la base de référence des 96 SNP avec des groupes génétiques pour K=2. La meilleure valeur de K dans STRUCTURE était 2, mais une structure supplémentaire était observée au-delà de K=2. Nous avons testé des valeurs de K allant de 1 à 10. Des groupes génétiques semblent séparer les populations de l'ouest (IAM à LHR), celles de la péninsule Burin et de la baie Placentia (GAR à FHB) et celles de la partie est de la baie Placentia et en allant vers l'est (SHI à BSB). Certaines populations s'écartaient de ce profil général.

Figure A15 de l'annexe. (A) Dans l'UD 4, en utilisant 92 009 SNP (MAF>0,05), Pcadapt a séparé les populations sur les deux axes; les populations semblaient être séparées entre l'est et l'ouest de la baie Placentia, ainsi qu'entre le nord et le sud dans la baie Placentia. Les valeurs moyennes des premier et deuxième axes des composantes principales pour chaque population sont indiquées par les lignes. (B) En tout, 1 582 loci ont contribué de manière importante à la différenciation sur les deux axes des composantes principales (valeur ajustée p ou q <0,05) et ces loci étaient répartis sur 28 chromosomes (sur 29). Les loci aberrants sont indiqués par ceux situés au-dessus de la ligne rouge. Plus de 70 % de ces valeurs aberrantes étaient situées sur Ssa01 et Ssa23, qui sont impliqués dans un réarrangement chromosomique connu qui existe entre les individus (translocation chromosomique). Nous avons approfondi l'étude de ce réarrangement ici.

Caryotype standard européen non transloqué

Ssa01 et Ssa23 sont des chromosomes distincts

Caryotype standard nord-américain transloqué.

Une partie de Ssa01 s'est transloquée (fusionnée) à Ssa23

En raison des contacts secondaires à Terre-Neuve, les individus portent des versions différentes de ces chromosomes. Certains individus ont le type nord-américain, d'autres le type européen et d'autres encore sont porteurs d'une copie des deux types (hétérozygotes).

Figure A16 de l'annexe. Schéma montrant les différences chromosomiques en Europe et en Amérique du Nord pour les chromosomes Ssa01 et Ssa23. En Europe, le caryotype standard est constitué de deux chromosomes séparés pour Ssa01 et Ssa23. En Amérique du Nord, le caryotype standard comprend une translocation, avec une partie de Ssa01 attachée (fusionnée) avec Ssa23, ce qui crée un réarrangement chromosomique par rapport à l'Europe. Dans certaines parties de l'Amérique du Nord, dont le sud de Terre-Neuve (UD 2), on trouve des configurations différentes de ces chromosomes en raison d'un contact secondaire avec l'Europe. Voir la figure supplémentaire ci-dessous.

Figure A17 de l'annexe. (A) Analyse en composantes principales (ACP) de la région transloquée des chromosomes Ssa01 et Ssa23. Le premier axe des composantes principales sépare les trois génotypes. (B) Carte indiquant la proportion de chaque génotype dans chaque population. (C) Carte montrant la fréquence des chromosomes du type européen (Ssa01 et Ssa23) dans la population. Cette fréquence a été calculée en déterminant le nombre total de chromosomes du type européen dans la population (c'està-dire 2 copies chez les homozygotes européens et 1 copie chez les hétérozygotes, 0 copie chez les homozygotes nord-américains) sur l'ensemble des chromosomes (2 copies par individu).

Figure A18 de l'annexe. Analyse de redondance utilisant les données bioclimatiques de toutes les rivières de l'UD 4 comme réponse et les groupes présumés de l'UD (deux groupes génétiques principaux) comme variable contraignante. Les deux nouvelles UD présumées sont les rivières vers l'est à partir de la rivière Garnish (UD 4-A; en rouge) et les rivières vers l'ouest à partir de la rivière Garnish (UD 4-A; en rouge) et les rivières vers l'ouest à partir de la rivière Garnish (UD 4-B; en bleu). Les centroïdes des groupes de l'UD sont indiqués par le texte, avec un point représentant chaque rivière. L'analyse de la variance (ANOVA) sur l'analyse de redondance a montré que le modèle était significatif (p <0,001) avec un R² ajusté de 0,40. L'axe 1 de l'analyse de redondance expliquait 38,4 % de la variance du modèle et montre clairement la division entre les nouvelles UD présumées, justifiant ainsi la division de l'UD 4.

Figure A19 de l'annexe. Résultats de STRUCTURE pour l'UD 5 en utilisant l'ensemble de données sur les microsatellites montrant des groupes génétiques pour K=2 et K=7. Nous avons testé des valeurs de K allant de 1 à 7 et la meilleure valeur de K dans STRUCTURE était 2, bien qu'une structure claire ait été observée au-delà de K=2, où chaque population pouvait être séparée en son propre groupe pour K=7.

Figure A20 de l'annexe. Résultats de STRUCTURE pour l'UD 5 en utilisant la base de référence des 96 SNP avec des groupes génétiques pour K=2. La meilleure valeur de K dans STRUCTURE était 2, mais on observait peu de structure supplémentaire au-delà de K=2. Nous avons testé des valeurs de K allant de 1 à 5. Pour K=2, le ruisseau Pinchgut formait un groupe distinct des autres sites.

Figure A21 de l'annexe. Résultats de STRUCTURE pour l'UD 5 et l'UD 6 en utilisant l'ensemble de données sur les microsatellites montrant des groupes génétiques pour K=2 et K=8. Nous avons testé des valeurs de K allant de 1 à 13 et le nombre optimal de groupes génétiques (K) dans STRUCTURE était 8.

Figure A22 de l'annexe. Résultats de STRUCTURE pour l'UD 5 et l'UD 6 en utilisant la base de référence des 96 SNP avec des groupes génétiques pour K=2 à K=7. La meilleure valeur de K dans STRUCTURE était 2, mais une structure supplémentaire était observée au-delà de K=2.

K=2

Figure A23 de l'annexe. Résultats de STRUCTURE pour l'UD 7 en utilisant l'ensemble de données sur les microsatellites montrant des groupes génétiques pour K=2. Nous avons testé des valeurs de K allant de 1 à 3 et la meilleure valeur de K dans STRUCTURE était 2; aucune structure supplémentaire n'était observée pour K=3. Pour K=2, MUQ était regroupée séparément de MEC et ET.

Figure A24 de l'annexe. Résultats de STRUCTURE pour l'UD 7 en utilisant la base de référence des 96 SNP avec des groupes génétiques pour K=2 à K=4. La meilleure valeur de K dans STRUCTURE était 4. Nous avons testé des valeurs de K allant de 1 à 5. Le regroupement a séparé les sites MUS et MUQ des autres sites ainsi que l'un de l'autre, mais les profils de regroupement ont montré que les populations n'étaient pas clairement distinctes.

Figure A25 de l'annexe. Résultats de STRUCTURE pour l'UD 8 en utilisant l'ensemble de données sur les microsatellites montrant des groupes génétiques pour K=2 et K=6. Nous avons testé des valeurs de K allant de 1 à 11 et la meilleure valeur de K dans STRUCTURE était 3, même si on observait une certaine structure supplémentaire au-delà de K=3. Trois populations (COR, ANG et LA) ont chacune formé un groupe distinct, tandis que les autres sites étaient généralement regroupés avec une certaine différenciation observée aux valeurs de K plus élevées.

Figure A26 de l'annexe. Résultats de STRUCTURE pour l'UD 8 en utilisant la base de référence des 96 SNP avec des groupes génétiques pour K=2 à K=5. La meilleure valeur de K dans STRUCTURE était 2, mais une certaine structure supplémentaire était observée au-delà de K=2. Nous avons testé des valeurs de K allant de 1 à 12. Les profils de regroupement semblaient suivre la géographie, les sites situés à l'est, à l'ouest et au milieu de l'UD formant des groupes distincts aux valeurs plus élevées de K. La population COR, qui s'est regroupée séparément des sites voisins pour K=3 et plus, était l'exception.

Figure A27 de l'annexe. Analyse pour les populations de l'UD 8 et de l'UD 10 en utilisant les SNP à l'échelle du génome. Pcadapt a clairement séparé la rivière de la Corneille (COR – maintenant placée dans l'UD 7) de tous les autres emplacements de l'UD 8 et de l'UD 10 sur le premier axe des composantes principales, confirmant son placement dans l'UD 7. Les sites de l'UD 8 et de l'UD 10 (d'après la limite révisée) sont séparés le long du deuxième axe des composantes principales. Les valeurs moyennes des premier et deuxième axes des composantes principales pour chaque population sont indiquées par les lignes. Le graphique inférieur montre qu'un total de 864 loci (sur 31 900 SNP) a contribué de manière importante à la différenciation sur les deux axes des composantes principales, différenciant ainsi les trois UD révisées (valeur p ajustée [valeur q] <0,05) et ces loci étaient répartis sur les 29 chromosomes. Les loci aberrants sont indiqués par ceux situés au-dessus de la ligne rouge horizontale.

Figure A28 de l'annexe. (A) Analyse révisée utilisant les populations de l'UD 8 et de l'UD 10 sans inclure la rivière de la Corneille. Pcadapt a séparé les populations des UD 8 et UD 10 révisées sur le premier axe des composantes principales. Une séparation supplémentaire des sites de l'UD 8 est apparue le long du deuxième axe des composantes principales, les sites de l'UD 10 étant généralement étroitement regroupés sur les deux axes. Les valeurs moyennes des premier et deuxième axes des composantes principales pour chaque population sont indiquées par les lignes. (B) En tout, 222 loci ont contribué de manière importante à la différenciation sur le premier axe des composantes principales, différenciant ainsi les deux UD révisées (valeur p ajustée [valeur q] <0,05) et ces loci étaient répartis sur les 29 chromosomes. Les loci aberrants sont indiqués par ceux situés au-dessus de la ligne rouge.

régulation de la biosynthèse des métabolites secondai	régulati processi	régulation positive du processus dapoptose des cellules myéloïdes		n de lactivité aux anioniques	ocessus dapoptose des cellules inflammatoires	développement du disque génital		détermination maternelle de Iaxe antérieur/postérieur, embryon		on axe rieur, pi	régulation du développement de la projection des neurones		signalisation NIK/NF-kappaE	réponse au stir Iho parathy	e cellulaire mulus de ormone vroïdienne
													voie de sigr <mark>iéponse</mark> à Kit	rép la vitamine à l	oonse Aenentale éthanol
réponse aux lésions de IADN, transduction du signal par le médiateur de classe p53 entraînant Iarrêt du cycle cellulaire	différenciation des lymphocytes T du alpha-bete CD8-positifs de impliqués dans la tt réponse immunitaire aire		estasie du e cellulaire	régulation négative du mouvement des composants cellulaires	régulation de la signalisation Hippo	assemblage des particules de lipoprotéines de très basse densité détermination	signalis impliq dévelo	sation Not Juée dans oppement o cur nelle de I	tch le mo du du	h morphogenèse u du péricarde bouclage du cur axe antérieur/postérieur, embryon		voie de signalisation au sti du facteur de fac croissance nerveuse croiss fibro		e cellulaire mulus du teur de ance des iblastes	
régulatio voie classique dactivation du complément	régulation négative de lendocytose n du proceșsus de biosynțhe récepteurs régulation de la voie de signalisation etimulante médiéa		ransport de régulatio		régulation importation tabolites secondaires ju glucose		nénisation des différend des cellu seaux sanguins la notoc		morphogenèse des vaisseaux sanguins de la rétine		circulation sanguine		expression génique		intégration
			n positive gnalisation		ve régulation la négative du e processus	transition mésodermique à	dévelop	pement	développement d corps pédonculé		la production dinterféron de type		macromolécule	cellulaire	de IADN
traitement et présentation des antigènes	par le récepte	e récepteur Fc		C dépendante de IAMPc régulation	dapoptose	mésenchymateuse impliquée dans la gastrulation	de Ihy	pocorde	régénération des organes animaux		développement des organes génitaux hermaphrodites				
	présentation des antigènes peptidiques exceptens via le CMH de classe 1, dépendant de la TAP migration cellulaire		cell migration posi prog		homéostasie des neutrophiles					phosphorylation de la peptidyl-tyrosine			traitement du récepteur Notch traitement du réce	des protéines	réponse à la
régulation de Iadhésion cellulaire	déplacement des régulatior chromosomes vers du démar le pôle-fuseau tradu		ion négative arrage de la duction	e régulation de a lactivité synaptique	régulation négative de la macroautophagie	processus métabolir proce du glucose 6-phospi	aue essus me hate	phosphorylation tetabolique du gluc des glucides		ose 6–phos proc métabol N–acétylg	sphate essus ique de la lucosamine	processus catabolique de Ihyaluronane	assemblage d	u virion	vitamine A

Carte proportionnelle de l'ontologie génique dans REVIGO

Figure A29 de l'annexe. Résultats de l'analyse de l'ontologie génique pour l'UD 8 et l'UD 10 (limite révisée), fondée sur les processus biologiques qui étaient largement surreprésentés dans les données aberrantes. Au total, 79 processus étaient surreprésentés. Ces processus étaient associés à des gènes situés à moins de 10 000 pb des SNP aberrants (222 SNP sur la base de K=1 dans pcadapt). Les valeurs aberrantes sont celles qui différencient les sites sur le premier axe des composantes principales, qui séparait les sites de l'UD 10 des sites de l'UD 8 (avec les limites révisées). Les processus de plus haut niveau surreprésentés dans l'analyse sont indiqués par des carrés de couleur différente dans la carte proportionnelle en REVIGO.

Figure A30 de l'annexe. Analyse de redondance utilisant les données bioclimatiques de toutes les rivières de l'UD 8 et de l'UD 10 comme réponse et les groupes présumés de l'UD (deux groupes génétiques) comme variable contraignante. Les centroïdes des groupes de l'UD sont indiqués par le texte, avec un point représentant chaque rivière. Nous proposons de déplacer dans l'UD 10 trois rivières, qui sont indiquées en orange : les rivières Betsiamites, Laval et des Escoumins. L'analyse de la variance (ANOVA) sur l'analyse de redondance a montré que le modèle était significatif (p <0,001) avec un R² ajusté de 0,22. L'axe 1 de l'analyse de redondance justifie clairement la division des UD d'après les nouvelles limites.

K=2

Figure A31 de l'annexe. Résultats de STRUCTURE pour l'UD 9 (Anticosti) en utilisant l'ensemble de données sur les microsatellites montrant des groupes génétiques pour K=2. Nous avons testé des valeurs de K allant de 1 à 3 et la meilleure valeur de K dans STRUCTURE était 2, mais aucune structure claire n'était observée dans l'UD 9.

K=2

Figure A32 de l'annexe. Résultats de STRUCTURE pour l'UD 9 (Anticosti) en utilisant la base de référence des 96 SNP avec des groupes génétiques pour K=2. La meilleure valeur de K dans STRUCTURE était 2. Nous avons testé des valeurs de K allant de 1 à 3. Aucune structure génétique n'a été observée dans l'UD 9.

Figure A33 de l'annexe. Résultats de STRUCTURE pour l'UD 12 en utilisant l'ensemble de données sur les microsatellites montrant des groupes génétiques pour K=2 et K=3. Les sites de la Gaspésie sont séparés des autres sites dans l'UD 12. La meilleure valeur de K dans STRUCTURE était 2 et peu de structures supplémentaires ont été observées pour K=3. Nous avons testé des valeurs de K allant de 1 à 10.

Figure A34 de l'annexe. Résultats de STRUCTURE pour l'UD 12 en utilisant la base de référence des 96 SNP avec des groupes génétiques pour K=2. Les sites de la Gaspésie sont séparés des autres sites dans l'UD 12. La meilleure valeur de K dans STRUCTURE était 2 et aucune structure supplémentaire n'a été observée au-delà de K=2. Nous avons testé des valeurs de K allant de 1 à 10.

Figure A35 de l'annexe. (A) Pcadapt sépare clairement la Gaspésie de tous les emplacements vers le sud dans l'UD 12 sur le premier axe des composantes principales en utilisant les SNP à l'échelle du génome (n=29 695 – combinaison du reséquençage du génome entier et des 220 K). Une population de l'Île-du-Prince-Édouard (complexe NEP-Nord-Est) était séparée des autres sites le long du deuxième axe des composantes principales. Le nom de chaque site est indiqué pour montrer l'emplacement moyen des points de données sur les premier et deuxième axes des composantes principales. (B) En tout, 44 loci ont contribué de manière importante à la différenciation sur le premier axe des composantes principales (K=1; valeur p ajustée [valeur q] <0,05) et ces loci étaient répartis sur 9 chromosomes (sur 29).

transduction du signal médiée par l'oxyde nitrique	recapture du glutamate	régulation de l'activité du renforcement à découpleur de terme de la joi phosphorylation neuromuscu oxydative		t à long jonction culaire		chimiotaxie	morphogenèse de la queue postanale	formation du cana annulaire de la ligné germinale femelle	formation ee la notochor	transit de enc rde dans valvu	ion du coussinet locardique au chyme intervenai la formation des iles cardiaques	nt développement du cervelet	
	contraction des muscles lisses	activation de l'activité de la phospholipase A2 p la signalisation médiée par le calciu	organisation o matrice cytosquelettio dans la zone a	la regroupement de la neurexine impliqué dans l'assemblage de la membrane tive pré evenentique.		régulation positive le l'endocytose des vésicules synaptiques	développement des cellules pigmentaires	régulation de la fusion mitochondria	guidage de axones de neurones sensoriels	s assen fibres	nblage des élastiques	organisation du fusome	
réponse à l'hyperoxie	régulation positive du potentiel	régulation de l'organisation des	maintien de structure d la zone acti	la régu e morph ve des	ulation vive de la nogenèse épines	transport des nucléotides d'adénine	morphogenèse de la nageoire dorsale	morphoger réponse à la répons immunitaire de l'hôt	ièse de la queu développem e du troisièm	ent ent ent ent cére	ppement r ronc r ébral	axonogenèse des neurones du système nerveux périphérique	
coagulation sanguine	inhibiteur		pré-synaptio	que dend	Iritiques					régula	ition du	fibres du muscle cardiaque	
	temps de r <mark>transdu</mark> d	régulation de ction du signal m de glucagon	voie de signalisation des réceptaurs cliée par l'oxyd coupres a la proteine G activant la phospholipase C	é nitriquè un herbicide	regroupement o géphyrine impli dans l'assembl de la densite postsynaptiqu	de la iqué lage é ue ciblage des vésicules synaptiques	organisation structurelle du mésoderme axial	convergence dorsal	e axones de cellules photoréceptri	es dévelop s des c photoré ices de	opement – ellules ceptrices I'il	spécification des somites	
taxis énergétiques	thigmotaxie	migration cellulaire dépendante du substrat, extension cellulaire	phototaxie	assemblage du complexe du cur du protéasome	sécrétio de l'acid arachidoni	n positive de la concentration que en ions calcium cytosolique	processus de biosynthèse du GMPc	processus métabolique du fructose 6-phosphate	processus de r osynthèse de pr acétyl–CoA t di	régulation négative du rocessus de biosynthèse u glycogène	adhésion cellu calcium-déper les molécules d celli adhési plasmic calciur	Iule-cellule endante via dadhésion molecules dadhésion sion cellule cellule	
régulation des échanges gazeux respiratoires	organisation de l'uropode	transport des nucléobases puriques	régulation négative du potentiel postsynaptique excitateur	régulation néga de la voie d signalisation o récepteurs TRM neurotrophin	ative le des < des es	réponse cellulaire au stimulus des particules de lipoprotéines de basse densité	processus métabolique du fructose 1,6-bisphosphate	transport sus de biosynthès des électrons, NADH en ubiquinone	e du GMPc.s métabolique de la réserve dénergie	régulation négative de la mort des cellules	etablissemietti de la polarité des des cellul		
régulation positive de l'assemblage des filopodes	organisation des spectrosomes	voie de signalisation médiée par la rhodopsine	transduction du signal neuronal	réticulation de l'actine	n étab e lo fus	plissement de la pocalisation du seau méiotique	catabolisme des nucléobases de la pyrimidine	catabolisme des toxines	phospho des glu	rylation	pep acid	epithéliales etidyl-glutamic d carboxylation	

Carte proportionnelle de l'ontologie génique dans REVIGO

Figure A36 de l'annexe. Résultats de l'analyse de l'ontologie génique fondée sur les processus biologiques qui étaient largement surreprésentés dans les données aberrantes. Au total, 100 processus étaient surreprésentés. Ces processus étaient associés à des gènes situés à moins de 10 000 pb des SNP aberrants (44 SNP sur la base de K=1 dans pcadapt). Les valeurs aberrantes sont celles qui différencient les sites de la Gaspésie des autres sites de l'UD 12. Les processus de plus haut niveau surreprésentés dans l'analyse sont indiqués par des carrés de couleur différente dans la carte proportionnelle en REVIGO.

Figure A37 de l'annexe. Analyse de redondance utilisant les données bioclimatiques de toutes les rivières de l'UD 12 comme réponse et les groupes présumés de l'UD (deux groupes génétiques) comme variable contraignante. Les deux nouvelles UD présumées sont la Gaspésie (UD 2-A; en bleu) et le sud du golfe (UD 2-B; en rouge). Les centroïdes des groupes de l'UD sont indiqués par le texte, avec un point représentant chaque rivière. L'analyse de la variance (ANOVA) sur l'analyse de redondance a montré que le modèle était significatif (p < 0,001) avec un R^2 ajusté de 0,18. L'axe 1 de l'analyse de redondance représentait 18,0 % de la variance expliquée par le modèle et séparait clairement les deux UD présumées.

Figure A38 de l'annexe. Résultats de STRUCTURE pour l'UD 13 en utilisant l'ensemble de données sur les microsatellites montrant des groupes génétiques pour K=2 et K=4. Nous avons testé des valeurs de K allant de 1 à 6 et la meilleure valeur de K dans STRUCTURE était 4. Pour K=4, ESK a formé son propre groupe. La plupart des autres sites n'étaient pas clairement différenciés en groupes distincts. Cependant, certaines sous-structures semblaient présentes dans les populations INH et NRV.

Figure A39 de l'annexe. Résultats de STRUCTURE pour l'UD 13 en utilisant la base de référence des 96 SNP avec des groupes génétiques pour K=2. La meilleure valeur de K dans STRUCTURE était 2. Nous avons testé des valeurs de K allant de 1 à 3. Aucune structure génétique n'a été observée.

Figure A40 de l'annexe. Résultats de STRUCTURE pour les sites de l'UD 12 et de l'UD 13 en utilisant (A) l'ensemble de données sur les microsatellites et (B) l'ensemble de données sur les 96 SNP pour deux groupes génétiques (K=2). Aucune structure génétique n'était présente dans l'un ou l'autre des deux ensembles de données, ce qui permet de penser que le critère du caractère distinct n'est pas respecté. Il convient de noter que les sites de l'UD 12 ne comprennent que ceux de la région du sud du golfe, selon les révisions apportées à cette UD.

Figure A41 de l'annexe. Résultats de STRUCTURE pour l'UD 14 en utilisant l'ensemble de données sur les microsatellites montrant des groupes génétiques pour K=2 et K=10. Nous avons testé des valeurs de K allant de 1 à 13 et la meilleure valeur de K dans STRUCTURE était 2, bien qu'une structure supplémentaire ait été observée au-delà de K=2. Pour des valeurs plus faibles de K (K=3), les sites étaient séparés en groupes axés sur la géographie (ouest et est) près de la rivière Musquodoboit (MSQ), la rivière ROH formant son propre groupe. Des valeurs plus élevées de K séparaient de nombreux sites en leur propre groupe.

Figure A42 de l'annexe. Résultats de STRUCTURE pour l'UD 14 en utilisant la base de référence des 96 SNP avec des groupes génétiques pour K=2 à K=4. La meilleure valeur de K dans STRUCTURE était 3, mais une certaine structure supplémentaire était observée pour K=4. Nous avons testé des valeurs de K allant de 1 à 9. La rivière ROH était regroupée séparément des autres sites. D'autres regroupements ont été observés en fonction de la géographie, les sites à l'est et à l'ouest de la rivière Musquodoboit (MSQ) étant plus nombreux à appartenir à des groupes différents. La rivière MSQ était également regroupée séparément des autres sites par K=4. Néanmoins, nous notons que les profils de regroupement n'étaient pas clairement distincts, sauf pour la rivière ROH.

Figure A43 de l'annexe. Graphique supérieur : Pcadapt sépare la rivière West – Sheet Harbour (WES; points bleus) à l'est (UD 14A) de la rivière Lahave (LAH; points rouges) à l'ouest (UD 14B) sur les premier et deuxième axes des composantes principales en utilisant les SNP à l'échelle du génome (n=52 776). Le nom de chaque site est indiqué pour montrer l'emplacement moyen des points de données sur les premier et deuxième axes des composantes principales. Graphique inférieur : En tout, 593 loci ont contribué de manière importante à la différenciation sur les premier et deuxième axes des composantes principales (K=2; valeur p ajustée [valeur q] <0,05) et ces loci étaient répartis sur tous les chromosomes.

AR 1 (25.5%)

Figure A44 de l'annexe. Analyse de redondance utilisant les données bioclimatiques de toutes les rivières de l'UD 14 comme réponse et les groupes présumés de l'UD (deux groupes génétiques) comme variable contraignante. Les deux nouvelles UD présumées sont les sites à l'est de la rivière Musquodoboit (UD 14-A; en bleu) et les sites à l'ouest de la rivière Musquodoboit (inclusivement) [UD 14-B; en rouge]. Les centroïdes des groupes de l'UD sont indiqués par le texte, avec un point représentant chaque rivière. L'analyse de la variance (ANOVA) sur l'analyse de redondance a montré que le modèle était significatif (p <0,001) avec un R² ajusté de 0,25. L'axe 1 de l'analyse de redondance expliquait 25,5 % de la variance expliquée par le modèle et séparait clairement les deux UD présumées.

Figure A45 de l'annexe. Résultats de STRUCTURE pour l'UD 15 en utilisant l'ensemble de données sur les microsatellites montrant des groupes génétiques pour K=2 à K=7. Nous avons testé des valeurs de K allant de 1 à 7 et la meilleure valeur de K dans STRUCTURE était 6. Pour K=2, les sites de la baie de Chignectou (USR, PWF, BSR) étaient différenciés des sites du bassin Minas (STW, GRV, ECO), à l'exception de la rivière GAK (regroupée avec la baie de Chignectou), qui représentait son propre groupe distinct pour K=3. Pour K=7, STRUCTURE a séparé de nombreuses populations en groupes distincts.

Figure A46 de l'annexe. Résultats de STRUCTURE pour l'UD 15 en utilisant la base de référence des 96 SNP avec des groupes génétiques pour K=2 à K=7. La meilleure valeur de K dans STRUCTURE était 2, mais une structure supplémentaire était observée au-delà de K=2. Nous avons testé des valeurs de K allant de 1 à 7. Pour K=2, une certaine différenciation était observée entre les sites de la baie de Chignectou (PWF, BSR) et du bassin Minas (STW, GRV, ECO), bien que d'autres sites du bassin Minas (GAK, NRH) aient été regroupés avec ceux de la baie de Chignectou. Pour K=7, les sites pouvaient essentiellement être divisés en groupes distincts.

Figure A47 de l'annexe. (A) Dans l'UD 15, en utilisant 63 509 SNP (MAF >0,05), Pcadapt a séparé la rivière Gaspereau (GAK) des autres sites le long du premier axe des composantes principales. Tous les autres sites étaient séparés sur le deuxième axe des composantes principales. (B) En tout, 441 loci ont contribué de manière importante à la différenciation sur les deux axes des composantes principales (valeur ajustée p ou q <0,05) et ces loci étaient répartis sur 28 chromosomes (sur 29). Les loci aberrants sont indiqués par ceux situés au-dessus de la ligne rouge.

régulation p prolifération mésenchymate dans le dével l'ure	positive de la des cellules euses impliquée loppement de etère	assemblage de la membrane pré-synaptique	développement des cellules pigmentaires	morphogenèse de la nageoire dorsale	organisatic structurelle mésoderme :	rég on nég du la c axial des apo	gulation gative de clairance cellules optotique	morphogenèse de la cochlée	migration des myoblastes	voie de signalisation canonique Wnt impliquée dans la régulation positive de la migration des cellules endothéliales	voie de signalisation canonique Wnt impliq dans la régulation positive de la cicatrisation des plai	mc cell déper ciliun fla	obilité Iulaire ndant du n ou du Igelle	transport des glycoprotéines
régulation de l'élongation des branches impliquées dans la ramification du bourgeon urétéral		développement des muscles squelettiques extra-oculaires		e morphogenèse du nerf facial	susceptibili cytotoxicité r par les cel tueuses nat	té à la diff nédiée de llules m urelles	érenciation es cellules usculaires striées	convergence dorsale	importation des protéines dans le noyau	localisation des complexes protéiques cellulaires	sécrétion de neurotransmetti	établis maintien apicale cellules	sement ou de la polarité e/base des épithéliales	cicatrisation des plaies impliquée dans la réponse inflammatoire
		inhibition de	régulation négative de l'activité de la calcidiol	régulation positive de la différenciation	égulation de	régulation positive de la voie de signalisatior apoptotique intrinsèque	régulation positive d l'assembla	n e spécificatio ge du devenir		migration déphosphorylatio des phospholipid	I des myoblast DN IES poter register i protection in departe operation protection	es rén rénerations	gulation transport	phosphorylation des glucides
développement des muscles pharyngés		l'impulsion préalable de la prolifération	1-monooxygénase	des ostéoclastes	mpliquée dan	en réponse aux lésions de l'ADN	des podosome	des neurone	s transport de la proline	régulation positi de l'activité des phosphoprotéine	ve régulatio s positive o es potentie	n Ju Iu	higration d	es
régulation négative de la transition G1/S du cycle cellulaire mitolique par régulation négative de la transcription à partir du promoteur de l'ARN polymérase II régulation positive de la prolifération des cardioblastes du champ cardiaque secondaire		régulation de la croissance cellulaire par	métabolique de la sphingosine	établissement de la polarité planaire adaptative		réponse munitaire daptative		RNm biosynthès des acides aminés cellulaires	regroupement des vésicules synaptique	phosphatases régulation de la phosphorylation de la	postsynapti excitateu n régulation localisatior	due lyr ir de la pi des bio	lymphocytes T processus de biosynthèse du	
		extracellulaire macropha impliquée la répor	macrophages impliquée dans la réponse	désassemblage de l'enveloppe nucléaire	développemen du système	t comporteme	ent élongatio	DN réponse à	adhásion collulairo	peptidyl-tyrosin	e protéine	s di	acylglycéi	rol
		regroupement des récepteurs d'acide	immunitaire biosynthèse des	mitotique	ventriculaire	social	traductionr	ielle ^{l'interféron_gamn}	homophile via les molécules d'adhésion	voie de signalisation canonique Wnt impliquée dans la régulation positive de l'adhésion	réponse cellulaire à	pie de signalisation du récepteur intracellulaire des normones stéroides	déglutan protéine déglutar	nylation de la C-terminale mylation de la
développement du mésenchyme métanéphrique	morphogenèse des cellules photoréceptrices	gamma-aminobutyrique	nucléobases pyrimidiquesde novo'	morphogenése des vaisseaux sanguins	négative du processus métabolique des	régulati négative s l'assembl	e de lage transcr	régulation iption de la	adhésion cellulair via les molécules à la membrane	re homophile s d'adhésion	réponse cell à l'ion calc	ulaire ium	protéine acét	C-terminale
		régulation de la réorganisation du cytosquelette d'actine	régulation positive du processus d'apoptose des cellules myéloïdes	assemblage du cilium	homéostasie des neutrophiles	des filopo régulation né de la voie signalisation récepteurs TI neurotroph	odes égative e de n des RK des nines	cellulaire eloppement des es embryonnaire	régulation positive de la prolifération des lymphocytes T alpha-beta	eraction neuronale-gliale oliquée dans la migration des cellules gliales diales du cortex cérébral	voie de ignalisation activée par la nétrine	éponse Ilulaire à hypoxie	l'histor proce	ne H4–K16 essus viral

Carte proportionnelle de l'ontologie génique dans REVIGO

Figure A48 de l'annexe. Carte proportionnelle en REVIGO pour l'UD 15 d'après les gènes proches des valeurs aberrantes dans pcadapt. Chaque cellule représente un processus biologique fondé sur l'ontologie génique et les cellules sont regroupées en « super-groupes » en fonction de termes liés de manière similaire (mêmes couleurs). La taille de la cellule représente la valeur p du terme GO dans l'analyse. Le terme GO le plus significatif dans chaque super-groupe est indiqué au centre.

Figure A49 de l'annexe. Analyse de redondance utilisant les données bioclimatiques de toutes les rivières de l'UD 15 comme réponse et les groupes présumés de l'UD (deux groupes génétiques) comme variable contraignante. Les deux UD présumées sont une UD couvrant le bassin Minas de Cornwallis à Fox (UD 15-A) et une autre englobant la baie de Chignectou, de Apple à Mispec (UD 15-B). Les centroïdes des groupes de l'UD sont indiqués par le texte, avec un point représentant chaque rivière. L'analyse de la variance (ANOVA) sur l'analyse de redondance a montré que le modèle était significatif (p = 0,001) avec un R² ajusté de 0,15. L'axe 1 de l'analyse de redondance représentait 16,9 % de la variance expliquée par le modèle et séparait clairement les deux UD présumées.

Figure A50 de l'annexe. Résultats de STRUCTURE pour les sites de l'UD 16 (extérieur de la baie de Fundy) et de l'UD 15 (intérieur de la baie de Fundy) en utilisant (A) l'ensemble de données sur les microsatellites et (B) l'ensemble de données sur les 96 SNP pour deux groupes génétiques (K=2). L'ensemble de données sur les microsatellites a montré que la rivière Gaspereau se regroupait avec des sites de l'extérieur de la baie de Fundy. De même, la rivière Gaspereau se regroupait avec l'extérieur de la baie de Fundy. De même, la rivière Gaspereau se regroupait avec l'extérieur de la baie de Fundy dans les données sur les 96 SNP, bien que les différences génétiques entre tous les sites de l'intérieur et de l'extérieur de la baie de Fundy ne soient pas aussi claires que dans les microsatellites.

Figure A51 de l'annexe. Résultats de STRUCTURE pour les sites de l'UD 16 (y compris la rivière Gaspereau qui a été déplacée dans l'UD 16) en utilisant l'ensemble de données sur les microsatellites montrant des deux groupes génétiques pour K=2 et K=3. Nous avons testé des valeurs de K allant de 1 à 3 et la meilleure valeur de K dans STRUCTURE était 2. La rivière Gaspereau a formé son propre groupe et était séparée des rivières NSH et TOB. Pour K=3, les rivières TOB et NSH étaient toujours groupées ensemble, mais avec une certaine sous-structure dans la rivière TOB.

Figure A52 de l'annexe. Résultats de STRUCTURE pour l'UD 16 en utilisant la base de référence des 96 SNP avec des groupes génétiques pour K=2. La meilleure valeur de K dans STRUCTURE était 2. Nous avons testé des valeurs de K allant de 1 à 3. Aucune structure génétique n'a été observée dans l'UD 16.

Figure A53 de l'annexe. Résultats de STRUCTURE pour les populations de l'extérieur de la baie de Fundy (UD 16) et des États-Unis dans le Maine en utilisant les ensembles de données sur les 15 microsatellites et les 96 SNP avec des groupes génétiques pour K=2. Nous avons testé des valeurs de K allant de 1 à 5. Des différences claires ont été détectées entre l'extérieur de la baie de Fundy et les États-Unis. Une certaine structure supplémentaire a été détectée au-delà de K=2 dans l'ensemble de données sur les microsatellites, mais pas dans celui sur les 96 SNP.
(A) 15 microsatellites

Figure A54 de l'annexe. Résultats de STRUCTURE pour les populations de l'extérieur de la baie de Fundy (UD 16), y compris la rivière Gaspereau, et des États-Unis dans le Maine en utilisant les ensembles de données (A) sur les 15 microsatellites et (B) les 96 SNP avec des groupes génétiques pour K=2 et K=3. Nous avons testé des valeurs de K allant de 1 à 6. Des différences claires ont été détectées entre l'extérieur de la baie de Fundy et les États-Unis pour K=2.