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ABSTRACT 
Although one of the most economically important stocks in Canadian waters, Northern Shrimp 
(Pandalus borealis) in shrimp fishing areas (SFAs) 4-6 currently lack a population model to 
predict how fishing pressure and changing environmental conditions may affect future shrimp 
abundance. We tested various surplus production models that included potential predictors, 
such as predator density, bottom temperature, large-scale climatic conditions, plankton, patterns 
in recruitment, and fishing pressure to assess their ability to predict annual changes in Northern 
Shrimp biomass density. A spatially-explicit, lag-1 autoregressive surplus production model that 
included Atlantic Cod (Gadus morhua) density, alternate predator (Greenland Halibut-
Reinhardtius hippoglossoides and Redfish-Sebastes spp.) density, North Atlantic oscillation 
(NAO) index, and Northern Shrimp biomass as predictors was found to be the best model. This 
model represents a step forward for assessing Northern Shrimp in SFAs 4-6, but as with any 
modelling, caution is warranted when applying it outside the range of ecosystem conditions 
already observed and ongoing evaluations of its efficacy will be required. 
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INTRODUCTION 
Northern (or Pink) Shrimp (Pandalus borealis) stocks on the Newfoundland and Labrador (NL) 
Shelves (Shrimp Fishing Areas [SFAs] 4-7; Figure 1) are some of the most economically 
important stocks in NL (Carruthers et al. 2019), and are main components of the benthic shelf 
ecosystem, comprising a substantial portion of the benthic biomass and providing food for a 
wide range of benthic predators (Lilly et al. 2000). These stocks currently lack a population 
model to predict how fishing pressure and changing environmental conditions may affect shrimp 
densities in the short or long term. They are managed under a Precautionary 
Approach/Decision-making (PA/DM) Framework established following recommendations of a 
prior working group (DFO 2009), based on an index of average female spawning stock biomass 
(SSB) during what was considered a productive time period. 
Following rapid declines of Northern Shrimp biomass in SFA 6 and 7 (leading to the closure of 
SFA 7), along with increasing biomass of groundfish predators of Northern Shrimp (with Atlantic 
Cod, showing the largest increases, but with many predator species increasing from 2010 
onward (Rose and Rowe 2015; Pedersen et al. 2017; DFO 2018a), concerns were raised about 
the appropriateness of the average biomass approach used to manage these stocks, and if it 
should be updated given changing ecosystem conditions. The biomass-based reference points 
were re-evaluated in 2017 through a Regional Science Response peer-review process (DFO 
2017), where it was concluded that there was some evidence that environmental factors 
affecting shrimp productivity may have changed since 2009. These findings were consistent 
with assessments of these stocks, which highlighted increasingly unfavourable environmental 
conditions, including increasing levels of groundfish predation. The 2017 Science Response 
concluded that a predictive population model was needed to understand the factors affecting 
productivity. The need for a population model for these stocks was also identified in the stock-
rebuilding plan for SFA 6 following its entry into the Critical Zone of the PA/DM Framework 
(DFO 2018b). 
In this document, we propose a new quantitative population model for these Northern Shrimp 
stocks. This model was designed to meet five criteria: 
1. Predictive: The model should be able to predict changes in biomass at least one year in 

advance based on information that is measurable in the current year, so that it is useful for 
providing management advice. 

2. Mechanistic: The model should be based on known or hypothesized mechanistic 
connections between variables and productivity. 

3. Ecosystem-based: The model should use information on the current state of the ecosystem 
when making predictions, rather than simply using the current biomass of shrimp stocks and 
fishing pressure. 

4. Explicitly include uncertainty: The model predictions should include the uncertainty 
associated with a given prediction and allow for a range of model forecasts. 

5. Spatially structured: The NL shelves are strongly spatially structured, so both the Northern 
Shrimp stock and the drivers affecting it are also spatially structured. As such, shrimp 
productivity also likely varies in space. By developing an explicitly spatial model of these 
stocks, it is possible to estimate where productivity is changing most rapidly. Spatially 
explicit estimates of productivity can easily be scaled to the SFA level, whereas it is not 
generally possible to use aggregated models to predict smaller-scale changes. 
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In general, fisheries modelling has focused on developing population models at the level of 
whole stocks, rather than spatially explicit population models. We consider a spatial approach 
more fruitful for developing ecosystem-based models, as it allows us to explicitly incorporate the 
local or multi-scale effects of changing ecosystem conditions on changing productivity. Further, 
it is often possible to use simpler functional responses to model relationships between 
productivity and ecosystem variables in spatially explicit models than in stock-level models, as 
nonlinear averaging effects can lead to functional relationships appearing more nonlinear at 
large scales than at small scales (Barraquand and Murrell 2013). 

BIOLOGY OF NORTHERN SHRIMP IN THE NL OFFSHORE REGIONS 
Northern Shrimp are found in the Northwest Atlantic from Baffin Bay south to the Gulf of Maine. 
Northern Shrimp prefer an ocean floor that is somewhat soft and muddy and where 
temperatures range from approximately 1-6°C; however, the majority of Northern Shrimp are 
caught in waters from 2-4°C. These conditions typically occur at depths of 150-600 m and exist 
throughout the NL offshore area (Parsons 1982; Shumway et al. 1985). Northern Shrimp 
represents the primary shrimp resource in the North Atlantic, but overlaps in range with the 
Striped Shrimp (Pandalus montagui), which is also commercially exploited, generally as a 
bycatch fishery (DFO 2019). 
SFAs 4-7 are not separated by any substantive barriers to adult or larval shrimp dispersal. The 
Labrador Current connects all four SFAs, running southward from SFA 4 through SFAs 5, 6, 
and 7. Research on larval dispersal modeling within SFAs 4-7 indicated strong downstream 
larval connectivity; the majority of recruits in a particular SFA may come from SFAs farther 
north. Northern Shrimp larvae may travel several hundreds of kilometers before settlement (Le 
Corre et al. 2019). Ongoing research has demonstrated that larvae originating in the Arctic also 
show high settlement in SFAs 4-6 (Le Corre et al. 2020). This research also indicates low larval 
shrimp retention in SFA 4 and 5, and higher larval retention in SFA 6. Release location, ocean 
circulation, and larval behaviour were identified as important variables affecting larval dispersal 
in the study area. Simulations on larval dispersal indicated that larvae released from inshore 
populations showed higher potential settlement success than larvae released from offshore 
(shelf edge) sites (Le Corre et al. 2019). 
Studies of genetics between Northern Shrimp populations in SFAs 4-7 have demonstrated that 
Northern Shrimp in these areas are largely homogeneous genetically (Jorde et al. 2015). This is 
most likely a result of larval and pelagic transport by the Labrador Current. Despite the 
relationships between SFAs 4-7, the Northern Shrimp resources in these areas are managed 
(and hence assessed) on an individual SFA basis rather than as a whole. 
Northern Shrimp are born and first mature as males, mate as males for one or more years, and 
then change sex to spend the rest of their lives as females. They are thought to live for more 
than eight years. Some northern populations exhibit slower rates of growth and maturation, but 
live longer and reach larger maximum size. Females produce eggs in the late summer-fall and 
carry the eggs on their pleopods until they hatch in the spring. Shrimp are thought to begin to 
recruit to the fishery around age three (Parsons 1982; Shumway et al. 1985). Most of the 
fishable biomass is female; however, the proportion of females in the fishable survey catch 
varies by SFA and year (DFO 2019). 
During the daytime, shrimp rest and feed on or near the ocean floor. At night, substantial 
numbers migrate vertically into the water column, feeding on zooplankton (Shumway et al. 
1985). Currently, there is little information on their diet composition, their food preferences, or 
the fraction of shrimp diets obtained from benthic/detrital versus pelagic food sources. 
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They are important prey for many species such as Atlantic Cod, Greenland Halibut, Redfish, 
American Plaice (Hippoglossoides platessoides), Skates (Raja radiata, Raja spinicauda), 
Wolffish (Anarhichas spp.), and Harp Seal (Pagophilus groenlandica), especially during the 
period of low groundfish abundances on the Newfoundland Shelf (DFO 2019). Varying 
predation rates have been shown to play an important role in regulating Northern Shrimp 
abundances across a wide range of systems, including Greenland (Hvingel and Kingsley 2006), 
Iceland (Björnsson et al. 2017), the Gulf of Maine (Cao et al. 2016b; Hunter et al. 2018), and the 
Gulf of St. Lawrence (Tamdrari et al. 2018), although recent studies in the Gulf of St. Lawrence 
also highlight the important role of plankton dynamics on Northern Shrimp growth (Brosset et al. 
2018). 

NL SHELF NORTHERN SHRIMP FISHERIES 
The fishery for Northern Shrimp off the coast of Labrador began in SFA 5 in the mid-1970s, 
primarily in the Hopedale and Cartwright Channels. Soon after, concentrations of Northern 
Shrimp were located within SFA 4 and 6 leading to an expansion of the fishery into those areas. 
As the fishery expanded to Hawke Channel, St. Anthony Basin and Funk Island Deep, and to 
the slope of the continental shelf in SFAs 4-6 during the early-1990s, total allowable catches 
(TACs) were increased periodically and taken in most years. The northern Grand Banks (SFA 7) 
were opened to fishing in 2000 (DFO 2018c). There have been changes in seasonality of fishing 
effort through time and dependent on various factors, one of those being ice coverage in the 
various SFAs. Subject to license conditions, the large-vessel fleet fishes throughout the year in 
different SFAs. 
Despite linkages between shrimp populations in SFAs 4-7, they are managed independently 
(i.e., TACs are allocated only with consideration for that particular SFA). TACs in SFAs 4-6 
combined have been decreasing since the 2008/09 management year (Figure 2), mainly due to 
TAC reductions in SFA 6 which were implemented as a result of declines in survey biomass 
indices. SFA 7 was closed to fishing in 2015 following declining biomass levels below the 
established 𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙 reference point (DFO 2018c), and has not increased above that level. The 
combined TAC for SFA 4-6 was 50,085 t in 2018/19. Commercial catch trends generally follow 
TAC trends (Figure 2); however, there have been years during which market conditions and 
operating costs led to uncaught Northern Shrimp quota. 
All Northern Shrimp fisheries in eastern Canada are subject to the Atlantic Fisheries 
Regulations, established under the Fisheries Act, regarding territorial waters, by-catch, discards, 
vessel logs, etc. These include a minimum mesh size of 40 mm and mandatory use of sorting 
grates to minimize by-catch of non-target species. Grate size is dependent upon area fished. In 
SFA 6, the minimum bar spacing is 22 mm and in SFAs 4-5 the minimum bar spacing is 28 mm. 

METHODS AND RESULTS 

REVIEW OF DATA SOURCES 

Historic Northern Shrimp Surveys 
From the late-1970s to the early-1990s, targeted shrimp surveys were executed in various small 
areas (corresponding to commercial fishing grounds) of SFA 5 and 6. These surveys were 
executed from the vessels A.T. Cameron, Zagreb, and Gadus Atlantica and sets were randomly 
selected. Some of these surveys were experimental (i.e., diurnal) in nature. The fishing gear, 
seasonality, and spatial coverage were much different than the survey protocols in place today. 
A Sputnik 1600 trawl was utilized for 30-minute tows at a vessel speed of 3.0 knots. This trawl 
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had a wing spread of about 72.2 feet and an opening of about 21 feet. The same information 
(i.e., shrimp maturities, weights and numbers) were captured then, although there have been 
some refinements to maturity identification and disease/condition characterization. 

Fisheries and Oceans Canada Multi-Species and Northern Shrimp Research 
Foundation Surveys 
Fisheries and Oceans Canada (DFO) multi-species surveys employing a shrimp trawl began in 
1995 and are executed from Canadian Coast Guard vessels including CCG Wilfred Templeman 
(1995-2008), CCG Teleost (1995-present), and CCG Alfred Needler (1996, 2001, 2005-06, 
2008-present). Northern Shrimp assessments are performed using the autumn (late-September 
to mid-December) survey data, which covers North Atlantic Fisheries Organization (NAFO) 
Divisions 2HJ3KLNO; however, complete survey coverage of NAFO Division 2H (i.e., northern 
SFA 5) has only consistently been completed since 2010. The trends in SFA 5 survey biomass 
indices during the missing years is unknown. The goal of these surveys is to maintain set 
allocations, survey coverage, and seasonality across years, however there have been times that 
the survey has extended into January and planned sets have been dropped due to factors 
including weather and vessel issues. 
Basic DFO fall survey performance statistics and coverage are presented annually at NAFO 
meetings and are published on the NAFO website (Power et al. 2016; Rideout and Ings 2018). 
Northern Shrimp Research Foundation (NSRF) surveys began in 2005 and cover SFA 4 during 
the summer months (July-August). These surveys are executed from commercial fishing 
vessels including Cape Ballard (2005-11), Kinguk (2014), Katsheshuk II (2015), and Aqviq 
(2012-13, 2016-18). Cape Ballard, Aqviq, and Kinguk had similar specifications but Katsheshuk 
II was a larger, more powerful vessel. There was no change in the survey gear or design, and it 
was assumed that any effect of this change in the survey vessel would not be important. 
However, no among-vessel calibration was conducted. 
A Campelen 1800 trawl is utilized on the research vessel (RV) surveys and is towed for a 
targeted 15 minutes of bottom contact at a vessel speed of 3.0 knots. This trawl has a wing 
spread of about 55.25 feet and an opening of about 13 feet; details of the survey design and 
fishing protocols are outlined in Brodie (1996) and McCallum and Walsh (1996). 
A trawl-mounted CTD also provides information on bottom temperatures and depths at survey 
locations. When the CTD does not function properly, an expendable bathythermograph (XBT) is 
deployed to provide bottom temperature readings and depth readings are taken from the vessel 
sounder or Scanmar sensors. 
The data from these surveys are subject to two data review processes: once on-board the ship 
by the person in charge of each particular trip, and again when the data are returned to DFO-
Science upon the completion of the entire seasonal survey. Trained technicians on these 
surveys count and weigh every species that is caught. This includes known predators of shrimp 
(e.g., Greenland Halibut, Redfish, and Atlantic Cod) in addition to shrimp species identification, 
maturities, parasite presence, and carapace lengths. Shrimp maturity classes include males, 
transitional, primiparous females, ovigerous females, and multiparous females. A sample weight 
by maturity and disease condition (e.g., black gill) is captured before capturing the numbers at 
size (i.e., carapace length) for the survey shrimp sample. Carapace lengths are measured to the 
nearest tenth of a millimeter, however survey results are normally grouped in 0.5 mm length 
bins for analyses. 
Over a number of early years, experiments were conducted during which individual shrimp were 
measured and weighed such that formulas could be derived for conversion from numbers to 
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weights. These formulas are applied to numbers at size in order to convert abundance to weight 
of fishable-sized (i.e., carapace length >17 mm) shrimp from each survey tow. These formulas 
are as follows: 

Individual Weight (g) = �males: 0.00088 × (Carapace Length (mm))2.857

females: 0.00193 × (Carapace Length (mm))2.663  (1) 

Commercial Northern Shrimp Data 
Canadian Observer Data 

The current Northern Shrimp fishery in SFA 4-6 is executed by about 13 large vessels and 250 
small vessels. Coverage of these areas is available to all large vessels, but the small-vessel 
fishery is largely concentrated in SFA 6. Observer coverage is mandatory on all large vessels. 
The goal for observer coverage on the small-vessel fleet is 10%; however, coverage is usually 
much less than that, with about 5-8% coverage in recent years. 
Observers onboard vessels are responsible for recording positions, catch size, discards, etc. 
They measure one random detailed sample of Northern Shrimp per day, which consists of 250-
300 individual Northern Shrimp and includes information on maturity, lengths, and pathogens. 
This provides a reasonable snapshot of size frequencies throughout the fishing season in 
various areas. 
Given the complete observer coverage of the large-vessel Northern Shrimp fishery, observer 
data are utilized to calculate commercial catch per unit effort (CPUE) for assessment purposes 
and are used to determine the spatial distribution of commercial catch in this model. The 
assessment takes place while the fishery is ongoing and there is a delay receiving the data such 
that the most recent commercial data are not available for analysis in the assessment 
(i.e., 2018/19 data is not available for the 2019 assessment) and the last point presented is 
preliminary. There are some differences in how data are collected and depends on the province 
in which the fishing vessel is registered together with the company responsible for the 
observers. Some trips capture detailed sampling that includes males, primiparous females, 
multiparous females, and ovigerous females, while others only record whether a shrimp is 
ovigerous or non-ovigerous. 

Canadian Logbook Data 
Logbooks are completed for every Canadian vessel targeting Northern Shrimp. They are 
returned to the province in which the vessel is registered and stored in databases that differ by 
province. These data include information such as catch size, position, and discards. 
Given the low observer coverage rates of the small-vessel Northern Shrimp Fishery, logbooks 
are utilized to generate small-vessel CPUE indices for the assessments, and to determine the 
spatial distribution of small-vessel fishing effort.  

HISTORIC TRENDS IN NORTHERN SHRIMP PRODUCTIVITY 
While the fishery for Northern Shrimp on the NL Shelves started in the early-1970s, the current 
RV biomass time series starts in 1995 (for SFA 5-7) or 2005 (for SFA 4). Northern Shrimp 
abundance may have increased somewhat during the 1980s and increased rapidly from 1990 in 
SFA 6 (Lilly et al. 2000). This followed a reverse trend from the bulk of the groundfish stocks on 
the Newfoundland Shelf, with average groundfish biomasses declining from the mid-1980s, with 
the most rapid declines occurring from 1990-95 (Pedersen et al. 2017). However, the extent of 
this growth has been previously unknown, as there were no validated metrics of pre-1995 
Northern Shrimp abundances to compare with current abundance metrics based on multi-
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species RV surveys. Measures of changes in Northern Shrimp historical biomass to current 
biomass can provide a useful baseline to determine the approximate magnitude of changes in 
shrimp productivity from the period of high to low groundfish abundances, and provides a useful 
test case to compare model predictions out of the sample of the current trawl survey. In this 
section, we survey the existing historical data on Northern Shrimp abundances prior to 1995, to 
determine the extent of the change in biomass from the 1980s to 1995. 
As noted, prior to 1995, limited historical shrimp surveys had been conducted in three channels: 
Hopedale Channel, Cartwright Channel (both in SFA 5), and Hawke Channel (at the northern 
end of SFA 6). The spatial distribution of these trawls is shown in Figure 3A in red, compared to 
the spatial extent of current (1995 onwards) trawls in black. A comparative index of shrimp 
biomass in these channels was developed by matching trawls in the RV survey with historic 
trawl surveys by finding the 10 nearest RV trawls across all RV survey years to each historic 
trawl. The RV trawls for comparison were then further filtered by excluding all trawls not falling 
within a non-convex bounding polygon (Blangiardo and Cameletti 2015) around each channel. 
The spatial distribution of matched RV and historic trawls are shown in Figure 3B. 
Total Northern Shrimp biomass from each trawl was transformed into a density by dividing by 
the area swept by the trawl. Means and confidence intervals of biomass in each channel from 
before and after 1995 was calculated by fitting a spatiotemporal smoothed GAM model to the 
observed densities across both sets of trawls. 
The second index of historical shrimp productivity was based on inferred abundance of Northern 
Shrimp based on the presence of shrimp in the diets of Atlantic Cod in SFA 61. The fall RV 
survey has consistently collected data on the presence or absence of prey as primary 
components in predator stomachs across SFA 6 since the 1980s (from historic Groundfish 
Engels surveys and current DFO RV surveys), referred to as ‘called stomach’ data. The fraction 
of Atlantic Cod stomachs in SFA 6 that contained shrimp as one of the main components 
correlated closely with Ogmap estimates of biomass of shrimp in the RV data for the years 
where Northern Shrimp were consistently measured (Figure 4). These data were used to infer 
past Northern Shrimp biomasses by regressing RV biomass on diet fraction using a generalized 
linear model (GLM) assuming Tweedie-distributed RV biomass, and then past biomass levels in 
SFA 6 were inferred by using the fitted GLM to give the estimated biomass for those years 
where only diet fraction data were available. 
Both shrimp biomass proxies suffer from data issues that result in them not being optimal for 
assessing biomass trends; the RV and historical shrimp surveys differed in survey gear and 
survey timing, the difference in catchability between historical and RV surveys is unknown, and 
the presence of shrimp in cod diets may have been influenced by factors other than changes in 
shrimp biomass, such as the availability of alternative prey or changes in the spatial distributions 
of cod or shrimp. However, both comparative trawl biomass time series (Figure 5A) and diet-
inferred biomass time series (Figure 6A) are consistent with a general increase in shrimp 
biomass between 1990 and 1995, to a level between four to ten times the biomass of the pre-
1990 level (Figure 5B and Figure 6B). These metrics also indicate that in recent years shrimp 
biomass has declined to a level consistent with their 1979-90 levels in SFA 6. As the two time 
series use very different information to estimate changes in abundance, this indicates that this 
rapid increase very likely occurred in SFA 6 (and to a lesser extent across SFA 5; see Figure 5B 

 

1 Greenland Halibut diets were also available for this period, but showed very similar relationships 
between diet fraction and Northern Shrimp biomass, and using both species did not improve model 
predictions relative to using Atlantic Cod diets alone. 
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Cartwright and Hopedale channels), and the increase in biomass in the 1990s was similar to the 
decline in biomass after 2008. 

POPULATION AND ECOSYSTEM METRICS FOR CURRENT SURVEY DATA 

Spatial Divisions For The Analysis 
One of the goals for the surplus production model was to explicitly account for the spatial 
structure of the stock, including the possibility of spatially varying demographic factors (e.g., 
growth and mortality) and incorporate modelled patterns of larval recruitment. As such, the 
models had to explicitly account for stock spatial structure. This requires discretizing space in 
some way, as any modelling approach requires some form of discretization. 
While the region is already divided into SFAs, these were considered too coarse-scale for the 
purposes of this model. The sampling scheme used for the summer and fall surveys was 
already based around depth strata, which could have been used as a discretization scheme. 
However, this approach was also not optimal, because there were a large number of strata 
(increasing computational time for any model), and many strata were long and thin, so that 
determining the probability of dispersing from one stratum to another became complicated in 
any future modelling of shrimp dispersal. As such, it was determined that it was necessary to 
develop a new discretization scheme for the region. 
When developing the discretization, four factors were prioritized: 
1. Spatial patches should be compact (ideally, convex), avoiding patches that were spatially 

complex or divided into sub-patches. 
2. The range of depths within each patch should be relatively homogeneous, as depth was 

recognized as one of the major factors that would affect shrimp demographics and 
dispersal. 

3. Patches should be structured such that each patch covered an area that typically included 
multiple trawl survey tows per year, to stabilize population estimates (although given the 
variability in sampling coverage, no discretization scheme could achieve this for all patches 
in all years). 

4. Patches should respect the existing SFA boundaries, so it would be possible to assign 
growth and biomass occurring within each patch to a specific SFA for management 
purposes. 

This required developing a novel method to meet these criteria. All spatial analyses for this 
procedure were done using the sf package for R 3.5.1 (Pebesma 2018; R Core Team 2018). 
For each SFA in the model (SFAs 4-7), a random sample of locations of previous trawls were 
drawn from the fall survey. These draws included 10 trawls from SFA 4, 30 from SFA 5, 30 from 
SFA 6, and 5 from SFA 7. The overall number of draws was chosen arbitrarily and within each 
SFA the numbers were chosen because SFA 4 is a smaller area than SFA 5 and 6 and less 
depth-structured. As well, shrimp occur less frequently in SFA 7 and it was decided that less 
computational effort should be dedicated to estimates for that region. 
A Voronoi tessellation was calculated based around the selected points. This procedure creates 
a set of polygons, where the interiors of each polygon around a specific point contain all of the 
locations that are closer to that point than to any other point in the set (Fortin and Dale 2005). 
All polygons that overlapped a SFA boundary were cut into two pieces, and any resulting 
polygons that fell outside of any SFA were discarded. As there were a number of very small 
polygons after clipping to SFA boundaries, any polygon with an area of less than 1,500 km2 was 
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merged with its nearest neighbour within the SFA. One polygon in SFA 4 was also cut into four 
separate ones as it previously covered too large an area, and was not homogeneous for depth, 
covering both the shelf and shelf edge. As the SFA boundaries included several inshore areas 
near Labrador that are not sampled as part of the multi-species of NSRF surveys, these areas 
were excluded by clipping polygons to the area bounded by the current trawl strata. This 
procedure resulted in 71 total patches (Figure 7). The distribution of depths within each polygon 
is shown in Figure 8. 

General Spatial Modelling Strategy 
A model-based, penalized regression approach was used to estimate spatiotemporal trends for 
shrimp biomass density and for environmental predictor variables. Spatial statistical models 
were fit using generalized additive models (GAMs) (Wood 2017; Pedersen et al. 2019) for all 
predictors that were derived from RV trawl data, commercial logbooks, or commercial observer 
data. This includes Northern Shrimp biomass, bottom temperature, and biomass of potential 
shrimp predators (here using three of the most abundant species as proxies for the groundfish 
predation field: Atlantic Cod, Greenland Halibut, and Deepwater Redfish). These models 
assume that any given outcome 𝑦𝑦 is a random observation from a statistical distribution, so that 
the probability of observing a given value 𝑦𝑦𝑡𝑡,𝑙𝑙 at a specific year (𝑡𝑡) and in a given patch (𝑖𝑖) is 
given by 𝑦𝑦𝑡𝑡,𝑙𝑙 ∼ 𝑓𝑓(𝜇𝜇𝑡𝑡,𝑙𝑙 ,𝜙𝜙) where 𝑓𝑓 is some statistical distribution with a mean 𝜇𝜇𝑡𝑡,𝑙𝑙 and a scale 
factor that does not depend on time or location, and determines the variability around the mean 
value. Mean value fields 𝜇𝜇𝑡𝑡,𝑙𝑙 are assumed to come from the sum of one or more smooth terms, 
by transforming the predictor variables into a group of simple functions (basis functions, 
𝑏𝑏1...𝑛𝑛(𝑡𝑡, 𝑖𝑖)) that can be multiplied by coefficients and linearly summed across all functions, then 
taking the resulting sum and transforming it by a distribution-specific link function (𝑔𝑔(𝑥𝑥)) to give 
the predicted mean. 
To estimate the appropriate coefficients to best predict observed patterns in the data, the GAM 
model maximizes the sum of the log-likelihood of observing all of the observed data 
∑𝑙𝑙𝑙𝑙𝑔𝑔(𝑝𝑝𝑓𝑓(𝑦𝑦𝑙𝑙,𝑡𝑡|𝜇𝜇𝑙𝑙,𝑡𝑡 ,𝜙𝜙), minus a penalty term that penalizes how far each estimated coefficient in a 
given smooth term is away from the other coefficients, using a smoother-specific penalty term 𝜆𝜆 
and penalty matrix 𝑃𝑃 that determines which coefficients should be “close” to each other, by 
penalizing the quadratic products of all pairs of coefficients. The penalties in turn are selected 
using restricted maximum likelihood (REML) (Wood 2011). See Pedersen et al. (2019) section II 
for a more detailed introduction to these methods. 
GAM models of predictors were fit using the mgcv package (Wood 2017). For all spatially-
resolved model inputs, spatiotemporal trends were estimated using three smooth terms:  
1. A year-effect, where each year was treated as a single basis function; this term estimated 

the mean value of each variable over time. 
2. A spatial term, where each patch was treated as a single basis function, and each trawl was 

assigned to one patch (using the patch structure identified above); this term estimated the 
average distribution of each predictor across space. 

3. A year-spatial interaction, calculated as a tensor-product interaction (Wood 2006a) of the 
year and spatial terms; this term estimated how much each model term varied around the 
year- and location-specific averages. 

The year terms were penalized using a random-effect penalty (Wood 2017), that penalized all 
coefficients towards the global mean (with the penalty for each coefficient being proportionate to 
the squared value of that coefficient; Figure 9). This penalty acts to smooth estimates, but does 
not specifically penalize years that were close to each other more strongly towards one another 
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than to other years, so that rapid year-to-year changes were not penalized away. The spatial 
terms were fit using a Markov Random Field (MRF) smoother (Wood 2017), that penalizes the 
squared differences between coefficients of the polygons directly adjacent to one another. This 
acts to spatially smooth adjacent polygons towards each other (sharing information between 
nearby areas on the average value of a given predictor variable), with a penalty that drops off 
with distance, so that polygons far away from one another are able to be freely estimated. The 
spatiotemporal interaction term was penalized with a tensor product of a MRF and random 
effect penalty, using the ti function in mgcv (Wood 2006a), so that neighbouring polygons in the 
same year were penalized towards one another and toward the global mean. 
This model-based approach to estimating Northern Shrimp density and spatial predictors 
enables estimation not only of the mean value of each predictor at a given location and time, but 
also ranges of uncertainty associated with each estimate, both for location-specific estimates 
and for functions of those estimates, such as average biomass across the year. To calculate 
uncertainty for any given point, the GAM model was treated as a Bayesian regression (Wood 
2006b; Marra and Wood 2012), with the penalty terms and matrices corresponding to 
multivariate normal priors on the various smooth terms (when treated as a Bayesian model 
estimate, REML smoothing estimation corresponds to an approximation of Empirical Bayesian 
model fitting with flat priors on the log of the smoothing parameters; Wood 2006b). To estimate 
posterior uncertainty intervals for desired values, new random coefficient values were generated 
from a multivariate normal distribution with a mean of the estimated coefficient values and the 
variance-covariance matrix equal to the model posterior variance-covariance matrix. These 
posterior sample coefficient vectors were multiplied by the basis functions that corresponded to 
the predictor values that an uncertainty interval was desired for. This yielded a vector of 
predicted values for each combination of predictors of interest, and the quantiles of this 
distribution were used to calculate the desired intervals. In all cases, 1,000 simulated coefficient 
vectors were generated to calculate uncertainty intervals. These simulated values were also 
used to calculate uncertainty intervals for derived statistics (such as total biomass in a given 
SFA). The procedure for this is the same as above, except the desired summary statistics are 
calculated from the simulated values prior to aggregating values into uncertainty intervals. 

Current Northern Shrimp Biomass Dynamics 
The above procedure was used to model the spatiotemporal dynamics of shrimp biomass 
density across the three survey regions that are the focus of this document, as well as the 
dynamics of SFA 7. While SFA 7 is managed under a separate NAFO management framework, 
it is spatially connected to SFA 6 and the population changes in this area can provide additional 
information about factors that may be driving the stock. Currently more northern stocks (the 
Eastern Assessment Zone and Western Assessment Zone) are not included in these models, 
but it would be possible to extend this approach to incorporate these regions in future models. 
All trawl survey catches were first converted into densities by dividing the total weight of 
Northern Shrimp caught in a given trawl by the area swept by that trawl in km2, where area 
swept equaled the distance traveled by the trawl multiplied by the wingspread of the Campelen 
trawl (16.8 m). The spatiotemporal pattern of biomass across the four SFAs was then calculated 
using the GAM model described in the “General spatial modelling strategy” section. Shrimp 
density was assumed to be distributed following a Tweedie distribution (Wood 2017). The 
Tweedie distribution assumes that observed weight caught in a trawl follows a compound 
Poisson-Gamma distribution, where shrimp are assumed to live in aggregations each of which 
has a specific biomass following a Gamma distribution, and the probability of capturing 𝑛𝑛 
aggregations follows a Poisson distribution. This distribution allows for the possibility of both 
trawls with zero catch (when no aggregations are captured) and trawls with very high catches 
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(when one or more aggregations are captured) and has been shown to be effective for 
modelling complex spatial patterns of population abundance in other fisheries (Lecomte et al. 
2013). 
The spatial pattern of Northern Shrimp densities estimated by the model are shown in Figure 
10. There are consistent patterns of spatial aggregation in shrimp biomass occurring across the 
shelf, but the declines in biomass across the range in the last several years are apparent. 
The current assessment for Northern Shrimp in SFAs 4-6 relies on biomass estimates derived 
using the ogive mapping method (Ogmap) (Evans et al. 2000), instead of GAM-based estimates 
as used in this model. The Ogmap method relies on using observed shrimp biomasses in trawls 
to create a weighted empirical cumulative distribution function (WECDF) for each point in the 
domain of interest, with the weights based on distances and differences in depth between that 
location and other survey points. These WECDFs are then used to estimate mean or median 
biomass (or other quantiles of the local distribution), at each point in a grid, which are then 
summed across to estimate quantities such as total biomass in a region. This approach can also 
be used to estimate uncertainty intervals for aggregate biomass, by bootstrap resampling (Efron 
1982) from the set of WECDFs to generate a new sample trawl survey and generate a new 
estimate of population biomass. 
We chose to use GAM-based estimates of the spatial distribution of biomass and other 
indicators rather than Ogmap because there is currently no method in place in the Ogmap 
approach to propagate uncertainty of estimates for multiple spatial locations simultaneously 
(which the Empirical Bayesian approach described above does). Further, Ogmap currently 
tends to generate unrealistically tight confidence intervals, due to unresolved issues with how 
trawls at a given location are included when fitting parameters for the weighting function versus 
when using Ogmap for estimating derived quantities (Evans, personal communication). 
However, to ensure that the approach for estimating biomass used for this model was 
comparable to the Ogmap approach, we compared Ogmap and GAM outputs for each SFA and 
for each patch within the SFAs. 
The smooth GAM model of biomass density was integrated into an estimate of biomass within 
each SFA for each year by multiplying the estimated density of each patch by its area then 
summing across all patches within each SFA. Uncertainty intervals for these yearly biomass 
estimates were calculated as described in the “General spatial modelling strategy” section. 
These biomass estimates and 95% confidence intervals are shown in Figure 11, with biomass 
estimates and 95% confidence intervals for the estimates used in the current Northern Shrimp 
SFAs 4-6 assessment (DFO 2019). The GAM procedure resulted in very similar biomass 
estimates in all SFAs compared to the Ogmap procedure (Evans et al. 2000), and broader 
confidence intervals for SFA 6 and 7. This discrepancy may be a result of the current version of 
Ogmap returning overly narrow uncertainty intervals, due to the issue with the inclusion of 
individual trawl points noted above. Furthermore, both methods gave very similar estimates of 
the dynamics of mean biomasses within each patch (Figure 12), with the only notable 
differences between average patch densities between the two patches occurring in small 
patches on the boundary of the range, such as V3, V4, and V60 (Figure 7). As such, the GAM 
biomass estimates were considered to be consistent with Ogmap biomass estimates, as were 
used in the remainder of this model as the primary estimate of biomass. 
These biomass indicators can be converted into estimates of fishable biomass, by multiplying 
total biomass values by the fraction of the total weight estimated to occur as shrimp larger than 
17 mm carapace length in each year for each SFA. This conversion factor was calculated by 
transforming counts of shrimp in each size bin observed in the RV survey into weights using 
equation (1) then dividing the average weight per tow of all shrimp found in the RV survey trawl 
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in given SFA and year by the summed weights. The ratio of fishable to total biomass has stayed 
relatively constant within each SFA, but varied between SFAs, with the average fishable fraction 
increasing from south to north, from 84% in SFA 7 to 98% in SFA 4 (Figure 13). 

Predator Density 
Density of shrimp predators was estimated from biomass estimates taken from summer (NSRF) 
and fall (DFO RV) trawl surveys2. Three potential predators (previously identified as significant 
consumers of shrimp) were identified: Atlantic Cod, Deepwater Redfish, and Greenland Halibut. 
For each species, the total biomass in each trawl was transformed into density per km2 by 
scaling biomass by trawl area. Spatiotemporal regression models were fit for each species 
using a Tweedie family and the procedure described in “General spatial modelling strategy” 
section. The estimated maps of density for these species are shown in Figures 14, 15, and 16. 
Average densities of each of the three species in SFAs 4-7 are shown in Figure 17. 

Bottom Temperature 
The bottom temperature field was estimated from measurements of temperature taken at each 
station as part of the summer and fall RV surveys. The spatiotemporal pattern of bottom 
temperature was estimated by using the smooth modelling approach, assuming residual 
temperatures were normally distributed around their mean field estimates. Estimated spatial 
patterns of temperature are shown in Figure 18. Average bottom temperatures are shown in 
Figure 19. 

North Atlantic Oscillation Index 
The NAO is a large-scale climate state indicator, defined as the difference in winter sea level 
atmospheric pressures between the Azores and Iceland. It correlates quite strongly with general 
climate conditions on the NL Shelves, with positive NAO conditions being associated with 
generally colder and fresher waters on the shelf (Colbourne et al. 2017). This predictor was 
calculated for the whole shelf on an annual scale by averaging all the monthly NAO values in a 
given year (Figure 20A), obtained from the National Oceanic and Atmospheric Administration 
(NOAA) climate prediction center. As winter NAO (the average NAO index from December to 
March) has been identified as an important predictor of shrimp dynamics in Greenland 
(Hamilton et al. 2003), this index was also calculated for all years. 

Plankton 
Estimates of zooplankton abundance were derived from summer data from the Atlantic Zonal 
Monitoring Program (AZMP), from the Station 27, Bonavista, Seal Island, Makkovik Bank, and 
Flemish Cap lines. Following the standardization procedure in Pepin et al. (2017), scaled 
biomass estimates for each line were derived from total zooplankton biomass measurements by 
subtracting the average biomass recorded in the summer in that survey line during the AZMP 
zooplankton reference period of 1998 to 2010, and dividing by the standard deviation of 
biomass measurements in the same reference period. Biomass deviations for all measurements 
within given year were then averaged to give a single zooplankton biomass deviation for that 

 
2 These estimates do not represent estimates of fish biomass for stock assessment purposes, and are 
only designed as metrics of relative abundance of these species at the spatial scales used to model 
shrimp dynamics. 

https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
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year, indicating how many standard deviations, on average, zooplankton biomass exceeded or 
fell below the average biomass for the reference period (Figure 20B). 
Estimates of phytoplankton abundance were based on satellite images of the spring 
phytoplankton bloom, using estimates of the magnitude (chlorophyll concentration integrated 
across the whole bloom, Figure 20C) and timing (Figure 20D) of the bloom from Pepin et al. 
(2017). Phytoplankton abundance indicators were scaled using the same method as that used 
for zooplankton abundances. 

Fishing Pressure 
Total Northern Shrimp catch was determined for each patch in each year by summing catches 
from all trawls that occurred in each patch based on observer records from large-vessel catch 
and logbook records from small-vessel catch. These measures were scaled by the total 
reported landings in that year, as total catches based on logbook or observer data did not 
always exactly sum to total landings. Catches for the most recent year (2018) were scaled 
based on total assigned quota for the SFA, as final observer, logbook, and landings data were 
not available at the time of writing. Catches were transformed into catch densities by dividing 
the catch assigned to each patch in each year by the patch area. 

Spatial Patterns of Recruitment 
Given the strong and consistent southerly Labrador Current and the extended larval duration of 
Northern Shrimp, new recruits entering the population at any given location likely originated 
substantially north of that location, and a high degree of recruitment connectivity between SFAs 
is expected (Le Corre et al. 2019). As such, spatially structured patterns of recruitment were 
considered as one potential driver of shrimp population dynamics. To estimate dispersal rates of 
larvae originating from each patch to the others, the oceanographic dispersal model developed 
in Le Corre et al. (2019) was used to simulate larval drift paths from a grid of 267 points spread 
across all four SFAs (Figure 21). For each starting point, 100 simulated larvae per day were 
released and tracked for 105 days, in three separate simulation years (1999, 2009, and 2010, 
chosen to span a range of NAO conditions). Any larvae that was found in a given patch between 
the 86th to 105th day since the beginning of its dispersal (the assumed larval competency 
period; Le Corre et al. 2019) was assumed to be able to disperse there from its starting point. 
For each pair of patches, 𝑎𝑎 and 𝑏𝑏, the fraction of individuals dispersing from 𝑎𝑎 to 𝑏𝑏 was 
calculated as the number of days that a settlement-competent larvae from 𝑎𝑎 was in patch 𝑏𝑏, 
divided by the total number of settlement competent larvae-days for all larvae from 𝑎𝑎. This was 
repeated for all pairs of patches. 
These observed fractions were used to estimate a connectivity matrix by regressing fraction 
settled between patch 𝑎𝑎 and 𝑏𝑏 on a MRF interaction between all sites (so that sites near each 
other were penalized to have similar numbers of larvae dispersing from them to other sites, and 
from other sites to them). This connectivity matrix was then scaled by the total patch size of the 
sending and receiving patch, to account for the fact that different patches would differ in density, 
as a fixed number of larvae moving into a smaller patch would have a greater effect on the 
patch’s density than the same number moving into a larger patch. 
Finally, this modified connectivity matrix was converted into an estimated index of recruitment 
for each patch in each year, by multiplying the connectivity matrix by a vector of estimated 
densities for all starting locations (calculated from the model in “Current Northern Shrimp 
biomass dynamics” section). This implied that the recruitment index for any given site was a 
weighted average of the estimated shrimp densities for all other sites, where the weighting 
depended on the modelled connectivity rate and the relative areas of the two patches. 
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SPATIAL SURPLUS PRODUCTION MODELS 

Surplus Production Model Background 
Patch-specific rates of change for biomass across the region were modelled using a series of 
ecosystem-based spatially structured surplus production models (SPM). These SPMs assumed 
that population density in a given patch 𝑖𝑖 and year 𝑡𝑡 (𝐷𝐷𝑙𝑙,𝑡𝑡) is equal to the density in the location 
observed in the previous year (𝐷𝐷𝑙𝑙,𝑡𝑡−1) times a year and patch-specific annual production rate 
𝑒𝑒𝑟𝑟𝑖𝑖,𝑡𝑡, minus the total catch density in that location, 𝐶𝐶𝑙𝑙,𝑡𝑡 (where 𝐶𝐶𝑙𝑙,𝑡𝑡 equals the total mass of all 
Northern Shrimp caught in the patch divided by patch area). The growth term captures all non-
fishing effects that lead to biomass change, including recruitment, growth, and mortality: 

𝐷𝐷𝑙𝑙,𝑡𝑡 = 𝐷𝐷𝑙𝑙,𝑡𝑡−1𝑒𝑒𝑟𝑟𝑡𝑡,𝑖𝑖 − 𝐶𝐶𝑙𝑙,𝑡𝑡  (2) 

These models assumed that fisheries removals happen after recruitment, growth, and mortality 
has occurred, so that in the absence of fishing pressure, all of the caught shrimp would still be 
present in the population at the time of the survey. 
The instantaneous productivity is assumed to in turn depend on the density in the patch in the 
previous year (𝐷𝐷𝑙𝑙,𝑡𝑡−1) and other potentially year- and patch-specific factors (𝐕𝐕𝑙𝑙,𝑡𝑡): 

𝑟𝑟𝑡𝑡,𝑙𝑙 = 𝑓𝑓(𝐷𝐷𝑙𝑙,𝑡𝑡−1,𝐕𝐕𝑙𝑙,𝑡𝑡)  (3) 

Rearranging equation (2) then log-transforming both sides and substituting in equation (3) gives 
the following equation for production: 

𝑙𝑙𝑙𝑙𝑔𝑔(
𝐷𝐷𝑙𝑙,𝑡𝑡 + 𝐶𝐶𝑙𝑙,𝑡𝑡

𝐷𝐷𝑙𝑙,𝑡𝑡
) = 𝑓𝑓(𝐷𝐷𝑙𝑙,𝑡𝑡−1,𝐕𝐕𝑙𝑙,𝑡𝑡)  (4) 

The models developed focused on linear additive versions of equation (4), where ecosystem 
predictors were assumed to be linearly related to instantaneous productivity. This would 
correspond to a simple Ricker model if 𝑓𝑓(𝐷𝐷𝑙𝑙,𝑡𝑡−1,𝐕𝐕𝑙𝑙,𝑡𝑡) = �̂�𝑟 − 𝛽𝛽 ⋅ 𝐷𝐷𝑙𝑙,𝑡𝑡−1, where �̂�𝑟 is the density-
independent rate of growth and 𝛽𝛽 accounts for density-dependence on growth rates. In the 
linear additive case, equation (5) can be estimated by regressing the log of the ratio of current 
density plus catch to the density in the past year on past density and other potential predictors: 

𝑙𝑙𝑙𝑙𝑔𝑔 �
𝐷𝐷𝑙𝑙,𝑡𝑡 + 𝐶𝐶𝑙𝑙,𝑡𝑡

𝐷𝐷𝑙𝑙,𝑡𝑡
� = 𝑟𝑟𝚤𝚤 � + 𝛽𝛽𝑙𝑙 ∙ 𝐷𝐷𝑙𝑙,𝑡𝑡−1 + �𝛾𝛾𝑗𝑗

𝑗𝑗

∙ 𝑉𝑉𝑗𝑗,𝑙𝑙,𝑡𝑡−1 +  𝜖𝜖𝑙𝑙,𝑡𝑡  (5) 

Spatial variability in maximum productivity is captured by the term �̂�𝑟𝑙𝑙, which corresponds to the 
expected rate of growth in patch 𝑖𝑖 at low densities in the absence of other drivers. Spatial 
variability in density dependence is captured by the term 𝛽𝛽𝑙𝑙, which determines how rapidly 
growth rates decline with increasing density; lower values of 𝛽𝛽𝑙𝑙 would correspond to higher local 
carrying capacity in a site, all else equal. Effects of other measured ecosystem predictors are 
measured by the terms 𝛾𝛾𝑗𝑗, with positive terms meaning that productivity is expected to be high 
on average when that predictor is high, and negative terms implying reduced productivity when 
that predictor is at high levels. If ecosystem predictors are changing over time, this will have the 
net effect of shifting both the maximum possible productivity and the maximum carrying capacity 
in a patch at any given time. All unmeasured factors affecting productivity were assumed to 
enter through the error term 𝜖𝜖𝑙𝑙,𝑡𝑡 (which also incorporates effects of measurement errors in the 
prior and current year’s biomasses). For all models, the error 𝜖𝜖𝑙𝑙,𝑡𝑡 was assumed to follow a 
Student’s t-distribution, which is similar to the standard Gaussian distribution but has longer 
tails, allowing for the possibility of occasional large positive or negative changes. 
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Model Specifications 
Four SPM models were fit, to determine which ecosystem predictors were able to accurately 
predict annual changes in biomass density, and to determine if more complex model structures 
were able to better predict population dynamics. All models were estimated by regressing mean 
estimated values of 𝑙𝑙𝑙𝑙𝑔𝑔(𝐷𝐷𝑖𝑖,𝑡𝑡+𝐶𝐶𝑖𝑖,𝑡𝑡

𝐷𝐷𝑖𝑖,𝑡𝑡
) from spatial Northern Shrimp density models on different 

combinations of environmental predictors, using the gam function from the mgcv R package. All 
models included a MRF smoother across patches to model spatially varying patterns in growth 
rates. Biomass for Redfish and Greenland Halibut densities in each patch were summed to 
produce a single composite alternate predator (besides Northern Cod), as estimated Greenland 
Halibut density stayed relatively constant throughout the time series in all SFAs. Patch-specific 
density, recruitment, and predator densities were used as patch-level predictors of biomass 
change. While bottom temperature estimates were available at the trawl and patch level, 
temperature was aggregated to the SFA-scale by taking the mean temperature in each SFA 
across patches. We aggregated temperature to the SFA-scale as the spatial pattern of 
temperature did not show substantial variation across years, and was strongly co-linear with 
spatial location and thus effectively already accounted for by including patch-specific predictors 
of average growth rates. Only yearly estimates were available for all other predictors included in 
the models (zooplankton indices, phytoplankton indices, NAO). 
The four tested models were: 
1. Lag-1 autoregressive: this model included all of the potential predictors (zooplankton, 

phytoplankton, NAO, temperature, recruitment index, cod density, and alternative predator 
density) as linear terms with 1-year lag from the current year. The density of Northern 
Shrimp in the previous year was included as 1-year lagged term with a spatially varying 
slope, using a MRF smoother on the slope to prevent over-fitting observed trends: 

𝑙𝑙𝑙𝑙𝑔𝑔(
𝐷𝐷𝑙𝑙,𝑡𝑡 + 𝐶𝐶𝑙𝑙,𝑡𝑡

𝐷𝐷𝑙𝑙,𝑡𝑡
) = �̂�𝑟𝑙𝑙 + 𝛽𝛽𝑙𝑙 ⋅ shrimp density𝑙𝑙,𝑡𝑡−1 +

𝛾𝛾1 ⋅ recruitment index𝑙𝑙,𝑡𝑡−3 +
𝛾𝛾2 ⋅ cod density𝑙𝑙,𝑡𝑡−1 + 𝛾𝛾3 ⋅ other predator density𝑙𝑙,𝑡𝑡−1 +
𝛾𝛾4 ⋅ NAO index𝑡𝑡−1 + 𝛾𝛾5 ⋅ bottom temperature𝑠𝑠𝑓𝑓𝑠𝑠,𝑡𝑡−1 +
𝛾𝛾6 ⋅ phytoplankton magnitude𝑡𝑡−1 + 𝛾𝛾7 ⋅ phytoplankton timing𝑡𝑡−1 +
𝛾𝛾8 ⋅ zooplankton biomass𝑡𝑡−1 +
𝜖𝜖𝑙𝑙,𝑡𝑡

 

2. Simplified lag-1 autoregressive: this model included only the significant terms from the prior 
model: cod density, alternative predator density, NAO index, and Northern Shrimp biomass: 

𝑙𝑙𝑙𝑙𝑔𝑔(
𝐷𝐷𝑙𝑙,𝑡𝑡 + 𝐶𝐶𝑙𝑙,𝑡𝑡

𝐷𝐷𝑙𝑙,𝑡𝑡
) = �̂�𝑟𝑙𝑙 + 𝛽𝛽𝑙𝑙 ⋅ shrimp density𝑙𝑙,𝑡𝑡−1 +

𝛾𝛾1 ⋅ cod density𝑙𝑙,𝑡𝑡−1 + 𝛾𝛾2 ⋅ other predator density𝑙𝑙,𝑡𝑡−1 +
𝛾𝛾3 ⋅ NAO index𝑡𝑡−1 +
𝜖𝜖𝑙𝑙,𝑡𝑡

 

3. Multi-lag autoregressive: this model included lags of up to five years for all predictors, so 
that the effect of a given predictor on rate of growth was given by ∑ 𝛾𝛾𝑙𝑙𝑙𝑙 ⋅ 𝑉𝑉𝑡𝑡−𝑙𝑙. The 𝛾𝛾𝑙𝑙 for each 
smoother were penalized toward one another using a thin-plate spline. The goal of this 
model was to determine if there was evidence for lagged effects beyond a single year. 
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𝑙𝑙𝑙𝑙𝑔𝑔(
𝐷𝐷𝑙𝑙,𝑡𝑡 + 𝐶𝐶𝑙𝑙,𝑡𝑡

𝐷𝐷𝑙𝑙,𝑡𝑡
) = �̂�𝑟𝑙𝑙 + �𝛽𝛽𝑘𝑘

5

𝑘𝑘=1

⋅ shrimp density𝑙𝑙,𝑡𝑡−𝑘𝑘 +

𝛾𝛾1,𝑘𝑘 ⋅ recruitment index𝑙𝑙,𝑡𝑡−𝑘𝑘 +
𝛾𝛾2,𝑘𝑘 ⋅ cod density𝑙𝑙,𝑡𝑡−𝑘𝑘 + 𝛾𝛾3,𝑘𝑘 ⋅ other predator density𝑙𝑙,𝑡𝑡−𝑘𝑘 +
𝛾𝛾4,𝑘𝑘 ⋅ bottom temperature𝑠𝑠𝑓𝑓𝑠𝑠,𝑡𝑡−𝑘𝑘 + 𝛾𝛾5,𝑘𝑘 ⋅ NAO index𝑡𝑡−𝑘𝑘 +
𝛾𝛾6,𝑘𝑘 ⋅ zooplankton biomass𝑡𝑡−𝑘𝑘 +
𝜖𝜖𝑙𝑙,𝑡𝑡

 

4. Spatially varying lag-1 autoregressive: this model had the same structure as model 1, 
except the effect of each predictor on growth rates was allowed to vary across patches, so 
the effect of a given predictor on growth rates in a given patch would be given by 𝛾𝛾𝑙𝑙 ⋅ 𝑉𝑉𝑡𝑡−1 
with the spatially varying regression terms 𝛾𝛾𝑙𝑙 fit using a MRF smoother to penalize estimates 
of nearby patches towards one another. 

𝑙𝑙𝑙𝑙𝑔𝑔(
𝐷𝐷𝑙𝑙,𝑡𝑡 + 𝐶𝐶𝑙𝑙,𝑡𝑡

𝐷𝐷𝑙𝑙,𝑡𝑡
) = �̂�𝑟𝑙𝑙 + 𝛽𝛽𝑙𝑙 ⋅ shrimp density𝑙𝑙,𝑡𝑡−1 + 𝛾𝛾1,𝑙𝑙 ⋅ recruitment index𝑙𝑙,𝑡𝑡−3 +

𝛾𝛾2,𝑙𝑙 ⋅ cod density𝑙𝑙,𝑡𝑡−1 + 𝛾𝛾3,𝑙𝑙 ⋅ other predator density𝑙𝑙,𝑡𝑡−1 +
𝛾𝛾4,𝑙𝑙 ⋅ bottom temperature𝑠𝑠𝑓𝑓𝑠𝑠,𝑡𝑡−1 + 𝛾𝛾5,𝑙𝑙 ⋅ NAO index𝑡𝑡−1 +
𝛾𝛾6,𝑙𝑙 ⋅ zooplankton biomass𝑡𝑡−1 +
𝜖𝜖𝑙𝑙,𝑡𝑡

 

To assess the goodness of fit of each model, several years of data were held as a test set, not 
used to fit the model. The years used for model testing were 2006-08 (occurring during the 
period of peak Northern Shrimp biomass) and 2016-18 (during the period of rapid population 
declines), effectively acting as a retrospective test Goodness of fit was evaluated by comparing 
how well each model predicted within-patch rates of change for all test years. Holding out the 
last three years of data acts as a retrospective analysis, to determine whether the model tends 
to over- or under-estimate changes in biomass in the years following when it was fit. Goodness 
of fit was based on visual comparisons between predicted and observed within-patch rates of 
change, and by comparing the root mean squared error (RMSE) of model predictions of 
productivity versus observed patch-specific productivities, using both held-out data sets. 

Model Comparisons 
All models accurately estimated within-patch productivity for test years during the period prior to 
shrimp declines (2006-08; Figure 22 red points), except in SFA 7, where all models consistently 
predicted a slower rate of decline than was observed. The lag-1 and simplified lag-1 
autoregressive models gave the most accurate predictions of out-of-sample productivity for the 
years following population declines (Figure 22). The simplified lag-1 model gave as accurate or 
better predictions as the full lag-1 model for all SFAs for both the 2006-08 and 2016-18 period 
(Table 1) with fewer predictors, so it was adopted as the primary model for subsequent model 
comparisons and sensitivity tests. 
The simplified lag-1 model was able to accurately estimate SFA-level instantaneous productivity 
rates for all SFAs, and for all three sets of data (training, testing prior to decline, and testing data 
after the decline; Figure 23). This model was also able to effectively capture the dynamics within 
most patches on the landscape (see Supplemental Figures). The most substantive misfits 
between model predictions and observed patch-level productivities occurred in shallow-water 
patches, such as patch V6 (Figure S1), V4 (Figure S2), V33 (Figure S10), or V70 (Figure S12), 
or small patches in deep water at the shelf edge, such as V17 (Figure S3), V44 (Figure S6) or 
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V55 (Figure S7). In all cases, these patches only account for a small fraction of total biomass in 
their respective SFAs, so this level of misfit is likely not an issue. However, it does indicate that 
model predictions in very shallow or deep regions should be given less weight than predictions 
in the core depth ranges for Northern Shrimp (200-500 m). 

Model Robustness Checks 
Several alternative model specifications were also tested to determine the robustness of the 
assumptions used to develop the simplified lag-1 model were. Three alternative models were 
compared with the simplified lag-1 model: 
1. Single-species: This model only included a spatially-varying intercept and Northern Shrimp 

density effect, assuming time-independent (i.e., constant) maximum productivity. This was 
used as a null model to determine if the inclusion of ecosystem-based predictors 
substantially improved the model fit, both within and out-of-sample. 

2. Winter NAO: Winter NAO (the average NAO index from December to March) has been 
identified as an important predictor of shrimp dynamics in Greenland (Hamilton et al. 2003), 
and multidecadal variability in the winter NAO correlates with North Atlantic sea surface 
temperature variability (Chelliah and Bell 2004). This index was also calculated for all years. 
To test if winter NAO was a better predictor than full-year NAO, we refit the simplified lag-1 
model using winter NAO as a covariate. 

3. Non-spatial: This model was used to determine if including spatial variability in recruitment 
improved model forecasts compared to a more typical single-stock approach. Northern 
Shrimp, Atlantic Cod, and other predator abundances were calculated for each SFA for each 
year by summing estimated densities multiplied by patch areas across patches. Productivity 
for each year was calculated by adding the SFA-level catch for that year to the biomass in 
the year. Then SFA-level productivity was regressed on SFA-level shrimp abundance, 
alternate predator abundance, and NAO, all lagged by 1 year, with SFA-specific slopes for 
shrimp and predator abundances, to account for the fact that both carrying capacities and 
the expected spatial overlap in shrimp with predator ranges should vary with SFA. 

To compare the three sensitivity tests with the simplified lag-1 model on similar measurement 
scales, all models were used to estimate yearly productivities for each SFA for training and test 
data sets. Models were compared using RMSE (Table 2) and via visual comparison (Figure 25). 
Both groups of test data sets were pooled together for RMSE comparisons between sensitivity 
tests, as there were only six total test points to compare, and RMSE will tend to be a very noisy 
measure of fit in small data sets. 
The simplified lag-1 model fit observed yearly productivities better than the single species model 
in all SFAs except 5 in the training data set, but was outperformed by the single species model 
in SFAs 4 and 5 in the test data set (Table 2). The winter NAO model fit approximately as well 
as the forecasting model in all SFAs in the training data, and slightly out-performed the 
forecasting model when predicting trends in the test data set (Table 2). However, the winter 
NAO term was not actually statistically significant in this model, indicating that the sign of the 
effect of the winter NAO term was uncertain. The non-spatial model had worse predictive 
performance than the simplified lag-1 model for all SFAs in the training data set, and worse 
predictive performance in SFA 4 and 5 compared to the simplified lag-1 model in the test data 
set. However, the non-spatial model did outperform the simplified lag-1 model in SFAs 6 and 7 
in the test data set (Table 2). 
Overall, the single-species model did a poorer job of predicting periods of rapid increase or 
decrease in SFA 6 and 7 (Figure 25, column 2), which is consistent with the evidence presented 
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previously that these stocks have undergone at least two large-scale changes productivity in 
this time series. The winter NAO model fit as well or better than the simplified lag-1 model 
(Figure 25, column 3). The non-spatial model tended to under-predict periods of both increase 
and declines in SFAs 4-6, and over-predict changes in productivity in SFA 7 (Figure 25, column 
4). Although the simplified lag-1 model was outperformed by alternate models test in some 
incidences (e.g., multi-year lags, SFA 7 post-decline test data), the simplified lag-1 model was 
chosen for its relatively simplicity and overall fit and was adopted as the primary model for 
forecasting changes in this stock. This model was refit using data from all years to ensure that 
model parameters were estimated using all available data. This refit model was used to 
generate the remainder of the results in this report, and is hereafter referred to as the 
forecasting model. 
The final forecasting model included terms for Atlantic Cod density, alternative predator density, 
NAO, a spatially varying intercept, and a spatially varying density-dependence term. The full 
equation describing the forecasting model is: 

𝑙𝑙𝑙𝑙𝑔𝑔(
𝐷𝐷𝑙𝑙,𝑡𝑡 + 𝐶𝐶𝑙𝑙,𝑡𝑡

𝐷𝐷𝑙𝑙,𝑡𝑡
) = �̂�𝑟𝑙𝑙 + 𝛽𝛽𝑙𝑙 ⋅ shrimp density𝑙𝑙,𝑡𝑡−1 +

𝛾𝛾1 ⋅ cod density𝑙𝑙,𝑡𝑡−1 + 𝛾𝛾2 ⋅ other predator density𝑙𝑙,𝑡𝑡−1 +
𝛾𝛾3 ⋅ NAO index𝑡𝑡−1 +
𝜖𝜖𝑙𝑙,𝑡𝑡

𝜖𝜖𝑙𝑙,𝑡𝑡 ∼ 𝜎𝜎 ⋅ 𝑡𝑡(𝑑𝑑𝑓𝑓)

 

Forecasting Model Parameters 
The forecasting model showed substantial spatial variation in demographic parameters. 
Estimated growth-rate intercepts (Figure 24A) varied from 0.37  𝑦𝑦𝑒𝑒𝑎𝑎𝑟𝑟−1 in SFA 7 to >1.5 𝑦𝑦𝑒𝑒𝑎𝑎𝑟𝑟−1 
in the northern edge of SFA 4 and in the center of SFA 5 (this being the assumed growth rate in 
the absence of all predation and harvest in a neutral NAO year). Estimated density-dependent 
effects (Figure 24B) varied from −5 × 10−4 𝑘𝑘𝑔𝑔−1 ⋅ 𝑘𝑘𝑚𝑚2 ⋅ 𝑦𝑦𝑒𝑒𝑎𝑎𝑟𝑟−1 in the center of SFA 5 to 
−5 × 10−5𝑘𝑘𝑔𝑔−1 ⋅ 𝑘𝑘𝑚𝑚2 ⋅ 𝑦𝑦𝑒𝑒𝑎𝑎𝑟𝑟−1 in the south of SFA 4 and in regions in SFA 6 (where values 
closer to zero indicate weaker density dependence). 

The estimated parameter for Atlantic Cod was −3.7 × 10−4 𝑘𝑘𝑔𝑔−1 ⋅ 𝑘𝑘𝑚𝑚2 ⋅ 𝑦𝑦𝑒𝑒𝑎𝑎𝑟𝑟−1 (±0.5 ⋅ 10−4 2 
s.e.) (Figure 24C), meaning that an increase in cod density of 1 tonne ⋅ 𝑘𝑘𝑚𝑚−2 in a given patch 
would correspond to a decrease of 0.37 𝑦𝑦𝑒𝑒𝑎𝑎𝑟𝑟−1 in instantaneous productivity in that patch. The 
estimated parameter for other predators was −1.8 × 10−5𝑘𝑘𝑔𝑔−1 ⋅ 𝑘𝑘𝑚𝑚2 ⋅ 𝑦𝑦𝑒𝑒𝑎𝑎𝑟𝑟−1 (±1.8 ⋅ 10−4 2 
s.e.) (Figure 24D), meaning that an increase in Redfish and Greenland Halibut density of 1 
tonne ⋅ 𝑘𝑘𝑚𝑚−2 in a given patch would correspond to a decrease of 0.018 𝑦𝑦𝑒𝑒𝑎𝑎𝑟𝑟−1 in instantaneous 
productivity. the estimated parameter for NAO was 0.12 𝑦𝑦𝑒𝑒𝑎𝑎𝑟𝑟−1 (±0.07 2 s.e.) (Figure 24E), 
which would result in shrimp instantaneous productivities being 0.24 𝑦𝑦𝑒𝑒𝑎𝑎𝑟𝑟−1 higher in positive 
NAO years (indicating cold and fresh conditions) compared to negative NAO years. 
The estimated degrees-of-freedom parameter (df) for the error term was 4.3, and the scale 
parameter (𝜎𝜎) was 0.4, implying the estimated variance of the per-patch residuals was 0.3 
𝑦𝑦𝑒𝑒𝑎𝑎𝑟𝑟−1 (as the variance of a t-distribution is equal to 𝑑𝑑𝑓𝑓

𝑑𝑑𝑓𝑓−2
⋅ 𝜎𝜎2). The low estimated df indicates 

that patch-specific surplus productivity levels showed significantly longer-than-Gaussian tails, 
indicating the possibility of unmodelled heterogeneity. 
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Model Sensitivity Tests 
Several analyses were conducted to test how sensitive the forecasting model was to changes in 
the driving parameters (predator density and NAO). 
The first test was a retrospective analysis to see what the model would have predicted for 
Northern Shrimp dynamics in the period before the start of the multispecies trawl survey. As 
there are no comparable biomass estimates for this time period, making it impossible to 
generate predicted rates of change prior to 1995, the forecasting model was instead used to 
predict the carrying capacity in different years, as a proxy for the maximum abundance of 
shrimp possible in that time period. 
As there was a gear change between 1994 and 1995, which would impact the catchability of 
predator species (and thus the predicted effect on shrimp productivity rates), pre-1995 predator 
densities were scaled by an estimated catchability factor. These catchability factors were 
calculated by looking at a subset of the trawl data in the two years immediately before and after 
1995 (i.e., 1993-96), using only trawls from SFA 6 and 7 (the only two SFAs that were 
consistently sampled during this period). This approach was adapted from the method used in 
Pedersen et al. (2017). Predator species weights from these data were modelled using a GAM 
with a Tweedie distribution for the error term, a MRF smoother term for patch (to model spatially 
varying patterns in predator density), and a random year effect (to model inter-year differences 
in biomass), plus a fixed survey effect, to model mean differences between 1993/94 and 
1995/96. This estimated fixed effect was then used as a gear conversion factor, by multiplying 
predator densities prior to the gear change by the inverse of the conversion factor. The gear 
effect was estimated for Atlantic Cod to be 2.1 (i.e., catchability of cod in the Engel gear was 
half that of the Campelen gear), 3.4 for Redfish, and 2.5 for Greenland Halibut. 

The forecasting model was used to estimate the time-varying carrying capacity 𝐾𝐾𝑡𝑡 for each SFA 
by finding the shrimp density for each patch in each year that would result in the mean value of 
equation (5) equaling zero given the predictors for the patches in those years (i.e., Atlantic Cod 
density, alternative predator density, and NAO), and then multiplying all of the patch-level 𝐾𝐾𝑙𝑙,𝑡𝑡 
values by patch area and summing within each SFA. This was done for all years from 1995-
2018 for all SFAs that had data, and for 1990-95 for SFA 6 and 7, to determine the model-
predicted carrying capacity prior to the collapse of Atlantic Cod. 
The model predicted that carrying capacities in SFA 6 and 7 were very low in 1990, and rose 
rapidly to reach a peak in 1995 (Figure 26). This carrying capacity was above estimated 
Northern Shrimp biomass until 2000 in SFA 6 and 2001 in SFA 7, but this is consistent with the 
fact that these stocks started at a very low density, and would take time to reach their carrying 
capacity. The modelled carrying capacities imply that SFA 7 should have started increasing in 
density prior to its first major increases in 2000, and indicated that it had declined substantially 
below its carrying capacity following 2010. This may be evidence of dependence of SFA 7 on 
SFA 6 for recruitment, as predicted by Le Corre et al. (2019), and may indicate the need for 
inclusion of inter-regional connectivity for predicting SFA 7 in future. 
The forecasting model predicted that shrimp carrying capacity should have been zero in 1990 
(Figure 26), when Atlantic Cod were last at a high level (the model uses cod biomass from 1989 
as the predictor). This indicates that the model is likely overestimating either the effect of 
Atlantic Cod at very high cod densities, or is missing a low-density refuge effect for shrimp, as a 
carrying capacity of zero is inconsistent with the previously observed shrimp densities in these 
regions, which we estimated to be around 250,000 tonnes in these two SFAs in the same period 
based on diet information (Figure 4). 
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To test the sensitivity of the forecasting model to large changes in the predictor values, the 
forecasting model was used to predict the carrying capacity for each SFA using the covariates 
for 2019 (i.e., covariates from data collected in 2018), and for the same data but with predator 
abundances and NAO scaled by fixed levels. Predator abundances were varied from -75% of 
2018 levels to +300% (four times) their densities in 2018, and NAO index values for the current 
year, +1, 0, and -1 were tested. 
The model predicted that doubling the current density of predators would substantially 
negatively affect the carrying capacity for Northern Shrimp in SFA 6 and 7, with the largest 
effects in SFA 6 (Figure 27). It would have a smaller impact in SFA 5, and an almost 
unnoticeable effect on abundances in SFA 4, indicating that at current predator densities, SFA 4 
Northern Shrimp is not under strong top-down control. Large swings in the NAO index (from its 
2018 level of 1.08 to a low index of -1, close to the minimum observed level of -1.15) were 
predicted to have substantial effects on carrying capacity in all four regions. This sensitivity test 
also indicated that predator densities 300% higher than current (i.e., four times the present 
density) would lead to zero carrying capacities in SFA 6, regardless of NAO. 
This sensitivity analysis is consistent with the first sensitivity analysis, indicating that the 
forecasting model is likely overestimating the effects of very high predator densities, and it may 
be overestimating the effect very large NAO swings. As such, it is recommended that this model 
be re-evaluated if predator densities increase above more than 50% their current abundances, 
or if the NL shelves undergo another extensive period of warming or cooling. 

DISCUSSION 

SCIENTIFIC UNCERTAINTIES 
This proposed model incorporates the most current ecological knowledge of the state of these 
stocks. However, there are several outstanding scientific questions that could affect model 
predictions. 

Stock Structure Dynamics 
The proposed assessment model focuses on total productivity, and does not partition growth 
rates into size classes or life-stages. Further, it does not attempt to measure whether changes 
in ecosystem variables result in changes in patterns of recruitment dynamics, individual growth 
over time, or mortality rates. Size-structured models have been developed for the Northern 
Shrimp stock in the Gulf of Maine (Cao et al. 2016a, 2016b) that incorporate dynamics of 
growth, mortality, and recruitment, including the effect of ecosystem drivers such as predation 
on mortality; this approach forms the core of the Gulf of Maine Northern Shrimp assessment 
(Hunter et al. 2018). However, this model is not directly transferable to NL stocks, as it is 
parameterized for very different environmental conditions and does not include mechanisms for 
larval or adult transport between regions. 
Fitting this kind of model is challenging for NL stocks, as they do not typically show discrete 
cohorts of recruits moving through the population over time, and the exact patterns of 
movement of adult shrimp within and among regions over time is currently poorly understood. 
Currently, DFO is partnering with academia in an attempt to develop a Bayesian length-
structured model of these stocks, with the goal of partitioning effects of fishing pressure, 
predation, and bottom-up environmental drivers on recruitment, individual growth, and mortality 
in these stocks. However, this model is currently not reliable enough for assessment purposes. 
If a reliable version of this model is developed, it may be used to generate stock predictions in 
future assessments. 
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Catchability 
One of the most substantial uncertainties is the catchability of Northern Shrimp in the RV trawl 
survey. Currently, both Ogmap and GAM population estimates assume that all shrimp that 
occurred in the volume swept by the trawl were caught. As shrimp spend at least a portion of 
time in the water column away from the benthos feeding, the RV survey is likely missing at least 
a fraction of the total available population. Further, the RV trawl survey does not seem to 
effectively capture Northern Shrimp below 15 mm in size, meaning that new recruits are not well 
sampled. 
As long as catchability does not depend on density, this will not affect estimated per-unit-
biomass rates of change, as these metrics depend on the ratio between biomass estimates in 
any two years, rather than the absolute value. However, low catchability would imply that 
current biomass estimates would be underestimating the true population size, and thus 
overestimating the impacts of fishing on productivity. 
There is currently no externally validated metric of gear catchability, so it has to be assumed to 
be equal to one. We recommend further research on this issue be undertaken, and estimates of 
catchability could readily be worked in to the model developed here. 

Predation Rates on Northern Shrimp 
The SPM proposed in this document relies on the abundance of Atlantic Cod, Deepwater 
Redfish, and Greenland Halibut in trawl RV surveys as a proxy for the effects of the entire 
predator field on Northern Shrimp. Atlantic Cod, Greenland Halibut, and Redfish were chosen 
as the primary metrics as these species have been consistently sampled throughout the 
assessment period, shown large-scale population changes, and are readily identifiable, so 
catches from the NSRF survey are the most likely to be comparable with fall RV catches. It is 
noteworthy, that the partial effect of Atlantic Cod is much stronger (~10x) than the partial effect 
of other predators, indicating that Atlantic Cod have a strong and disproportionate effect on 
shrimp abundance. The significant effect of Atlantic Cod on shrimp abundance has also been 
noted in Iceland (Björnsson et al. 2017). However, a wide range of groundfish species are 
known to feed on shrimp, and many of these species have been fluctuating over different time 
scales than these three species (Pedersen et al. 2017). Further, the SPM assumes that 
instantaneous mortality of shrimp depends linearly on both predator abundance and shrimp 
abundance, which ignores the potential for predator satiation when shrimp densities are locally 
high, or reduced predation rates at very low shrimp densities due to refuge effects or other 
mechanisms (Walters and Martell 2004). 
This is one potential explanation for why the model predicts much lower abundance of Northern 
Shrimp than historical surveys indicate in 1990, as Atlantic Cod levels may still have been very 
high in that time period. If predator levels increase substantially, it is recommended that new 
functional responses be tested to prevent the model from forecasting consistent negative 
population growth rates. A current research project at DFO has been focusing on estimating 
spatial variation in predation rates of multiple groundfish species on Northern Shrimp across all 
Canadian Atlantic waters. This research is still in progress, but results from it may be 
incorporated into future assessment models for these stocks, and developing new predation 
functional responses. 
This modelling also does not include the effects of other Northern Shrimp predators, such as 
marine mammals. Prior research has noted that Harp Seals prey on Northern Shrimp (although 
generally Striped Shrimp are a more common prey item; Parsons 2005). It is unlikely that 
predation by Harp Seals was the primary cause of declining shrimp abundances, as seal 
abundances were increasing at the same time as shrimp populations in the 1980s and 1990s, 
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and had largely stabilized before the beginning of the decline in Northern Shrimp in SFA 6 and 7 
(DFO 2014). However, fluctuations in Harp Seals and other marine mammal predators may 
result in changes Northern Shrimp stocks in future, as environmental conditions continue to 
change, and the higher abundance of seals currently compared to the 1980s may mean that 
equilibrium biomass of shrimp could be lower than it was in the 1980s if groundfish predators 
increase to their prior abundances. 

Movement of Larval and Adult Shrimp Between Regions 
Dispersal simulations for the four regions indicate that there should be substantial transport of 
larvae from SFAs 4 and 5 to SFA 6, and from SFA 6 to SFA 7. However, the recruitment index 
used in the SPMs had poor predictive performance relative to other ecosystem indicators. This 
could be caused by several factors:  
1. The current growth models only track total growth in population, rather than explicitly 

following cohorts of recruits; as such, recruitment effects may be obscured by other changes 
in shrimp stock structure. Ongoing work on developing length-structured ecosystem models 
for these stocks may improve the fit of this index. 

2. The poor fit of this index may be a result of the lack of biomass estimates from populations 
upstream of SFA 4. The current recruitment model ignores populations north of SFA 4, and 
as such likely underestimates the number of recruits available for SFA 4 and 5. 

3. There may be a mismatch between where Northern Shrimp stocks are located at the time of 
the survey versus where the populations are when females release eggs. Northern Shrimp 
are known to undergo seasonal movements, but the scale and timing of those movements in 
SFA 4-7 are poorly understood. 

4. It may represent a model misfit, where simulated patterns of larval dispersal do not match up 
with true dispersal trajectories. 

Beyond larval dispersal, very little is known about the small-scale (patch-to-patch) movement of 
post-larval shrimp, either via seasonal migrations or via dispersive movement. The potential for 
post-larval movement is currently implicitly included in the spatial smoother models for 
population density, as the MRF penalty in the smoother implies that changes in population 
density in one patch should predict changes in nearby patches. However, substantially more 
work is needed to understand post-larval movement in these stocks. 
The forecasting model developed in this report does not explicitly include inter-regional 
connectivity. Connectivity could be included in the model if it could be demonstrated that over-
exploitation in SFA 4-5 leads to downstream effects on growth rates in SFA 6-7. However, there 
is currently only limited evidence to suggest that recruitment from upstream is limiting population 
growth rates. 

Ecosystem Drivers in SFA 4 and 5 
The proposed SPM is most accurate at predicting biomass dynamics in SFA 6 and 7, where 
observed groundfish abundances are highest. Both SFA 4 and 5 have shown multiple years of 
declines in biomass that are not predicted by the model, including significant declines in the 
most recent years (2016-18). The drivers of these declines are not well understood. More 
research into environmental conditions affecting these stocks is needed. 
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FUTURE MODEL DEVELOPMENT DIRECTIONS 
The forecasting model developed in this report should not be viewed as a final tool, but instead 
the first version of a set of predictive models to be developed over time. As noted above, there 
are still substantial questions about how to include known important ecosystem effects, such as 
larval or adult movement, and nonlinear predation effects. Further, the current model does not 
include any bottom-up effects (i.e., food, shelter, or disease) on Northern Shrimp production 
except the implied effect of climate via the NAO index. While the NAO index is strongly 
predictive of North Atlantic ocean climate (Chelliah and Bell 2004), it is still not a direct 
measurement of current climate conditions that may be affecting shrimp production. 
This model could be improved using several techniques. The first would be to include the size 
structure of Northern Shrimp, as has been done in the Gulf of Maine (Cao et al. 2016b; Hunter 
et al. 2018). This would allow explicitly modelling spatial recruitment dynamics and size-specific 
effects of fishing pressure on stock productivity. As the size structure of Northern Shrimp in 
SFAs 4–7 has remained stable over the last two decades, it may be difficult to parameterize the 
size-specific mortality and growth terms required for this type of model in the absence of very 
strong prior assumptions about growth dynamics. 
The second way to extend this model would be to include explicit estimates of predator 
consumption based on predator diet data currently collected as part of the trawl survey. This 
would require an estimate of the amount of biomass predators consume per unit time, and a 
functional response model that can predict how this amount would vary with predator and prey 
density.  
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TABLES 

Table 1: Out-of-sample goodness of fit (RMSE) for four tested model specifications. 

 Lag-1 
(full) 

Lag-1 
(simplified) 

Multi-year 
lags 

Spatially 
varying lag-1 

Pre-decline test data (2006-08) 
SFA 4 0.70 0.69 0.84 0.77 
SFA 6 0.52 0.47 0.56 0.52 
SFA 7 0.52 0.51 0.63 0.57 
Post-decline test data (2016-18)  
SFA 4 0.93 0.99 1.03 1.18 
SFA 5 0.61 0.60 0.68 0.64 
SFA 6 0.60 0.56 0.62 0.55 
SFA 7 0.80 0.82 0.73 0.79 

Table 2: SFA-level out-of-sample goodness of fit (RMSE) for model sensitivity comparisons. 

 Forecasting Single species Winter NAO Non-spatial 
Training data 
SFA 4 0.29 0.32 0.32 0.43 
SFA 5 0.27 0.24 0.28 0.30 
SFA 6 0.14 0.20 0.14 0.22 
SFA 7 0.38 0.47 0.41 0.52 
Test data (2006-08, 2016-18) 
SFA 4 0.28 0.22 0.24 0.39 
SFA 5 0.33 0.28 0.31 0.37 
SFA 6 0.30 0.36 0.28 0.17 
SFA 7 0.55 0.57 0.54 0.36 
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FIGURES 

 
Figure 1: Map of Northern Shrimp management areas on the Newfoundland and Labrador Shelves. SFA 
7, on the Grand Banks, is included for clarity, but is managed under a separate NAFO management plan. 

 
Figure 2: Historical Northern Shrimp catches and TACs (SFAs 4-6 combined) for the period 1977 
2018/19. Catches for 2018/19 are preliminary as of February 7, 2019. 
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Figure 3: A) Distribution of historic and current RV trawls around the three channels with historical trawl 
data. B) Distribution of matched historic and current RV surveys for comparative time series analysis. Red 
points indicate historical trawls, and black points indicate locations of trawls from the current RV survey. 

 
Figure 4: Regression of RV biomass of Northern Shrimp in SFA 6 on fraction of Atlantic Cod diets with 
shrimp present. Blue line represents estimated relationship (GLM regression of biomass on stomach 
fraction, assuming Tweedie-distributed biomass). Grey band indicates 95% CI for the regression 
relationship. 
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Figure 5: Time series of estimated Northern Shrimp density in three focal channels before and after start 
of the multispecies RV survey based on matched trawl surveys. A) Estimated density under historical 
(purple) and current (orange) sampling regimes, with lines indicating estimated mean density and ribbons 
indicating 95% CIs. B) Scaled density estimates to determine magnitude of change between 1990 and 
1995. Time series were scaled by dividing all observations by the average value from 1980-90. Dashed 
line indicates the reference level. 
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Figure 6: Time series of estimated Northern Shrimp density in SFA 6 before and after start of the RV 
survey, based on biomass inferred from cod diets. A) Observed RV biomass (black) and biomass inferred 
from diets (red), with line indicating mean of the inferred relationship and ribbon illustrating the 95% CI. 
Dotted line indicates points where no multispecies RV biomass estimate was available. B) Scaled diet-
based biomass estimates to determine magnitude of change between 1990 and 1995. Time series were 
scaled by dividing all observations in A) by their average value from 1980-90. 
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Figure 7: Voronoi-tessellation-based patches used for spatially structured analyses, colored by SFA. 



 

32 

 
Figure 8: Voronoi patches with trawl depth distribution. Red lines indicate patch boundaries. Colours 
represent trawl depths, with yellow colours corresponding to shallower depths and blue to deeper ones 
(note that the depth color scale is log-scaled to better illustrate contrasts). Colours cover all RV survey 
locations from 1995-2016, including summer survey data. 
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Figure 9: Illustration of how penalty terms work to smooth estimates towards one another. For (A) random 
effect smoothers, all coefficients are penalized toward the global mean; the size of the arrow denotes the 
strength of the penalty applied to each coefficient. (B) For MRF penalties, all terms are penalized toward 
the average of their immediate neighbours; for example, estimates toward the lower middle grey polygon 
(where the color denotes the fitted parameter value) would be penalized towards its three adjacent 
polygons, denoted by arrows; the penalty will be stronger for the neighbours to the left and right that differ 
strongly in value from the middle polygon, compared to polygon above the focal one which has a very 
similar value. These neighbours would also be penalized symmetrically toward the grey polygon, as well 
as to their other immediate neighbours.
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Figure 10: Spatial distributions of Northern Shrimp density in tonnes per square km, with darker colors indicating lower density, and lighter colors 
indicating higher densities. Dark grey polygons indicate areas where data were missing for a given year.
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Figure 11: Comparison of GAM smoothed biomass versus prior Ogmap estimates. Red points and lines 
indicate yearly means estimated by the GAM model, and blue points and lines indicate estimates from the 
current Ogmap estimation approach. Colored ribbons indicate 95% CIs for both methods. 
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Figure 12: Comparison of GAM smoothed biomass versus prior Ogmap estimates within each patch. Red 
lines indicate yearly means estimated by the GAM model, and blue lines indicate estimates from the 
current Ogmap estimation approach. All density estimates have been scaled by the maximum estimate of 
biomass for that patch from the GAM method, to allow for easier within-patch comparisons. 
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Figure 13: Fraction of total biomass in each SFA considered to be fishable biomass (carapace length 
>17 mm).
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Figure 14: Spatial distributions of Atlantic Cod (Gadus morhua) density in tonnes per square km, with darker colors indicating lower density, and 
lighter colors indicating higher densities. Dark grey polygons indicate areas where data were missing for a given year. 
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Figure 15: Spatial distributions of Deepwater Redfish (Sebastes mentella) density in tonnes per square km, with darker colors indicating lower 
density, and lighter colors indicating higher densities. Dark grey polygons indicate areas where data were missing for a given year. 
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Figure 16: Spatial distributions of Greenland Halibut (Reinhardtius hippoglossoides) density in tonnes per square km, with darker colors indicating 
lower density, and lighter colors indicating higher densities. Dark grey polygons indicate areas where data were missing for a given year. 
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Figure 17: Densities of primary predators (Atlantic Cod, Redfish, and Greenland Halibut) within each SFA across years, averaged across 
spatiotemporal regression model fits for each species. 
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Figure 18: Spatial distributions of bottom temperature in °C, with darker colors indicating lower temperature, and lighter colors indicating higher 
temperatures. Dark grey polygons indicate areas where trawl data were missing for a given year.
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Figure 19: Average yearly bottom temperature in each SFA, aggregated across patches. 

 
Figure 20: Average yearly mean time series of (A) NAO index, scaled phytoplankton bloom magnitude 
(B), scaled phytoplankton timing (C), and (D) scaled zooplankton abundance. 
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Figure 21: Starting points for larval drift simulations. 
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Figure 22: Observed per-patch productivity values in years reserved for model testing, compared to 
predicted productivity rates. A model that perfectly predicted growth rates would result in all points lying 
on the 1-1 equality line (in black). Variation around this line indicates unexplained variation in productivity. 
Colored lines represent simple linear regressions of observed on predicted values, to illustrate the actual 
relationship between predicted and observed rates of change; flat linear regressions correspond to 
models with no predictive power, and regression lines occurring consistently above (below) the 1-1 line 
indicate models that consistently predict lower than (greater than) observed growth rates. Red points and 
lines indicate data from 2006-08, prior to significant Northern Shrimp declines. Blue points and lines 
indicate data from 2016-18, following the declines in shrimp biomass. 
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Figure 23: Observed SFA-level productivity values for all SFAs. Black line indicates the 1-1 equality line, 
and the blue lines represent a simple linear regressions of observed on predicted values. Red points and 
lines indicate data from 2006-08, prior to significant Northern Shrimp declines. Blue points and lines 
indicate data from 2016-18, following the decline in shrimp biomass. 
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Figure 24: Estimates of coefficients from the forecasting model. A) The estimated instantaneous 
productivity in each patch in the absence of density-dependence, cod predation, and NAO effects. B) The 
estimated density-dependence term, indicating how quickly productivity is expected to decline with each 
additional kg per km2 of shrimp. C) Effect of Atlantic Cod density, indicating how quickly productivity is 
expected to decline with each additional kg per km2of Atlantic Cod. D) Effect of alternative predator 
density. E) Effect of NAO on productivity, with high NAO values corresponding to generally colder and 
fresher conditions. 
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Figure 25: Observed SFA-level productivity values for all SFAs for sensitivity tests. Black line indicates 
the 1-1 equality line, and the blue lines represent a simple linear regressions of observed on predicted 
values. Red points and lines indicate data from 2006-08, prior to significant Northern Shrimp declines. 
Blue points and lines indicate data from 2016-18, following the decline in shrimp biomass. 
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Figure 26: Modelled biomass for each SFA with commercial catch included (dashed black line) and 
remaining after harvest (solid black line). Estimated time-varying SFA-scale carrying capacities for each 
year given observed environmental conditions are shown as red lines. 
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Figure 27: Sensitivity of estimated carrying capacity for each SFA for 2019 to variation in model inputs. 
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SUPPLEMENTAL FIGURES 

 
Figure S1: Model fits for patches V1,V2,V3, V5, V6, and V10. Left: map illustrating patch locations. Top 
right: plot of observed patch-level productivities plotted against time. Black line indicated model-predicted 
productivity. Bottom right: observed versus expected productivity in each patch in each year. Black line 
indicates the 1-1 line. 
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Figure S2: Model fits for patches V4, V7,V8, V9, V11, and V30. Left: map illustrating patch locations. Top 
right: plot of observed patch-level productivities plotted against time. Black line indicated model-predicted 
productivity. Bottom right: observed versus expected productivity in each patch in each year. Black line 
indicates the 1-1 line. 
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Figure S3: Model fits for patches V13,V14,V15, V17, V28, and V31. Left: map illustrating patch locations. 
Top right: plot of observed patch-level productivities plotted against time. Black line indicated model-
predicted productivity. Bottom right: observed versus expected productivity in each patch in each year. 
Black line indicates the 1-1 line. 
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Figure S4: Model fits for patches V12,V16,V18, V19, V21, and V32. Left: map illustrating patch locations. 
Top right: plot of observed patch-level productivities plotted against time. Black line indicated model-
predicted productivity. Bottom right: observed versus expected productivity in each patch in each year. 
Black line indicates the 1-1 line. 
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Figure S5: Model fits for patches V20,V22,V23, V25, V26, and V27. Left: map illustrating patch locations. 
Top right: plot of observed patch-level productivities plotted against time. Black line indicated model-
predicted productivity. Bottom right: observed versus expected productivity in each patch in each year. 
Black line indicates the 1-1 line. 
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Figure S6: Model fits for patches V24,V29,V37, V44, V45, and V50. Left: map illustrating patch locations. 
Top right: plot of observed patch-level productivities plotted against time. Black line indicated model-
predicted productivity. Bottom right: observed versus expected productivity in each patch in each year. 
Black line indicates the 1-1 line. 
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Figure S7: Model fits for patches V34,V36,V38, V39, V47, and V55. Left: map illustrating patch locations. 
Top right: plot of observed patch-level productivities plotted against time. Black line indicated model-
predicted productivity. Bottom right: observed versus expected productivity in each patch in each year. 
Black line indicates the 1-1 line. 
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Figure S8: Model fits for patches V42,V46,V49, V51, V56, and V59. Left: map illustrating patch locations. 
Top right: plot of observed patch-level productivities plotted against time. Black line indicated model-
predicted productivity. Bottom right: observed versus expected productivity in each patch in each year. 
Black line indicates the 1-1 line. 
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Figure S9: Model fits for patches V35,V41,V43, V48, V60, and V61. Left: map illustrating patch locations. 
Top right: plot of observed patch-level productivities plotted against time. Black line indicated model-
predicted productivity. Bottom right: observed versus expected productivity in each patch in each year. 
Black line indicates the 1-1 line. 
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Figure S10: Model fits for patches V33,V40,V52, V57, V58, and V64. Left: map illustrating patch 
locations. Top right: plot of observed patch-level productivities plotted against time. Black line indicated 
model-predicted productivity. Bottom right: observed versus expected productivity in each patch in each 
year. Black line indicates the 1-1 line. 
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Figure S11: Model fits for patches V53, V54, V62, V63, V68, and V71. Left: map illustrating patch 
locations. Top right: plot of observed patch-level productivities plotted against time. Black line indicated 
model-predicted productivity. Bottom right: observed versus expected productivity in each patch in each 
year. Black line indicates the 1-1 line. 
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Figure S12: Model fits for patches V65, V66, V67, V69, and V70. Left: map illustrating patch locations. 
Top right: plot of observed patch-level productivities plotted against time. Black line indicated model-
predicted productivity. Bottom right: observed versus expected productivity in each patch in each year. 
Black line indicates the 1-1 line. 
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APPENDIX I: AMENDMENT 
A mistake in the modelling code for the non-spatial model used in the original version of this 
document was found. This error added an additional unanticipated interaction into the non-
spatial model. The error did not substantially change the overall relative rankings of the models. 
The corrected values and changes to the text are restricted to values for the root-mean square 
error (Table 2), visualizations (Figure 25) for the updated non-spatial model, and the Results’ 
paragraphs comparing this model with other modelling results (page 16–17). The corrected 
paragraphs describing the results, Table 2, and Figure 25 are below.  
Revised text (page 16–17): 
The simplified lag-1 model fit observed yearly productivities better than the single species model 
in all SFAs except 5 in the training data set, but was outperformed by the single species model 
in SFA 4 and 5 in the test data set (Table 2). The winter NAO model fit approximately as well as 
the forecasting model in all SFAs in the training data, and slightly out-performed the forecasting 
model when predicting trends in the test data set (Table 2). However, the winter NAO term was 
not actually statistically significant in this model, indicating that the sign of the effect of the winter 
NAO term was uncertain. The non-spatial model had worse predictive performance than the 
simplified lag-1 model for SFA 4 and 6 in the training data set, and the same or worse predictive 
performance in all SFAs except SFA 7 compared to the simplified lag-1 model in the test data 
set (Table 2). 
Overall, the single-species model did a poorer job of predicting periods of rapid increase or 
decrease in SFA 6 and 7 (Figure 25, column 2), which is consistent with the evidence presented 
previously that these stocks have undergone at least two large-scale changes productivity in 
this time series. The winter NAO model fit as well or better than the simplified lag-1 model 
(Figure 25, column 3). The non-spatial model tended to under-predict periods of both increase 
and declines in SFA 4 (Figure 25, column 4). Although the simplified lag-1 model was 
outperformed by alternate models test in some incidences (e.g., multi-year lags, SFA 7 post-
decline test data), the simplified lag-1 model was chosen for its relatively simplicity and overall 
fit and was adopted as the primary model for forecasting changes in this stock. This model was 
refit using data from all years to ensure that model parameters were estimated using all 
available data. This refit model was used to generate the remainder of the results in this report, 
and is hereafter referred to as the forecasting model. 

Revised Table 2: SFA-level out-of-sample goodness of fit (RMSE) for model sensitivity comparisons.  

 Forecasting Single species Winter NAO Non-spatial 
Training data 
SFA 4 0.29 0.32 0.32 0.36 
SFA 5 0.27 0.24 0.28 0.24 
SFA 6 0.14 0.20 0.14 0.16 
SFA 7 0.38 0.47 0.41 0.28 
Test data (2006–2008, 2016–2018)  
SFA 4 0.28 0.22 0.24 0.44 
SFA 5 0.33 0.28 0.31 0.51 
SFA 6 0.30 0.36 0.28 0.30 
SFA 7 0.55 0.57 0.54 0.48 
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Revised Figure 25: Observed SFA-level productivity values for all SFAs for sensitivity tests. Black line 
indicates the 1-1 equality line, and the blue lines represent a simple linear regressions of observed on 
predicted values. Red points and lines indicate data from 2006 to 2008, prior to significant Northern 
Shrimp declines. Blue points and lines indicate data from 2016 to 2018, following the decline in shrimp 
biomass 
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