

Fisheries and Oceans Canada

Sciences des écosystèmes et des océans

es Ecosystems and Oceans Science

Secrétariat canadien des avis scientifiques (SCAS)

Document de recherche 2022/045

Région du Québec

Évaluation du contingent nord du maquereau bleu (Scomber scombrus) en 2020

Andrew Smith, Linda Girard, Mélanie Boudreau, Elisabeth Van Beveren, et Stéphane Plourde

Pêches et Océans Canada Institut Maurice-Lamontagne 850, route de la Mer Mont-Joli, Québec G5H 3Z4

Avant-propos

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Publié par :

Pêches et Océans Canada Secrétariat canadien des avis scientifiques 200, rue Kent Ottawa (Ontario) K1A 0E6

http://www.dfo-mpo.gc.ca/csas-sccs/ csas-sccs@dfo-mpo.gc.ca

© Sa Majesté le Roi du chef du Canada, représenté par le ministre du ministère des Pêches et des Océans, 2022 ISSN 2292-4272 ISBN 978-0-660-45236-4 N° cat. Fs70-5/2022-045F-PDF

La présente publication doit être citée comme suit :

Smith, A.D., Girard, L., Boudreau, M., Van Beveren, E. et Plourde, S. 2022. Évaluation du contingent nord du maquereau bleu (*Scomber scombrus*) en 2020. Secr. can. des avis sci. du MPO. Doc. de rech. 2022/045. iv + 45 p.

Also available in English :

Smith, A.D., Girard, L., Boudreau, M., Van Beveren, E., and Plourde, S. 2022. Assessment of the northern contingent of Atlantic Mackerel (Scomber scombrus) in 2020. DFO Can. Sci. Advis. Sec. Res. Doc. 2022/045. iv + 44 p.

TABLE DES MATIÈRES

RÉSUMÉ	iv
INTRODUCTION	1
ÉCOLOGIE ET STRUCTURE DE POPULATION	1
GESTION DES PÊCHES	2
ÉVALUATION	3
MÉTHODES	3
DÉBARQUEMENTS	3
ÉCHANTILLONNAGE COMMERCIAL	4
CAPTURES-À-L'ÂGE	4
INDICE D'ŒUFS	5
MATURITÉ-À-L'ÂGE ET L ₅₀	6
FECONDITE ET SEX-RATIO	7
MODELE D'EVALUATION DU STOCK	7
RÉSULTATS ET DISCUSSION	9
DÉBARQUEMENTS	9
CAPTURE-A-L'AGE	10
	11
	12
MATURITE SELON L'AGE ET L_{50}	15
CONCLUSIONS ET AVIS	16
REMERCIEMENTS	17
RÉFÉRENCES CITÉES	18
INFORMATION SUPPLÉMENTAIRE	21
TABLEAUX	21
FIGURES	40

RÉSUMÉ

L'état du contingent nord du maquereau de l'Atlantique Nord-Ouest (*Scomber scombrus* L.) est évalué tous les deux ans à l'aide d'un modèle d'évaluation des stocks structuré selon l'âge. Le présent document décrit l'information de base, les données et les méthodes utilisées pour calculer les principaux indicateurs de l'état du stock qui constituent la base des avis données à la direction de la gestion des pêches et de l'aquaculture dans l'établissement du total autorisé des captures (TAC). La présente évaluation du stock a eu lieu les 25 et 26 février et le 3 mars 2021 et fournit des avis pour les saisons de pêche 2021 et 2022. Les principaux résultats de cette évaluation indiquent qu'en 2020, la biomasse du stock reproducteur (BSR) du maquereau était estimée à un niveau historiquement bas et se trouve dans la zone critique, selon l'approche de précaution (AP) du MPO, depuis 2011. On estime que le recrutement de poissons d'âge 1 est proche des niveaux les plus bas jamais enregistrés ces dernières années et que la structure d'âge du stock est gravement tronquée. Le taux de mortalité par pêche (F) était également supérieur au point de référence. Les projections à court terme indiquaient que la probabilité que le BSR quitte la zone critique d'ici 2023 variait de 29 %-37 % (TAC = 10 000 t) à 51 %-58 % (TAC = 0 t) selon les hypothèses de recrutement futur.

INTRODUCTION

Le présent document de recherche fournit une description des données, des méthodes et des analyses justificatives qui ont contribué à l'évaluation du stock du contingent nord du maquereau bleu (*Scomber scombrus* L.) de l'Atlantique nord-ouest, ci-après appelé « maquereau ». Cette évaluation est effectuée tous les deux ans par la direction des sciences pélagiques et écosystémique de Pêches et Océans Canada (MPO) à l'Institut Maurice-Lamontagne à Mont-Joli (Québec). L'évaluation actuelle fournit des informations sur l'état du stock de maquereau à la fin de 2020, notamment la biomasse du stock reproducteur et la mortalité par pêche par rapport aux points de référence. Un avis, y compris des projections sur trois ans, est fourni à la Direction de la gestion des pêches et de l'aquaculture (GPA) pour les saisons de pêche 2021 et 2022.

ÉCOLOGIE ET STRUCTURE DE POPULATION

Le maquereau est un poisson fourrage pélagique et migrateur qui habite les eaux tempérés et qui fait partie de la famille *Scombridae*. Il joue un rôle clé dans l'écosystème par l'intermédiaire du transfert d'énergie des niveaux trophiques inférieurs aux prédateurs d'ordre supérieur, dont de nombreux poissons, mammifères marins et oiseaux de mer. Il a une vaste répartition et est présent des deux côtés de l'Atlantique Nord. Dans l'Atlantique Nord-Ouest, son aire de répartition s'étend de Cape Lookout, en Caroline du Nord, à Hopedale, au Labrador. Le contingent nord (c.-à-d. canadien) du stock fraie principalement dans le sud du golfe du Saint-Laurent en juin et en juillet. Le contingent sud (c.-à-d. américain) fraie en mars et en avril dans les eaux au large des côtes de la Nouvelle-Angleterre et dans le Golfe du Maine (Studholme *et al.* 1999).

La variation de la répartition du maquereau et de ses déplacements saisonniers d'une année à l'autre peut être attribuée en grande partie à sa biologie, aux changements de température de l'eau (températures préférée entre 7 et 16 °C) et à la disponibilité des proies (Mackay 1976; Studholme et al. 1999; Galbraith et Grégoire 2014). Au printemps, le contingent nord quitte ses zones d'hivernage en bordure du plateau continental en vagues successives de tailles distinctes pour migrer vers le nord et vers la côte (Goode et al. 1883; Sette 1950; MacKay 1976). La majorité des adultes sexuellement matures migrent vers le sud du golfe du Saint-Laurent pour frayer. Cependant, des évènements de fraie moins importantes ont déjà été observés sur le plateau néo-écossais et dans les eaux au large de la côte ouest de Terre-Neuve dans le passé (Grégoire et al. 2012, 2013). Après avoir frayé, les adultes et les juvéniles se dispersent dans les eaux côtières des provinces de l'Atlantique et du Québec pour se nourrir de facon opportuniste de zooplancton (copépodes, krill, etc.) et de petits poissons (Mackay 1976; Studholme et al. 1999). Il a été démontré que les températures optimales de l'eau et la disponibilité des proies expliquent en grande partie la répartition estivale et automnale ainsi que les différences de prises entre les régions (Smith et al. 2020; MPO 2019). On trouve toutefois des juvéniles à longueur d'année sur le plateau néo-écossais (Kulka 1977: Mackav 1976: Grégoire et Showell 1994). À l'automne, le maquereau migre vers le sud pour hiverner dans les eaux plus profondes et plus chaudes en bordure du plateau continental, entre l'île de Sable, en Nouvelle-Écosse, jusqu'aux eaux au large de Cape Lookout, en Caroline du Nord, aux États-Unis (Studholme et al. 1999). Ici, les distributions des deux contingents se mélangent. La magnitude et l'étendue du chevauchement ne sont pas connues mais elles sont probablement importantes (Redding et al. 2020; Arai et al. 2021).

Des analyses génétiques récentes entreprises par le MPO ainsi que des preuves provenant de sources divers ont validé notre perception classique de la structure de la population de maquereau dans l'Atlantique Nord-Ouest (Sette 1950; MacKay 1976). Ces analyses ont

confirmé que le stock de l'Atlantique Nord-Ouest est génétiquement distinct de celui de l'Atlantique Nord-Est (Gíslason *et al.* 2020).

L'absence de différences importantes dans la structure démographique des prises entre les régions ainsi que les tendances migratoires révélées par diverses études de marquage ou déduites de la saisonnalité des prises entre les régions appuient cette distinction (Sette 1950, MacKay 1976; Smith *et al.* 2020). Cette distinction a été précédemment démontrée par l'analyse des compositions des isotopes stables dans les otolithes de maquereau des deux contingents (Redding *et al.* 2020; Arai *et al.* 2021).

La plupart des maquereaux atteignent la maturité sexuelle vers l'âge de deux ou trois ans (Collette and Nauen 1983). Le recrutement dans le stock reproducteur dépend de la BSR et de la présence de femelles plus grandes et plus âgées, qui sont beaucoup plus fécondes que les femelles plus petites (Pelletier 1986). Le recrutement a également été lié au chevauchement spatio-temporel de la répartition des larves de maquereau avec celle de leur proies préférés. Les conditions optimales d'alimentation des adultes entraînent un meilleur état individuel (c.-à-d. une augmentation des réserves d'énergie) et ont également été associées à un meilleur recrutement (Brosset *et al.* 2020; Smith *et al.* 2020).

GESTION DES PÊCHES

Le maquereau dans les eaux canadiennes (principalement dans les sous-zones 3-4 de l'Organisation des pêches de l'Atlantique Nord-Ouest, OPANO) est exploité par des pêches commerciales, des pêches d'appât, des pêches récréatives et des pêches à des fins alimentaires, sociales et rituelles (ASR). Les pêcheurs de toutes les provinces maritimes et du Québec participent à la pêche commerciale, mais la pêche de poisson-appât et la pêche récréative sont moins courantes à Terre-Neuve. La pêche commerciale est une pêche côtière concurrentielle ouverte qui utilise divers types d'engins fixes et mobiles (p. ex., casiers, fascines, filets maillants, diverses lignes et hameçons, ainsi que des sennes coulissantes et des sennes « tuck ») dont la prédominance varie selon la région et la saison. Les débarguements de la pêche commerciale sont consignés dans les journaux de bord et les bordereaux d'achat ainsi que par les entreprises de surveillance à quai, dont la couverture a varié dans le temps et d'une région à l'autre. Les registres des débarquements de la pêche de poisson-appât étaient non uniformes ou inexistants pendant une bonne partie de la série chronologique des débarquements et les données n'étaient pas enregistrées de façon plus complète que depuis quelques années. Peu d'estimations sont disponibles pour les débarquements effectués par la pêche récréative malgré sa grande popularité (Van Beveren et al. 2017a, b. 2019). Le maguereau est également une prise accessoire dans plusieurs autres pêches. On sait aussi qu'il y a des rejets en mer, surtout de petits maquereaux, mais il existe peu d'information sur leur prévalence. Une proportion inconnue, mais probablement importante, de maguereaux du contingent nord est également capturée par la pêche hivernale aux États-Unis guand les aires de répartition des deux contingents se mélangent (Redding et al. 2020; Arai et al. 2021).

Le groupe de travail sur le plan de rétablissement (GTPR) du maquereau, composé de membres de l'industrie des pêches et d'autres parties prenantes, a été créé en 2017. Les principaux objectifs du <u>plan de rétablissement</u>, publié en 2020, étaient de « réduire la probabilité d'une diminution de la biomasse du stock reproducteur du maquereau d'une année à l'autre (c.à-d. maintenir une trajectoire de croissance positive) » et de « rétablir la biomasse du stock reproducteur du maquereau d'une asse du stock reproducteur du maquereau) ».

ÉVALUATION

L'état du stock de maguereau a été évalué au moyen d'un modèle d'évaluation des stocks d'après les prises selon l'âge dit censuré (CCAM: Van Beveren et al. 2017a) depuis 2017 (MPO 2019. Doniol-Valcroze et al. 2019). Les modèles d'espaces-d'état peuvent traiter à la fois l'erreur de processus dans la dynamique de la population et l'erreur d'observation et sont considérés par plusieurs comme la meilleure pratique dans d'évaluation des stocks (Bolker, 2008; Auger-Méthé et al. 2016, Aeberhard et al. 2018). L'ajustement du modèles est fait avec des données indépendantes de la pêche (relevés des œufs et échantillons de recherche) ainsi que des données dépendantes de la pêche (débarquements, échantillons commerciaux et captures-à-l'âge). Les principaux indices de l'état du stock produits par le modèle sont la biomasse du stock reproducteur (BSR), le recrutement (poissons de 1 an) et la mortalité instantanée par la pêche (F). Plus précisément, les données indépendantes de la pêche s'agissent d'un indice de d'œufs calculé à partir d'un relevé annuel des œufs de maguereau (1979-2020) et les données dépendantes de la pêche s'agissaient des statistiques sur les débarquements et d'échantillions biologiques (pour établir des limites supérieures et inférieures des prises estimées ainsi que l'estimation des captures-à-l'âge annuelles) obtenues à partir de la pêche commerciale du maguereau (1968-2020). Les données biologiques recueillies dans le cadre des programmes de surveillance à quai et tirées de relevés de recherche servent aussi à calculer d'autres mesures annuels pour chaque âge (1 à 10 ans et plus) utilisées dans le modèle d'évaluation des stocks, y compris les masses et longueurs moyennes, la proportion de femelles matures, la fécondité et les sex-ratios.

La dernière évaluation du stock a eu lieu en mars 2019 et a fourni à la Gestion des pêches (GP) des avis pour les saisons de pêche 2019 et 2020 (MPO 2019; Smith *et al.* 2020). Une évaluation de la stratégie de gestion (ESG) a également été examinée par des pairs pendant la dernière évaluation (Van Beveren *et al.* 2020a,b); elle comprenait l'évaluation à long terme des règles de contrôle des prises (RCP) dans différentes situations d'incertitude par rapport aux objectifs définis par le GTPR.

Les résultats de la dernière évaluation du stock et de l'ESG ont indiqué qu'en 2018, le maquereau se situait dans la Zone Critique depuis 2011 après une période d'exploitation intense ($F > F_{ref}$). Cette faible biomasse s'est accompagnée d'une perte d'individus plus âgés dans la population et d'une baisse du recrutement depuis quelques années. À la suite de la dernière évaluation, la GP a recommandé un total autorisé des captures (TAC) de 8 000 t au ministre des Pêches, des Océans et de la Garde côtière canadienne. La recommandation a été approuvée pour la saison de pêche de 2019 et reconduite pour la saison de pêche de 2020.

MÉTHODES

DÉBARQUEMENTS

Les données sur la pêche commerciale du maquereau capturé dans la zone économique exclusive du Canada (ZEE; sous-zones 2-4 et des parties de la sous-zone 5 de l'OPANO) ont été tirées des plus récents fichiers ZIFF (Zonal Interchange File Format) produits par les bureaux de statistique régionaux du MPO pour les années 1995-2020. Pour les années 1960 à 1994, nous avons utilisé les données de la <u>base de données des débarquements de l'OPANO</u> (Grégoire 2000) et avons également inclus les débarquements des navires non canadiens pendant la période 1995-2020. Au moment de la présente évaluation, les données sur les débarquements des saisons de pêche de 2019 et de 2020 étaient toujours préliminaires, car les diverses régions du MPO (régions du Québec, du Golfe, des Maritimes et de Terre-Neuve-et-Labrador) étaient encore en train de les compiler. Les données des pêches commerciales et

récréatives aux États-Unis (1960-2020) ont été fournies par le Northeast Fisheries Science Center (NEFSC 2017). Les statistiques sur les prises américaines étaient également provisoires pour 2019 et 2020 (Tableaux S1, S2). Les données sur les captures-à-l'âge n'existent que depuis 1968 pour le contingent nord du maquereau. Par conséquent, seules les données sur les débarquements à partir de 1968 étaient prises en compte dans la plupart des tableaux et figures de ce document.

ÉCHANTILLONNAGE COMMERCIAL

Les caractéristiques biologiques du maquereau sont surveillées chaque année dans le cadre du programme d'échantillonnage des ports de pêche du MPO, qui couvre les principaux ports de l'est du Canada où des débarquements de maquereau ont lieu pendant la saison de pêche. Les échantillonneurs des ports recueillent des données de fréquences de longueurs à partir d'un échantillon aléatoire d'une prise débarquée (mesurée à 5 mm près) et envoient un sous-échantillon stratifié selon les classes de longueur (deux poissons par classe de longueur) à l'Institut Maurice-Lamontagne pour des analyses supplémentaires. Les échantillons stratifiés selon la longueur obtenus dans le cadre de projets de recherche ou de relevés au chalut de fond du MPO servent parfois à compléter les clés âge-longueur. Les mesures tirées des échantillons biologiques comprennent la longueur à la fourche (± 1 mm), la masse (± 0,1 g), le sexe, la masse des gonades (± 0,01 g), le stade de maturité et l'âge normalisé au 1^{er} janvier suite à la lecture des otolithes. Cette dernière mesure a déjà fait l'objet d'études comparatives par les biologistes d'évaluation de stock de la NOAA à la fin des années 2000 (Grégoire *et al.* 2009) et de nouveau en 2016.

Le tableau S3 présente le nombre d'échantillons biologiques et de fréquences de longueur, ainsi que le nombre total de poissons analysés pour les années 2000 à 2020. Les données de 1973 à 2000 sont synthétisées dans des documents de recherche publiés antérieurement (Gregoire *et al.* 2014a, Smith *et al.* 2020). En moyenne, 67 échantillons de fréquence de longueur (moyenne de 12 594 poissons mesurés) et 80 échantillons biologiques (moyenne de 2 818 poissons mesurés) sont prélevés chaque année. Cela correspond à un rapport annuel moyen de 4 échantillons de fréquence de longueur et de 4 échantillons biologiques pour 1000 t de maquereau capturées.

CAPTURES-À-L'ÂGE

Les données des débarquements, des fréquences de longueur de la pêche commerciale et des échantillons biologiques correspondantes ont servi à calculer l'âge annuel et la composition par taille des prises (c.-à-d. prises, longueur et masse selon l'âge) pour les années 2015 à 2020 compris. Les équations qui ont servi à calculer les captures-à-l'âge ont été tirées de fonctions APL adaptés au programme Visual Basic CATCH.exe (Anonyme 1986) développé à l'IML et fondé sur les méthodes proposées par Gavaris et Gavaris (1983) et Grégoire *et al.* (2014b). Le code servant à calculer les captures-à-l'âge a été réécrit dans R (R Core Team 2020; v.4.0.2) à l'aide des anciens manuels d'utilisation, des sorties du logiciel CATCH.exe d'années précédentes ainsi que de fonctions du libraire FSA (Ogle 2015; Smith *et al.* 2020).

Les méthodes consistaient à regrouper les débarquements par année, par trimestre, par division de l'OPANO et par type d'engin (ci-après les strates) et à les apparier avec les échantillons commerciaux de fréquence de longueur et leurs sous-échantillons biologiques correspondantes (Tableau S4).

Dans les cas où une strate donnée n'avait peu ou pas d'échantillon de fréquence de longueur et/ou d'échantillons biologiques à associer aux débarquements de la même strate, les échantillons étaient alors combinés avec celles d'autres strates dans des agglomérations plus grossières qui étaient jugés comme représentant le mieux la composition des captures. La hiérarchie suivante a servi à attribuer des échantillons à des strates qui n'avaient pas d'échantillon correspondant (Tableau S5) :

- 1. année, trimestre adjacent (janvier-mars, avril-juin, juillet-septembre et octobre-décembre), division de l'OPANO et type d'engin de pêche;
- 2. année, trimestre, division adjacente de l'OPANO et type d'engin;
- 3. année, trimestre, division de l'OPANO et type d'engin avec sélectivité semblable;
- 4. année et type d'engin ou type d'engin semblable.

Pour chaque strate, les échantillons biologiques ont servi à créer des clés âge-longueur (c.à.d. la proportion à l'âge de 1 à 10+ ans, en fonction de classes de longueur de 5 mm). Des nombres à l'âge stratifié par classe de longueur étaient par la suite calculées grâce à l'application des clés aux données de fréquence de longueur correspondantes avec la fonction alkIndivAge() de la librairie FSA (Ogle *et al.* 2021). La somme de ces valeurs pour chaque strate et âge on a ensuite étaient pondérées par leurs débarquements correspondantes en les multipliant par le rapport entre les débarquements et la masse totale estimée de l'échantillon de chaque strate. Les masses moyennes annuelles à l'âge (1-10+) ont été estimées par des régressions linéaires log-log de la relation entre la longueur et la masse des poissons par trimestre. Les nombres-à-l'âge de chaque strate étaient par la suite additionnées pour obtenir des nombres-à-l'âge annuels (Tableau S5). Les captures-à-l'âge étaient obtenues en multipliant les nombres-à-l'âge annuels par les masses moyennes annuelles à l'âge correspondantes (Tableau S6). La validation des calculs était fait en comparent la capture-à-l'âge totale avec les débarquements annuels déclarés conformément aux méthodes de Grégoire *et al.* (2014b).

INDICE D'ŒUFS

L'estimation annuelle de la production totale d'œufs (PTE, Tableau S7) est l'indicateur principal de la BSR du maguereau. L'indice d'œufs est calculé à partir des données sur l'abondance des œufs de maguereau récemment pondus recueillies dans le cadre du relevé annuel dans le sud du golfe du Saint-Laurent. Des relevés ont été effectués presque continuellement depuis 1979, sauf en 1980-1981, 1995, 1997 et en 2020 en raison des restrictions imposées par la pandémie de COVID-19. Les relevés réalisés en 1982, 1999 et 2006 ont été invalidés lors d'examens par des pairs en raison de problèmes techniques avec l'engin d'échantillonnage ou un décalage des dates de la mission par rapport à la période de frai du maguereau. Le relevé consiste à prélever des échantillons d'ichtyoplancton dans les 50 m supérieurs de la colonne d'eau à 65 stations fixes en effectuant des traits obligues doubles avec des filets Bongo de 61 cm (maillage de 333 µm) déployés pendant au moins 10 minutes à une vitesse de croisière d'environ 2,5 nœuds. Le volume d'eau de mer filtrée, la profondeur d'échantillonnage et la température moyenne (°C) dans les 10 m supérieurs de la colonne d'eau ont été calculés pour chaque station (*i*) au cours d'une année donnée (*y*). Les œufs des stades 1 et 5 étaient dénombrés (Girard 2000) à partir d'un sous-échantillon de chaque station, et les densités d'œufs (N m⁻²) estimés étaient en tenant compte du volume de l'échantillon fractionné, du volume d'eau de mer filtré et de la profondeur de l'échantillon.

$$Densité d'oeufs_{i,y} m^2 = \frac{(\text{no. d'oeufs de stade 1 et 5 ÷ fraction de la sous échantillion})_{i,y} \cdot \text{volume filtré}_{i,y} m^3}{\text{profondeur échantillioné}_{i,y} m}$$

On a ensuite calculé la production quotidienne d'œufs ($DEP_{i,y}$) en tenant compte du temps d'incubation des œufs par rapport à la température moyenne de l'eau (T) dans les 10 m supérieurs de la colonne d'eau de chaque station, selon les équations élaborées par Lockwood

et al. (1977). À partir de ces valeurs, les productions quotidiennes d'œufs moyennes annuelles ont été calculées par l'équation suivante :

$$DEP_{i,y} = \frac{Densit\acute{e} d'oeufs_{i,y} m^2}{e^{[-1.61 \cdot log(T) + 7.76]}} \cdot 24 \ heures$$

On a ensuite utilisé le krigeage ordinaire pour interpoler les productions quotidiennes d'œufs propres à chaque station sur l'ensemble de l'aire d'étude du relevé afin d'obtenir une DEP_y moyenne annuelle.

Afin de tenir compte des différences entre les dates de relevé et le caractère saisonnier du frai du maquereau, les productions quotidiennes d'œufs ont été ajustées de façon à correspondre à la production d'œufs pendant toute la saison de frai. À cette fin, la progression saisonnière du développement des gonades femelles a été modélisée chaque année grâce à des échantillons commerciales de femelles sur le point de frayer (stade 5) provenant de la zone 4T de l'OPANO en juin et juillet. À partir de ces échantillons, les indices gonado-somatiques (IGS) ont été calculés pour décrire le développement des gonades. La proportion d'œufs frayés lors du jour médian d'un relevé donné a été estimée en ajustant les données d'IGS à des modèles logistiques. Plus précisément, les indices gonado-somatiques IGS_y annuels ont été modélisé en fonction du jour de l'année à l'aide d'un modèle logistique à quatre paramètres :

$$IGS_y = y_0 + \frac{a}{\left[1 + \left(\frac{x}{x_0}\right)^b\right]}$$

Où :

x est le jour où le poisson a été capturé (en jours juliens),

y₀ est l'asymptote supérieure,

a est l'asymptote inférieure,

b est la pente,

et x_0 est le point d'inflexion.

La proportion d'œufs frayés à la date médiane du relevé (*S*) a été calculée à partir de la courbe ajustée (premiers dérivés) du modèle ci-dessus, tout comme le jour de pic de frai et le début et la fin de la saison de frai (définis par les quantiles de 5 % et de 95 %). On a ensuite calculé l'indice d'œufs (c.-à-d. la production totale d'œufs, soit le nombre annuel d'œufs frayés dans la zone du relevé pendant toute la saison de frai; Tableau S7) en divisant le produit de la moyenne annuelle DEP_y et de la superficie (*A*) du relevé (6,945e+10 m²) par la proportion d'œufs frayés à la date médiane du relevé (*S*).

$$TEP_{y} = \frac{DEP_{y} \cdot A}{S_{y}}$$

Les méthodes du protocole d'échantillonnage et les analyses ultérieures pour calculer divers aspects de la production d'œufs de maquereau et l'indice de ponte qui en résulte sont décrites plus en détail dans Girard (2000) et Grégoire *et al.* (2014a,b).

MATURITÉ-À-L'ÂGE ET L50

La maturité-à-l'âge (c.-à-d. la proportion d'individus matures dans la population à un âge donné; Tableau S8) a servi dans le modèle d'évaluation du stock pour convertir la captures-à-l'âge en BSR à l'aide des données d'échantillons commerciales recueillies pendant la saison de frai (juin-juillet) et elle a été mise à jour pour 2017-2020. Depuis l'évaluation précédente (Smith *et* *al.* 2020), les ogives de maturité ont été calculées dans R à l'aide de modèles linéaires généralisés annuels (GLM) utilisant la famille binomiale avec une fonction de lien logit. Une fois la matrice de maturité-à-l'âge calculée, les valeurs manquantes ont été imputées par interpolation linéaire à l'aide des données des années adjacentes pour un âge donné (2 à 10 ans et plus). Pour les poissons de 1 an, les valeurs manquantes ont été estimées à partir de l'ogive de maturité annuelle, car les poissons de 1 an sont moins bien échantillonnés par la pêche et l'interpolation linéaire était moins fiable.

Des ogives de maturité annuelles ont également servi à estimer la longueur à laquelle 50 % des individus atteignent la maturité sexuel (L_{50}). La proportion d'individus matures en fonction de leur longueur ainsi que L_{50} ont étaient estimés avec des GLMs pour chaque cohorte (1960-2018). Au cours de la dernière évaluation, L_{50} a été calculée par année, mais le calcul de L_{50} par cohorte est plus logique d'un point de vue biologique. Dans les cas où moins de 10 individus matures ou immatures étaient disponibles pour une année donnée, ceux-ci étaient exclus des analyses. Les deux cohortes les plus récentes, 2019 et 2020, ont également été omises des analyses.

FÉCONDITÉ ET SEX-RATIO

La fécondité annuelle a été ventilée par année et par âge (Tableau S9), de façon à indiquer les changements récents de la structure du modèle depuis l'ESG (voir les équations à l'annexe de Van Beveren *et al.* 2020a, b). Tout d'abord, les données brutes de fécondité étaient extraites de l'étude de Pelletier (1986) et les logarithmes des valeurs provenant de femelles de stade 5 (c.-à-d. mûres) (*fec_i*) ont été modélisées en fonction de leurs masses de gonades *GM_i*) et de leur âge (*A_i*) c.-à-d. log(*fec_i*) ~ α + β 1(*GM_i*) + β 2(*A_i*) + ϵ_i). Le modèle a été ajusté dans R au moyen d'un GLM avec une distribution gaussienne et un fonction de lien d'identité. On a estimé que la fécondité (n = 222, R² = 0.55, RMSE = 0.34, AIC = 141.39, p < 2e-16) augmentait de 1,4 % pour chaque âge et de 0,83 % pour chaque gramme de masse des gonades = 8,26e-03).

Le modèle a ensuite servi à prédire les fécondités individuelles à partir des données biologiques disponibles sur les femelles de stade 5 pendant les mois de juin et de juillet dans la zone 4T de l'OPANO (voir la section sur l'échantillonnage commercial ci-dessus) pour toutes les années. Les moyennes des valeurs ajustées individuelles ont ensuite été calculées par année et par âge. Quand on ne disposait d'aucune donnée pour une combinaison donnée d'année et d'âge, les informations manquantes étaient calculées par interpolation linéaire pour les âges de 2 à 10 ans et plus au moyen de la fonction na.approx() dans le librarie zoo dans R. Les valeurs pour les poissons de 1 an ont été estimés a partir des coefficient du modèle GLM. Pour les années sans données (1968-1973), les valeurs moyennes selon l'âge ont été utilisées. Comme des signes d'atrésie ont été constatés pendant la saison de frai dans certains échantillons, ces estimations doivent être considérées comme des sources de fécondité potentielles (Pelletier, 1986).

Les sex-ratios ont été calculés pour chaque combinaison d'année et d'âge (1 à 10 ans et plus) à partir des poissons dont le sexe pouvait être déterminé à l'échelle macroscopique. Le sex-ratio était simplement la proportion de femelles observée dans les échantillons commerciaux annuels agrégés, divisée par l'âge (Tableau S10).

MODÈLE D'ÉVALUATION DU STOCK

Le modèle (<u>CCAM</u>) a été élaboré avec le librairie Template Model Builder (TMB; Kristensen *et al.* 2016) dans R (R Core Team 2020) et se base en grande partie sur le modèle <u>SAM</u> (*stock assessment model* en anglais, Nielsen et Berg 2014; Berg et Nielsen 2016) ainsi que des

éléments provenant du modèle d'évaluation de la morue franche (NCAM; Cadigan 2016). Les équations du modèle et les définitions des paramètres sont fournies dans le tableau S11. Le modèle est qualifié de « censuré », parce qu'il utilise une méthode dans laquelle les prises déclarées sont explicitement considérées comme non certaines et qu'on estime par conséquent qu'elles se situent entre une limite inférieure – égale à 110 % des prises déclarées – et une limite supérieure correspondant à des estimations des captures non comptabilisés dans les statistiques officielles (Van Beveren *et al.* 2017a, 2019). Toutes les données, les codes de modèle et les scripts de l'évaluation actuelle sont disponibles <u>en ligne</u>. La configuration du modèle dans l'évaluation actuelle est identique à celle du modèle de base 1 mis au point dans le cadre du processus d'ESG (Van Beveren *et al.* 2020a, b).

Les données d'entrée pour le modèle, soit les débarquements préliminaires au Canada et aux États-Unis, de la masse moyenne selon l'âge, de la proportion de poissons matures, de la fécondité, du sex-ratio et de l'indice d'œufs ont été mises à jour (Figures 2-3, S2). Certains changements ont été apportés à la façon dont les données d'entrée étaient calculées depuis la dernière évaluation (voir les sections sur l'indice d'œufs et la fécondité ci-dessus). Ces changements consistaient notamment à ajuster directement le modèle à l'indice d'œufs plutôt qu'à l'indice de BSR (conformément à Van Beveren et al. 2020a,b) et à modifier la méthode d'estimation de la fécondité. Les données de fécondité, proportion d'individus matures et masses moyennes annuelles à l'âge ont également été « lissées » grâces a des splines cubiques, le facteur de lissage étant fixé à 0,5 pour éviter des changements biologiquement irréalistes. Les changements apportés aux bornes supérieures des estimations des prises pour 2018-2020 reflètent des améliorations apportées à la surveillance des prises dans les pêches commerciales et les pêches d'appât, ainsi que le nouveau projet de règlement sur la pêche récréative. Les valeurs absolues ont été abaissées itérativement de 25 % chaque année pour la période 2018-2020. Comme la pêche aux États-Unis cible le maguereau pendant l'hiver pendant que les contingents du nord et du sud se mélangent (Redding et al. 2020; Arai et al. 2021), 25 % et 50 % du total des débarguements aux États-Unis (y compris les débarguements commerciaux, récréatifs et les rejets en mer) ont été ajoutés respectivement aux bornes inférieure et supérieure. Comme on ne disposait pas de données détaillées sur les prises aux États-Unis pour 2020, les débarquements moyens des cinq dernières années ont été utilisés pour cette année-là.

Des projections à court terme ont servi de base dans les avis de TAC pour les saisons de pêche 2021-2022. Le recrutement a été projeté au moyen de deux méthodes qui sont considérées toutes deux comme possibles, en l'absence d'arguments solides en faveur de l'une par rapport à l'autre. Des projections ont été établies sur une période de trois ans pour estimer l'incidence de différents TAC (0-10 000 t) et de scénarios de recrutement sur la biomasse du stock reproducteur projetée. Les scénarios de recrutement s'agissaient de projections de la BSR selon des estimations de la relation stock-recrutement de Beverton-Holt pour toute la série chronologique ou selon le recrutement moyen des dix dernières années avec une autocorrelation de 0.9. Ces projections ont inclus des prévisions stochastiques des prises non comptabilisées du Canada et des États-Unis séparément (erreur d'implementation). On a ajouté le TAC à ces débarquements estimés pour calculer les prélèvements totaux et la biomasse du stock correspondante de l'année suivante. Au cours de la dernière évaluation, il a été convenu que les prises non comptabilisées du Canada diminueraient probablement régulièrement en raison des récentes mesures de gestion visant à améliorer la surveillance des prises, et cela a été appliqué aux projections. On a supposé que la proportion d'individus du contingent nord dans les débarquements des États-Unis aller rester entre 25 et 50 %. Les détails de la modélisation sont fournis dans Van Beveren et al. (2020a).

L'état du stock (BSR_y) a été défini par rapport à une limite officielle (PRL) et à un point de référence supérieur du stock (PRS) proposé, qui ont été fixés respectivement à 40 % et 80 % de la valeur de référence BSR_{réf}, conformément aux valeurs par défaut proposées pour ces points de référence dans l'Approche de Précaution canadienne (MPO 2009). Selon ce cadre, le PRL et le PRS délimitent trois zones d'état du stock : la zone critique (BSR <PRL), la zone de prudence (PRL<BSR <PRS) et la zone saine (BSR>PRS). Le point de référence de la biomasse (BSR_{réf}) a été établi comme étant la BSR correspondant à F_{40 %}, une approximation de F_{RMD} (c.-à-d. la mortalité par pêche qui produit un rendement maximal durable à long terme), ce qui était habituel pour ce stock (Van Beveren *et al.* 2020a, b). F_{40%} est le taux de mortalité par pêche qui réduit la biomasse reproductrice par recrue (BRPR) à 40 % de ses niveaux non pêchés (Goodyear 1977; Shepherd 1982).

La BRPR a été calculée au moyen des valeurs moyennes de sélectivité de la pêche, de mortalité naturelle (M = 0,27) et de masse et proportion à maturité à des valeurs d'âge sur les 10 dernières années. La sensibilité du modèle aux hypothèses sur la mortalité naturelle a été testée pour des valeurs comprises entre 0,15 et 0,30, et le modèle ayant l'AIC le plus faible (M = 0,27) a été retenu.

On a ainsi obtenu le PRL en multipliant la valeur de la BRPR à F_{40 %} par l'estimation du recrutement moyen entre 1969 et 2020 (voir Van Beveren *et al.* 2020a,b pour plus de détails).

RÉSULTATS ET DISCUSSION

Les principaux indicateurs utilisés comme intrants du modèle pour ce stock sont les statistiques sur les prises totales, les prises selon l'âge et l'indice des œufs. La longueur selon la maturité, L_{50} , est également utilisée pour déterminer la taille minimale à laquelle le poisson peut être pêché de manière à ce que 50 % des poissons aient la possibilité de frayer au moins une fois.

DÉBARQUEMENTS

Les débarguements nominaux dans les eaux canadiennes étaient relativement faibles avant 1960 (Figures 1, S1; Tableau S1)). Les débarquements ont augmenté dans les années 1960, jusqu'à la fin des années 1970, en raison de la présence de flottilles hauturières pêchant au large des côtes du Canada atlantique et des États-Unis. Après l'instauration de la règle des 200 milles nautiques et de la zone économique exclusive (ZEE) du Canada en 1977, les débarquements ont diminué sur le plateau néo-écossais (divisions 4VWX et 5YZ de l'OPANO). mais ont augmenté dans le sud du golfe du Saint-Laurent (division 4T de l'OPANO) et au large de la côte nord-est de Terre-Neuve (essentiellement la division 3K de l'OPANO). De 1980 à 1999, les débarquements sont restés relativement stables et se situaient en moyenne autour de 22 534 t par année. Durant cette période, les débarguements au large de la côte nord-est de Terre-Neuve ont commencé à diminuer dans les années 1990, mais sont demeurés stables ou ont augmenté dans d'autres régions. Les débarquements annuels ont augmenté considérablement de 2000 à 2010, jusqu'à une moyenne de 40 593 t. Cette période de débarquements plus importants a atteint un record de 54 809 t en 2005 en raison de l'intensification marquée de l'effort de pêche des petits et grands senneurs au large des côtes de Terre-Neuve (divisions 3KL et 4R de l'OPANO), et a coïncidé avec l'arrivée de l'importante cohorte de 1999. Cette période a été suivie d'une forte baisse des débarquements, qui a atteint récemment un creux de 4 272 t en 2015 (la quatrième valeur la plus faible enregistrée depuis 1876 (Hoy et Clark 1967)). Au moment de la présente évaluation, les débarquements dans la ZEE du Canada entre 2016 et 2020 étaient de 8 057 t (TAC de 8 000 t), 9 786 t (TAC de 10 000 t), 10 964 t (TAC de 10 000 t), 8 623 t (TAC de 8 000 t) et 7 772 t (TAC de 8 000 t), respectivement.

Figure 1. Débarquements (kt) dans la zone économique exclusive du Canada regroupées par divisions de l'OPANO. Les lignes grises et noires représentent les limites supérieures (en noir) et inférieures (en gris) à l'intérieur desquelles les prélèvements totaux sont estimés dans le modèle d'évaluation du stocks (de 1968 à 2020). La limite inférieure est définie par les débarquements totaux enregistrés et 25 % des débarquements des États-Unis et la limite supérieure est définie par les estimations des prélèvements non comptabilisés de toutes les sources (p. ex., prises dans la pêche récréative, appâts non comptabilisés, rejets et 50 % des débarquements aux États-Unis).

CAPTURES-À-L'ÂGE

Les classes d'âge importantes (c.-à-d. 1968, 1973, 1974, 1982 et 1999) apparaissent dans les données annuelles de captures-à-l'âge (Figure 2; Tableau S5), qui permettent la suivie de cohorte d'une année à l'autre. Les prises de maquereaux âgés de 10 ans et plus par la pêche étaient plus fréquentes avant la fin des années 1990. Pus récemment, la structure des âges pris par la pêche est tronquée. Au début des années 2010, les poissons âgés de plus de six ans pris dans la pêche étaient rares. La dernière cohorte notable dont on a pu faire le suivi dans les prises était celle de 2015. La proportion des prises de cette cohorte dans les débarquements a atteint son maximum en 2018 (86 % des prises), à l'âge de 3 ans. La contribution de cette cohorte à la pêche a chuté à 19 % des prises en 2020, lorsque les poissons étaient âgés de 5 ans.

Figure 2. Graphique à bulles des données sur les captures à l'âge de maquereau (de 1 à 10 ans et plus) de 1968 à 2020. La taille des bulles reflète le nombre estimé de poissons capturés dans une année et une classe d'âge donnée. Les bulles grises représentent les zéros.

INDICE D'OEUFS

L'indice d'œufs (c.-à-d. production totale d'œufs, PTO; Figure 3, Tableau S7) a montré que, malgré une certaine variation interannuelle, le nombre total d'œufs produits pendant la saison de frai dans la zone du relevé a diminué et a atteint des creux historiques au cours de la dernière décennie. Le PTO moyen de 1979 à 1994 était de 5.13e14 œufs, atteignant une valeur maximale en 1986 à 1.23e15 œufs. Entre 1994 et 1999, le PTO a baissé d'un ordre de grandeur pour atteindre en moyenne 6.33e13 œufs par an, soit environ 12 % de la moyenne de 1979 à 1994. L'indice a commencé à augmenter en 2000 jusqu'à un pic de 2.33e14 œufs en 2002, avant de diminuer l'année suivante et pour atteindre ensuite la valeur le plus faible de la série chronologique en 2012, à 8.67e12 œufs (environ 2 % et deux ordres de grandeur plus faible que les valeurs observées de 1979 à 1994). Le PTO a demeuré faible depuis ce temps. En 2018 et 2019, le PTO était respectivement de 3.88e13 and 5.68e13 œufs, et l'indice moyen des dix dernières années était de 3.94e13 (2010-2019). La zone de répartition des œufs de maquereau lors de l'échantillonnage ainsi que la durée de la saison de ponte ont également diminuer dans les années récentes (Brosset *et al.* 2020). Comme on l'a observé au cours des dernières années, l'activité de frai s'est limitée aux parties ouest de la zone de relevé en 2019.

Figure 3. Production totale d'œufs dérivé du relevé des œufs de maquereau du printemps dans le sud du golfe du Saint-Laurent.

SORTIES DU MODÈLE

Les graphiques démontrant les tendances des résidus ainsi que les tendances rétrospectives sont présentés respectivement aux figures S3 et S4-S5. Il n'y avait pas de tendances rétrospectives importantes, mais les résidus de l'indice d'œufs présentaient une tendance linéaire à la surestimation récente, peut-être en raison de processus non stationnaires qui n'ont pas été pris en compte dans la formulation actuelle du modèle. Toutes tentatives de correction du biais par des changements dans la sélectivité des engins de pêches ou des relevés (deux blocs correspondant à la période antérieure et la période postérieure à 2000) ou la mortalité naturelle (Van Beveren *et al.* 2020a,b) n'ont pas amélioré significativement la tendance des résidus de relevé. Les paramètres estimés du modèle sont présentés dans le tableau S12 et le résumé du modèle dans le tableau S13. Les nombres-à-l'âge annuels sont présentés au tableau S8.

La BSR estimée est tombée sous le point de référence limite (PRL) en 2011 (Figure 4A, Tableau S13). Le rapport entre la BSR et le PRL a augmenté pour atteindre presque 1 en 2017 et 2018 avec l'arrivée de la cohorte de 2015, mais a baissé pour revenir à des valeurs similaires à celles observées de 2011 à 2015. La BSR s'établissait à 67 % et 58 % du PRL en 2019 et en 2020, respectivement.

Le dernier événement de recrutement relativement important a eu lieu en 2015, mais les poissons appartenant à cette cohorte représentaient seulement environ 21 % et 7 % du stock reproducteur pour ce qui est des nombres-à-l'âge pour 2019 et 2020 respectivement (Tableau S14, Figure 4B). Pour ce qui est des captures-à-l'âge, la cohorte de 2015 représentait respectivement 38 % et 19 % des prises en 2019 et 2020, soit une baisse par rapport au sommet de 86 % des prises en 2018. En 2019 et 2020, aucune classe d'âge ne semblait dominer la population. Pour 2019 et 2020, les poissons âgés de 1 à 5 ans représentaient environ 99 % de la population reproductrice pour ce qui est du nombre et de la biomasse.

Les taux de mortalité par pêche estimés (y compris l'incertitude relative aux prises) demeuraient au-dessus du niveau de référence (Figures 4E-F, Tableau S15). Selon le modèle, le taux de mortalité par pêche estimé pour le maquereau pleinement exploité (de 5 à 10 ans) était de 1,33 et de 1,34 pour 2019 et 2020 respectivement (taux d'exploitation d'environ 74 % pour les deux années). Bien que le taux d'exploitation soit habituellement donné pour les poissons qui sont entièrement recrutés pour la pêche, ces maquereaux ne constituent plus une grande fraction de

la population. La mortalité par pêche moyenne des poissons âgés de 2 à 5 ans était de F = 0,82 (taux d'exploitation de 56 %). Il convient de noter que ce taux d'exploitation est encore relativement élevé, d'autant plus que la plupart des poissons de la population ont entre 2 et 5 ans et qu'ils ne sont pas encore complètement sélectionnés par la pêche.

Des projections étaient faites sur une période de trois ans pour estimer l'incidence de différents TAC (de 0 à 10 000 t) et scénarios de recrutement sur la BSR projetée. Les scénarios de recrutement comprennent une projection de la BSR selon des estimations de la relation stockrecrutement de Beverton-Holt pour toute la série chronologique ou selon le recrutement moyen avec une autocorrélation temporelle de 0,9 sur les dix dernières années (Figure S6). Ces projections incluent des prévisions stochastiques des prises non comptabilisées du Canada et des États-Unis séparément (erreur de mise en œuvre; Figure S7, Tableau 1). Nous avons ajouté le TAC à ces prises estimées pour calculer les prélèvements totaux et la biomasse du stock correspondante de l'année suivante. Au cours de la dernière évaluation, il a été convenu que les prises non comptabilisées du Canada diminueraient probablement régulièrement en raison des récentes mesures de gestion visant à améliorer la surveillance des prises. Nous avons présumé que la proportion d'individus du contingent nord dans les prises américaines demeurait entre 25 et 50 %. Comme les débarguements totaux aux États-Unis en 2020 n'étaient pas disponibles pour l'évaluation des stocks donc la moyenne des cinq dernières années étaient utilisé pour 2020. Les détails de la modélisation sont fournis dans Van Beveren et al. (2020a,b).

Figure 4. Sorties du modèle : (A) BSR (t) avec les lignes horizontales indiquant le point de référence (BSR_{F40 %}; en noir), le point de référence supérieur (PRS) proposé (80 % de la BSR_{F40 %}; en vert) et le PRL (40 % de la BSR_{F40 %}; en rouge); (B) nombres-à-l'âge; (C) recrutement (nombre); (D) stock-recrutement; (E) mortalité par la pêche F_{5-10} (moyenne sur les classes d'âge entièrement ciblées, soit 5 à 10); (F) captures estimées (en noir) entre les limites prédéterminées (en gris).

Les tendances à court terme prévues dans la BSR par rapport au PRL selon différents TAC et deux scénarios de recrutement ont été fournies dans un tableau de décision (Tableau 1; Figures S6-S7). Compte tenu des deux scénarios de recrutement, les projections ont montré que la probabilité d'atteindre le PRL d'ici 2023 est de 33 % ou 41 % au TAC actuel de 8 000 t. Selon les mêmes scénarios de TAC, la probabilité que la BSR en 2023 soit supérieure à celle de 2021 est de 46 % ou 66 %. Enfin, en ce qui concerne le PRL, la BSR de 2023 devrait se situer à 0,46 ou 0,60 de cette valeur pour un TAC de 8 000 t. Selon le TAC (de 0 à 10 000 t) et la projection du recrutement, la probabilité que la BSR quitte la zone critique d'ici 2023 varie de

29 % ou 37 % pour un TAC de 10 000 t et 51 % ou 58 % pour un TAC de 0 t. Ces projections indiquent également que la probabilité que la BSR de 2023 soit supérieure à celle de 2021 varie de 39 % ou 59 % pour un TAC de 10 000 t à 85 5 ou 92 % pour un TAC de 0 t.

Tableau 1. Projections sur trois ans selon différents TAC et scénarios de recrutement, soit le recrutement suivant une relation stock-recrutement de Beverton-Holt (BH : de 1968 à 2020) ou en utilisant le recrutement moyen avec une autocorrélation temporelle de 0,9 sur les 10 dernières années (moyenne; de 2011 à 2020). Pour chaque scénario de TAC, les probabilités que la BSR soit supérieure au PRL (BSR/PRL) en 2022 et en 2023 sont indiquées. Les probabilités de croissance de la BSR de 2021 à 2023 sont également précisées (BSR₂₀₂₃ > BSR₂₀₂₁). Les ratios entre la BSR par rapport au PRL (BSR/PRL) pour chaque scénario sont également capturé en dehors du TAC, par les flottilles canadienne et celles des États-Unis (colonnes ombrées; incertitudes représentées par les 5^e et 95^e quantiles pris sur les trois années; détails sur la Figure S7).

	TAC			BSR > PRL			BSI BS	BSR2023> BSR2021		BSR/PRL				Prises non comptabilisées			
			20	100	20	100	2021	. 2022	20	າາ	20	100	Ca	nada	États	s-Unis	
2021	2022	2023	2022		2023		2021->2023		2022		2023		5%	05 %	5 %	05 %	
			BH	Moy.	BH	Moy.	BH	Moy.	BH	Moy.	BH	Moy.	5 /0	90 %	5 /0	95 %	
	0		42 %	46 %	51 %	58 %	85 %	92 %	0,73	0,78	0,85	0,97	982	1883	410	7735	
	2000		39 %	44 %	46 %	54 %	75 %	86 %	0,67	0,72	0,76	0,88	982	1883	410	7735	
	4000		37 %	40 %	41 %	49 %	64 %	79 %	0,61	0,66	0,65	0,79	982	1883	410	7735	
	6000		34 %	38 %	36 %	45 %	55 %	72 %	0,55	0,61	0,55	0,69	982	1883	410	7735	
	8000		32 %	36 %	33 %	41 %	46 %	66 %	0,50	0,55	0,46	0,60	982	1883	410	7735	
	10000		30 %	34 %	29 %	37 %	39 %	59 %	0,44	0,50	0,39	0,52	982	1883	410	7735	

MATURITÉ SELON L'ÂGE ET L50

La plupart des maquereaux atteignent la maturité sexuelle vers l'âge de 3 ans, et la maturité à 1 et 2 ans est plus variable. L_{50} variait de 237 à 316 mm pour les cohortes de 1974 à 2018 avec une moyenne de 281 mm pour les séries chronologiques (erreur type moyenne = 3,95 mm) (Figure 5). Les L_{50} pour les cohortes de 2014 à 2018 étaient de 274 mm, 275 mm, 270 mm, 271 mm et 283 mm respectivement (moyenne = 275 mm).

Figure 5. Longueur à 50 % de maturité (L_{50} mm) par cohorte (1974-2018) et leurs IC à 95 % (1,96*ET). La ligne rouge horizontale indique la longueur commerciale minimale actuelle de 268 mm. Le nombre d'individus servant à calculer L_{50} pour chaque cohorte est indiqué en haut de la figure.

CONCLUSIONS ET AVIS

L'utilisation du modèle actuel d'évaluation de stock a permis prendre en compte la plupart des incertitudes entourant les données qui ont été mises en évidence dans les évaluations précédentes. Bien que des incertitudes demeurent, les tendances de l'état du stock entre les différents indices sont cohérentes et suffisamment importantes pour considérer que les résultats sont fiables. Les tendances et les conclusions dérivées sont également cohérentes lorsque différents modèles d'évaluation des stocks et analyses de sensibilité ont été réalisés. Cependant, on ignore la proportion de maquereaux de la population du contingent nord capturés dans la pêche aux États-Unis, mais elle est probablement élevée (Redding *et al.* 2020; Arai *et al.* 2021). La meilleure appréciation de la proportion de la population du contingent nord débarquée par les pêcheurs aux États-Unis ainsi que de la proportion de la population du contingent nord contingent sud capturée dans les eaux canadiennes devrait réduire l'incertitude et améliorer les estimations et les projections du modèle. L'amélioration de la surveillance des débarquements commerciaux et des rejets ainsi que la mise en œuvre d'un programme de surveillance de la pêche récréative amélioreront le degré de certitude des évaluations futures.

Le contingent nord de maquereau bleu de l'Atlantique nord-ouest se trouve présentement dans la zone critique telle que définie par le cadre de l'Approche de Précaution du MPO (MPO 2009) et ce, depuis 2011. La mortalité par pêche est supérieure au niveau de référence, la productivité des stocks est faible – comme en témoigne la relation de recrutement des stocks – et la structure démographique de la population est gravement tronquée, ce qui peut également contribuer à la faible productivité. Les projections du stock présentées dans le tableau 1 permettront aux décideurs de pondérer les compromis entre la taille du stock et les différents TAC sur trois ans. Il serait possible d'améliorer la qualité des avis et l'efficacité des mesures de gestion en veillant à ce que toutes les pêches au maquereau comptabilisent avec exactitude

tous les prélèvements (c.-à-d. en surveillant activement la pêche de poisson-appât et la pêche récréative et en enregistrant des statistiques détaillées sur les prises (Van Beveren *et al.* 2017, 2020a, b).

Ces projections du stock doivent également être prises en compte dans le contexte de la biologie de l'espèce et de l'écosystème dans lequel elle vit. La productivité du stock est actuellement basse en raison des changements dans l'environnement et de l'effondrement de la structure démographique de la population (Brosset *et al.* 2020). Il ne faut pas oublier que l'effondrement de la structure démographique est uniquement attribuable à la surpêche. Comme il existe une relation stock-recrutement, le taux de mortalité par pêche, actuellement élevé, ainsi que le faible recrutement peuvent entraver la capacité du stock de se renouveler et de croître dans le cadre des TAC présentement en vigueur. La fluctuation du recrutement du maquereau, la croissance des individus pendant la saison estivale et leur répartition devraient continuer de varier en fonction de la disponibilité relative de la nourriture dans une région donnée et d'autres caractéristiques environnementales comme la température de l'eau.

Un large éventail de règles de contrôle des prises (RCP) avait déjà été mis à l'essai dans un cadre d'évaluation de la stratégie de gestion (ESG) par rapport aux objectifs de gestion proposés (y compris le rétablissement de la BSR et l'évitement des déclins de la BSR) dans huit scénarios d'incertitude (notamment différentes hypothèses sur le recrutement passé et futur, la mortalité naturelle et la proportion de poissons du contingent nord capturés par la flotte américaine) (Van Beveren *et al.* 2020). Les résultats de ces analyses ont montré que la RCP qui reflétait le plus les TAC de 8 000 t (RCP 10) pour 2019 et 2020 avait une faible probabilité de faire augmenter la BSR au-dessus du PRL dans 3, 5 et 10 ans dans tous les scénarios d'incertitude. De même, les analyses ont montré que cette RCP entraînerait probablement un déclin des stocks dans 3, 5 et 10 ans pour tous les scénarios d'incertitude. Ces résultats de l'évaluation actuelle (c.-à-d. que le stock n'a pas augmenté au-delà du PRL depuis la dernière évaluation et que la BSR a atteint un creux record en 2020).

REMERCIEMENTS

L'évaluation du stock de maquereau nécessite la collaboration et la coordination de personnes et de ressources de l'Ontario, du Québec, du Nouveau-Brunswick, de l'Île-du-Prince-Édouard, de la Nouvelle-Écosse, de Terre-Neuve-et-Labrador et des États-Unis. Des fonctionnaires, des citoyens et d'autres parties prenantes ont tous contribué au processus et il serait impossible de les nommer tous. Nous voulons également souligner les contributions de la Garde côtière canadienne et de l'équipage du NGCC Teleost, de Reformar et le Coriolis II; de toutes les personnes qui ont participé et contribué à l'examen par les pairs de la présente évaluation du stock; de nos collègues des régions des Maritimes, du Golfe et de Terre-Neuve-et-Labrador, qui nous ont fourni des données et du code; du personnel de soutien technique à l'Institut Maurice-Lamontagne (Direction des avis, informations et soutien scientifiques); du réseau des échantillonneurs de port du MPO; des bureaux régionaux des statistiques du MPO; les membres du Groupe de travail sur le plan de rétablissement du maquereau et du Comité consultatif sur le maquereau; les gestionnaires nationaux et régionaux des pêches; de nos collègues du NEFSC et de l'OPANO; et enfin de tous les intervenants qui nous ont offert leurs connaissances, le cadre historique et des échantillons.

Nous remercions également Karen Cogliati et Jean-Martin Chamberland qui ont revu le document.

RÉFÉRENCES CITÉES

- Aeberhard, W.H., Flemming, J.M., et Nielsen, A. 2018. Review of State-Space Models for Fisheries Science. Ann. Rev. Stat. Appl. 5, 215-235. DOI: 10.1146/annurev-statistics-031017-100427
- Anonyme. 1986. CAFSAC Assessment software catalog. CAFSAC Res. Doc. 86/96.
- Arai, K., Castonguay, M. et Secor, D.H. 2021. <u>Multi-decadal trends in contingent mixing of</u> <u>Atlantic mackerel (*Scomber scombrus*) in the Northwest Atlantic from otolith stable</u> <u>isotopes</u>. Sci Rep 11, 6667.
- Auger-Méthé, M., Field, C., Albertsen, C.M., Derocher, A.E., Lewis, M.A., Jonsen, I.D., et Flemming, J.M. 2016. <u>State-space models' dirty little secrets: even simple linear Gaussian</u> <u>models can have estimation problems</u>. Sci. Rep. 6, 26677 (2016).
- Berg, C.W., et Nielsen, A. 2016. <u>Accounting for correlated observations in an age-based state-space stock assessment model</u>. ICES J. Mar. Sci. 73, 1788–1797.
- Bolker, B.M. 2008. Ecological Models and Data in R. Princeton University Press. Princeton, New Jersey. ISBN-10 : 0691125228
- Brosset, P., Smith, A.D., Plourde, S., Castonguay, M., Lehoux, C., et Van Beveren, E. 2020. <u>A</u> <u>fine-scale multi-step approach to understand fish recruitment variability</u>. Sci. Rep. 10, 16064 (2020).
- Cadigan, N., 2016. A state-space stock assessment model for northern cod, including underreported catches and variable natural mortality rates. Can. J. Fish. Aquat. Sci. 73, 296–308.
- Collette, B.B. et Nauen, C.E. 1983. FAO Species Catalogue. Vol. 2. Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. Rome: FAO. FAO Fish. Synop. 125(2):137 p.
- Doniol-Valcroze, T., Van Beveren, E., Légaré, B., Girard, L. et Castonguay, M. 2019. <u>Le</u> <u>maquereau bleu (*Scomber scombrus* L.) dans les sous-régions 3 et 4 de l'OPANO en 2016</u>. Secr. can. de consult. sci. du MPO. Doc. de rech. 2018/062. v + 53 p.
- Galbraith, P. S., et Grégoire, F. 2014. <u>Habitat thermique du maquereau bleu; profondeur de</u> <u>l'isotherme de 8 °C dans le sud du golfe du Saint-Laurent entre 1960 et 2014</u>. Secr. can. de consult. sci. du MPO. Doc. de rech. 2014/116. v + 13 p.
- Gavaris, S., et Gavaris, C.A. 1983. Estimation of catch at age and its variance for groundfish stocks in the Newfoundland regions. in Doubleday, W.G., and Rivard, D. (Editors). Sampling Commercial Catches of Marine Fish and Invertebrates. Can. Spec. Pub. Fish. Aq. Sci. 66.
- Girard, L. 2000. Identification des oeufs de maquereau (*Scomber scombrus* L.) échantillonnés lors des relevés d'abondance effectués dans le sud du golfe du Saint-Laurent. Chapitre 4. *dans* Grégoire, F. (Éditeur). <u>Le maquereau bleu (Scomber scombrus L.) des sous-régions 2</u>
 à 6 de l'OPANO. Secr. can. de consult. sci. du MPO. Doc. de rech. 2000/021. Pp. 119-138.
- Gíslason, D., Helyar, S.J., Óskarsson, G.J., Ólafsdóttir, G., Slotte, A., Jansen, T., Jacobsen, J.A., Ólafsson, K., Skirnisdottir, S., Dahle, G., Siegstad, H., Joensen, H., Curti, K.L., Grégoire, F., Masse, J., Sveinsson, S., Daníelsdóttir, A.K., et Pampoulie, C. 2020. The genetic composition of feeding aggregations of the Atlantic mackerel (*Scomber scombrus*) in the central north Atlantic: a microsatellite loci approach, ICES J. Mar. Sci. 77, 604–612
- Goode, G. B., Collins, J. W., Earl, R. E., et Clark, A. H. 1883. Materials for a history of the mackerel fishery. 441 pp.

- Goodyear, C. P. 1977. Assessing the impact of power plant mortality on the compensatory reserve of fish populations. In Proceedings of a conference on assessing the effects of powerplant induced mortality on fish populations., pp. 186–195. Ed. by Van Winkle. Pergamon Press, New York, USA.
- Grégoire, F. (Éditeur). <u>Le maquereau bleu (Scomber scombrus L.) des sous-régions 2 à 6 de</u> <u>l'OPANO</u>. Secr. can. de consult. sci. du MPO. Doc. de rech. 2000/021.
- Grégoire, F. et Showell, M. 1994. Description of the mackerel catches (*Scomber scombrus L.*) of the foreign fishery in NAFO Divisions 4Vn, 4W and 4X between 1990 and 1992. Can. Data Rep. Fish. Aquat. Sci. 947.
- Grégoire, F., Shepherd, N., et Sutherland, S. J. 2009. Inter-laboratory ageing exchange of Atlantic mackerel (*Scomber scombrus*) otoliths for the 2009 Transboundary Resources Assessment Committee. Transboundary Resources Assessment Committee (TRAC). Ref. Doc. 2009/008. 9 pp.
- Grégoire, F., Beaulieu, J.-L., Gendron, M.-H., et LeBlanc, D. 2012. <u>Results of the Atlantic</u> <u>mackerel (*Scomber scombrus* L.) egg survey conducted on the Scotian Shelf and <u>Newfoundland's South Coast in 2009</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2012/127.</u>
- Grégoire, F., Barry, W., Barry, J.-J., Barry, J., Beaulieu, J.-L., Gendron, M.-H., et LeBlanc, D. 2013. <u>Calcul de la biomasse reproductrice de maquereau bleu (*Scomber scombrus* L.) des relevés d'ichtyoplancton réalisés sur la côte ouest de Terre-Neuve entre 2004 et 2009. Secr. can. de consult. sci. du MPO. Doc. de rech. 2012/137. iii + 37 pp.</u>
- Grégoire, F., Girard, L. et Boudreau, M. 2014a. <u>Résultats des relevés du programme de</u> <u>monitorage zonal atlantique (PMZA)-maquereau bleu (*Scomber scombrus* L.) réalisés dans <u>le sud du golfe du Saint-Laurent en 2012 et 2013</u>. Secr. can. de consult. sci. du MPO. Doc. de rech. 2014/075. v + 82 p.</u>
- Grégoire, F., Girard, L. et Boudreau, M. 2014b. <u>La pêche au maquereau bleu (*Scomber scombrus* L.) dans les sous-régions 3 et 4 de l'OPANO en 2013</u>. Secr. can. de consult. sci. du MPO. Doc. de rech. 2014/077. vi + 119 p.
- Hoy, D. L., et Clark, G. M. 1967. Atlantic mackerel fishery, 1804-1965. Fishery Leaflet, 603. United States Department of Interior, Washington.
- Kristensen, K., Nielsen, A., Berg, C.W., Skaug, H., ry Bell, B.M. 2016. TMB: Automatic Differentiation and Laplace Approximation. J. Stat. Softw. 70(5). doi: 10.18637/jss.v070.i05
- Kulka, D. 1977. <u>An hypothesis concerning the migration and distribution of Atlantic mackerel</u> (<u>Scomber scombrus</u>). CAFSAC Res. Doc. 77/7
- Lockwood, S. J., Nichols, J. H., ry Coombs, S. H. 1977. The development rates of mackerel (*Scomber scombrus* L.) eggs over a range of temperatures. ICES CM 1977/J: 13. 13 pp.
- Mackay, K.T. 1976. Population biology and aspects of energy use of the northern population of Atlantic mackerel *Scomber scombrus* L. Thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Dalhousie University.
- MPO. 2009. Cadre décisionnel pour les pêches en conformité avec l'approche de précaution.
- MPO. 2019. <u>Évaluation du stock de maquereau bleu du Nord-Ouest de l'Atlantique (sous-régions 3 et 4) en 2018</u>. Secr. can. de consult. sci. du MPO, Avis sci. 2019/035.
- Nielsen, A., et Berg, C.W. 2014. <u>Estimation of time-varying selectivity in stock assessments</u> <u>using state-space models</u>. Fish. Res. 158, 96–101.

- Northeast Fisheries Science Center (NEFSC). 2017. 64th Northeast Regional Stock Assessment Workshop (64th SAW) Assessment Report. Northeast Fish Sci. Cent. Ref. Doc. 18-03.
- Ogle, D.H. 2015. Introductory Fisheries Analyses with R. Chapman and Hall/CRC. USA.
- Ogle, D.H., Doll, J.C., Wheeler, P., et Dinno, A. 2021. FSA: Fisheries Stock Analysis. R package version 0.9.3
- Pelletier, L. 1986. Fécondité du maquereau bleu, *Scomber scombrus* L., du golfe du Saint-Laurent. Rapp. tech. can. sci. halieut. aquat. 1467: v + 37 p.
- R Core Team. 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
- Redding, S. G., Cooper, L. W., Castonguay, M., Wiernicki, C. et Secor, D. H. 2020. Northwest Atlantic mackerel population structure evaluated using otolith δ18O composition. ICES J. Mar. Sci. 77, 2582–2589
- Sette, O.E. 1950. Biology of Atlantic mackerel (*Scomber scombrus*) of North America. Part II. Migrations and habits. U.S. Fish Wildl. Serv. Fish. Bull. 51: 251-358
- Shepherd, J. G. 1982. A versatile new stock–recruitment relationship of fisheries and construction of sustainable yield curves. Cons. Perm. Int. Explor. Mer, 40: 67–75.
- Smith, A.D., Van Beveren, E., Girard, L., Boudreau, M., Brosset, P., Castonguay, M. et Plourde, S. 2020. <u>Le maquereau bleu (*Scomber scombrus* L.) dans les sous-zones 3 et 4 de</u> <u>l'OPANO en 2018</u>. Secr. can. de consult. sci. du MPO. Doc. de rech. 2020/013. iv + 40 p.
- Studholme, A.L., Packer, D.B., Berrien, P.L., Johnson, D.L., Zetlin, C.A., et Morse, W.M. 1999. Essential Fish Habitat Source Document: Atlantic Mackerel, *Scomber scombrus*, Life History and Habitat Characteristics. NOAA Technical Memorandum NMFS-NE-141.
- Van Beveren, E., Duplisea, D., Castonguay, M., Doniol-Valcroze, T., Plourde, S., et Cadigan, N. 2017a. How catch underreporting can bias stock assessment of and advice for northwest Atlantic mackerel and a possible resolution using censored catch. Fish. Res. 194. 146-154. 10.1016/j.fishres.2017.05.015.
- Van Beveren, E., Castonguay, M., Doniol-Valcroze, T., et Duplisea, D. 2017b. <u>Results of an</u> <u>informal survey of Canadian Atlantic mackerel commercial, recreational and bait fishers</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/029. v + 26 p.
- Van Beveren, E., Duplisea, D., Castonguay, M., et Smith, A. 2019. <u>Résultats d'une enquête</u> <u>informelle auprès de pêcheurs canadiens de maquereau bleu à des fins commerciales,</u> <u>d'appâts et récréatives (2018)</u>. Secr. can. de consult. sci. du MPO, Doc. de rech. 2019/045. iv + 26 p.
- Van Beveren, E., Marentette, J.R., Smith, A., Castonguay M. et Duplisea, D.E. 2020a. <u>Évaluation des stratégies de rétablissement du maquereau de l'Atlantique Nord-Ouest</u> <u>(sous-régions 3 et 4 de l'OPANO)</u>. Secr. can. de consult. sci. Doc. de rech. 2020/021. v + 58 p.
- Van Beveren, E., Duplisea, D.E., Marentette, J.R., Smith, A.D., and Castonguay, M. 2020b. An example of how catch uncertainty hinders effective stock management and rebuilding. Fish. Res. 224.

INFORMATION SUPPLÉMENTAIRE

TABLEAUX

Tableau S1. Débarquements nominaux (Déb) de maquereau bleu dans les divisions 2 à 6 de l'OPANO, regroupés par pêche et par Zone économique exclusive (ZEE).

		ZEE Canada**		ZEE États-Unis***						
Année*	Déb. Commerciaux	Déb. navires étrangers	Total ZEE Canada	Déb. Commerciaux	Déb. pêche récréative	Rejets	Déb. navires étrangers	Total ZEE États-Unis		
1968	11118	9720	20838	3929	-	-	56043	59972		
1969	13257	5379	18636	4364	-	-	108811	113175		
1970	15710	5296	21006	4049	-	-	205568	209617		
1971	14942	9554	24496	2406	-	-	346338	348744		
1972	16253	6107	22360	2006	-	-	385358	387364		
1973	21566	16984	38550	1336	-	-	379828	381164		
1974	16701	27954	44655	1042	-	-	293883	294925		
1975	13540	22718	36258	1974	-	-	249005	250979		
1976	15746	17319	33065	2712	-	-	205956	208668		
1977	19852	2913	22765	1377	-	-	53664	55041		
1978	25429	470	25899	1605	-	-	371	1976		
1979	30244	368	30612	1990	-	-	72	2062		
1980	22135	161	22296	2683	-	-	406	3089		
1981	19294	61	19355	2941	2628	-	5300	10869		
1982	16380	3	16383	3330	1877	-	6471	11678		
1983	19797	9	19806	3805	2793	-	5882	12480		
1984	17320	913	18233	5954	2726	-	14957	23637		
1985	29855	1051	30906	6632	4088	-	17639	28359		
1986	30325	772	31097	9637	7662	-	25735	43034		
1987	27488	71	27559	12310	7555	-	34951	54816		
1988	24060	956	25016	12309	5421	-	51463	69193		
1989	20795	347	21142	14556	2829	160	37209	54755		
1990	19190	3796	22986	31261	3254	827	9232	44575		
1991	24914	1281	26195	26961	3540	1098	5989	37588		
1992	24307	2255	26562	11761	921	2072	-	14754		
1993	26158	690	26848	4662	1231	3902	-	9796		
1994	20564	49	20613	8917	2654	5409	-	16980		
1995	17740	62	17802	8468	1697	54	-	10219		
1996	20406	76	20482	15728	2466	2053	-	20246		
1997	21309	116	21425	15403	2857	229	-	18489		
1998	19176	10	19186	14525	1553	98	-	16176		
1999	16561	12	16573	12031	2832	771	-	15634		

Année* ⁻		ZEE Canada**		ZEE États-Unis***						
Année*	Déb. Commerciaux	Déb. navires étrangers	Total ZEE Canada	Déb. Commerciaux	Déb. pêche récréative	Rejets	Déb. navires étrangers	Total ZEE États-Unis		
2000	16080	26	16106	5649	3055	153	-	8857		
2001	24429	11	24440	12340	3301	718	-	16359		
2002	34662	7	34669	26530	2679	155	-	29364		
2003	44736	12	44748	34298	1874	264	-	36436		
2004	53951	15	53966	54990	1169	2141	-	58300		
2005	54809	-	54809	42209	1694	1083	-	44986		
2006	53741	3	53744	56640	3911	135	-	60687		
2007	53394	-	53394	25546	763	159	-	26468		
2008	29671	4	29675	21734	2731	747	-	25212		
2009	42231	42	42273	22634	1769	126	-	24529		
2010	38700	1	38701	9877	4288	97	-	14261		
2011	11508	-	11508	533	4040	38	-	4610		
2012	6847	2	6849	5333	2671	33	-	8037		
2013	8674	1	8675	4372	2406	20	-	6799		
2014	6680	-	6680	5905	2296	51	-	8252		
2015	4280	1	4281	5616	4275	13	245	10150		
2016	8055	2	8057	5687	4572	18	1	10278		
2017	9783	3	9786	6975	4173	83	132	11362		
2018	10926	1	10927	-	-	-	-	10784		
2019*	8704	-	8704	-	-	-	52	6857		
2020*	7838	-	7838	8025	-	-	-	8025		

* Données préliminaires.

** Pour des raisons de commodité, les ZEE des États-Unis et du Canada ont été appliquées même pour les années où les frontières n'existaient pas. De plus, la ZEE de la France (Saint-Pierre-et-Miquelon) est incluse dans la ZEE canadienne pour des raisons de commodité depuis 1995.

*** Le total des débarquements dans la ZEE des États-Unis pour 2018 et 2019 a été tiré du site Web de la <u>NOAA</u> et les estimations des rejets et des prises dans la pêche récréative n'étaient pas disponibles pour 2020. Les débarquements dits étrangers de 2015 à 2020 proviennent de navires canadiens qui pêchent dans la sous-zone 5 de l'OPANO et on peut supposer que la sous-division de l'OPANO n'a pas été inscrite correctement dans les journaux de bord.

Tableau S2. Débarquements annuels (t) dans la zone économique exclusive (ZEE) actuelle du Canada par région du MPO de 1985 à 2020. Les données présentées ici ne comprennent pas les débarquements par des navires étrangers, les ventes de navire à navire, ni les allocations canadiennes aux navires étrangers.

ANNÉE	GOLFE	TERRE-NEUVE	QUÉBEC	MARITIMES
1985	6124,71	14883,14	2179,07	6264,85
1986	8517,92	2399,96	3004,39	4798,79
1987	9610,74	9901,84	2752,82	5233,12
1988	9469,41	4234,35	3662,38	6064,56
1989	9685,64	1911,07	2252,44	4813,76
1990	9633,97	1208,18	1970,86	8499,24
1991	14450,53	833,68	3255,63	7270,02
1992	9887,58	1283,30	3480,32	8622,27
1993	6995,61	9683,41	3175,43	6717,96
1994	6874,73	2799,87	3545,85	7608,11
1995	4831,42	2952,50	3382,29	6573,59
1996	7049,45	3869,09	4317,36	5169,86
1997	9590,04	1188,33	5769,24	4761,76
1998	8675,78	2330,69	3738,36	4431,11
1999	5462,02	1444,75	5103,57	4550,36
2000	5294,08	4405,85	2021,99	4358,57
2001	9123,24	8981,08	3211,81	3113,19
2002	10069,32	17981,97	4420,71	2189,85
2003	9726,87	26675,11	4596,87	3737,19
2004	7728,49	40002,70	1979,37	4240,87
2005	8238,10	42659,74	1220,60	2690,80
2006	6042,66	44276,74	1818,43	1602,88
2007	4684,98	44601,66	1749,84	2357,41
2008	3598,55	23036,12	1862,95	1173,43
2009	4562,47	34237,19	2316,02	1115,81
2010	3277,64	33158,87	1709,22	553,92
2011	2417,41	7336,81	1344,88	408,65
2012	2258,48	2619,15	1277,99	691,66
2013	1648,35	5169,49	1452,87	403,26
2014	1042,23	3432,06	1502,33	703,20
2015	1225,78	700,56	1182,35	1171,58
2016	1241,30	4632,60	966,22	1215,30
2017	3726,16	2653,29	1347,13	2056,79
2018	2200,74	5625,21	1426,38	1521,60
2019*	2229,00	4813,75	753,98	907,74
2020*	1885,64	4013,92	679,14	1128,49

* Les valeurs pour 2019 et 2020 sont préliminaires. Les valeurs peuvent ne pas s'additionner dû aux erreurs d'arrondissement.

Tableau S3. Débarquements commerciaux annuels agrégés par divisions regroupées de l'OPANO (2000-2020) correspondant au plateau de Terre-Neuve et du Labrador (2J3KL), au détroit de Cabot (3P4V), à l'estuaire et au golfe du Saint-Laurent (4RST) et au plateau néo-écossais, golfe du Maine, baie de Fundy et banc Georges (4WX5YZ) et le nombre correspondant de fréquences de longueur (N_fl) et d'échantillons biologiques prélevés (N_bio) ainsi que le nombre total de poissons qu'ils contiennent (n_fl et n_bio respectivement). Les débarquements supérieurs à 1000 t sont indiqués en gras. Les données présentées ici ne comprennent pas les débarquements par des navires étrangers, les ventes de navire à navire, ni les allocations canadiennes à des navires étrangers.

Année	Région	Débarquements (t)	N_fl	n_fl	N_bio	n_bio
2000	2J3KL	2384,96	16	1673	4	89
2000	4RST	9317,10	74	9363	38	1323
2000	4V3P	595,27	15	1983	9	355
2000	4WX5YZ	3783,15	5	559	1	31
2001	2J3KL	332,22	-	-	-	-
2001	4RST	20707,32	86	14056	55	2009
2001	4V3P	398,00	20	2991	6	199
2001	4WX5YZ	2991,79	16	2353	5	222
2002	2J3KL	6568,66	14	729	0	0
2002	4RST	25737,35	76	14193	51	1674
2002	4V3P	469,81	11	1640	7	260
2002	4WX5YZ	1886,04	-	-	-	-
2003	2J3KL	588,12	-	-	-	-
2003	4RST	40261,68	90	15536	62	1975
2003	4V3P	208,68	20	3201	15	549
2003	4WX5YZ	3677,56	3	250	1	33
2004	2J3KL	16050,71	26	2349	6	250
2004	4RST	33580,46	73	11206	44	1594
2004	4V3P	92,12	14	1720	6	215
2004	4WX5YZ	4228,14	38	5266	15	570
2005	2J3KL	28305,71	29	750	28	1178
2005	4RST	23574,98	98	10461	60	2079
2005	4V3P	363,39	14	1436	9	405
2005	4WX5YZ	2565,14	24	2738	11	323
2006	2J3KL	27136,66	60	2088	51	2004
2006	4RST	24734,93	121	11996	66	2252
2006	4V3P	490,11	17	1913	11	414
2006	4WX5YZ	1378,99	-	-	-	-
2007	2J3KL	19468,17	46	567	53	1585
2007	4RST	31214,66	108	11840	62	1866
2007	4V3P	723,88	18	1473	11	426
2007	4WX5YZ	1987,17	3	452	0	0
2008	2J3KL	9129,04	10	27	11	315
2008	4RST	19202,95	92	9071	52	1861
2008	4V3P	276,18	8	22	10	374
2008	4WX5YZ	1062,88	6	1097	0	0
2009	2J3KL	6937,62	15	66	18	652
2009	4RST	28791,51	99	10341	61	2064
2009	4V3P	5441,60	18	1982	12	430
2009	4WX5YZ	1060,76	6	779	2	70
2010	2J3KL	13746,62	63	1665	63	2435
2010	4RST	18857,66	109	11597	65	1771
2010	4V3P	5548,43	7	574	5	200
2010	4WX5YZ	546,94	1	255	1	39
2011	2J3KL	487,09	13	65	14	592

Année	Région	Débarquements (t)	N_fl	n_fl	N_bio	n_bio
2011	4RST	9068,04	76	8153	47	1494
2011	4V3P	1545,50	5	20	6	308
2011	4WX5YZ	407,11	4	417	2	89
2012	2J3KL	209,45	6	10	14	580
2012	4RST	5797,68	84	7517	43	1249
2012	4V3P	298,84	1	1	2	128
2012	4WX5YZ	541,32	1	1	1	134
2013	2J3KL	234,71	-	-	-	-
2013	4RST	8010,24	59	5988	36	1083
2013	4V3P	171,35	-	-	-	-
2013	4WX5YZ	257,66	1	3	1	129
2014	2J3KL	31,46	-	-	-	-
2014	4RST	5699,11	62	7528	46	1385
2014	4V3P	389,53	-	-	-	-
2014	4WX5YZ	559,71	1	1	1	406
2015	2J3KL	262,11	4	507	5	224
2015	4RST	2846,59	54	6654	39	1246
2015	4V3P	58,02	-	-	-	-
2015	4WX5YZ	1113,57	-	-	-	-
2016	2J3KL	2796,56	6	889	5	182
2016	4RST	4043,67	77	9496	52	1863
2016	4V3P	123,84	-	-	-	-
2016	4WX5YZ	1091,34	5	319	2	742
2017	2J3KL	1144,08	-	-	-	-
2017	4RST	6538,35	97	11171	64	2240
2017	4V3P	212,91	-	-	-	-
2017	4WX5YZ	1888,01	1	4	9	236
2018	2J3KL	5369,21	8	622	6	251
2018	4RST	4026,66	65	8536	36	1265
2018	4V3P	137,31	3	245	3	243
2018	4WX5YZ	1393,22	14	561	20	1074
2019*	2J3KL	4689,95	12	1671	9	300
2019*	4RST	3031,67	49	6707	64	1610
2019*	4V3P	83,48	4	199	24	122
2019*	4WX5YZ	821,06	12	24	99	1830
2020*	2J3KL	3967,61	14	1034	14	683
2020*	4RST	2741,92	54	5633	65	1084
2020*	4V3P	80,46	-	-	-	-
2020*	4WX5YZ	1048,03	-	-	-	-

* Les valeurs pour 2019-2020 sont préliminaires. Tous les échantillons de 2020 n'ont pas été comptés ou analysés au moment de l'évaluation de 2021. Les valeurs peuvent ne pas s'additionner en raison d'erreurs d'arrondi. ** De petites portions de la ZEE du Canada se trouvent dans la division 5 de l'OPANO. Tableau S4. Stratification utilisée pour agréger et appliquer les clés âge-longueur aux strates correspondantes de fréquences de longueur. Pour chaque strate, les débarquements associés en tonnes, le nombre de poissons dans les échantillons de fréquences de longueur agrégés (n_fl) et le nombre de poissons utilisés dans la construction des clés âge-longueur (n_bio) sont indiqués. Les agrégations d'ordre supérieur avant le calcul des estimations annuelles sont définies par la variable indice.

Année	Trimestre	Divisions	Types d'engins	Indice	Débarquement	n_fl	n_bio
2015	Q1	4RST	sennes_trappes_fascines_divers	а	137	-	-
2015	Q1	4WX5YZ	sennes_trappes_fascines_divers	а	0	-	87
2015	Q2	4RST	Filets maillants	а	326	3390	533
2015	Q2	4RST	lignes	а	53	150	29
2015	Q2	4RST	sennes_trappes_fascines_divers	а	2	-	-
2015	Q2	4V3P	Filets maillants	а	0	-	-
2015	Q2	4V3P	sennes_trappes_fascines_divers	а	43	-	-
2015	Q2	4WX5YZ	Filets maillants	а	22	-	-
2015	Q2	4WX5YZ	sennes_trappes_fascines_divers	а	149	-	-
2015	Q3	2J3KL	sennes_trappes_fascines_divers	d	0	1	60
2015	Q3	4RST	Filets maillants	b	208	-	-
2015	Q3	4RST	lignes	b	1295	2441	566
2015	Q3	4RST	sennes_trappes_fascines_divers	с	261	151	34
2015	Q3	4V3P	lignes	с	11	-	-
2015	Q3	4V3P	sennes_trappes_fascines_divers	b	0	-	-
2015	Q3	4WX5YZ	Filets maillants	b	41	-	-
2015	Q3	4WX5YZ	lignes	с	200	-	-
2015	Q3	4WX5YZ	sennes_trappes_fascines_divers	b	228	-	6
2015	Q4	2J3KL	sennes_trappes_fascines_divers	d	262	506	164
2015	Q4	4RST	Filets maillants	f	9	-	-
2015	Q4	4RST	lignes	e	110	344	60
2015	Q4	4RST	sennes_trappes_fascines_divers	f	446	178	24
2015	Q4	4V3P	Filets maillants	f	3	-	-
2015	Q4	4V3P	lignes	e	0	-	-
2015	Q4	4WX5YZ	Filets maillants	f	35	-	-
2015	Q4	4WX5YZ	lignes	e	117	-	-
2015	Q4	4WX5YZ	sennes_trappes_fascines_divers	f	321	-	-
2016	Q1	4RST	sennes_trappes_fascines_divers	g	153	-	-
2016	Q1	4WX5YZ	sennes_trappes_fascines_divers	g	2	5	724
2016	Q2	4RST	Filets maillants	g	782	3768	549
2016	Q2	4RST	lignes	g	5	350	35
2016	Q2	4RST	sennes_trappes_fascines_divers	g	14	-	-
2016	Q2	4V3P	Filets maillants	g	0	-	-
2016	Q2	4V3P	sennes_trappes_fascines_divers	g	92	-	-
2016	Q2	4WX5YZ	Filets maillants	g	12	-	-
2016	Q2	4WX5YZ	lignes	g	0	-	-
2016	Q2	4WX5YZ	sennes_trappes_fascines_divers	g	298	167	-
2016	Q3	2J3KL	Filets maillants	1	2	-	-
2016	Q3	2J3KL	sennes_trappes_fascines_divers	1	410	-	7
2016	Q3	4RST	Filets maillants	1	60	-	-
2016	Q3	4RST	lignes	h	888	3277	747
2016	Q3	4RST	sennes_trappes_fascines_divers	1	499	961	231
2016	Q3	4V3P	Filets maillants	1	3	-	-
2016	Q3	4V3P	lignes	h	9	-	-
2016	Q3	4V3P	sennes_trappes_tascines_divers	1	17	-	-
2016	Q3	4WX5YZ	Filets maillants	1	48	-	-
2016	Q3	4WX5YZ	lignes	h ·	384	147	-
2016	Q3	4WX5YZ	sennes_trappes_fascines_divers	1	120	-	18
2016	Q4	2J3KL	Fliets maillants	J	2204	-	-
2016	Q4	2JJKL ADST	Sennes_trappes_fascines_divers	J	2384	889	182
2010	Q4 Q4	4K51 4DST	Fricts mamants	J Iz	117	522	- 140
2010	04	4N31 ADST	sennes trannes fassings divers	к 1	11/	619	140
2010	4	101	sentices trappes fascilles urvers	1	1527	010	101

Année	Trimestre	Divisions	Types d'engins	Indice	Débarquement	n_fl	n_bio
2016	Q4	4V3P	Filets maillants	1	0	-	-
2016	Q4	4V3P	lignes	j	1	-	-
2016	Q4	4V3P	sennes_trappes_fascines_divers	j	1	-	-
2016	Q4	4WX5YZ	Filets maillants	j	21	-	-
2016	Q4	4WX5YZ	lignes	k	151	-	-
2016	Q4	4WX5YZ	sennes_trappes_fascines_divers	j	56	-	-
2017	Q1	4RST	Filets maillants	m	0	-	-
2017	Q1	4RST	sennes trappes fascines divers	m	136	-	-
2017	Q1	4V3P	Filets maillants	m	0	-	-
2017	Q1	4WX5YZ	sennes trappes fascines divers	m	2	-	163
2017	Q2	4RST	Filets maillants	m	931	2864	485
2017	Q2	4RST	lignes	m	3	-	-
2017	Q2	4RST	sennes trappes fascines divers	m	2	-	-
2017	Q2	4V3P	Filets maillants	m	0	-	-
2017	Q2	4V3P	sennes trappes fascines divers	m	54	-	-
2017	Q2	4WX5YZ	Filets maillants	m	38	-	-
2017	Õ2	4WX5YZ	lignes	m	6	-	-
2017	Õ2	4WX5YZ	sennes trappes fascines divers	m	155	-	-
2017	Q3	2J3KL	Filets maillants	n	0	-	-
2017	Q3	2J3KL	sennes trappes fascines divers	n	263	-	-
2017	03	4RST	Filets maillants	n	2832	480	79
2017	03	4RST	lignes	0	655	5570	1091
2017	03	4RST	sennes trappes fascines divers	n	437	468	172
2017	03	4V3P	Filets maillants	n	22	-	-
2017	$\overline{03}$	4V3P	lignes	0	29	-	-
2017	03	4V3P	sennes trannes fascines divers	n	93	-	-
2017	$\overline{03}$	4WX5YZ	Filets maillants	n	63	-	-
2017	03	4WX5YZ	lignes	0	688	-	-
2017	03	4WX5YZ	sennes trannes fascines divers	n	678	4	236
2017	04	213KL	filets maillants	0	0	-	- 250
2017	04	213KL	sennes trannes fascines divers	9	880		30
2017	04	4RST	filets maillants	q	69	-	-
2017	04	4RST	lignes	n n	26	675	153
2017	04	4RST	sennes trannes fascines divers	P 0	1448	1114	260
2017	04	4V3P	filets maillants	9	1	-	200
2017	04	4V3P	sennes trannes fascines divers	q	13	-	_
2017	04	4WX5YZ	filets maillants	9	2	-	-
2017	04	4WX5YZ	lignes	n n	94	-	-
2017	04	4WX5YZ	sennes trannes fascines divers	P 0	163		31
2017	01	ARST	sennes trappes fascines divers	r	160		
2010	01	4WX5V7	sennes_trappes_fascines_divers	r	2	_	-
2010	Q^1	ABST	filets maillants	r	561	2602	301
2010	Q^2	ARST	lignes	r	7	2002	571
2010	Q^2	ARST	sennes trannes fascines divers	r	6	_	-
2010	Q^2	AV3P	filets maillants	I C	0	_	-
2010	Q^2	AV3P	sennes trannes fascines divers	5	107	242	/3
2010	Q^2	4WX5V7	filets maillants	5	62	272	73
2010	Q^2	4WX5V7	lignes	5	1	-	-
2010	Q^2	4WX5V7	sennes tronnes fascines divers	5	1 1/2	152	- 248
2010	Q2 03	213KI	filets maillants	5 t	442	132	240
2010	03	2J3KL 2J3KI	lignes	ι +	0	-	-
2010	03	2J3KL 2I3KI	sennes trannes fasaines divers	t t	2870	300	53
2010	03	ARST	filete maillants	t V	1824	509	55
2010	03	ARST	lignes	v 11	284	-	103
2010	03	ADST	sannas trannas fasainas divers	u V	0 <u>6</u> 1	1251	270
2010	03		filets maillants	V	001	1331	270
2010	03		lignes	v	2	-	200
2010	03	4V3D	sannas trannas fasainas divers	u	2	3	200
2010	03	4VJF AWY5V7	filets maillants	u	9	-	-
2010	03	TWAJIL AWY5V7	lignes	u	09	-7	-
2018	Q3	TWAJIL	inglies	u	440	/	221

Année	Trimestre	Divisions	Types d'engins	Indice	Débarquement	n_fl	n_bio
2018	Q3	4WX5YZ	sennes trappes fascines divers	u	281	402	605
2018	Q4	2J3KL	sennes_trappes_fascines_divers	W	2499	313	198
2018	Q4	4RST	filets maillants	W	89	-	-
2018	Q4	4RST	lignes	х	24	452	111
2018	Q4	4RST	sennes_trappes_fascines_divers	W	100	-	-
2018	Q4	4V3P	sennes_trappes_fascines_divers	W	13	-	-
2018	Q4	4WX5YZ	filets maillants	W	3	-	-
2018	Q4	4WX5YZ	lignes	х	50	-	-
2018	Q4	4WX5YZ	sennes_trappes_fascines_divers	W	38	-	-
2019	Q1	4WX5YZ	sennes_trappes_fascines_divers	у	3	2	451
2019	Q2	4RST	filets maillants	Z	1190	2005	375
2019	Q2	4RST	lignes	Z	11	-	-
2019	Q2	4RST	sennes_trappes_fascines_divers	Z	3	-	39
2019	Q2	4V3P	filets maillants	Z	2	195	40
2019	Q2	4V3P	sennes_trappes_fascines_divers	Z	64	-	40
2019	Q2	4WX5YZ	filets maillants	у	102	-	-
2019	Q2	4WX5YZ	lignes	у	0	-	-
2019	Q2	4WX5YZ	sennes_trappes_fascines_divers	у	221	1	149
2019	Q3	2J3KL	sennes_trappes_fascines_divers	aa	4690	1671	300
2019	Q3	4RST	filets maillants	bb	3323	146	34
2019	Q3	4RST	lignes	cc	235	4084	748
2019	Q3	4WX5YZ	lignes	dd	126	2	292
2019	Q3	4WX5YZ	sennes_trappes_fascines_divers	dd	315	19	938
2019	Q4	4RST	filets maillants	bb	8	-	-
2019	Q4	4RST	lignes	cc	0	-	-
2019	Q4	4RST	sennes_trappes_fascines_divers	bb	12	-	52
2019	Q4	4V3P	sennes_trappes_fascines_divers	dd	1	-	-
2019	Q4	4WX5YZ	filets maillants	dd	0	-	-
2019	Q4	4WX5YZ	lignes	dd	0	-	-
2019	Q4	4WX5YZ	sennes_trappes_fascines_divers	dd	40	-	57
2020	Q1	4WX5YZ	sennes_trappes_fascines_divers	ee	3	-	-
2020	Q2	4RST	filets maillants	ee	592	1063	217
2020	Q2	4RST	lignes	ee	10	172	36
2020	Q2	4RST	sennes_trappes_fascines_divers	ee	15	-	-
2020	Q2	4V3P	filets maillants	ee	4	-	-
2020	Q2	4V3P	sennes_trappes_fascines_divers	ee	68	-	-
2020	Q2	4WX5YZ	filets maillants	ee	106	-	-
2020	Q2	4WX5YZ	lignes	ee	12	-	-
2020	Q2	4WX5YZ	sennes_trappes_fascines_divers	ee	674	-	-
2020	Q3	2J3KL	filets maillants	ff	0	104	149
2020	Q3	2J3KL	sennes_trappes_fascines_divers	ff	704	10	147
2020	Q3	4RST	filets maillants	gg	1335	-	-
2020	Q3	4RST	lignes	gg	194	3961	518
2020	Q3	4RST	sennes_trappes_fascines_divers	gg	444	309	279
2020	Q3	4V3P	lignes	gg	2	-	-
2020	Q3	4V3P	sennes_trappes_fascines_divers	gg	6	-	-
2020	Q3	4WX5YZ	filets maillants	gg	3	-	-
2020	Q3	4WX5YZ	lignes	gg	35	-	-
2020	Q3	4WX5YZ	sennes_trappes_fascines_divers	gg	188	-	-
2020	Q4	2J3KL	filets maillants	hh	0	2	249
2020	Q4	2J3KL	sennes_trappes_fascines_divers	hh	3263	918	138
2020	Q4	4RST	filets maillants	hh	146	-	-
2020	Q4	4RST 4DST	lignes	hh	3	128	34
2020	Q4	4KST	sennes_trappes_fascines_divers	hh	4	-	-
2020	Q4	4V3P	sennes_trappes_fascines_divers	hh	1	-	-
2020	Q4	4WX5YZ	lignes	hh	12	-	-
2020	Q4	4WX5YZ	sennes_trappes_tascines_divers	hh	16	-	-

Année	1	2	3	4	5	6	7	8	9	10
1968	43062	7157	10343	7393	2819	1349	721	1658	10425	97
1969	5692	26359	18057	2027	929	855	1099	440	462	9656
1970	20277	3654	33584	8047	2496	451	425	1578	1645	4335
1971	7156	7389	1702	35931	7620	1753	2203	1526	1879	5517
1972	1	136	4401	5541	24826	4975	5248	77	546	6833
1973	9176	20624	9649	9333	13972	22293	8317	2771	837	1603
1974	8618	24340	26703	14602	12594	12417	15377	4053	1714	1749
1975	14206	24905	13049	11636	7052	7526	5456	3917	825	581
1976	1686	21171	27110	10982	7740	3868	4922	3977	3123	1165
1977	740	7136	22566	11319	3683	2570	809	1443	897	1721
1978	2	182	3831	14733	11575	6358	3157	1649	1402	2497
1979	204	480	1189	6615	17202	12321	5590	2282	1702	2457
1980	6	1455	2156	1463	5087	9833	6148	2692	1604	1998
1981	6145	2836	5143	1183	1656	4669	7743	3309	1595	1892
1982	2145	5899	1609	5004	715	1609	2623	4828	1549	2504
1983	2145	1622	2459	915	4012	478	946	3119	7770	3601
1984	60	19774	14060	1413	781	1551	330	479	2022	5640
1005	357	511	23790	12844	1252	656	2197	289	551	7605
1905	363	4282	3259	40844	11522	933	485	635	117	1915
1987	1291	3118	3358	2288	27133	5692	232	183	83	716
1000	117	703	1028	1032	2/133	24769	1/03	227	131	572
1900	2200	8862	1028	037	1541	575	20057	2603	260	791
1969	2399	6222	0727	1457	000	066	630	16765	023	277
1990	590	6106	9/3/	1437	000	900	1052	840	925	557
1991	640	2627	2014	9300	8620	1411	722	1049	10904	11142
1992	028	2627	3014	14148	8030	1411	/33	1048	884	(002
1993	(72)	4900	8493	4497 5005	13011	/080	1000	020	099	0882
1994	0/2	231	3890	3903	2850	130/2	5977	929	244	2925
1995	10603	14206	698	46/4	4093	1/68	5/5/	2281	203	590
1996	2505	8050	/052	1013	5380	6519	1622	/094	1806	893
1997	5083	11823	10923	4604	638	3709	3081	545	4212	/85
1998	1927	18525	9977	9560	4291	505	2432	2024	412	14/2
1999	1348	4463	14625	/509	4698	2049	4/8	681	663	354
2000	28460	2689	1800	5465	2869	2941	458	65	195	3/1
2001	8215	60111	11234	2482	4184	842	870	144	33	3/1
2002	6088	3832	70334	6047	2275	2136	538	407	48	73
2003	3763	4381	5832	/3840	8480	1123	1199	32	5	0
2004	27524	24574	6017	4/53	56010	2457	1322	606	9	0
2005	17391	42971	24381	4007	3807	40391	1680	746	81	45
2006	31651	14756	41630	21769	3765	1917	1/11/	448	36	0
2007	2968	31233	22784	43885	11105	2471	1328	4819	39	7
2008	23622	8120	25964	8655	12703	1631	633	218	1033	9
2009	38026	24443	6613	28416	6363	9425	358	127	5	482
2010	5402	31923	28384	3829	13988	2033	3286	83	1	132
2011	2288	1230	11611	6091	639	3100	336	474	25	40
2012	193	10775	1969	3142	332	34	113	7	1	0
2013	574	5685	13651	776	1593	101	0	0	0	0
2014	1134	3475	6902	4397	119	80	0	1	0	0
2015	3541	3908	1593	2704	617	68	33	0	0	0
2016	4778	8026	5380	2327	2586	589	30	0	0	0
2017	0	15050	10260	2548	1598	1118	221	0	0	0
2018	71	487	27928	3017	707	106	145	16	0	0
2019	479	5268	8865	10151	1465	160	40	8	59	0
2020	2203	6111	7341	1629	4024	307	21	8	3	0

Tableau S5. Capture à l'âge annuelle (en milliers de poissons).

Tableau S6. Masse annuelle moyenne à l'âge (kg).

Année	1	2	3	4	5	6	7	8	9	10
1968	0,15	0,24	0,34	0,43	0,51	0,58	0,63	0,68	0,72	0,75
1969	0,13	0,21	0,30	0,38	0,46	0,52	0,57	0,62	0,65	0,68
1970	0,11	0,18	0,25	0,32	0,39	0,44	0,49	0,53	0,56	0,59
1971	0,11	0,18	0,26	0,33	0,39	0,45	0,49	0,53	0,56	0,59
1972	0,12	0,21	0,30	0,39	0,46	0,53	0,59	0,64	0,68	0,73
1973	0,11	0,19	0,27	0,35	0,41	0,47	0,52	0,57	0,60	0,63
1974	0,11	0,19	0,27	0,35	0,43	0,49	0,54	0,59	0,62	0,65
1975	0,10	0,18	0,25	0,33	0,39	0,45	0,50	0,54	0,57	0,60
1976	0,10	0,17	0,24	0,32	0,38	0,44	0,49	0,53	0,56	0,59
1977	0,11	0,20	0,29	0,38	0,45	0,52	0,58	0,63	0,67	0,70
1978	0,19	0,29	0,43	0,46	0,51	0,58	0,63	0,66	0,67	0,70
1979	0,19	0,27	0,53	0,57	0,58	0,60	0,65	0,71	0,75	0,77
1980	0,15	0,38	0,55	0,61	0,62	0,64	0,67	0,71	0,78	0,74
1981	0,11	0,32	0,52	0,58	0,64	0,66	0,67	0,71	0,72	0,76
1982	0,15	0,34	0,54	0,61	0,67	0,74	0,74	0,72	0,72	0,74
1983	0,10	0,26	0,48	0,59	0,63	0,66	0,71	0,71	0,71	0,73
1984	0,10	0,16	0,34	0,53	0,63	0,66	0,70	0,72	0,71	0,71
1985	0,20	0,39	0,40	0,51	0,60	0,74	0,77	0,78	0,84	0,87
1986	0,16	0,31	0,44	0,44	0,52	0,67	0,78	0,80	0,86	0,84
1987	0,21	0,31	0,41	0,48	0,51	0,60	0,70	0,79	0,89	0,89
1988	0,20	0,40	0,47	0,50	0,55	0,58	0,67	0,73	0,80	0,88
1989	0,17	0,33	0,45	0,55	0,62	0,62	0,66	0,75	0,81	0,88
1990	0,28	0,33	0,42	0,53	0,62	0,63	0,68	0,68	0,72	0,86
1991	0,25	0,34	0,44	0,48	0,56	0,63	0,64	0,72	0,71	0,82
1992	0,18	0,30	0,41	0,45	0,51	0,55	0,62	0,67	0,68	0,69
1993	0,18	0,28	0,36	0,45	0,49	0,55	0,61	0,66	0,70	0,72
1994	0,23	0,37	0,38	0,46	0,55	0,55	0,59	0,64	0,71	0,71
1995	0,20	0,30	0,44	0,49	0,53	0,61	0,62	0,66	0,74	0,80
1996	0,22	0,33	0,43	0,54	0,54	0,60	0,65	0,68	0,73	0,85
1997	0,24	0,38	0,45	0,52	0,59	0,60	0,64	0,76	0,70	0,75
1998	0,16	0,27	0,41	0,52	0,58	0,60	0,67	0,67	0,72	0,72
1999	0,19	0,30	0,44	0,51	0,57	0,65	0,70	0,72	0,73	0,77
2000	0,21	0,33	0,41	0,49	0,56	0,61	0,66	0,67	0,70	0,70
2001	0,14	0,28	0,40	0,48	0,56	0,63	0,67	0,69	0,76	0,78
2002	0,16	0,29	0,39	0,46	0,50	0,61	0,64	0,67	0,67	0,70
2003	0,21	0,31	0,39	0,49	0,55	0,67	0,73	0,83	0,84	0,68
2004	0,21	0,28	0,39	0,48	0,55	0,59	0,66	0,75	0,68	0,68
2005	0,11	0,31	0,39	0,47	0,52	0,62	0,65	0,70	0,71	0,67
2006	0,20	0,32	0,43	0,48	0,54	0,57	0,66	0,68	0,67	0,68
2007	0,21	0,31	0,43	0,50	0,58	0,63	0,67	0,71	0,77	0,69
2008	0,18	0,29	0,42	0,50	0,54	0,61	0,64	0,59	0,72	0,73
2009	0,21	0,32	0,42	0,50	0,58	0,61	0,68	0,61	0,71	0,78
2010	0,15	0,35	0,43	0,53	0,58	0,66	0,65	0,60	0,72	0,6/
2011	0,19	0,29	0,43	0,49	0,57	0,57	0,70	0,65	0,65	0,/1
2012	0,17	0,34	0,41	0,50	0,56	0,68	0,71	0,70	0,65	0,69
2013	0,17	0,29	0,43	0,47	0,59	0,59	0,72	0,66	0,65	0,69
2014	0,20	0,35	0,43	0,53	0,60	0,/1	0,72	0,67	0,65	0,69
2015	0,19	0,30	0,43	0,52	0,57	0,59	0,65	0,49	0,05	0,69
2010	0,14	0,27	0,39	0,47	0,52	0,39	0,00	0,70	0,05	0,69
2017	0,25	0,20	0,35	0,45	0,52	0,54	0,57	0,67	0,05	0,69
2010 2010	0,15	0,25	0,35	0,40	0,55	0,50	0,05	0,04	0,05	0,09
2019	0.15	0,20	0,52	0,54	0,40	0,52	0,57	0,57	0,30	0,09
2020	0,15	0,29	0,39	0,40	0,49	0,57	0,05	0,02	0,74	0,09

Année	РТО
1979	481,00
1980	-
1981	-
1982	-
1983	173,00
1984	356,00
1985	644,00
1986	1230,00
1987	490,00
1988	410,00
1989	494,00
1990	424,00
1991	664,00
1992	512,00
1993	573,00
1994	218,00
1995	-
1996	70,80
1997	-
1998	55,80
1999	-
2000	101,00
2001	-
2002	233,00
2003	208,00
2004	130,00
2005	72,00
2006	-
2007	64,00
2008	77,00
2009	52,80
2010	20,20
2011	28,30
2012	8,67
2013	40,00
2014	34,80
2015	39,74
2016	47,16
2017	79,16
2018	38,77
2019	56,82
2020	-

Tableau S7. Indice d'œufs (c.a.d. la producetion totale d'œufs (PTO) en mille-milliards d'œufs). Les cellules vides indiquent qu'il n'y a pas eu de mission ou que les relevés ont été omis des analyses (voir Méthodes pour plus de détails).

Année	1	2	3	4	5	6	7	8	9	10
1968	0,29	0,50	0,71	0,85	0,93	0,97	0,99	1,00	1,00	1,00
1969	0,29	0,50	0,71	0,85	0,93	0,97	0,99	1,00	1,00	1,00
1970	0,29	0,50	0,71	0,85	0,93	0,97	0,99	1,00	1,00	1,00
1971	0,29	0,50	0,71	0,85	0,93	0,97	0,99	1,00	1,00	1,00
1972	0,29	0,50	0,71	0,85	0,93	0,97	0,99	1,00	1,00	1,00
1973	0,29	0,50	0,71	0,85	0,93	0,97	0,99	1,00	1,00	1,00
1974	0,29	0,50	0,71	0,85	0,93	0,97	0,99	1,00	1,00	1,00
1975	0,16	0,86	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1976	0,20	0,79	0,98	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1977	0,05	0,84	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1978	0,43	0,91	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1979	0,37	0,59	0,79	0,90	0,96	0,98	0,99	1,00	1,00	1,00
1980	0,23	0,97	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1981	0,12	0,98	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1982	0,02	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1983	0,38	0,65	0,85	0,95	0,98	0,99	1,00	1,00	1,00	1,00
1984	0,01	0,50	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1985	0,40	0,88	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1986	0,42	0,85	0,97	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1987	0,44	0,82	0,96	0,99	1,00	1,00	1,00	1,00	1,00	1,00
1988	0,40	0,90	0,98	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1989	0,35	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1990	0,28	0,94	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1991	0,22	0,88	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1992	0,23	0,81	0,98	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1993	0,23	0,81	0,98	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1994	0,23	0,81	0,98	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1995	0,24	0,73	0,96	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1996	0,20	0,74	0,97	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1997	0,13	0,83	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1998	0,07	0,93	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
1999	0,12	0,77	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2000	0,46	0,91	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2001	0,43	0,93	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2002	0,31	0,95	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2003	0,24	0,95	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2004	0,14	0,86	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2005	0,09	0,62	0,97	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2006	0,25	0,85	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2007	0,08	0,92	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2008	0,21	0,79	0,98	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2009	0,03	0,85	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2010	0,03	0,62	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2011	0,26	0,86	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2012	0,21	0,87	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2013	0,17	0,89	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2014	0,17	0,91	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2015	0,17	0,93	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2016	0,12	0,82	0,99	1,00	1,00	1,00	1,00	1,00	1,00	1,00
2017	0,19	0,57	0,89	0,98	1,00	1,00	1,00	1,00	1,00	1,00
2018	0,25	0,66	0,92	0,99	1,00	1,00	1,00	1,00	1,00	1,00
2019	0,20	0,59	0,89	0,98	1,00	1,00	1,00	1,00	1,00	1,00
2020	0,29	0,70	0,93	0,99	1,00	1,00	1,00	1,00	1,00	1,00

Tableau S8. Proportion annuelle de poisons matures selon l'âge dans les échantillons commerciaux.

Année	1	2	3	4	5	6	7	8	9	10
1968	201625,40	209480,94	226738,65	256954,17	282774,21	308581,14	325327,21	342656,58	344072,60	394143,18
1969	201625,40	209480,94	226738,65	256954,17	282774,21	308581,14	325327,21	342656,58	344072,60	394143,18
1970	201625,40	209480,94	226738,65	256954,17	282774,21	308581,14	325327,21	342656,58	344072,60	394143,18
1971	201625,40	209480,94	226738,65	256954,17	282774,21	308581,14	325327,21	342656,58	344072,60	394143,18
1972	201625.40	209480.94	226738.65	256954.17	282774.21	308581.14	325327.21	342656.58	344072.60	394143.18
1973	201625.40	209480.94	226738.65	256954.17	282774.21	308581.14	325327.21	342656.58	344072.60	394143.18
1974	201625.40	209480.94	227696.08	240295.46	248009.11	269604.80	274861.18	291169.64	299501.97	369245.73
1975	163010.65	169361.71	216254.05	234467.04	262745.21	287675.04	293272.51	308762.69	314496.84	382888.99
1976	213089.72	221391.91	236438.40	254167.13	267412.21	295254.26	294074.23	303937.08	311148.94	311503.88
1977	201625 40	209480 94	246590 52	273144 82	290434 37	322105 38	295333 37	359353 81	307355 94	344539 59
1978	201625 40	209480.94	227398 75	248888 28	291933 87	287973 51	290774 29	307545.04	405336 72	339260 18
1979	201625.40	209480.94	213839 75	246320.58	284282.83	317569.96	331461.58	370725.94	386933 41	325622.34
1980	201625 40	209480.94	228922.31	400281.30	308955.80	317195 47	389155.65	349522 78	426468.66	343610 31
1981	233527 21	242625.67	284297 68	266885 21	301059.39	327762.88	341457 04	328810.90	366554 72	371660.01
1982	208981 19	217123 31	263345.03	273055 10	333221 82	312978 92	326845.00	349298 94	348033.47	362938 35
1983	201625.40	209480.94	226863 50	270994 09	329508.20	308581 14	325245 15	378200 51	396780.20	377576.02
1984	180815.06	187859 80	216256 93	252433 32	267010 54	309969 91	278752 32	407051 28	406141 46	391724 45
1985	188925.08	196285.80	210200,00	257856 36	265954.06	273365 79	337869 50	362076.65	274008.45	466601 52
1986	201625.40	209480.94	226738.65	247457 98	200004,00	438201 40	603673 22	904663 39	499084 85	533169.20
1087	201025,40	200480.04	102083 23	247437,30	2/5703 50	276177 1/	338286.04	338384 43	226020 03	361834.01
1088	201025,40	203400,34	212640 77	245605.80	251025.01	206772 31	313001 75	50/017 50	130107 01	403414.88
1000	201025,40	209400,94	212040,77	245005,00	288683.01	230772,31	430064.03	358020 54	344072.60	358734 06
1909	201025,40	209400,94	220730,03	250954,17	200003,01	374334,90	430904,03	246051 70	206194 47	400922.25
1001	175156 22	101000.60	221377,33	233110,30	204000,10	2/0124,14	205207 01	240951,79	220057.65	210110 02
1002	167059 71	172567 40	210002,90	225257,20	220010,30	347076,20 240075 44	200511.21	342030,30	350957,05	261297 00
1992	201625 40	200490.04	210033,41	233139,31	279297,20	240070,44	260724.06	20/120,0/	230200,49	200076.67
1995	201025,40	209400,94	101007 70	230300,33	2/0090,24	320720,11	076541 45	3/4030,30	344372,00	309070,07
1994	201625,40	209400,94	101097,70	214404,10	2437 10,14	20000,40	2/0341,43	342030,30	344072,00	330907,UZ
1995	201025,40	209400,94	191035,91	230041,44	270034,00	202792,00	209470,00	239304,37	344072,00	420301,27
1990	201625,40	209480,94	232025,55	256954,17	22/052,75	218074,43	411///,01	351184,37	294780,92	380208,52
1997	201625,40	209480,94	210139,81	224830,30	282774,21	21/851,00	325327,21	342000,00	3/ 582 1,33	455601,30
1998	211108,95	219390,32	210101,39	202917,58	254746,95	308581,14	200000,20	319292,39	305419,03	394086,10
1999	170875,49	1//532,9/	213803,33	240050,04	277145,44	259389,57	325327,21	418691,79	388705,11	343927,02
2000	1/3484,//	180243,92	220510,80	250208,05	304269,79	326249,68	333516,85	298964,64	343983,46	36/324,17
2001	213336,80	221648,62	241509,73	2/6158,33	289662,34	359626,19	391341,51	361270,12	312874,31	3/4//1,13
2002	201625,40	209480,94	221862,81	261357,06	251529,03	316188,82	362744,75	385979,34	407891,62	318726,94
2003	201625,40	209480,94	226738,65	256167,77	341581,27	341524,96	401411,96	342656,58	344072,60	394143,18
2004	201625,40	209480,94	213186,18	205713,23	272802,56	258811,45	293574,40	32/180,22	386859,94	241593,60
2005	210003,64	218185,60	228926,14	262045,39	293173,45	351997,99	335136,74	266649,62	530013,79	297914,55
2006	226332,50	235150,65	233315,80	267904,00	293937,54	250111,81	412548,74	500090,10	353905,05	335804,30
2007	153802,73	159795,05	233321,24	2/35/8,05	312323,76	422784,31	358960,13	375522,73	374380,90	293857,23
2008	201625,40	209480,94	235814,03	262366,83	300745,06	318931,07	324366,95	342656,58	355716,45	287923,40
2009	198977,62	206730,00	237837,66	244865,03	270415,69	290757,77	336399,17	475594,57	344072,60	432115,06
2010	201625,40	209480,94	241823,98	251557,32	302635,72	305110,79	322894,68	632083,10	344072,60	305669,98
2011	201625,40	209480,94	232324,76	275459,20	379616,38	391246,97	325327,21	413790,14	344072,60	270525,77
2012	176685,65	183569,50	200660,14	230946,86	256774,28	252856,91	268812,15	360108,31	344072,60	250261,42
2013	201625,40	209480,94	292642,07	256954,17	472511,76	308581,14	325327,21	342656,58	344072,60	394143,18
2014	224459,20	233204,36	236866,21	315906,85	324962,86	403105,76	325327,21	342656,58	344072,60	526720,83
2015	225561,96	234350,08	248946,28	344747,56	427196,72	308581,14	927608,30	342656,58	344072,60	394143,18
2016	223756,69	232474,49	254576,78	322631,32	358816,66	383961,69	325327,21	342656,58	344072,60	266735,02
2017	201625,40	209480,94	227655,72	287998,66	367014,35	322578,17	339973,12	342656,58	344072,60	414179,96
2018	170741,31	177393,57	212191,03	263903,05	312908,57	328412,92	380994,15	341785,00	344072,60	230366,42
2019	201625,40	145861,35	155547,57	167825,78	213944,43	275361,66	337605,96	312555,84	184210,77	220745,29
2020	201625,40	145156,47	158844,01	177417,62	194212,66	250837,64	512096,03	251371,16	420932,14	415377,90

Tableau S9. Estimation annuelle de la fécondité des femelles matures selon l'âge (nombre d'œufs).

Année	1	2	3	4	5	6	7	8	9	10
1968	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
1969	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
1970	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
1971	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
1972	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
1973	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
1974	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
1975	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
1976	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
1977	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
1978	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
1979	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52
1980	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
1981	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
1982	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
1983	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52
1984	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51
1985	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51
1986	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51
1987	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52
1988	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52
1989	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52
1990	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51
1991	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52
1992	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51
1993	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51
1994	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
1995	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
1996	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52
1997	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
1998	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51
1999	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
2000	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52
2001	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
2002	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51
2003	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52
2004	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52	0,52
2005	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51
2006	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51
2007	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51
2008	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51
2009	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51
2010	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51
2011	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51
2012	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55	0,55
2013	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51	0,51
2014	0,55	0,33	0,33	0,33	0,55	0,33	0,33	0,33	0,33	0,55
2015	0,49	0,49	0,49	0,49	0.49	0,49	0,49	0,49	0,49	0,49
2010	0,40	0,40	0,40	0,48	0,40	0,48	0,40	0,48	0,48	0,40
2017	0,47	0,47	0,47	0,47	0,47	0,47	0,47	0,47	0,47	0,47
2018	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54	0,54
2019	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50
2020	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50	0,50

Tableau S10. Sexe-ratio annuel (femelles par rapport aux mâles) dans les échantillons commerciaux.

Tableau S11. Équations et paramètres à effet aléatoire et fixe utilisés dans le modèle opérationnel. Les paramètres sont a = âge, y = année, SSB = biomasse du stock reproducteur, Sel = sélectivité, N = abondance, F = mortalité par pêche, M = mortalité naturelle, W = masse, P = proportion de matures, CU = limite supérieure de capture, CL = limite inférieure de capture, CT = capture totale, CP = proportion de capture, TEP = production totale d'œufs, fec = fécondité, Fem = proportion de femelles, ts = moment du relevé, o = observé, MVN = normale multivariée, crl = logit à rapport de continuation.

Paramètre	Formule	
Abondance de la cohorte	$N_{1,y} = \frac{\alpha SSB_{y-1}}{1 + \beta SSB_{y-1}} e^{\varepsilon_{1,y}^{N}}$	
	$N_{a,y} = N_{a-1,y-1} e^{-Z_{a-1,y-1} + \varepsilon_{a,y}^{N}}$	
	$N_{A,y} = [N_{A-1,y-1}e^{-Z_{A-1,y-1}} + N_{A,y-1}e^{-Z_{A,y-1}}]e^{\varepsilon_{A,y}^{N}}$	
	$\varepsilon_{a,y}^N \sim MVN(0, \sigma_{N_a}^2)$	
Taux de	$F_{a,y} = Sel_a F_y$	
mortalite	$Z_{a,y} = F_{a,y} + M_{a,y}$	
	$F_{y} = F_{y-1}e^{\varepsilon_{y}^{F}}$	
	$\varepsilon_y^F \sim N(0, \sigma_{F_y}^2)$	
Capture	$C_{ay} = N_{ay} \frac{F_{ay}}{Z_{ay}} \left[1 - \exp(-Z_{ay})\right]$	
	$CT_{\mathcal{Y}} = \sum_{a=1}^{A} C_{a \mathcal{Y}} W_{a \mathcal{Y}}$	
	$CP_{ay} = \frac{C_{ay}}{\sum_{a=1}^{A} C_{ay}}$	
	$X_{ay} = crl(CP_{ay})$	
	$l(C_{o_1} \dots C_{o_Y} \theta) = \sum_{y=1}^{Y} log \left\{ \phi_N \left[\frac{log(CU_y/CT_y)}{0,01} \right] - \phi_N \left[\frac{log(CL_y/CT_y)}{0,01} \right] \right\}$	
	$l\left(X_{o_{ay}} \theta\right) = \sum_{a=1}^{A-1} \sum_{Y=1}^{Y} log\left[\varphi_N\left(\frac{X_{o_{ay}} - X_{ay}}{\sigma_{cp}}\right)\right]$	
Indice du relevé	$TEP_{y} = q \sum_{a=1}^{A} N_{ay} exp(-Z_{ay}t_{s}) fec_{ay}Fem_{ay}P_{ay}$	
	$l\left(TEP_{o_{y}} \middle \theta\right) = \sum_{a=1}^{A} \sum_{Y=1}^{Y} log\left[\varphi_{N}\left(\frac{TEP_{o_{y}} - TEP_{y}}{\sigma_{S}}\right)\right]$	
Biomasse du	$SSP = \sum_{n=1}^{A} N W P$	
reproducteur	$SSD_y = \sum_{a=1}^{N} N_a y W_a y F_a y$	
Paramètre	Définition	Effet
N _{ay} E	Abondance du stock Mortalité par la pêche	Aléatoir Aléatoir
- y a	Coefficient stock-recruitement	Fixe

Nav	Abondance du stock	Aléatoire
F_y	Mortalité par la pêche	Aléatoire
α	Coefficient stock-recrutement	Fixe
β	Coefficient stock-recrutement	Fixe
Sel _a	Sélectivité de la pêche	Fixe
q	Indice de capturabilité du relevé	Fixe
σ_N^2	Variance des erreurs de processus	Fixe
$\sigma_{F_{v}}$	Variance de la mortalité annuelle par pêche	Fixe
$\sigma_{cp_a}^2$	Variance des erreurs de mesure des proportions de captures à l'âge	Fixe
$\sigma_{\rm S}^2$	Variance des erreurs de mesure du relevé	Fixe

Paramètres	estimation	Écart-type
logq	8,24	0,14
$log\sigma_{F_y}$	-0,87	0,10
$log\sigma_{N_1}^2$	-0,37	0,13
$log\sigma^2_{N_{2-10}}$	-1,03	0,08
$log\sigma^2_{caa_1}$	0,76	0,10
$log\sigma^2_{caa_{2,8,9}}$	-0,04	0,09
$log\sigma^2_{caa_{2-7}}$	-0,48	0,06
$log\sigma_s^2$	-0,31	0,12
logα	1,47	0,45
logβ	-10,53	0,60
$logitSel_1$	-3,09	0,33
$logitSel_2$	-1,23	0,14
$logitSel_3$	0,16	0,17
$logitSel_4$	0,74	0,22

Tableau S12. Paramètres estimés du modèle.

Tableau S13. Résumé des estimations du modèle montrant la biomasse du stock reproducteur en tonnes (BSR), le recrutement à l'âge 1 (Recrutement), le taux moyen instantané de mortalité par pêche des poissons entièrement sélectionnés (F_{5-10}), et le taux d'exploitation associé (Taux d'exploitation (%)), la capture totale en tonnes (Capture), l'âge moyen dans la capture (Age moyen), et la biomasse du stock reproducteur par rapport au point de référence limite (BSR/PRL).

				Taux			
Année	BSR	Recrutement	$F_{\overline{5-10}}$	d'exploitation	Capture	Âge moyen	BSR/PRL
				(%)			
1968	240192	1553689	0,16	14,79	24662	1,95	509
1969	278861	178359	0,15	13,93	29463	2,82	591
1970	277459	243706	0,15	13,93	31906	3,24	588
1971	268901	139399	0.15	13.93	31805	3.74	570
1972	244748	214116	0.15	13,93	33089	3.90	518
1973	215590	279785	0.26	22.89	43833	3.45	457
1974	208457	385569	0.34	28.82	50538	3.06	442
1975	215720	434122	0.3	25,92	41498	2 76	457
1976	260593	204081	0.24	21.34	38026	3,02	552
1977	308786	70937	0.16	14 79	33083	3 61	654
1978	324084	61209	0.15	13 93	36093	4 31	687
1070	201152	1/3016	0,10	13.03	35715	4,01	617
1080	250130	75738	0,15	13,03	30273	4,67	530
1081	215304	120861	0,15	13.03	26011	4,07	456
1082	180850	2/7580	0,15	14 70	20011	3 65	400
1902	109039	247303	0,10	14,73	23111	3,03	402
1903	199910	493905	0,17	15,03	24120	2,73	423
1904	207009	94134	0,17	15,05	21133	3,01	009
1900	37 1940	147200	0,17	10,00	30371	3,34	/ 00
1980	394405	102598	0,17	15,03	44271	3,80	835
1987	358803	100999	0,16	14,79	40907	4,30	760
1988	350632	2/4808	0,15	13,93	43262	4,10	743
1989	368680	351389	0,15	13,93	39248	3,65	781
1990	386314	149308	0,18	16,47	44275	3,89	818
1991	336648	178992	0,21	18,94	45315	3,84	/13
1992	281882	151194	0,24	21,34	46484	3,93	597
1993	222109	40969	0,28	24,42	44705	4,24	4/1
1994	169041	140442	0,35	29,53	41/52	3,92	358
1995	133661	155546	0,4	32,97	35338	3,35	283
1996	116535	130662	0,54	41,73	36606	3,11	247
1997	101864	168241	0,68	49,34	34863	2,62	216
1998	94025	80176	0,81	55,51	33741	2,66	199
1999	80000	119443	0,98	62,47	34586	2,47	169
2000	83274	473589	1,12	67,37	31342	1,57	176
2001	160397	99164	0,97	62,09	44531	2,09	340
2002	188423	102984	0,76	53,23	62518	2,68	399
2003	185024	205517	0,73	51,81	6/3/2	2,85	392
2004	175092	317289	0,8	55,07	75883	2,56	371
2005	176913	178299	0,92	60,15	73288	2,62	375
2006	167714	255108	1,04	64,65	76072	2,46	355
2007	149093	83984	1,09	66,38	66929	2,73	316
2008	115476	156417	0,99	62,84	54191	2,59	245
2009	96584	148455	1,35	74,08	53820	2,48	205
2010	72344	43658	1,89	84,89	47102	2,66	153
2011	36804	101965	2,08	87,51	25225	2,02	78
2012	30694	72652	1,8	83,47	15683	1,85	65
2013	34406	48673	1,4	75,34	15548	2,07	73
2014	31163	62142	1,12	67,37	13098	2,08	66
2015	28770	84003	1,05	65,01	11586	1,92	61
2016	31209	174759	1,03	64,30	12006	1,60	66
2017	45774	34565	1,14	68,02	18254	2,16	97
2018	45516	68241	1,26	71,63	24040	2,39	96
2019	31707	76306	1,33	73,55	17045	2,20	67
2020	27599	75852	1.34	73.82	14672	2.05	58

Année	1	2	3	4	5	6	7	8	9	10+
1968	1553,69	344,93	105,65	41,76	24,47	23,47	11,19	16,13	130,85	1,22
1969	178,36	1120,04	266,42	61,74	19,99	14,87	18,49	8,14	9,96	119,69
1970	243,71	136,21	785,86	162,78	42,19	10,71	9,82	15,60	6,64	78,37
1971	139,40	194,90	95,86	554,18	99,22	29,66	6,89	7,71	11,08	53,92
1972	214,12	98,04	140,74	93,90	331,64	63,34	26,35	3,10	4,98	50,07
1973	279,79	217,80	96,77	107,91	86,91	177,52	45,13	18,04	2,43	21,77
1974	385,57	242,99	181,97	79,74	80,05	64,83	93,45	24,46	10,09	12,56
1975	434,12	371,11	175,88	116,69	51,64	52,97	42,17	46,02	12,01	10,61
1976	204,08	424,79	303,31	117,18	69,95	29,80	33,49	26,05	25,95	12,20
1977	70,94	170,16	374,37	214,06	77,06	43,53	18,28	21,08	15,45	24,13
1978	61,21	43,59	125,27	295,16	160,40	61,70	30,83	14,07	13,70	25,38
1979	143,92	42,06	31,97	96,71	206,90	110,71	44,81	21,06	10,14	24,89
1980	75,74	111,88	30,92	25,38	69,89	134,35	68,61	29,74	14,56	22,91
1981	129,86	53,90	89,01	18,58	19,49	50,26	92,33	41,12	19,56	24,30
1982	247,59	90,09	32,90	64,76	10,72	14,45	36,18	69,31	25,84	30,17
1983	493,91	214,71	51,12	18,76	41,17	6,15	9,31	27,67	60,72	40,82
1984	94,13	564,97	213,33	28,56	11,76	23,42	3,87	5,93	18,92	69,09
1985	147,29	68,46	577,34	1//,41	16,62	7,57	14,60	2,43	3,86	57,45
1986	102,60	113,48	55,55	554,22	133,20	10,76	5,52	8,05	1,56	28,60
1987	101,00	70,60	77,93	41,54	435,61	93,97	6,65	3,79	4,37	16,93
1988	2/4,8/	66,25	40,51	47,62	28,13	389,44	61,82	4,47	2,45	12,01
1989	351,39	258,83	44,35	24,90	29,27	10,15	322,38	34,82	3,07	9,04
1990	149,31	328,47	212,84	30,86	16,02	18,63	11,51	243,89	19,55	1,22
1991	178,99	1 14, 14	290,13	152,20	20,42	10,14	12,54	8,45 7,00	141,00	15,14
1992	151,19	142,25	12,00	212,15	100,70	13,02	0,20	7,90	5,45	91,12
1993	40,97	115,00	76.94	47,22	140,15	03,27	9,11	3,75	4,01	45,27
1994	140,44	22,37	10,04	72,00 50.79	27,20	97,04	52.00	0,4Z	2,00	21,45
1990	130,55	114.00	61 22	JU,70 7 75	44,40	14,33	55,00 6.01	20,39	2,70	9,40
1990	168.24	07.60	76.74	30.80	30,44 4.06	20,71	13.00	2 83	9,30	5,55
1008	80.18	133 12	50 30	J0,09 /11 73	4,00	1 70	6.25	2,05	1 10	5,71
1000	119 //	53 38	80 11	30.18	19,24	1,75	0,23	2.04	1,10	1.86
2000	473 59	88 51	29.01	42 67	11,00	6.85	1 17	0.20	0.58	1,00
2000	99.16	490.33	60.03	14 28	16.61	2.54	1.57	0.23	0.05	0.40
2002	102.98	67.84	422.63	31.59	7 45	6 12	0.74	0,20	0.06	0.09
2003	205.52	68.64	42.77	317.89	18.60	3.69	3.21	0.24	0.09	0.03
2004	317.29	169.38	41.96	24.42	203.29	7.27	2.05	1.13	0.08	0.03
2005	178.30	283.28	112.72	21.18	12.30	101.19	2.87	0.84	0.20	0.04
2006	255,11	136,99	213,94	57,57	10,30	4,56	39,23	0,99	0.23	0,05
2007	83,98	209,43	85,52	116,88	20,42	3,43	1,49	11,29	0,21	0,06
2008	156,42	54,09	144,27	39,57	50,24	4,66	0,94	0,37	3,25	0,06
2009	148,46	114,09	27,56	83,42	17,22	20,55	1,17	0,22	0,08	1,31
2010	43,66	106,29	61,44	9,01	30,14	3,96	4,91	0,23	0,03	0,35
2011	101,97	23,13	50,20	14,04	1,67	4,30	0,55	0,49	0,03	0,05
2012	72,65	71,86	9,85	13,71	2,04	0,17	0,40	0,07	0,03	0,01
2013	48,67	55,66	42,86	2,62	3,25	0,26	0,02	0,03	0,01	0,01
2014	62,14	32,27	36,12	16,94	0,78	0,52	0,02	0,01	0,01	0,00
2015	84,00	42,83	17,49	18,38	5,02	0,23	0,09	0,01	0,00	0,00
2016	174,76	60,67	21,69	7,53	7,13	1,66	0,06	0,01	0,00	0,00
2017	34,57	163,96	37,15	8,19	2,78	2,07	0,60	0,01	0,00	0,00
2018	68,24	25,15	114,48	14,56	2,63	0,59	0,47	0,15	0,00	0,00
2019	76,31	50,53	18,63	39,33	4,71	0,50	0,13	0,06	0,06	0,00
2020	75,85	54,61	29,86	6,73	12,48	1,02	0,09	0,03	0,01	0,01

Tableau S14. Estimation de Nay (nombre à l'âges en milliers de poissons)

Année	1	2	3	4	5	6	7	8	9	10+
1968	0,01	0,04	0,08	0,11	0,16	0,16	0,16	0,16	0,16	0,16
1969	0,01	0,03	0,08	0,10	0,15	0,15	0,15	0,15	0,15	0,15
1970	0,01	0,03	0,08	0,10	0,15	0,15	0,15	0,15	0,15	0,15
1971	0,01	0,03	0,08	0,10	0,15	0,15	0,15	0,15	0,15	0,15
1972	0,01	0,03	0,08	0,10	0,15	0,15	0,15	0,15	0,15	0,15
1973	0,01	0,06	0,14	0,17	0,26	0,26	0,26	0,26	0,26	0,26
1974	0,01	0,08	0,18	0,23	0,34	0,34	0,34	0,34	0,34	0,34
1975	0,01	0,07	0,16	0,20	0,30	0,30	0,30	0,30	0,30	0,30
1976	0,01	0,05	0,13	0,16	0,24	0,24	0,24	0,24	0,24	0,24
1977	0,01	0,04	0,09	0,11	0,16	0,16	0,16	0,16	0,16	0,16
1978	0,01	0,03	0,08	0,10	0,15	0,15	0,15	0,15	0,15	0,15
1979	0,01	0,03	0,08	0,10	0,15	0,15	0,15	0,15	0,15	0,15
1980	0,01	0,03	0,08	0,10	0,15	0,15	0,15	0,15	0,15	0,15
1981	0,01	0,03	0,08	0,10	0,15	0,15	0,15	0,15	0,15	0,15
1982	0,01	0,04	0,09	0,11	0,16	0,16	0,16	0,16	0,16	0,16
1983	0,01	0,04	0,09	0,12	0,17	0,17	0,17	0,17	0,17	0,17
1984	0,01	0,04	0,09	0,12	0,17	0,17	0,17	0,17	0,17	0,17
1985	0,01	0,04	0,09	0,11	0,17	0,17	0,17	0,17	0,17	0,17
1986	0,01	0,04	0,09	0,11	0,17	0,17	0,17	0,17	0,17	0,17
1987	0,01	0,04	0,08	0,11	0,16	0,16	0,16	0,16	0,16	0,16
1988	0,01	0,03	0,08	0,10	0,15	0,15	0,15	0,15	0,15	0,15
1989	0,01	0,03	0,08	0,10	0,15	0,15	0,15	0,15	0,15	0,15
1990	0,01	0,04	0,09	0,12	0,18	0,18	0,18	0,18	0.01	0,18
1991	0,01	0,05	0.12	0,14	0,21	0,21	0,21	0,21	0.24	0,21
1992	0,01	0,05	0,15	0,10	0,24	0,24	0,24	0,24	0.24	0,24
1995	0,01	0,00	0,15	0,19	0,20	0,20	0,20	0,20	0,20	0,20
1005	0,02	0,00	0,13	0,24	0,35	0,35	0,35	0,35	0,00	0,35
1995	0,02	0,03	0,22	0,27	0,40	0,40	0,40	0,40	0,40	0,40
1997	0,02	0.15	0.37	0,37	0,54	0,54	0,54	0,54	0,54	0,54
1998	0.04	0.18	0.44	0.55	0.81	0.81	0.81	0.81	0.81	0.81
1999	0.04	0.22	0.53	0.67	0.98	0.98	0.98	0.98	0.98	0.98
2000	0.05	0.25	0.61	0.76	1.12	1.12	1.12	1.12	1.12	1.12
2001	0.04	0.22	0.52	0.66	0.97	0.97	0.97	0.97	0.97	0.97
2002	0,03	0,17	0,41	0,52	0,76	0,76	0,76	0,76	0,76	0,76
2003	0,03	0,16	0,39	0,49	0,73	0,73	0,73	0,73	0,73	0,73
2004	0,03	0,18	0,43	0,54	0,80	0,80	0,80	0,80	0,80	0,80
2005	0,04	0,21	0,50	0,62	0,92	0,92	0,92	0,92	0,92	0,92
2006	0,05	0,24	0,56	0,71	1,04	1,04	1,04	1,04	1,04	1,04
2007	0,05	0,25	0,59	0,74	1,09	1,09	1,09	1,09	1,09	1,09
2008	0,04	0,22	0,53	0,67	0,99	0,99	0,99	0,99	0,99	0,99
2009	0,06	0,30	0,73	0,91	1,35	1,35	1,35	1,35	1,35	1,35
2010	0,08	0,43	1,02	1,28	1,89	1,89	1,89	1,89	1,89	1,89
2011	0,09	0,47	1,12	1,41	2,08	2,08	2,08	2,08	2,08	2,08
2012	0,08	0,41	0,97	1,22	1,80	1,80	1,80	1,80	1,80	1,80
2013	0,06	0,31	0,75	0,95	1,40	1,40	1,40	1,40	1,40	1,40
2014	0,05	0,25	0,60	0,76	1,12	1,12	1,12	1,12	1,12	1,12
2015	0,05	0,24	0,56	0,71	1,05	1,05	1,05	1,05	1,05	1,05
2016	0,04	0,23	0,56	0,70	1,03	1,03	1,03	1,03	1,03	1,03
2017	0,05	0,26	0,61	0,77	1,14	1,14	1,14	1,14	1,14	1,14
2010	0,05	0,28	0,00	0,86	1,20	1,20	1,20	1,20	1,20	1,20
2019	0,06	0,30	0,72	0,90	1,33	1,33	1,33	1,33	1,33	1,33
2020	0.00	0.30	0,72	0,91	1,34	1,34	1,34	1,34	1,34	1,34

Tableau S15. Estimation de Fay (mortalité instantanée par la pêche en fonction de l'âge).

Figure S1. A) Débarquements totaux de maquereau bleu (t) dans l'Atlantique Nord-Ouest (Divisions OPANO 2-6) de 1960 à 2020 répartis par flottille et B) en termes de proportion des débarquements totaux capturés par flottille. Les flottilles sont représentées par des couleurs différentes, la flottille domestique canadienne (can-d) et les flottilles étrangères en hautes mers (can-f) qui ont pêché dans la zone économique exclusive (ZEE) du Canada étant représentées respectivement en violet et en bleu, ainsi que les débarquements capturés par la somme combinée des débarquements commerciaux, des débarquements récréatifs et des rejets par la flottille domestique américaine (usa-d) et les flottilles étrangères opérant en haute mer (usa-f) dans la ZEE des États-Unis, respectivement en sarcelle et en vert clair.

Figure S2. Données brutes (points) et lissées (lignes) des intrants du modèle (1968-2020) comprenant A) la masse moyenne à l'âge (g) des poissons, B) la proportion de poissons sexuellement matures à l'âge, et la fécondité en termes du nombre estimé d'œufs produits par une femelle mature sur le point de frayer pour les âges 1-10+. Les couleurs représentent les âges allant du violet (âge 1) au jaune (âges 10+).

Figure S3. Graphiques des résidus du modèle pour l'indice d'œuf (colonne de gauche) et la capture à l'âge (colonne de droite). La ligne supérieure montre les résidus normalisés par rapport à l'année, la ligne du milieu montre les résidus normalisés par rapport aux valeurs prédites, et la ligne inférieure montre les valeurs prédites par rapport aux valeurs observées. Les chiffres et les couleurs dans les graphiques de captures à l'âge (colonne de droite) indiquent les classes d'âge de 1 à 10+ (jeunes à vieux de violet à jaune).

Figure S4. Graphiques rétrospectifs montrant 7 pics de BSR (ligne supérieure ; biomasse du stock reproducteur en tonnes) ; Recrutement (ligne centrale ; nombre estimé de poissons d'âge 1 en milliers), et Fbar (F_{5-10} ; la mortalité par la pêche instantanée annuelle moyenne des poissons entièrement sélectionnés (âges 5-10+)). Les couleurs indiquent les différentes périodes, du violet (c'est-à-dire l'année terminale 2020), au jaune (2013).

Figure S5. Graphiques rétrospectifs montrant 7 couches de BSR (ligne du haut; biomasse du stock reproducteur en tonnes); recrutement (ligne centrale; estimation du nombre de poissons de 1 an en milliers) et Fbar (F_{5-10} ; mortalité par pêche instantanée annuelle moyenne des poissons entièrement sélectionnés (de 5 à 10 ans et plus)). Les couleurs indiquent les différentes couches, du violet (c.-à-d. la dernière année, 2020) au jaune (2013).

Figure S6. Estimation de la biomasse du stock reproducteur en kilotonnes (BSR ; ligne noire et intervalles de confiance gris) et projections sur trois ans (2021-2022) selon différents scénarios de TAC (indiqués dans la partie supérieure gauche de chaque panneau) et hypothèses de recrutement A) selon une relation stock-recrutement de Beverton-Holt utilisant les valeurs de 1969 à 2020 ou B) selon le recrutement moyen de 2011-2020 avec une autocorrélation temporelle de 0,9. Le point de référence limite (LRP) est indiqué par la ligne pointillée rouge dans chaque panneau.

Figure S7. Boîtes à moustaches des prises présumées non comptabilisées au cours des trois prochaines années (2021-2023), pour le Canada (panneau supérieur) et les États-Unis (panneau inférieur). Les boîtes incluent 50% de toutes les observations, car elles sont délimitées par le 1er et le 3ème quantile, la valeur médiane étant représentée par la ligne horizontale centrale.