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ABSTRACT 
The European Green Crab (EGC) is a high-risk global invader that can devastate coastal 
marine ecosystems by displacing native species, degrading and disturbing native habitats 
(including eelgrass), and altering food webs. EGC has recently been detected in the Canadian 
portion of the Salish Sea. As EGC continue to establish in the region, identifying locations on 
which to focus limited monitoring resources is an ongoing problem given the vast amount of 
coastal habitat that could be occupied by the species. A variety of methods can be used to 
identify highly suitable habitats for EGC at a range of spatial scales. However, none have been 
evaluated in the context of informing EGC management, nor for the Canadian portion of the 
Salish Sea. Here we evaluate five individual methods developed to assess habitat suitability for 
EGC (i.e., MaxEnt, stochastic gradient boosted linear and logistic regression models, a rapid 
site selection tool, and a qualitative site assessment and ranking tool) and five derived models 
generated by multiplying the outputs of these individual models. Each model relied on slightly 
different environmental and habitat input variables affecting EGC invasion success. Thus, rather 
than identifying a single preferred model, we used a multi-model ensemble approach to identify 
sites that are expected to be most suitable for the species. The ensemble approach likely 
increases predictive power by including both environmental and habitat characteristics when 
identifying priority sites for early detection/monitoring for EGC in the Canadian waters of the 
Salish Sea. Finally, we describe how the models evaluated here, alone or in combination, could 
be used to identify additional sites either within the Salish Sea or into new areas.
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1. INTRODUCTION 
The European Green Crab (EGC; Carcinus maenas) is a common shore crab native to Europe 
but invasive in parts of Africa, Asia, Australia, and both coasts of North America (Behrens-
Yamada 2001, Therriault et al. 2008). This species was first introduced to the west coast of 
North America in San Francisco Bay around 1990 (Cohen et al. 1995). Due largely to its long 
pelagic larval phase coupled with a strong El Niño event in 1988-89 (Yamada et al. 2021), EGC 
subsequently spread north, reaching British Columbia (BC) by the late 1990s (Gillespie et al. 
2007) Since then the species has continued its northward spread and was detected on the 
Central Coast of BC by the mid-2000s and Haida Gwaii in 2020 (Yamada et al. 2021). Although 
EGC expanded rapidly on the west coast of Vancouver Island after their arrival to BC, they did 
not appear in the Salish Sea for an extended period of time. Human-mediated movements are 
known to contribute to the spread of EGC elsewhere in their invaded range (Klassen and Locke 
2007) and the first detection of EGC in the Salish Sea in the Sooke Basin in 2012 was believed 
to have occurred via human-mediated movements (unintentional hitchhikers on shellfish) rather 
than natural dispersal from EGC populations on the outer Pacific coast (Curtis et al. 2015). 
However, the long lag between their arrival in BC and their spread into the Salish Sea suggests 
that natural larval dispersal remains the primary mode of introduction of EGC to sites within the 
Salish Sea and elsewhere along the BC coast. Subsequent detections of EGC in the Salish Sea 
are thought to be a result of natural dispersal from both the outer Pacific coast and the Sooke 
population (Brasseale et al. 2019, Carolyn Tepolt, Woods Hole Oceanographic Institute, pers. 
comm.). The first detection of EGC in the Salish Sea outside of the Sooke Basin occurred in 
United States (US) waters in the fall of 2016, resulting in several subsequent detection events 
on both the US and Canadian sides of the Salish Sea the following year (Yamada et al. 2021). 
This long delay in EGC range expansion into and around the Salish Sea is due to the natural 
barrier to dispersal caused by the volume, direction and seasonality of estuarine outflow from 
the Fraser and Skagit Rivers into the Strait of Juan de Fuca (Thomson et al. 2007), rather than 
a lack of suitable habitat within the Salish Sea or human-mediated dispersal vectors. Periodic 
changes in oceanographic conditions, such as those seen during the 2015-16 El Niño event, 
weaken this barrier and allow EGC larvae to enter and disperse throughout the Salish Sea 
(Brasseale et al. 2019, Yamada et al. 2021). Once EGC arrive to a site, they require access to 
prey and must overcome any potential biotic resistance from native species such as Dungeness 
or Red Rock crabs (McDonald et al. 2001; Hunt and Yamada 2003), which may limit invasion 
success at the individual site level. 
European Green Crabs can have significant negative impacts on native shore crab and bivalve 
populations (Grosholz et al. 2000) and eelgrass habitats (e.g., Matheson et al. 2016; Howard et 
al. 2019), often in areas where EGC abundance is especially high – a finding consistent with 
other invaders where larger populations generally result in greater impacts (Parker et al. 1999; 
Byers et al. 2002; Dick et al. 2017). For this reason, detecting and eradicating invasive species 
in new areas while their numbers are still low is recognized as a crucial step in effective invasive 
species management and is often informed by habitat suitability models (e.g., Blackburn et al. 
2011; Barbet-Massin et al. 2018). This is because management efforts are typically spatially 
and fiscally constrained, making it preferable to target areas for control or eradication that are 
most suitable to the invader. However, predicting suitable habitat can be a challenge for species 
like EGC that have broad environmental tolerances that can differ with life history stage (see 
Klassen and Locke 2007). While habitat suitability models are most useful if they make 
predictions at the same scale as management (de Rivera et al. 2007; Epanchin-Niell et al. 
2012), this can be challenging in spatially heterogeneous environments, as invasive populations 
establish non-uniformly, making them harder to detect and increasing the risk that large 
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populations (those sought by managers) will be overlooked and continue to supply the area with 
propagules (Crooks 2005; Melbourne et al. 2007; Epanchin-Niell et al. 2012).  
Many considerations affect the development and selection of approaches to habitat suitability 
modeling for aquatic invasive species including data availability, complexity of the model, and 
spatial and temporal scales. Models developed to predict the occurrence of an invasive species 
in new environments are generally parameterized based solely on presence-only data because 
the true niche is unlikely to be realized until the invasion process has ended (Guisan and 
Thuiller 2005; Lyons et al. 2020). In invasion ecology, the absence of an invader at a site may 
represent an unsuitable environment (a true absence), an incomplete invasion (i.e., absence 
from suitable habitat), or a failure to detect the invader due to small population sizes. Further, 
aquatic invasive species rarely spread uniformly across sites or over time, in part because 
larvae often have their own tolerances, durations, and developmental strategies from adults 
(Byers et al. 2015). Both habitat quality and biotic interactions further affect site-level population 
growth rates of invaders (Hirzel and Le Lay 2008), creating variation in population densities 
among sites, which has important implications for both management and future rates of spread 
(Crooks 2005). 
Multiple habitat suitability models and site selection tools have been developed to identify 
suitable habitat for EGC in coastal BC waters. For example, Lyons et al. (2020) produced a 
MaxEnt model using occurrence data and environmental data layers, while Fisheries and 
Oceans Canada (DFO) Science Pacific Region developed boosted regression tree (BRT) 
models using catch data available for EGC in the Region and site-level habitat characteristics. 
DFO Science also developed a novel rapid site selection tool based on presumed important 
habitat characteristics for EGC. However, neither of these have been reviewed previously for 
accuracy (see 2.2.3). Similarly, Washington Sea Grant’s “Crab Team” has developed a rapid 
site characterization tool based on habitat characteristics to inform their early detection efforts in 
US waters of the Salish Sea. While some of these approaches, such as the “Crab Team” tool, 
focus on detecting populations early and others explicitly predict established populations (e.g., 
MaxEnt), each specifically characterizes the habitat suitability for adult EGC. Therefore, 
successful dispersal to that location (either via natural or human-mediated movement) is always 
implied. 
EGC is listed as a Control Species under the Aquatic Invasive Species (AIS) Regulations of the 
Fisheries Act and early detection is essential to inform EGC management. Although the 
approaches described above, which we collectively refer to as the ‘individual models’ throughout 
this document, rely on different inputs and generate different response variables all can be used 
to identify suitable habitat for EGC, albeit at a range of spatial scales. Areas identified as highly 
suitable by each of these models could be used to inform the selection of priority sites for 
ongoing monitoring and control efforts. However, outputs from these models have not yet been 
evaluated in the context of site selection for EGC early detection nor for the Canadian portion of 
the Salish Sea where EGC have only recently been detected. 
To better understand the incursion of EGC into the Salish Sea, DFO's Ecosystem Management 
Branch and DFO Science AIS programs worked with the Washington Department of Fish and 
Wildlife, Washington Sea Grant’s Crab Team, and University of Washington to develop a Salish 
Sea Transboundary Action Plan for Invasive European Green Crab (Drinkwin et al. 2019). This 
plan lays out early detection (monitoring) recommendations but does not specify how to identify 
or prioritize intertidal sites for EGC monitoring. Additionally, DFO's AIS National Core Program 
(NCP) has been working to develop a monitoring program for the early detection of EGC 
throughout coastal BC, with a focus on the Salish Sea. Given the extreme spatial extent to be 
monitored, efforts must involve citizen science and Indigenous groups focusing on sites most 
likely to have EGC. Thus, prioritized monitoring sites for EGC in Canadian waters of the Salish 
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Sea are urgently needed and the approach could be extended to other coastal areas in the 
future. The assessment and advice arising from this Canadian Science Advisory Secretariat 
Regional Peer Review will be used to inform EGC management in the Salish Sea and contribute 
to DFO’s international commitment related to the Bilateral EGC Action Plan. The specific 
objectives as outlined in the Terms of Reference of this review are to: 
1. Evaluate the strengths/weaknesses associated with four different methods of assessing 

habitat suitability for EGC, for the purpose of identifying potential monitoring sites in 
Canadian waters of the Salish Sea. Specifically reviewing: 1) MaxEnt; 2) Stochastic gradient 
boosted regression models; 3) Washington Sea Grant’s Crab Team’s site assessment tool; 
and 4) DFO Science’s rapid site selection tool. 

2. Identify uncertainties in each of the models evaluated in Objective 1. 
3. Identify sites for EGC monitoring in Canadian waters of the Salish Sea using the preferred 

method(s) evaluated in Objective 1. 
4. Characterize the feasibility of using the preferred method(s) to identify potential monitoring 

sites throughout coastal BC in the future.  

1.1. SCOPE 
Five individual approaches for identifying highly suitable habitat for EGC (collectively referred to 
as models) were used as the main inputs for this analysis. Although each was developed 
independently and for different purposes, all have the capacity to inform EGC management with 
respect to early detection/monitoring site selection. Here we evaluate the functionality of these 
models, both individually and in combination, to identify possible early detection/monitoring sites 
in Canadian waters of the Salish Sea for EGC, specifically for managers looking to prioritize 
their early detection trapping efforts. While this document provides a list of recommended 
‘highest priority’ sites in the Salish Sea, the list is not comprehensive. We therefore address the 
feasibility of applying these methods when assessing additional sites within the Salish Sea or 
beyond, with respect to technical expertise, time, and input data requirements (Objective 4).  
Although each model was internally validated, the primary objective here was to compare 
predictions of suitable sites for EGC in Canadian waters of the Salish Sea (Objective 1). 
Because this invasion is new (only 23 known invaded sites in the Canadian portion of the Salish 
Sea, at the time of writing, with many located within Sooke Basin) there is no independent 
dataset with which to statistically assess each models’ predictive accuracy. As such, it was 
necessary to focus on the amount of agreement among models to inform management decision 
making. We expect that all of the models used are able to capture some of the complexity of 
EGC biology and factors affecting invasion success in their predictions, but none are perfect, 
and their limitations are noted (Objective 2). Further, it is important to note that our analyses do 
not provide a risk assessment and none of the models is predicting the arrival of EGC. Our 
assumption is that EGC could reach any site in the Salish Sea but should be detected first at 
sites that are highly suitable. Effects of climate change/extreme events on future environmental 
habitat suitability are also not captured in our analyses. Although models like MaxEnt can make 
predictions that include climate change, the immediate need is to identify early detection sites 
based on current conditions, while recognizing these may change in the future. 
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2. METHODS 

2.1. SITE DATABASE 
While the spatial domain of some of the models used in this analysis include the entire Pacific 
coast of Canada (e.g., MaxEnt), other models require site-specific inputs. To facilitate model 
comparisons, we created a single database of 447 discrete sites at which we apply each model. 
We defined a site as a section of continuous intertidal habitat that is delineated on all sides by 
barriers to movement for adult green crabs on the Pacific coast of North America (see Hunt and 
Behrens-Yamada 2003; Jensen et al. 2007; Klassen and Locke 2007): the sub- and supratidal 
across shore, and rocky shorelines, artificial structures, or large freshwater channels (i.e., rivers) 
alongshore. This definition informed the creation of site polygons used in our analyses (Figure 
1). Microhabitats within sites (e.g., marshy areas, tidal channels, etc.) are not captured in this 
definition, although may be included in the database as site-level characteristics (e.g., eelgrass 
presence). It is important to note that each site has a different spatial extent (size) and it was not 
necessary to standardize for this (as our goal was not to predict the invasibility of sites, just their 
suitability), but management may need to consider site size when planning specific trapping 
programs. 
The site database includes all sites previously surveyed by DFO for EGC in the Salish Sea and 
unsurveyed sites, identified by randomly generating points along the whole coastline of BC in 
QGIS (Geographic Information System). There were 500 randomly generated sites which were 
curated to include only those that were not already surveyed and had a minimum beach width of 
40 m. Random sites were added to dilute the inherent bias in previously surveyed sites, which 
would have been selected with some expectation of finding EGC.  

 

Figure 1. Examples of sites as determined using a consistent set of rules based on green crab ecology 
where grey shading represents land and coloured shading represents intertidal sites. a) a ‘simple’ estuary 
(Roscoe Bay: 50.160, -124.770); b) a complex, continuous estuary (Chemainus River Estuary: 48.899, -
123.662); c) a site between islands (Eveleigh Island: 50.140, -124.694); d) a complex, intermittent estuary 
containing three separate sites (Courtenay River Estuary: 49.674, -124.968). 

2.2. HABITAT SUITABUILITY ASSESSMENT METHODS 
The following five methods of assessing habitat suitability for EGC, collectively referred to as the 
‘individual models’ throughout, were developed to help understand the possible future 
distribution of EGC on the west coast of North America and support management decision 
making. The development and validation process for each, as well as a description of the 
original output and how the output was adapted for this analysis, are reviewed below and Table 
1 provides an overview of the characteristics of each of these five individual models.  
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Table 1. Overview of the five individual models used to generate predictions of suitable habitat for EGC in 
Canadian waters of the Salish Sea. Additional details on the MaxEnt EGC model can be found in Lyons 
et al. (2020). BRT = stochastic boosted regression tree models, WSG = Washington Sea Grant. 

Model 
Traits 

MaxEnt EGC 
Model 

Linear BRT 
EGC Model 

Logistic BRT 
EGC Model 

Rapid Site 
Selection 

(RSS) Tool 

Modified WSG 
Crab Team 

Method 
General 
method 
and 
output  

Species 
distribution model 
that predicts 
probability of 
presence (0-1) of 
an established 
EGC population. 
 

Predictive linear 
regression model 
for relative 
abundance 
(catch-per-unit 
effort, 0 −∞ ) of 
EGC for 
individual sites. 

Predictive logistic 
regression model 
for probability of 
presence (0-1) of 
EGC for 
individual sites. 
 

Automated 
identification and 
ranking (ordinal 
score from 0-1) 
of coastal areas 
where important 
abiotic habitat 
variables for 
EGC are present. 

Manual scoring 
system to identify 
and rank (ordinal 
score from 0-1) 
individual sites 
for early 
detection of EGC 
using aerial or 
satellite imagery.  

Spatial 
scale 

Original model 
coverage 
available for west 
coast of North 
America (Lyons 
et al. 2020).  

Developed using 
data from the 
west coast of 
Vancouver 
Island.  

Developed using 
data from the 
west coast of 
Vancouver 
Island. 

Developed for 
the entire coast 
of BC. 
Implemented in 
the Canadian 
Salish Sea, 
Haida Gwaii, and 
North Coast. 

Created for the 
Washington 
coast and US 
Salish Sea. 
Modified and 
implemented in 
the Canadian 
Salish Sea. 

Temporal 
scale 

Includes 
seasonal 
climatologies for 
salinity and sea 
surface 
temperature.  

Uses data from 
ongoing trapping 
surveys for EGC. 
Otherwise all 
input variables 
temporally static.  

Uses data from 
ongoing trapping 
surveys for EGC. 
Otherwise all 
input variables 
temporally static. 

All input variables 
temporally static. 

All input variables 
temporally static. 

Abiotic 
inputs 

Salinity 
(seasonal) 
Sea surface 
temperature 
(seasonal) 

Intertidal area 
Edge length 
Beach isolation 
Beach width 
Fetch (max, min) 
Wave exposure 
(ShoreZone) 
Bottom type 
(substrate) 
Substrate type 
(ShoreZone) 
Sediment type 
(ShoreZone) 
Slope 
(ShoreZone) 
Width 
(ShoreZone) 

Intertidal area 
Edge length 
Beach isolation 
Beach width 
Fetch (max, min) 
Wave exposure 
(ShoreZone) 
Bottom type 
(substrate) 
Substrate type 
(ShoreZone) 
Sediment type 
(ShoreZone) 
Slope 
(ShoreZone) 
Width 
(ShoreZone) 

Beach width 
Freshwater input 
Substrate type 
(ShoreZone) 
 

Beach isolation 
Beach width 
Freshwater input 
Shelter 
Wave energy 
Tidal channels 

Biotic 
inputs 

Species 
occurrence data 
(presence-only) 

Eelgrass 
likelihood 
ShoreZone 
biobands 
EGC CPUE 

Eelgrass 
likelihood 
ShoreZone 
biobands 
EGC presence/ 
absence 

– Presence/ 
absence of 
terrestrial 
vegetation 
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2.2.1. MaxEnt  
Lyons et al. (2020) compiled adult EGC occurrence data (latitude and longitude of each 
observation) primarily from DFO’s AIS monitoring program, the Ocean Biogeographic 
Information System (OBIS 2018), as well as several other online databases and primary and 
gray literature publications. The model domain was 24°– 62°N and 111°– 155°W (i.e., Baja 
California to the Gulf of Alaska). Data from other parts of the world were excluded to ensure the 
model would reflect the environmental responses of the single genetic lineage that has invaded 
the study area (Tepolt et al. 2022, Brasseale et al. 2019). Prior to model fitting, the occurrence 
points were spatially rarified to a 10 km resolution using SDMtoolbox 2.0 for ArcGIS to reduce 
potential effects of spatial autocorrelation on the results (Brown et al. 2017).  
Surface water temperature and salinity, which are thought to influence the distribution of EGC 
(Compton et al. 2010) were selected as predictors for the model. Although different life stages 
or sexes have slightly different tolerances or may utilize the same habitat differently, MaxEnt is 
predicting the long-term occupancy of a site for adults in the population. Data for each predictor 
was averaged into seasonal climatology rasters, including winter (December to February) spring 
(March to May), summer (June to August), and fall (September to November). Salinity and 
temperature values were compiled from hindcasts from the University of British Columbia’s 
Salish Sea Nucleus for European Modelling of the Ocean (NEMO) model (2014–2017 hind-cast, 
0.006° resolution, Soontiens et al. 2016; Soontiens and Allen 2017), a Regional Ocean 
Modeling System (ROMS) model of the British Columbia shelf (BC ROMS 1981–2010 hindcast, 
0.04° resolution, Peña et al. 2019), as well as the MARSPEC database (0.00833° resolution, 
Sbrocco and Barber 2013). The higher resolution data from the NEMO model and MARSPEC 
were resampled using bilinear interpolation to match the 0.04° resolution of the ROMS model 
data. Further, since EGC live primarily in intertidal and shallow subtidal areas close to the shore, 
model inputs and outputs were restricted to areas shallower than 100 m (see Lyons et al. 2020 
for additional details). 
The distribution of EGC was modeled using MaxEnt 3.4.1 (Phillips et al. 2017) with seasonal 
salinity and temperature as predictors. The default complementary log–log transform option was 
used to produce estimates of occurrence probability (Phillips et al. 2017). To choose the feature 
class (i.e., potential response curve complexity) and regularization parameter (i.e., penalty for 
model complexity) settings the ENMeval package (Muscarella et al. 2014) for R version 3.5.2 (R 
Development Core Team 2018) was used to evaluate a broad range of combinations. Model 
settings that resulted in the lowest corrected Akaike information criterion (AICc) were selected to 
fit the final model. This model was fit using the maximum possible number of background points 
and 30-fold random cross-validation to evaluate the model and estimate standard deviations for 
the model predictions. 

2.2.1.1. Internal validation and output 
The average area under the receiver operating curve for the test data from the 30 cross-
validation folds (AUC [area under the curve]: 0.92) and Continuous Boyce Index (0.91) suggest 
that model performance over the entire northeast Pacific range of EGC was very good. The sum 
of the permutation importance scores for the seasonal temperature and salinity variables 
indicated that, although both parameters were important in predicting the distribution of EGC, 
temperature (summed importance: 60.8) was a stronger predictor than salinity (summed 
importance: 39.1).  
The MaxEnt model produced a continuous raster covering the entire Pacific coast from Mexico 
to Alaska (limited to 100 m depth) which was constrained to the Salish Sea for the purposes of 
this report. Values from the 4.5 km resolution raster were extracted and averaged for each site 
polygon using the “extract” function in R package raster. The MaxEnt raster covered 443 of 447 
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site polygons. Two of the sites without raster data were at the mouth of Indian Arm and two 
were in Howe Sound. No predictions were made for these locations due to a lack of 
environmental coverage, or because their depth did not fall between 0 and 100m in the 0.0042 
degree-resolution bathymetry used to define the model domain. The range of MaxEnt values 
across all sites ranged from 0.03 to 0.85.  

2.2.2. Gradient Boosted Regression Trees (BRTs) 
Data on the occurrence and abundance of EGC from annual trapping surveys conducted or 
supported by DFO between 2009 and 2019 on the West Coast of Vancouver Island was used 
as the response variables for the BRT models. The trapping protocol employed by DFO Science 
in Pacific Region is consistent with respect to gear, bait, and deployment technique, with some 
variation in effort (i.e., number of traps deployed during a trapping event). A single trapping 
event represents a collection of traps set out in the intertidal and shallow subtidal zone of a site 
and allowed to soak for approximately 24 hours (one full tidal cycle). Additional details on the 
type and method of data collection can be found in Gillespie et al. (2007).  
Raw catch-per-unit-effort (CPUE) was calculated for each trapping event as the number of EGC 
caught, divided by effort (i.e., the number of traps set multiplied by total average soak time of all 
the traps set during that event). Because catchability of EGC varies throughout the year as a 
consequence of water temperature (Duncombe and Therriault 2017), the analysis was initially 
limited to data collected between May and September and catches in the shoulder month 
adjusted using a correction factor. However, a second-order polynomial model fit to the average 
daily EGC CPUE (all years combined) over Julian day (JD) was significantly better than a linear 
model (Likelihood ratio test: X2 = 1.12, df = 1, p = 0.02), confirming that catch still tended to 
drop off in the shoulder months. The average peak trapping day for EGC across all years was 
determined from the polynomial model (July 21-22 or JDpeak = 203.0) and CPUE was refit as a 
function of the absolute difference between JDpeak and the actual trapping Julian day. The slope 
of this relationship was used to recalculate CPUE, adjusted for seasonal variation. No correction 
was made if CPUE was zero, as it cannot be assumed that these are failures to detect EGC due 
to catchability, rather than true absences. Biased resampling was then applied to the dataset 
because trapping events where EGC catches were very high were rare. Biased resampling is a 
common approach when modeling extreme or rare events (Oliveira et al. 2019). Because there 
were temporal and spatial patterns in the data, preferential up-sampling of events to favour 
those from more recent years and those that were more geographically distant from other 
clusters of sites was also used. Resampling was conducted using the R package 
STResamplingDSAA (Oliveira et al. 2019).  
The predictor variables for the BRTs were all static habitat features that may influence local 
EGC survival and population size at the site level. The factors chosen were those that could 
affect larval propagule pressure, the availability of shelter or prey, and oceanographic 
characteristics such as freshwater outflow and exposure. Most of these data were derived from 
GIS data layers (Table A1) using QGIS (v.3.0).  
Models were generated using two distributions of the catch data: logistic regression and linear 
regression. The logistic BRT modeled the probability of EGC site occupancy using a binomial 
(Bernoulli) loss function (n = 731 events, resampled). The linear regression model predicted the 
CPUE of EGC across all presence-only sites and trapping events (n = 591 events, resampled) 
using a Gaussian loss function. Modeling was done using the R package gbm in conjunction 
with the caret wrapper to produce gradient boosted trees (Elith and Leathwick 2011; Kuhn 
2008). These models combine the predictions from many weak models, called trees, to optimize 
the predictive performance of a final, average model. Each successive tree minimizes the error 
of the preceding tree following the loss function (Elith et al. 2008). As a result, trees become 
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successively better at predicting the response variable while also minimizing error (De’ath 2007; 
Elith et al. 2008). This approach also allows for categorical and continuous predictor variables, 
which can interact in complex and non-linear ways, and has relaxed assumptions around data 
structure, units, interactive effects, and missing values (Elith et al. 2008).  

2.2.2.1. Internal validation and output 
Model performance was evaluated using 8-fold cross-validation. This method was preferable to 
creating a dedicated testing and training set, as it allowed the use of all available data in a 
relatively small dataset. Because sites occurred along a geographically complex north-south 
gradient and trapping locations tended to be clustered, there was potentially significant spatial 
non-independence in the dataset. To account for this, folds were not assigned randomly, but 
instead spatially blocked, which assumes that all sites within a fold would experience similar 
oceanographic and climatic conditions and similar propagule pressure from EGC larvae and are 
therefore non-independent. Block size and number were optimized using R package blockCV 
(Valavi et al. 2019). By spatially blocking the cross-validation folds, the models encounter ‘new’ 
clusters of sites during each iteration of the learning process. This both reduces overfitting and 
addresses the issue of spatial non-independence within the data (De’ath 2007; Roberts et al. 
2017; Valavi et al. 2019).  
The caret package was used to run all of the BRTs as this package makes it possible for the 
boosting algorithm to find the optimal combination of learning rate, interaction depth, and 
number of trees for each model (Kuhn 2008). Additionally, the caret package allowed further 
refinement of the dataset by centring and scaling the continuous predictors, removing any 
categorical variables with zero or near-zero variance, and weighing the observations by the total 
number of traps set. Finally, caret (via the gbm package) also addressed missing values in the 
dataset by surrogate splitting, which assigns observations with missing values to groups of 
observations that are otherwise similar.  
The metric used to determine the best model across all runs depended on the model’s response 
variable. The linear regression models were evaluated using root-mean-squared-error (RMSE) 
and the logistic regression models were evaluated using overall accuracy. The relative variable 
importance (RVI) was used to look at the top predictors within each of these models. RVI is 
calculated by averaging the relative influence of a variable across all trees generated by the 
boosting algorithm (Ridgeway 2020). 
The best linear regression model had an RMSE of 0.59 (R2 = 0.59). Across all trees run, the 
length of the high water line (km) was the top predictor (RVI = 12%), followed by inlet length, 
measured as the distance from the site to open water (in km) (RVI = 9.5%) (Figure 2). 
Increasing high water line length had a positive relationship with CPUE, suggesting that EGC 
abundance increases with more available upper intertidal habitat. Inlet length also had a positive 
relationship with CPUE, suggesting that once invaded, highly isolated sites are more likely to 
retain larvae over time leading to greater overall EGC abundance (DiBacco and Therriault 
2015). 
The best logistic model had an overall accuracy of 0.84, which represents the ratio of correct 
predictions made compared to the total number of predictions, irrespective of class (e.g., EGC 
present or absent) or the number of observations per class. The no-information-rate was 0.81 (p 
= 0.02), meaning the model performed significantly better than random, and the balanced 
accuracy was 0.67, which is calculated by averaging the predictive accuracy of the positive and 
negative classes (i.e., sensitivity and specificity). The logistic model was better at predicting true 
positives (sensitivity = 0.94) than true negatives (specificity = 0.40). Minimum fetch (km) was the 
most important predictor variable across all iterations of the model (RVI = 27%) (Figure 2). The 
probability of EGC being present at a site increases rapidly with increasing fetch distance, 
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before plateauing. As with the linear regression model, inlet length was the second most 
important variable (15% RVI) (Figure 2). The probability of EGC being present at a site 
decreased with increasing inlet length, suggesting these sites are harder for propagules to 
reach (but if they do they can support relatively large EGC populations – see above).  

 
Figure 2. Top six most important predictor variables, as determined by their relative importance across all 
iterations of the model, for the linear boosted regression tree model (left panel), which predicts the CPUE 
of EGC at a site, and the logistic boosted regression tree model (right panel), which predicts the 
probability of EGC being present at a site. 

The two BRT models were then used to predict into the Salish Sea. Equivalent site level data 
was collected for all the original predictor variables (Table 1) for each of the 447 sites in the 
Salish Sea. As with the training data, the Salish Sea dataset included missing values that were 
addressed by surrogate splitting. Two model outputs were generated: the linear BRT predicted 
EGC CPUE at each site (range: 0.01–3.07) and the logistic BRT predicted the probability (0–1) 
of EGC being present at a site.  

2.2.3. Rapid Site Selection Tool (RSS) 
The RSS tool was developed as an interim method for rapidly informing EGC early detection 
efforts in BC. Recognizing that one of the major drawbacks of complex statistical models like 
those produced by MaxEnt and BRT modeling was the amount of time required to curate the 
input data, this method was developed using a very small number of easily accessible spatial 
data layers with broad coverage (Table 1). Given the expressed need for advice to be at the 
site-level, a method to ‘auto-detect’ individual beaches was developed as the first step in the 
process. Automating beach identification makes it possible to assess large sections of coastline 
without having to manually delineate individual sites.  
Automatic beach detection was done by first calculating the straight line distance between the 
high and low water lines, using a nearest neighbour algorithm in QGIS (v. 3.6.0), as a measure 
of intertidal beach width. The high water line was used as the ‘origin’ in this algorithm to better 
capture convex beach shapes (Figure 3). The water line input layers were generated by the 
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Canadian Hydrographic Service (CHS). Measurements of intertidal width were taken at 40 m 
intervals along the entire coastline. Wider, flatter areas more likely to support EGC were isolated 
by eliminating all sections of beach less than 50 m wide. Several threshold widths between 40 
and 80 m wide were evaluated (e.g., Figure 3), but 50 m was determined to be optimal in that it 
eliminated all of the narrow, rocky coastline without missing too many smaller ‘pocket beaches’. 
To confirm that autodetection could perform at least as well as a person identifying beaches 
from a map, we tested both approaches over a predefined area of coast (southeast coast of 
Vancouver Island and the Gulf Islands). Autodetection identified 1727 beaches compared to 
1061 beaches identified manually, which took significantly longer and was more subjective. 
However, the autodetect method does not generate well-defined site-level polygons such as 
those shown in Figure 1. If required by the end-user (e.g., for mapping purposes), site polygons 
must still be generated manually. 

 
Figure 3. Sample visualization of nearest-neighbour analysis to measure distances between the high and 
low water lines, for a section of coastline (Kuleet Bay near Ladysmith, BC), with lines representing 
intertidal widths equal or greater than 60 m. Points along the high and low water lines are spaced 40 m 
apart.  

Once all the possible beaches were identified they were further refined based on a general 
understanding of habitat preferences for EGC in the region, which tend to be associated with 
beaches that have some freshwater input and softer sediment (Klassen and Locke 2007). While 
EGC are not a freshwater species they can tolerate lower salinity water and occasional 
freshwater pulses better than native crabs in BC and are therefore more likely to be detected in 
these refuge habitats, especially during the early stages of the invasion process (Barrios-O’Neill 
et al. 2015). Therefore, beaches with no freshwater input were eliminated by buffering the beach 
polygons to 50 m and only keeping those that intersected with a freshwater stream network 
base layer (Gray 2010). Fifty meters reliably captured nearby freshwater outflows without 
expanding too far inland to be unrealistic. The remaining beaches were then weighted by 
sediment type (Table 2). Beaches with no sediment (rock cliffs or banks) were given the lowest 
weight (0) and estuaries with fine sediment given the highest weight (1) because EGC on the 
Pacific coast of North America show a preference for soft sediment habitats (Klassen and Locke 
2007). Sediment type at each site was determined using shared characteristics from the 
ShoreZone coastal classification system, available in the CHS High Water line metadata, i.e., all 
coastal classifications where the substrate was ‘sediment only’ were grouped together for the 
purposes of weighting (see Table 6 in Howes et al. 1995). The high water line was selected over 
the low water line layer as EGC, and especially newly settled individuals, are more commonly 
found in the upper intertidal zone (Klassen and Locke 2007). If multiple shore types occurred 
along a beach, it was assigned the highest weight.  
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Table 2. Description of sediment types following the ShoreZone classification system (Howes et al. 
1995.). Each coastal class in the system is determined by a series of nested categorical characteristics: 
substrate, sediment, width, and slope. The first three of these were used to create five broad sediment 
types, which were weighted from least (0) to most (1) likely to support European Green Crabs. See Table 
6 in Howes et al. (1995) for additional information.  

RSS Sediment 
Type 

RSS 
Weight 

ShoreZone 
Substrate 

ShoreZone 
Sediment 

ShoreZone 
Width 

ShoreZone 
Coastal Class 

Estuaries 1 Sediment Organics/fines n/a 31 

Sediment only 
beaches 

0.75 Sediment Gravel and/or 
sand and/or mud 

Narrow or wide 
(> 30m) 

21-30 

Rock and 
sediment beaches 
(wide) 

0.5 Rock and 
sediment 

Gravel and/or 
sand 

Wide (> 30m) 6,7,11,12,16,17,18 

Rock and 
sediment beaches 
(narrow) 

0.25 Rock and 
sediment 

Gravel and/or 
sand or 
anthropogenic 

Narrow 8,9,10,13,14,15,19
,20 and 32-33 
(anthropogenic) 

Rock only 0 Rock n/a n/a 1-5 

2.2.3.1. External validation and output 
Unlike the MaxEnt and BRT models, which have internal model performance and validation 
metrics, the RSS tool required external validation to assess performance. Given that there is no 
independent validation dataset, as the Salish Sea is not fully invaded, a dataset from Barkley 
Sound on the West Coast of Vancouver Island where EGC have been established for more than 
two decades was used. Barkley Sound has been extensively surveyed for EGC since 2006 and 
the distribution of the species has remained largely consistent over that time, making the area a 
suitable proxy for an invasive species at equilibrium. A total of 63 sites have been surveyed in 
Barkley Sound, 42 of which have confirmed EGC presence.  
The RSS method detected 580 discrete beaches in Barkley Sound, which was reduced to 61 
sites once filtered for the presence of freshwater. This significant reduction in the number of 
sites demonstrates that the RSS method can effectively reduce the total number of possible 
early detection/monitoring sites to a manageable number based on important factors for the 
invader. To determine if the RSS method accurately predicts sites known to support EGC, we 
examined only the RSS beaches that aligned with past trapping sites (n = 63 sites possible). 
There were 21 overlapping sites, 15 of which had confirmed EGC presence (true positive rate = 
0.71) (Table 3). Importantly, these 15 sites included all of the highest density sites in Barkley 
Sound (i.e., Pipestem Inlet, Effingham Inlet head, Hillier Island, Toquart Bay).  
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Table 3. Comparison of RSS predictions against known sites trapped by DFO in Barkley Sound. Since 
2006, DFO has trapped 63 beaches at least once, 42 of which had EGC present. The number of sites 
captured by the RSS method is shown for both the first and second RSS steps: beach autodetection and 
filtering by freshwater presence.  

RSS Step 
N Beaches 
Identified 

N Previously Trapped 
(63 possible) 

N with EGC  
(42 possible) True Positive Rate 

Step 1: autodetected 
beaches (unfiltered) 580 53 37 0.70 

Step 2: filtered for 
freshwater presence 61 21 15 0.71 

When predicting for the Salish Sea, the RSS method initially identified 3779 beaches, which 
would normally then be reduced by filtering for freshwater presence, resulting in 852 possible 
beaches. However, to facilitate comparisons across the site selection models in this report, we 
only considered RSS beaches that aligned with the 447 predetermined Salish Sea sites. There 
were 547 RSS autodetected beaches that either matched or partially overlapped these 
predetermined sites. These were then filtered for freshwater presence, leaving 201 beaches. To 
maintain parity between the number of RSS beaches and the 447 Salish Sea sites, sites without 
a matching RSS beach were automatically scored as having the lowest probability of EGC 
presence (0), because the RSS method had excluded them for being unsuitable habitat, either 
on the basis of beach width or absence of freshwater. The remaining 195 beaches were then 
weighted based on sediment type (Table 2) generating 87 classified as an ‘estuary’ (weight = 
1.0) and 98 sites classified as ‘sediment-only’ (weight = 0.75).  

2.2.4. Modified Washington Sea Grant Site (WSG) Selection Tool 
The Washington Sea Grant Crab Team method was developed to formalize their site selection 
and prioritization process for early detection monitoring. While the method is semi-quantitative, 
in that sites are assigned a score, scoring is a fully manual process that relies solely on satellite 
imagery of shoreline features that the WSG Team consistently found in association with EGC in 
California and the coastal estuaries of Washington, such as substrate, vegetation, and 
connectivity. Each of these features evaluated in this method is related to oceanographic or 
ecological processes that have the potential to drive green crab population growth, including 
connectivity/retention, abiotic conditions (e.g., temperature, salinity), and predation on juvenile 
EGC. These processes are most influential at the earliest stages of invasion, and thus together 
help identify sites where green crab survivorship is likely to be greatest, even when propagule 
pressure and population size is small. 
To score a site, the user proceeds through a series of yes/no questions about the site and 
assigns scores accordingly. Although inter-assessor variability has not been formally tested for 
this method, we have observed that different assessors score sites differently but that site-level 
disagreement is usually low (i.e., differences of ±5 are more likely than differences of ±15). 
Regardless, a single assessor processed all 447 Salish Sea sites for consistency in the scoring 
rationale. The first question (Q1) addressed connectivity of the site and whether it might offer 
EGC refuge from predators. Ideal sites for EGC were thought to have limited connectivity to the 
open ocean -- enough that larvae can arrive and be retained by the habitat, but not so much that 
it would make the site favorable habitat or easily accessible, for larger, predatory native crabs 
such as Dungeness (Jensen et al. 2007) and Red Rock crabs (Hunt and Yamada 2003). Thus, 
relatively closed sites, like lagoons, are considered particularly suitable for EGC, as shallow 
depths and limited tidal exchange are factors typically correlated with increased water 
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temperatures and decreased water quality, generally reducing survivability for larger native 
predators. Conversely, factors contributing against isolation from predators are very narrow 
beaches or small intertidal areas adjacent to rocky intertidal or deep water channels, as both 
can funnel EGC predators towards the high intertidal where EGC tend to aggregate. The 
second question (Q2) addressed the structure and types of substrate available to EGC at a site. 
Sloughs, mudflats, marsh vegetation and impoundments were all counted as characteristics 
likely to be associated with EGC survival, either by virtue of providing protective structure for 
small crabs, or because they are habitats survivable for EGC while typically being inhospitable 
for their predators. The more of these types of substrates visible at a site, the higher the site 
was scored. Finally, the third question (Q3) penalized sites with high wave energy and/or 
extensive freshwater output (i.e., river mouths). While limited freshwater input can protect EGC 
from predators that prefer more saline waters, high flow river mouths, particularly those fed by 
glaciers or with large catchments, are not suitable for EGC for long periods. The original method 
then tallied the scores according to the formula shown in Figure 4 (top panel). We modified the 
method slightly, adding additional scoring options for Q2 and Q3, to help distinguish among 
sites scoring 15 or above (Figure 4, bottom panel). We also wrote more descriptive versions of 
the questions to better guide our scorer and converted the final habitat suitability score to a 
probability. Finally, because the original method was developed based on coastal geography 
more common in Washington than on the Canadian side of the Salish Sea, such as salt 
marshes, sloughs, coastal spits, and natural or artificial lagoons, we considered a broader range 
of shelter habitat types and types of intertidal ‘standing water’ (i.e., not only tidal sloughs and 
lagoons).  

 
Figure 4. Original WSG scoring method diagram (top panel) and DFO Science modified version (bottom 
panel).   
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For this process, a single assessor was trained how to use the modified WSG method and 
asked to score sites accordingly. Scoring was done in the Spring of 2020 using imagery 
available in Google Earth Pro v. 7.3. The assessor first established the amount of connectivity 
the site had to the open ocean (Q1) and the extent to which this may or may not create a refuge 
from predators for EGC (Q2a). Particular attention was paid to whether channels remained 
flooded at low tide and whether those channels were shaped by freshwater outflow or tidal 
action. The rationale being that subtidal, saline channels could decrease isolation by allowing 
predatory crabs to remain at a site throughout the tidal cycle. The ability to view the site at 
various points in a tidal cycle using the Historical Imagery tool in Google Earth Pro was 
particularly helpful in establishing the amount of connectivity and isolation.  
The assessor then identified visible substrate types that may facilitate EGC survival (Q2b). This 
mainly consisted of structurally complex substrates in the upper intertidal zone such as 
vegetation associated with euryhaline and low-flow conditions (e.g., Salicornia, Zostera, 
Distichlis), marshy areas and embankments, shore armouring such as riprap, woody debris 
such as old log dumps or derelict piers and pilings, and shell/cobble beaches.  
Although sites with some amount of freshwater outflow and channelization were scored as 
being favourable habitat for EGC, they were also penalized for large volumes of freshwater, 
creating deep, fast outflows (Q3a). Similarly, while all sites required some connectivity, highly 
exposed sites were also penalized (Q3b).  

2.2.4.1. External validation and output 
As with the RSS method, there is no way to internally validate the modified WSG method, nor is 
there an independent validation dataset. However, because sites on the West Coast of 
Vancouver Island were also scored by the assessor, we again used the Barkley Sound dataset 
to assess the accuracy of the modified WSG method (see Section 2.2.3.1 for details on the 
Barkley Sound dataset).  
The modified WSG method performed best in Barkley Sound when predicting sites with a high 
likelihood of supporting EGC (probability of EGC present ⋝0.75), with accuracies between 0.71 
and 0.75. The assessor using this method had no previous knowledge of the distribution or 
abundance of EGC in Barkley Sound, but was able to identify several known high density sites 
(e.g., Hillier Island, Toquart Bay, Effingham Inlet head). Interestingly, Pipestem Inlet was only 
given a 0.25 probability of EGC presence despite being a significant EGC “hotspot”. This was 
due to the site’s long, exposed, shoreline and minimal channelization, and possibly a 
mischaracterization of the available cover due to poor satellite imagery.  
Of the 447 Salish Sea sites, 88 were classified as having the highest probability (1.0) of EGC 
being present, and 90 sites were classified as having the second highest probability (0.75). A 
total of 121 sites were given the lowest probability of EGC being present (0).  
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Table 4. Predictive accuracy of modified WSG model based on previously trapped Barkley Sound sites. 
The modified WSG method ranks sites as a probability of EGC presence on an ordinal scale from 0-1. To 
calculate accuracy we treated sites ranked 0.5 or higher as a positive case (EGC present) and 0.25 or 
lower as the negative case (EGC not detected).  

Modified WSG 
Rank 

N WSG 
Sites 

N Sites EGC 
Present 

N Sites EGC 
Not Detected 

True Positive 
Rate 

True Negative 
Rate 

0 22 10  12 − 0.42 (12/22) 

0.25 10 8 2 − 0.20 (2/10) 

0.50 6 4 2 0.67 (4/6) − 

0.75 8 6 2 0.75 (6/8)  − 

1.0 17 12 5 0.71 (12/17) − 

2.2.5. Summary of the individual models 
Each of the five individual models performs reasonably well on its own based on available 
internal or external validation metrics. However, they range widely in the types of data required 
and response variables (Table 1), and each has uncertainties related to predictions into the 
Salish Sea for EGC. We therefore considered ways to combine these models, thereby buffering 
uncertainty and maximizing the range of EGC ecology considered, by developing derived and 
ensemble models (see below). 

2.3. DERIVED SPECIES DISTRIBUTION MODELS  
One way to overcome potential limitations and uncertainty associated with individual models is 
to combine models mathematically by multiplying their outputs together. Highly suitable sites are 
those where the mathematically derived value represents agreement among the two component 
models (i.e., both being high produces a derived value that is high). In contrast, sites where 
component models differ will be low to moderately suitable. Low suitability sites will be those 
where the mathematically derived value is low due to agreement among component models 
(i.e., both being low produces a derived value that is even lower). We produced five derived 
models by multiplying the outputs of five model pairs. First, we combined the two BRT outputs: 
the continuous non-zero CPUE predictions (“CPUE” model) were multiplied by the probability of 
EGC presence (“PA” model) at each site, resulting in a conditional abundance model 
(CPUE*PA) that predicts the expected CPUE of EGC, if present at a site (e.g., Lynch et al. 
2012; Dedman et al. 2015). A second derived conditional abundance model was produced 
using the MaxEnt model output, as this also predicts the probability of EGC presence 
(CPUE*MaxEnt).  
Because the BRTs, RSS and modified WSG models all rely on static, site-specific habitat 
characteristics as their primary input variables, in contrast to the MaxEnt model which uses 
environmental conditions (i.e., temperature, salinity) and incorporates seasonality (Table 1), we 
also produced three derived models by multiplying the MaxEnt output with the remaining 
individual models. These derived models are annotated as: PA*MaxEnt (where PA is the logistic 
BRT output), RSS*MaxEnt, and WSG*MaxEnt. We hypothesized that, compared to the 
individual component models, the product of the MaxEnt output and the habitat-based outputs 
would be more likely to capture the full range of abiotic and biotic conditions influencing EGC 
occurrence at various sites in the Salish Sea. Unlike the conditional abundance models, these 
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three derived models do not have a direct biological interpretation, but a higher value does still 
indicate a site is more likely suitable for EGC in relative terms. 

2.4. MODEL COMPARISON METHODS  

2.4.1. Model standardization  
One way to overcome potential limitations and uncertainty associated with individual models is 
to take a multi-model approach (e.g., ensemble models, hurdle models, etc.) when making 
predictions (Woodman et al. 2019; Waggitt et al. 2019). Such approaches are advantageous 
because while individual models can be informative, few can completely capture all the 
complexity of a species' biology. Each of the five individual models and five derived models 
represent different aspects of EGC ecology, with response values that are not directly 
comparable (e.g., probability of presence vs. predicted CPUE). To facilitate model comparisons 
and ensemble model predictions, we rank-transformed the output for each of the models, except 
RSS and WSG, into 20% percentiles (quantiles); i.e., percentile 1-20 = 1, percentile 21-40 = 2, 
percentile 41-60 = 3, percentile 61-80 = 4, and percentile 81-100 = 5. Transformation of the five 
derived models was done in the same way, after multiplying the respective individual model 
outputs. Quantile transformations were not carried out for the individual RSS and modified WSG 
models because their outputs are already ordinal categories of suitability, not continuous values. 
To keep all models on the same scale, the RSS and modified WSG outputs were converted as 
follows: 0 = 1, 0.25 = 2, 0.50 = 3, 0.75 = 4, 1.00 = 5. Figure 5 shows the distributions and 
quantile breaks for each of the models.  

2.4.2. Analysis of model agreement  
Since EGC have only recently been observed in the Salish Sea and this invasion is not yet 
considered established or complete, there is no independent dataset to evaluate model 
performance. We therefore assessed model agreement in two ways. First, by calculating 
correlation coeffects between quantile rankings (1 to 5) generated for the sites between pairs of 
methods. Second, we also assessed model agreement between the individual and derived 
methods by calculating the number of sites where the rank-transformed model values agreed, 
out of the total number of sites where both models had data (ranging from 444 - 447 sites).  
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Figure 5. Distribution of model values with 20% quantiles marked. Derived models (CPUE*MaxEnt, 
CPUE*PA, RSS*MaxEnt, and WSG*MaxEnt) were calculated by multiplying the values of their 
component models at each site.  
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2.4.3. Using rank-transformed values for ensemble model predictions 
To create the ensemble models we generated combinations of 3, 4, or all 5 of the original 
(individual) models only. Derived models were not considered in the ensembles as this would 
over-represent the MaxEnt model outputs in the ensemble predictions, as MaxEnt is a 
component of 4 of the 5 derived models. For each combination of individual models, we used 
the agreement among their standardized, rank-transformed values to determine site suitability 
for EGC. ‘Suitability’ was defined as any site with a rank-transformed value of 5 (i.e., outputs 
above the 80th percentile or a raw score of 1.0 for models with ordinal responses). To assess 
the effect using the 80th percentile when determining habitat suitability, we performed a 
sensitivity analysis using outputs above the 60th percentile (rank-transformed values of 4 or 5, 
or values of 0.75 for the RSS and WSG models). Using a lower threshold to indicate habitat 
suitability identifies a greater number of potential sites than using a higher threshold (see 
Results; Appendix Table A4).  
We evaluated three types of agreement (mode, union, and intersect) in generating our 
ensemble model predictions; each with its own strengths and weaknesses (Figure 6). Intersect 
models have the most conservative definition of agreement, as a site would only be assigned a 
value of 5 (i.e., suitable for EGC) if all models in the combination had predicted a rank of 5 for 
that site (i.e., intersection = “AND”). Union models have the least conservative definition of 
agreement, as a site would be assigned a value of 5 if any model in the combination had 
predicted a rank of 5 for that site (i.e., union = “OR”). Finally, mode models assigned sites a 
value of 5 if it was the most frequent value across the combination of models. Sites with no 
model agreement (no most frequent prediction) have a mode of NA. 

 
Figure 6. A hypothetical example of calculating mode, union, and intersects from multiple models. Each 
colored shape represents a site, with the number indicating the rank-transformed value for each model at 
that site (1=1-20th percentile, 2=21-40th percentile, 5=81-100th percentile).   
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3. RESULTS  

3.1. RANK-TRANSFORMED PREDICTIONS FOR THE SALISH SEA 
The site-level, rank-transformed predictions of the five individual habitat suitability models: 
MaxEnt, the linear boosted regression tree (CPUE), the logistic boosted regression tree (PA), 
the rapid site selection tool (RSS), and the modified Washington Sea Grant Crab Team site 
assessment (WSG) are shown in Figure 7–Figure 11. The site-level, rank-transformed 
predictions for the derived models, including two conditional abundance models, CPUE*PA and 
CPUE*MaxEnt, and thee models specifically incorporating the MaxEnt predictions: PA*MaxEnt, 
RSS*MaxEnt, and WSG*MaxEnt are shown in Figure 12–Figure 16. The list of sites where each 
model and model combination predicts highly suitable habitat for EGC are presented in Table 
A4 (individual models and 5-model modes, for rank-transformed values of 4 and 5), and in Table 
A5 (4- and 3- model modes, rank-transformed value of 5). Sites likely to support EGC are widely 
distributed across the Salish Sea irrespective of which model or method is used. Site-level 
predictions for Sooke Basin, Ladysmith Harbour, and Boundary Bay are shown in Appendix 
Figure A 1–3. 

 
Figure 7. Model outputs for the MaxEnt presence-only model. Site polygons are shaded based on rank-
transformed quantiles (20th percentiles), where 5 is considered highly suitable EGC habitat. The range of 
raw predictions within each quantile is also given. 
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Figure 8. Model outputs for the boosted regression tree catch per unit effort (BRT CPUE) model. Site 
polygons are shaded based on rank-transformed quantiles (20th percentiles), where 5 is considered 
highly suitable EGC habitat. The range of raw predictions within each quantile is also given. 

 
Figure 9. Model outputs for the boosted regression tree presence-absence (BRT PA) model. Site 
polygons are shaded based on rank-transformed quantiles (20th percentiles), where 5 is considered 
highly suitable EGC habitat. The range of raw predictions within each quantile is also given. 
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Figure 10. Model outputs for the Rapid Site Selection (RSS) models. Site polygons are shaded based on 
rank-transformed values, where 5 is considered highly suitable EGC habitat. The original values for each 
rank-transformed value are also given. 

 
Figure 11. Model outputs for the Washington Sea Grant (WSG) model. Site polygons are shaded based 
on rank-transformed values, where 5 is considered highly suitable EGC habitat. The original values for 
each rank-transformed value are also given. 
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Figure 12. Model outputs for product of the boosted regression tree catch per unit effort (CPUE) and 
presence-absence (PA) models. Individual component model values were multiplied together before 
transforming to quantiles. Site polygons are shaded based on rank-transformed quantiles (20th 
percentiles), where 5 is considered highly suitable EGC habitat. The range of raw predictions within each 
quantile is also given. 

 
Figure 13. Model outputs for product of the boosted regression tree catch per unit effort (CPUE) and 
MaxEnt models. Individual component model values were multiplied together before transforming to 
quantiles. Site polygons are shaded based on rank-transformed quantiles (20th percentiles where 5 is 
considered highly suitable EGC habitat. The range of raw predictions within each quantile is also given. 
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Figure 14. Model outputs for product of the boosted regression tree presence-absence (PA) and MaxEnt 
models. Individual component model values were multiplied together before transforming to quantiles. 
Site polygons are shaded based on rank-transformed quantiles (20th percentiles), where 5 is considered 
highly suitable EGC habitat. The range of raw predictions within each quantile is also given. 

 
Figure 15. Model outputs for the product of the Rapid Site Selection (RSS) and MaxEnt models. Individual 
component model values were multiplied together before transforming to quantiles. Site polygons are 
shaded based on rank-transformed quantiles (20th percentiles), where 5 is considered highly suitable 
EGC habitat. The range of raw predictions within each quantile is also given. 



 

24 

 
Figure 16. Model outputs for product of the Washington Sea Grant (WSG) and MaxEnt models. Individual 
component model values were multiplied together before transforming to quantiles. Site polygons are 
shaded based on rank-transformed quantiles (20th percentiles), where 5 is considered highly suitable 
EGC habitat. The range of raw predictions within each quantile is also given. 

3.2. MODEL COMPARISON RESULTS 

3.2.1. Model agreement 
Rank-transformed values (quantiles) from the MaxEnt model had lowest agreement when 
compared to all other individual methods (19-20% of sites in agreement) (Table 5). This may be 
because the MaxEnt inputs are seasonal environmental conditions rather than habitat 
characteristics used in the other models. Not surprisingly, the RSS and modified WSG methods 
had the highest pairwise agreement (42%) (Table 5) as both use relatively simple scoring to 
classify sites and rely on similar habitat features believed important for EGC (Table 1). Pairwise 
agreement among just the derived methods was highest between CPUE*PA and PA*MaxEnt, 
with 51% of sites in agreement, while the other pairwise comparisons had 25-40% of sites in 
agreement. Agreement between the individual and derived models was highest in when 
comparing methods with shared inputs (e.g., PA and CPUE*PA, 54%; PA and PA*MaxEnt, 
60%). If any one of the original or derived methods were singularly effective at capturing all 
aspects of EGC biology when determining habitat suitability, we would expect it to have 
reasonably high agreement with all other methods. However, on average only 30% of sites were 
shared among any two methods and no single approach stood out as the ‘best’, supporting our 
assumption that all of the methods capture some, but not all, aspects of EGC biology and 
therefore a multi-model (ensemble) approach is more appropriate.   
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Table 5. Agreement between predictions made by individual models, based on the number of sites where 
the rank-transformed model values agree, out of the number of sites where both models have data 
(ranging from 444-447). Values above 50% are bolded. 

 Model CPUE PA MaxEnt RSS WSG 
CPUE* 
PA 

CPUE* 
MaxEnt 

PA* 
MaxEnt 

RSS* 
MaxEnt 

WSG* 
MaxEnt 

CPUE – 25 20 27 25 33 44 23 23 23 

PA – – 19 24 24 54 23 60 24 24 

MaxEnt – – – 20 19 22 37 28 28 33 

RSS – – – – 42 25 24 22 41 28 

WSG – – – – – 23 22 19 27 37 

CPUE* 
PA – – – – – – 36 51 25 30 

CPUE* 
MaxEnt – – – – – – – 27 30 32 

PA* 
MaxEnt – – – – – – – – 31 36 

RSS* 
MaxEnt – – – – – – – – – 40 

Agreement among the component models within each of the ensemble models depended on 
the approach used to create the ensemble. Intersection models identified the fewest number of 
sites for monitoring; as few as two sites when all five original models were included in the 
combination. This conservative approach increases the risk of overlooking otherwise suitable 
sites captured by some of the individual models, but not all. Union models had the least 
conservative definition of agreement and therefore usually identified the greatest number of 
sites for monitoring (up to a maximum of 141 sites for certain combinations). In addition to 
generating a potentially unreasonably large number sites to monitor, union models also a higher 
likelihood of Type 1 errors (i.e., unsuitable sites erroneously considered suitable). For these 
reasons, we prefer the mode models, as these balanced the need for agreement with the 
benefits of buffering the uncertainty in each of the individual models with a multi-model 
approach. Mode models identified an intermediate number of sites considered suitable for EGC, 
depending on the number and combination of models considered (range: 51 – 90 sites). Results 
for both 3 and 4-model combinations are presented in Appendix Table A5. However, we 
highlight the results of the mode model that included all five of the original models here, as this 
uses all available information for a total of 68 potential monitoring sites (Figure 17, Appendix 
Table A4). 

3.3. IDENTIFYING POTENTIAL MONITORING SITES 
Choosing which model(s) to use to determine potential early detection/monitoring sites for EGC 
is challenging, especially without an independent validation dataset to evaluate predictive 
performance. However, our analyses suggest that selecting sites with high ensemble model 
agreement is likely the most robust approach, as this approach reduced uncertainty by 
focussing on agreement among multiple lines of evidence. In particular, by defining agreement 
as the most frequent value (i.e., mode) the risk of either missing suitable sites or including many 
unsuitable ones is minimized (Figure 6). Here, we are able to use the rank-transformed outputs 
of all five of the original habitat suitability models to provide a list of 68 sites to be prioritized for 
early detection monitoring. If managers have the capacity to survey more sites, a longer, less 
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conservative site list can be generated either by moving to the union ensemble model, using all 
five individual models (113 sites), or lowering the threshold for suitability from the 80th 
percentile to the 60th percentile (151 sites for mode, 207 for union). Conversely, managers 
should use site-specific knowledge to exclude potential sites (e.g., if the information used to 
build the model does not reflect the actual conditions on the beach) or use independent 
datasets (e.g., presence of eelgrass beds, First Nation harvest sites) to further prioritize sites.  
For identifying either more Salish Sea sites, beyond the 447 considered here, or predicting into 
new areas, an ensemble mode model is still recommended. However, complete data for all five 
methods may not always be available and thus will require managers to either generate new 
output or work with fewer models. It is important to note that the mode ensemble approach 
requires a minimum of three methods be available at any site of interest If this requirement is 
not met, managers can still use any of the existing methods, as all of them were reasonably 
good at identifying suitable habitat for EGC based on model validation using EGC data from 
outside the Salish Sea.  

 

Figure 17. Potential monitoring sites, based on model predictions from the mode of the five individual 
EGC habitat suitability models. 
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4. UNCERTAINTIES AND MODEL LIMITATIONS 
One of the most significant limitations to identifying a “preferred” model is the lack of a robust, 
independent validation dataset. Since EGC have only recently been observed in the Salish Sea 
and are not yet considered established in the region, there is no independent dataset to 
evaluate model performance. Only 23 confirmed reports of EGC have been made within the 
Salish Sea, with most of these spatially aggregated around Sooke Basin. It will not be possible 
to assess the accuracy of any of the individual models until the invasion cycle is fully complete 
in space and time (i.e., sites will either be persistently occupied or not). However, ongoing 
observations will be important to refine future predictions of habitat suitability for EGC in the 
Salish Sea and ultimately can be used retrospectively to evaluate model accuracy.  
The choice of using the mode ensemble over either the union or intercept has important 
implications for EGC site identification. Intercept ensembles are the most restrictive for site 
identification as all models in the ensemble must rank a site high for it to be considered. In 
contrast the union ensembles are the least restrictive in that a site will be included if any model 
in the ensemble ranks a site high. We identified the mode as the preferred ensemble, since 
multiple models had to rank a site high but not all models had to. While we interpreted this as 
the most balanced approach, using more or less conservative methods (i.e., intercept or union 
ensembles) may be warranted depending on resources available and risk tolerance. Each of 
these ensemble modeling approaches represents a trade-off in model agreement that can 
substantially increase or decrease the number of potential early detection monitoring sites.  
The choice of thresholds used to delineate a site as ‘suitable’ for EGC also has important 
implications for the interpretation of outputs and site identification. Using a threshold of 5 (rank-
transformed value, 80th quantile) to delineate suitability across the original five habitat suitability 
methods was intended to identify those sites that had the greatest probability of being suitable 
for EGC. However, it is important to note that this does not mean that sites not in this category 
are unsuitable for EGC and in fact we know sites that scored lower have EGC present. 
Additionally, only two of our individual models predict probability of occurrence as the output, for 
which this is most appropriate (the other models represent abundance or a habitat suitability 
score). Thus, we used the 80th quantile for all models as a consistent and repeatable method, 
noting that it is conservative in its application. We conducted a limited sensitivity analysis to 
address the rationale for this decision. The primary consequence of lowering the suitability 
threshold is that more sites are identified for monitoring. Thus, here too managers may opt for a 
less conservative approach if available resources allow. 
The invasion process is complex and can be facilitated (or mediated) by a number of abiotic or 
biotic factors. Although the various individual habitat suitability methods attempt to capture 
different aspects related to EGC invasion dynamics there are others that are undoubtedly 
missed. For example, biotic resistance could be important when determining if a specific site will 
become invaded or not, but we lack both the mechanistic understanding and the raw data to 
fully include these in the current predictions. Such data is at least partially available for the west 
coast of Vancouver Island, as it was collected concurrent to annual EGC survey trapping, but a 
similar dataset does not exist for the Salish Sea (and energy devoted to collecting this would be 
more practically used to collect data on EGC directly). Also, none of the individual models 
explicitly capture micro-habitat suitability that might favour EGC. In the future, increased spatial 
and temporal resolution in the relevant biotic and abiotic predictor variables may make it 
possible to capture these more complex dynamics in future predictions of EGC distribution. 
Currently, the derived and ensemble models was our attempt to at least indirectly consider 
additional factors contributing to EGC invasion success and our results confirmed that including 
both environmental and habitat variables improved model performance.  
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Limitations on the accuracy and resolution of the input variables can also lead to uncertainties at 
the site level and may not be representative of conditions at a given beach. For example, 
MaxEnt input layers created from large-scale environmental variables are used to derive a 
continuous surface (rasters) that is then downscaled for an individual site (Table 1). However, 
individual sites may have specific characteristics that are either not adequately captured by the 
downscaling or might otherwise be considered completely unsuitable for EGC occupancy (e.g., 
exposed, rocky, deep). These sites are hard to identify a priori without a site visit so it is 
possible that some sites that were identified as priorities from the model predictions ultimately 
are de-prioritized for actual monitoring. Models that rely on CPUE to predict EGC abundance 
are prone to uncertainty due to variability in catch as a consequence of gear used, seasonality, 
etc. Similarly, occurrence records are also subject to uncertainty in the context of a new 
invasion. Absences may reflect truly unsuitable habitats, or a failure to detect a very small 
population of newly established individuals, or a site that simply has yet to be invaded. 
Presence records are more robust but do rely on the assumption that a single individual 
indicates the location is capable of sustaining an established population of the invader at 
equilibrium.  
All of the individual models have the capacity to predict the suitability of new sites and/or new 
areas for EGC, and indeed some have already been used in other areas (i.e., MaxEnt, RSS). 
However, the availability and quality of the input data, the expertise of the user, and the spatial 
resolution required all potentially limit how readily these models can be applied for management 
purposes beyond the 447 sites considered here (see Table A1). Both the MaxEnt and BRT 
methods require a familiarity with ecological modelling and the technical expertise to assess and 
apply quality spatial layers correctly and access to those layers, which are not always readily 
available. The BRTs are further limited in that predictions can only be made for predetermined 
sites, due to the site-specific nature of the input variables (i.e., high water line length, isolation, 
etc.). Both the RSS and modified WSG methods are less demanding with respect to quality and 
type of input data and user expertise but, like the BRTs, the modified WSG requires sites of 
interest to be determined in advance. However, the BRTs, modified WSG, and RSS tool (to 
some extent) are better suited then MaxEnt when discreet sites are the preferred output for 
management. Ultimately, using as many of these models as possible in an ensemble approach 
will provide the most robust site identification. 
Although beyond the scope of the initial request, AIS managers may opt to further prioritize sites 
in ways not discussed here. For example, sites could be prioritized based on important 
ecosystem components known to be degraded by EGC such as eelgrass meadows (e.g., 
Howard et al. 2019) or clam beds (e.g., Grosholtz et al. 2000), ease of access, or local volunteer 
capacity. Additionally, managers will need to apply their own expertise when determining trap 
placement within a site. Broadly speaking, the current best practice is to target features that 
may provide EGC with shelter, but what this looks like will vary widely among sites.  
Our analyses focused on application of existing habitat suitability methods to identify potential 
monitoring sites for EGC. As such these models explicitly do not consider arrival probabilities for 
any sites as they assume propagules have the ability to reach each site which we know is not 
entirely true. Thus, future analyses could include measures of connectivity or propagule 
pressure to further refine sites for EGC early detection. One approach commonly used to model 
the movement of EGC larvae is particle tracking models and in fact Brasseale et al. (2019) have 
conducted such analyses with a focus on US waters of the Salish Sea but additional efforts 
would be needed to expand this approach to encompass all Canadian waters of the Salish Sea, 
especially the northern end. Additionally, EGC larvae have been introduced to new areas via 
human-mediated movements and future efforts could include information on potential pathways 
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for EGC movement including commercial shipping, recreational boating, aquaculture-related 
movements, etc.  
Finally, we know that ecosystems are not static and that climate change and variability can 
influence the site-specific outcomes of an invasion, which in turn affects site identification for 
early detection monitoring programs. Of the habitat suitability methods used here, MaxEnt has 
the ability to predict distributions based on future conditions (assuming the relationships 
between environmental predictor variables and EGC ecology do not change) whereas the other 
models relied more on habitat features or characteristics that are less subject to change (e.g., 
substrate type, inlet length, etc.). Further, the more pressing issue for AIS managers is the 
identification of sites for early detection now rather than in the future. Similarly, the potential 
implications of climate change with respect to changing human-uses of the marine environment 
(and thus vectors and pathways) or environmental change is more likely to influence the 
persistence of EGC at any particular site which is beyond the scope of this analysis. 

5. RECOMMENDATIONS  
Although a single model for identifying habitat suitability from all factors important for EGC 
invasion success would be preferable, this is not possible with the current spatial/temporal 
coverage of abiotic and biotic variables and the lack of robust EGC-presence data in the Salish 
Sea. Every model we examined has limitations, especially for predicting suitable habitat for an 
invader like EGC that has broad environmental tolerances and can survive in a range of habitats 
(Klassen and Locke 2007; Therriault et al. 2008). However, by using information from an 
ensemble of five separate models, each using different predictor variables (see Table 1), it was 
possible to identify specific sites that are likely to be highly suitable for EGC and therefore worth 
consideration for early detection/monitoring plans in Canadian waters of the Salish Sea 
(Appendix Table A1). Although new in the context of aquatic invasive species management, the 
use of multi-models in resource decision-making has been used before (e.g., Woodman et al. 
2019; Waggitt et al. 2019). Combining models, especially those derived from different aspects of 
a species’ biology, increases the probability that suitable conditions (either environmental or 
habitat) are considered when making predictions into newly invaded areas, such as Canadian 
waters of the Salish Sea for EGC. Thus, we recommend using the mode of as many of the 
individual models as possible, provided at least three such individual models are available, 
when building new ensembles to identify additional monitoring sites in the Salish Sea or 
elsewhere in BC. However, while combining models this way should provide the greatest 
predictive power, any of the individual models or tools can be used on its own if necessary. 
Additional management considerations (e.g., sensitive areas, important species) can be used to 
further prioritize this list of sites (which is beyond the scope of the current analyses). 
Methods that incorporated both environmental and habitat characteristics were the most 
informative in terms of identifying early detection/monitoring sites for EGC in the Salish Sea. 
Ideally habitat and environmental data would be available at a very high spatial and temporal 
resolution (on the order of meters) and in the intertidal zone, such that it could be used to 
generate a single model for EGC, but data limitations mean this is not currently possible. 
However, most (if not all) variables used here are available for the entire BC coastline such that 
it should be possible to generate similar predictions for other parts of BC beyond the Salish Sea. 
Future efforts to collect higher resolution data important for EGC and other intertidal invaders 
would improve future predictions. Finally, should EGC continue to expand their range in the 
Salish Sea or elsewhere in BC, all of the models we evaluated should be updated to better 
reflect potentially new suitable habitats for them.  
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7. ACRONYMS 

AIS:  Aquatic invasive species 

BC: British Columbia 

BRT: Boosted regression tree 

CHS: Canadian Hydrographic Service 

CPUE*MaxEnt: Derived model, product of linear BRT and MaxEnt models 

CPUE*PA: Derived model, product of linear and logistic BRT models 

CPUE: Catch-per-unit-effort (also refers to the linear BRT model) 

DFO: Fisheries and Oceans Canada 

EGC: European green crab (Carcinus maenas) 

JD: Julian day 

NEMO: Nucleus for European Modelling of the Ocean 

PA*MaxEnt: Derived model, product of the logistic BRT and Maxent models 

PA: Presence-absence (also refers to the logistic BRT model) 

RMSE: Root-mean-squared-error 

ROMS: Regional Ocean Modeling System 

RSS*MaxEnt: Derived model, product of the RSS model (rescaled from 0-1 to 1-5) and 
MaxEnt model 

RSS: Rapid site selection tool 

RVI: Relative variable importance 

SDM: Species distribution model 

WSG*MaxEnt:  Derived model, product of the WSG model (rescaled from 0-1 to 1-5) and 
MaxEnt model 

WSG: Washington Sea Grant (also refers to the tool developed by WSG)  
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APPENDIX A. SITE AND MODEL INFORMATION 

Table A2. Usability of the five individual models highlighting the data processing requirements, technical 
expertise and feasibility of use for new sites or new areas. Additional details on the MaxEnt EGC model 
can be found in Lyons et al. (2020). BRT = stochastic boosted regression tree models, WSG = 
Washington Sea Grant. 

Usability 
Traits 

MaxEnt EGC 
Model 

Linear BRT 
EGC Model 

Logistic BRT 
EGC Model 

Rapid Site 
Selection 

(RSS) Tool 

Modified WSG 
Crab Team 

Method 
Data required A limited number 

of spatial data 
layers that cover 
the study area 
and presence-
only records for 
EGC.  

Many spatial data 
layers to extract 
site-specific 
information and 
catch data for 
EGC.  

Many spatial data 
layers to extract 
site-specific 
information and 
either catch data 
or presence/ 
absence data for 
EGC. 

A limited number 
of spatial data 
layers that cover 
the study area.  

No data 
requirements. 
High quality 
aerial and/or 
satellite imagery 
recommended.  

Technical 
expertise  

Statistics, coding, 
MaxEnt 
modelling 
techniques and 
GIS software. 

Statistics, coding, 
and GIS 
software. 

Statistics, coding, 
and GIS 
software. 

GIS software. None.  

Resolution of 
output 

Coast-wide, 0.04 
degree resolution 
with values from 
multiple grid cells 
averaged for 
individual sites.  

Individual, pre-
defined sites of 
interest. 

Individual, pre-
defined sites of 
interest. 

Coast-wide 
identification of 
possible sites. 

Individual, pre-
defined sites of 
interest. 

Repeatability  High 
(mathematical 
model) 

High 
(mathematical 
model) 

High 
(mathematical 
model) 

High (automated 
process) 

Unknown, but 
possibly low due 
to subjectivity of 
method.  

Update 
frequency 

When new 
climatology data 
is available, or as 
new information 
on distribution of 
EGC is collected.  

When new or 
improved spatial 
layers become 
available, or as 
new EGC 
trapping survey 
data is collected 
(from west coast 
Van. Isl.).  

When new or 
improved spatial 
layers become 
available, or as 
new EGC 
trapping survey 
data is collected 
(from west coast 
Van. Isl.). 

When new or 
improved spatial 
layers become 
available. 

When new or 
improved aerial 
or satellite 
imagery 
becomes 
available for 
areas/sites of 
interest.  

Applicability 
for new 
sites/areas 

Can be applied 
rapidly, as coast-
wide raster is 
already available. 
Only requires 
defining areas or 
sites of interest. 

Requires 
significant data 
collection using 
GIS analysis for 
all new sites of 
interest, but 
model itself can 
be run quickly.  

Requires 
significant data 
collection using 
GIS analysis for 
all new sites of 
interest, but 
model itself can 
be run quickly. 

Can be applied 
rapidly (1-2 days) 
as process is 
automatic and 
does not require 
sites of interest to 
be identified in 
advance.  

Can be applied 
instantly, 
provided sites of 
interest have 
already been 
identified.  
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Table A3. List of sites referenced in this paper, with coordinates of their centroids. Site names are 
arbitrary and may be unique to this document.  

Site Lat Long Site Lat Long Site Lat Long 
agamemnon 49.71353 -124.081 cabbage 48.797 -123.085 discovery2 48.42218 -123.243 
albert 48.3939 -123.49 cadboro 48.45752 -123.288 dmountain 50.31414 -125.401 
allies 50.20995 -124.806 cain 48.87943 -123.323 donop1 50.14192 -124.956 
amor 50.53451 -124.998 cairns 49.47048 -123.833 donop2 50.16312 -124.968 
anderson1 48.35968 -123.654 camp 48.74536 -123.182 drew 50.10345 -125.205 
anderson2 48.36 -123.66 campbell 48.85826 -123.272 dudley 50.20168 -124.614 
annie 49.38944 -124.593 capemudge 49.99414 -125.174 edith 50.37511 -125.544 
april 50.06135 -125.236 captain 49.78264 -123.994 egerton 50.48348 -125.252 
arnette 48.82315 -123.38 carlson 49.53996 -123.799 ekins 49.53021 -123.39 
artaban 49.476 -123.348 charles 48.84044 -123.381 elagoon 48.42636 -123.463 
artificial 50.38923 -125.519 chatham 48.42978 -123.25 elford 48.79726 -123.131 
ashworth 49.96596 -124.918 chisholm 48.79221 -123.6 elizabeth1 50.31344 -124.855 
asman 50.40321 -125.147 chivers 48.95438 -123.572 elizabeth2 50.31097 -124.841 
attwood 50.30986 -124.661 church 48.80797 -123.199 elk 50.28123 -125.44 
aubyn 50.32037 -125.244 clam 48.82202 -123.312 erskine 48.84911 -123.57 
baker 49.93095 -124.039 clamshell 48.85221 -123.441 esquimalt1 48.44845 -123.433 
bargain 49.61179 -124.037 coal 48.68053 -123.379 esquimalt2 48.45382 -123.443 
barnes 50.32704 -125.267 coghlan 48.39123 -123.485 esquimalt3 48.4534 -123.454 
bear 50.36276 -125.658 coles 48.62989 -123.467 esquimalt4 48.44207 -123.432 
beaver 48.76386 -123.381 columbine 49.41808 -123.321 evans1 50.19792 -125.063 
becher 48.34237 -123.589 comet1 48.67002 -123.3 evans2 50.19918 -125.094 
becher1 48.33827 -123.602 comet2 48.66448 -123.294 evans3 50.20948 -125.085 
becher2 48.33833 -123.599 comox1 49.66375 -124.945 evans4 50.2218 -125.069 
becher3 48.33667 -123.627 comox2 49.66705 -124.918 eveleigh2 50.13972 -124.694 
becher4 48.33917 -123.596 connis 50.30154 -124.898 evening 48.98758 -123.773 
bedwell 49.31453 -122.919 conville 50.1922 -125.142 false 49.48942 -124.355 
beecher1 48.33033 -123.592 coode1 50.02806 -124.745 fanny 49.51445 -124.826 
beecher2 48.333 -123.591 cooper 50.30517 -125.244 fawn 50.08191 -125.216 
bennett 48.84624 -123.25 copper 50.11443 -125.297 fegen 49.5216 -124.386 
bessborough 50.49278 -125.771 cordero 50.4506 -125.243 ferguson 48.60841 -123.395 
bickley 50.45128 -125.393 cordova2 48.50063 -123.34 fernwood 48.91798 -123.545 
billings 49.69743 -124.198 cordova3 48.58997 -123.372 finnerty 49.50353 -124.389 
binnington 50.34114 -125.321 cortes 50.03286 -124.976 fleming 48.42061 -123.412 
bird 50.20133 -125.086 cove 49.31861 -122.941 forbes 50.24296 -124.59 
boatcove 49.46728 -124.243 cowichan1 48.55847 -123.365 forrest1 48.66346 -123.331 
boatswain 48.71415 -123.553 cowichan2 48.7516 -123.624 forrest2 48.66241 -123.337 
boot 48.78895 -123.2 craig 49.31448 -124.263 forward 50.48935 -125.701 
boothbay 48.86702 -123.55 crescent 49.05558 -122.889 frederick1 50.50439 -125.258 
boscowitz 49.01274 -123.574 cross 50.05563 -124.774 fulford 48.77037 -123.461 
boundarybay 49.07951 -122.898 cufra 49.01343 -123.685 gabriola1 49.12959 -123.72 
brem 50.43242 -124.654 davie 49.59977 -124.386 galley1 50.07157 -124.778 
browning1 48.77912 -123.274 deceit 50.24217 -124.975 galley2 50.07235 -124.782 
browning2 48.77747 -123.276 deep 48.68625 -123.473 galvani 50.38197 -125.845 
browning3 48.7778 -123.267 deepcove 48.67984 -123.476 ganges 48.85093 -123.5 
buckley 49.53122 -124.853 departure 49.20292 -123.97 ganges1 48.8554 -123.48 
bull 49.47706 -124.21 depbay1 49.2101 -123.959 ganges2 48.84605 -123.491 
bullock1 50.22541 -125.004 depbay2 49.20985 -123.954 ganges3 48.83525 -123.471 
bullock2 50.22166 -125.004 dharbour 50.04092 -125.247 gbay 50.06718 -124.787 
burdwood2 50.15948 -125.103 dinner 48.83438 -123.326 genoa 48.76717 -123.599 
burgess 49.44149 -123.445 dionisio 49.01138 -123.572 gillies 49.67966 -124.509 
burgoyne 48.78912 -123.52 discovery 48.42778 -123.241 gloucester 50.28635 -124.857 
goldstream 48.49105 -123.553 kar2 48.6706 -123.373 nanoosebay 49.26447 -124.18 
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Site Lat Long Site Lat Long Site Lat Long 
goose 49.66013 -124.925 kents 49.78105 -124.216 nares 49.20291 -123.943 
gossip 48.89085 -123.319 keppel 48.71959 -123.465 narvaez 48.77417 -123.1 
goudge1 48.68642 -123.392 killam 49.80219 -123.912 needham 50.38756 -125.601 
goudge2 48.69588 -123.399 kilpahlas 48.73842 -123.605 nodales 50.36857 -125.315 
gowlland 50.10237 -125.257 kingfisher1 48.7593 -123.412 nodales1 50.36406 -125.314 
grace1 50.04873 -124.755 kingfisher2 48.75957 -123.41 nsaanich 48.67523 -123.421 
grace2 50.05598 -124.745 knapp2 48.6995 -123.401 nsidney 48.69787 -123.436 
granite1 49.45023 -122.862 komas 49.58048 -124.799 nwbay 49.30055 -124.224 
grazebrooke 50.33613 -124.706 kulleet 49.01753 -123.778 oak2 48.4291 -123.305 
grouse 48.75008 -123.579 ladysmith1 48.99652 -123.793 oaks 49.50907 -124 
hadley 49.49786 -124.353 ladysmith2 49.00717 -123.814 octopus1 50.26807 -125.227 
hagan 48.59001 -123.465 ladysmith3 49.01933 -123.841 okeover1 50.01042 -124.73 
hall1 50.4445 -125.283 lamalchi 48.94243 -123.641 okeover2 49.97452 -124.679 
hall2 48.86264 -123.264 lambert 49.52695 -124.751 okeover3 49.96775 -124.678 
hamilton 48.77403 -123.275 lancelot 50.0596 -124.7 orford 50.59123 -124.867 
hare 50.06528 -124.796 langdale 49.43384 -123.474 otter 50.12641 -124.73 
hay 48.74258 -123.225 larsons 49.9878 -124.688 paddy 48.80733 -123.587 
heath 49.47784 -124.361 lawrence 50.43275 -125.112 parker 48.87703 -123.402 
henrietta 50.37262 -125.105 liddell 48.80906 -123.366 parkin 48.73091 -123.313 
henry2 49.59137 -124.838 littlebay 48.75544 -123.203 patricia 48.65608 -123.449 
heydon 50.57816 -125.572 littledarcy 48.57093 -123.267 pedder1 48.34873 -123.577 
higgins 49.49619 -124.367 long 48.86665 -123.475 pedder2 48.35063 -123.574 
hjorth1 50.18109 -125.121 loughborough1 50.58343 -125.533 pelorus 48.72108 -123.3 
hjorth2 50.17758 -125.121 loughborough2 50.58705 -125.528 pender1 49.63282 -123.998 
hmpbck 50.36147 -125.689 lyall 48.7959 -123.174 pender2 49.62652 -123.995 
hope2 48.80136 -123.277 mace 49.95054 -124.766 pender3 49.62572 -124.01 
horton1 48.82912 -123.255 madrone 48.8595 -123.489 pender4 49.61613 -124.048 
horton2 48.82388 -123.243 malaspina1 49.75017 -124.279 pendrell1 50.26863 -124.729 
hotham1 49.83669 -123.995 malaspina2 49.76933 -124.332 pendrell2 50.2525 -124.71 
hotham2 49.9204 -124.024 malaspina3 49.77425 -124.352 pendrell3 50.27317 -124.728 
hotham3 49.91782 -124.021 malaspina4 49.77208 -124.366 pendrell4 50.2917 -124.722 
hutchinson 48.38887 -123.635 malaspina5 49.7726 -124.379 piers 48.70955 -123.418 
hyacinth 50.30697 -125.195 malaspina6 49.72503 -124.428 piggot 48.82451 -123.274 
hyacinthe 50.11964 -125.229 manzanita 50.06685 -124.908 pim 48.36388 -123.662 
icarus 49.24268 -124.018 maple 48.81689 -123.609 piper 49.55056 -123.8 
idol 48.91954 -123.596 maxwell 48.85282 -123.563 plowden 49.532 -123.46 
iroquois 48.68327 -123.392 mayes 50.27477 -125.077 plunger 50.12389 -125.058 
ivanhoe 50.37084 -125.534 mcken 48.55467 -123.505 portsj1 48.55365 -124.421 
jackson 48.75157 -123.442 medecin 48.76012 -123.268 portsj2 48.57933 -124.413 
jackson1 50.52927 -125.821 medicine 48.7613 -123.264 prevost 48.84008 -123.395 
jackson2 50.51467 -125.757 menzies 50.13282 -125.392 prideaux1 50.14698 -124.665 
james 48.6171 -123.377 metcalf 49.4948 -124.761 prideaux2 50.14185 -124.669 
james1 48.60745 -123.348 millbay 48.65593 -123.557 puget 48.4352 -123.248 
james2 48.5945 -123.352 miners 48.85187 -123.301 quarry 49.67632 -124.084 
jelina 49.51043 -124.296 mitchell 49.461 -123.367 ramsay 50.44574 -125 
johns2 48.60376 -123.521 moh 50.51661 -125.038 razor 48.77138 -123.25 
johnstone1 50.35681 -125.085 money 48.84863 -123.46 read 50.52987 -125.78 
johnstone2 50.35925 -125.072 montague 48.89743 -123.407 redonda 50.25862 -124.97 
joyce 50.16099 -124.877 mortimer 48.76678 -123.256 rendezvous2 50.27108 -125.051 
junction 50.14709 -124.906 mountwilliam 50.2109 -125.13 retreat 48.9416 -123.501 
kanish 50.25988 -125.325 mud 49.46923 -124.786 ripple 50.3563 -125.556 
kanish1 50.24425 -125.358 mudge1 49.13107 -123.803 roche2 48.37037 -123.624 
kanish2 50.24012 -125.313 mudge2 50.0325 -125.21 rock1 50.3525 -125.488 
kanish3 50.26372 -125.289 murchinson 48.88875 -123.336 rocky 48.31752 -123.54 
kar1 48.66953 -123.373 musqueam 49.22504 -123.204 roscoe 50.15859 -124.774 
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Site Lat Long Site Lat Long Site Lat Long 
roy 49.64952 -124.941 stella 50.28677 -125.434 walkem1 50.35893 -125.522 
ruckle 48.78398 -123.378 steveston1 49.13027 -123.21 walkers 48.89325 -123.501 
rumbottle 49.73517 -124.499 steveston2 49.1207 -123.179 walter 48.84406 -123.483 
ruxton 49.07559 -123.696 stone1 48.91815 -123.586 walterinner 48.84265 -123.483 
saanichton 48.59147 -123.378 stone2 48.9265 -123.592 welburg 48.84955 -123.449 
salamance 48.90312 -123.344 stoney 48.80539 -123.583 welbury 48.84679 -123.447 
sallas 48.58818 -123.291 storey 50.41905 -125.331 wellbore 50.45332 -125.769 
saltery1 49.78245 -124.172 stove 50.10282 -125.004 whaler 48.89207 -123.341 
saltery2 49.77962 -124.18 stuart1 50.39366 -125.103 whaletown 50.11048 -125.056 
saltwater 50.13945 -125.337 stuart2 50.41309 -125.14 whaling 49.53325 -124.619 
samuel 48.81698 -123.204 sturt 49.76275 -124.572 whiterock 50.25695 -125.088 
saratoga 49.85786 -125.106 subtle 50.11578 -125.083 wigwam 49.46464 -122.888 
sbasin1 48.36345 -123.644 suffolk 50.3555 -125.44 williamsons 49.44827 -123.468 
sbasin2 48.36293 -123.636 tallac 50.44489 -125.471 witty 48.38617 -123.513 
sbasin3 48.37285 -123.631 taylor 49.19356 -123.86 yahoo 49.4826 -123.246 
sbasin4 48.37815 -123.634 teakerne 50.18256 -124.816 young 50.35182 -125.365 
sbasin5 48.39418 -123.655 tenedos 50.12529 -124.705 
sbasin6 48.38615 -123.684 theodocia1 50.07207 -124.704 
schooner 49.28399 -124.13 theodocia2 50.0682 -124.692 
scottie 49.51916 -124.341 theodocia3 50.07864 -124.661 
sechelt 49.46958 -123.775 thetis1 48.97993 -123.685 
secretary 48.96002 -123.589 thetis2 48.98347 -123.675 
selby 48.83183 -123.395 thors 50.05676 -124.708 
shaft 49.19761 -123.945 thunder1 49.76126 -124.269 
shannon 49.6744 -123.163 thunder2 49.7733 -124.278 
sharbour1 48.37187 -123.706 thurlow 50.40565 -125.504 
sharbour2 48.36717 -123.712 thurston1 50.36236 -125.323 
sharbour3 48.36212 -123.704 thurston2 50.37688 -125.316 
sharbour4 48.3568 -123.726 tilly 48.73242 -123.206 
sharbour6 48.36327 -123.729 tod 48.55948 -123.465 
sharpe 48.98248 -123.77 topaze 50.52567 -125.723 
sheer 50.19966 -125.127 tork 50.13911 -124.929 
shields 49.55127 -124.682 trueworthy 48.76821 -123.18 
shoal 48.89708 -123.651 tsawassen 49.04857 -123.113 
shoalbay2 50.45765 -125.368 tugboat 49.14879 -123.69 
shorter 50.40918 -125.731 tumbo 48.79498 -123.091 
sidney1 48.6149 -123.301 twin 50.03173 -124.935 
sidney2 48.61073 -123.313 tyee 50.04937 -125.256 
sidney3 48.63111 -123.328 uganda 50.09607 -125.038 
skerry 49.49912 -124.237 union 49.56561 -124.875 
slab 50.32064 -125.443 unionpoint 49.5965 -124.884 
smelt 50.03375 -124.994 vansittart 50.37794 -125.747 
snarrows1 50.23428 -125.145 vantreight 48.4391 -123.253 
snarrows2 50.23791 -125.154 venture 50.30454 -125.34 
sooke1 48.37435 -123.719 vere 50.39062 -125.771 
sooke2 48.38247 -123.704 vharbour 48.43801 -123.386 
sooke3 48.38948 -123.657 victoria1 48.42865 -123.385 
sooke5 48.3642 -123.712 victoria2 48.43548 -123.379 
southey 48.9412 -123.592 victoria3 48.44052 -123.382 
southgate 50.88751 -124.801 village 48.8424 -123.323 
spapiyus 49.68429 -123.876 vondonop1 50.15233 -124.949 
spectacle 48.55953 -123.536 vondonop2 50.13932 -124.946 
spotlight 48.97867 -123.567 vondonop3 50.17513 -124.972 
spring 49.52591 -124.359 waiatt1 50.26242 -125.252 
stag 50.07838 -125.218 waiatt2 50.26224 -125.241 
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Table A4. Components for numbered models. Mode models are considered to predict highly suitable 
habitat for EGC when two or more models have a rank-transformed value of 5. Union models are 
considered to predict highly suitable habitat when any of the component models have a rank-transformed 
value of 5. Model 6, in bold, is the recommended option for initial monitoring. 

Model # Type Threshold 
Value Component Model(s) N Sites Identified as 

Suitable Habitat 
1 

Individual 
5 

MaxEnt 88 
2 CPUE 90 
3 PA 90 
4 RSS 87 
5 WSG 78 
6 Mode of 5 models MaxEnt, CPUE, PA, RSS, WSG 68 
7 Union of 5 models  MaxEnt, CPUE, PA, RSS, WSG 113 
8 

Individual 
4 

MaxEnt 130 
9 CPUE 138 
10 PA 141 
11 RSS 146 
12 WSG 136 
13 Mode of 5 models  MaxEnt, CPUE, PA, RSS, WSG 151 
14 Union of 5 models  MaxEnt, CPUE, PA, RSS, WSG 207 
15 

Mode of 4 models 5 

MaxEnt, CPUE, PA, RSS 71 
16 MaxEnt, CPUE, PA, WSG 75 
17 MaxEnt, CPUE, RSS, WSG 71 
18 MaxEnt, PA, RSS, WSG 64 
19 MaxEnt, RSS, WSG, CPUE*PA 73 
20 CPUE, PA, RSS, WSG 71 
21 CPUE, PA, RSS, WSG*MaxEnt 75 
22 CPUE, PA, WSG, RSS*MaxEnt 77 
23 CPUE, RSS, WSG, PA*MaxEnt 67 
24 PA, RSS, WSG, CPUE*MaxEnt 68 
25 

Mode of 3 methods 5 

CPUE, PA, RSS 60 
26 CPUE, PA, RSS*MaxEnt 60 
27 CPUE, PA, WSG 62 
28 CPUE, PA, WSG*MaxEnt 63 
29 CPUE, RSS, PA*MaxEnt 57 
30 CPUE, RSS, WSG 67 
31 CPUE, RSS, WSG*MaxEnt 65 
32 CPUE, WSG, PA*MaxEnt 57 
33 CPUE, WSG, RSS*MaxEnt 64 
34 MaxEnt, CPUE, PA 55 
35 MaxEnt, CPUE, RSS 53 
36 MaxEnt, CPUE, WSG 52 
37 MaxEnt, PA, RSS 52 
38 MaxEnt, PA, WSG 51 
39 MaxEnt, RSS, CPUE*PA 60 
40 MaxEnt, RSS, WSG 58 
41 MaxEnt, WSG, CPUE*PA 60 
42 PA, RSS, CPUE*MaxEnt 62 
43 PA, RSS, WSG 65 
44 PA, RSS, WSG*MaxEnt 64 
45 PA, WSG, CPUE*MaxEnt 59 
46 PA, WSG, RSS*MaxEnt 62 
47 RSS, CPUE*PA, WSG*MaxEnt 69 
48 RSS, WSG, CPUE*MaxEnt 68 
49 RSS, WSG, CPUE*PA 72 
50 RSS, WSG, PA*MaxEnt 65 
51 WSG, CPUE*PA, RSS*MaxEnt 70 
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Table A5. Predictions of highly suitable habitat for EGC (√) at all sites for individual models and for 5-model mode and union models, using threshold values of 5 
(i.e., 80th percentile) and 4 (i.e., 60th percentile). Sites are not shown if none of the models identify it as suitable, at a given threshold. Site coordinates are shown in 
Table A2 and model numbers (along top row) can be looked up in Table A2. Sites predicted by the mode of all five models, with a threshold of 5 (model 6) are 
highlighted and marked with an asterisk as the recommended option for initial monitoring. 

Site 
Threshold = 5 (80th percentile) Threshold = 4 (60th percentile) 
 1: 
MaxEnt 

 2: 
CPUE 

 3:  
PA 

 4:  
RSS 

 5:  
WSG 

6: 
Mode 

7: 
Union 

 8: 
MaxEnt 

 9: 
CPUE 

 10:  
PA 

 11:  
RSS 

 12: 
WSG 

13: 
Mode  

14: 
Union 

agamemnon – √ √ – – – √ √ √ √ – – √ √ 
albert – – – – √ – – √ – – – √ √ √ 
anderson1 √ – – – √ – √ √ √ √ √ √ √ √ 
anderson2 √ √ – – – – √ √ √ √ – – √ √ 
annie – – – √ √ – √ – – – √ √ – √ 
april √ – – – – – – √ – – – – – – 
arnette – – – √ – – – – – √ √ – – √ 
artaban* – – √ – √ √ √ – √ √ – √ √ √ 
artificial* √ √ √ – – √ √ √ √ √ √ – √ √ 
ashworth – √ – – – – – √ √ – √ √ √ √ 
asman √ √ – – – – √ √ √ – – – – √ 
attwood – √ √ – – – √ – √ √ √ – √ √ 
baker – √ – √ – – √ – √ √ √ √ √ √ 
bargain – √ – – – – – – √ – – – – – 
bear √ – – – – – – √ – – √ – – √ 
becher* √ – √ – √ √ √ √ √ √ √ √ √ √ 
becher1 √ – – – – – – √ – – – – – – 
becher2 √ – – – – – – √ – – – – – – 
becher3 √ – – – – – – √ – √ √ – √ √ 
becher4 √ – – – – – – √ √ √ √ √ √ √ 
bedwell – – √ – – – – N/A – √ – – √ √ 
beecher1 √ – – – – – – √ – – – – – – 
beecher2 √ – – – – – – √ – – – – – – 
bessborough* √ – √ √ √ √ √ √ – √ √ √ √ √ 
bickley* √ √ – – – √ √ √ √ – – – √ √ 
binnington √ – – – – – – √ – – – – – – 
boatcove – – √ √ – – √ – √ √ √ √ √ √ 
boatswain – – – √ – – – – – – √ – – – 
boot – – √ – – – – – – √ – – – – 
boothbay – – – √ – – – – – – √ √ √ √ 
boundarybay* – √ √ √ √ √ √ – √ √ √ √ √ √ 
brem* – – √ √ – √ √ – √ √ √ – √ √ 
bull* – √ √ – √ √ √ – √ √ √ √ √ √ 
burgess – √ – – – – – – √ – – – – – 
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Site 
Threshold = 5 (80th percentile) Threshold = 4 (60th percentile) 
 1: 
MaxEnt 

 2: 
CPUE 

 3:  
PA 

 4:  
RSS 

 5:  
WSG 

6: 
Mode 

7: 
Union 

 8: 
MaxEnt 

 9: 
CPUE 

 10:  
PA 

 11:  
RSS 

 12: 
WSG 

13: 
Mode  

14: 
Union 

burgoyne – – – √ – – – – – – √ – – – 
cabbage* – – √ √ √ √ √ – – √ √ √ √ √ 
cadboro – √ – – √ – √ – √ √ √ √ √ √ 
capemudge – – √ – – – – √ – √ – – – √ 
captain – √ – – – – – √ √ – – – – √ 
carlson* – √ – √ √ √ √ – √ √ √ √ √ √ 
charles – √ – – – – – – √ – – – – – 
chatham – – √ – – – – √ – √ – √ √ √ 
chisholm – – √ – √ – √ – √ √ √ √ √ √ 
coghlan – – √ – – – – √ – √ – – – √ 
comox1* – √ – √ √ √ √ √ √ – √ √ √ √ 
comox2* – – √ √ √ √ √ – √ √ √ √ √ √ 
conville – √ – – – – – √ √ – – – – √ 
copper √ – – – – – – √ – – – – – – 
cordero √ – – – – – – √ – – – – – – 
cortes – – – – √ – – √ – – – √ √ √ 
cowichan2* – √ – √ √ √ √ – √ √ √ √ √ √ 
craig – √ – √ – – √ – √ √ √ √ √ √ 
crescent – – – √ – – – – √ – √ – – √ 
cross* – √ √ – – √ √ – √ √ √ – √ √ 
cufra – – √ – – – – – – √ √ – – √ 
departure – – – – √ – – – – – √ √ – √ 
depbay2 – √ – – – – – – √ – – – – – 
discovery – – – – √ – – √ – – – √ – √ 
dmountain √ – – – – – – √ – – √ – √ √ 
donop1 – √ – – √ – √ √ √ √ √ √ √ √ 
drew* – – √ √ – √ √ √ – √ √ – √ √ 
edith √ – – – – – – √ – – – – – – 
egerton √ – – – – – – √ √ √ √ √ √ √ 
elagoon* – – √ √ – √ √ √ – √ √ – √ √ 
elk* √ – – √ √ √ √ √ – – √ √ √ √ 
esquimalt1 – √ √ – – – √ – √ √ – – – √ 
esquimalt2 – – √ – – – – – – √ – – – – 
esquimalt3* – √ √ √ – √ √ – √ √ √ √ √ √ 
evans1 – √ – – – – – √ √ √ √ √ √ √ 
evans2 – – √ – – – – √ √ √ – √ √ √ 
evans4 – √ – √ – – √ – √ √ √ √ √ √ 
false* – √ – – √ √ √ – √ – – √ √ √ 
fanny* – √ √ √ – √ √ – √ √ √ √ √ √ 



 

43 

Site 
Threshold = 5 (80th percentile) Threshold = 4 (60th percentile) 
 1: 
MaxEnt 

 2: 
CPUE 

 3:  
PA 

 4:  
RSS 

 5:  
WSG 

6: 
Mode 

7: 
Union 

 8: 
MaxEnt 

 9: 
CPUE 

 10:  
PA 

 11:  
RSS 

 12: 
WSG 

13: 
Mode  

14: 
Union 

fawn √ – – – – – – √ – √ – √ √ √ 
finnerty – – √ – – – – – – √ – – – – 
forbes – – – √ – – – – – – √ √ – √ 
forward* √ – – √ √ √ √ √ √ – √ √ √ √ 
frederick1* √ – – √ √ √ √ √ – – √ √ √ √ 
fulford – – – – √ – – – – – √ √ √ √ 
gabriola1 – √ – – √ – √ – √ – √ √ √ √ 
galvani √ – – – – – – √ √ √ √ – √ √ 
ganges – – – – √ – – – √ √ √ √ √ √ 
ganges1 – – – √ – – – – √ – √ √ √ √ 
gillies* – – – √ √ √ √ – √ – √ √ √ √ 
goldstream – – – √ √ – √ – – – √ √ – √ 
gowlland* √ √ √ √ – √ √ √ √ √ √ – √ √ 
grace1 – – √ – – – – – √ √ √ – √ √ 
granite1 – – – √ – – – – √ – √ – – √ 
hadley – √ √ – – – √ – √ √ √ √ √ √ 
hagan – – – √ – – – – – – √ – – – 
hall1 √ – – – – – – √ – – – – – – 
hamilton – – – – √ – – – – – – √ – – 
hay – √ – – – – – – √ – – – – – 
heydon √ – – √ – – √ √ √ √ √ √ √ √ 
higgins – – √ – – – – – – √ – – – – 
hjorth1 – √ – – – – – √ √ – – √ √ √ 
hmpbck* √ – – √ √ √ √ √ – – √ √ √ √ 
hope2 – – √ – – – – – – √ √ √ √ √ 
horton1 – √ – – – – – – √ – √ √ √ √ 
horton2 – √ – – – – – – √ √ – √ √ √ 
hotham1 – √ – – – – – – √ – √ √ √ √ 
hotham2 – – √ – – – – – √ √ – – – √ 
hotham3* – √ √ – – √ √ – √ √ √ – √ √ 
hutchinson √ – – – – – – √ √ √ √ √ √ √ 
hyacinth – √ √ – – – √ √ √ √ – – √ √ 
hyacinthe – – √ – – – – – – √ – – – – 
ivanhoe √ – – – – – – √ – – – – – – 
jackson – – √ – – – – – – √ – – – – 
jackson1* √ – √ √ √ √ √ √ – √ √ √ √ √ 
jackson2 √ – – – – – – √ √ – √ – √ √ 
james1* – √ – √ √ √ √ – √ – √ √ √ √ 
james2 – – – – √ – – – – √ – √ – √ 
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Site 
Threshold = 5 (80th percentile) Threshold = 4 (60th percentile) 
 1: 
MaxEnt 

 2: 
CPUE 

 3:  
PA 

 4:  
RSS 

 5:  
WSG 

6: 
Mode 

7: 
Union 

 8: 
MaxEnt 

 9: 
CPUE 

 10:  
PA 

 11:  
RSS 

 12: 
WSG 

13: 
Mode  

14: 
Union 

jelina – – √ √ – – √ – – √ √ – – √ 
johns2 – – – √ – – – – – – √ √ – √ 
kanish* √ – √ – – √ √ √ – √ – – √ √ 
kanish1 √ – – √ – – √ √ √ √ √ – √ √ 
kanish2* √ √ √ – – √ √ √ √ √ √ √ √ √ 
kanish3* √ √ – √ √ √ √ √ √ – √ √ √ √ 
killam – – √ – – – – √ – √ – – – √ 
kilpahlas – √ – √ – – √ – √ – √ √ √ √ 
kingfisher1 – – – – √ – – – – √ – √ – √ 
komas – – – – √ – – – √ – – √ – √ 
kulleet* – – – √ √ √ √ – – – √ √ √ √ 
ladysmith2 – – √ – – – – – – √ – – – – 
ladysmith3* – √ √ √ √ √ √ – √ √ √ √ √ √ 
lamalchi – – √ – – – – – – √ – √ – √ 
lambert* – √ √ – √ √ √ – √ √ √ √ √ √ 
lancelot – √ – – – – – – √ √ – √ √ √ 
larsons* – √ √ √ – √ √ √ √ √ √ – √ √ 
long – – – √ – – – – √ √ √ √ √ √ 
loughborough1 √ – – – – – – √ – – √ – – √ 
loughborough2 √ – – – – – – √ – √ √ – √ √ 
lyall – – – √ √ – √ – √ – √ √ √ √ 
madrone – √ – – – – – – √ √ √ √ √ √ 
malaspina1 – – √ – – – – – – √ – – – – 
malaspina2 – – – √ – – – – √ – √ – – √ 
malaspina3 – – – √ – – – – – – √ – – – 
malaspina4* – – √ √ √ √ √ – – √ √ √ √ √ 
manzanita* – – – √ √ √ √ √ – – √ √ √ √ 
maple – √ – – – – – – √ – – – – – 
mcken – √ – √ – – √ – √ – √ – – √ 
medecin* – √ – √ √ √ √ – √ – √ √ √ √ 
menzies √ – – – √ – √ √ – √ √ √ √ √ 
millbay – – – √ – – – – √ – √ √ √ √ 
miners – √ – – – – – – √ – – – – – 
moh – – – √ – – – – – – √ – – – 
mortimer – – – – √ – – – √ – – √ – √ 
mud* – √ √ √ √ √ √ – √ √ √ √ √ √ 
mudge1 – – √ – – – – – – √ – – – – 
murchinson – – √ – – – – – – √ – √ – √ 
musqueam – – – √ √ – √ – – – √ √ – √ 
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Site 
Threshold = 5 (80th percentile) Threshold = 4 (60th percentile) 
 1: 
MaxEnt 

 2: 
CPUE 

 3:  
PA 

 4:  
RSS 

 5:  
WSG 

6: 
Mode 

7: 
Union 

 8: 
MaxEnt 

 9: 
CPUE 

 10:  
PA 

 11:  
RSS 

 12: 
WSG 

13: 
Mode  

14: 
Union 

nanoosebay* – – √ √ √ √ √ – – √ √ √ √ √ 
narvaez – – √ – – – – – – √ – – – – 
needham √ – – – – – – √ – – – – – – 
nodales* √ √ √ – – √ √ √ √ √ – – √ √ 
nodales1 √ – – – – – – √ – – – – – – 
okeover2 – – – √ – – – – – √ √ – – √ 
okeover3 – – – √ √ – √ – √ √ √ √ √ √ 
orford* – √ – √ √ √ √ – √ – √ √ √ √ 
paddy – √ – – – – – – √ – – – – – 
patricia – – – √ – – – – – √ √ √ √ √ 
pedder1 – √ – – – – – √ √ – √ √ √ √ 
pender1* – √ √ √ √ √ √ – √ √ √ √ √ √ 
pender2* – √ √ √ √ √ √ – √ √ √ √ √ √ 
pender3* – √ √ – – √ √ – √ √ – – √ √ 
pendrell1 – – √ – – – – √ – √ – – – √ 
pendrell3 – – – – √ – – √ – – √ √ √ √ 
pim* √ – √ – – √ √ √ – √ – √ √ √ 
portsj1 √ – – – – – – √ √ √ – – √ √ 
portsj2* √ – √ √ √ √ √ √ – √ √ √ √ √ 
prevost – – – – √ – – – – – – √ – – 
prideaux2 – √ – – – – – – √ – √ – – √ 
puget* – – √ – √ √ √ √ – √ – √ √ √ 
quarry – √ – – – – – √ √ – – – – √ 
ramsay – √ – – – – – – √ – √ √ √ √ 
read* √ – – √ √ √ √ √ – – √ √ √ √ 
retreat – – √ – – – – – √ √ – √ √ √ 
ripple √ – – – – – – √ – – √ – – √ 
roche2* √ √ √ – – √ √ √ √ √ √ – √ √ 
rock1 √ √ – – – – √ √ √ – √ √ √ √ 
rocky √ – – – – – – √ – √ – – – √ 
roscoe* – √ √ √ – √ √ √ √ √ √ – √ √ 
roy – – – √ √ – √ √ √ √ √ √ √ √ 
rumbottle – – √ – √ – √ √ – √ √ √ √ √ 
saanichton – – – √ √ – √ – – – √ √ – √ 
saltery2 – – – – √ – – – – √ √ √ √ √ 
saltwater √ – – – √ – √ √ – – – √ – √ 
samuel – – – – √ – – – – – – √ – – 
saratoga* – – – √ √ √ √ – √ – √ √ √ √ 
sbasin1* √ – √ – – √ √ √ – √ √ – √ √ 
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Site 
Threshold = 5 (80th percentile) Threshold = 4 (60th percentile) 
 1: 
MaxEnt 

 2: 
CPUE 

 3:  
PA 

 4:  
RSS 

 5:  
WSG 

6: 
Mode 

7: 
Union 

 8: 
MaxEnt 

 9: 
CPUE 

 10:  
PA 

 11:  
RSS 

 12: 
WSG 

13: 
Mode  

14: 
Union 

sbasin2 √ – – – – – – √ – – – – – – 
sbasin3 √ – – – – – – √ – – – – – – 
sbasin4 √ – √ – – – √ √ – √ – – – √ 
sbasin5 √ – – – – – – √ √ √ – √ √ √ 
sbasin6 √ – √ – – – √ √ – √ √ √ √ √ 
scottie – – √ – – – – – – √ – √ √ √ 
selby* – √ – – √ √ √ – √ – – √ √ √ 
shaft – – – – √ – – – – – – √ – – 
shannon – √ – – – – – – √ – – – – – 
sharbour1 √ – – – – – – √ – – – – – – 
sharbour2 √ – – – – – – √ – – – – – – 
sharbour3 √ √ – – – – √ √ √ √ √ – √ √ 
sharbour4 √ – – – – – – √ – – – – – – 
sharbour6 √ – – – – – – √ – – √ – – √ 
sheer – – – – √ – – √ – √ – √ √ √ 
shoal* – √ √ √ √ √ √ – √ √ √ √ √ √ 
shoalbay2* √ √ – √ √ √ √ √ √ – √ √ √ √ 
shorter* √ √ – √ – √ √ √ √ – √ – √ √ 
sidney3* – – √ – √ √ √ – √ √ – √ √ √ 
skerry – – √ – – – – – – √ – – – – 
slab √ – √ – – – √ √ – √ – √ √ √ 
snarrows2* – √ √ – √ √ √ √ √ √ √ √ √ √ 
sooke1 √ – √ – – – √ √ – √ – – – √ 
sooke2 √ – – √ – – √ √ – √ √ √ √ √ 
sooke3* √ √ – – √ √ √ √ √ √ √ √ √ √ 
sooke5 √ – – – – – – √ – √ – – – √ 
southgate – – – √ √ – √ – – – √ √ – √ 
spectacle – √ – – – – – – √ – √ – – √ 
stag √ – – – – – – √ – – – – – – 
stella √ – – – – – – √ √ – – – – √ 
steveston1* – √ √ √ √ √ √ – √ √ √ √ √ √ 
steveston2* – – √ – √ √ √ – √ √ – √ √ √ 
stoney – √ – – – – – – √ – – – – – 
storey √ – – – – – – √ – √ – – – √ 
stove – √ √ – – – √ – √ √ – – – √ 
stuart2 √ – – – – – – √ – – √ – – √ 
sturt – – – √ √ – √ √ – √ √ √ √ √ 
suffolk √ – – – – – – √ – √ √ – √ √ 
tallac* √ √ – √ – √ √ √ √ – √ √ √ √ 
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Site 
Threshold = 5 (80th percentile) Threshold = 4 (60th percentile) 
 1: 
MaxEnt 

 2: 
CPUE 

 3:  
PA 

 4:  
RSS 

 5:  
WSG 

6: 
Mode 

7: 
Union 

 8: 
MaxEnt 

 9: 
CPUE 

 10:  
PA 

 11:  
RSS 

 12: 
WSG 

13: 
Mode  

14: 
Union 

taylor – – – – √ – – – – – – √ – – 
tenedos – – √ – – – – – √ √ – – √ √ 
theodocia3 – – – √ – – – – – – √ √ – √ 
thunder1 – – √ – – – – – – √ – – – – 
thunder2 – – – – √ – – – √ – √ √ √ √ 
thurlow √ – – – – – – √ – √ – – – √ 
thurston1 √ – – – – – – √ – √ – – – √ 
thurston2* √ √ – √ √ √ √ √ √ √ √ √ √ √ 
tilly – √ – – – – – – √ – – – – – 
tod – – – √ – – – – √ – √ – √ √ 
topaze √ – – √ – – √ √ √ √ √ √ √ √ 
tork – – √ – – – – √ √ √ – – √ √ 
Yworthy – – √ – – – – – – √ – – – – 
tsawassen* – – – √ √ √ √ – – √ √ √ √ √ 
tugboat – √ – – – – – – √ – – – – – 
tumbo – √ – – – – – – √ – – – – – 
twin – – – – √ – – √ – – √ √ √ √ 
tyee – – √ – – – – √ – √ – – √ √ 
uganda – √ √ – – – √ – √ √ – – – √ 
unionpoint – – – √ – – – – – – √ √ – √ 
vansittart √ – – – – – – √ – – – – – – 
vantreight – – – – √ – – √ √ – – √ √ √ 
venture √ – – – – – – √ – – – – – – 
vere* √ √ – – √ √ √ √ √ – √ √ √ √ 
vharbour – √ √ – – – √ √ √ √ – – √ √ 
victoria1 – √ – – – – – √ √ √ – – √ √ 
victoria2 – – √ – – – – √ √ √ – – √ √ 
vondonop1 – √ – – – – – √ √ – – – √ √ 
waiatt1 √ – – – – – – √ – √ √ – √ √ 
waiatt2 – – √ – – – – √ √ √ √ – √ √ 
walkem1 √ – – – – – – √ √ – – – – √ 
walkers – – – – √ – – – – – – √ – – 
walter – – – – √ – – – – – – √ – – 
wellbore* √ √ – √ √ √ √ √ √ – √ √ √ √ 
whiterock – – – √ – – – – √ – √ – – √ 
wigwam – – – √ √ – √ – – – √ √ – √ 
witty* – √ √ √ √ √ √ √ √ √ √ √ √ √ 
young √ – – – – – – √ – – – – – – 
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Table A6. Predictions of highly suitable habitat (√) at all sites for mode models comprised of 4- and 3- model combinations, using the 80th percentile as the 
threshold for suitability. Sites are not shown if none of the models identify it as suitable, at that threshold. Site coordinates are shown in Table A2 and model 
numbers (along top row) can be looked up in Table A2. 

Site 
Mode of 4 models Mode of 3 models 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 
agamemnon √ √ – – – – √ √ – – √ √ √ √ √ – – √ – √ – – – – – – – √ – – √ – – – – – – 
albert – – – – – – – – √ – – – – – – – – √ – – – – – – – – – – – – – – – – – √ – 
anderson1 – – – – √ – – – – – – – – – – – – √ √ – – √ – √ √ √ √ – – – √ √ √ √ √ √ √ 
anderson2 √ √ – – – – – – – – – – – – √ – – √ – √ √ √ – – √ – √ – – – – – – – – – – 
annie – – √ – – √ – – √ √ – – – – – √ – – – – – – – – – √ – – √ – – – – √ √ √ – 
artaban – √ – √ √ √ √ √ – √ – – √ √ – – – – – – – – – √ – – √ – √ √ √ √ √ – √ – √ 
artificial √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ – √ √ √ √ √ √ √ √ √ – √ √ – √ √ √ √ – – – √ 
ashworth – – – – – – √ √ – – – √ – √ – – √ – √ – – – – – – – – – – – – – – – – – – 
asman √ √ – – – – – – – – – – – – – – – – – √ √ √ – – √ – √ – – – – – – – – – – 
attwood √ – – – – √ – √ – √ √ √ √ √ – – – – – √ – – – – – – – √ – – √ – – – – – – 
baker √ – √ – √ – – – – – √ √ – – √ √ √ – √ – √ – – – √ – – √ – – – – √ √ √ – √ 
becher – √ – √ √ – – √ – √ – √ √ √ – – – √ √ √ – √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
becher4 – – – – – – – – – – – – – – – – – – – – – – – – √ – √ – – – – – √ – – – √ 
bessborough √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
bickley √ √ √ – √ – – – √ – – – – – √ – – √ – √ √ √ – – √ – √ – – – – – – – – – – 
boatcove √ – – √ √ – – – – – √ √ – – – – – – – – – – √ – √ – – √ √ √ – √ √ – √ – √ 
boundarybay √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
brem √ – – √ √ √ √ – – √ √ – – – – – – – – – – – √ – √ – – √ √ √ – – √ – √ – – 
bull √ √ √ √ √ √ √ √ – √ √ √ √ √ – √ √ √ √ √ – √ – √ – – √ √ √ √ √ √ √ √ √ – √ 
cabbage √ √ √ √ √ √ √ √ √ √ √ – √ – – √ – – – – – – √ √ – √ – √ √ √ √ √ – √ √ √ – 
cadboro – √ √ – √ – – – – – – – √ √ – √ √ √ √ – – √ – – – – √ – – – √ – √ √ √ – √ 
carlson √ √ √ √ √ √ √ √ √ √ √ – √ – √ √ √ √ √ – √ √ – – √ √ √ – √ – – – √ √ √ √ √ 
chatham – – – – – – √ – – – – – – √ – – – – – – – – – – – – – – – √ – – – – – – – 
chisholm – √ – √ √ – – – – √ – – √ – – – – – – – – – – √ – – √ – √ – √ √ – – √ – √ 
comox1 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ – √ √ – – √ √ √ √ √ √ √ √ √ √ √ √ √ 
comox2 √ √ √ √ √ √ – – – √ √ – √ – – √ – – – – – – √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
cowichan2 √ √ √ √ √ √ – – √ √ √ – √ – √ √ √ √ √ – √ √ – – √ √ √ √ √ – √ – √ √ √ √ √ 
craig √ – √ – √ – √ – √ – √ – – – √ √ √ – – – √ – – – √ – – – – – – – √ – √ – – 
cross √ √ – – – √ √ √ – – √ √ √ √ – – – – – √ – – – – – – – – – – – – – – – – – 
donop1 – – – – – – – √ √ – – √ √ √ √ √ √ √ √ – – √ – – – – √ – – – √ √ √ √ √ √ √ 
drew √ – – √ – √ √ √ √ – √ √ – – √ – – – – – – – √ – – – – √ √ √ – √ – – – √ – 
egerton – – – – – – – – – – – – – – – – – – – – – – – – √ – √ – – – – – √ – – – √ 
elagoon √ – – √ – √ √ √ √ – √ √ – – √ – – – – – – – √ – – – – √ √ √ – √ – – – √ – 
elk √ √ √ √ √ √ √ √ √ – – – – – √ √ √ √ √ – √ √ √ √ √ √ √ – √ √ – √ √ √ √ √ √ 
esquimalt1 √ √ – – – – – √ – – √ √ √ √ – – – – – √ – – – – – – – √ – – √ – – – – – – 
esquimalt3 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ – √ – √ – – √ √ √ √ √ √ √ √ √ √ 
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Site 
Mode of 4 models Mode of 3 models 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 
evans1 – – – – – – – – – – – √ – √ – – √ – √ – – – – – – – – – – – – – √ – – – √ 
evans2 – – – – – – √ – – √ – – – √ – – – – – – – – – – – – – √ – √ √ – √ – – – – 
evans4 √ – √ – √ – – – – – √ – – – √ √ √ – – – √ – – – √ – – √ – – – – √ √ √ – – 
false – √ √ – √ √ – √ √ – – – √ – – √ – √ √ – – √ – – – – √ – – – – – – – √ – √ 
fanny √ √ √ √ √ √ √ – – – √ √ √ √ √ √ √ – – √ √ – √ – √ – – √ √ √ – – √ – √ – – 
forward √ √ √ √ √ √ √ √ √ √ – – – – – √ √ – √ – √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
frederick1 √ √ √ √ √ √ √ √ – √ – – – – – √ √ – √ – √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
gabriola1 – – √ – – √ – √ √ – – – √ – – √ – √ √ – – √ – – – – – – – – – – – – – – – 
galvani – – – – √ – – – – – – – – – – – – – – – – – – – √ – √ – – – – – √ – – – √ 
gillies – – √ √ √ √ √ √ √ √ – – – – – √ √ – √ – – – – – – √ – – √ √ – √ √ √ √ √ √ 
goldstream – – √ √ √ – – – – √ – – – – – √ – – – – – – – – – √ – – √ – – – – √ √ √ – 
gowlland √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
hadley √ √ – – – – – – – – √ √ √ √ – – – – – √ – – – – – – – √ – – √ – – – – – – 
heydon – – – – √ – – – – – – – – – √ – √ – – – √ – √ – √ √ √ √ – √ – – √ √ √ √ √ 
hjorth1 – – – – – – √ – – – – – – √ – – √ – – – – – – – – – – – – – – – – – – – – 
hmpbck √ √ √ √ √ √ √ √ √ √ – – – – √ √ √ √ √ – √ √ √ √ √ √ √ – √ √ – √ √ √ √ √ √ 
hotham1 – – – – – – √ – – – – – – √ – – √ – – – – – – – – – – – – – – – – – – – – 
hotham3 √ √ – – – √ √ √ – √ √ √ √ √ – – – – – √ – – – – – – – √ – – √ – – – – – – 
hutchinson – – – – – – – – – – – – – – – – – – – – – – – – √ – √ – – – – – √ – – – √ 
hyacinth √ √ – – – – √ √ – – √ √ √ √ √ – – √ – √ – – – – – – – √ – – √ – – – – – – 
jackson1 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
james1 √ √ √ √ √ √ √ √ √ √ √ – √ – √ √ √ √ √ – √ √ – – – √ – – √ – – – – √ √ √ – 
jelina – – – – – – √ – – – √ √ – – – – – – – – – – √ – – – – √ √ √ – √ – – – – – 
kanish √ √ – √ – – √ – – – – – – √ – – – – – √ – – √ √ – – – – – √ – – – – – – – 
kanish1 – – √ √ √ – – – √ √ – – – – √ – √ – – – √ – √ – √ √ √ √ – √ – – √ √ √ √ √ 
kanish2 √ √ – – – – √ √ – – √ √ √ √ √ – √ √ √ √ √ √ √ √ √ – √ √ – √ √ √ √ – – – √ 
kanish3 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
kilpahlas – – √ – – √ √ – √ √ √ – – – √ √ √ – – – √ – – – – – – √ – – – – – √ – – – 
kulleet – – √ √ √ √ – – √ √ – – – – – √ – – – – – – – – – √ – – √ – – – – √ √ √ – 
ladysmith3 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
lambert √ √ √ √ √ √ – √ – √ √ √ √ √ – √ – √ √ √ – √ – √ – – √ √ √ – √ √ – √ √ – √ 
larsons √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ – √ – √ – – √ √ √ √ √ √ √ √ √ √ 
long – – – – √ – – – – – – – – – – – – – – – – – – – √ – – – – – – – √ – √ – – 
lyall – – √ – – √ – – √ √ – – – – – √ – – – – – – – – – √ – – √ – – – – √ √ √ – 
malaspina4 – – – √ √ √ √ √ √ √ √ √ √ √ – √ √ – √ – – – √ √ – √ – √ √ √ √ √ √ √ √ √ √ 
manzanita – – √ √ √ √ √ √ √ √ – – – – – √ √ – √ – – – – – – √ – – √ √ – √ √ √ √ √ √ 
mcken √ – √ – – – √ – √ – √ – – – √ √ √ – – – √ – – – – – – – – – – – – – – – – 
medecin – – √ – √ √ √ √ √ √ √ – √ – √ √ √ √ √ – √ √ – – – √ – – √ – – – – √ √ √ – 
menzies – √ √ – – – – √ √ – – – – – – – – √ √ – – √ – √ – √ √ – – – – √ – – – √ √ 
mud √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
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Site 
Mode of 4 models Mode of 3 models 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 
musqueam – – √ – – √ √ √ √ √ – – – – – √ √ – √ – – – – – – √ – – √ √ – √ √ √ √ √ √ 
nanoosebay √ √ √ √ √ √ √ √ √ √ √ – √ – – √ – – – – – – √ √ – √ – √ √ √ √ √ – √ √ √ – 
nodales √ √ – – – – √ √ – – √ √ √ √ √ – – √ – √ √ √ √ √ √ – √ √ – – √ – – – – – – 
okeover3 – – √ √ √ – – – – – – – – – – √ √ – √ – – – – – – √ – – √ √ – √ √ √ √ √ √ 
orford – – √ – √ √ √ √ √ √ √ – √ – √ √ √ √ √ – √ √ – – √ √ √ – √ – – – √ √ √ √ √ 
pedder1 – – – – – – √ √ – – – √ – √ – – √ – √ – – – – – – – – – – – – – – – – – – 
pender1 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
pender2 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
pender3 √ √ – – – √ √ – – – √ √ √ √ – – – – – √ – – – – – – – – – – – – – – – – – 
pim √ √ – √ – – √ – – – – – – √ – – – – – √ – – √ √ – – – – – √ – – – – – – – 
portsj2 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
puget – √ – √ – √ √ – √ √ – – √ √ – – – √ – – – – – √ – – – – √ √ √ √ – – – √ – 
read √ √ √ √ √ √ √ √ √ √ – – – – – √ √ – √ – √ √ √ √ √ √ √ – √ √ – √ √ √ √ √ √ 
roche2 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ – – √ √ √ √ √ √ √ √ – √ √ – – √ √ – – – – √ 
rock1 √ √ – – – – √ √ – – – √ – √ √ – √ √ √ √ √ √ – – √ – √ – – – – – √ – – – √ 
roscoe √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ – √ – √ – – √ √ √ √ √ √ √ √ √ √ 
roy – – – – √ – – – – √ – – – – – √ √ – √ – – – – – √ √ √ √ √ √ √ √ √ √ √ √ √ 
rumbottle – √ – – – √ √ √ √ – – √ √ √ – – – √ √ – – – – √ – – – – √ √ √ √ – – – √ √ 
saanichton – – √ √ √ – – – – √ – – – – – √ – – – – – – – – – √ – – √ – – – – √ √ √ – 
saltwater – √ √ – – – – – – – – – – – – – – – – – – √ – √ – √ √ – – – – – – – – – – 
saratoga – – √ √ √ √ √ √ √ √ – – – – – √ √ – √ – – – – – – √ – – √ √ – √ √ √ √ √ √ 
sbasin1 √ √ – √ – – – √ – – – √ – – – – – – – √ – – √ √ – – – – – – – √ – – – – – 
sbasin4 √ √ – – – – – – – – – – – – – – – – – √ – – √ √ – – – – – – – – – – – – – 
sbasin5 – – – – √ – – – – – – – – – – – – – – – – – – – √ – √ – – – – – √ – – – – 
sbasin6 √ √ – – – – √ √ – – – √ – √ – – – – – √ – – √ √ – – – √ – √ √ √ – – – – – 
scottie – – – – – – √ – – – – – – √ – – – – – – – – – – – – – – – √ – – – – – – – 
selby – √ √ – – √ – √ √ – – – √ – – √ – √ √ – – √ – – – – – – – – – – – – – – – 
sharbour3 – √ √ – √ – – √ √ – – √ – – √ – – √ √ √ √ √ – – √ – √ – – – – – – – – – √ 
sheer – – – – – – – – √ – – – – – – – – √ – – – – – – – – – – – – – – – – – √ – 
shoal √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
shoalbay2 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
shorter √ √ √ √ √ √ √ √ √ √ √ √ – √ √ √ √ – √ √ √ √ √ – √ √ – √ – √ – – √ √ – – – 
sidney3 – √ – √ – √ – √ – √ – – √ – – – – – – – – – – √ – – – – √ – √ √ – – – – – 
slab – √ – √ – – – – – – – – – √ – – – – – √ – – √ √ – – – – – √ – – – – – – – 
snarrows2 – √ – – – √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ – √ – √ – – √ √ √ √ √ √ √ √ √ √ √ 
sooke1 √ √ – – – – – – – – – – – – – – – – – √ – – √ √ – – – – – – – – – – – – – 
sooke2 √ – √ – – – √ – √ – – – – – √ – √ – – – √ – √ – √ √ – √ – √ – – √ √ – √ – 
sooke3 – √ √ – √ – – √ √ – – √ √ √ √ √ √ √ √ √ √ √ – √ √ √ √ – – – √ √ √ √ √ √ √ 
southgate – – √ √ √ – – – – √ – – – – – √ √ – – – – – – – – √ – – √ √ – – √ √ √ √ – 
steveston1 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 



 

51 

Site 
Mode of 4 models Mode of 3 models 

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 
steveston2 – √ – √ √ √ – √ – √ – – √ – – – – – – – – – – √ – – √ – √ – √ √ – – √ – √ 
stove √ – – – – √ – √ – √ √ √ √ √ – – – – – √ – – – – – – – √ – – √ – – – – – – 
sturt – – √ – – √ √ √ √ – – – – – √ √ √ √ √ – – – – – – √ – – √ √ – √ √ √ √ √ √ 
tallac √ √ √ √ √ √ √ √ – √ √ √ – √ √ √ √ – √ √ √ √ √ – √ √ √ √ – √ – – √ √ √ – √ 
thurston2 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
topaze – – – – √ – – – – – – – – – √ – √ – – – √ – √ – √ √ √ √ – √ – – √ √ √ √ √ 
tsawassen – – √ √ √ √ – – √ √ – – – – – √ – – – – – – – – – √ – – √ – – – – √ √ √ – 
twin – – – – – – – √ – – – – – – – – – – √ – – – – – – – – – – – – √ – – – – √ 
uganda √ – – – – √ – √ – √ √ √ √ √ – – – – – √ – – – – – – – √ – – √ – – – – – – 
vantreight – – – – – – – – – √ – – – – – – – – – – – – – – – – – – – – √ – – √ – – – 
vere √ √ √ √ √ √ √ √ √ √ – √ √ √ – √ √ √ √ √ √ √ – √ – √ √ – – – √ √ – √ – – √ 
vharbour √ √ – – – – √ √ – – √ √ √ √ √ – – √ – √ – – – – – – – √ – – √ – – – – – – 
victoria1 – – – – – – – – √ – – – – – √ – – √ – – – – – – – – – – – – – – – – – – – 
waiatt2 – – – – – – – √ – – – √ – – – – – – – – – – – – – – – – – – – √ – – – – √ 
wellbore √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
wigwam – – √ – – √ – – √ – – – – – – √ – – – – – – – – – √ – – √ – – – – √ √ √ – 
witty √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ 
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APPENDIX B. AREA-SPECIFIC PREDICTIONS WITHIN THE SALISH SEA  

 
Figure A1. Predictions from select models for Sooke. A-E) Individual models, showing quantiles (20th 
percentiles) of model values, where quantile 5 is interpreted as a site being highly suitable for EGC; F) 
Mode of the five individual models, where each site is assigned the most frequent value from the input 
models. “No mode” occurs when no value is the most frequent or if there is a tie. 
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Figure A2. Predictions from select models for Ladysmith. A-E) Individual models, showing quantiles (20th 
percentiles) of model values, where quantile 5 is interpreted as being highly suitable for EGC; F) Mode of 
the five individual models, where each site is assigned the most frequent value from the input models. 
“No mode” occurs when no value is the most frequent or if there is a tie. 
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Figure A3. Predictions from select models for Boundary Bay. A-E) Individual models, showing quantiles 
(20th percentiles) of model values, where quantile 5 is interpreted as being highly suitable for EGC; F) 
Mode of the five individual models, where each site is assigned the most frequent value from the input 
models. “No mode” occurs when no value is the most frequent or if there is a tie. 
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