

Fisheries and Oceans Canada Pêches et Océans Canada

Ecosystems and Oceans Science

Sciences des écosystèmes et des océans

Canadian Science Advisory Secretariat (CSAS)

Research Document 2022/011

Quebec Region

Preliminary results from the ecosystemic survey in August 2021 in the Estuary and northern Gulf of St. Lawrence

Hugo Bourdages, Claude Brassard, Jean-Martin Chamberland, Mathieu Desgagnés, Peter Galbraith, Laurie Isabel and Caroline Senay

Fisheries and Oceans Canada Maurice Lamontagne Institute 850 Route de la Mer Mont-Joli, Quebec G5H 3Z4

Foreword

This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Published by:

Fisheries and Oceans Canada Canadian Science Advisory Secretariat 200 Kent Street Ottawa ON K1A 0E6

http://www.dfo-mpo.gc.ca/csas-sccs/csas-sccs/dfo-mpo.gc.ca

© Her Majesty the Queen in Right of Canada, 2022 ISSN 1919-5044 ISBN 978-0-660-42465-1 Cat. No. Fs70-5/2022-011E-PDF

Correct citation for this publication:

Bourdages, H., Brassard, C., Chamberland, J.-M., Desgagnés, M., Galbraith, P., Isabel, L. and Senay, C. 2022. Preliminary results from the ecosystemic survey in August 2021 in the Estuary and northern Gulf of St. Lawrence. DFO Can. Sci. Advis. Sec. Res. Doc. 2022/011. iv + 95 p.

Aussi disponible en français :

Bourdages, H., Brassard, C., Chamberland, J.-M., Desgagnés, M., Galbraith, P., Isabel, L. et Senay, C. 2022. Résultats préliminaires du relevé écosystémique d'août 2021 dans l'estuaire et le nord du golfe du Saint-Laurent. Secr. can. des avis sci. du MPO. Doc. de rech. 2022/011. iv + 96 p.

TABLE OF CONTENTS

İV
1
1
3
4
4
5
6
7
7
8
9
22
95

ABSTRACT

Fisheries and Oceans Canada conducts an annual multidisciplinary survey in the Estuary and northern Gulf of St. Lawrence. The objectives of this survey are varied; assess the biodiversity of species found near the bottom; estimate the abundance of groundfish and invertebrates; assess physical and biological (phytoplankton and zooplankton) oceanographic conditions; monitor the pelagic ecosystem; and collect samples for various research projects. In 2021, the survey was conducted between July 25 and August 26 on board the CCGS *Teleost*. The survey successfully carried out 149 trawl tows as well as 74 CTD water column casts, and 57 zooplankton samples.

This report presents the results of the 149 tows. In total, 82 fish taxa and 214 invertebrate taxa were identified during the mission. Historical perspectives (catch rates, spatial distribution and length frequency) are presented for 25 taxa. These commercial fishery-independent data will be used in several stock assessments including cod (*Gadus morhua*), redfish (*Sebastes spp.*), Greenland halibut (*Reinhardtius hippoglossoides*), Atlantic halibut (*Hippoglossus hippoglossus*), witch flounder (*Glyptocephalus cynoglossus*) and northern shrimp (*Pandalus borealis*).

A preliminary analysis of water temperature data collected in 2021 shows that conditions have warmed at 150 m and deeper, reaching new records since 1915 at 150, 200 and 300 m. The August cold intermediate layer (CIL) minimum temperature was much warmer in 2021 than in 2020, reaching the highest values of the modern CTD era. Surface waters temperatures were near normal in July-August.

INTRODUCTION

Fisheries and Oceans Canada conducts an annual bottom trawl survey in the Estuary and the northern Gulf of St. Lawrence. This is a multi-species, commercial fishery-independent survey. Its purpose is to assess the ecosystem with consistent and standardized protocols. This survey examines, among other things, spatial and temporal changes in the distribution and relative abundance of fish and their assemblages. It also aims to gather information on the biological parameters of commercial species.

The main objectives are to:

- 1. assess groundfish and Northern Shrimp population abundance and condition;
- 2. assess environmental conditions;
- 3. conduct a biodiversity inventory of benthic and demersal megafauna;
- 4. assess phytoplankton and mesozooplankton abundance;
- 5. monitor the pelagic ecosystem;
- 6. conduct an inventory of marine mammals (cancelled in 2020 and 2021);
- 7. conduct an inventory of seabirds (cancelled in 2019, 2020 and 2021);
- 8. collect samples for various research projects.

In 2021, the survey was conducted between July 25 and August 26 onboard the CCGS *Teleost* (mission IML-2021-030). This mission took place in the context of the Covid-19 pandemic. Sanitary measures had to be put in place so that the mission could be carried out. The science crew was reduced from 15 to 11 scientists. Observers for marine mammals and seabirds did not participate in the survey, so the inventorying objectives for these species could not be achieved. The number of scientists on each fishing team was reduced from 5 to 4 people. This reduction resulted in a review of the fish and invertebrate sampling protocols. Finally, the shrimp samples were not measured during the mission but were transported to the laboratory and analyzed in the fall.

SURVEY DESCRIPTION

The survey covers the waters of the Laurentian Channel and north of it, from the Lower Estuary in the west to the Strait of Belle Isle and the Cabot Strait in the east, namely, the Northwest Atlantic Fisheries Organization (NAFO) divisions 4R, 4S and the northern part of 4T (Figure 1). Since 2008, the coverage of division 4T has been increased in the upstream part of the Lower Estuary in order to sample the depths between 37 and 183 m. The study area is 118 587 km².

A stratified random sampling strategy was used for this survey. This technique consists in subdividing the study area into homogeneous strata. The area was divided into 54 strata, which were divided based on depth, NAFO division and substrate type (Figure 2). An initial allocation of 200 trawl stations was distributed in the study area proportionally to the stratum surface, with a minimum of two stations per stratum. The tow positions were chosen randomly within each stratum. Since 2014, a new rule was added so as to respect a minimum distance of 10 km between stations in the same stratum.

The fishing gear used on the CCGS *Teleost* is a four-sided Campelen 1800 shrimp trawl equipped with a Rockhopper footgear ("bicycle") (McCallum and Walsh 2002). The trawl lengthening and codend are equipped with a 12.7-mm knotless nylon lining. Standard trawling tows last 15 minutes, starting from the time the trawl touches the sea floor as determined by the

Scanmar[™] hydroacoustic system. Towing speed is 3 knots. Information on trawl geometry (horizontal spread of the doors and wings, vertical opening of the trawl, depth) was recorded for each tow using *Scanmar*[™] hydroacoustic sensors mounted on the fishing gear.

In 2021, 149 fishing stations were successfully completed (41 in 4R, 69 in 4S and 39 in 4T), which represent 40 stations less than what has been achieved on average since 1990 (Table 1). The decrease in the number of stations completed is due to the fact that the ship had to go to the wharf three times for medical or mechanical reasons. A lot of effort was expended to cover the entire study area. Six strata were not sampled with a minimum of two stations, two of which were not visited (Figure 3, Table 1). These partially or uncovered strata were distributed throughout the study area and not located in a particular sector.

For each fishing tow, the catch was sorted and weighed by taxa; biological data were then collected on a sub-sample. For fish, crab and squid, size and weight were gathered by individual. For some species, sex, maturity, and the weight of certain organs (stomach, liver, gonads) were also evaluated. Count of soft rays of the anal fin for redfish was conducted to separate the two species. Cod, Atlantic halibut and witch flounder otoliths were saved to determine age of fish. A sample of approximately 2 kg of shrimp was frozen for laboratory analysis at the Maurice Lamontagne Institute, where the sample was later sorted and weighed by species and by maturity stage for the northern shrimp. The shrimps were measured individually. The other invertebrates were counted (no individual measurements) and photographed. The photos are archived in a photo catalogue with associated keywords (taxonomic identification, station description, date, etc.).

Since 2001, digital photos have supported an increased effort in the identification of species. These additional efforts have targeted fish since 2004 (Dutil et al. 2009) and invertebrates since 2005 (Nozères et al. 2014). An identification guide for marine fishes in the estuary and northern Gulf of St. Lawrence (Nozères et al. 2010), a shrimp atlas (Savard and Nozères 2012) and a guide for invertebrates (Nozères and Archambault 2014) were used during the mission to identify most taxa. The taxon codes and their names follow the list of Miller and Chabot (2014), with annual updates according to the World Register of Marine Species (WoRMS).

Additional samples were taken for various scientific projects:

- 1. Water samples for genetic analysis of environmental DNA;
- 2. Samples of herring, capelin and mackerel for maturity determination;
- 3. Beluga and marine mammal preys (several fish species and northern shrimp) in order to follow the evolution of isotopic signatures of key species in the St. Lawrence ecosystem;
- 4. Stomachs of several fish species in order to describe their diet;
- 5. Samples of small demersal fish;
- 6. Rays and dogfish specimens for structural development studies, including inference of age from vertebrae and other structures (spines, etc);
- 7. Blood samples from Atlantic halibut and Greenland halibut to characterize the ecosystem health from molecular markers;
- 8. Small redfish (<11 cm) for genetic identification of the species (*Sebastes fasciatus* and *S. mentella*) and the population of new cohorts observed in the Gulf;
- 9. Monitoring redfish growth from the 2011 cohort;
- 10. Redfish samples to study the aging process, health and stress management in aquatic ectotherms:

- 11. Atlantic halibut and Greenland halibut gonad samples to determine the maturity stage;
- 12. Squid samples to study its trophic role in the ecosystem;
- 13. Sponges (Porifera) to identify the different species present.

Oceanographic conditions such as temperature, conductivity (salinity), turbidity, dissolved oxygen, luminosity and fluorescence were sampled during this survey. A total of 62 vertical profiles of the water column were done at the fishing stations and 12 more on extra stations that fall under the Atlantic Zone Monitoring Program (AZMP). The various sampling devices, *CTD SeaBird 911Plus*TM, dissolved oxygen sensor (*SBE 43*), photometer (*Biospherical*) and fluorometer (*Eco-FLNTU Wetlabs*) were coupled to a rosette of Niskin bottles. For each profile obtained using the rosette, water samples were also taken at several depths to determine their salinity, pH, dissolved oxygen concentration (Winkler titration), nutritive salt content (nitrite, nitrate, phosphate, silicate) and chlorophyll content. In addition, a *CTD SBE 19Plus*TM device (temperature and salinity), coupled to a dissolved oxygen sensor (*SBE 63*), was also installed on the back of the trawl, thereby allowing oceanographic data to be collected for the 149 fishing tows.

In order to study the distribution and biomass of zooplankton in the study area, a component of the sampling program consisted of harvesting organisms using a zooplankton net (202 μ m) towed vertically from the sea floor to the surface at 57 stations.

Hydroacoustic data for the water column were continuously recorded at four frequencies (38, 70, 120 and 200 kHz) using a *SIMRAD*TM *EK60* echosounder during the entirety of the mission. These data will be used to develop a three-dimensional database to map the pelagic ecosystem.

DATA ANALYSIS

The analysis of 2021 abundance and biomass data was integrated into the combined annual summer survey series initiated in 1990. These combined series were developed following a comparative study between the two vessel-gear tandems (1990–2005: CCGS *Alfred Needler—URI 81'/114'* trawl; 2004–2021: CCGS *Teleost—Campelen 1800* trawl) to establish specific correction factors for about twenty captured species (Bourdages et al. 2007). Results from this study led to the adjustment of *Needler* catches in *Teleost* equivalent catches.

The annual catch rate indexes, in terms of mean number and weight per standardized tow (15 minutes tow, i.e. a swept area of 0.75 nautical miles with an average wingspread of 16.94 m), and their confidence interval were estimated using the standard estimators for stratified random sampling (Appendix). Given that over the years, some strata were not sampled by a minimum of two successful tows (Table 1), a multiplicative model of the form:

$$\log(\text{catch rate} + 0.01) \sim \text{stratum} + \text{year},$$

was used to estimate their catch rate indexes. This model provided a predicted value for strata with less than two tows based on the data of the current year and the previous three years, or from the current year and the three adjacent years for missing strata in the first three years of the series. Thus, indicators presented for the series are representative of a standard total area of 116 115 km², the sum of the area of all strata. In addition, reference points were also added to the catch rate figures. The solid line represents the 1990–2020 period average (long-term average). The two dotted lines represent the long term mean ±0.5 standard deviation and correspond to the upper and lower reference limits respectively.

Note that the distinction between the two redfish species, *S. fasciatus and S. mentella*, is based on the analysis of the soft anal fin rays count and the depth of capture of individuals (Senay et al. 2021).

Length frequency distributions are presented in two different formats. A first figure shows the distribution for the last two years of the series plus the average distribution for the 1990–2020 period (long-term average distribution). Frequency values are expressed as the average number of individuals caught per tow in 1 cm increments, except for the northern shrimp (0.5 mm) and Atlantic halibut (3 cm). The second figure represents the length frequency distributions as mean number per length class for each year of the historical surveys series (1990 to 2021).

The geographical distribution of catch rates (CPUE), presented as weight (kg) per 15 minute tow for all species (except sea pens: number of specimens/15 minute tow) was aggregated for periods of five or six years. The interpolation of CPUE (catch per unit of effort) was performed on a grid covering the study area using a ponderation inversely proportional to the distance (R version 2.13.0, Rgeos library; R Development Core Team 2011). The isoline contours were then plotted for four CPUE levels which approximate the 20th, 40th, 60th and 80th percentiles of the non-zero values. The catch rate distribution for the 2021 survey is also presented in a bubble map.

The preliminary results for the abundance and biomass indices, the catch rate distribution maps, and the size frequency distributions for 25 taxa are presented in figures 5 to 62. These results are preliminary and must be considered as such until validations and laboratory analyses have been completed.

The distribution of total species richness and of 3 taxonomic groupings are presented in figures 63 to 66. Species richness is expressed as the number of species collected, total or per grouping, at each station in 2021. Taxonomic groupings were created to observe more specifically the distribution of species richness for species with similar ecological characteristics: fishes, shrimps and invertebrates (excluding shrimps).

The average weight per tow for 57 fish taxa and 99 invertebrate taxa is given in figures 67 and 68. In these figures, a color code is used to represent the difference between the CPUE in a given year and the average CPUE of the time series for a given taxon divided by the standard deviation of this average.

The catches per tow for fish taxa are available on the St. Lawrence Global Observatory (SLGO).

Finally, Table 2 provides a list of all taxa, vertebrates and invertebrates, caught among the 149 successful tows achieved during the 2021 survey. The occurrence, defined as the number of tows where the species was identified, as well as total catch, by weight and number of specimens, are also presented. The number of specimens measured per taxon and some descriptive statistics for the length parameter are also presented in Table 3.

RESULTS

Warning: The bottom trawl survey is designed to sample demersal species. However, catches may also include pelagic species and species associated with coastal or rocky habitats which are more difficult to trawl. Although these taxa are found in catches, they have a low catchability by trawl net. Caution is required when interpreting the results obtained for these taxa.

BIODIVERSITY

In total, 82 fish taxa and 214 invertebrate taxa were identified in 2021 (Table 2).

In 2021, the biomass of the two redfish species combined accounted for 82% of the biomass of all captured organisms in the survey (e.g., invertebrates, pelagic fish, demersal fish and groundfish), while it averaged 15% between 1995 and 2012 (Figure 4). The Atlantic redfish (*Sebastes mentella*) constituted, alone, 70% of the catches made during the survey, indicating that they actually dominate the GSL bottom ecosystem.

Species richness is generally higher near the coasts such as the north and west of Anticosti Island, near the Strait of Belle Isle and in the southwest of Newfoundland (Figure 63). The northwest coast of Anticosti Island stands out this year for the diversity of shrimp (Figure 66) and other invertebrates (Figure 65). Species characteristic of shallow bottoms were observed at these stations. Fish richness this year is relatively similar across the northern GSL with some more diverse regions such as the west coast of Newfoundland (Figure 64).

Fish

The abundance and the biomass of the **black dogfish** (*Centroscyllium fabricii*) have been above average for the past ten years (Figures 5 to 7).

Capelin (*Mallotus villosus*) was mainly distributed in the Estuary, along the North Shore and north of the west coast of Newfoundland (Figure 8).

For the past twelve years, abundance and biomass of **Atlantic halibut** (*Hippoglossus hippoglossus*) has remained above the series average (Figures 9 to 11). The 2021 value is the highest observed for biomass and one of the five highest for abundance.

The abundance of **Greenland halibut** (*Reinhardtius hippoglossoides*) in 2021 is lower than the 2020 estimate and is slightly below the series average. Biomass increased in 2021 with regards to 2020 and is slightly above average. Size frequency distributions indicate that the 2020 cohort (16 cm mode) and the 22 cm-32 cm fish abundance are lower than the average, while the 32–45 cm fish abundance is above average (Figures 12–14).

The **lumpfish** (*Cyclopterus lumpus*) was a rare but regular catch in this survey. Abundance and biomass have been above the series average for many years (Figures 15 to 17).

Atlantic herring (*Clupea harengus*) was a frequent catch in this survey and was distributed throughout the northern Gulf of St. Lawrence with the exception of the depths of the Laurentian Channel. The highest catches were observed along the west coast of Newfoundland (Figure 18).

Atlantic wolffish (*Anarhichas lupus*) and **spotted wolffish** (*Anarhichas minor*) were caught on 29 and 6 occasions, respectively, in 2021. These catches were mainly distributed in the northern eastern part of the Gulf of St. Lawrence (Figures 19 and 20).

Since 2007, **silver hake** (*Merluccius bilinearis*) is more common in the northern Gulf, while it was only occasionally observed before (Figures 21 to 23).

The abundance and biomass of the **longfin hake** (*Phycis chesteri*) have been near average for five years (Figures 24 to 26).

The abundance and biomass of **white hake** (*Urophycis tenuis*) have been above average for seven years (Figures 27 to 29).

In 2021, the abundance and biomass indices of **cod** (*Gadus morhua*) have increased, these indices are above the average of their respective series. A length frequency mode is observed from 28 to 38 cm (juvenile cod). The geographic distribution of catches in 2021 is comparable to previous years (Figures 30 to 32).

American plaice (*Hippoglossoides platessoides*) was frequently caught and its abundance is stable and above average and its biomass is increasing (Figures 33 to 35).

Witch flounder (*Glyptocephalus cynoglossus*) was frequently caught. The strong cohorts from 2007 and 2009 have contributed to the increase in biomass; these fish are now larger than 30 cm (Figures 36 to 38).

Thorny skate (*Amblyraja radiata*) and **smooth skate** (*Malacoraja senta*) were both very frequently caught. The abundance of thorny skate is stable and near the average. The abundance is decreasing below the average for smooth skate (Figures 39 to 44).

Arctic cod (*Boreogadus saida*) is a small cold water demersal fish. Catches in recent years have been made in the Estuary, along the North Shore and on the west coast of Newfoundland (Figures 45 to 46).

Acadian redfish abundance and biomass (*Sebastes fasciatus*) are above the averages of the time series (Figures 47 to 49).

Three strong cohorts (2011, 2012 and 2013) of **Atlantic redfish** (*Sebastes mentella*) have contributed to the increase in abundance and biomass since 2013. The 2011 cohort, which is the most abundant, now has a modal size of 24 cm. These redfish are distributed throughout the channels of the northern Gulf of St. Lawrence (Figures 50 to 52).

Invertebrates

The three most abundant **shrimp** species in the deep waters of the northern Gulf of St. Lawrence, namely northern shrimp (*Pandalus borealis*), striped pink shrimp (*Pandalus montagui*) and pink glass shrimp (*Pasiphaea multidentata*), have been declining for several years (Figure 68).

The abundance and biomass of the **northern shrimp** (*Pandalus borealis*) have declined significantly since 2003 and reached the lowest values in the historical series since 2017 (Figures 53 to 55).

Northern shortfin squid (*Illex illecebrosus*), a seasonal pelagic species from the south, has been present in over 50% of the tows since 2017 in all areas except the estuary and Strait of Belle Isle. This strong squid presence had not been observed for several years (Figures 59 to 61).

Four species of **sea pens** were present in the northern Gulf of St. Lawrence. The larger sea pens (*Anthoptilum grandiflorum*, *Halipteris finmarchica*, *Ptilella grandis*) are distributed in the deeper areas of the Laurentian Channel, while the spiny sea pen (*Pennatula aculeata*) has a more widespread distribution (Figures 59 to 62).

Several observations of the **sepiole** *Stoloteuthis leucoptera* were made this year during the survey. This species was recorded at 12 different stations for a total of 51 individuals captured (Table 2). The first observation of this sepiole was made in 2019 where 10 individuals were observed. No individual had been captured in 2020. This species is commonly found in the northeast Atlantic and appears to occasionally enter the Gulf of St. Lawrence through the Cabot Strait.

A single species of **hard coral** lives in the northern Gulf of St. Lawrence, *Flabellum alabastrum*. This year, a record biomass of 1.23 kg was caught. The average annual total capture weight is approximately 0.33 kg. The highest concentrations of this coral are found near the southwestern tip of Newfoundland in the depths of the Laurentian Channel. *Flabellum alabastrum* is slowgrowing, as many other cold-water corals are, and lives at least fifty years.

PHYSICAL OCEANOGRAPHIC CONDITIONS

A preliminary analysis of water temperature data collected in 2021 (Figures 69 and 70) shows that conditions have warmed at 150 m and deeper, reaching new records since 1915 at 150 m, 200 m, 250 m (not shown) and 300 m (note that these annual records may change with the addition of data sampled during the fall). Compared to conditions observed in August 2020, waters have warmed by about 0.5 °C at 150 m, by 0.3 °C at 200 m, by 0.1 °C at 250 but by only 0.03 °C at 300 m because of a 0.3 °C cooling at Cabot Strait. The August cold intermediate layer (CIL) minimum temperature was much warmer in 2021 than in 2020, reaching the highest values of the modern CTD era. Surface water temperatures were near normal in July-August (+0.3 standard deviation [SD]; +0.2 °C).

Air temperatures over the Gulf were above normal in April 2021, June and August, near normal in May and below normal in July. This led to above normal average surface water temperatures for the period of May–August (+0.7 SD relative to the 1991–2020 climatology and +0.5 °C) but near normal for July–August (+0.3 SD; +0.2 °C).

At the end of winter 2021, the volume of water of the surface layer with temperatures lower than 0 °C was the lowest in the history of the March survey (since 1996), forecasting the warmest summer cold intermediate layer (CIL) since the 1980s. Its seasonal average minimum temperature (the Gilbert & Pettigrew index), estimated for 2021 using only data from the August survey, would potentially be the warmest since 1980 at 0.7 °C (+2.6 SD; Figure 70). The volume of the CIL T <1 °C) was also at its lowest level since the beginning of the continuous time series beginning in 1985.

Beneath the cold intermediate layer, the estuarine flow that carries water from the depths to the channel heads has carried the increasingly warm waters that had been transitioning for several years through Cabot Strait, central Gulf and Esquiman Channel further upstream. Consequently, deep water temperatures in August have increased since 2020 below 150 m in all regions except Cabot Strait (Figure 69). Considering all the data recorded in different months of the year, the three regions along the deep Laurentian Channel north of Cabot Strait, i.e., the Estuary, northwestern Gulf, and Central Gulf, are all experiencing record temperatures at 300 m (6.1 °C, 6.5 °C, 6.9 °C). The annual mean exceeded 6° C in the estuary for the first time. The Gulf-wide average temperature at 300 m has reached a record level since 1915 at 6.87 °C, an increase of only 0.03 °C since 2020 (Figure 70). This near stability was caused by a decrease in temperature of 0.3 °C in Cabot Strait, passing from 7.2 °C to 6.9 °C. The temperature reduction observed last year at the mouth of the Laurentian Channel having transited to Cabot Strait.

ACKNOWLEDGEMENTS

We would like to thank both crews of the CCGS *Teleost* and wish to highlight the excellent work of the 2021 scientific team. The science team consisted of Tom Bermingham, Myranda Blouin, Brian Boivin, Hugo Bourdages, Claude Brassard, Sarah Brown-Vuillemin, Jean-Martin Chamberland, Grégoire Cortial, Mathieu Desgagnés, Laurie Isabel, Jean-François Lussier, Marie-Claude Marquis, Guillaume Mercier, Anthony Ouellet, Jordan Ouellette-Plante, Éric Parent, Shani Rousseau, Pierre-Marc Scallon-Chouinard, Caroline Senay, Jean-Luc Shaw et Émilie Simard. We also thank Denis Bernier for his support for the development of data entry tools and data management.

Finally, we would like to thank Charley Cyr for reviewing this document.

REFERENCES CITED

- Bourdages, H., Savard, L., Archambault, D. and Valois, S. 2007. Results from the August 2004 and 2005 comparative fishing experiments in the northern Gulf of St. Lawrence between the *CCGS Alfred Needler* and the *CCGS Teleost*. Can. Tech. Rep. Fish. Aquat. Sci. 2750: ix + 57 p.
- Dutil, J.-D., Nozères, C., Scallon-Chouinard, P.-M., Van Guelpen, L., Bernier, D., Proulx, S., Miller, R. and Savenkoff, C. 2009. Poissons connus et méconnus des fonds marins du Saint-Laurent. Le naturaliste canadien 133: 70-82.
- McCallum, B. and Walsh, S. J. 2002. An update on the performance of the Campelen 1800 during bottom trawl surveys in NAFO subareas 2 and 3 in 2001. NAFO SCR Doc. 02/36. 16 p.
- Miller, R. and Chabot, D. 2014. Code List of Marine Plants, Invertebrates and Vertebrates Used by the Quebec Region of DFO. Can. Data Rep. Fish. Aquat. Sci. 1254:iv + 115 p.
- Nozères, C., Archambault, D., Chouinard, P.-M., Gauthier, J., Miller, R., Parent, E., Schwab, P., Savard, L., and Dutil, J.-D. 2010. Identification guide for marine fishes of the estuary and northern Gulf of St. Lawrence and sampling protocols used during trawl surveys between 2004 and 2008. Can. Tech. Rep. Fish. Aquat. Sci. 2866: xi + 243 p.
- Nozères, C. and Archambault, D. 2014. Portfolio pour l'identification rapide d'invertébrés capturés au chalut dans l'estuaire et le nord du golfe du Saint-Laurent. Rapp. manus. can. sci. halieut. aquat. 3033:iv + 30 p.
- Nozères C., Archambault, D. and Miller, R. 2014. Photocatalogue of invertebrates of the Estuary and northern Gulf of St. Lawrence from trawl surveys (2005–2013). Can. Manuscr. Rep. Fish. Aquat. Sci. 3035:iv + 221 p.
- R Development Core Team. 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. (Accessed November 30th 2017).
- Savard, L. and Nozères, C. 2012. Atlas of shrimp species of the Estuary and northern Gulf of St. Lawrence. Can. Tech. Rep. Fish. Aquat. Sci. 3007:vi + 67 p.
- Senay, C., Ouellette-Plante, J., Bourdages, H., Bermingham, T., Gauthier, J., Parent, G., Chabot, D., and Duplisea, D. 2021. <u>Unit 1 Redfish (Sebastes mentella and S. fasciatus)</u> stock status in 2019 and updated information on population structure, biology, ecology, and current fishery closures. DFO Can. Sci. Advis. Sec. Res. Doc. 2021/015. xi + 119 p.

TABLES

Table 1. Number of successful stations per stratum for the DFO survey.

Stratum	NAFO	Surface (km²)	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003 2004	2005	2006	2007	2008	2009 2010	2011	2012	2013	2014	2015	2016	2017	2018 20°	19 2020	2021
401	4T	545	3	4	4	4	3	3	3	3	3	3	3	3	3	3 3	6	3	3	3	3 0	3	3	2	2	3	2	2	2 2	2 1	2
402	4T	909	3	5	5	3	3	1	3	2	3	5	3	3	3	2 0	3	3	3	3	3 3	3	3	3	2	3	2	2	2 2		2
403	4T	1190	3	3	3	3	3	3	10	10	3	5	3	3	3	3 6	4	3	3	3	3 3	3	3	2	2	3	2	2	1 2		1
404	4T	792	3	3	3	3	3	3	3	3	3	3	3	3	3	3 3	6	3	3	3	3 0	3	3	3	2	3	2	2	2 2	2	2
405 406	4T 4T	1478 2579	3 5	3	3	3	3	3 3	3 5	2 5	4 3	4 5	4	3	3 5	3 2 3 5	9 6	3	3 1	3	3 3 3	3	3 4	3 3	2	3	2 4	2	2 2 3	2 2	2
407	4T	2336	5	3	3	3	3	3	3	3	2	3	3	3	3	5 3	5	3	3	3	3 0		3	2	4	4	2	3	4 3	3	3
408	4T	2734	4	5	5	3	2	3	3	2	5	5	4	3	3	3 2	11	4	4	4	4 3	3	4	3	4	4	2	4	3 2	2	2
409	4T	909	3	3	3	3	0	3	4	3	3	4	4	4	3	3 3	4	3	3	3	3 3	3	2	3	2	2	2	2	2 2	2	2
410	4T	1818	2	3	3	3	4	6	10	6	5	4	4	4	5	3 3	6	3	3	3	3 3	3	3	3	3	3	3	3	2 2	3	3
411	4T 4T	1859 1283	3 3	3	3	3	4 4	7 5	9	7 3	6 3	9 4	5	9	4	3 5 3 2	8 5	3	3	3 3	3 3 3	3 3	3	3 3	3 2	2 2	3 2	3 2	3 2 2		3
412 413	41 4T	731	3	3 4	3	3	0	3	3	4	3	4	4	4	3	3 1	5	3	3 3	3	3 3	3	3	2	2	2	2	2	2 2		2
414	4T	388	3	2	3	3	1	3	3	3	3	4	4	4	3	3 3	6	3	3	2	1 3	3	2	3	2	2	2	0	2 1		2
801	4R	1214	3	3	3	4	3	3	3	3	4	5	5	5	2	3 3	4	3	3	3	3 2	3	3	3	3	3	2	3	3 3	_	2
802	4R	1369	3	3	3	3	3	3	3	3	3	3	3	3	2	8 3	8	2	3	3	3 0	3	3	3	3	3	2	3	3 3	3 2	2
803	48	6976	14	3	2	4	3	3	3	3	4	5	3	4	6	2 1	14	6	8	8	7 3	6	7	3	10	8	5	8	8 4	4	5
804	4S 4S	2490	5	4 7	3 4	3	4	3	3	3 8	3 4	3 5	3 5	6 5	3	2 3 8 4	10	3	3	3	3 3 6 4	3 5	3 7	3 5	4 7	4 7	4 9	4 7	3 3	3	3
805 806	4S 4S	5762 2127	14 4	4	3	3	3	3	11 3	3	3	3	3	3	12 3	3 5	10 4	3	3	2	3 3	3	3	3	3	3	3	3	3 3	3	o 3
807	48	2370	3	12	11	10	5	5	4	4	3	3	4	3	2	1 0	7	3	3	3	3 3	2	3	3	4	4	4	4	3 2	-	2
808	4S	2428	4	7	6	4	5	4	3	3	2	4	3	3	3	3 0	3	3	3	3	3 2	3	3	2	4	4	4	4	4 0) 2	3
809	4R	1547	3	9	7	6	4	3	3	3	3	3	3	3	3	3 1	5	3	3	3	3 3	_ 3	2	3	3	3	4	3	3 (_	2
810	4R	765	3	4	5	4	3	3	3	3	4	4	4	4	6	5 3	8	3	3	4	3 0	3	3	2	3	2	2	2	2 1		2
811	4R	1506	3	4	4	4	5	3	8	6	3	3	3	3	3	3 3	7	3	3	3	2 2	2	3	2	2	2 7	2	2	2 0	_	2
812 813	4R 4R	4648 3958	7 6	9 6	8 5	11 9	3	3 4	3 6	3 5	3 7	3 4	3 6	3 8	3 2	3 4 5 3	5 9	5 5	3	5 5	4 5 3 4	3 4	5 6	3 3	8 6	6	6 4	6 3	5 6		5 4
814	48	1029	3	4	4	4	3	0	3	3	3	3	3	3	3	3 3	3	3	3	3	3 3	3	3	3	2	2	2	2	2 2	2	2
815	48	4407	9	15	11	8	5	4	3	3	8	9	9	2	6	3 3	14	5	5	6	5 5	3	6	4	6	7	6	6	5 6	4	7
816	48	5032	9	11	9	9	6	6	17	17	20	21	21	1	6	4 4	11	7	7	7	6 4	4	3	6	6	8	7	7	5 6		6
817	4S	3646	7	18	11	7	9	10	9	5	11	17	13	14	8	5 2	7	5	5	4	5 3	3	4	4	5	4	6	6	5 5	-	5
818 819	4S 4S	2774 1441	4 3	7 7	5 9	4 5	3 1	3 5	3 3	4 2	4 3	4 3	4	5	7	5 1 0	6 8	4	3	2	4 3 2 3	4	3	3 3	4 2	5 2	4 2	5 2	4 4	_	0
820	4R	1358	3	3	3	3	3	3	7	5	6	5	5	3	2	3 3	14	3	3	3	3 0	7 ž	3	3	3	3	2	3	3 0		3
821	4R	1272	3	3	3	3	2	3	3	2	3	3	3	3	3	3 3	7	3	3	3	3 2	4	3	3	3	2	2	3	3 0		1
822	4R	3245	6	4	3	2	3	3	6	4	10	8	10	9	3	3 3	8	4	4	4	3 4	2	4	2	5	3	4	2	3 4	5	4
823	4R	556	3	3	3	3	2	3	2	3	1	3	2	3	2	5 2	10	3	3	3	3 2	3	3	3	3	3	2	2	3 3	_	2
824 827	4R 4S	837 3231	0	1	3	1	3	3	3 0	3 2	3	3	2 3	<u>3</u>	2 1 2	2 3 2 3	6 6	3	3	3	3 2 3	3 2	3	2 2	2 2	2	3	2	2 2		2
828	4S	2435	4	1	2	2	3	3	3	3	3	1 [0	1	0	3 3	1	3	3	3	3 3	2	2	2	2	2	2	4	4 3		3
829	48	2692	3	2	3	3	3	3	3	0	3	3	2	0	2	1 0	8	4	4	3	2 3	2	2	3	2	4	3	2	3 1	_	3
830	4S	1917	3	3	4	3	3	3	2	2	3	3	3	2	1	1 0	6	3	3	3	3 3	3	2	3	2	4	4	3	3 3	3 2	2
831	4S	1204	3	0	2	3	3	3	3	2	3	4	3	3	1	3 3	4	3	3	3	3 3	3	3	2	2	2	2	2	2 1	2	2
832	4S	3962	4	12	11	7	7	9	8	5	3	3	3	3	2	3 4	8	4	5	5	3 4	3	6	4	4	4	3	5	5 4		4
833	4S	559 2641	3	1 6	3	3 6	3	3 3	3 3	3 3	3 6	3 5	3 <u>[</u>	<u>0</u> 5	3 6	3 2 3	6 8	3	3	3 5	3 3 4 0	3 7 4	3	2	2 4	2	2	2 4	2 2		2
835 836	4R 4R	2641 3149	0	ნ 7	, 8	6	3	3	3	3	3	3	3	3	3	3 3	8 10	5 5	3	5 5	4 0	」 4 4	5 4	3	4 5	3 5	2	3	4 0	<u>)</u> 3	3
837	4R	2668	0	5	6	3	2	3	4	4	3	3	3	3	5	5 2	4	4	3	5	3 3	2	5	1	4	4	3	3	2 3	-	3
838	4R	3378	0	9	8	7	5	5	0	0	0	2	0	4	4	0 3	10	6	3	6	0 0	3	5	0	6	4	5	3	5 3	5	3
839	4S	4390	0	2	5	5	3	2	2	1	2	3	3	0	0	3 2	3	6	5	4	3 3	2	2	3	2	3	2	2	2 1		3
840	4R	765	0	3	3	1	1	0	0	0	0	0	0	2	0	0 0	5	3	0	3	0 0	1	3	0	2	3	2	0	1 0		0
841 Total	48	816 116 115	191	0 250	239	214	3 175	3 182	3 217	0 185	204	224	209	183	2 171	3 3 163 133	3 354	3 192	3 183	189	3 3 164 132	3 156	2 178	3 141	2 177	182	2 159	163	1 2 160 124		142
851	4T	456	-	-	-	- 14	-	-	-	-	-	-	-	-	-		-	192	-	3	3 3	3	3	3	2	2	2	2	2 1	143	2
852	4T	427	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	3	3 3	3	2	3	2	2	2	1	2 2	<u> </u>	2
854	4T	465	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	3	3 3	2	2	2	2	2	2	2		1	1
855	4T	928	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	3	4 3	2	3	3	2	2	2	2	2 1	1	2

Table 2. Occurrences and total catches, in weight and number, by taxon during the 2021 survey (147 successful tows). Taxonomic codes (STRAP) follow Miller and Chabot (2014), with scientific name updates by the World Marine Species Registry (WORMS 2018, http://www.marinespecies.org).

Vertebrates

Code STRAP	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
90	Amblyraja radiata	Raie épineuse	Thorny Skate	124	816.8	1326
696	Ammodytes sp.	Lançons	Sand Lances	10	4.4	385
700	Anarhichas lupus	Loup atlantique	Atlantic Wolffish	29	123.7	347
701	Anarhichas minor	Loup tacheté	Spotted Wolffish	6	45	9
718	Anisarchus medius	Lompénie naine	Stout Eelblenny	2	1.7	221
320	Arctozenus risso	Lussion blanc	White Barracudina	74	9.5	481
193	Argentina silus	Grande argentine	Atlantic Argentine	16	24.4	289
811	Artediellus atlanticus	Hameçon atlantique	Atlantic Hookear Sculpin	26	1	203
810	Artediellus sp.	Hameçons	Hookear Sculpins	12	1.1	64
812	Artediellus uncinatus	Hameçon neigeux	Arctic Hookear Sculpin	3	<0.1	8
838	Aspidophoroides monopterygius	Poisson-alligator atlantique	Alligatorfish	33	0.6	150
102	Bathyraja spinicauda	Raie à queue épineuse	Spinytail Skate	2	26.7	3
451	Boreogadus saida	Saïda franc	Arctic Cod	7	2.1	38
865	Careproctus reinhardti	Petite limace de mer	Sea Tadpole	8	0.6	26
27	Centroscyllium fabricii	Aiguillat noir	Black Dogfish	25	2452.6	2933
150	Clupea harengus	Hareng atlantique	Atlantic Herring	61	1251.6	5793
721	Cryptacanthodes maculatus	Terrassier tacheté	Wrymouth	6	3.4	11
849	Cyclopterus lumpus	Grosse poule de mer	Lumpfish	34	45.6	85
461	Enchelyopus cimbrius	Motelle à quatre barbillons	Fourbeard Rockling	102	46.6	1490
618	Epigonus pandionis	Cardinal	Big Eye	1	0.1	1
711	Eumesogrammus praecisus	Quatre-lignes atlantique	Fourline Snakeblenny	25	6.1	216
847	Eumicrotremus terraenovae	Petite poule Terre-Neuve	Newfoundland Spiny Lumpsucker	27	3.8	239
438	Gadus morhua	Morue franche	Atlantic Cod	80	6974.1	13 743
439	Gadus ogac	Ogac, morue ogac	Greenland Cod	1	0.6	1
454	Gaidropsarus ensis	Mustèle arctique à trois barbillons	Threebeard Rockling	1	<0.1	1
890	Glyptocephalus cynoglossus	Plie grise	Witch Flounder	122	463	2758
205	Gonostomatidae	Cyclothones	Bristlemouths	3	<0.1	3
746	Gymnelus viridis	Unernak caméléon	Fish Doctor	1	<0.1	1
823	Gymnocanthus tricuspis	Tricorne arctique	Arctic Staghorn Sculpin	27	13.2	197
797	Helicolenus dactylopterus	Chèvre impériale	Blackbelly Rosefish	1	0.1	1
809	Hemitripterus americanus	Hémitriptère atlantique	Sea Sculpin	1	0.8	1
889	Hippoglossoides platessoides	Plie canadienne	American Plaice	138	1315.1	12 901

Code STRAP	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
893	Hippoglossus hippoglossus	Flétan atlantique	Atlantic Halibut	54	1419.8	126
830	Icelus sp.	Icèles	Spatulate and Twohorn Sculpin	2	<0.1	2
832	Icelus spatula	Icèle spatulée	Spatulate Sculpin	7	0.1	11
836	Leptagonus decagonus	Agone atlantique	Atlantic Poacher	15	4.6	266
717	Leptoclinus maculatus	Lompénie tachetée	Daubed Shanny	33	6.7	966
100	Leucoraja ocellata	Raie tachetée	Winter Skate	2	4.2	2
891	Limanda ferruginea	Limande à queue jaune	Yellowtail Flounder	5	77.3	619
868	Liparis bathyarcticus	Limace nébuleuse	Nebulous Snailfish	4	0.7	7
966	Lophius americanus	Baudroie d'Amérique	Monkfish, Goosefish	15	96.9	16
716	Lumpenus lampretaeformis	Lompénie-serpent	Snakeblenny	20	10.8	392
750	Lycenchelys paxillus	Lycode commune	Common Wolf Eel	1	<0.1	1
752	Lycenchelys verrillii	Lycode à tête longue	Wolf Eelpout	5	0.1	14
727	Lycodes esmarkii	Lycode d'Esmark	Esmark's Eelpout	8	2.4	9
728	Lycodes lavalaei	Lycode du Labrador	Newfoundland Eelpout	24	22.5	156
733	Lycodes polaris	Lycode polaire	Canadian Eelpout	1	0.7	18
726	Lycodes sp.	Lycodes	Eelpouts	2	0.5	10
734	Lycodes terraenovae	Lycode atlantique	Atlantic Eelpout	2	0.7	2
730	Lycodes vahlii	Lycode à carreaux	Vahl's Eelpout	27	18.6	491
91	Malacoraja senta	Raie lisse	Smooth Skate	87	86.8	287
187	Mallotus villosus	Capelan	Capelin	87	1438.1	123 987
441	Melanogrammus aeglefinus	Aiglefin	Haddock	4	4.1	6
745	Melanostigma atlanticum	Molasse atlantique	Atlantic Soft Pout	42	1.7	465
449	Merluccius bilinearis	Merlu argenté	Silver Hake	66	51.1	612
272	Myctophidae	Poissons-lanterne	Lanternfishes	29	0.4	118
271	Myctophiformes	Poissons des profondeurs	Deepwater Fishes	10	1.9	78
281	Myctophum punctatum	Lanterne ponctuée	Spotted Lanternfish	2	<0.1	2
820	Myoxocephalus octodecemspinosus	Chaboisseau à dix-huit-épines	Longhorn Sculpin	2	5.7	48
819	Myoxocephalus scorpius	Chaboisseau à épines courtes	Shorthorn Sculpin	28	55	182
13	Myxine limosa	Myxine du nord	Northern Hagfish	85	261	3452
368	Nemichthys scolopaceus	Avocette ruban	Atlantic Snipe Eel	2	<0.1	2
278	Neoscopelus macrolepidotus	Lanterne à grandes écailles	Glowingfish	3	0.1	3
478	Nezumia bairdii	Grenadier du grand Banc	Common Grenadier	90	123.4	3194
275	Notoscopelus kroyeri	Lanterne-voilière nordique	Kroyer's Lanternfish	9	0.7	33
188	Osmerus mordax mordax	Éperlan arc-en-ciel	Rainbow Smelt	1	0.1	1
874	Paraliparis calidus	Limace ardente	Lowfin Snailfish	7	0.1	12
856	Paraliparis copei copei	Limace à museau noir	Blacksnout Seasnail	3	<0.1	4
854	Paraliparis sp.	Limaces	Snailfishes	1	<0.1	1
15	Petromyzon marinus	Lamproie marine	Sea Lamprey	1	<0.1	1

Code STRAP	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
444	Phycis chesteri	Merluche à longues nageoires	Longfin Hake	33	89.5	505
443	Pollachius virens	Goberge	Pollock	5	25.1	11
222	Polyipnus clarus	Hache	Slope Hachetfish	2	<0.1	2
244	Polymetme thaeocoryla	Poisson lumineux	Ligthfishes	1	<0.1	
94	Rajella fyllae	Raie ronde	Round Skate	1	<0.1	1
892	Reinhardtius hippoglossoides	Flétan du Groenland, turbot	Greeenland Halibut, Turbot	115	4040.4	10 691
572	Scomber scombrus	Maquereau bleu	Atlantic Mackerel	31	1.1	110
796	Sebastes fasciatus	Sébaste acadien	Acadian Redfish	80	12 944.5	68 848
794	Sebastes mentella	Sébaste atlantique	Deepwater Redfish	122	79796	418 479
369	Serrivomer beanii	Serrivomer trapu	Stout Sawpalate	1	<0.1	1
814	Triglops murrayi	Faux-trigle armé	Moustache Sculpin	36	22	2086
447	Urophycis tenuis	Merluche blanche	White Hake	75	413.1	665
	Total	Vertébrés	Vertebrates		114 663	680 920

Invertebrates

Code STRAP	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
1100		Invertébrés	Invertebrates	10	0.2	35
2296		Capsule d'œuf de Fecampiidae	Fecampiidae Egg Capsule	9	<0.1	10
2182	Actinauge cristata	Anémone de mer	Anemone	38	57.1	6348
2165	Actiniaria	Actinies et Anémones	Sea Anemones	18	0.4	66
2162	Actinostola callosa	Anémones de mer	Anemone	60	354	5161
6771	Aega psora	Isopode	Isopod	15	<0.1	18
2676	Alcyonidium gelatinosum	Bryozoaire marin	Marine bryozoans	1	0.1	-
2675	Alcyonidium sp.	Bryozoaire	Bryozoan	1	<0.1	2
3164	Amicula vestita	Chiton	Chiton	2	<0.1	2
6930	Amphipoda	Amphipodes	Amphipods	1	<0.1	1
8593	<i>Amphiura</i> sp.	Ophiures	Brittle star	2	<0.1	5
4218	Anomiidae	Pétoncle	Scallop	1	<0.1	1
7389	<i>Anonyx</i> sp.	Gammarides	Gammarids	4	<0.1	9
2218	Anthoptilum grandiflorum	Plume de mer	Sea pen	39	37.7	2992
5002	Aphrodita hastata	Souris de mer	Sea Mouse	21	1.5	49
6594	Arcoscalpellum michelottianum	Balane	Barnacle	5	0.1	7
8138	Argis dentata	Crevette verte	Arctic Argid	33	6.2	1549
3418	Arrhoges occidentalis	Pied-de-pélican	American Pelicanfoot	17	1.3	143
8742	<i>Ascidia</i> sp.	Ascidie	Sea squirts	72	8.7	1705

Code STRAP	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
8680	Ascidiacea	Ascidies, tuniqués sessiles	Ascidians, Sessile Tunicates	12	<0.1	19
1120	Asconema foliatum	Éponge	Sponge	3	1.1	-
4231	Astarte borealis	Astarte	Boreal Astarte	1	<0.1	1
4227	<i>Astarte</i> sp.	Astartes	Astartes	22	0.1	38
8396	Asterias rubens	Astérie boréale commune	Purple Seastar	3	<0.1	3
8390	Asteroidea	Étoiles de mer	Sea Stars	2	<0.1	2
8113	Atlantopandalus propinqvus	Crevette	Shrimp	16	0.9	219
2097	Atolla wyvillei	Méduse	Jellyfish	1	<0.1	1
3583	Aulacofusus brevicauda	Buccin	Whelk	2	<0.1	3
2085	Aurelia aurita	Méduse de lune	Moon Jelly	3	0.3	3
2084	<i>Aurelia</i> sp.	Méduse	Jelly fish	1	0.1	1
6595	Balanidae	Balanes	Barnacles	1	<0.1	1
4102	<i>Bathyarca</i> sp.	Bivalves	Bathyarks	1	<0.1	1
4904	Bathypolypus bairdii	Poulpe	North Atlantic Octopus	65	7.4	169
3519	Beringius turtoni	Buccin	Whelk	2	0.1	3
3995	Bivalvia	Bivalves	Bivalves	2	0.1	2
2158	Bolocera tuediae	Anémone de mer	Anemone	64	43.3	921
8793	Boltenia echinata	Cactus de mer	Cactus Sea Squirt	5	<0.1	15
8792	Boltenia ovifera	Patate de mer	Sea Potato	16	32.4	581
3488	Boreotrophon sp.	Murex	Murex	5	<0.1	6
8798	Botrylloides sp.	Ascidie	Tunicate	2	<0.1	5
5755	Brada inhabilis	Polychète	Flabelligerid worm	12	<0.1	30
8378	Brisaster fragilis	Oursin cœur	Heart Urchin	70	315.9	34203
2670	Bryozoa	Bryozoaires	Bryozoans	15	0.1	60
3520	Buccinum cyaneum	Buccin bleu	Bluish Whelk	9	0.3	25
3523	Buccinum scalariforme	Buccin	Ladder Whelk	5	0.1	13
3516	Buccinum sp.	Buccins	Whelk	14	0.7	38
3517	Buccinum undatum	Buccin commun	Waved Whelk	15	0.3	25
8173	Calocaris templemani	Crevette fouisseuse	Lobster Shrimp	3	<0.1	7
8429	Ceramaster granularis	Étoile de mer	Sea Star	19	0.8	39
8213	Chionoecetes opilio	Crabe des neiges	Snow Crab	91	205.2	1607
6593	Chirona hameri	Balane turbané	Turban Barnacle	3	3.4	-
4167	Chlamys islandica	Pétoncle d'Islande	Iceland Scallop	15	9.5	342
4351	Ciliatocardium ciliatum	Coque d'Islande	Iceland Cockle	5	0.7	24
6580	Cirripedia	Balanes	Barnacles	1	0.1	-
3908	Colga villosa	Nudibranche	Nudibranch	5	<0.1	11
3577	Colus pubescens	Buccin	Hairy Whelk	3	0.1	5
3575	Colus sp.	Buccins	Whelks	5	0.2	9

Code STRAP	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
3576	Colus stimpsoni	Buccin	Whelk	4	0.2	8
8125	Crangon septemspinosa	Crevette sable	Sand Shrimp	1	<0.1	1
2151	Cribrinopsis similis	Anémone de mer	Sea Anemone	1	<0.1	1
8447	Crossaster papposus	Soleil de mer épineux	Spiny Sun Star	28	3.2	171
3422	Cryptonatica affinis	Lunaties .	Arctic moonsnail	8	<0.1	9
8407	Ctenodiscus crispatus	Étoile de mer	Mud Star	85	194	57 730
2250	Ctenophora ,	Cténophores	Comb-Jellies	2	0.1	41
8312	Cucumaria frondosa	Concombre de mer	Orange Footed Sea Cucumber	7	16.2	53
4526	Cuspidaria glacialis	Mye	Gacial Dipperclam	24	0.1	86
4525	Cuspidaria sp.	Myes	Dipperclams	1	<0.1	2
2080	Cyanea capillata	Crinière de lion	Lion's Mane	104	155.3	420
8408	Diplopteraster multipes	Étoile de mer	Sea Star	5	8.0	10
3965	Doridoxa ingolfiana	Nudibranche	Nudibranch	1	<0.1	1
2191	Drifa glomerata	Corail mou	Soft coral	30	0.7	176
2183	Duva florida	Corail mou	Sea Cauliflower	20	8.0	53
8373	Echinarachnius parma	Dollar de sable	Common Sand Dollar	1	<0.1	1
8316	Ekmania barthii	Concombre de mer	Sea Cucumber	1	<0.1	1
7383	Epimeria loricata	Gammaride	Gammarid	8	<0.1	29
2157	<i>Épizoanthus</i> sp.	Anémone de mer	Sea Anemone	14	<0.1	61
8081	Eualus belcheri	Bouc	Circumpolar Eualid	1	<0.1	-
8075	Eualus fabricii	Bouc Arctique	Arctic Eualid	15	0.1	144
8079	Eualus gaimardii	Bouc	Circumpolar Eualid	1	<0.1	1
8080	Eualus gaimardii gaimardii	Bouc	Circumpolar Eualid	3	<0.1	6
8077	Eualus macilentus	Bouc du Groenland	Greenland Shrimp	12	2.2	2164
8074	<i>Eualus</i> sp.	Bouc	Eualid	8	<0.1	58
8778	Eudistoma vitreum	Ascidie	Tunicate	11	0.2	59
5045	Eunoe nodosa	Polychète	Seaworm	1	<0.1	1
5461	Euphrosine borealis	Polychète	Seaworm	2	<0.1	2
7195	Eusirus cuspidatus	Gammaride	Gammarid	6	<0.1	17
3437	Euspira pallida	Lunatie du Groenland	Pale Moonsnail	9	0.1	30
2295	Fecampiidae	Vers flats	Flatworms	1	<0.1	1
2224	Flabellum alabastrum	Madrépore	Cup coral	12	1.2	186
3175	Gastropoda	Gastéropodes	Gastropods	1	<0.1	1
2184	Gersemia rubiformis	Corail mou	Sea Strawberry	19	0.5	190
5902	Golfingia margaritacea	Sipunculide	Sipunculid	6	0.1	46
8540	Gorgonocephalus sp.	Gorgonocéphales	Basket Stars	31	88.6	423
2217	Halipteris finmarchica	Plume de mer	Sea pen	17	3.3	178
8797	Halocynthia pyriformis	Pêche de mer	Sea Peach	3	0.3	19

Code STRAP	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
5934	Hamingia arctica	Échiure	Echiurid	1	<0.1	1
8263	Heliometra glacialis	Lis de mer	Feather star	4	0.2	87
1131	Hemigellius arcofer	Éponge	Sponge	1	1	-
3090	Hemithiris psittacea	Brachiopode	Lamp Shell	4	<0.1	33
8483	Henricia sp.	Étoiles de mer	Sea Stars	57	0.7	196
4437	Hiatella arctica	Saxicave arctique	Arctic Saxicave	1	<0.1	2
8431	Hippasteria phrygiana	Étoile de mer	Sea Star	42	14.8	69
8290	Holothuroidea	Cocombres de mer	Sea Cucumbers	3	0.1	6
2150	Hormathia digitata	Anémone	Anemone	25	0.4	116
2167	Hormathia nodosa	Anémone noduleuse	Rugose Anemone	4	0.2	8
8219	Hyas alutaceus	Crabe lyre	Arctic Lyre Crab	30	9.4	754
8217	Hyas araneus	Crabe lyre	Atlantic Lyre Crab	14	4.6	234
1341	Hydrozoa	Hydrozoaires	Hydrozoans	26	0.2	56
4753	Illex illecebrosus	Encornet rouge nordique	Northern Shortfin Squid	96	133.5	894
3255	Lacuna vincta	Gastropode	Northern Lacuna	1	<0.1	4
5003	Laetmonice filicornis	Polychète	Seaworm	36	0.4	192
8092	Lebbeus groenlandicus	Bouc	Spiny Lebbeid	8	1.2	264
8095	Lebbeus microceros	Bouc	Shrimp	3	<0.1	4
8093	Lebbeus polaris	Bouc	Polar Lebbeid	46	0.7	450
8091	Lebbeus sp.	Boucs	Lebbeids	7	<0.1	-
8511	Leptasterias polaris	Étoile de mer polaire	Polar Sea Star	10	3.9	27
8513	Leptasterias groenlandica	Étoile de mer du Groenland	Greenland Sea Star	14	0.1	25
8510	Leptasterias sp.	Étoiles de mer	Sea Stars	2	<0.1	8
8521	Leptychaster arcticus	Stelléridé	Sea Star	2	<0.1	2
3459	Limneria undata	Veloutée rayée	Wavy Lamellaria	2	<0.1	2
2207	Liponema multicorne	Anémone	Sea anemone	12	2.5	97
8196	Lithodes maja	Crabe épineux du Nord	Norway King Crab	50	57.4	161
4395	Macoma calcarea	Bivalve	Chalky Macoma	9	0.1	17
3219	Margarites costalis	Margarite rosé du Nord	Boreal Rosy Margarite	11	<0.1	34
3216	Margarites groenlandicus	Troque	Greenland marguerite	3	<0.1	3
4025	Megayoldia thraciaeformis	Bivalve	Broad Yoldia	34	5.2	3408
8322	Molpadia oolitica	Holothurie	Sea Cucumber	4	1.7	26
8164	Munidopsis curvirostra	Munidopsis curvirostra	Squat Lobster	20	<0.1	37
4121	<i>Mytilus</i> sp.	Moules .	Mussels	11	0.1	13
3000	Nemertea	Némerte	Ribbon Worm	1	<0.1	1
2219	Nephtheidae	Coraux mous	Soft corals	12	0.2	33
3565	Neptunea sp.	Buccins	Whelks	8	0.3	11
4019	<i>Nuculana</i> sp.	Bivalves	Nutclams	6	<0.1	12

Code STRAP	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
5961	<i>Nymphon</i> sp.	Araignées de mer	Sea Spiders	23	<0.1	52
8575	Ophiacantha bidentata	Ophiure épineuse	Brittle Star	20	0.1	162
8583	Ophiopholis aculeata	Ophiure paquerette	Daisy Brittle Star	47	15.6	11 042
8585	Ophioscolex glacialis	Ophiure	Brittle star	9	<0.1	14
8552	Ophiura robusta	Ophiure	Brittle Star	3	<0.1	8
8553	Ophiura sarsii	Ophiure	Brittle Star	62	178.1	58 439
8530	Ophiuroidea	Ophiures	Brittle Stars	1	<0.1	1
8178	Pagurus sp.	Bernard hermite droitier	Hermit Crab	21	0.2	52
8111	Pandalus borealis	Crevette nordique	Northern Shrimp	126	2328.1	398 241
8112	Pandalus montagui	Crevette ésope	Striped Pink Shrimp	65	60.7	25023
8110	Pandalus sp.	Crevette	Boreal Red Shrimp	7	0.4	-
4438	Panomya norvegica	Saxicave	Arctic Roughmya	2	0.1	4
7586	Paramphithoe hystrix	Gammaride	Gammarid	6	<0.1	6
8057	Pasiphaea multidentata	Sivade rose, Crevette blanche	Pink Glass Shrimp	80	82.3	26 179
8781	Pelonaia corrugata	Ascidie	Tunicate	1	<0.1	4
2203	Pennatula aculeata	Plume de mer	Sea Pen	98	5.4	2205
2096	Periphylla periphylla	Méduse à coronne	Crown jellyfish	31	49.3	48
1116	<i>Phakellia</i> sp.	Éponge	Sponge	3	4.3	-
5907	Phascolion strombus strombus	Sipunculide	Hermit Sipunculid	4	<0.1	10
4955	Phyllodoce groenlandica	Polychète	Paddle Worm	2	<0.1	2
8114	Plesionika martia	Crevette	Golden shrimp	1	<0.1	1
2255	Pleurobrachia pileus	Groseille de mer ronde	Sea Gooseberry	27	0.3	190
3578	Plicifusus kroyeri	Colus	Arctic Whelk	2	<0.1	3
8783	Polycarpa fibrosa	Ascidie	Tunicate	3	0.5	363
4950	Polychaeta	Polychètes	Polychaetes	59	0.2	145
1123	Polymastia grimaldii	Éponge	Sponge	1	<0.1	1
1109	<i>Polymastia</i> sp.	Éponge	Sponge	22	2	193
5007	Polynoidae	Polychète errante	Fifteen-Scaled Worm	18	0.1	61
5264	Polyphysia crassa	Polychète	Sea worm	6	0.3	64
8135	Pontophilus norvegicus	Çrevette	Norwegian Shrimp	75	3.9	2255
8435	Poraniomorpha sp.	Étoile de mer	Sea star	6	0.2	8
1101	Porifera	Éponges	Sponges	107	77.8	-
8433	Pseudarchaster parelii	Étoile de mer	Sea Star	17	0.4	47
8520	Psilaster andromeda	Étoile de mer	Sea Star	21	5.7	2609
8295	Psolus fabricii	Psolus écarlate	Scarlet Psolus	1	0.1	1
8294	Psolus phantapus	<u></u> Holothurie	Sea Cucumber	2	<0.1	2
8410	Pteraster militaris	Étoile de mer	Sea Star	13	0.4	56
8411	Pteraster pulvillus	Étoile de mer	Sea Star	12	0.1	28

Code STRAP	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
2210	Ptilella grandis	Plume de mer	Sea Pen	36	147.2	4521
2153	Ptychodactis patula	Anémone beige évasée	Anemone	5	<0.1	5
1353	Ptychogena lactea	Méduse	Jellyfish	13	0.3	27
5951	Pycnogonida	Araignées de mer	Sea Spiders	3	<0.1	4
1107	Radiella hemisphaerica	Éponge	Sponge	15	0.5	80
7211	Rhachotropis aculeata	Gammaride	Gammarid	14	<0.1	54
1380	Rhodaliidae	Siphonophore	blabla	7	0.1	19
4557	<i>Rossia</i> sp.	Sépioles	Bobtails	28	0.5	35
8129	Sabinea sarsii	Crevette	Sars Shrimp	7	0.1	44
8128	Sabinea septemcarinata	Crevette	Sevenline Shrimp	28	8.0	404
3491	Scabrotrophon fabricii	Murex	Murex	4	<0.1	4
3715	Scaphander punctostriatus	Céphalaspide	Giant Canoe Bubble	25	0.2	87
8119	Sclerocrangon boreas	Crevette de roche	Scultured Shrimp	15	20	2277
2040	Scyphozoa	Scyphozoaires	Scyphozoans	36	2	93
2679	Securiflustra securifrons	Bryozoaires marins	Marine bryozoans	2	<0.1	1
4352	Serripes groenlandicus	Coque du Groenland	Greenland Smoothcockle	1	<0.1	1
4191	Similipecten greenlandicus	Pétoncle	Greenland Glass-Scallop	1	<0.1	1
3225	<i>Solariella</i> sp.	Gastéropes	Topsnail	1	<0.1	1
8445	Solaster endeca	Soleil de mer pourpre	Purple Sunstar	5	0.1	8
8087	Spirontocaris liljeborgii	Bouc épineux	Friendly Blade Shrimp	17	0.1	55
8086	Spirontocaris phippsii	Bouc	Punctate Blade Shrimp	3	<0.1	9
8084	Spirontocaris sp.	Bouc	Blade Shrimp	27	0.1	-
8085	Spirontocaris spinus	Bouc perroquet	Parrot Shrimp	23	0.4	238
1352	Staurostoma mertensii	Méduse à croix blanche	Whitecross Jellyfish	9	0.3	29
7750	Stegocephalus inflatus	Gammaride	Gammarid	5	<0.1	5
8515	Stephanasterias albula	Étoile de mer	Sea star	4	<0.1	9
2159	Stephanauge nexilis	Anémone de mer	Sea anemone	13	0.6	77
4587	Stoloteuthis leucoptera	Sépiole	Butterfly Squid	12	0.3	51
2173	Stomphia coccinea	Anémone marbrée	Anemone	32	2	142
8363	Strongylocentrotus sp.	Oursins	Sea Urchins	53	43	4253
1112	Stylocordyla borealis	Éponge	Sponge	8	<0.1	73
1113	Sycon sp.	Éponge	Sponge	1	<0.1	13
8776	Synoicum pulmonaria	Ascidie	Tunicate	2	1.7	4
6791	Syscenus infelix	Isopode	Isopod	60	1	649
3310	Tachyrhynchus erosus	Gastropode	Eroded Turritsnail	1	<0.1	1
1108	Tentorium semisuberites	Éponge	Sponge	15	0.1	93
3101	Terebratulina septentrionalis	Térébratule du Nord	Northern Lamp Shell	7	<0.1	18
6972	Themisto libellula	Hypéride	Hyperiid	1	<0.1	2

Code STRAP	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
1114	Thenea muricata	Eponge	Sponge	3	0.1	11
1357	Thuiaria thuja	Hydrozoaire	Bottlebrush Hydroid	19	<0.1	89
8516	Urasterias lincki	Étoile de mer	Sea Star	1	0.3	1
2152	Urticina crassicornis	Anémone de mer	Sea Anemone	5	0.3	13
4451	Xylophaga atlantica	Bivalve	Atlantic Woodeater	1	<0.1	-
	Total	Invertebrés	Invertebrates		4 836	667 222
Others						
Code STRAP	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
9965	-	Capsule de raie lisse	Smooth Skate egg	19	0.3	40
9966	-	Capsule de raie épineuse	Thorny Skate egg	23	0.5	38

Table 3. Number of measured and weighed specimens and length descriptive statistics in 2021. Taxonomic codes (STRAP) follow Miller and Chabot (2014), with scientific name updates by the World Marine Species Registry (<u>WoRMS</u> 2018, http://www.marinespecies.org).

Vertebrates

Code	Colombific manage	Sampled number		Length (cm)				
STRAP	Scientific name	Length	Weight	Min	P1*	Median	P99*	Max
90	Amblyraja radiata	1151	1046	9.3	11.8	36.2	65.0	78.0
696	Ammodytes sp.	58	27	7.8	7.8	16.3	23.5	23.5
700	Anarhichas lupus	297	123	6.6	6.6	29.1	64.6	73.7
701	Anarhichas minor	7	7	9.6	9.6	85.5	94.0	94.0
718	Anisarchus medius	45	10	10.6	10.6	14.0	15.5	15.5
320	Arctozenus risso	474	274	16.4	18.6	24.7	28.2	28.9
193	Argentina silus	221	102	9.2	9.6	21.7	34.0	35.4
811	Artediellus atlanticus	181	103	3.8	3.8	7.6	10.2	11.6
810	Artediellus sp.	64	42	3.7	3.7	6.0	8.5	8.5
812	Artediellus uncinatus	8	8	6.2	6.2	6.4	7.1	7.1
838	Aspidophoroides monopterygius	142	80	4.0	6.4	12.7	16.2	16.4
102	Bathyraja spinicauda	3	3	44.2	44.2	130.0	137.0	137.0
451	Boreogadus saida	38	29	11.0	11.0	19.1	27.5	27.5
865	Careproctus reinhardti	26	18	8.0	8.0	11.3	17.0	17.0
27	Centroscyllium fabricii	628	181	13.9	14.7	39.2	67.1	73.0
150	Clupea harengus	1705	759	12.5	21.8	31.0	38.0	39.7
721	Cryptacanthodes maculatus	11	11	22.2	22.2	37.7	76.8	76.8
849	Cyclopterus lumpus	83	73	8.9	8.9	12.7	44.8	44.8
461	Enchelyopus cimbrius	1289	409	2.3	5.4	19.1	27.2	29.4
618	Epigonus pandionis	1	1	17.2	17.2	17.2	17.2	17.2
711	Eumesogrammus praecisus	205	88	5.8	8.4	15.2	21.5	24.0
847	Eumicrotremus terraenovae	195	102	2.3	2.4	4.7	13.2	15.4
438	Gadus morhua	4400	1758	5.1	15.0	33.3	62.3	94.6
439	Gadus ogac	1	1	37.6	37.6	37.6	37.6	37.6
454	Gaidropsarus ensis	1	1	6.8	6.8	6.8	6.8	6.8
890	Glyptocephalus cynoglossus	2716	1850	6.5	8.9	28.2	43.9	50.0
205	Gonostomatidae	2	2	15.7	15.7	16.6	17.5	17.5
746	Gymnelus viridis	1	1	14.9	14.9	14.9	14.9	14.9
823	Gymnocanthus tricuspis	152	80	9.9	10.7	17.4	22.7	23.4
797	Helicolenus dactylopterus	1	1	21.6	21.6	21.6	21.6	21.6
809	Hemitripterus americanus	1	1	35.2	35.2	35.2	35.2	35.2
889	Hippoglossoides platessoides	5623	2462	2.6	10.6	21.5	43.0	56.5
893	Hippoglossus hippoglossus	126	126	28.0	28.2	83.3	174.0	178.0
830	Icelus sp.	2	2	3.9	3.9	3.9	3.9	3.9
832	Icelus spatula	11	11	5.9	5.9	10.0	14.1	14.1
836	Leptagonus decagonus	166	49	10.3	10.4	17.5	21.4	21.9
717	Leptoclinus maculatus	242	94	8.6	8.9	12.9	18.0	18.9
100	Leucoraja ocellata	2	2	46.5	46.5	59.3	72.0	72.0
891	Limanda ferruginea	107	37	12.7	13.8	23.1	34.4	37.4
868	Liparis bathyarcticus	7	7	7.0	7.0	9.8	30.9	30.9
	Lophius americanus	16	16	32.2	32.2	66.3	104.2	104.2
716	Lumpenus lampretaeformis	205	84	13.7	15.7	30.4	40.4	41.5
750	Lycenchelys paxillus	1	1	22.7	22.7	22.7	22.7	22.7
752	Lycenchelys verrillii	14	14	9.5	9.5	12.4	17.8	17.8
727	Lycodes esmarkii	9	9	6.1	6.1	41.2	51.5	51.5
728	Lycodes lavalaei	141	81	7.6	8.6	23.0	52.7	56.7
733	Lycodes polaris	18	5	9.1	9.1	15.4	31.6	31.6
726	Lycodes sp.	10	10	9.2	9.2	11.4	37.5	37.5
734	Lycodes terraenovae	2	2	39.5	39.5	42.5	45.4	45.4
730	Lycodes vahlii	204	73	8.9	9.3	20.9	36.9	37.3
91	Malacoraja senta	287	275	8.5	8.9	23.8	60.2	62.1
187	Mallotus villosus	1443	364	7.4	9.1	14.5	16.5	19.5
441	Melanogrammus aeglefinus	6	6	20.6	20.6	36.4	52.5	52.5
							<u></u>	<u> </u>

19

Code STRAP	Scientific name	Sampled number		Length (cm)				
		Length	Weight	Min	P1 [*]	Median	P99*	Max
745	Melanostigma atlanticum	427	153	6.3	7.5	10.8	13.7	15.0
449	Merluccius bilinearis	468	346	10.5	13.4	20.3	40.7	45.3
272	Myctophidae	3	3	8.0	8.0	8.6	12.2	12.2
271	Myctophiformes	70	31	13.0	13.0	14.8	17.4	17.4
281	Myctophum punctatum	1	1	13.5	13.5	13.5	13.5	13.5
820	Myoxocephalus octodecemspinosus	35	6	11.5	11.5	19.2	35.5	35.5
819	Myoxocephalus scorpius	153	92	8.6	8.8	25.5	38.8	39.9
13	Myxine limosa	1595	415	13.2	21.1	37.3	49.2	58.3
368	Nemichthys scolopaceus	1	1	74.4	74.4	74.4	74.4	74.4
278	Neoscopelus macrolepidotus	1	1	15.4	15.4	15.4	15.4	15.4
478	Nezumia bairdii	1796	473	2.8	9.0	23.5	31.9	34.2
188	Osmerus mordax mordax	1	1	22.9	22.9	22.9	22.9	22.9
874	Paraliparis calidus	12	12	6.1	6.1	9.8	11.9	11.9
856	Paraliparis copei copei	4	4	9.1	9.1	9.6	11.1	11.1
15	Petromyzon marinus	1	1	24.1	24.1	24.1	24.1	24.1
444	Phycis chesteri	467	322	15.5	16.5	30.4	39.0	53.4
443	Pollachius virens	11	11	52.6	52.6	56.5	74.0	74.0
222	Polyipnus clarus	1	1	5.0	5.0	5.0	5.0	5.0
94	Rajella fyllae	1	1	9.4	9.4	9.4	9.4	9.4
892	Reinhardtius hippoglossoides	4566	2250	3.3	14.5	34.4	52.4	75.2
572	Scomber scombrus	107	85	5.2	5.2	7.8	14.3	35.5
792	Sebastes sp.	13 569	5188	4.7	7.9	23.3	33.5	43.4
814	Triglops murrayi	600	185	7.0	7.2	11.1	16.9	18.0
447	Urophycis tenuis	663	596	20.7	22.8	39.2	66.8	92.0

Invertebrates

Code STRAP	Scientific name	Sampled	Sampled number		Length (cm)				
		Length	Weight	Min	P1*	Median	P99*	Max	
2218	Anthoptilum grandiflorum	37	4	32.4	32.4	42.5	59.3	59.3	
8138	Argis dentata	614	0	0.7	8.0	1.6	2.3	2.5	
8113	Atlantopandalus propinqvus	122	0	0.9	0.9	1.7	2.3	2.3	
8213	Chionoecetes opilio	884	19	0.7	1.1	3.7	12.4	15.6	
8125	Crangon septemspinosa	1	0	1.8	1.8	1.8	1.8	1.8	
8075	Eualus fabricii	77	0	0.6	0.6	8.0	1.1	1.1	
8079	Eualus gaimardii	1	0	0.9	0.9	0.9	0.9	0.9	
8080	Eualus gaimardii gaimardii	4	0	0.9	0.9	0.9	1.1	1.1	
8077	Eualus macilentus	112	0	0.6	0.6	1.0	1.3	1.3	
8074	Eualus sp.	9	0	8.0	8.0	8.0	1.0	1.0	
2217	Halipteris finmarchica	10	1	29.8	29.8	54.0	83.5	83.5	
8219	Hyas alutaceus	359	6	0.5	8.0	2.4	5.9	7.8	
8217	Hyas araneus	122	0	0.7	0.7	2.3	8.6	8.6	
4753	Illex illecebrosus	749	369	12.0	14.1	19.5	23.0	26.1	
8092	Lebbeus groenlandicus	91	0	0.7	0.7	1.4	2.4	2.4	
8095	Lebbeus microceros	4	0	1.0	1.0	1.1	1.2	1.2	
8093	Lebbeus polaris	245	0	0.5	0.6	1.1	1.5	1.6	
8091	Lebbeus sp.	2	0	0.7	0.7	8.0	1.0	1.0	
8196	Lithodes maja	161	27	1.4	1.5	8.0	11.5	11.5	
8111	Pandalus borealis	17 147	20	0.6	1.2	2.1	2.7	3.0	
8112	Pandalus montagui	2093	0	0.6	0.7	1.4	2.1	2.3	
8057	Pasiphaea multidentata	2385	0	1.0	1.6	2.5	3.2	3.5	
2203	Pennatula aculeata	172	4	5.5	5.8	12.5	20.9	21.4	
8114	Plesionika martia	1	0	2.0	2.0	2.0	2.0	2.0	
8135	Pontophilus norvegicus	1100	0	0.5	8.0	1.3	1.6	1.7	
2210	Ptilella grandis	77	0	12.0	12.0	29.5	46.7	46.7	
8129	Sabinea sarsii	38	0	0.6	0.6	1.0	1.5	1.5	
8128	Sabinea septemcarinata	318	0	0.7	8.0	1.2	1.7	1.9	
8119	Sclerocrangon boreas	483	0	0.7	8.0	1.6	3.0	3.6	
8087	Spirontocaris liljeborgii	37	0	0.7	0.7	1.1	1.4	1.4	

Code STRAP	Scientific name	Sampled	Sampled number			Length (cm)		
STRAP		Length	Weight	Min	P1*	Median	P99*	Max
8086	Spirontocaris phippsii	6	0	0.6	0.6	0.8	1.1	1.1
8084	Spirontocaris sp.	24	0	0.6	0.6	1.0	1.4	1.4
8085	Spirontocaris spinus	123	0	0.6	0.6	1.1	1.4	1.5

^{*} P1: 1^{er} centile P99: 99^e centile

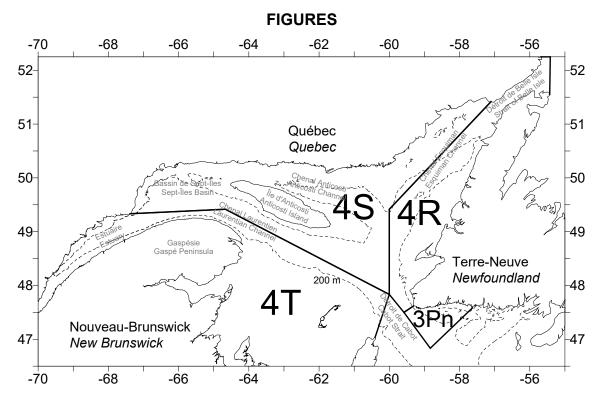


Figure 1. NAFO Divisions of the Estuary and Gulf of St. Lawrence and names of locations mentioned in the text.

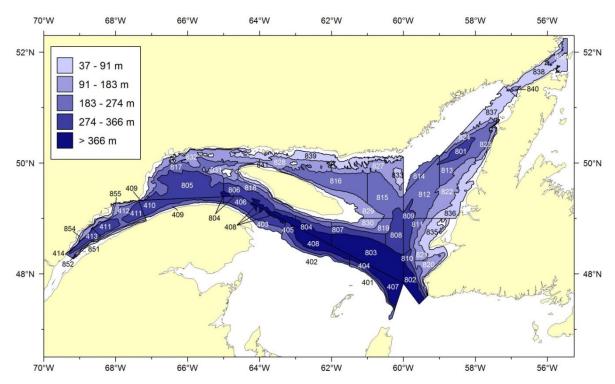


Figure 2. Stratification scheme used for the groundfish and shrimp research survey in the Estuary and northern Gulf of St. Lawrence.

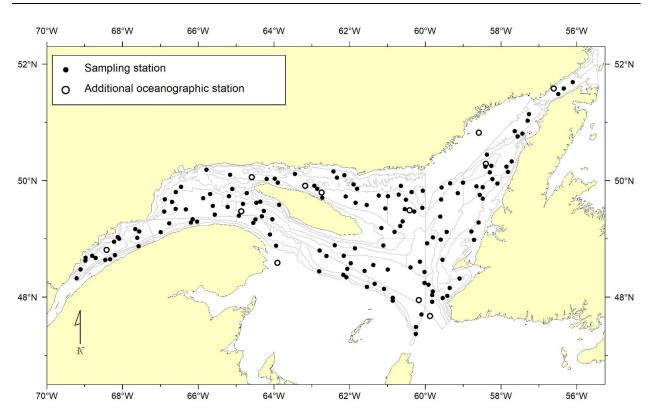


Figure 3. Locations of successful sampling stations (trawl and oceanography) and additional oceanographic stations for the 2021 survey.

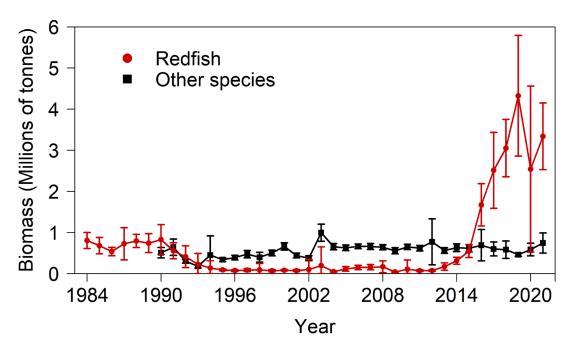


Figure 4. Biomass (1 000 000 tons) of redfish spp. and all other species sampled during the survey in 4RST. Error bars represent 95% confidence intervals.

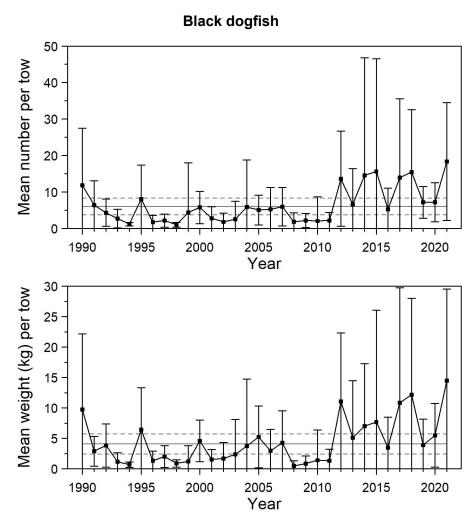


Figure 5. Mean numbers and mean weights per 15 minute tow observed during the survey for black dogfish in 4RST. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990–2020 period (solid line) and upper and lower reference (see text) limits (dashed lines).

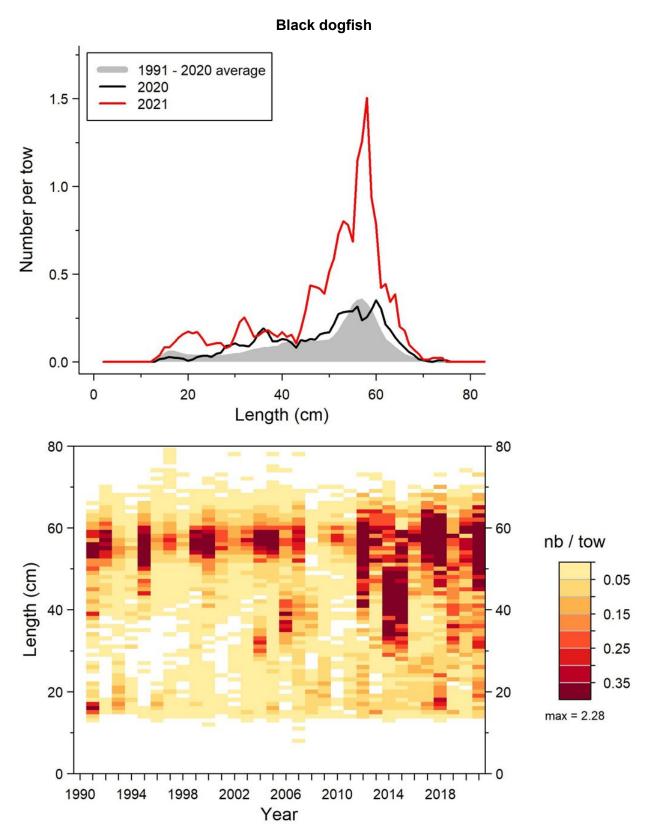


Figure 6. Length frequency distributions (mean number per 15 minute tow) observed during the survey for black dogfish in 4RST.

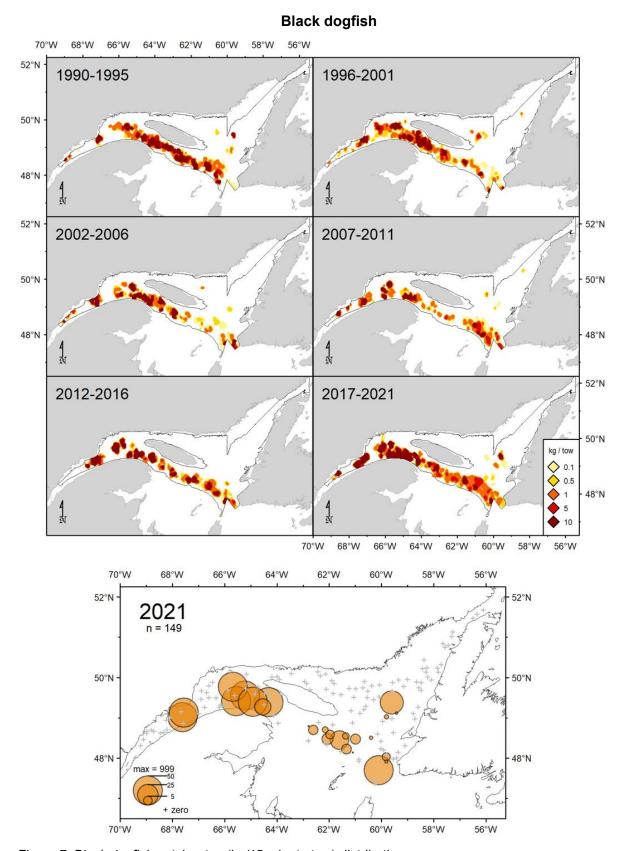


Figure 7. Black dogfish catch rates (kg/15 minute tow) distribution.

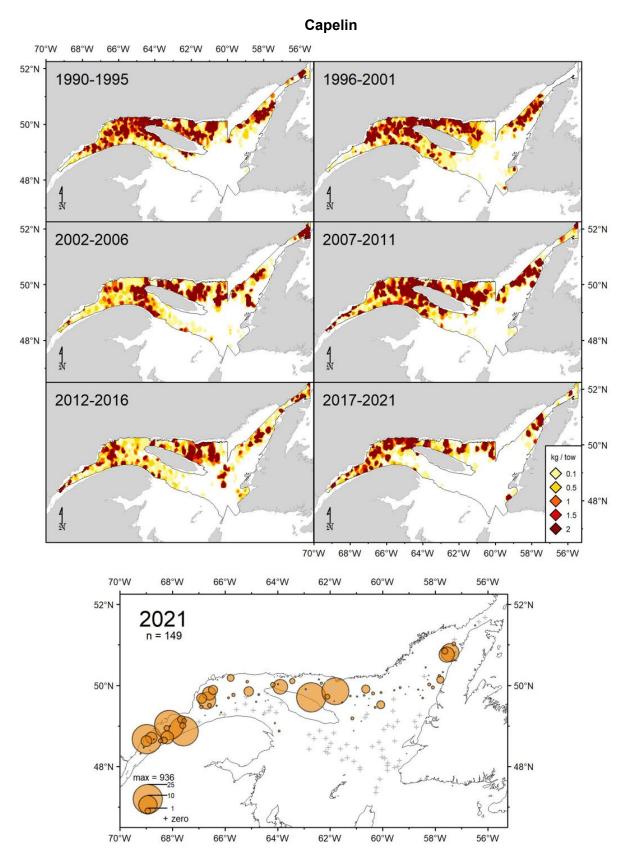


Figure 8. Capelin catch rates (kg/15 minute tow) distribution.

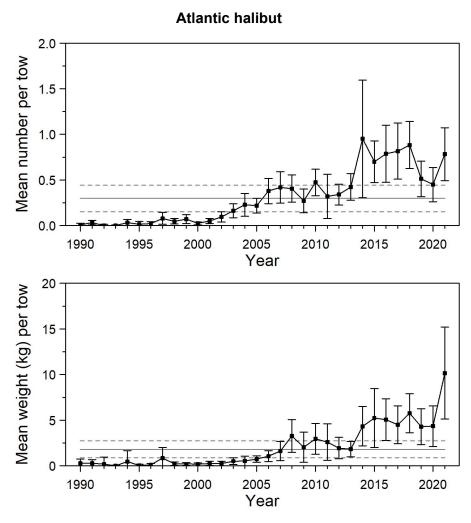


Figure 9. Mean numbers and mean weights per 15 minute tow observed during the survey for Atlantic halibut in 4RST. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990–2020 period (solid line) and upper and lower reference (see text) limits (dashed lines).

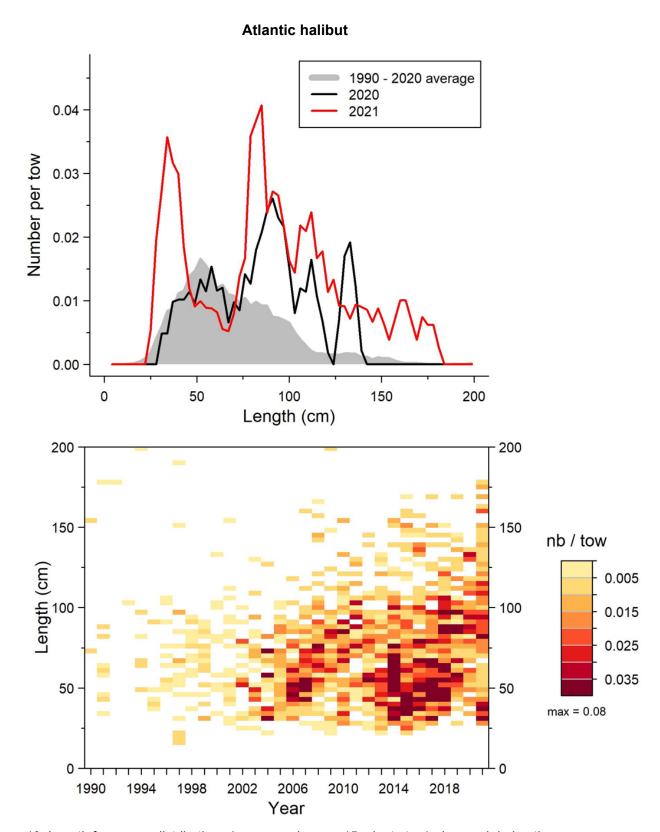


Figure 10. Length frequency distributions (mean number per 15 minute tow) observed during the survey for Atlantic halibut in 4RST.

Atlantic halibut 56°W 60°W 66°W 64°W 62°W 52°N 1996-2001 1990-1995 50°N 48°N 52°N 52°N 2002-2006 2007-2011 50°N 50°N 48°N 48°N 52°N 2012-2016 2017-2021 70°W 68°W 66°W 64°W 62°W 60°W 58°W 56°W 70°W 68°W 66°W 64°W 62°W 60°W 58°W 56°W 52°N 52°N 2021 n = 149 50°N 50°N 48°N

Figure 11. Atlantic halibut catch rates (kg/15 minute tow) distribution.

68°W

70°W

58°W

56°W

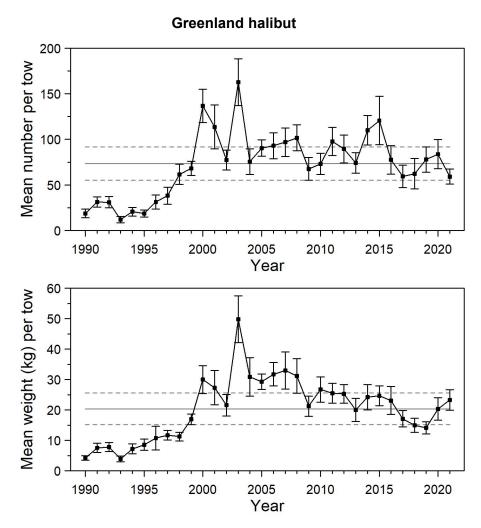


Figure 12. Mean numbers and mean weights per 15 minute tow observed during the survey for Greenland halibut in 4RST. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990–2020 period (solid line) and upper and lower reference (see text) limits (dashed lines).

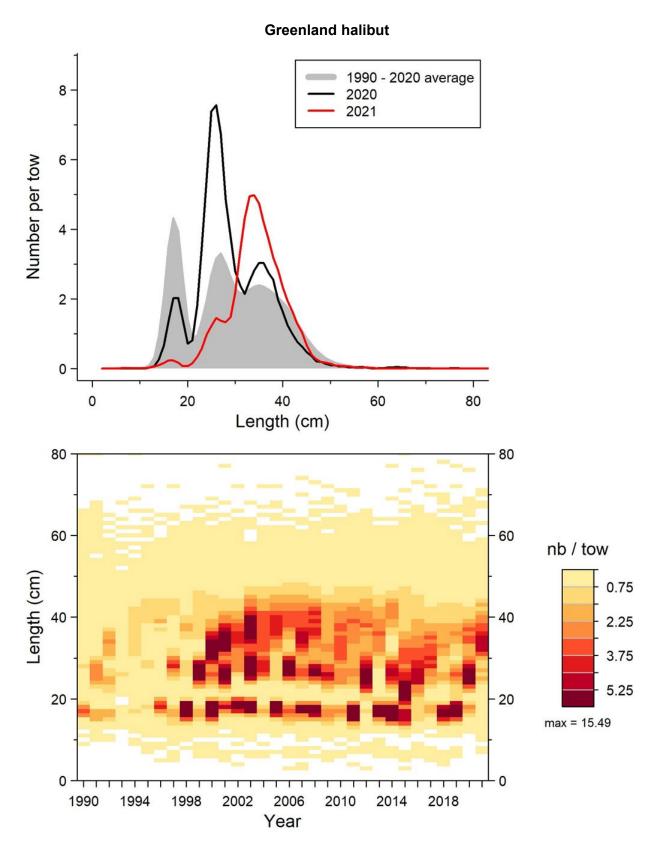


Figure 13. Length frequency distributions (mean number per 15 minute tow) observed during the survey for Greenland halibut in 4RST.

Greenland halibut

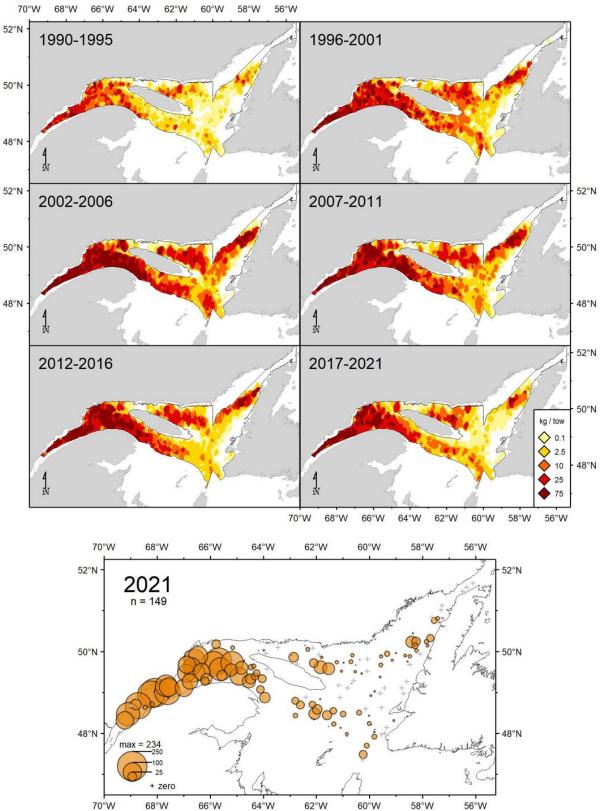


Figure 14. Greenland halibut catch rates (kg/15 minute tow) distribution.

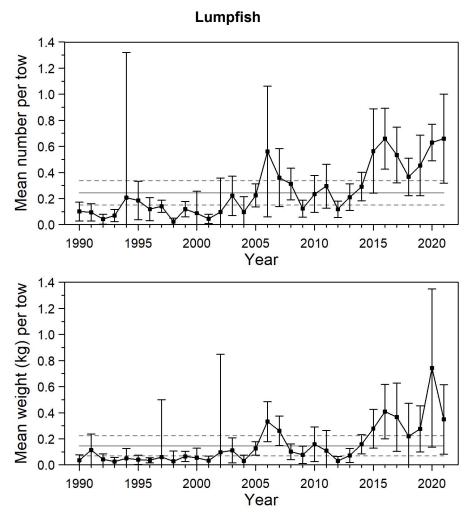


Figure 15. Mean numbers and mean weights per 15 minute tow observed during the survey for lumpfish in 4RST. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990–2020 period (solid line) and upper and lower reference (see text) limits (dashed lines).

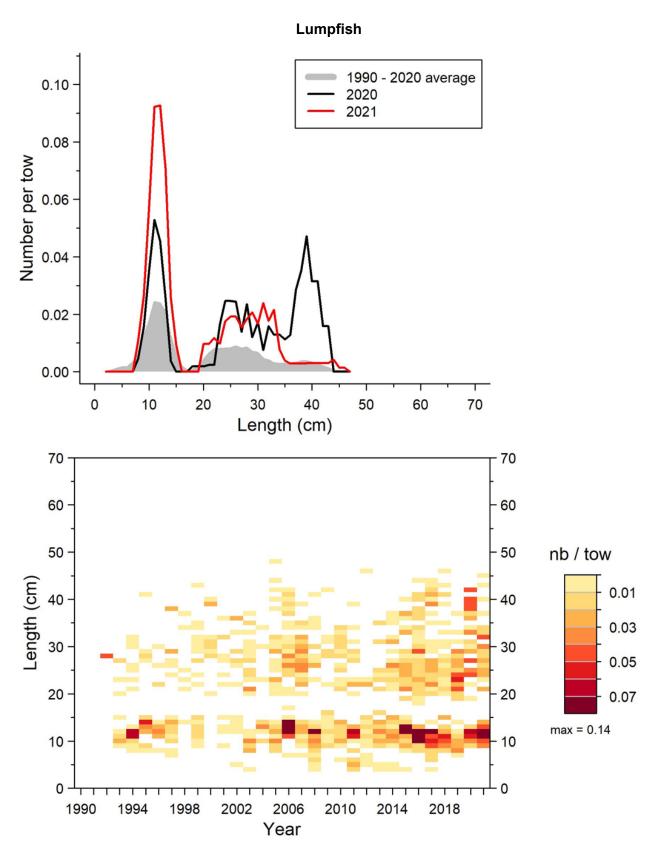


Figure 16. Length frequency distributions (mean number per 15 minute tow) observed during the survey for lumpfish in 4RST.

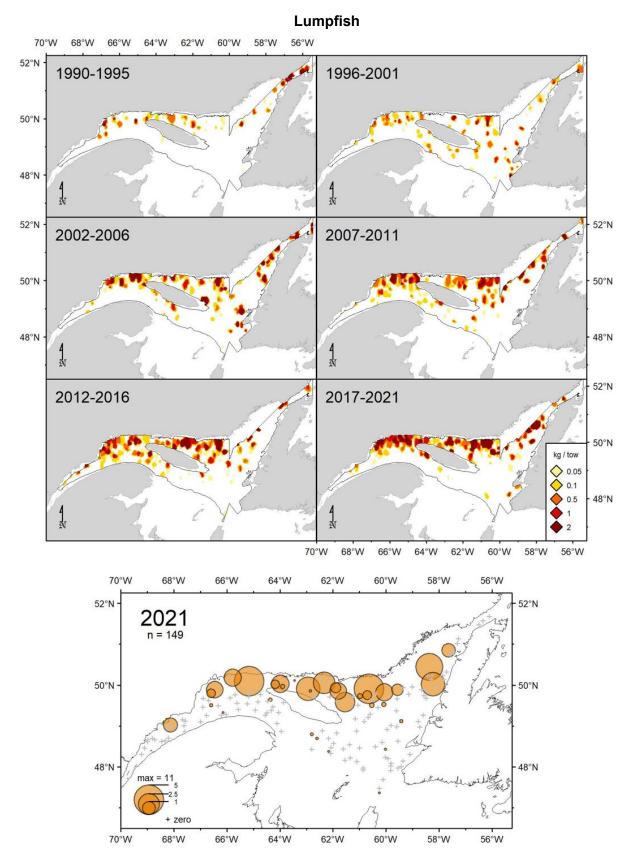


Figure 17. Lumpfish catch rates (kg/15 minute tow) distribution.

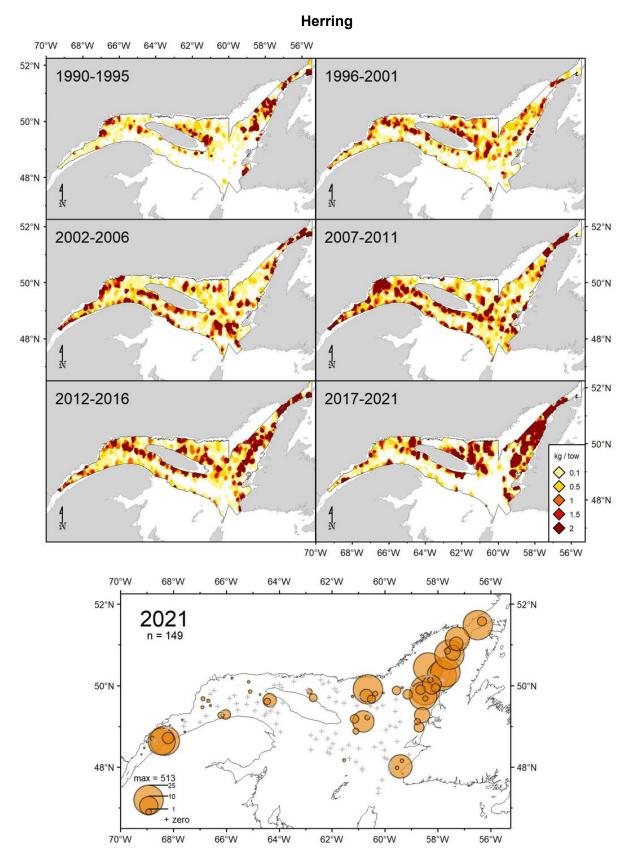


Figure 18. Herring catch rates (kg/15 minute tow) distribution.

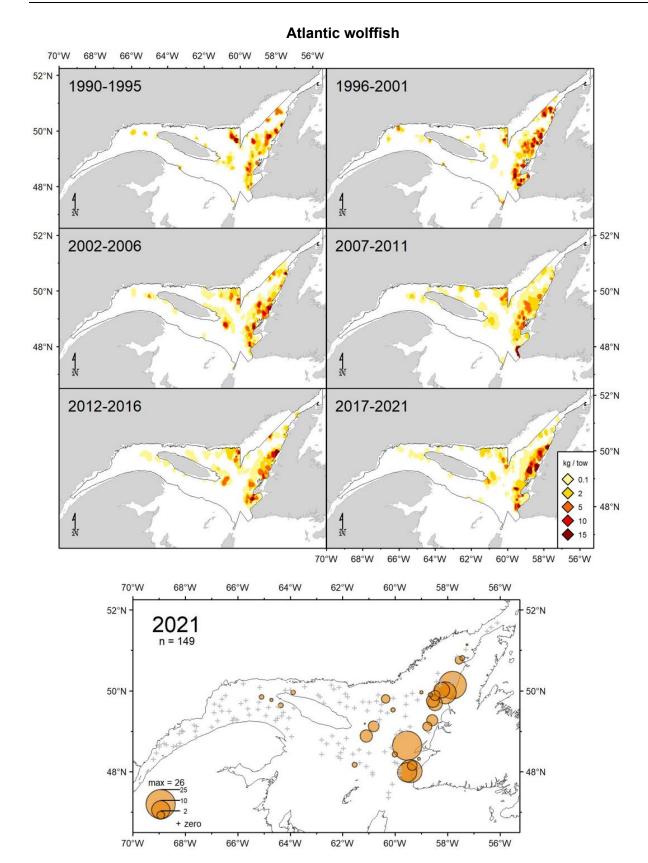


Figure 19. Atlantic wolffish catch rates (kg/15 minute tow) distribution.

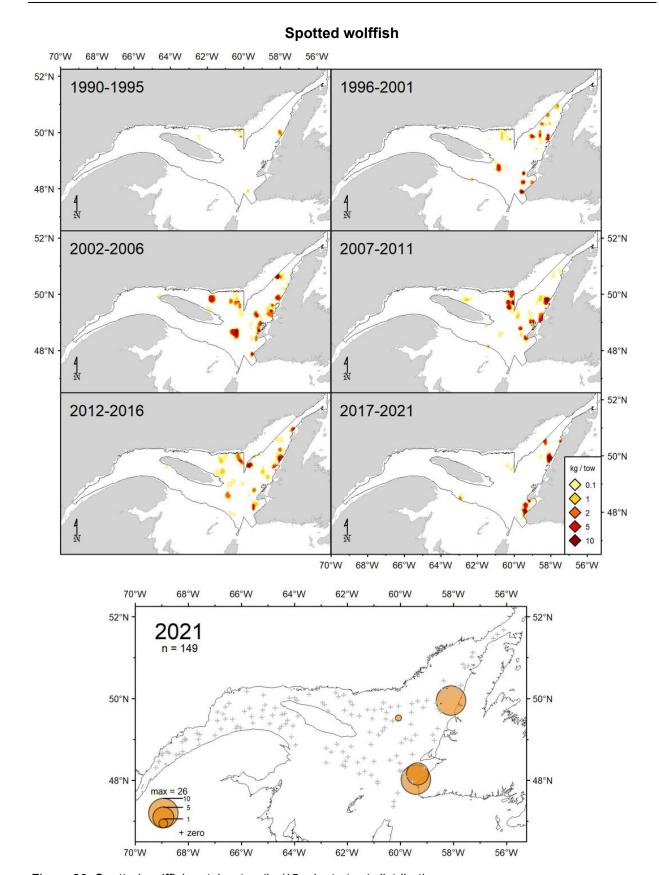


Figure 20. Spotted wolffish catch rates (kg/15 minute tow) distribution.

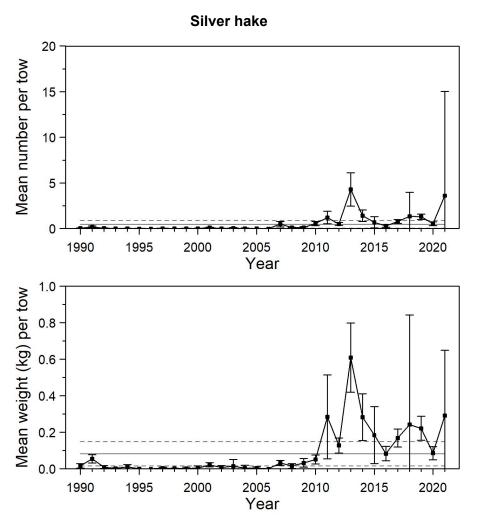


Figure 21. Mean numbers and mean weights per 15 minute tow observed during the survey for silver hake in 4RST. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990–2020 period (solid line) and upper and lower reference (see text) limits (dashed lines).

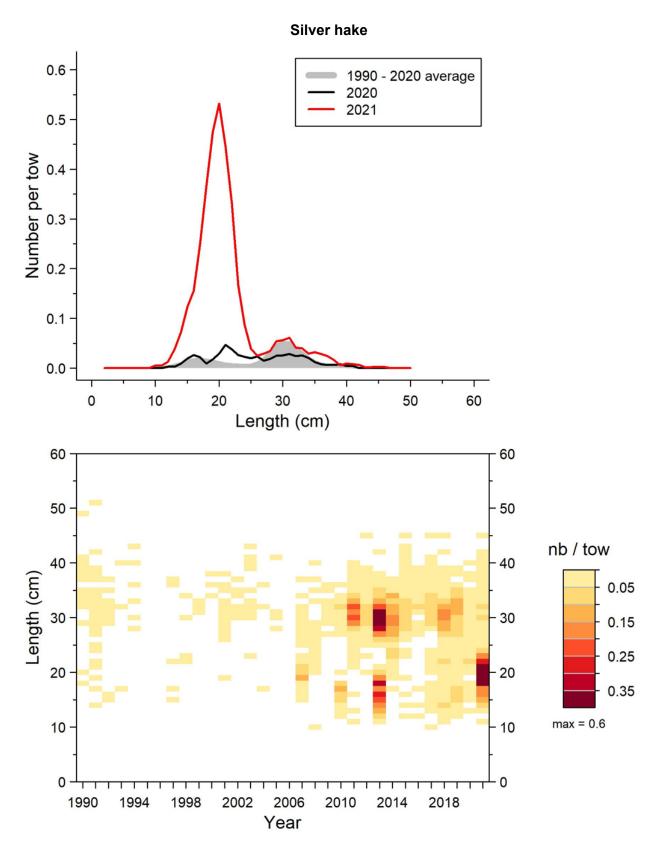


Figure 22. Length frequency distributions (mean number per 15 minute tow) observed during the survey for silver hake in 4RST.

Silver hake 62°W 60°W 58°W 56°W 52°N 1990-1995 1996-2001 50°N 48°N 52°N 52°N 2002-2006 2007-2011 50°N 50°N 48°N 48°N 52°N 2012-2016 2017-2021 50°N **O**.1 0.5 48°N 2.5 70°W 68°W 66°W 64°W 62°W 60°W 58°W 56°W 70°W 68°W 66°W 64°W 62°W 60°W 58°W 56°W 52°N 52°N 2021 n = 149 50°N 48°N 48°N + zero 70°W 68°W 66°W 58°W 56°W

Figure 23. Silver hake catch rates (kg/15 minute tow) distribution.

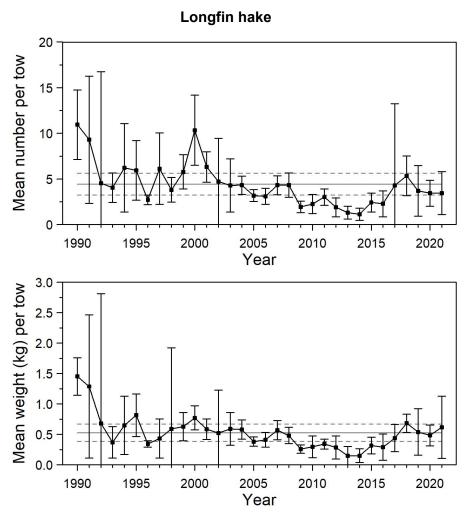


Figure 24. Mean numbers and mean weights per 15 minute tow observed during the survey for longfin hake in 4RST. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990–2020 period (solid line) and upper and lower reference (see text) limits (dashed lines).

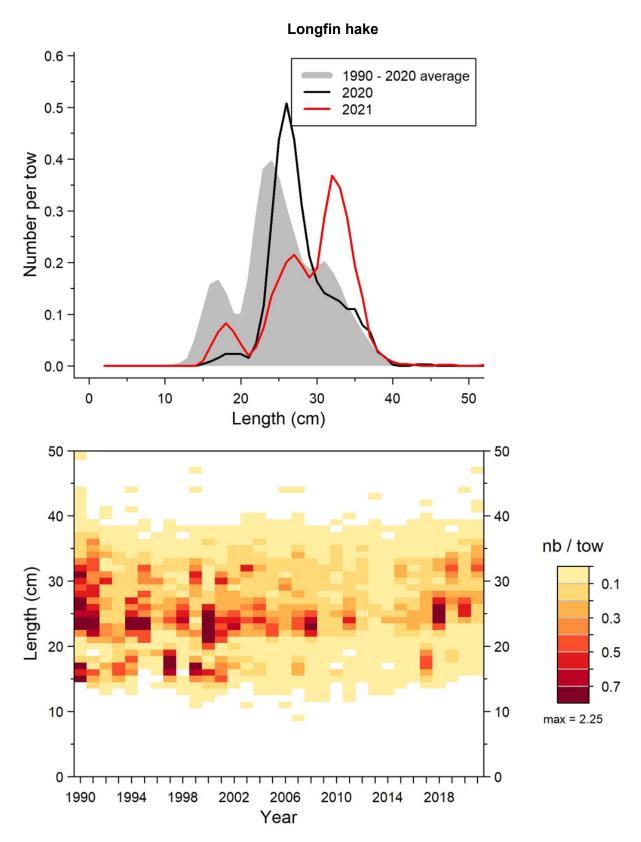


Figure 25. Length frequency distributions (mean number per 15 minute tow) observed during the survey for longfin hake in 4RST.

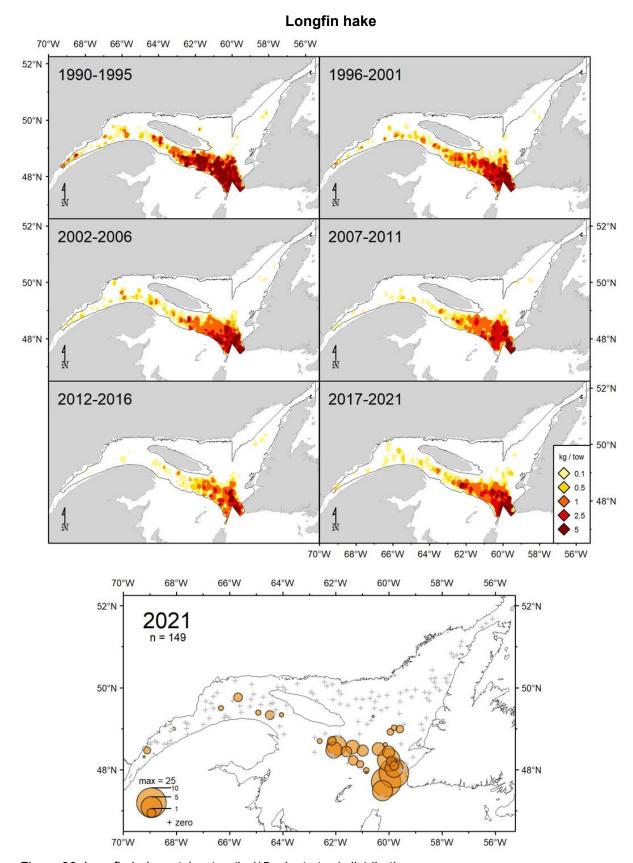


Figure 26. Longfin hake catch rates (kg/15 minute tow) distribution.

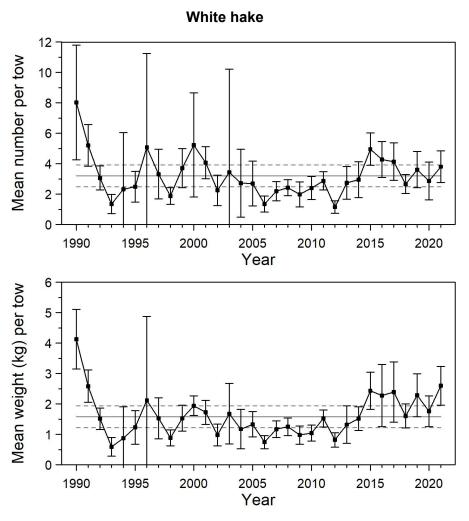


Figure 27. Mean numbers and mean weights per 15 minute tow observed during the survey for white hake in 4RST. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990–2020 period (solid line) and upper and lower reference (see text) limits (dashed lines).

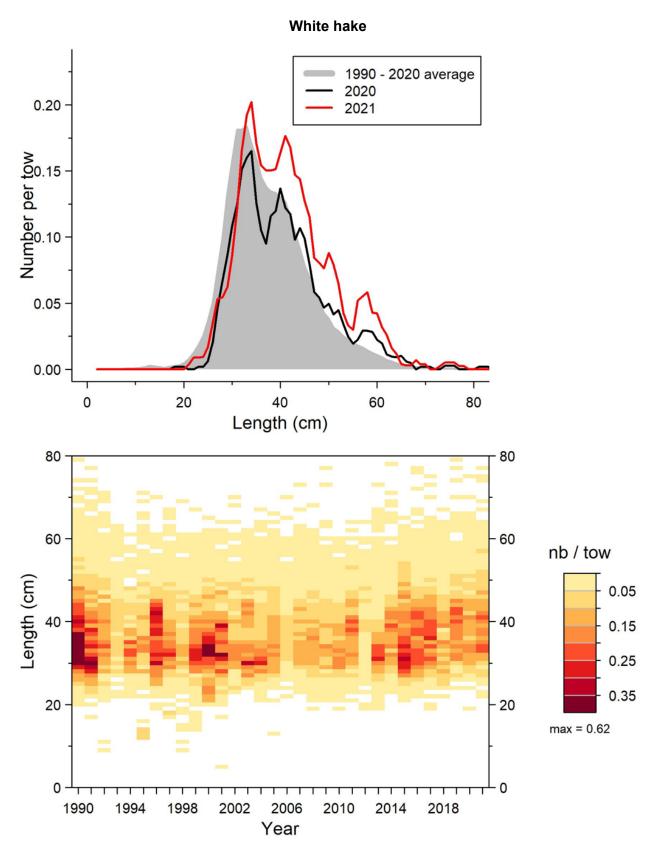


Figure 28. Length frequency distributions (mean number per 15 minute tow) observed during the survey for white hake in 4RST.

White hake 64°W 62°W 60°W 58°W 52°N 1996-2001 1990-1995 50°N 48°N 52°N 52°N 2002-2006 2007-2011 50°N 50°N 48°N 48°N 52°N 2012-2016 2017-2021 50°N 0.5 48°N 62°W 60°W 58°W 70°W 68°W 66°W 64°W 56°W 70°W 68°W 66°W 64°W 62°W 60°W 58°W 56°W 52°N 52°N 2021 n = 149 50°N 50°N 48°N 48°N 70°W 68°W 66°W 60°W 58°W 56°W

Figure 29. White hake catch rates (kg/15 minute tow) distribution.

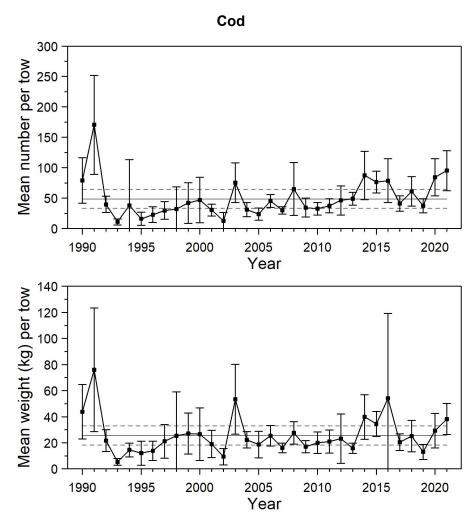


Figure 30. Mean numbers and mean weights per 15 minute tow observed during the survey for cod in 4RS. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990–2020 period (solid line) and upper and lower reference (see text) limits (dashed lines).

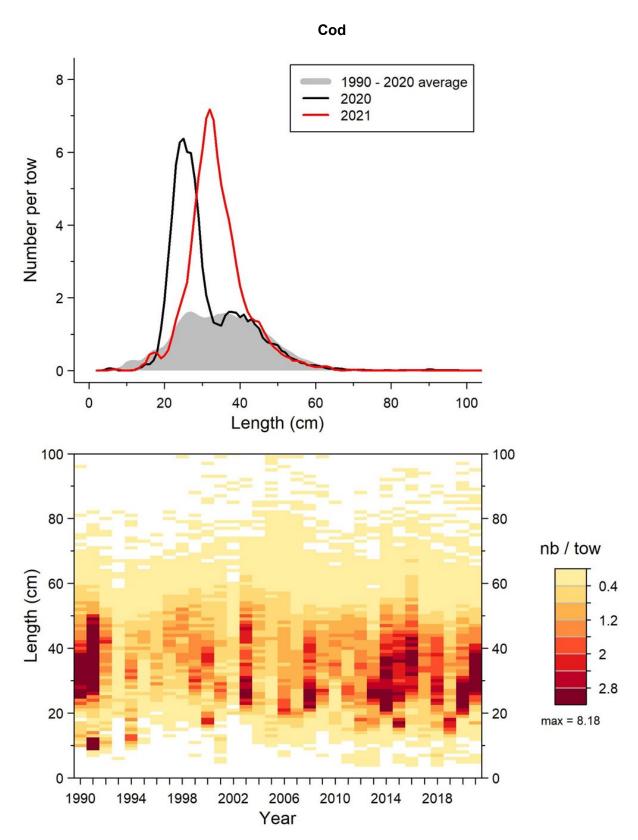


Figure 31. Length frequency distributions (mean number per 15 minute tow) observed during the survey for cod in 4RS.

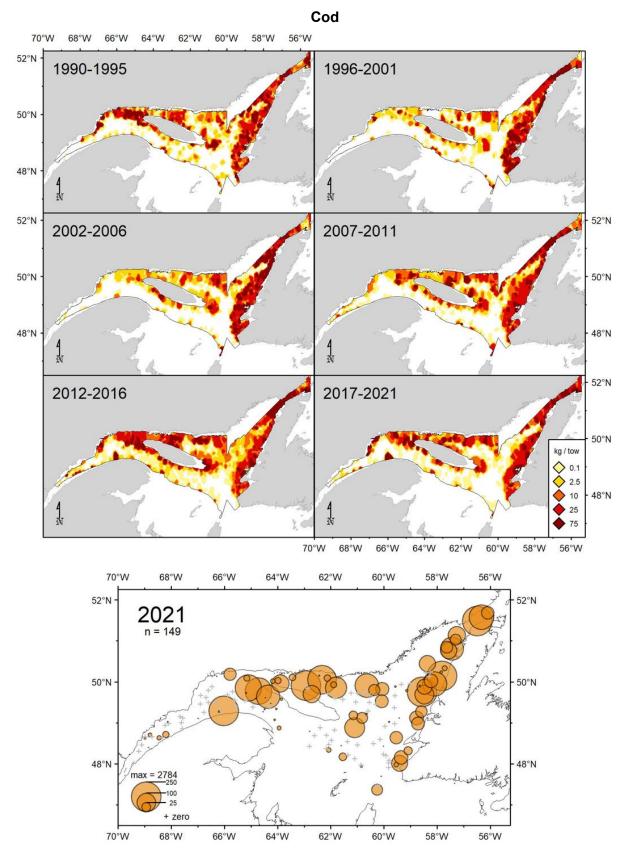


Figure 32. Cod catch rates (kg/15 minute tow) distribution.

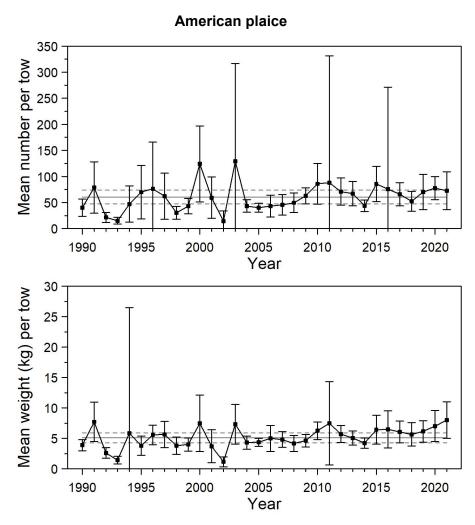


Figure 33. Mean numbers and mean weights per 15 minute tow observed during the survey for American plaice in 4RST. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990–2020 period (solid line) and upper and lower reference (see text) limits (dashed lines).

Figure 34. Length frequency distributions (mean number per 15 minute tow) observed during the survey for American plaice in 4RST.

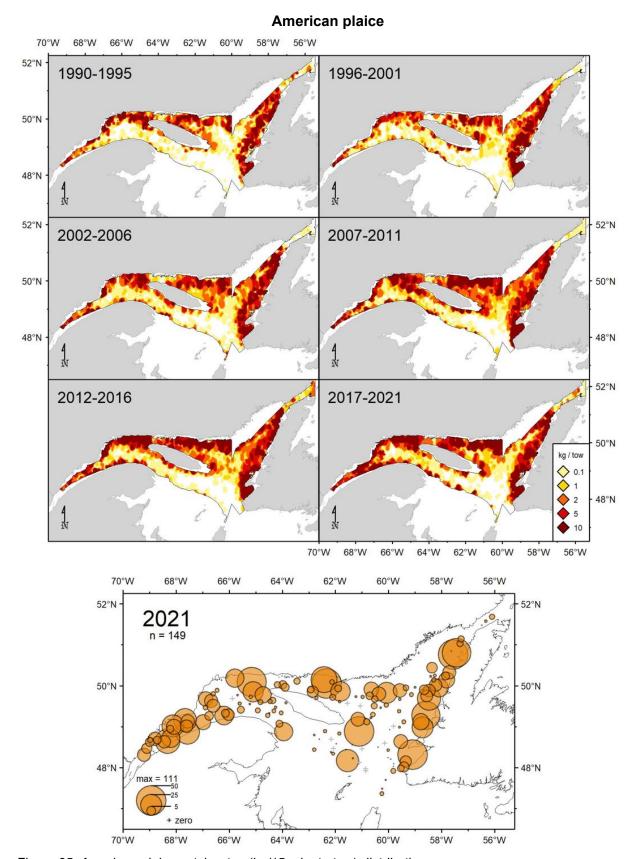


Figure 35. American plaice catch rates (kg/15 minute tow) distribution.

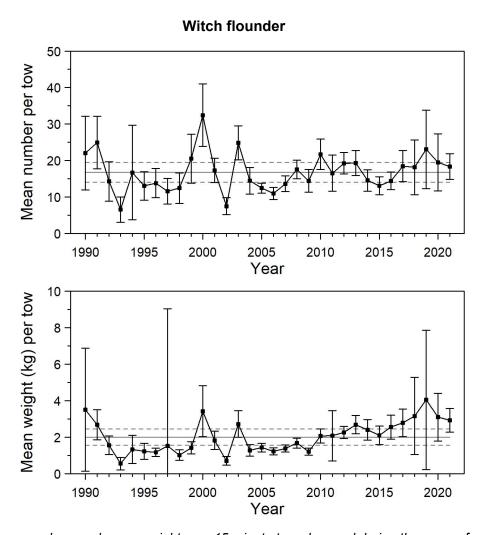


Figure 36. Mean numbers and mean weights per 15 minute tow observed during the survey for witch flounder in 4RST. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990–2020 period (solid line) and upper and lower reference (see text) limits (dashed lines).

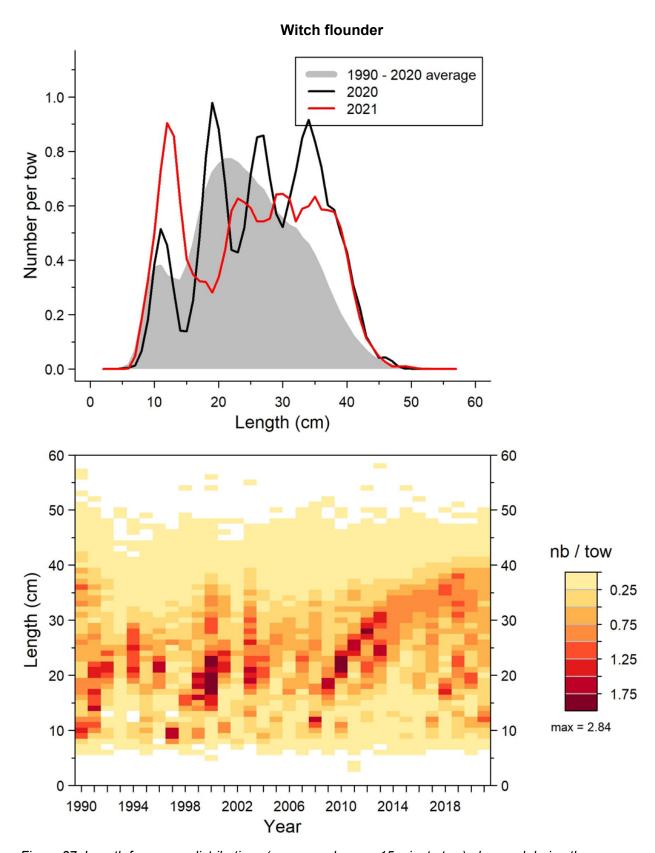


Figure 37. Length frequency distributions (mean number per 15 minute tow) observed during the survey for witch flounder in 4RST.

Witch flounder 62°W 60°W 52°N 1996-2001 1990-1995 50°N 48°N 52°N 52°N 2002-2006 2007-2011 50°N 50°N 48°N 48°N 52°N 2012-2016 2017-2021 0.1 0.5 48°N 62°W 58°W 70°W 68°W 66°W 64°W 60°W 56°W 70°W 56°W 68°W 66°W 64°W 62°W 60°W 58°W 52°N 52°N 2021 n = 149 50°N 48°N

Figure 38. Witch flounder catch rates (kg/15 minute tow) distribution.

66°W

68°W

70°W

62°W

56°W

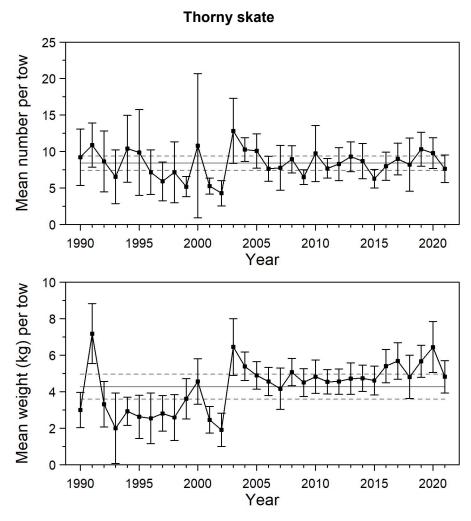


Figure 39. Mean numbers and mean weights per 15 minute tow observed during the survey for thorny skate in 4RST. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990–2020 period (solid line) and upper and lower reference (see text) limits (dashed lines).

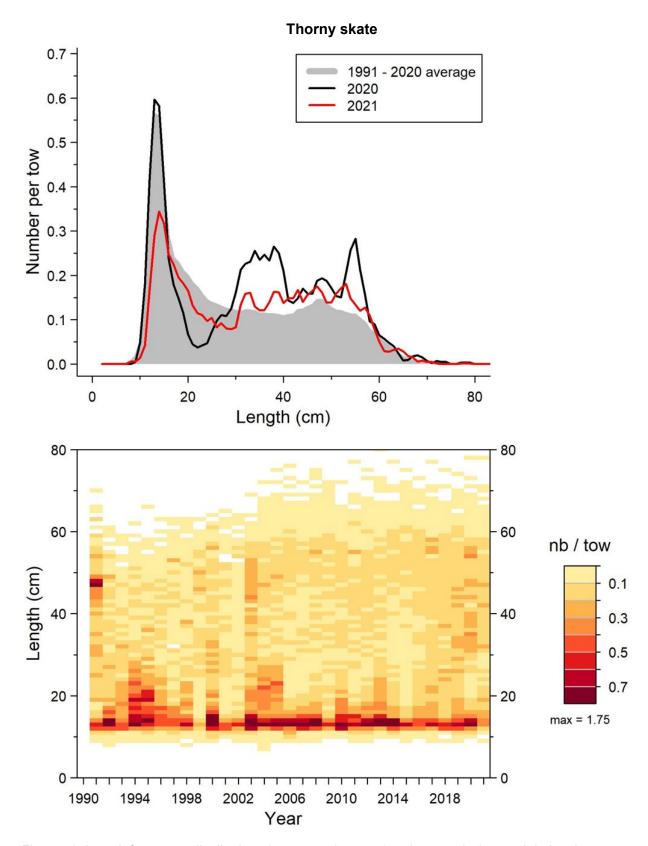


Figure 40. Length frequency distributions (mean number per 15 minute tow) observed during the survey for thorny skate in 4RST.

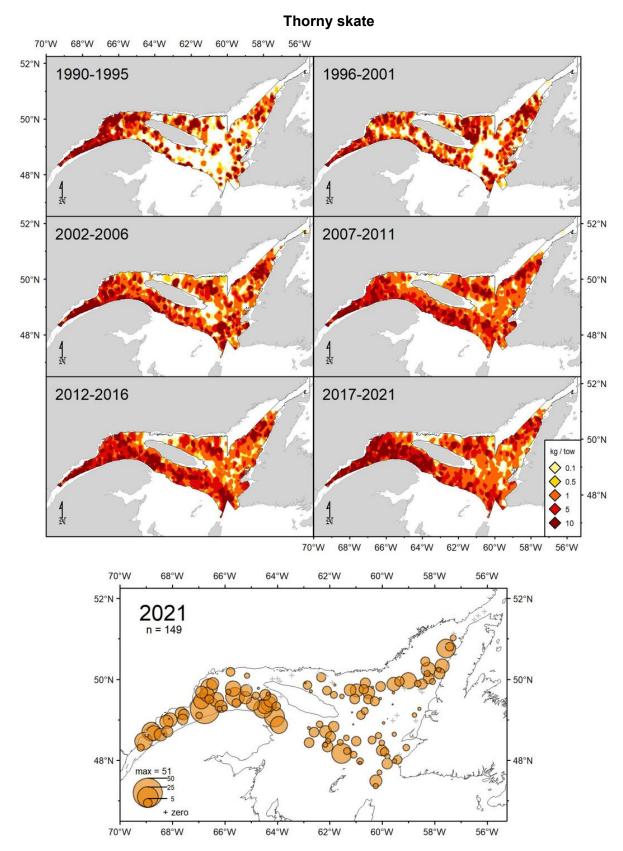


Figure 41. Thorny skate catch rates (kg/15 minute tow) distribution.

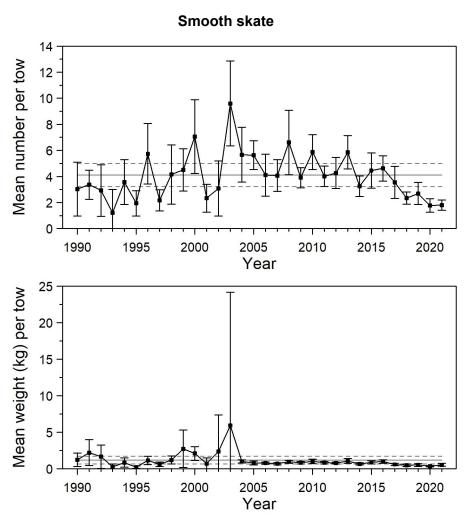


Figure 42. Mean numbers and mean weights per 15 minute tow observed during the survey for smooth skate in 4RST. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990–2020 period (solid line) and upper and lower reference (see text) limits (dashed lines).

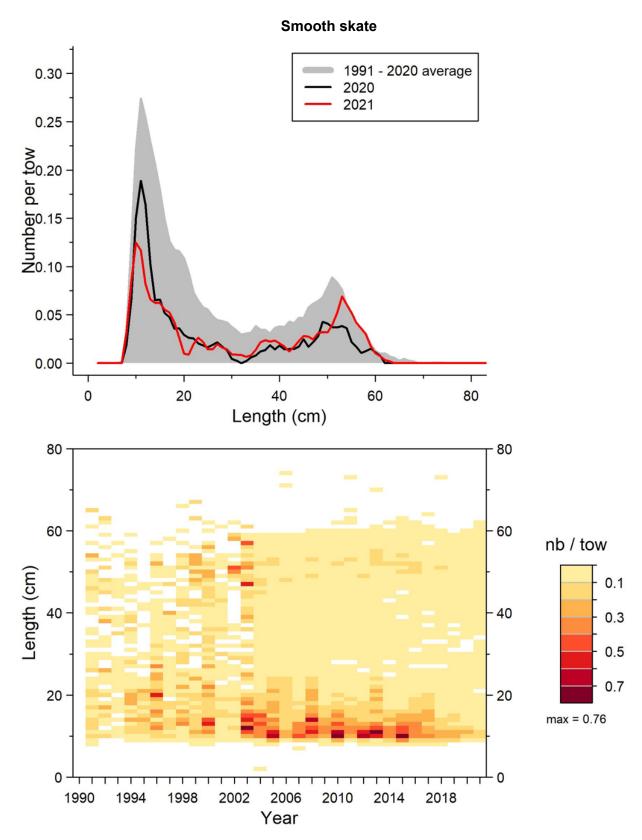


Figure 43. Length frequency distributions (mean number per 15 minute tow) observed during the survey for smooth skate in 4RST.

Smooth skate 60°W 58°W 62°W 52°N 1990-1995 1996-2001 50°N 48°N 52°N 52°N 2002-2006 2007-2011 50°N 50°N 48°N 48°N 52°N 2012-2016 2017-2021 50°N kg / tow 48°N 70°W 68°W 66°W 64°W 62°W 60°W 58°W 56°W 70°W 68°W 60°W 56°W 66°W 64°W 62°W 58°W 52°N 52°N 2021 n = 149 50°N 48°N + zero 68°W 56°W

Figure 44. Smooth skate catch rates (kg/15 minute tow) distribution.

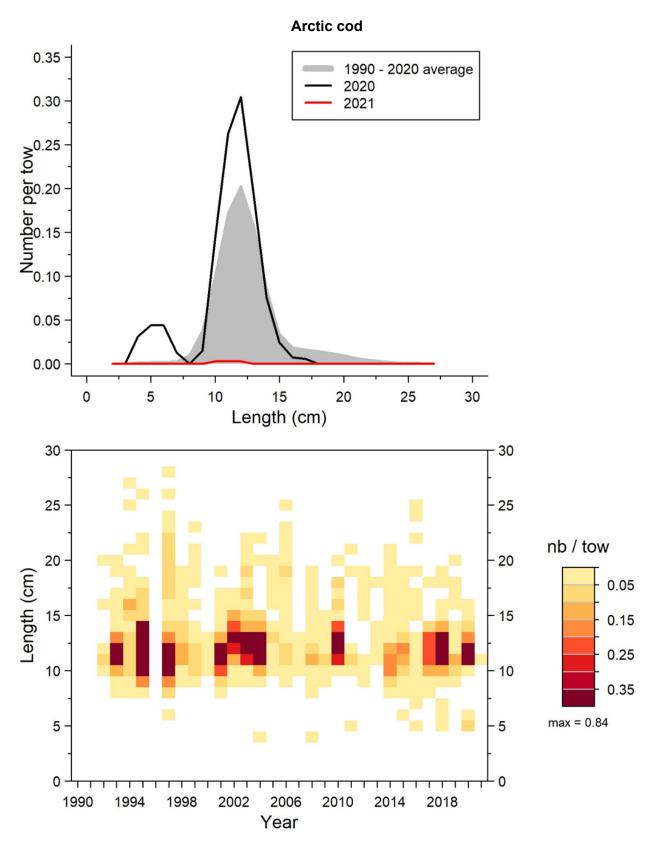


Figure 45. Length frequency distributions (mean number per 15 minute tow) observed during the survey for Arctic cod in 4RST.

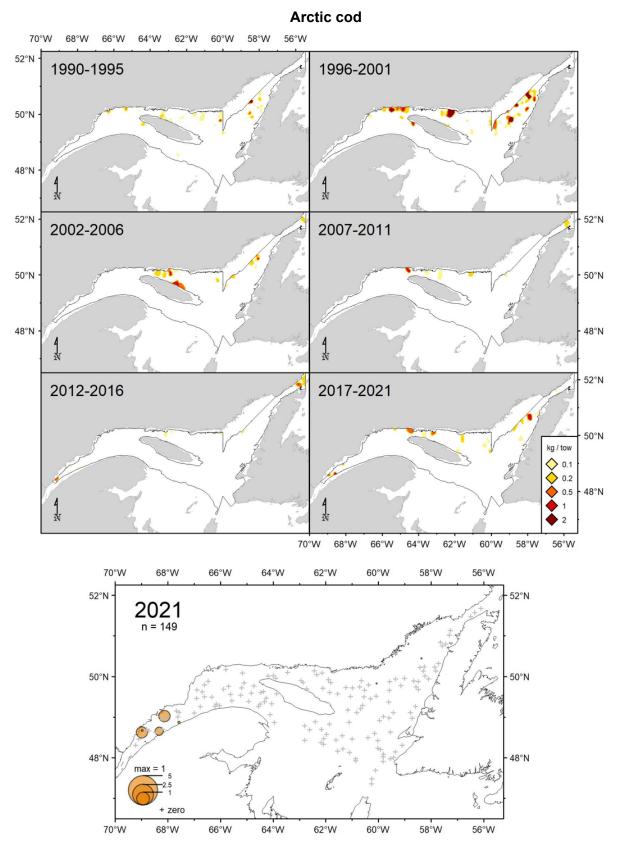


Figure 46. Arctic cod catch rates (kg/15 minute tow) distribution.

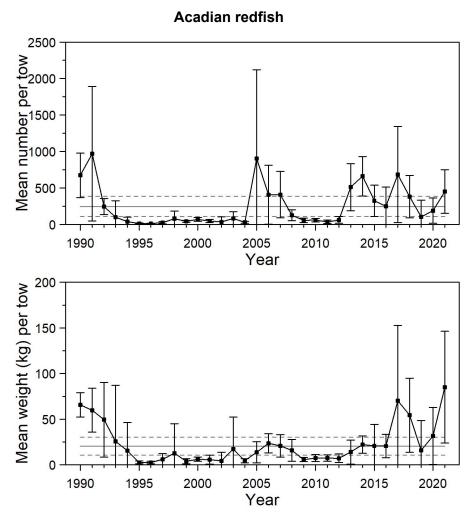


Figure 47. Mean numbers and mean weights per 15 minute tow observed during the survey for Acadian redfish in 4RST. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990–2020 period (solid line) and upper and lower reference (see text) limits (dashed lines).

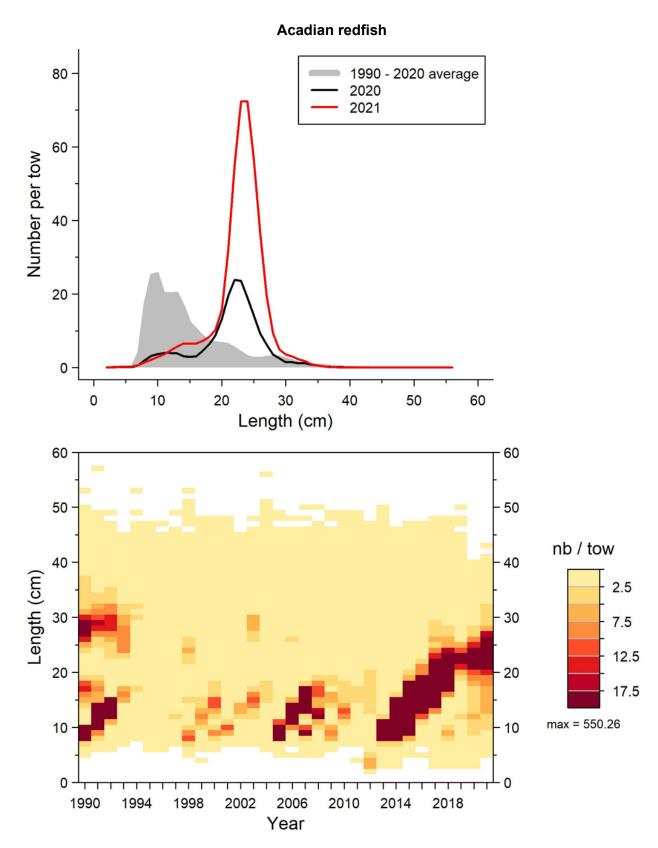


Figure 48. Length frequency distributions (mean number per 15 minute tow) observed during the survey for Acadian redfish in 4RST.

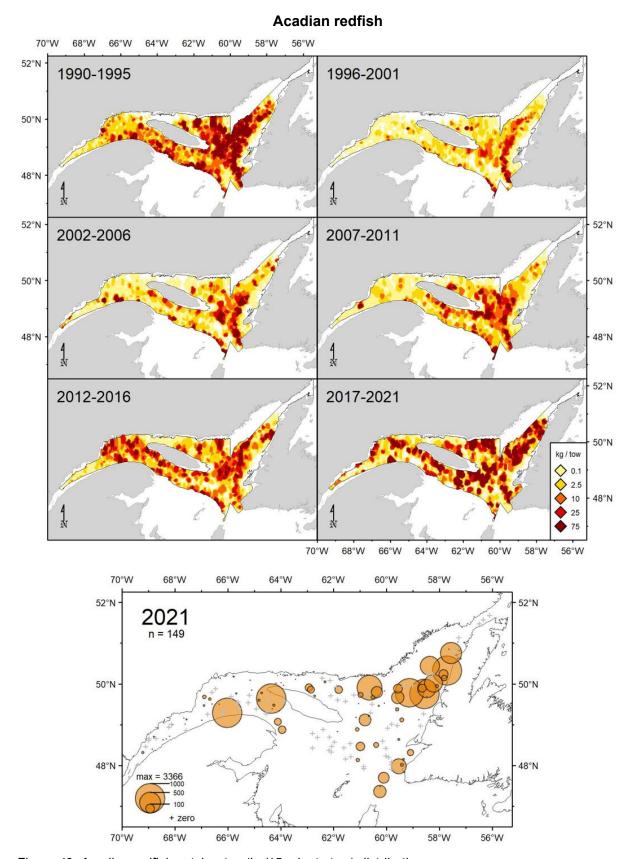


Figure 49. Acadian redfish catch rates (kg/15 minute tow) distribution.

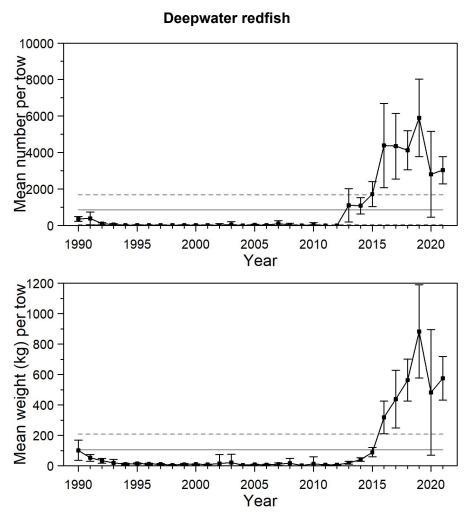


Figure 50. Mean numbers and mean weights per 15 minute tow observed during the survey for deepwater redfish in 4RST. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990–2020 period (solid line) and upper and lower reference (see text) limits (dashed lines).

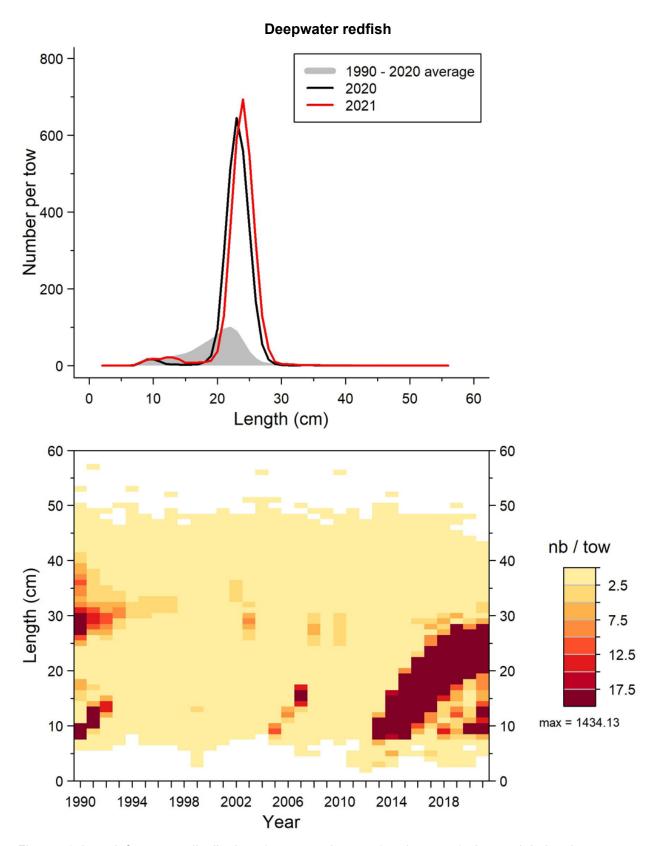


Figure 51. Length frequency distributions (mean number per 15 minute tow) observed during the survey for deepwater redfish in 4RST.

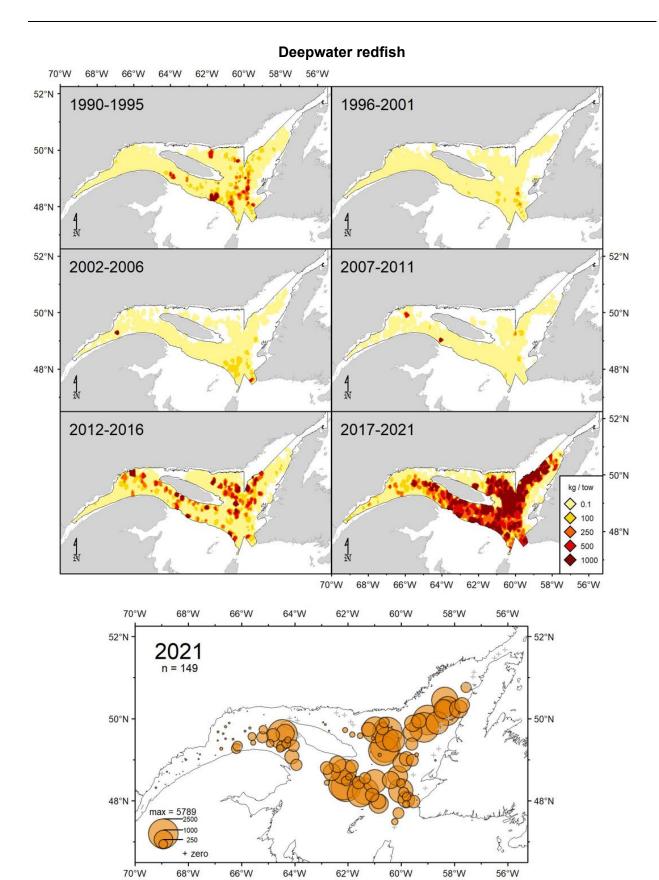


Figure 52. Deepwater redfish catch rates (kg/15 minute tow) distribution.

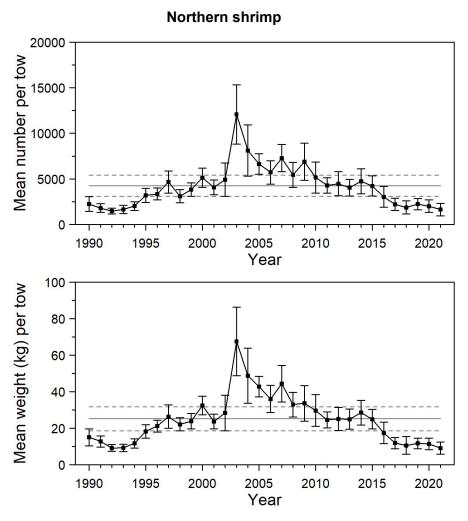


Figure 53. Mean numbers and mean weights per 15 minute tow observed during the survey for northern shrimp in 4RST. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990–2020 period (solid line) and upper and lower reference (see text) limits (dashed lines).

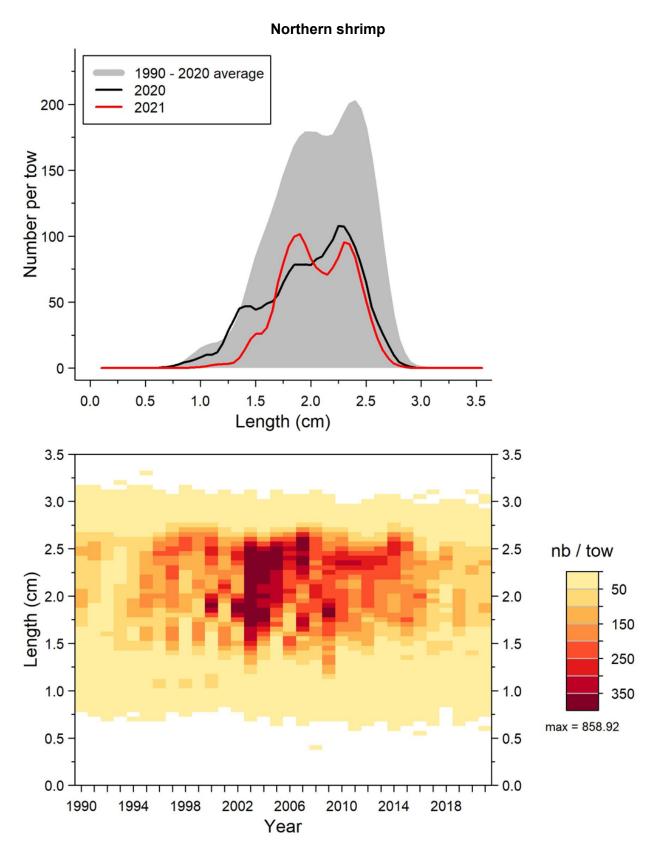


Figure 54. Carapace length frequency distributions (mean number per 15 minute tow) observed during the survey for northern shrimp in 4RST.

Northern shrimp

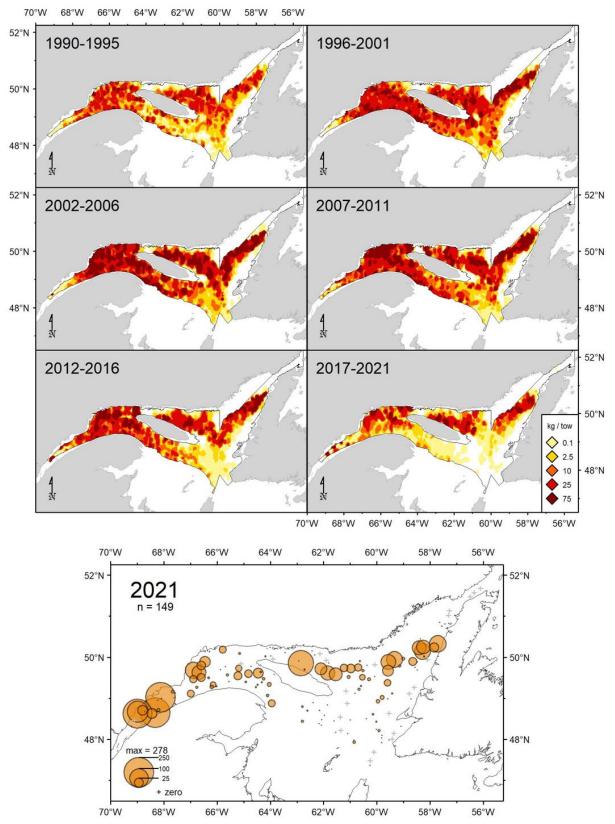


Figure 55. Northern shrimp catch rates (kg/15 minute tow) distribution.

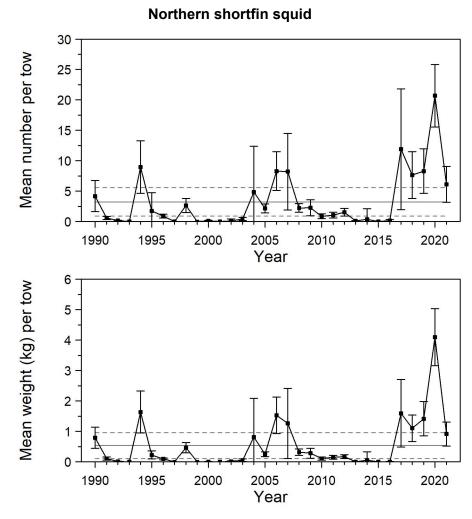


Figure 56. Mean numbers and mean weights per 15 minute tow observed during the survey for northern shortfin squid in 4RST. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990–2020 period (solid line) and upper and lower reference (see text) limits (dashed lines).

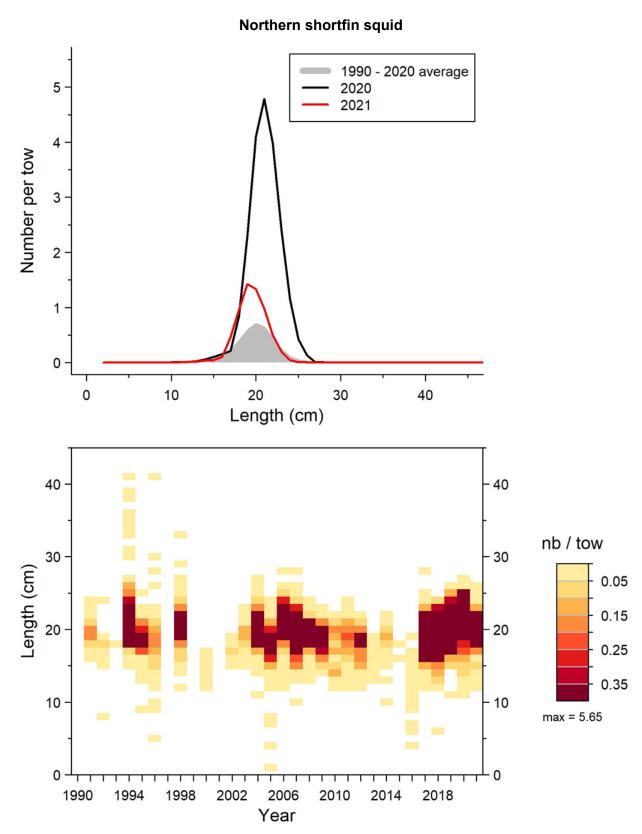


Figure 57. Mantle length frequency distributions (mean number per 15 minute tow) observed during the survey for northern shortfin squid in 4RST.

Northern shortfin squid

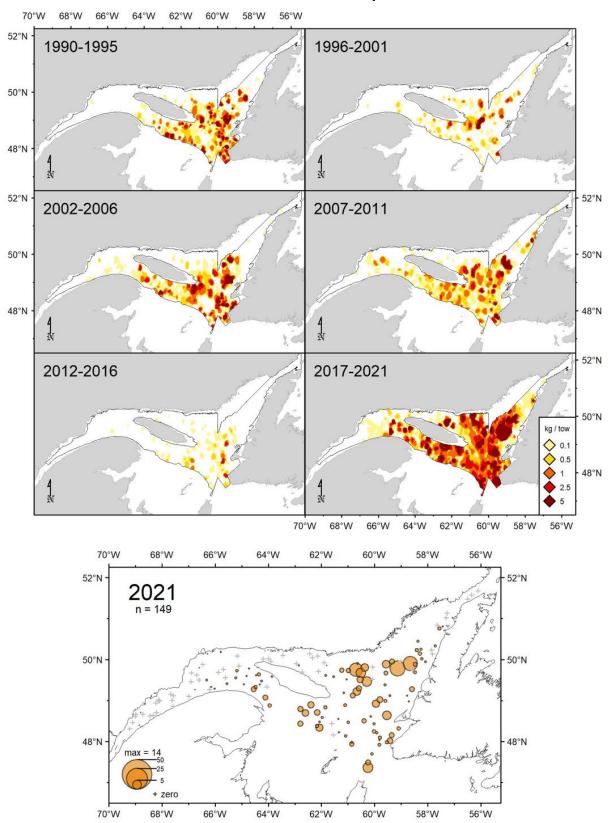


Figure 58. Northern shortfin squid catch rates (kg/15 minute tow) distribution.

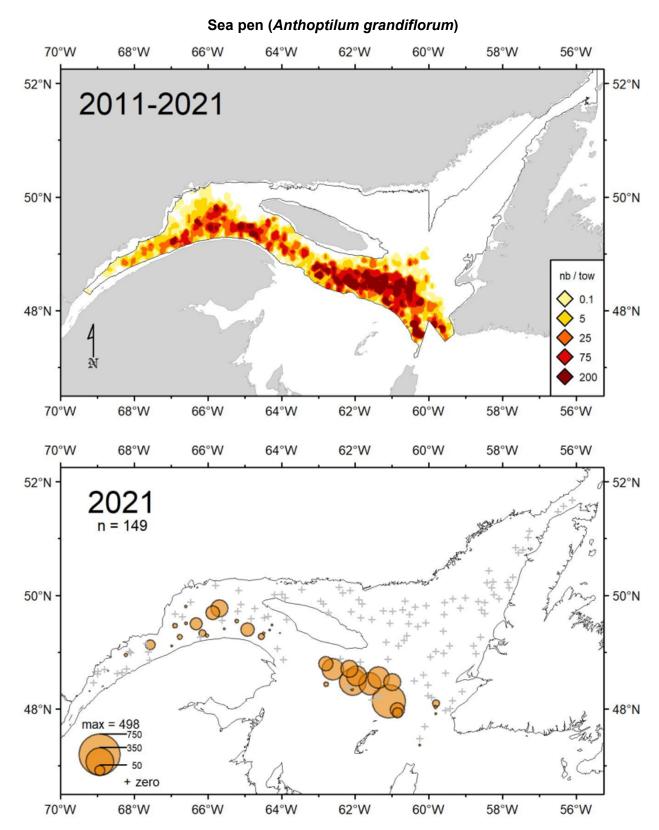


Figure 59. Sea pen (Anthoptilum grandiflorum) catch rates (nb/15 minute tow) distribution.

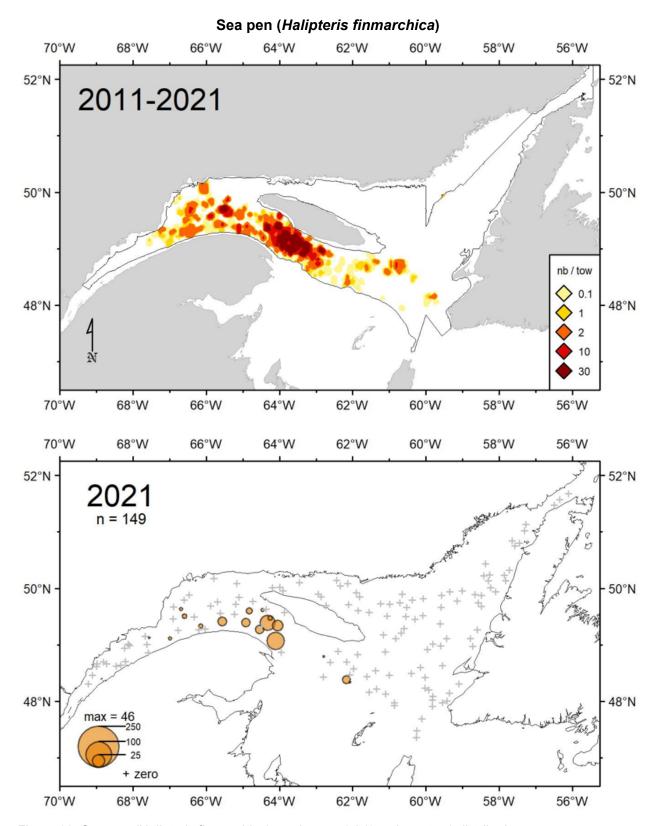


Figure 60. Sea pen (Halipteris finmarchica) catch rates (nb/15 minute tow) distribution.

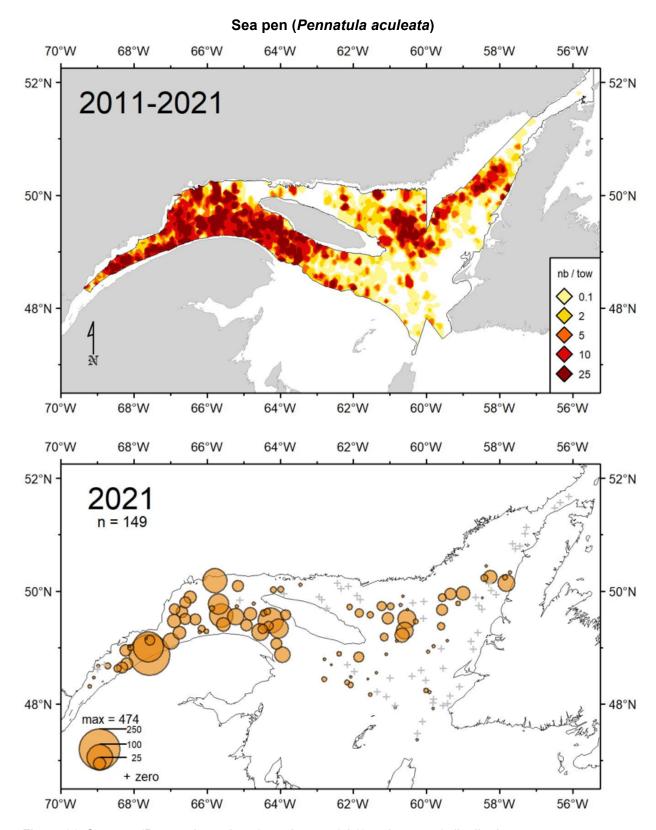


Figure 61. Sea pen (Pennatula aculeate) catch rates (nb/15 minute tow) distribution.

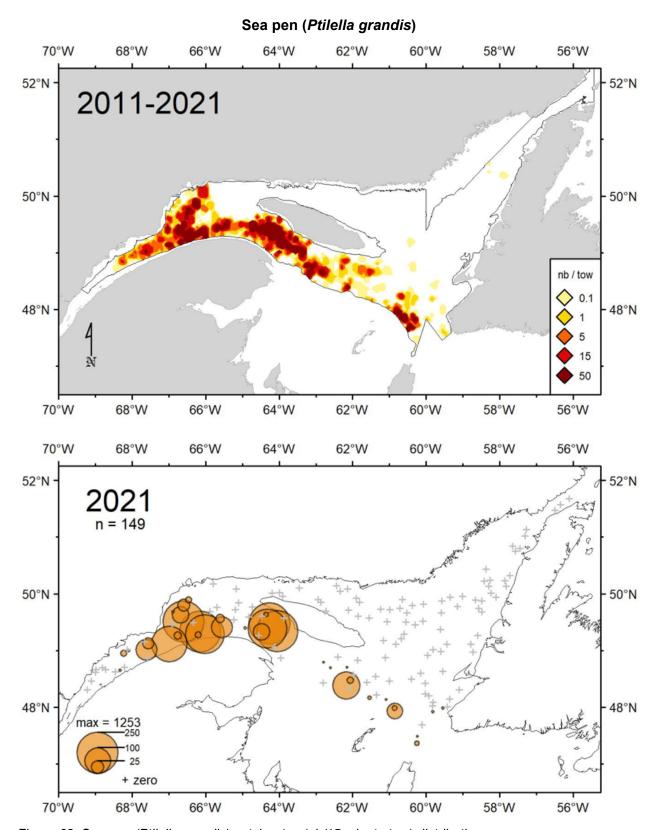


Figure 62. Sea pen (Ptilella grandis) catch rates (nb/15 minute tow) distribution.

Total

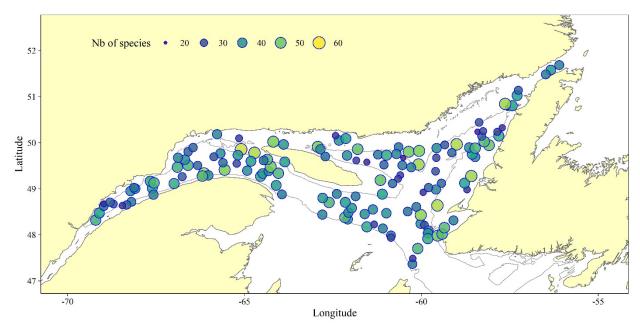


Figure 63. Species richness expressed as the number of species collected per station.

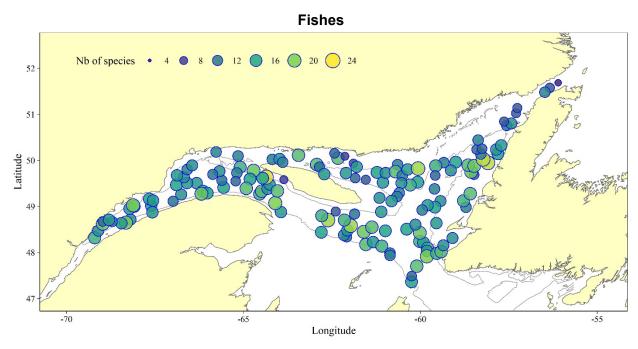


Figure 64. Species richness expressed as the number of species collected per station for the fish grouping.

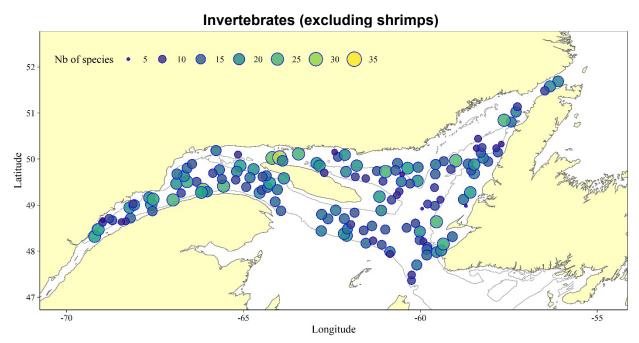


Figure 65. Species richness expressed as the number of species collected by station for the invertebrates grouping excluding the shrimps.

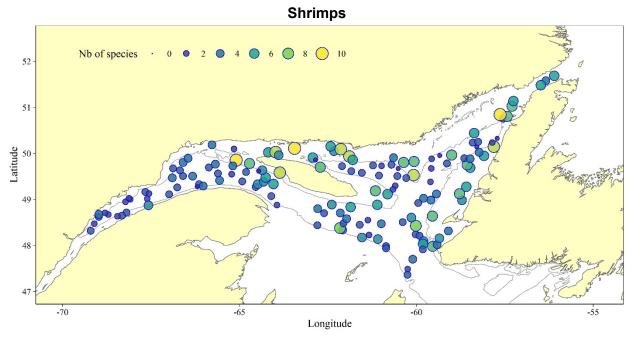


Figure 66. Species richness expressed as the number of species collected by station for the shrimps grouping.

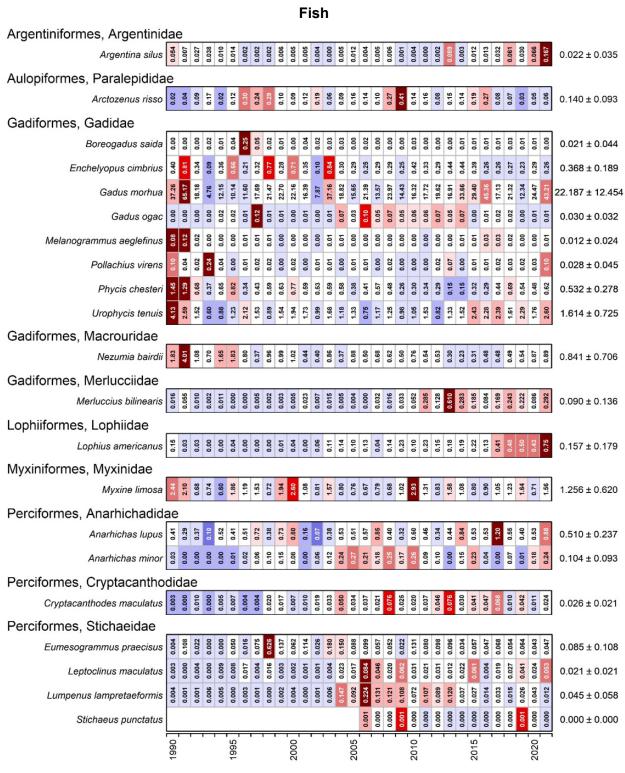


Figure 67. Average weight of fish taxa per 15-minute tow observed during the survey. The colour code represents the anomaly value, which corresponds to the difference between the CPUE in a given year and the average CPUE of the time series for each taxon divided by the standard deviation of this average.

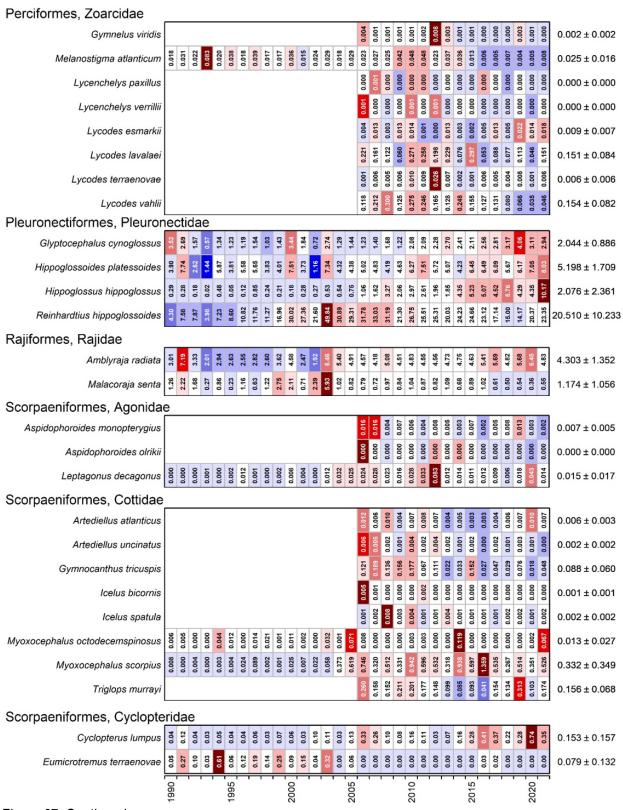


Figure 67. Continued.

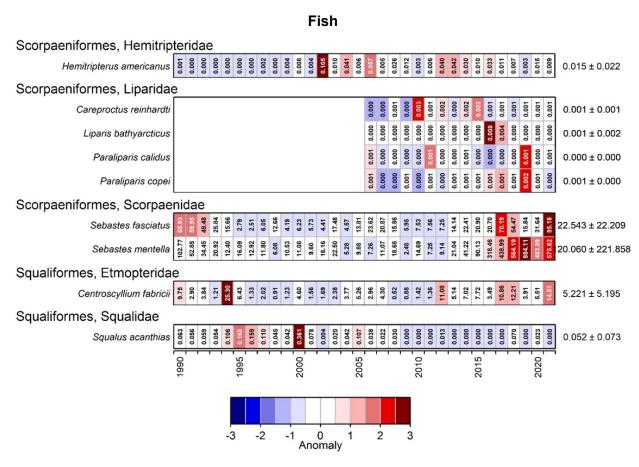


Figure 67. Continued.

Invertebrates

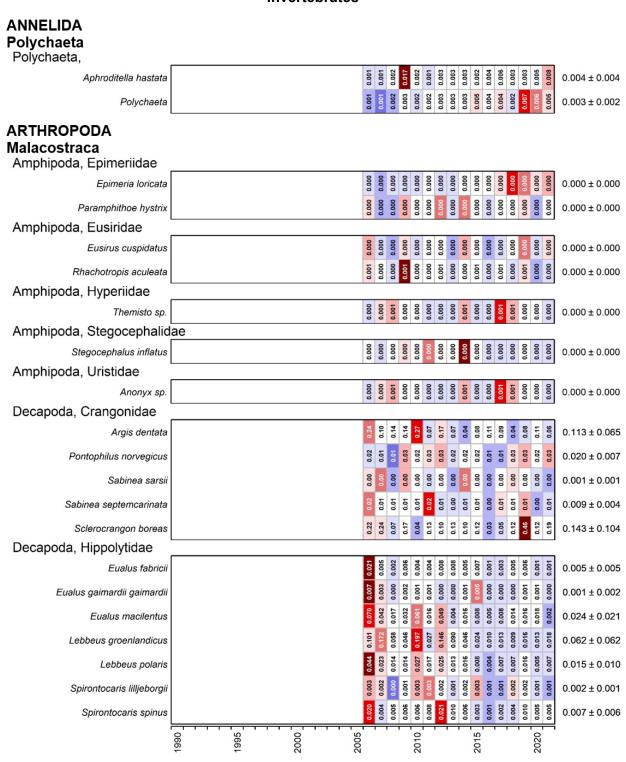


Figure 68. Average weight of invertebrate taxa per 15-minute tow observed during the survey. The colour code represents the anomaly value, which corresponds to the difference between the CPUE in a given year and the average CPUE of the time series for each taxon divided by the standard deviation of this average.

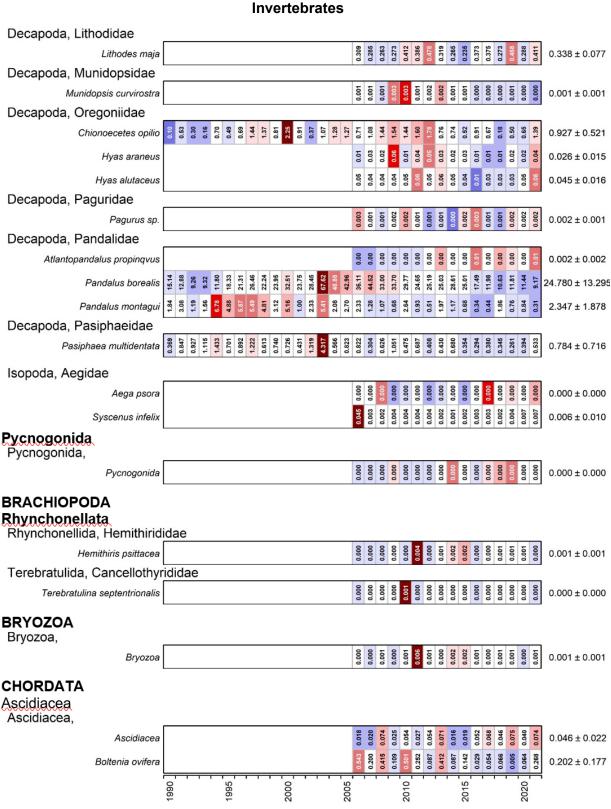


Figure 68. Continued.

Invertebrates

CNIDARIA Anthozoa Actiniaria, Actiniaria 3.551 ± 1.700 Actiniaria, Actiniidae 0.410 0.224 Bolocera tuediae 0.490 ± 0.364 Urticina felina 0.000 ± 0.000 Actiniaria, Actinostolidae Actinostola callosa 2.490 ± 1.281 Stomphia coccinea 0.008 ± 0.006 Actiniaria, Hormathiidae 0.315 ± 0.139 Actinauge cristata 0.003 0.010 0.002 0.003 Hormathia nodosa 0.005 ± 0.005 Stephanauge nexilis 0.006 ± 0.004 Alcyonacea, Nephtheidae 0.009 ± 0.004 Nephtheidae Gersemia rubiformis 0.003 ± 0.002 Pennatulacea, 1.252 0.920 Pennatulacea 0.871 1.192 ± 0.577 Pennatulacea, Anthoptilidae 0.256 0.291 0.510 0.513 0.344 0.765 Anthoptilum grandiflorum 0.508 ± 0.289 Pennatulacea, Pennatulidae Pennatula aculeata 0.028 ± 0.016 Ptilella grandis 0.481 ± 0.205 Pennatulacea, Virgulariidae 0.043 0.013 Halipteris finmarchica 0.043 ± 0.036 Scleractinia, Flabellidae 0.000 Flabellum alabastrum 0.002 ± 0.002 Hydrozoa Hydrozoa, 0.002 0.004 0.004 0.005 Hydrozoa 0.003 ± 0.002 Scyphozoa Scyphozoa, 1.526 1.671 1.581 1.588 1.049 1.840 0.929

Figure 68. Continued.

Scyphozoa

2000

2005

1.411 ± 0.464

2020

2015

Invertebrates

ECHINODERMATA Asteroidea Forcipulatida, Asteriidae 0.003 0.025 0.026 0.009 0.011 0.017 0.028 Leptasterias sp. 0.020 ± 0.015 Paxillosida, Astropectinidae Psilaster andromeda 0.013 0.014 0.014 ± 0.017 Paxillosida, Ctenodiscidae .661 0.516 0.516 0.228 0.930 0.939 0.939 0.939 0.939 0.350 0.283 0.370 Ctenodiscus crispatus 0.733 ± 0.407 Paxillosida, Pseudarchasteridae Pseudarchaster parelli 0.002 ± 0.001 Valvatida, Poraniidae Poraniomorpha sp. 0.002 ± 0.002 Valvatida, Solasteridae Crossaster papposus 0.025 ± 0.013 0.008 ± 0.021 Solaster endeca Valvatida, Goniasteridae Ceramaster granularis 0.007 ± 0.003 0.131 0.086 0.081 Hippasteria phrygiana 0.112 ± 0.037 Velatida. Pterasteridae 0.003 0.004 0.003 ± 0.002 Pteraster sp. Spinulosida, Echinasteridae 0.005 Henricia sp. 0.006 ± 0.005 **Echinoidea** Echinoida, Camarodontae 0.242 0.285 0.208 0.209 0.211 0.255 Strongylocentrotus sp. 0.252 ± 0.101 Spatangoida, Schizasteridae 0.563 0.321 0.999 0.999 1.966 0.671 0.671 0.671 1.761 1.337 1.135 Brisaster fragilis 1.604 ± 1.344 Holothuroidea Dendrochirotida, Cucumariidae .022 Cucumaria frondosa 0.043 ± 0.073 Dendrochirotida, Psolidae 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Psolus phantapus 0.000 ± 0.001 **Ophiuroidea** Eurvalida, Gorgonocephalidae 0.000 0.009 0.301 0.418 0.813 0.060 0.462 0.598 1.389 0.627 0.433 0.287 0.534 0.528 ± 0.403 Gorgonocephalus sp. 0661

Figure 68. Continued.

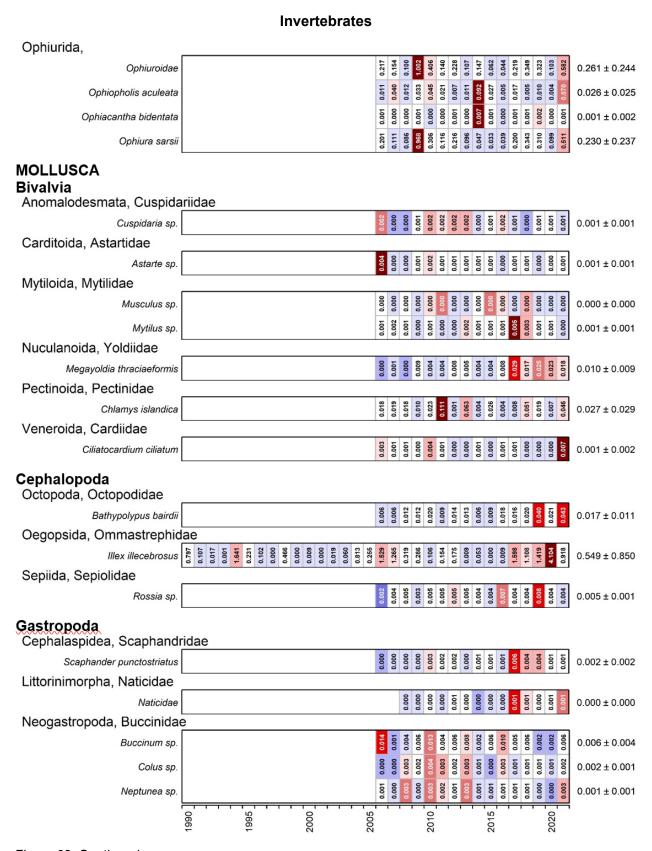


Figure 68. Continued.

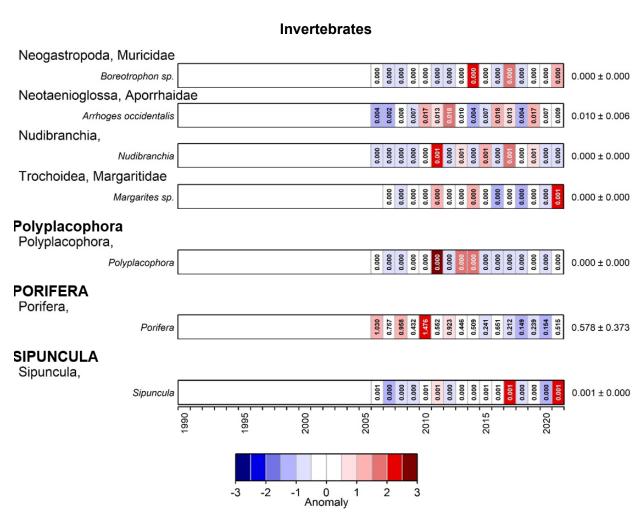


Figure 68. Continued.

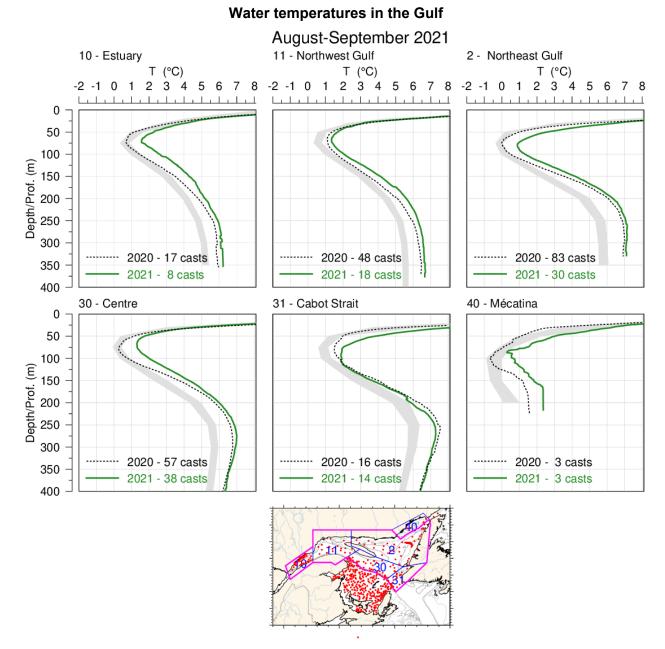


Figure 69. Mean temperature profiles observed in each region of the Gulf during the August 2021 survey. The shaded area represents the 1981–2010 climatological monthly mean \pm 0.5 SD for August. Mean profiles for August and September 2020 are also shown for comparison. The violet outline on the map shows the area over which sea surface temperature is averaged in figure 70.

Water temperatures in the Gulf

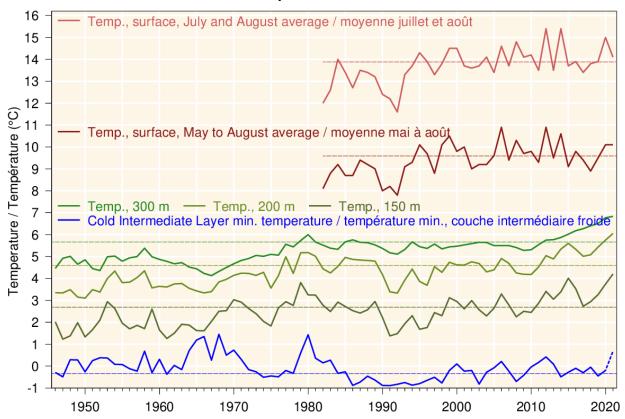


Figure 70. Water temperatures in the Gulf. Sea-surface temperature averaged over the Estuary and the northern Gulf (see violet outline on map of figure 69) for July–August and May–August (1982–2021) (red lines). Layer-averaged temperature for the Gulf of St. Lawrence at 150 m, 200 m and 300 m (green lines). Cold intermediate layer minimum temperature index in the Gulf of St. Lawrence adjusted to July 15, with the 2021 value estimated only from the August survey data (blue line).

APPENDIX

Equations of standard estimators of the mean, variance and confidence intervals for a random stratified sampling used for computing annual indices.

$$N = \sum_{h=1}^{L} N_h$$

$$f_h = \frac{n_h}{N_h}$$

$$W_h = \frac{N_h}{N}$$

$$\bar{y}_h = \frac{\sum_{i=1}^{n_h} y_{hi}}{n_h}$$

$$s_h^2 = \frac{\sum_{i=1}^{n_h} (y_{hi} - \bar{y}_h)^2}{n_h - 1}$$

$$\bar{y} = \sum_{h=1}^{L} W_h \bar{y}_h$$

$$s_{\bar{y}}^2 = \sum_{h=1}^{L} \frac{W_h^2 s_h^2 (1 - f_h)}{n_h}$$

Where

L: Total number of strata (h = 1, 2, ..., L)

 n_h : Stratum h sample size, i.e., total number of sampled units

 N_h : Stratum h size (here expressed as the number of trawlable units)

N: Survey area size

 f_h : Sampling fraction in stratum h

 W_h : Weight of stratum h

 y_{hi} : Observation i of stratum h

 \bar{y}_h : Mean of stratum h

 s_h^2 : Variance of stratum h

 \bar{y} : Annual estimate of the mean

 $s_{\bar{y}}^2$: Estimated variance of \bar{y}

With confidence intervals and degrees of freedom given by

$$ar y - t_{(lpha/2,d)} \, s_{ar y} < ar Y < ar y + t_{(lpha/2,d)} \, s_{ar y}$$
 and

$$d = \left(\sum_{h=1}^{L} a_h s_h^2\right) / \left[\sum_{h=1}^{L} (a_h s_h^2)^2 / (n_h - 1)\right]$$

where $a_h = N_h (N_h - n_h)/n_h$