

Fisheries and Oceans Canada

Sciences des écosystèmes et des océans

Ecosystems and Oceans Science

Secrétariat canadien de consultation scientifique (SCCS)

Document de recherche 2021/054 Région du Québec

Résultats préliminaires du relevé écosystémique d'août 2020 dans l'estuaire et le nord du golfe du Saint-Laurent

Hugo Bourdages, Claude Brassard, Mathieu Desgagnés, Peter Galbraith, Johanne Gauthier, Laurie Isabel et Caroline Senay

> Pêches et Océans Canada Institut Maurice-Lamontagne 850, route de la Mer Mont-Joli (Québec) G5H 3Z4

Avant-propos

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Publié par :

Pêches et Océans Canada Secrétariat canadien de consultation scientifique 200, rue Kent Ottawa (Ontario) K1A 0E6

http://www.dfo-mpo.gc.ca/csas-sccs/csas-sccs/dfo-mpo.gc.ca

© Sa Majesté la Reine du chef du Canada, 2020 ISSN 2292-4272 ISBN 978-0-660-39992-8 N° cat. Fs70-5/2021-054F-PDF

La présente publication doit être citée comme suit :

Bourdages, H., Brassard, C., Desgagnés, M., Galbraith, P., Gauthier, J., Isabel, L. et Senay, C. 2021. Résultats préliminaires du relevé écosystémique d'août 2020 dans l'estuaire et le nord du golfe du Saint-Laurent. Secr. can. de consult. sci. du MPO. Doc. de rech. 2021/054. iv + 94 p.

Also available in English:

Bourdages, H., Brassard, C., Desgagnés, M., Galbraith, P., Gauthier, J., Isabel, L. and Senay, C. 2021. Preliminary results from the ecosystemic survey in August 2020 in the Estuary and northern Gulf of St. Lawrence. DFO Can. Sci. Advis. Sec. Res. Doc. 2021/054. iv + 93 p.

TABLE DES MATIÈRES

RÉSUMÉ	iv
INTRODUCTION	1
DESCRIPTION DU RELEVÉ	2
ANALYSE DES DONNÉES	4
RÉSULTATS	5
BIODIVERSITÉ	5
Poissons	
Invertébrés	
CONDITIONS OCÉANOGRAPHIQUES PHYSIQUES	7
REMERCIEMENTS	
RÉFÉRENCES CITÉES	8
FIGURES	10
ANNEXES	83

RÉSUMÉ

Pêches et Océans Canada réalise annuellement un relevé multidisciplinaire dans l'estuaire et le nord du golfe du Saint-Laurent. Les objectifs de ce relevé sont multiples : évaluer la biodiversité des espèces présentes près du fond; estimer l'abondance des poissons de fond et des invertébrés; évaluer les conditions océanographiques physiques et biologiques (phytoplancton et zooplancton); monitorer l'écosystème pélagique; et récolter des échantillons pour divers projets de recherche. En 2020, le relevé s'est déroulé du 12 août au 5 septembre, à bord du NGCC *Teleost*. À cause du contexte de la pandémie de Covid-19, le nombre de jours en mer et le nombre de scientifiques à bord du navire ont dû être réduits. Lors de cette mission, 147 traits de chalut ont été réussis, 66 profils verticaux de la colonne d'eau ont été effectués afin de caractériser les conditions océanographies et 34 échantillons de zooplancton ont également été récoltés.

Ce rapport présente les résultats des captures des 147 traits de chalut. Au total, 78 taxons de poissons et 206 taxons d'invertébrés ont été identifiés lors de cette mission. Les perspectives historiques (taux de capture, répartition spatiale, fréquence de longueur) sont présentées pour 25 taxons. Ces données indépendantes de la pêche commerciale serviront à plusieurs évaluations de stocks, dont la morue (*Gadus morhua*), les sébastes (*Sebastes mentella* et *S. fasciatus*), le flétan du Groenland (*Reinhardtius hippoglossoides*), le flétan atlantique (*Hippoglossus hippoglossus*), la plie grise (*Glyptocephalus cynoglossus*) et la crevette nordique (*Pandalus borealis*).

L'analyse préliminaire des données de température de l'eau mesurée en 2020 montre des conditions qui se sont réchauffées à des profondeurs de 150 m et plus, atteignant de nouveaux records depuis 1915 à 200 et 300 m. La couche intermédiaire froide était plus chaude en 2020 qu'en 2019 sauf dans l'estuaire où elle est demeurée stable. Et les eaux de surface était aussi plus chaudes que la normale de 1,5 °C en juillet-août.

INTRODUCTION

Pêches et Océans Canada (MPO) réalise annuellement un relevé au chalut de fond dans l'estuaire et le nord du golfe du Saint-Laurent. Ce relevé est multi-espèces et indépendant de la pêche commerciale. Il sert au suivi de l'état de l'écosystème et il est réalisé selon des protocoles constants et standardisés. Ce relevé permet d'examiner, entre autres, les changements spatiaux et temporels de la distribution et de l'abondance relative des poissons ainsi que leurs assemblages. Il vise également à récolter des informations sur les paramètres biologiques des espèces commerciales.

Les principaux objectifs sont :

- 1. Évaluer l'abondance et la condition des populations de poissons de fond et de la crevette nordique;
- 2. Évaluer les conditions environnementales;
- 3. Inventorier la biodiversité de la mégafaune benthique et démersale;
- 4. Évaluer l'abondance du phytoplancton et du mésozooplancton;
- 5. Monitorer l'écosystème pélagique;
- 6. Inventorier les mammifères marins (annulé en 2020);
- 7. Inventorier les oiseaux marins (annulé en 2019 et 2020);
- 8. Récolter des échantillons pour divers projets de recherche.

En 2020, le relevé s'est déroulé du 12 août au 5 septembre à bord du NGCC *Teleost* (mission IML-2020-012). Cette mission s'est déroulée dans le contexte de la pandémie Covid-19. Des mesures sanitaires ont dû être mises en place afin que la mission puisse être réalisée.

Premièrement, le nombre de jours en mer a été réduit de 33 à 25 jours afin que l'embarquement de l'équipe scientifique coïncide avec le changement d'équipage du NGCC *Teleost*. Ainsi, nous allions créer une « bulle » avec les deux équipages pendant toute la durée de la mission. Il n'était donc pas possible de débarquer ou de faire de changements d'équipage. Habituellement, au milieu de la mission, il y a un changement de l'équipe scientifique. Au final, suite à la réduction de la durée de la mission, 147 stations de pêche ont été exécutées avec succès alors que l'on en réalise en moyenne environ 190 stations.

L'équipage scientifique a aussi été réduit de 15 à 9 scientifiques. Les observateurs pour les mammifères et oiseaux marins n'ont pas participé à la mission, donc les objectifs d'inventorier ces espèces n'ont pas pu être réalisés. Le nombre d'océanographes a été réduit de 2 à 1. Il y a normalement un océanographe en fonction en tout temps. Avec cette réduction, les activités océanographiques ont dû être réduites et concentrées sur les heures de jour. Au final, le nombre de profils verticaux de la colonne d'eau (CTD) a été réduit d'environ 33 % et le nombre d'échantillons de zooplancton a été réduit de plus de 50 %. Le nombre de scientifiques sur l'équipe de la pêche a été réduit de 3 personnes. Cette réduction a eu comme conséquence de revoir les protocoles d'échantillonnage des poissons et invertébrés. Le nombre de caractéristiques biologiques mesurées sur les poissons et invertébrés a été réduit, par exemple, il n'y a pas eu de poids individuels de colligés pour les espèces non commerciales, pas de mesures de longueur individuelle de plumes de mer, les otolithes de flétan du Groenland et plie grise n'ont pas été récoltées. De plus, le nombre de protocoles pour la récolte d'échantillons pour des projets de recherche du MPO et du milieu universitaire a été réduit. Finalement, les échantillons de crevettes n'ont pas été mesurés lors de la mission, mais ont été rapportés au laboratoire et ont été analysés à l'automne.

DESCRIPTION DU RELEVÉ

Le relevé couvre les eaux du chenal Laurentien et au nord de celui-ci, de l'estuaire maritime à l'ouest jusqu'aux détroits de Belle Isle et de Cabot à l'est de la zone, soit les divisions 4R, 4S et la partie septentrionale de 4T de l'Organisation des Pêches de l'Atlantique Nord-Ouest (OPANO) (Figure 1). Depuis 2008, la couverture de la division 4T a été accrue dans la partie amont de l'estuaire maritime afin d'échantillonner les profondeurs comprises entre 37 et 183 m. La superficie de la zone d'étude est de 118 587 km².

Ce relevé suit un plan d'échantillonnage aléatoire stratifié. Cette technique consiste à subdiviser la zone d'étude en strates homogènes. La zone d'étude est divisée en 54 strates et le découpage de celles-ci a été fait en se basant sur la profondeur, les divisions de l'OPANO et le type de substrat (Figure 2). Pour ce relevé, une allocation initiale de 200 stations de chalutage est répartie proportionnellement à la surface des strates, avec un minimum de deux stations par strate. Les positions des traits sont déterminées aléatoirement à l'intérieur de chacune des strates. Depuis 2014, une nouvelle condition a été ajoutée au tirage aléatoire soit de respecter une distance minimale de 10 km entre les stations d'une même strate.

L'engin de pêche utilisé sur le NGCC *Teleost* est un chalut à crevettes (4 faces) *Campelen 1800* muni d'un faux-bourrelet (« bicycle ») de type *Rockhopper* (McCallum et Walsh 2002). La rallonge et le cul du chalut sont munis d'une doublure de nylon sans nœud dont l'ouverture de maille est de 12,7 mm. La durée de chalutage pour un trait standard de pêche est de 15 minutes, calculée à partir du contact du chalut avec le fond déterminé à l'aide du système hydroacoustique *Scanmar*TM. La vitesse de chalutage est fixée à 3 nœuds. Pour chacun des traits, les informations sur la géométrie du chalut en opération (ouvertures horizontales des portes et des ailes, ouverture verticale du chalut, profondeur) sont enregistrées à l'aide de sondes hydroacoustiques *Scanmar*TM fixées à l'engin de pêche.

En 2020, 147 stations de pêche ont été exécutées avec succès, soit 52 dans 4R, 62 dans 4S et 33 dans 4T, soit plus de 40 stations de moins que ce que l'on réalise en moyenne depuis 1990 (Annexe 1). La diminution du nombre de stations réalisées est due à la durée écourtée de 8 jours pour la réalisation du relevé. Beaucoup d'efforts ont été déployés pour couvrir toute la zone d'étude. Onze strates n'ont pas été échantillonnées avec un minimum de deux stations et seulement une n'a pas été visitée (Figure 3, Annexe 1). Ces strates partiellement ou non couvertes sont distribuées dans toute la zone d'étude et non pas localisées dans un secteur particulier.

À chacun des traits de pêche, la capture a été triée et pesée par taxon et des données biologiques individuelles ont été récoltées sur un sous-échantillon de cette capture. Pour les poissons, les crabes et les encornets, la taille et le poids sont colligés par individu. De plus, pour certaines espèces, le sexe, le stade de maturité et les poids de certains organes (estomac, foie, gonades) sont notés. Les rayons mous de la nageoire anale sont dénombrés pour les sébastes afin de différencier les deux espèces présentes. Des otolithes sont conservés pour la morue et le flétan atlantique afin de déterminer l'âge des poissons. Un échantillon d'environ 2 kg de crevettes a été congelé pour analyse en laboratoire à l'Institut Maurice-Lamontagne où l'échantillon a été trié et pesé par espèce et par stade de maturité pour la crevette nordique. Les crevettes sont mesurées individuellement. Les autres invertébrés sont pesés et dénombrés par taxon (pas de mesure individuelle), puis photographiés. Les photographies sont archivées dans un photo-catalogue avec des mots-clés (identification taxonomique, métadonnées de la station, date, etc.).

Depuis 2001, les photographies numériques ont appuyé un effort accru pour l'identification des espèces. Ces efforts supplémentaires ciblent les poissons depuis 2004 (Dutil *et al.* 2009) et les invertébrés depuis 2005 (Nozères *et al.* 2014). Un guide d'identification des poissons marins de

l'estuaire et du nord du golfe du Saint-Laurent (Nozères et al. 2010), un atlas des crevettes (Savard et Nozères 2012) et un guide pour les invertébrés (Nozères et Archambault 2014) sont utilisés lors de la mission permettant une identification de la plupart des taxons. Les codes des taxons et leurs noms suivent la liste de Miller et Chabot (2014), avec des mises à jour annuelles selon les noms inscrits dans le registre mondial des espèces marines (WoRMS).

Des échantillons additionnels ont été rapportés pour divers projets scientifiques tels que :

- 1. Échantillons d'eau pour des analyses génétiques de l'ADN environnemental;
- 2. Échantillons de hareng, capelan et maquereau pour déterminer la maturité à l'âge;
- Proies des bélugas et mammifères marins (plusieurs espèces de poissons et crevette nordique) afin de suivre l'évolution des signatures isotopiques d'espèces clés de l'écosystème du Saint-Laurent;
- 4. Estomacs de plusieurs espèces de poissons afin de décrire leur régime alimentaire;
- 5. Échantillons de petits poissons démersaux;
- 6. Prélèvements de sang de flétan atlantique et flétan du Groenland pour caractériser l'état de santé de l'écosystème à partir de marqueurs moléculaires;
- 7. Petits sébastes (< 11 cm) pour l'identification génétique de l'espèce (S. fasciatus ou S. mentella) et de la population des nouvelles cohortes observées dans le golfe;
- 8. Suivi de la croissance des sébastes de la cohorte 2011;
- 9. Échantillons de gonade de flétan atlantique, flétan du Groenland et raie épineuse pour déterminer le stade de maturité:
- 10. Échantillons d'encornet nordique (calmar) pour étudier son rôle trophique au sein de l'écosystème;
- 11. Récolte d'éponges (Porifera) pour documenter les différentes espèces présentes;

Des données océanographiques, comme la température, la conductivité (salinité), la turbidité, l'oxygène dissous, la luminosité et la fluorescence ont été récoltés. Lors du relevé, 55 profils verticaux CTD de la colonne d'eau ont été faits à des stations de pêche. De plus, 11 profils additionnels ont été réalisés à des stations échantillonnées exclusivement pour le Programme de monitorage de la zone Atlantique (PMZA). Les différents appareils, CTD (SeaBird 911PlusTM), sonde à oxygène dissous (SBE 43), photomètre (Biospherical) et fluorimètre (Eco-FLNTU Wetlabs) sont couplés à la rosette de bouteilles Niskin. Pour chacun des profils obtenus avec la rosette, des échantillons d'eau ont également été prélevés à différentes profondeurs pour en déterminer la salinité, le pH, la concentration en oxygène dissous (titration Winkler), la teneur en sels nutritifs (nitrite, nitrate, phosphate et silicate) et en chlorophylle. De plus, un appareil CTD SBE 19PlusTM (données de température et salinité), couplé à une sonde à oxygène dissous (SBE 63), a également été installé sur le dos du chalut, permettant ainsi de recueillir des données océanographiques pour les 147 traits.

Dans le but d'étudier la répartition et la biomasse du zooplancton pour l'ensemble du territoire couvert par le relevé, un volet du programme d'échantillonnage a consisté à récolter à 34 stations des organismes à l'aide d'un filet à zooplancton (202 µm) tiré à la verticale, du fond vers la surface.

Tout au long de la mission, des données hydroacoustiques ont été enregistrées en continu pour toute la colonne d'eau à l'aide d'un échosondeur $SIMRAD^{TM}$ EK60 monofaisceau à quatre fréquences à spectre étroit (38, 70, 120 et 200 kHz). Ces informations serviront à développer une base de données tridimensionnelles afin de cartographier l'écosystème pélagique.

ANALYSE DES DONNÉES

Les données d'abondance et de biomasse recueillies sur les espèces capturées en 2020 ont été intégrées à la série des relevés annuels estivaux initiée en 1990. Cette série fusionnée a été développée dans le cadre d'une étude comparative entre les deux tandems navire-engin (1990-2005 : NGCC Alfred Needler – chalut URI 81'/114'; 2004-2020 : NGCC Teleost – chalut Campelen 1800) afin d'en quantifier la différence de capturabilité et d'établir les facteurs de conversion pour une vingtaine d'espèces capturées (Bourdages et al. 2007). Cette étude a ainsi permis d'ajuster les captures du Needler en prises équivalentes du Teleost.

Étant donné qu'au cours des ans, certaines strates n'ont pas été échantillonnées avec un minimum de deux traits de pêche réussis (Annexe 1), les indices du taux de capture, en nombre et en poids, ont été estimés pour ces strates à l'aide d'un modèle multiplicatif. La valeur prédite par le modèle, pour les strates couvertes par moins de deux traits, est calculée à partir des données de l'année en cours et des trois années précédentes. Ainsi, les indicateurs présentés pour la série sont représentatifs d'une superficie standard totale de 116 115 km², soit la somme de la superficie des strates échantillonnées depuis 1990. Les strates qui ont été ajoutées en 2008 ne sont pas intégrées aux indices. Des points de référence ont également été ajoutés aux graphiques des taux de capture. La ligne pleine correspond à la moyenne des taux de capture annuelle, calculée pour la période 1990-2019 (moyenne à long terme). Les deux lignes pointillées représentent la moyenne à long terme plus ou moins un demi écart-type, soit respectivement les limites de référence supérieure et inférieure.

La distinction des deux espèces de sébaste, *S. fasciatus* et *S. mentella*, est basée sur des analyses du décompte des rayons mous de la nageoire anale et, si nécessaire, sur la profondeur de capture des individus (H. Bourdages, MPO, Mont-Joli, comm. pers.).

Les distributions de fréquence de longueur sont présentées sous deux formats. Une première figure illustre les distributions pour les deux dernières années de la série ainsi que la distribution moyenne de la période 1990 à 2019 (distribution moyenne à long terme). Les valeurs de fréquence sont exprimées en nombre moyen d'individus capturés par trait de chalut par incrément d'un centimètre, sauf pour la crevette nordique (0,5 mm) et le flétan atlantique (3 cm). Une deuxième figure représente les distributions des fréquences de longueur en nombre moyen par trait de chacune des années de la série de 1990 à 2020.

La répartition géographique des taux de captures (PUE), présentée en poids par trait de 15 minutes pour toutes les espèces (sauf pour les plumes de mer : nb/trait de 15 minutes), a été agrégée pour des périodes de quatre ou cinq ans. L'interpolation des PUE a été réalisée sur une grille couvrant la zone d'étude en utilisant une pondération inversement proportionnelle à la distance (R version 2.13.0, librairie Rgeos ; R Development Core Team 2011). Les isolignes ont ensuite été tracées pour quatre niveaux de taux de capture qui correspondent approximativement aux 20e, 40e, 60e et 80e percentiles des valeurs non nulles. La distribution des taux de capture pour le relevé de 2019 est également présentée dans une carte de type « bulle ».

Les résultats sommaires des indices d'abondance et de biomasse, des fréquences de taille et des cartes de distribution des taux de capture pour 25 taxons sont présentés aux figures 5 à 62. Ces résultats sont préliminaires et pourraient varier sensiblement suite à des activités complémentaires de validation et d'analyses en laboratoire.

La distribution de la richesse spécifique totale et pour 3 regroupements taxonomiques est présentée aux figures 63 à 66. La richesse spécifique est exprimée en nombre d'espèces collectées, total ou selon le regroupement, à chacune des stations de 2020. Des regroupements taxonomiques ont été effectués pour observer plus spécifiquement la distribution de la richesse

spécifique pour des espèces ayant des caractéristiques écologiques similaires : les poissons, les crevettes et les invertébrés (excluant les crevettes).

Le poids moyen par trait pour 57 taxons de poissons et 99 taxons d'invertébrés est présenté aux figures 67 et 68. Sur ces figures, un code de couleurs est utilisé pour représenter la valeur de l'anomalie, qui correspond à la différence entre la PUE d'une année donnée et la moyenne de la PUE de la série chronologique pour chaque taxon, divisée par l'écart-type de cette moyenne.

Les captures par trait pour les taxons de poissons des années précédentes sont disponibles sur l'Observatoire global du Saint-Laurent (<u>OGSL</u>).

Finalement, l'Annexe 2 présente la liste de tous les taxons, vertébrés et invertébrés, capturés dans les 147 traits de chalut réussis lors du relevé de 2020. Parmi les informations présentées, il y a : 1) l'occurrence, soit le nombre de traits où le taxon a été répertorié, et 2) la prise totale, en poids et en nombre, pour l'ensemble du relevé. Le nombre de spécimens mesurés par taxon, de même que certaines statistiques descriptives relatives à la longueur, sont également décrites à l'Annexe 3.

RÉSULTATS

Avertissement: Ce relevé utilisant un chalut du fond est conçu pour échantillonner les espèces benthiques et démersales. Cependant, les captures peuvent inclure des espèces pélagiques et des espèces associées à des habitats côtiers ou rocheux qui sont plus difficiles à chaluter. Ces taxons, bien que retrouvés dans les captures, présentent une faible capturabilité au chalut de fond. Les résultats pour ces taxons doivent donc être interprétés avec prudence.

BIODIVERSITÉ

Au total, 78 taxons de poissons et 206 taxons d'invertébrés ont été identifiés en 2020 (Annexe 2).

En 2020, la biomasse des deux espèces de sébastes combinées représentait 81% de la biomasse de tous les organismes capturés, alors qu'elle représentait en moyenne 15% entre 1995 et 2012 (Figure 4). Le sébaste atlantique (*Sebastes mentella*) constituait, à lui seul, 76% des captures faites lors du relevé. La diminution de la biomasse en 2020 pourrait s'expliquer par le fait que les sébastes étaient plus élevés dans la colonne d'eau.

La richesse spécifique est particulièrement élevée près des côtes comme au nord d'Anticosti, au détroit de Belle Isle ainsi qu'au sud-ouest de Terre-Neuve (Figure 63). Le détroit de Belle Isle se démarque particulièrement par une richesse très élevée en invertébrés (Figure 65) et crevettes (Figure 66), dont plusieurs espèces ne peuvent être retrouvées nulle part ailleurs. Cette richesse élevée est favorisée par l'arrivée du courant du Labrador qui permet l'établissement d'espèces arctiques dans cette zone. De façon similaire, des zones riches en espèces de poissons sont observées au détroit de Cabot à des profondeurs très élevées cette fois-ci (Figure 64). On dénote à ces stations la présence d'espèces de rares en provenance des profondeurs de l'Atlantique.

Poissons

L'abondance et la biomasse de l'**aiguillat noir** (*Centroscyllium fabricii*) sont supérieures à la moyenne depuis neuf ans (Figures 5 à 7).

Le **capelan** (*Mallotus villosus*) était principalement distribué de l'estuaire jusqu'à l'île Anticosti lors du relevé en 2020. On note sa quasi-absence dans les captures le long de la Côte-Nord à

l'est de Havre-Saint-Pierre et dans le détroit de Belle Isle alors que normalement, le capelan est une capture régulière dans ces régions (Figure 8).

Depuis treize ans, l'abondance et la biomasse de **flétan atlantique** (*Hippoglossus hippoglossus*) demeurent au-dessus de la moyenne de la série (Figures 9 à 11).

L'abondance et la biomasse du **flétan du Groenland** (*Reinhardtius hippoglossoides*) sont en augmentation par rapport à 2019. En 2020, l'abondance se situe légèrement au-dessus de la moyenne et la biomasse est égale à la moyenne. Les distributions de fréquence de taille indiquent que la cohorte de 2019 (mode à 16 cm) est d'abondance inférieure à la moyenne de la série alors que l'abondance des poissons de 22 cm à 39 cm est supérieure à cette moyenne (Figures 12 à 14).

La **grosse poule de mer** (*Cyclopterus lumpus*) est une capture peu abondante, mais régulière de ce relevé. L'abondance et la biomasse sont supérieures à la moyenne de la série depuis plusieurs années (Figures 15 à 17).

Le **hareng atlantique** (*Clupea harengus*) est une capture fréquente dans ce relevé et est distribué à la grandeur du nord du golfe du Saint-Laurent à l'exception des profondeurs du chenal Laurentien. Les plus fortes captures sont observées le long de la côte ouest de Terre-Neuve (Figure 18).

Le **loup atlantique** (*Anarhichas lupus*) et le **loup tacheté** (*Anarhichas minor*) ont été capturés à 24 et 6 occasions respectivement en 2020. Ces captures étaient principalement distribuées dans l'est du nord du golfe Saint-Laurent (Figures 19 et 20).

Depuis 2007, le **merlu argenté** (*Merluccius bilinearis*) est plus fréquent dans le nord du golfe alors qu'avant, il n'était qu'observé occasionnellement (Figures 21 à 23).

L'abondance et la biomasse de la **merluche à longues nageoires** (*Phycis chesteri*) se situent près de la moyenne en 2020 (Figures 24 à 26).

L'abondance et la biomasse de la **merluche blanche** (*Urophycis tenuis*) sont supérieures ou égales à la moyenne depuis huit ans (Figures 27 à 29).

En 2020, les indices d'abondance et de biomasse de la **morue** (*Gadus morhua*) ont augmenté, l'indice d'abondance se situe au-dessus de la moyenne alors que l'indice de la biomasse est semblable à la moyenne de la série. On observe un mode de fréquence pour les tailles de 22 à 29 cm (morue juvénile). La répartition géographique de captures en 2020 est comparable aux années précédentes (Figures 30 à 32).

La **plie canadienne** (*Hippoglossoides platessoides*) est très fréquente dans les captures et son abondance est stable et supérieure à la moyenne (Figures 33 à 35).

La **plie grise** (*Glyptocephalus cynoglossus*) est très fréquente dans les captures. Les fortes cohortes de 2007 et de 2009 ont contribué à l'augmentation de la biomasse; ces poissons ont maintenant une taille supérieure à 30 cm (Figures 36 à 38).

La **raie épineuse** (*Amblyraja radiata*) et la **raie lisse** (*Malacoraja senta*) sont très fréquentes dans les captures. L'abondance de la raie épineuse est en augmentation alors que celle de la raie lisse est en diminution (Figures 39 à 44).

Le **saïda franc** ou morue arctique (*Boreogadus saida*) est un petit poisson démersal d'eaux froides. Les prises des années récentes ont été faites dans l'estuaire, le long de la Côte-Nord et sur la côte ouest de Terre-Neuve. (Figures 45 à 46).

L'abondance de **sébaste acadien** (*Sebastes fasciatus*) est près de la moyenne de la série historique, tandis que la biomasse est au-dessus de cette dernière (Figures 47 à 49).

Les trois fortes cohortes (2011, 2012 et 2013) de **sébaste atlantique** (*Sebastes mentella*) contribuent à l'augmentation de l'abondance et de la biomasse depuis 2013. La cohorte de 2011, soit celle qui est la plus abondante, a maintenant une taille modale de 23 cm. Ces sébastes sont répartis dans l'ensemble des chenaux du nord du golfe du Saint-Laurent (Figures 50 à 52).

Invertébrés

Les trois espèces de **crevettes** les plus abondantes dans les eaux profondes du nord du golfe du Saint-Laurent, soit la crevette nordique (*Pandalus borealis*), la crevette ésope (*Pandalus montagui*) et la crevette blanche (*Pasiphaea multidentata*), sont en diminution depuis plusieurs années (Figure 68).

L'abondance et la biomasse de la **crevette nordique** (*Pandalus borealis*) ont diminué significativement depuis 2003 pour atteindre les valeurs les plus faibles de la série historique depuis 2017 (Figures 53 à 55).

L'encornet nordique (*Illex illecebrosus*), une espèce pélagique saisonnière du sud, est présent dans plus de 50 % des traits depuis 2017 dans tous les secteurs, à l'exception de l'estuaire et du détroit de Belle Isle. Cette forte présence d'encornet n'avait pas été observée depuis plusieurs années (Figures 56 à 58).

Pour la deuxième année consécutive, un **homard** (*Homarus americanus*) a été capturé dans la zone d'étude à plus de 300 m de profondeur entre le nord de la péninsule gaspésienne et l'île d'Anticosti. Aucun homard n'avait été capturé lors de ce relevé avant 2019 (Annexe 2).

Quatre espèces de **plumes de mer**, un type de corail mou, sont présentes dans le nord du golfe du Saint-Laurent. Les grandes plumes de mer (*Anthoptilum grandiflorum*, *Halipteris finmarchica*, *Pennatula grandis*) sont distribuées dans les profondeurs du chenal Laurentien alors que la petite plume aiguë (*Pennatula aculeata*) est plus répandue (Figures 59 à 62).

CONDITIONS OCÉANOGRAPHIQUES PHYSIQUES

L'analyse préliminaire des données de température de l'eau mesurée en 2020 (Figures 69 et 70) montre des conditions qui se sont réchauffées à des profondeurs de 150 m et plus, atteignant de nouveaux records depuis 1915 à 200, 250 (non montré) et 300 m (notons que ces records annuels pourront changer avec les données prises en automne). En comparaison aux conditions observées en août 2019, les eaux à 200 et 300 m se sont réchauffées d'environ 0,2 °C, et de 0,3 et 0,4 °C à 250 et 150 m où les variabilités interannuelles sont plus fortes. La couche intermédiaire froide (CIL) était beaucoup plus chaude en 2020 qu'en 2019 sauf dans l'estuaire où elle est demeurée stable. Les eaux de surface étaient aussi fortement plus chaudes que la normale de 1,5 °C en juillet-août.

Les températures de l'air au-dessus du golfe étaient sous la normale en avril 2020, près de la normale en mai et juillet et au-dessus de la normale en juin et août, ce qui a donné lieu à des températures de surface de l'eau au-dessus de la normale pour la moyenne de mai-août (+ 1.0 écart-type par rapport à la climatologie 1982-2010 et + 0,8 °C) ainsi que pour juillet-août (+ 2,0 écarts-types et + 1,5 °C).

À la fin de l'hiver 2020, le volume d'eau de la couche de surface ayant une température inférieure à -1 °C était près de la moyenne climatologique, laissant présager un réchauffement de la couche intermédiaire froide estivale en comparaison à 2019. La température minimale moyenne de celle-ci, estimée pour 2020 uniquement à partir des données du relevé du mois d'août, était plus chaude de 0,3 °C par rapport aux conditions de 2019, passant à une température moyenne (- 0,1 °C) qui était au-dessus de la normale (+ 0,7 écart-type; Figure 70).

L'exception régionale était l'estuaire où le minimum de température de la CIF était similaire à août 2019 (0,4 °C; + 0,3 écart-type; Figure 69) et légèrement plus volumineuse.

Sous la couche intermédiaire froide, la circulation estuarienne qui transporte les eaux profondes vers les têtes des chenaux a fait propager les eaux de plus en plus chaudes qui se succédaient depuis plusieurs années dans le détroit de Cabot, centre du golfe et chenal Esquiman vers l'amont. Les températures profondes en août ont par conséquent augmenté depuis 2019 sous 150 m dans presque toutes les régions (Figure 69). En considérant toutes les données prises à différents mois de l'année, les quatre régions qui parcourent le chenal Laurentien, soit l'estuaire, le nord-ouest du golfe, le centre de golfe et le détroit de Cabot, connaissent toutes un record de température à 300 m (5,9 °C; 6,3 °C; 6,9 °C; 7,2 °C). La moyenne annuelle dépasse 7 °C au détroit de Cabot pour la seconde année consécutive. Moyennée sur l'ensemble du golfe, la température à 300 m a atteint un niveau record depuis 1915 de 6,75 °C, soit 0,24 °C de plus qu'en 2018 (Figure 70).

REMERCIEMENTS

Nous remercions les deux équipages du NGCC *Teleost* et désirons souligner l'excellent travail réalisé par les membres de l'équipe scientifique qui, en 2020, était composée de Hugo Bourdages, Nicolas Coulombe, Laurie Isabel, Jean-François Lussier, Marie-Claude Marquis, Jordan Ouellette-Plante, Eric Parent, Pierre-Marc Scallon-Chouinard et Caroline Senay. De même qu'à Denis Bernier pour son support pour le développement des outils de saisie et pour la gestion des données.

Finalement, des remerciements sont aussi adressés à Charley Cyr pour la révision de ce document.

RÉFÉRENCES CITÉES

- Bourdages, H., Savard, L., Archambault, D. et Valois, S. 2007. Résultats des expériences de pêche comparative d'août 2004 et 2005 dans le nord du golfe du Saint-Laurent, entre le *NGCC Alfred Needler* et le *NGCC Teleost*. Rapp. tech. can. sci. halieut. aquat. 2750 : ix + 57 p.
- Dutil, J.-D., Nozères, C., Scallon-Chouinard, P.-M., Van Guelpen, L., Bernier, D., Proulx, S., Miller, R. et Savenkoff, C. 2009. Poissons connus et méconnus des fonds marins du Saint-Laurent. Le naturaliste canadien 133: 70-82.
- McCallum, B. et Walsh, S.J. 2002. An update on the performance of the Campelen 1800 during bottom trawl surveys in NAFO subareas 2 and 3 in 2001. NAFO SCR Doc. 02/36. 16 p.
- Miller, R. et Chabot. D. 2014. Liste des codes des plantes, invertébrés et vertébrés marins utilisés par la Région du Québec du MPO. Rapp. stat. can. sci. halieut. aquat. 1254 : iv + 115 p.
- Nozères, C., Archambault, D., Chouinard, P.-M., Gauthier, J., Miller, R., Parent, E., Schwab, P., Savard, L. et Dutil. J.-D. 2010. Guide d'identification des poissons marins et protocoles d'échantillonnage utilisés lors des relevés annuels de l'abondance du poisson de fond dans l'estuaire et le nord du golfe Saint-Laurent (2004-2009). Rapp. tech. can. sci. hal. aquat. 2866 : xi + 243 p.
- Nozères, C. et Archambault, D. 2014. Portfolio pour l'identification rapide d'invertébrés capturés au chalut dans l'estuaire et le nord du golfe du Saint-Laurent. Rapp. manus. can. sci. halieut. aquat. 3033 : iv + 30 p.

- Nozères C., Archambault, D. et Miller, R. 2014. Photo-catalogue d'invertébrés de l'estuaire et du nord du golfe du Saint-Laurent des relevés au chalut (2005-2013). Rapp. manus. can. sci. halieut. aquat. 3035 : iv + 222 p.
- R Development Core Team. 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. (Accédé le 30 novembre 2017).
- Savard, L. et Nozères, C. 2012. Atlas des espèces de crevettes de l'estuaire et du nord du golfe du Saint-Laurent. Rapp. tech. can. sci. halieut. aquat. 3007: vi + 67 p.

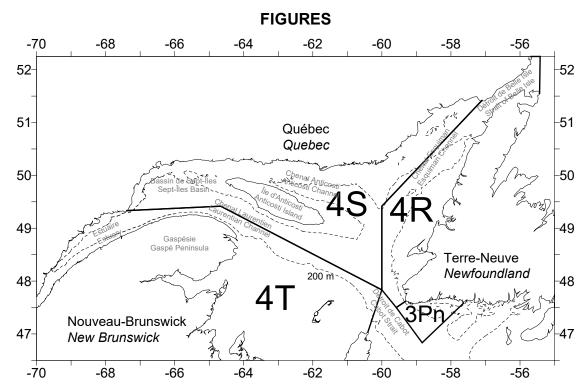


Figure 1. Divisions de l'OPANO de l'estuaire et du golfe du Saint-Laurent et lieux géographiques mentionnés dans le texte.

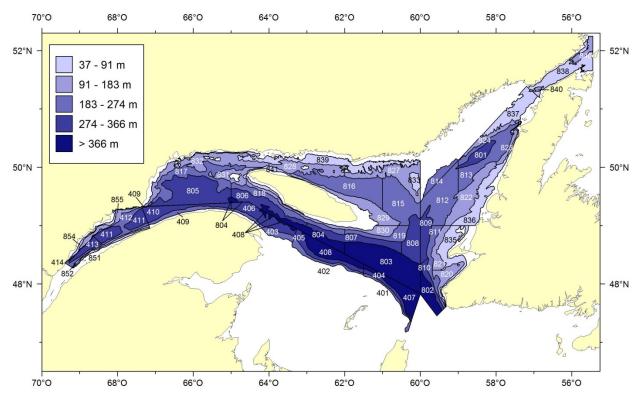


Figure 2. Schéma de stratification utilisée pour le relevé de recherche sur les poissons de fond et la crevette dans l'estuaire et le nord du golfe du Saint-Laurent.

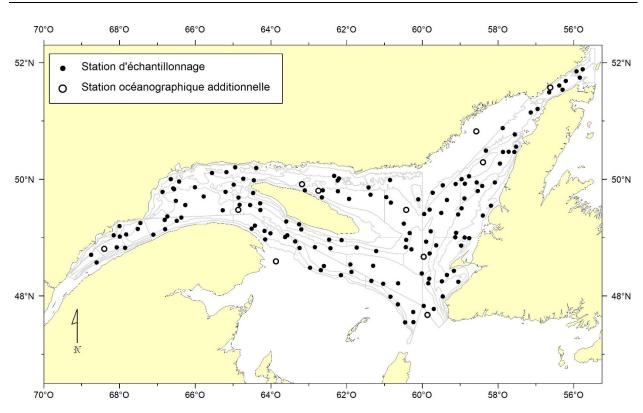


Figure 3. Positions des stations d'échantillonnage réussies (chalutage et océanographie) et des stations océanographiques additionnelles pour le relevé de 2020.

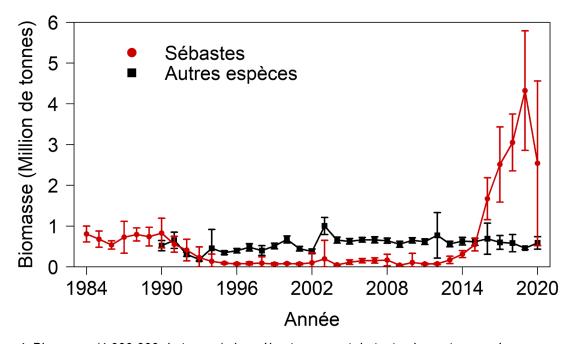


Figure 4. Biomasse (1 000 000 de tonnes) des sébastes spp. et de toutes les autres espèces échantillonnées lors du relevé dans 4RST. Les barres d'erreur indiquent l'intervalle de confiance à 95 %.

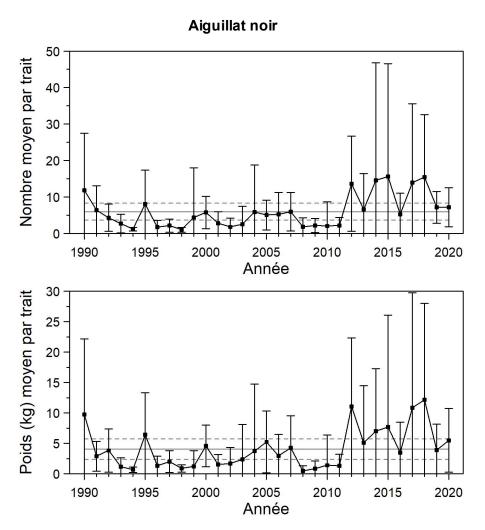


Figure 5. Nombres moyens et poids moyens par trait de 15 minutes observés lors du relevé pour l'aiguillat noir dans 4RST. Les barres d'erreur indiquent l'intervalle de confiance à 95 % et les lignes horizontales indiquent la moyenne de la période 1990-2019 (ligne pleine) et les limites de référence (voir texte) supérieure et inférieure (lignes pointillées).

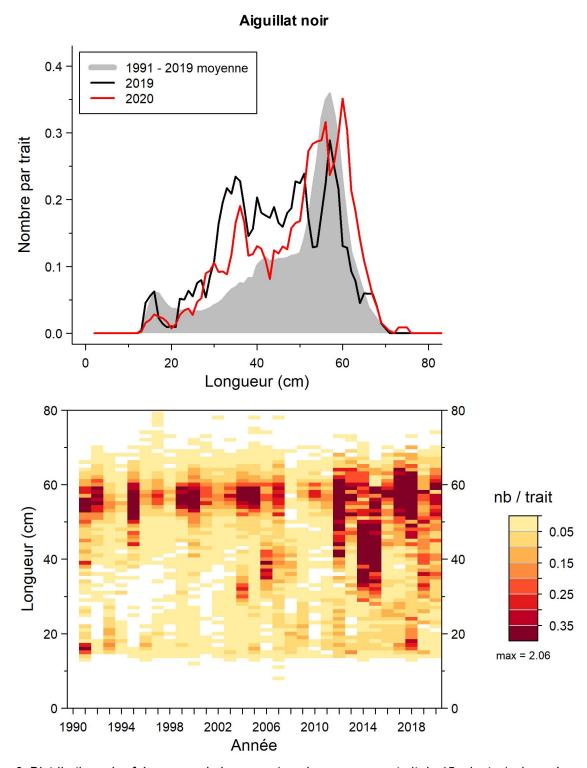


Figure 6. Distributions des fréquences de longueur (nombre moyen par trait de 15 minutes) observées lors du relevé pour l'aiguillat noir dans 4RST.

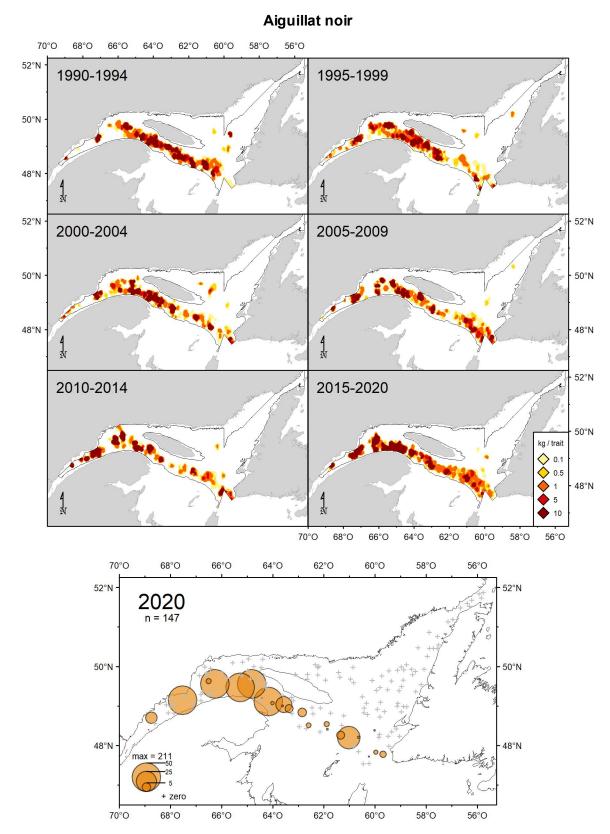


Figure 7. Distribution des taux de capture (kg/trait de 15 minutes) d'aiguillat noir.

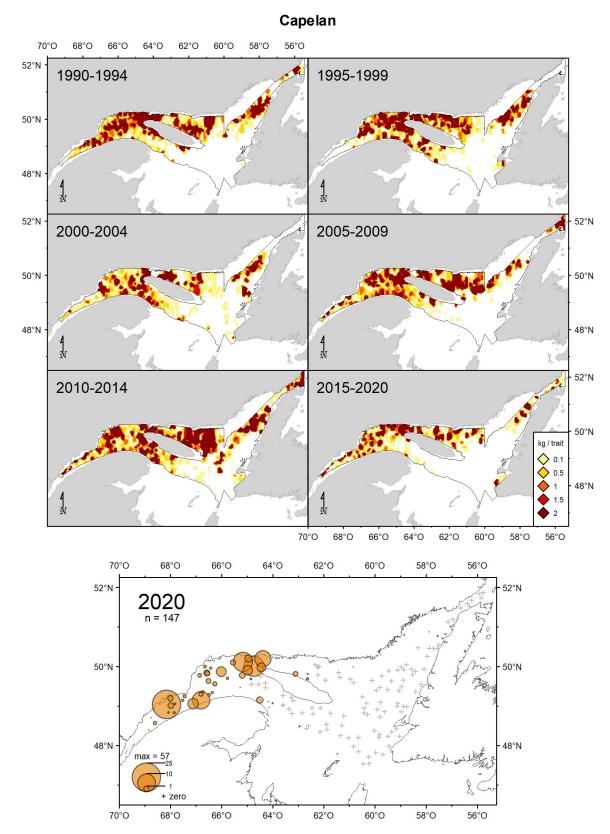


Figure 8. Distribution des taux de capture (kg/trait de 15 minutes) de capelan.

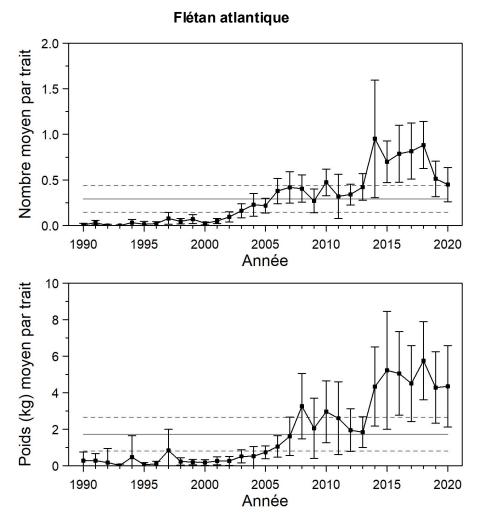


Figure 9. Nombres moyens et poids moyens par trait de 15 minutes observés lors du relevé pour le flétan atlantique dans 4RST. Les barres d'erreur indiquent l'intervalle de confiance à 95 % et les lignes horizontales indiquent la moyenne de la période 1990-2019 (ligne pleine) et les limites de référence (voir texte) supérieure et inférieure (lignes pointillées).

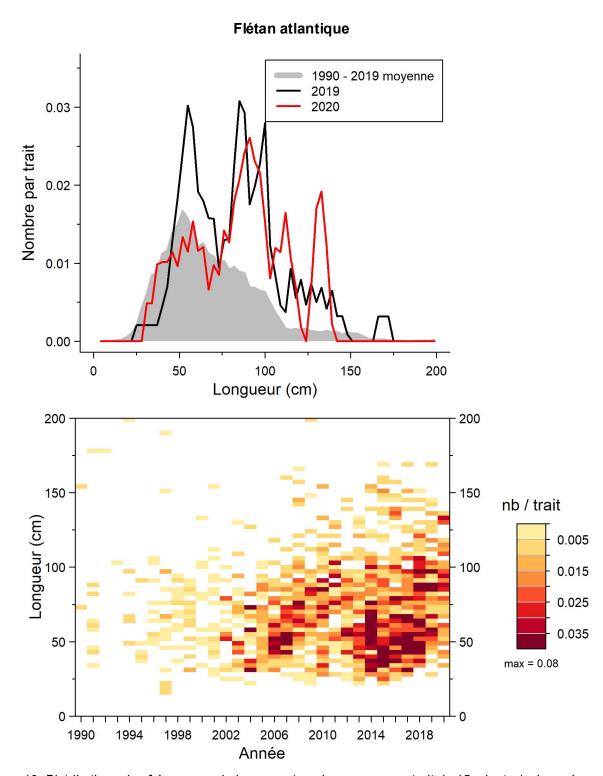


Figure 10. Distributions des fréquences de longueur (nombre moyen par trait de 15 minutes) observées lors du relevé pour le flétan atlantique dans 4RST.

Flétan atlantique 70°O 58°O 56°O 66°O 64°O 62°O 60°O 52°N 1990-1994 1995-1999 50°N 48°N 52°N 52°N 2000-2004 2005-2009 50°N 50°N 48°N 48°N 52°N 2010-2014 2015-2020 50°N 48°N 70°O 68°O 66°O 64°O 62°O 60°O 58°O 56°O 70°O 68°O 66°O 60°O 64°O 62°O 58°O 56°O 52°N 2020 n = 147 50°N 50°N 48°N 70°O 68°O 62°O

Figure 11. Distribution des taux de capture (kg/trait de 15 minutes) de flétan atlantique.

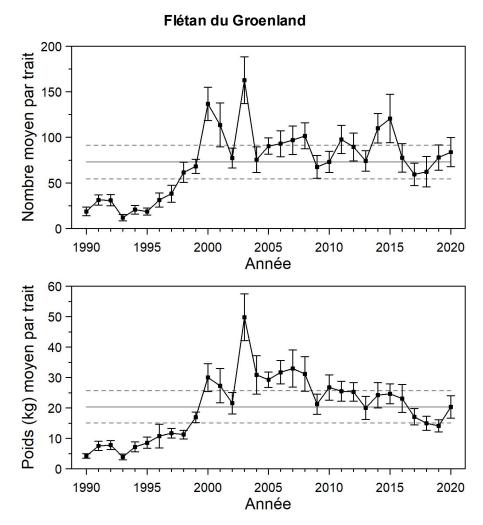


Figure 12. Nombres moyens et poids moyens par trait de 15 minutes observés lors du relevé pour le flétan du Groenland dans 4RST. Les barres d'erreur indiquent l'intervalle de confiance à 95 % et les lignes horizontales indiquent la moyenne de la période 1990-2019 (ligne pleine) et les limites de référence (voir texte) supérieure et inférieure (lignes pointillées).

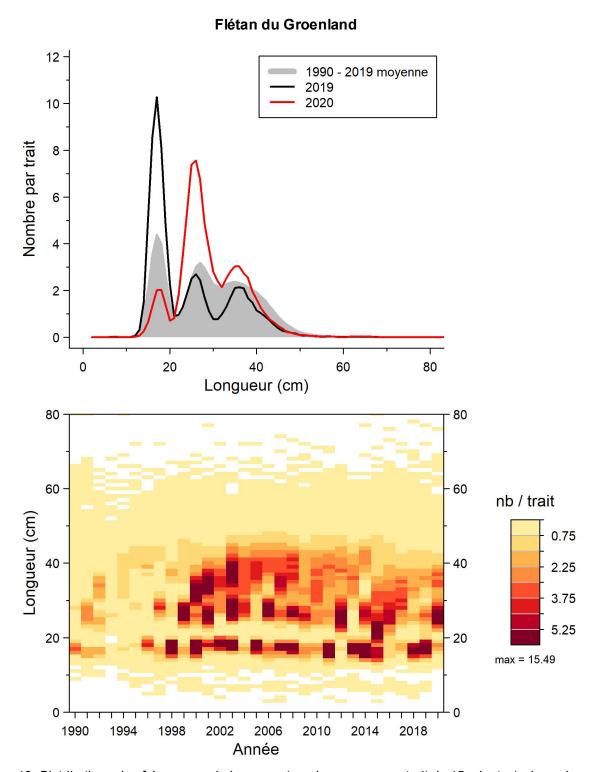
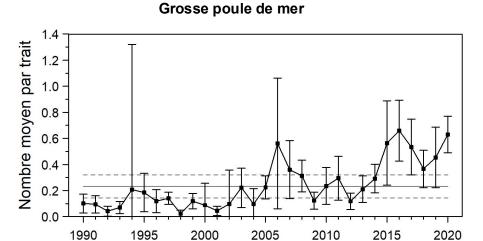


Figure 13. Distributions des fréquences de longueur (nombre moyen par trait de 15 minutes) observées lors du relevé pour le flétan du Groenland dans 4RST.

Flétan du Groenland 58°O 70°O 68°O 66°O 64°O 62°O 60°O 56°O 52°N 1990-1994 1995-1999 50°N 48°N 52°N 52°N 2005-2009 2000-2004 50°N 50°N 48°N 48°N 52°N 2010-2014 2015-2020 50°N 0.1 2.5 10 48°N 25 70°O 68°O 66°O 64°O 62°O 60°O 58°O 56°O 70°O 68°O 66°O 64°O 62°O 60°O 58°O 56°O 52°N 52°N 2020 n = 14750°N 50°N 48°N

Figure 14. Distribution des taux de capture (kg/trait de 15 minutes) de flétan du Groenland.


66°O

70°O

68°O

62°O

58°O

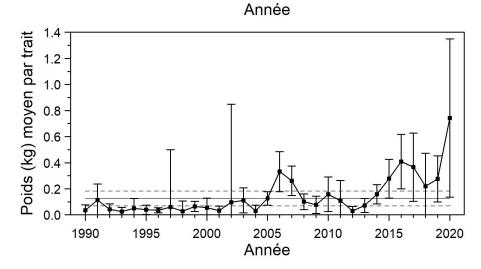


Figure 15. Nombres moyens et poids moyens par trait de 15 minutes observés lors du relevé pour la grosse poule de mer dans 4RST. Les barres d'erreur indiquent l'intervalle de confiance à 95 % et les lignes horizontales indiquent la moyenne de la période 1990-2019 (ligne pleine) et les limites de référence (voir texte) supérieure et inférieure (lignes pointillées).

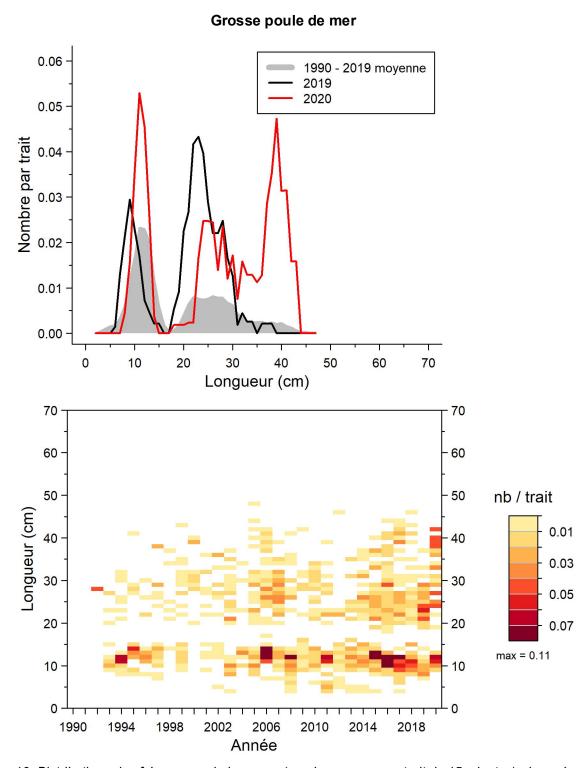


Figure 16. Distributions des fréquences de longueur (nombre moyen par trait de 15 minutes) observées lors du relevé pour la grosse poule de mer dans 4RST.

Grosse poule de mer 58°O 70°O 66°O 64°O 62°O 60°O 52°N 1995-1999 1990-1994 50°N 48°N 52°N 52°N 2000-2004 2005-2009 50°N 50°N 48°N 48°N 52°N 2010-2014 2015-2020 50°N 0.05 0.1 48°N 70°O 68°O 66°O 64°O 62°O 60°O 58°O 56°O 70°O 68°O 66°O 64°O 62°O 60°O 58°O 56°O 52°N 52°N 2020 n = 147 50°N 50°N 48°N 66°O 70°O 68°O 62°O

Figure 17. Distribution des taux de capture (kg/trait de 15 minutes) de grosse poule de mer.

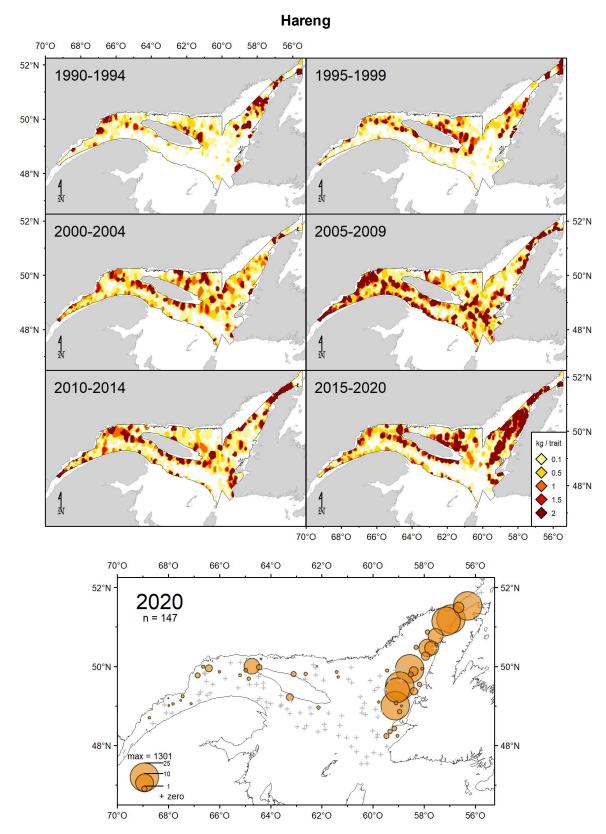


Figure 18. Distribution des taux de capture (kg/trait de 15 minutes) de hareng.

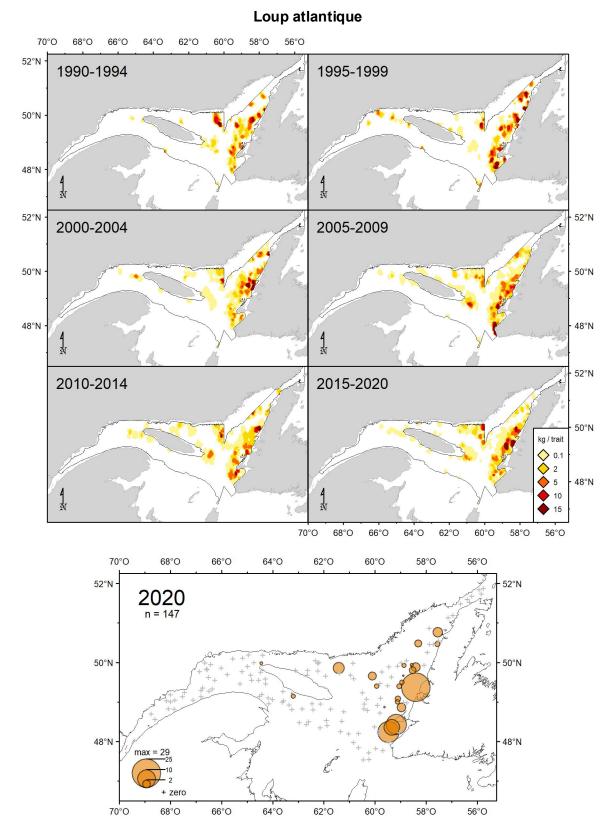


Figure 19. Distribution des taux de capture (kg/trait de 15 minutes) du loup atlantique.

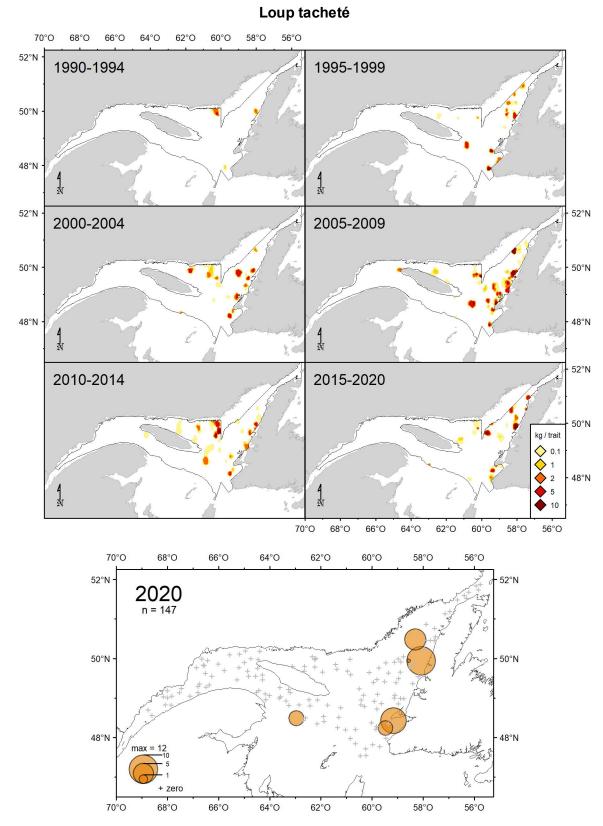


Figure 20. Distribution des taux de capture (kg/trait de 15 minutes) du loup tacheté.

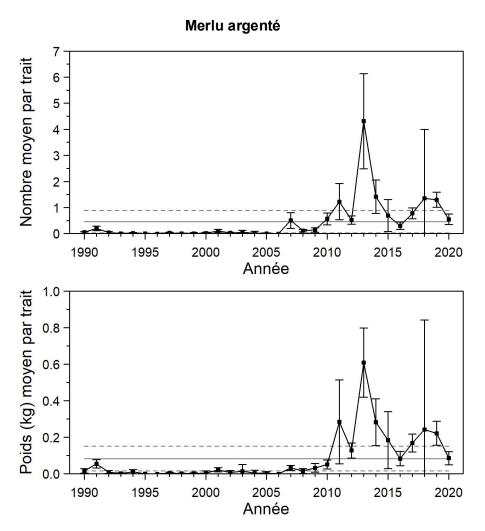


Figure 21. Nombres moyens et poids moyens par trait de 15 minutes observés lors du relevé pour le merlu argenté dans 4RST. Les barres d'erreur indiquent l'intervalle de confiance à 95 % et les lignes horizontales indiquent la moyenne de la période 1990-2019 (ligne pleine) et les limites de référence (voir texte) supérieure et inférieure (lignes pointillées).

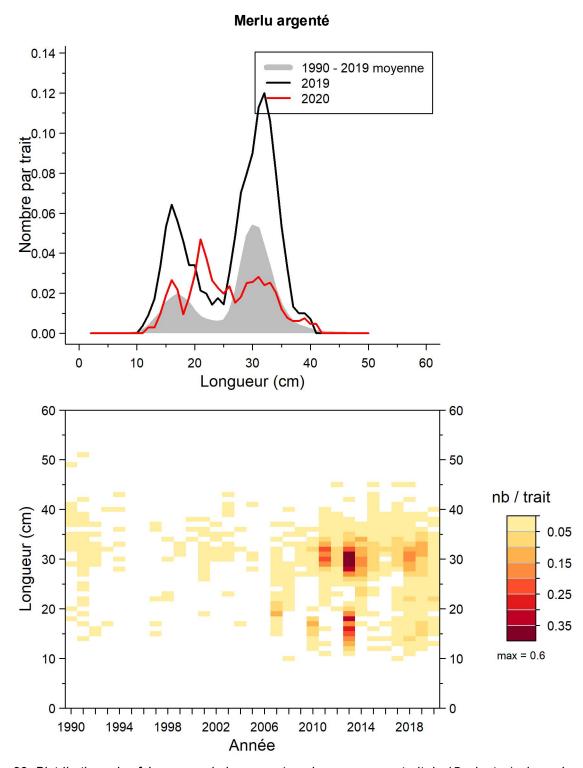


Figure 22. Distributions des fréquences de longueur (nombre moyen par trait de 15 minutes) observées lors du relevé pour le merlu argenté dans 4RST.

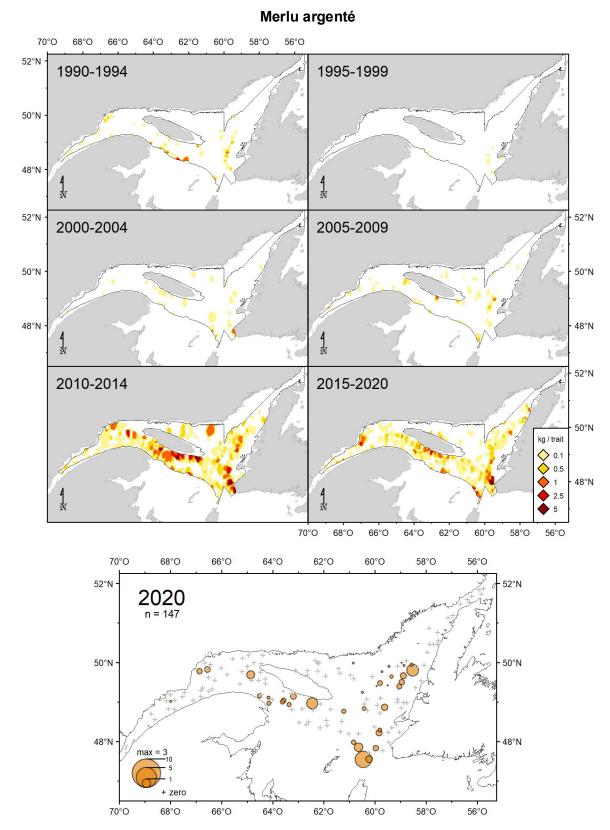


Figure 23. Distribution des taux de capture (kg/trait de 15 minutes) du merlu argenté.

Merluche à longues nageoires

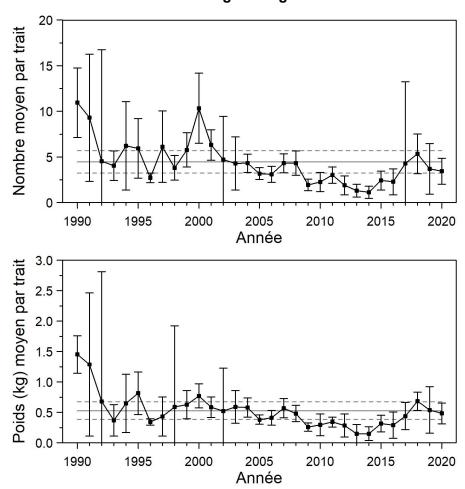


Figure 24. Nombres moyens et poids moyens par trait de 15 minutes observés lors du relevé pour la merluche à longues nageoires dans 4RST. Les barres d'erreur indiquent l'intervalle de confiance à 95 % et les lignes horizontales indiquent la moyenne de la période 1990-2019 (ligne pleine) et les limites de référence (voir texte) supérieure et inférieure (lignes pointillées).

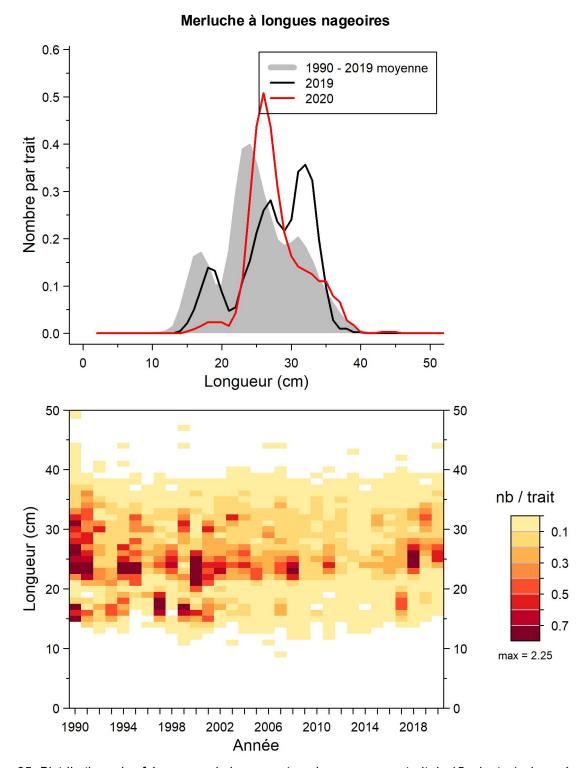


Figure 25. Distributions des fréquences de longueur (nombre moyen par trait de 15 minutes) observées lors du relevé pour la merluche à longues nageoires dans 4RST.

Merluche à longues nageoires

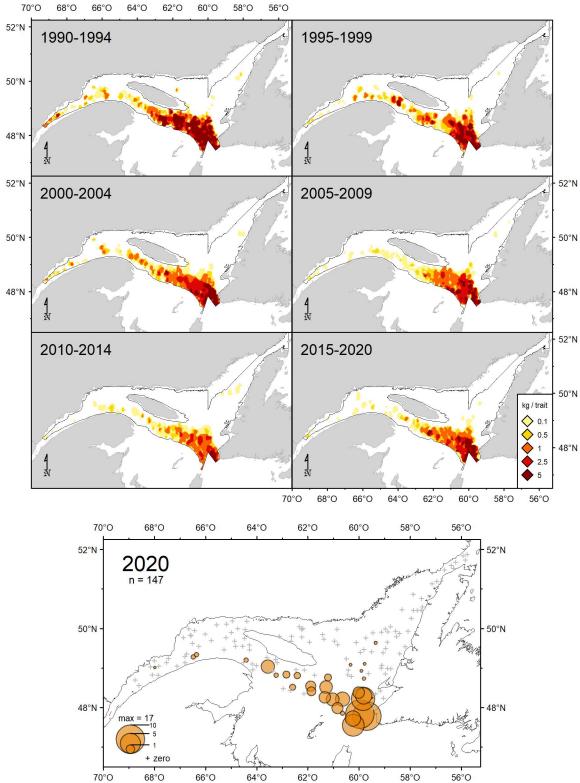


Figure 26. Distribution des taux de capture (kg/trait de 15 minutes) de merluche à longues nageoires.

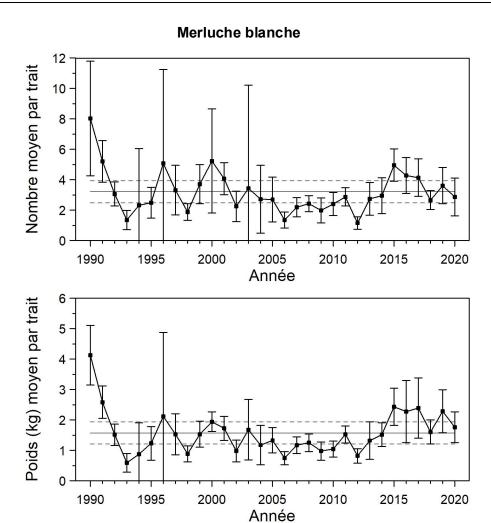


Figure 27. Nombres moyens et poids moyens par trait de 15 minutes observés lors du relevé pour la merluche blanche dans 4RST. Les barres d'erreur indiquent l'intervalle de confiance à 95 % et les lignes horizontales indiquent la moyenne de la période 1990-2019 (ligne pleine) et les limites de référence (voir texte) supérieure et inférieure (lignes pointillées).

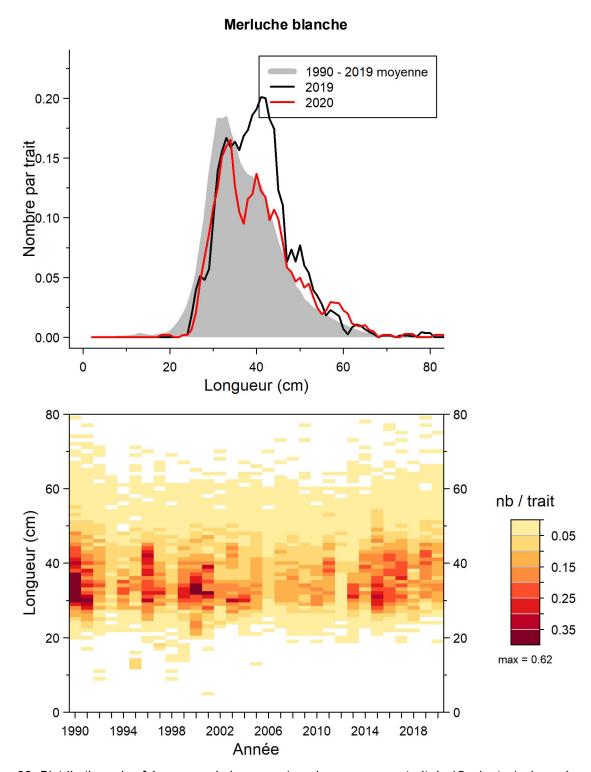


Figure 28. Distributions des fréquences de longueur (nombre moyen par trait de 15 minutes) observées lors du relevé pour la merluche blanche dans 4RST.

Merluche blanche 58°O 56°O 70°O 68°O 66°O 64°O 62°O 60°O 52°N 1990-1994 1995-1999 50°N 48°N 52°N 52°N 2000-2004 2005-2009 50°N 50°N 48°N 48°N 52°N 2010-2014 2015-2020 50°N 0.5 48°N 70°O 68°O 66°O 64°O 62°O 60°O 58°O 56°O 70°O 68°O 66°O 64°O 62°O 60°O 58°O 56°O 52°N 52°N 2020 n = 147 50°N 50°N 48°N 66°O 70°O 68°O 62°O 58°O 56°O

Figure 29. Distribution des taux de capture (kg/trait de 15 minutes) de merluche blanche.

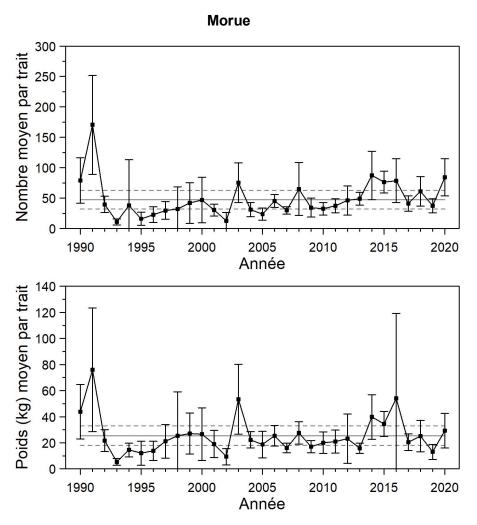


Figure 30. Nombres moyens et poids moyens par trait de 15 minutes observés lors du relevé pour la morue dans 4RS. Les barres d'erreur indiquent l'intervalle de confiance à 95 % et les lignes horizontales indiquent la moyenne de la période 1990-2019 (ligne pleine) et les limites de référence (voir texte) supérieure et inférieure (lignes pointillées).

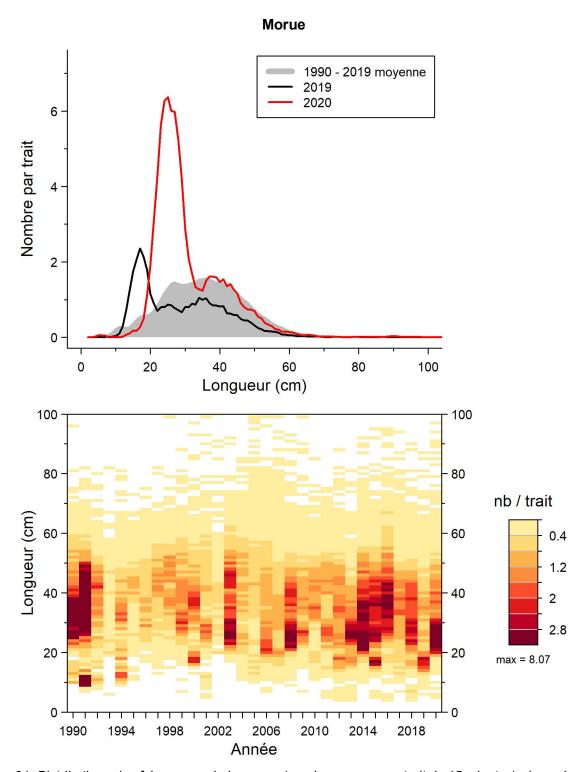


Figure 31. Distributions des fréquences de longueur (nombre moyen par trait de 15 minutes) observées lors du relevé pour la morue dans 4RS.

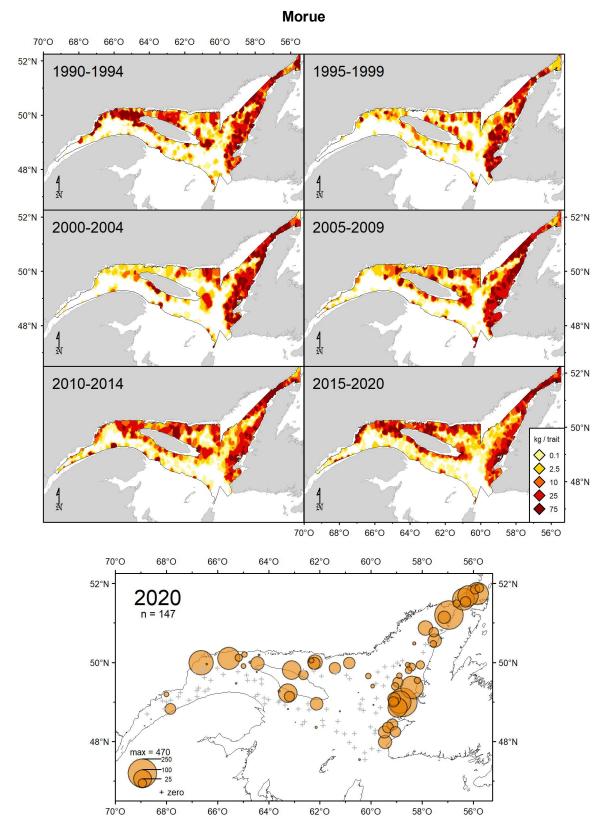


Figure 32. Distribution des taux de capture (kg/trait de 15 minutes) de morue.

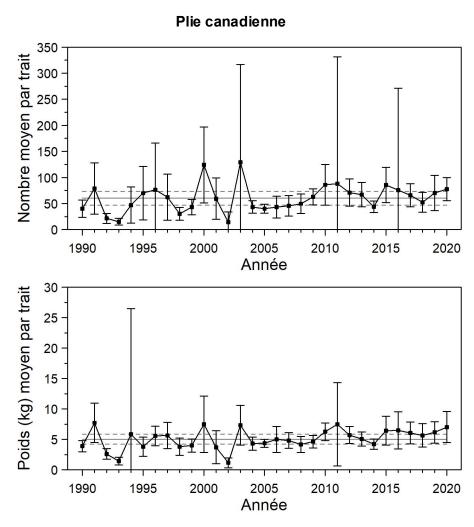


Figure 33. Nombres moyens et poids moyens par trait de 15 minutes observés lors du relevé pour la plie canadienne dans 4RST. Les barres d'erreur indiquent l'intervalle de confiance à 95 % et les lignes horizontales indiquent la moyenne de la période 1990-2019 (ligne pleine) et les limites de référence (voir texte) supérieure et inférieure (lignes pointillées).

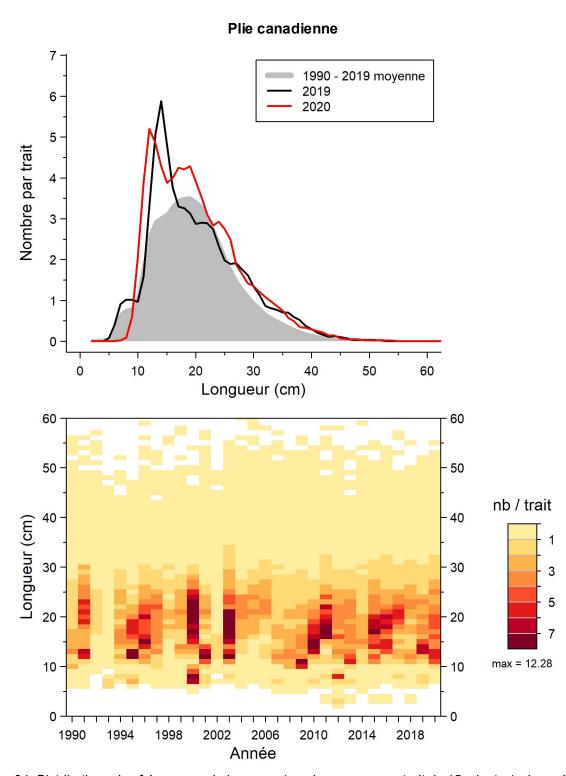


Figure 34. Distributions des fréquences de longueur (nombre moyen par trait de 15 minutes) observées lors du relevé pour la plie canadienne dans 4RST.

Plie canadienne 58°O 70°O 68°O 66°O 64°O 62°O 60°O 56°O 52°N 1995-1999 1990-1994 50°N 48°N 52°N 52°N 2000-2004 2005-2009 50°N 50°N 48°N 48°N 52°N 2010-2014 2015-2020 50°N 48°N 70°O 68°O 66°O 64°O 62°O 60°O 58°O 56°O 70°O 68°O 66°O 64°O 62°O 60°O 58°O 56°O 52°N 52°N 2020 n = 147 50°N 50°N 48°N 66°O 70°O 68°O 62°O

Figure 35. Distribution des taux de capture (kg/trait de 15 minutes) de plie canadienne.

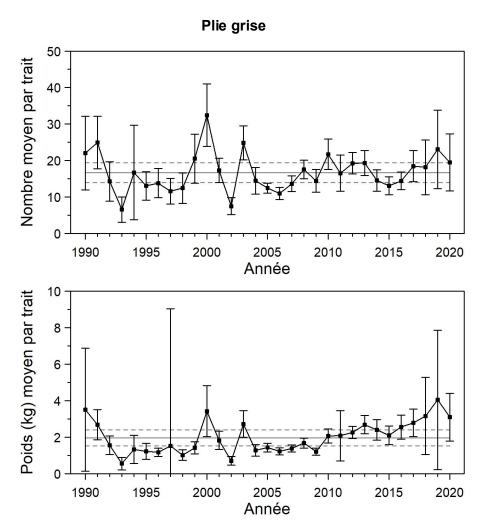


Figure 36. Nombres moyens et poids moyens par trait de 15 minutes observés lors du relevé pour la plie grise dans 4RST. Les barres d'erreur indiquent l'intervalle de confiance à 95 % et les lignes horizontales indiquent la moyenne de la période 1990-2019 (ligne pleine) et les limites de référence (voir texte) supérieure et inférieure (lignes pointillées).

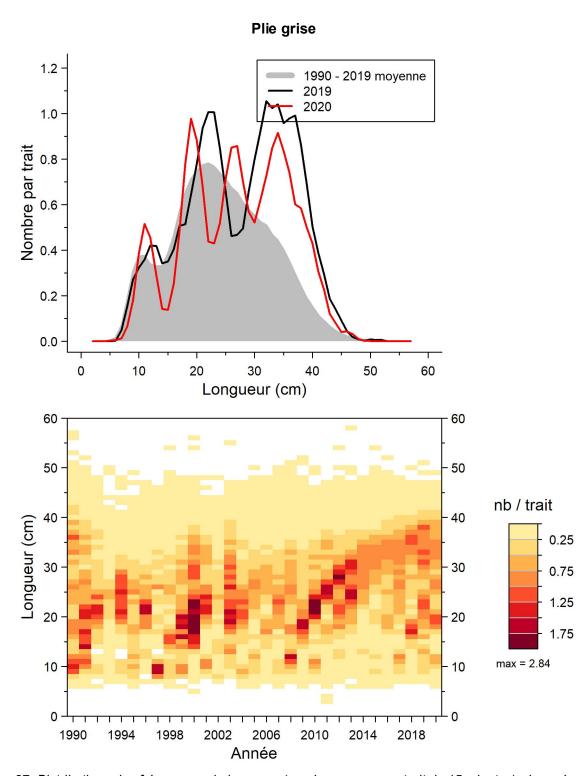


Figure 37. Distributions des fréquences de longueur (nombre moyen par trait de 15 minutes) observées lors du relevé pour la plie grise dans 4RST.

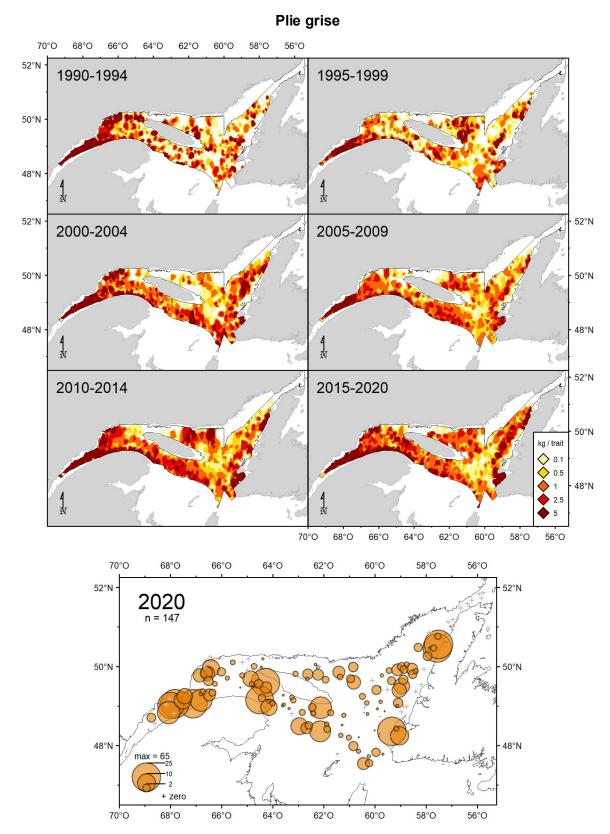


Figure 38. Distribution des taux de capture (kg/trait de 15 minutes) de plie grise.

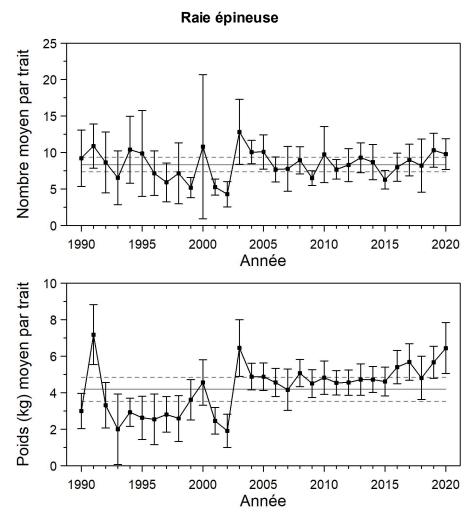


Figure 39. Nombres moyens et poids moyens par trait de 15 minutes observés lors du relevé pour la raie épineuse dans 4RST. Les barres d'erreur indiquent l'intervalle de confiance à 95 % et les lignes horizontales indiquent la moyenne de la période 1990-2019 (ligne pleine) et les limites de référence (voir texte) supérieure et inférieure (lignes pointillées).

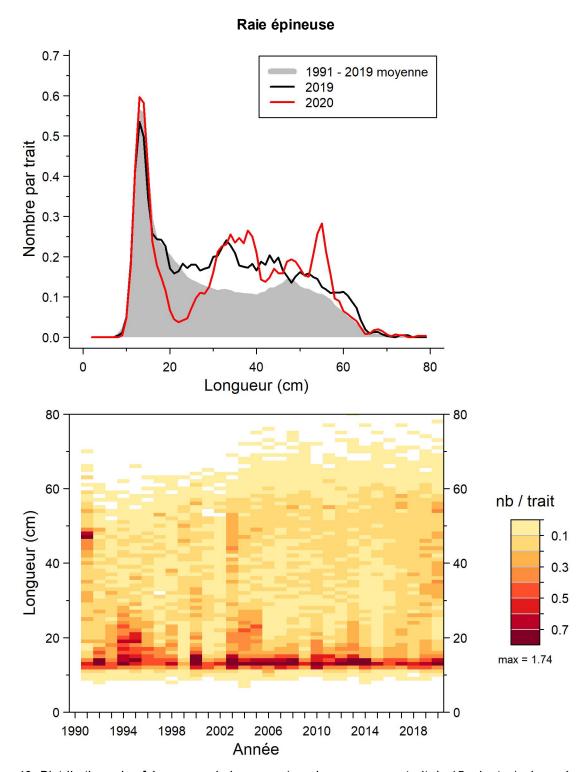


Figure 40. Distributions des fréquences de longueur (nombre moyen par trait de 15 minutes) observées lors du relevé pour la raie épineuse dans 4RST.

Raie épineuse 56°O 70°O 68°O 66°O 64°O 62°O 60°O 52°N 1995-1999 1990-1994 50°N 48°N 52°N 52°N 2000-2004 2005-2009 50°N 50°N 48°N 48°N 52°N 2010-2014 2015-2020 50°N 0.5 48°N 70°O 68°O 66°O 64°O 62°O 60°O 58°O 56°O 70°O 68°O 66°O 64°O 62°O 60°O 58°O 56°O 52°N 52°N 2020 n = 14750°N 50°N 48°N 66°O 70°O 68°O 62°O 58°O 56°O

Figure 41. Distribution des taux de capture (kg/trait de 15 minutes) de raie épineuse.

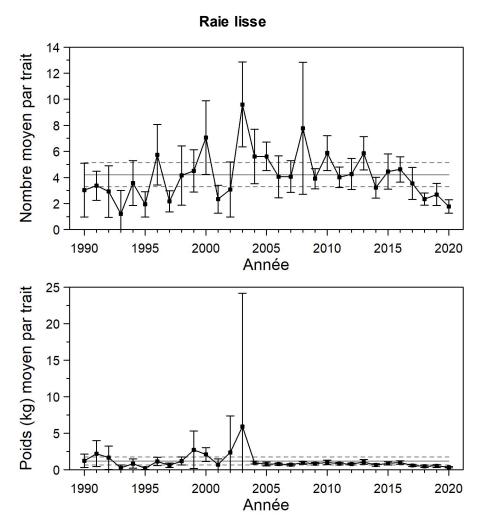


Figure 42. Nombres moyens et poids moyens par trait de 15 minutes observés lors du relevé pour la raie lisse dans 4RST. Les barres d'erreur indiquent l'intervalle de confiance à 95 % et les lignes horizontales indiquent la moyenne de la période 1990-2019 (ligne pleine) et les limites de référence (voir texte) supérieure et inférieure (lignes pointillées).

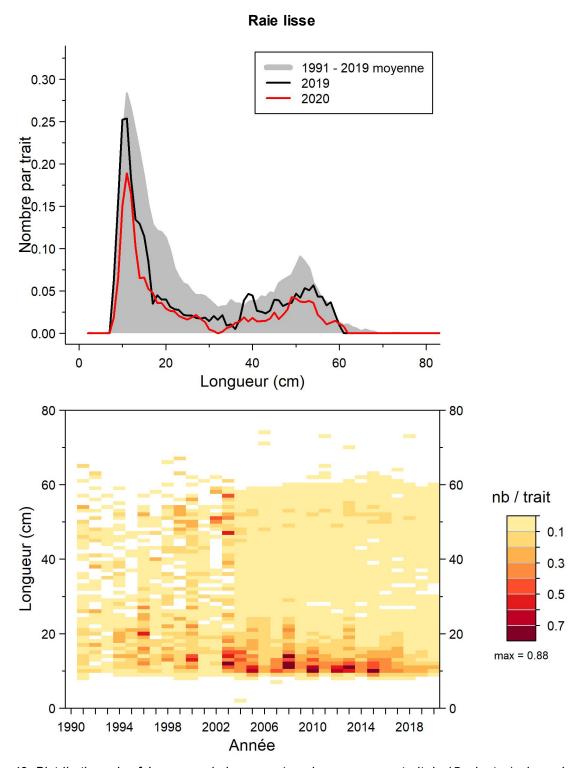


Figure 43. Distributions des fréquences de longueur (nombre moyen par trait de 15 minutes) observées lors du relevé pour la raie lisse dans 4RST.

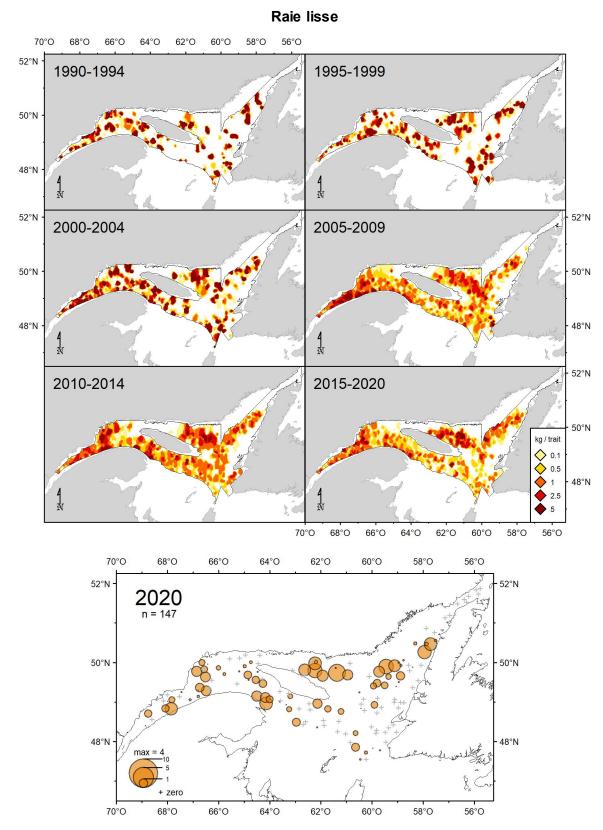


Figure 44. Distribution des taux de capture (kg/trait de 15 minutes) de raie lisse.

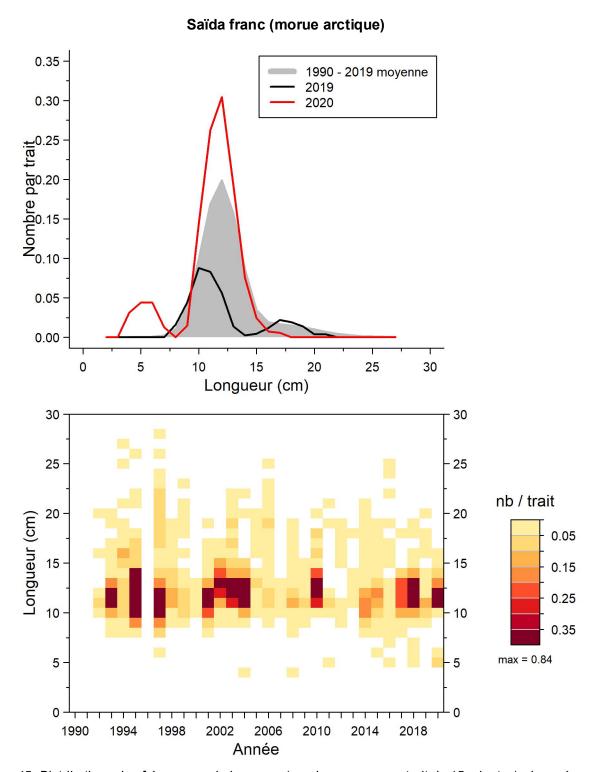


Figure 45. Distributions des fréquences de longueur (nombre moyen par trait de 15 minutes) observées lors du relevé pour la saïda franc dans 4RST.

Saïda franc (morue arctique) 70°O 60°O 58°O 68°O 66°O 64°O 62°O 52°N 1990-1994 1995-1999 50°N 48°N 52°N 52°N 2000-2004 2005-2009 50°N 50°N 48°N 48°N 52°N 2010-2014 2015-2020 50°N 0.1 0.2 0.5 48°N 70°O 68°O 66°O 64°O 62°O 60°O 58°O 56°O 70°O 68°O 66°O 64°O 62°O 60°O 58°O 56°O 52°N 52°N 2020 n = 147 50°N 50°N 48°N

Figure 46. Distribution des taux de capture (kg/trait de 15 minutes) de saïda franc.

70°O

68°O

62°O

56°O

Sébaste acadien (Sebastes fasciatus)

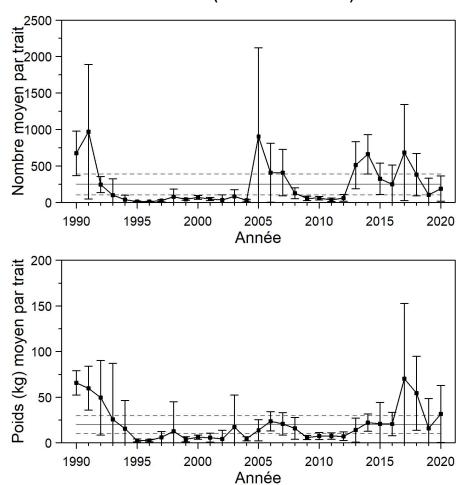


Figure 47. Nombres moyens et poids moyens par trait de 15 minutes observés lors du relevé pour le sébaste acadien dans 4RST. Les barres d'erreur indiquent l'intervalle de confiance à 95 % et les lignes horizontales indiquent la moyenne de la période 1990-2019 (ligne pleine) et les limites de référence (voir texte) supérieure et inférieure (lignes pointillées).

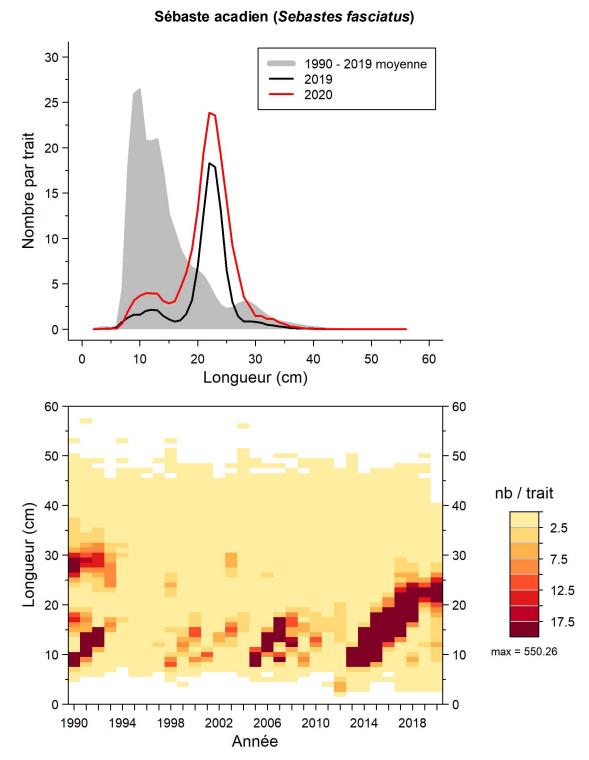


Figure 48. Distributions des fréquences de longueur (nombre moyen par trait de 15 minutes) observées lors du relevé pour le sébaste acadien dans 4RST.

Sébaste acadien (Sebastes fasciatus)

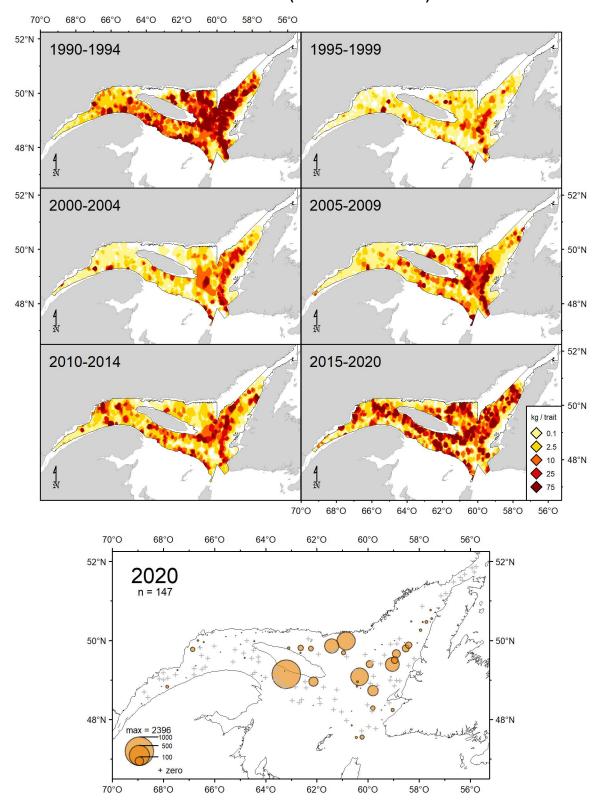


Figure 49. Distribution des taux de capture (kg/trait de 15 minutes) du sébaste acadien.

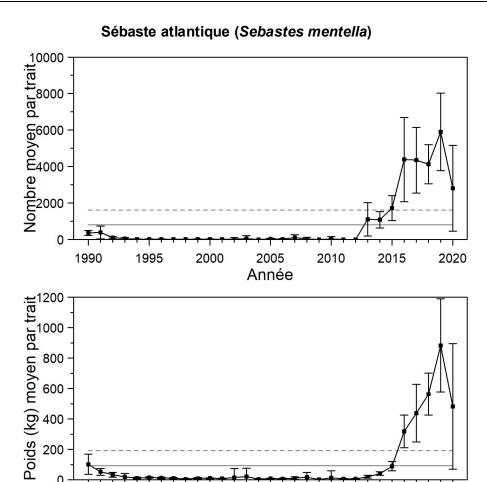


Figure 50. Nombres moyens et poids moyens par trait de 15 minutes observés lors du relevé pour le sébaste atlantique dans 4RST. Les barres d'erreur indiquent l'intervalle de confiance à 95 % et les lignes horizontales indiquent la moyenne de la période 1990-2019 (ligne pleine) et les limites de référence (voir texte) supérieure et inférieure (lignes pointillées).

Année

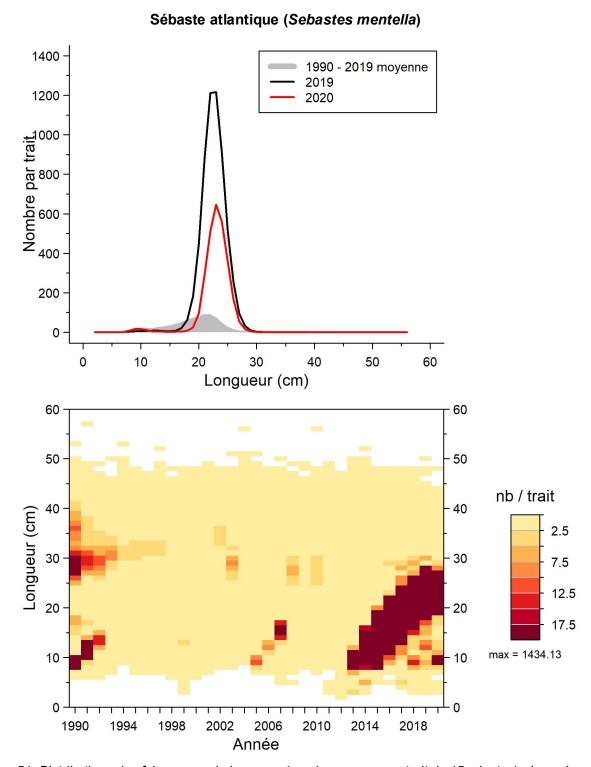


Figure 51. Distributions des fréquences de longueur (nombre moyen par trait de 15 minutes) observées lors du relevé pour le sébaste atlantique dans 4RST.

Sébaste atlantique (Sebastes mentella)

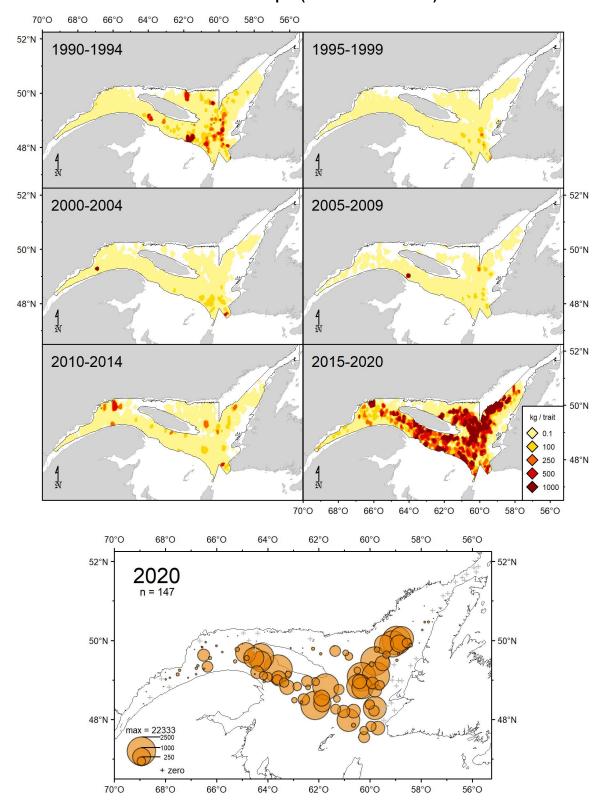


Figure 52. Distribution des taux de capture (kg/trait de 15 minutes) du sébaste atlantique.

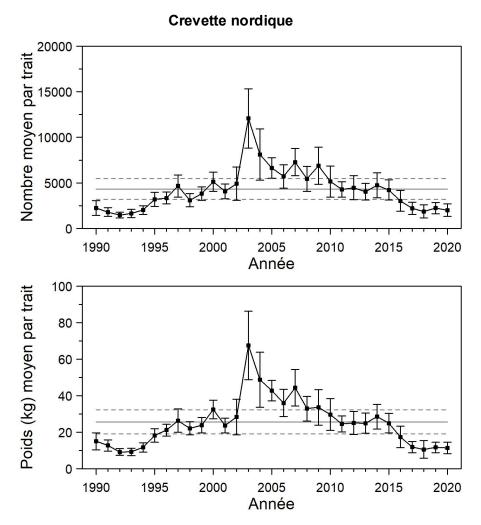


Figure 53. Nombres moyens et poids moyens par trait de 15 minutes observés lors du relevé pour la crevette nordique dans 4RST. Les barres d'erreur indiquent l'intervalle de confiance à 95 % et les lignes horizontales indiquent la moyenne de la période 1990-2019 (ligne pleine) et les limites de référence (voir texte) supérieure et inférieure (lignes pointillées).

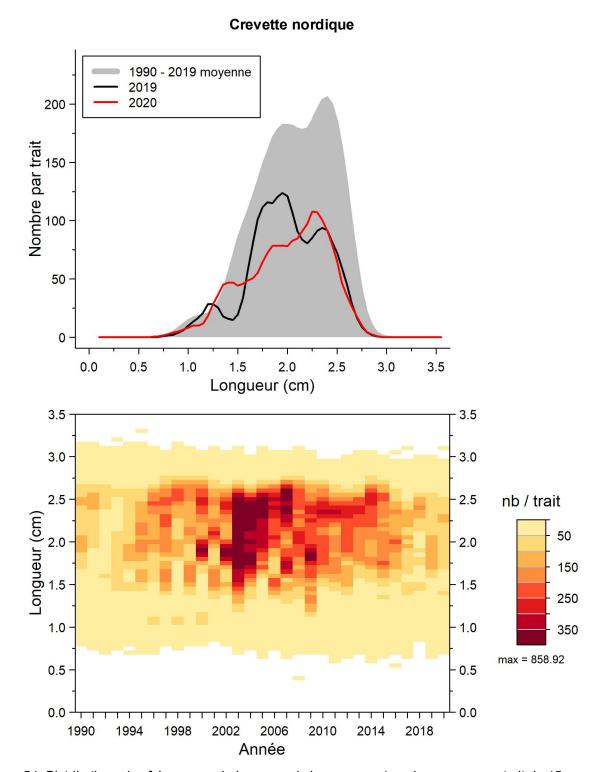


Figure 54. Distributions des fréquences de longueur de la carapace (nombre moyen par trait de 15 minutes) observées lors du relevé pour la crevette nordique dans 4RST.

Crevette nordique 58°O 56°O 70°O 68°O 66°O 64°O 62°O 60°O 52°N 1995-1999 1990-1994 50°N 48°N 52°N 52°N 2000-2004 2005-2009 50°N 50°N 48°N 48°N 52°N 2010-2014 2015-2020 50°N **O**.1 2.5 10 48°N 25 70°O 68°O 66°O 64°O 62°O 60°O 58°O 56°O 70°O 68°O 66°O 64°O 62°O 60°O 58°O 56°O 52°N 52°N 2020 n = 147 50°N 50°N 48°N 66°O 70°O 68°O 62°O

Figure 55. Distribution des taux de capture (kg/trait de 15 minutes) de crevette nordique.

Figure 56. Nombres moyens et poids moyens par trait de 15 minutes observés lors du relevé pour l'encornet nordique dans 4RST. Les barres d'erreur indiquent l'intervalle de confiance à 95 % et les lignes horizontales indiquent la moyenne de la période 1990-2019 (ligne pleine) et les limites de référence (voir texte) supérieure et inférieure (lignes pointillées).

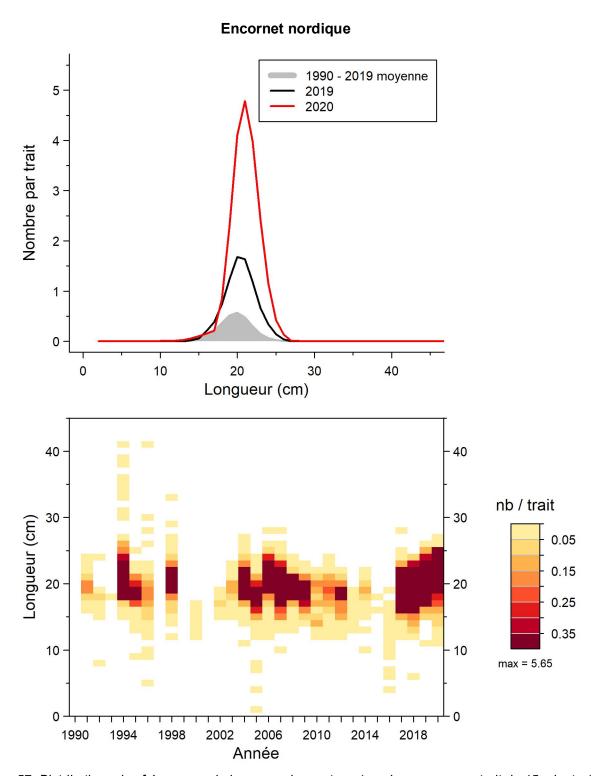


Figure 57. Distributions des fréquences de longueur du manteau (nombre moyen par trait de 15 minutes) observées lors du relevé pour l'encornet nordique dans 4RST.

Encornet nordique 58°O 56°O 70°O 68°O 66°O 64°O 62°O 60°O 52°N 1995-1999 1990-1994 50°N 48°N 52°N 52°N 2000-2004 2005-2009 50°N 50°N 48°N 48°N 52°N 2010-2014 2015-2020 50°N 0.1 0.5 48°N 70°O 68°O 66°O 64°O 62°O 60°O 58°O 56°O 70°O 68°O 66°O 64°O 62°O 60°O 58°O 56°O 52°N 52°N 2020 n = 147 50°N 50°N 48°N 66°O 70°O 68°O 62°O 58°O

Figure 58. Distribution des taux de capture (kg/trait de 15 minutes) d'encornet nordique.

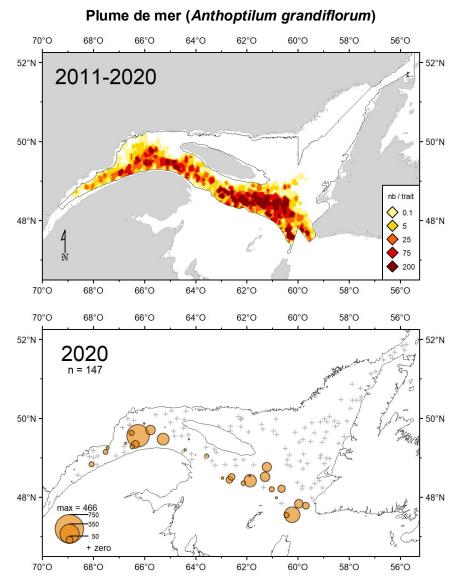


Figure 59. Distribution des taux de capture (nb/trait de 15 minutes) de la grande plume fleurie (Anthoptilum grandiflorum).

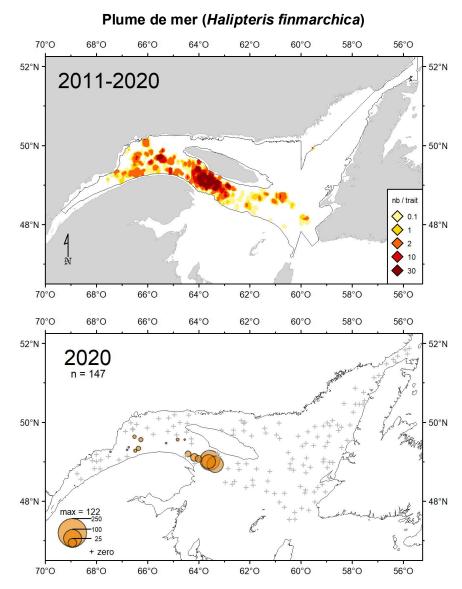


Figure 60. Distribution des taux de capture (nb/trait de 15 minutes) de la plume de Finmard (Halipteris finmarchica).

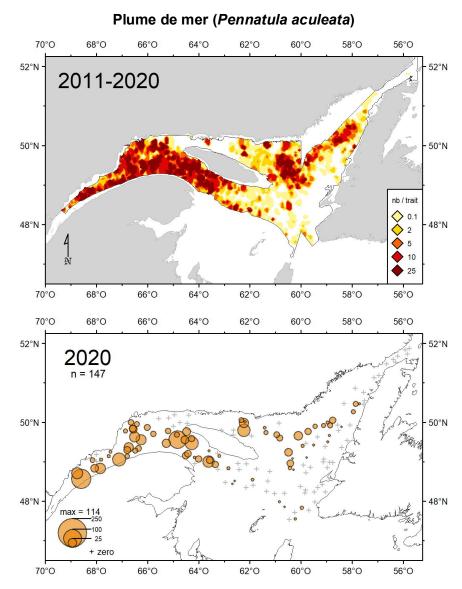


Figure 61. Distribution des taux de capture (nb/trait de 15 minutes) de la petite plume aiguë (Pennatula aculeata).

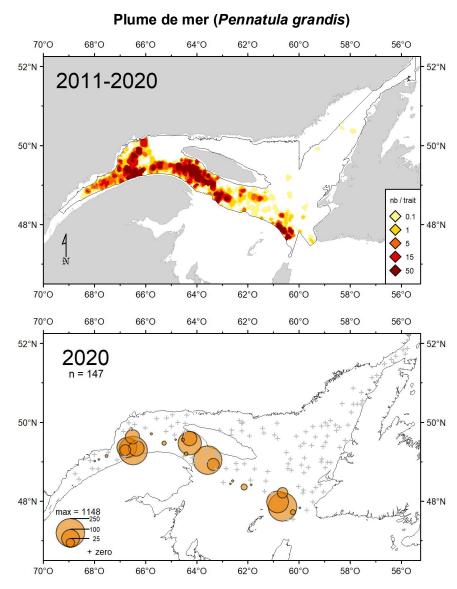


Figure 62. Distribution des taux de capture (nb/trait de 15 minutes) de la grande plume du Nord (Pennatula grandis).

Total

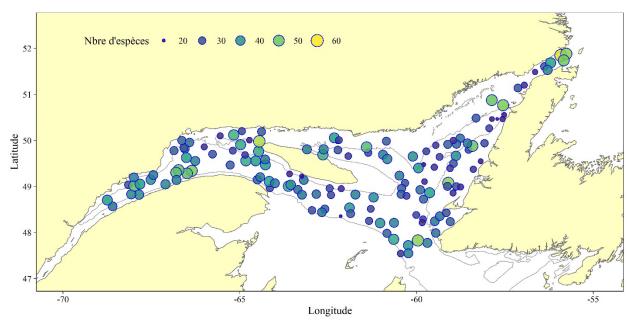


Figure 63. Richesse spécifique exprimée en nombre d'espèces collectées par station.

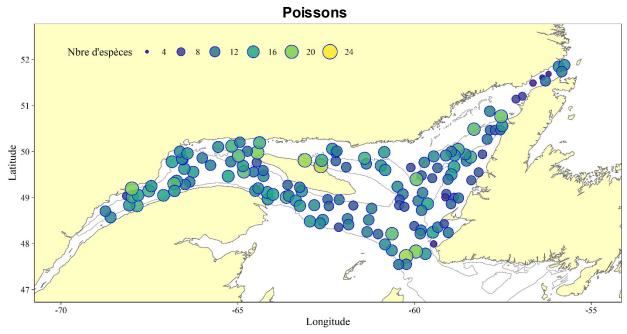


Figure 64. Richesse spécifique exprimée en nombre d'espèces collectées par station pour le regroupement des poissons.

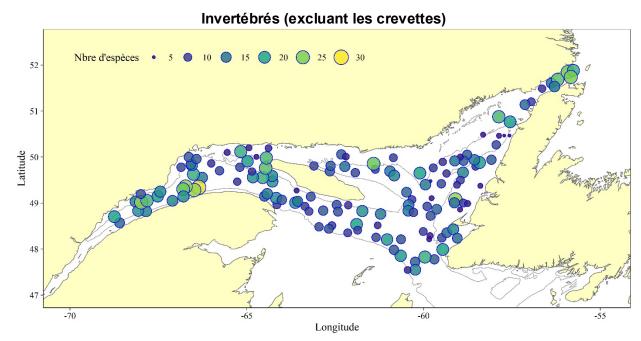


Figure 65. Richesse spécifique exprimée en nombre d'espèces collectées par station pour le regroupement des invertébrés excluant les crevettes.

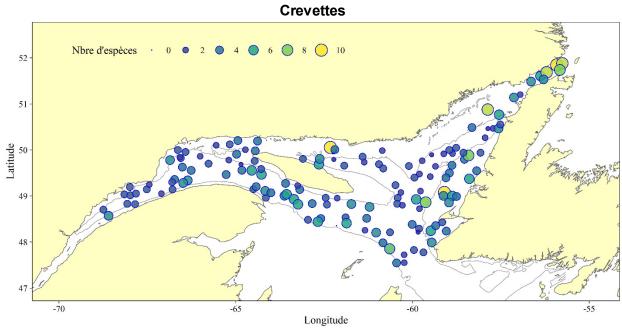


Figure 66. Richesse spécifique exprimée en nombre d'espèces collectées par station pour le regroupement des crevettes.

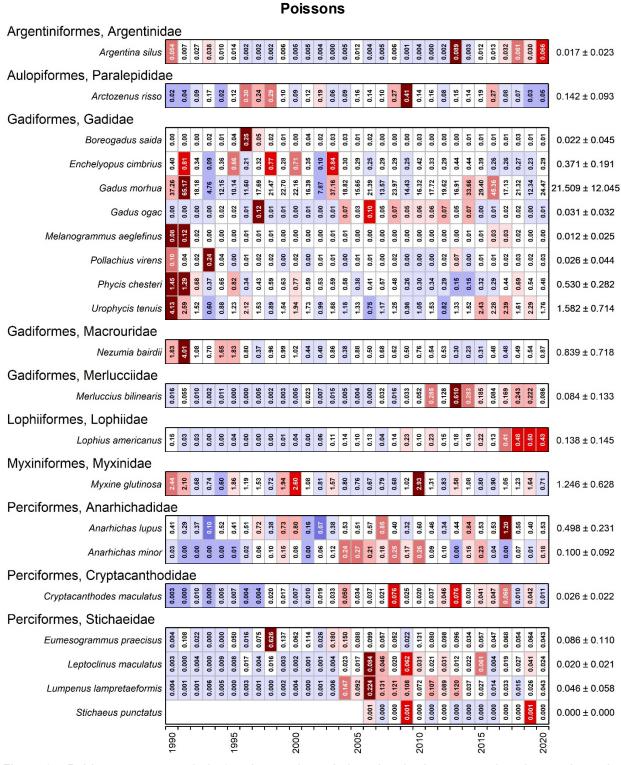


Figure 67. Poids moyens par trait de 15 minutes observés lors du relevé par taxon de poissons. Le code de couleur représente la valeur de l'anomalie qui correspond à la différence entre la PUE d'une année donnée et la moyenne de la PUE de la série chronologique pour chaque taxon, divisée par l'écart-type de cette moyenne.

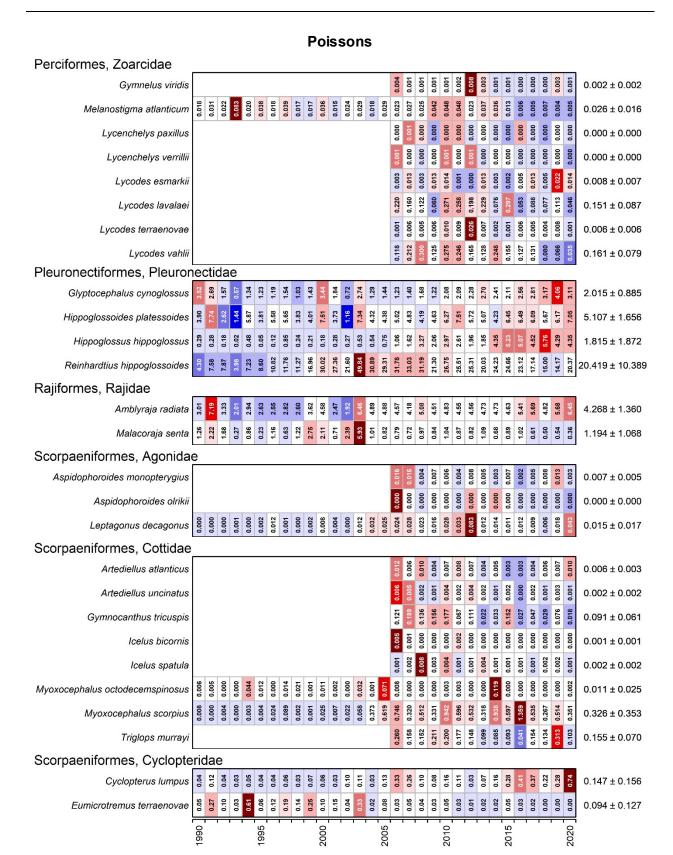


Figure 67. Suite.

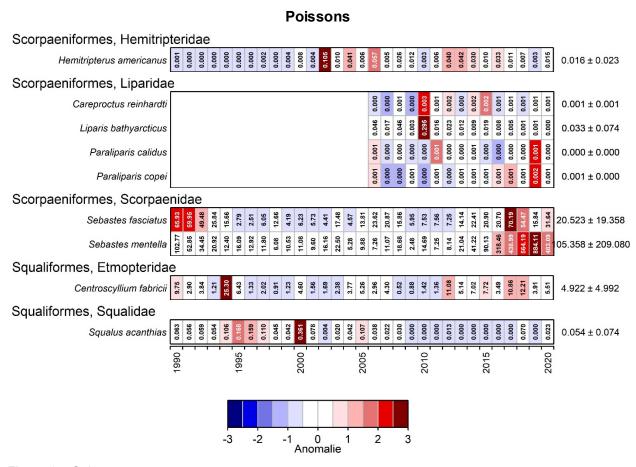


Figure 67. Suite.

ANNELIDA Polychaeta Polychaeta, 0.001 0.002 0.002 0.003 0.003 0.003 0.002 0.003 0.003 0.003 0.003 0.003 0.004 ± 0.004 Aphroditella hastata 0.001 0.002 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.003 ± 0.002 Polychaeta **ARTHROPODA** Malacostraca Amphipoda, Epimeriidae 0.000 ± 0.000 Epimeria loricata Paramphithoe hystrix 0.000 ± 0.000 Amphipoda, Eusiridae 0.000 ± 0.000 Eusirus cuspidatus 000 .001 90. 0.000 ± 0.000 Rhachotropis aculeata Amphipoda, Hyperiidae 0.000 ± 0.000 Themisto sp. Amphipoda, Stegocephalidae Stegocephalus inflatus 0.000 ± 0.000 Amphipoda, Uristidae 0.000 ± 0.000 Anonyx sp. Decapoda, Crangonidae Argis dentata 0.117 ± 0.066 0.02 0.02 0.02 0.02 0.03 0.03 Pontophilus norvegicus 0.020 ± 0.007 Sabinea sarsii 0.001 ± 0.001 0.00 0.01 0.00 0.00 0.01 0.009 ± 0.005 Sabinea septemcarinata Sclerocrangon boreas 0.140 ± 0.107 Decapoda, Hippolytidae 0.006 ± 0.005 Eualus fabricii Eualus gaimardii gaimardii 0.002 ± 0.002 Eualus macilentus 0.025 ± 0.021 0.065 ± 0.063 Lebbeus groenlandicus Lebbeus polaris 0.016 ± 0.011 Spirontocaris lilljeborgii 0.002 ± 0.001 0.020 0.004 0.005 0.006 0.006 900.0 0.003 0.001 0.007 ± 0.006 Spirontocaris spinus 2015

Figure 68. Poids moyens par trait de 15 minutes observés lors du relevé par taxon d'invertébrés. Le code de couleur représente la valeur de l'anomalie qui correspond à la différence entre la PUE d'une année donnée et la moyenne de la PUE de la série chronologique pour chaque taxon divisée par l'écart-type de cette moyenne.

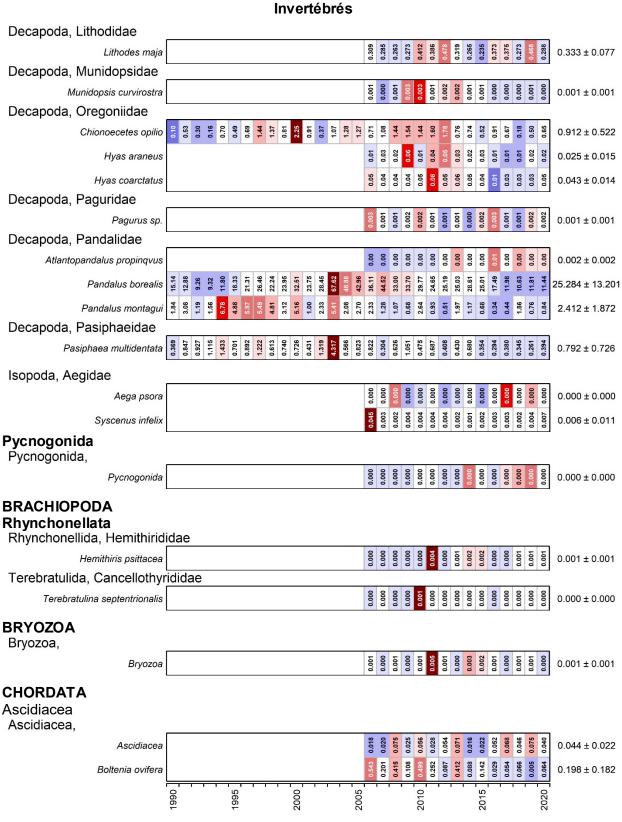


Figure 68. Suite.

CNIDARIA Anthozoa

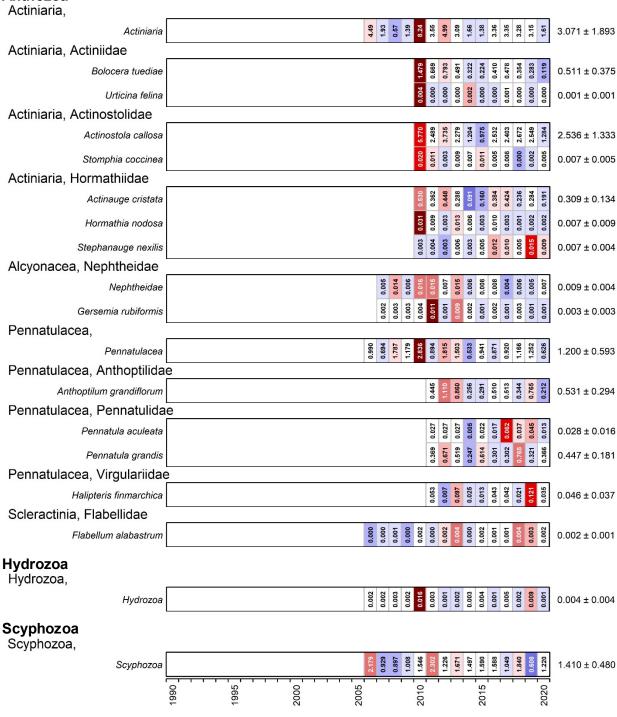


Figure 68. Suite.

ECHINODERMATA

Asteroidea Forcipulatida, Asteriidae 0.014 0.026 0.030 0.030 0.011 0.001 0.057 0.009 0.017 0.028 0.021 ± 0.016 Leptasterias sp. Paxillosida, Astropectinidae 0.005 0.012 ± 0.016 Psilaster andromeda Paxillosida, Ctenodiscidae 0.228 0.990 0.939 0.898 Ctenodiscus crispatus 0.716 ± 0.415 Paxillosida. Pseudarchasteridae Pseudarchaster parelli 0.002 ± 0.002 Valvatida, Poraniidae 9 .00 0.001 Poraniomorpha sp. 0.002 ± 0.002 Valvatida, Solasteridae 0.016 0.032 0.028 0.028 0.026 0.036 0.025 ± 0.013 Crossaster papposus 000. 0.000 000 .00 Solaster endeca 0.008 ± 0.021 Valvatida, Goniasteridae 0.007 ± 0.003 Ceramaster granularis Hippasteria phrygiana 0.113 ± 0.038 Velatida, Pterasteridae 0.003 0.004 0.004 000 0.003 0.003 Pteraster sp. 0.003 ± 0.002 Spinulosida, Echinasteridae 0.008 0.009 0.003 0.003 0.003 0.003 0.005 0.005 Henricia sp. 0.006 ± 0.005 **Echinoidea** Echinoida, Camarodontae 0.095 0.285 0.372 0.208 0.209 0.211 0.255 0.242 0.163 0.291 0.299 Strongylocentrotus sp. 0.247 ± 0.102 Spatangoida, Schizasteridae 0.563 0.321 0.999 1.986 2.497 1.284 1.450 1.966 0.671 Brisaster fragilis 1.598 ± 1.390 Holothuroidea Dendrochirotida, Cucumariidae 0.082 0.003 0.073 0.017 0.017 0.029 0.032 0.022 0.000 0.002 0.013 0.043 ± 0.076 Cucumaria frondosa Dendrochirotida, Psolidae 0.000 000.0 000 000. Psolus phantapus 0.000 ± 0.001 **Ophiuroidea** Euryalida, Gorgonocephalidae 0.000 0.301 0.418 0.813 0.066 0.462 0.598 1.389 0.627 0.433 0.287 0.535 Gorgonocephalus sp. 0.493 ± 0.391 1990

Figure 68. Suite.

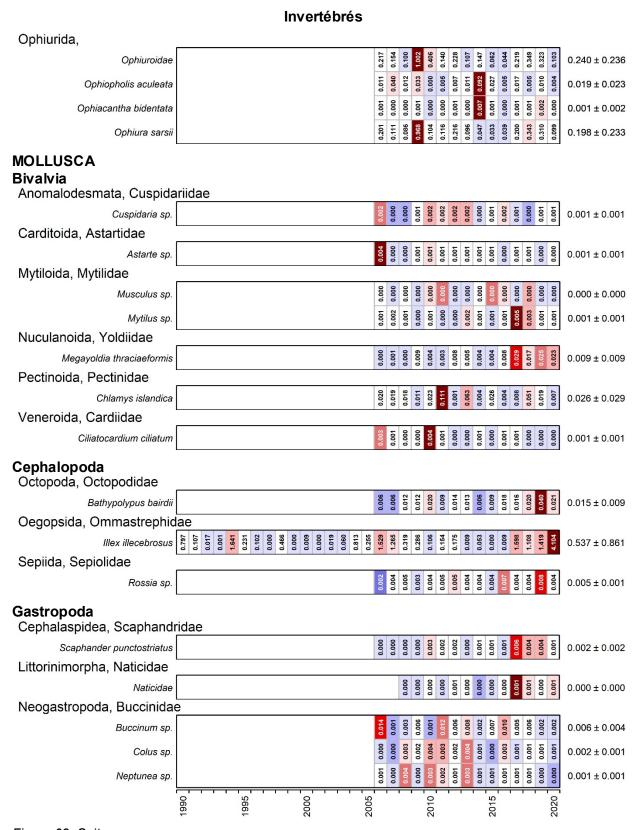


Figure 68. Suite.

Invertébrés Neogastropoda, Muricidae Boreotrophon sp. 0.000 ± 0.000 Neotaenioglossa, Aporrhaidae Arrhoges occidentalis 0.010 ± 0.006 Nudibranchia, 0.000 0.001 0.000 Nudibranchia 0.000 ± 0.000 Trochoidea, Margaritidae Margarites sp. 0.000 ± 0.000 Polyplacophora Polyplacophora, 0.000 0.000 ± 0.000 Polyplacophora **PORIFERA** Porifera, 1.031 0.764 0.958 0.432 1.475 0.923 0.923 0.250 0.250 0.250 0.250 Porifera 0.583 ± 0.385 **SIPUNCULA** Sipuncula, 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.000 ± 0.000 Sipuncula 2015

-1 0 Anomalie 2

3

-3

-2

Figure 68. Suite.

Température de l'eau dans le golfe

August/août 2020

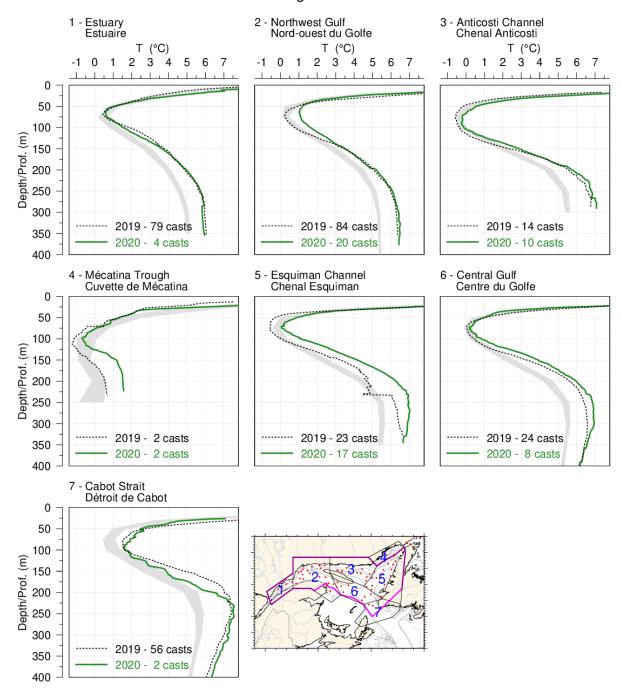


Figure 69. Profils de températures moyennées par région du golfe pour les données du relevé d'août 2020. Les ombragés indiquent la température moyenne climatologique 1981-2010 ± 0,5 écarts-types. Les profils moyens de août et septembre 2019 ont aussi inclus pour comparaison. La région délimitée en violet sur la carte indique la superficie pour laquelle la température de surface est moyennée à la figure 70.

Température de l'eau dans le golfe

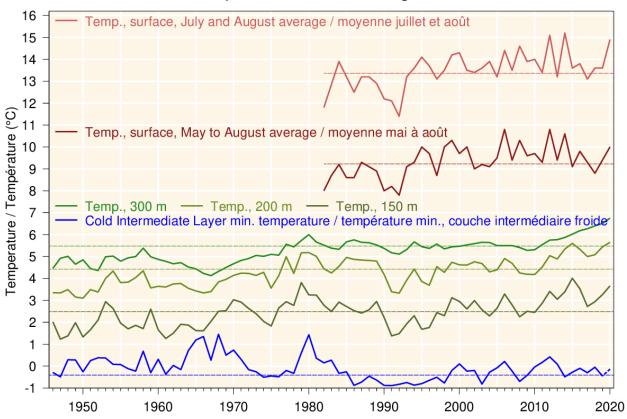


Figure 70. Températures de l'eau dans le golfe. Température de surface moyennée sur l'estuaire et le nord du golfe (voir trait violet à la carte de la figure 69), pour juillet et août ainsi que de mai à août (1982–2020) (lignes rouges). Moyenne de température par couche, à 150, 200 et 300 m (lignes vertes). Indice de la température minimum de la couche intermédiaire froide ajustée au 15 juillet, avec la valeur de 2020 estimée seulement à partir des données obtenues lors du relevé du mois d'août (ligne bleue).

ANNEXES

Annexe 1. Nombre de stations de pêche réussies par strate lors des relevés du MPO.

044-	ODANO	Surface	4000	1001 1	000 4	1000	4004	1005	4000	1007 1	000	4000	0000	0004	0000	0000	0004	0005	0000	0007	0000	0000	0040	2044	0040	0040	0044	0045	0040	0047	2040 004	2 0000
Strate		(km²)		1991 1	992	1993	1994	1995	1996				2000				2004					2009		2011	2012		2014				2018 2019	
401	4T	545	3	4	4	4	3	3	3	3	3	3	3	3	3	3	3	6	3	3	3	3 [0	3	3	2	2	3	2	2	2 2	1
402 403	4T 4T	909 1190	3 3	5 3	5 3	3	3	3	3 10	2 10	3	5 5	3 3	3 3	3 3	2 2	6	3	3 3	3 3	3 3	3 3	3 3	3 3	3 3	3 2	2	3 3	2	2	2 2 1 2	2 2
403	41 4T	792	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	6	3	3	3	з 3 Г	0	3	3	3	2	3	2	2	1 2 2	2
405	4T	1478	3	3	3	3	3	3	3	2	4	4	4	3	3	3	2	9	3	3	3	3	3	3	3	3	2	3	2	2	2 2	2
406	4T	2579	5	3	3	3	3	3	5	5	3	5	3	4	5	3	5	6	4	4	4	3	3	3	4	3	3	4	4	4	3 3	4
407	4T	2336	5	3	3	3	3	3	3	3	2	3	3	3	3	5	3	5	3	3	3	3	0	3	3	2	4	4	2	3	4 3	3
408	4T	2734	4	5	5	3 _	2	3	3	2	5	5	4	3	3	3	2	11	4	4	4	4	3	3	4	3	4	4	2	4	3 2	2
409	4T 4T	909	3 2	3 3	3	3	0	3 6	4 10	3	3 5	4 4	4 4	4	3 5	3 3	3	4	3 3	3 3	3 3	3	3 3	3	2	3	2	2	2	2	2 2 2	2
410 411	41 4T	1818 1859	3	3	3	3	4	7	9	6 7	6	9	5	9	5 4	3	ა 5	8	3	3	3	3	3	3	3	3	3	2	3	3	3 2	3
412	4T	1283	3	3	3	3	4	5	3	3	3	4	4	4	3	3	2	5	3	3	3	3	3	3	3	3	2	2	2	2	2 2	2
413	4T	731	3	4	3	3	0	3	3	4	3	4	4	4	3	3	1	5	3	3	3	3	3	3	3	2	2	2	2	2	2 2	1
414	4T	388	3	2	3	3	1	3	3	3	3	4	4	4	3	3	3	6	3	3	2	1	3	3	2	3	2	2	2	0	2 1	0
801	4R	1214	3	3	3	4	3	3	3	3	4	5	5	5	2	3	3	4	3	3	3	3	2	3	3	3	3	3	2	3	3 3	2
802	4R	1369	3	3	3	3	3	3	3	3	3	3	3	3	2	8	3	8	2	3	3	3 L	0	3	3	3	3	3	2	3	3 3	2
803 804	4S 4S	6976 2490	14 5	3 4	2	4 3	3 4	3 3	3 3	3 3	4 3	5 3	3 3	4 6	6 3	2	3	14 10	6 3	8 3	8 3	3	3	6 3	7 3	3	10	8	5 4	8 4	8 4 3 3	4
805	4S	5762	14	7	4	4	6	4	11	8	4	5	5	5	12	8	4	10	8	7	7	6	4	5	7	5	7	7	9	7	5 6	6
806	48	2127	4	4	3	3	3	3	3	3	3	3	3	3	3	3	5	4	3	3	2	3	3	3	3	3	3	3	3	3	3 3	3
807	4S	2370	3		11	10	5	5	4	4	3	3	4	3	2	1	0	7	3	3	3	3	3	2	3	3	4	4	4	4	3 2	3
808	4S	2428	4	7	6	4	5	4	3	3	2	4	3	3	3	3	0	3	3	3	3	3	2	3	3	2	4	4	4	4	4 0	2
809	4R	1547	3	9	7	6	4	3	3	3	3	3	3	3	3	3	1	5	3	3	3	3	3	3	2	3	3	3	4	3	3 0	3
810 811	4R 4R	765 1506	3 3	4	5 4	4	3 5	3 3	3 8	3 6	4 3	4 3	4 3	4 3	6 3	5 3	3 3	8	3 3	3 3	4 3	3 2	2	3 2	3 3	2 2	3 2	2 2	2 2	2 2	2 1 2	2
812	4R	4648	7	9		11	4	3	3	3	3	3	3	3	3	3	4	5	5	4	5	4	5	3	5	3	8	7	6	6	5 6	J 2
813	4R	3958	6	6	5	9	3	4	6	5	7	4	6	8	2	5	3	9	5	3	5	3	4	4	6	3	6	6	4	3	5 5	6
814	4S	1029	3	4	4	4	3	0	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	2	2	2	2 2	2
815	4S	4407	9		11	8	5	4	3	3	8	9	9	2	6	3	3	14	5	5	6	5	5	3	6	4	6	7	6	6	5 6	4
816 817	4S	5032 3646	9 7	11 18	9	9 7	6 9	6 10	17 9		20 11	21 17	21 13	1 14	6 8	4 5	4 2	11 7	7 5	7 5	7 4	6 5	4	4	3 4	6 4	6 5	8 4	7 6	7 6	5 6 5 5	4 6
818	4S 4S	2774	4	7	11 5	4	3	3	3	4	4	4	4	5	7	5	1	6	4	4	2	4	3	4	3	3	4	5	4	5	4 4	5
819	48	1441	3	7	9	5	4	5	3	2	3	3	4	1	1	3	0	8	2	3	3	2	3	3	3	3	2	2	2	2	2 1	2
820	4R	1358	3	3	3	3	3	3	7	5	6	5	5	3	2	3	3	14	3	3	3	3	0	2	3	3	3	3	2	3	3 0	2
821	4R	1272	3	3	3	3	2	3	3	2	3	3	3	3	3	3	3	7	3	3	3	3	2	4	3	3	3	2	2	3	3 0	2
822	4R	3245	6	4	3	2	3	3	6		10	8	10	9	3	3	3	8	4	4	4	3	4	2	4	2	5	3	4	2	3 4	5
823 824	4R 4R	556 837	3	3	3	3	2	3 3	2 3	3	3	3	2	3	2 2	5 2	2	10 6	3 3	3	3 3	3	2	3	3	3 2	3 2	3	2	2	3 3 2	2
827	4S	3231	0	1	1	1	3	3 F	0	2	3	1	3	0	2	2	3	6	4	4	3	3	3	2	3	2	2	3	3	3	4 0	7 2
828	48	2435	4	1	2	2	3	3	3	3	3	і Г	0	1	0	3	3	1	3	3	3	3	3	2	2	2	2	2	2	4	4 3	2
829	4S	2692	3	2	3	3	3	3	3	0	3	3	2	0	2	1	0	8	4	4	3	2	3	2	2	3	2	4	3	2	3 1	2
830	4S	1917	3	3	4	3	3	3	2	2	3	3	3	2	1	1	0	6	3	3	3	3	3	3	2	3	2	4	4	3	3 3	2
831	4S	1204	3 _		2	3	3	3	3	2	3	4	3	3	1	3	3	4	3	3	3	3	3	3	3	2	2	2	2	2	2 1	2
832 833	4S 4S	3962 559	4 3		11 3	7 3	7 3	9 3	8 3	5 3	3	3 3	3 3 [0	2 3	3 3	4 2	8 6	4 3	5 3	5 3	3 3	4 3	3 3	6 3	4	4 2	4 2	3 2	5 2	5 4 2 2	5
835	48 4R	2641	0		3 7	ა 6	3	3	3	3	3 6	5	ა <u>[</u>	5	ა 6	3	3	8	ა 5	ა 5	5 5	з 4 Г	0	3 4	5	2	4	3	3	4	4 0	1 7 3
836	4R	3149	0	7	8	6	3	3	3	3	3	3	3	3	3	2	4	10	5	3	5	4	3	4	4	3	5	5	2	3	4 3	5
837	4R	2668	0	5	6	3	2	3	4	4	3	3	3	3	5	5	2	4	4	3	5	3	3	2	5	1	4	4	3	3	2 3	3
838	4R	3378	0	9	8	7	5	5	0	0	0	2	0	4	4	0	3	10	6	3	6	0	0	3	5	0	6	4	5	3	5 3	5
839	4S	4390	0	2	5	5	3	2	2	1	2	3	3	0	0	3	2	3	6	5	4	3	3	2	2	3	2	3	2 _	2	2 1	1
840 841	4R 4S	765 816	0	3 0	1	3	1 L	3	3	0	2	1	2	2	2	3	3	5 3	3	3	3 2	3	3	3	3 2	3	2	3 2	2 2	2	1 0	1
Total		116115	191	250 2	39 2	14	175	182	217	185 2	04	224	209	183	171	163	133	354	192	183	189	164	132 1	56	178	141	177	182	159	163	60 124	143
851 852	4T 4T	456 427	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	3	3	3 3	3 2	3 3	2 2	2 2	2	2	2 1 2 2	1 1
854	4T	465	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	3	3	2	2	2	2	2	2	2	2 0	_
855	4T	928	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	4	3	2	3	3	2	2	2	2	2 1	1
		- · •																			_		_		_	_						

Annexe 2. Occurrences et prises totales, en poids et en nombre, par taxon lors du relevé de 2020 (147 traits réussis). Les codes taxonomiques (STRAP) suivent Miller et Chabot (2014), avec les mises à jour des noms scientifiques par le registre mondial des espèces marines (<u>WORMS</u> 2018).

Vertébrés

Code STRAP	Nom scientifique	Nom français	Nom anglais	Occurrence	Poids (kg)	Nombre
90	Amblyraja radiata	Raie épineuse	Thorny Skate	122	1144,7	1768
696	Ammodytes sp.	Lançons	Sand Lances	6	0,1	9
700	Anarhichas lupus	Loup atlantique	Atlantic Wolffish	24	81,5	205
701	Anarhichas minor	Loup tacheté	Spotted Wolffish	6	32,3	7
718	Anisarchus medius	Lompénie naine	Stout Eelblenny	1	0,1	17
320	Arctozenus risso	Lussion blanc	White Barracudina	72	7,1	398
193	Argentina silus	Grande argentine	Atlantic Argentine	18	11,7	173
811	Artediellus atlanticus	Hameçon atlantique	Atlantic Hookear Sculpin	19	1,2	152
810	Artediellus sp.	Hameçons	Hookear Sculpins	5	0,4	95
812	Artediellus uncinatus	Hameçon neigeux	Arctic Hookear Sculpin	6	0,4	76
838	Aspidophoroides monopterygius	Poisson-alligator atlantique	Alligatorfish	26	0,3	101
837	Aspidophoroides olrikii	Poisson-alligator arctique	Arctic Alligatorfish	2	0	3
102	Bathyraja spinicauda	Raie à queue épineuse	Spinytail Skate	1	9,3	1
290	Benthosema glaciale	Lanterne glacière	Glacier Lanternfish	4	0	9
451	Boreogadus saida	Saïda franc	Arctic Cod	28	3,8	306
865	Careproctus reinhardti	Petite limace de mer	Sea Tadpole	9	0,2	9
27	Centroscyllium fabricii	Aiguillat noir	Black Dogfish	23	785,1	973
150	Clupea harengus	Hareng atlantique	Atlantic Herring	54	1586,2	9973
721	Cryptacanthodes maculatus	Terrassier tacheté	Wrymouth	4	1,1	12
982	Cryptopsaras couesii	Petit pêcheur abyssal	Triplewart Seadevil	1	0,2	1
849	Cyclopterus lumpus	Grosse poule de mer	Lumpfish	33	63,7	66
461	Enchelyopus cimbrius	Motelle à quatre barbillons	Fourbeard Rockling	93	43,7	1264
711	Eumesogrammus praecisus	Quatre-lignes atlantique	Fourline Snakeblenny	19	4,1	159
847	Eumicrotremus terraenovae	Petite poule Terre-Neuve	Newfoundland Spiny Lumpsucker	18	6	282
438	Gadus morhua	Morue franche	Atlantic Cod	68	3408,6	10065
439	Gadus ogac	Ogac, morue ogac	Greenland Cod	3	2,4	6
426	Gasterosteus aculeatus aculeatus	Épinoche à trois épines	Threespine Stickleback	4	0,1	23
890	Glyptocephalus cynoglossus	Plie grise	Witch Flounder	116	585,9	3408
205	Gonostomatidae	Cyclothones	Bristlemouths	2	<0,1	2
746	Gymnelus viridis	Unernak caméléon	Fish Doctor	4	0,1	10
823	Gymnocanthus tricuspis	Tricorne arctique	Arctic Staghorn Sculpin	18	6,3	106
809	Hemitripterus americanus	Hémitriptère atlantique	Sea Sculpin	1	1,4	1

Code STRAP	Nom scientifique	Nom français	Nom anglais	Occurrence	Poids (kg)	Nombre
889	Hippoglossoides platessoides	Plie canadienne	American Plaice	125	1182,1	13292
893	Hippoglossus hippoglossus	Flétan atlantique	Atlantic Halibut	37	657,6	66
832	Icelus spatula	Icèle spatulée	Spatulate Sculpin	6	0,1	29
836	Leptagonus decagonus	Agone atlantique	Atlantic Poacher	21	6,1	351
717	Leptoclinus maculatus	Lompénie tachetée	Daubed Shanny	28	2,8	473
891	Limanda ferruginea	Limande à queue jaune	Yellowtail Flounder	4	35	183
868	Liparis bathyarcticus	Limace nébuleuse	Nebulous Snailfish	12	1,9	44
966	Lophius americanus	Baudroie d'Amérique	Monkfish, Goosefish	11	70,6	13
716	Lumpenus lampretaeformis	Lompénie-serpent	Snakeblenny	24	5,7	242
750	Lycenchelys paxillus	Lycode commune	Common Wolf Eel	1	<0,1	1
752	Lycenchelys verrillii	Lycode à tête longue	Wolf Eelpout	1	<0,1	1
727	Lycodes esmarkii	Lycode d'Esmark	Esmark's Eelpout	4	1,2	7
728	Lycodes lavalaei	Lycode du Labrador	Newfoundland Eelpout	14	7,6	56
726	Lycodes sp.	Lycodes	Eelpouts ·	1	0,2	4
734	Lycodes terraenovae	Lycode atlantique	Atlantic Eelpout	2	0,3	2
730	Lycodes vahlii	Lycode à carreaux	Vahl's Eelpout	19	4,4	122
91	Malacoraja senta	Raie lisse	Smooth Skate	76	51,2	274
187	Mallotus villosus	Capelan	Capelin	47	126	12309
745	Melanostigma atlanticum	Molasse atlantique	Atlantic Soft Pout	33	0,8	269
449	Merluccius bilinearis	Merlu argenté	Silver Hake	39	16,6	99
272	Myctophidae	Poissons-lanterne	Lanternfishes	20	0,8	260
271	Myctophiformes	Poissons des profondeurs	Deepwater Fishes	5	0,1	7
818	Myoxocephalus aenaeus	Chaboisseau bronzé	Little Sculpin, Grubby	2	0,7	6
820	Myoxocephalus octodecemspinosus	Chaboisseau à dix-huit-épines	Longhorn Sculpin	1	0,2	2
819	Myoxocephalus scorpius	Chaboisseau à épines courtes	Shorthorn Sculpin	18	43,9	147
12	Myxine glutinosa	Myxine du nord	Northern Hagfish	79	99,4	1568
368	Nemichthys scolopaceus	Avocette ruban	Atlantic Snipe Eel	2	0,1	2
478	Nezumia bairdii	Grenadier du grand Banc	Common Grenadier	83	102,3	3227
275	Notoscopelus kroyeri	Lanterne-voilière nordique	Kroyer's Lanternfish	4	0,3	12
874	Paraliparis calidus	Limace ardente	Lowfin Snailfish	8	0,1	10
856	Paraliparis copei copei	Limace à museau noir	Blacksnout Seasnail	4	0,1	14
15	Petromyzon marinus	Lamproie marine	Sea Lamprey	1	0,1	1
444	Phycis chesteri	Merluche à longues nageoires	Longfin Hake	31	66,5	499
443	Pollachius virens	Goberge	Pollock	1	4,8	1
244	Polymetme thaeocoryla	Poisson lumineux	Ligthfishes	1	<0,1	1
94	Rajella fyllae	Raie ronde	Round Skate	1	<0,1	1
892	Reinhardtius hippoglossoides	Flétan du Groenland, turbot	Greeenland Halibut, Turbot	110	3204,1	12980
572	Scomber scombrus	Maquereau bleu	Atlantic Mackerel	39	11,3	270

Code STRAP	Nom scientifique	Nom français Nom anglais		Occurrence	Poids (kg)	Nombre
398	Scomberesox saurus saurus	Balaou	Atlantic Saury	3	1	7
796	Sebastes fasciatus	Sébaste acadien	Acadian Redfish	65	4564,1	28064
794	Sebastes mentella	Sébaste atlantique	Deepwater Redfish	115	74837,4	439975
24	Squalus acanthias	Aiguillat commun	Spiny Dogfish	2	4,8	3
220	Sternoptychidae	Haches	Hatchetfishes	1	<0,1	1
373	Synaphobranchus kaupii	Anguille égorgée bécuée	Northern Cutthroat Eel	1	0,2	2
814	Triglops murrayi	Faux-trigle armé	Moustache Sculpin	41	16,4	1340
447	Urophycis tenuis	Merluche blanche	White Hake	73	289,8	514
	Total	Vertébrés	Vertebrates		93 207	546 431

Code STRAP	Nom scientifique	Nom français	Nom anglais	Occurrence	Poids (kg)	Nombre
1100	-	Invertébrés	Invertebrates	2	<0,1	3
2182	Actinauge cristata	Anémone de mer	Anemone	34	28,6	2352
2165	Actiniaria	Actinies et Anémones	Sea Anemones	9	0,7	13
2162	Actinostola callosa	Anémones de mer	Anemone	46	214	2336
6771	Aega psora	Isopode	Isopod	8	<0,1	10
2676	Alcyonidium gelatinosum	Bryozoaire marin	Marine bryozoans	3	0,1	-
3891	Aldisa zetlandica	Nudibranche	Nudibranch	4	<0,1	5
6930	Amphipoda	Amphipodes	Amphipods	1	<0,1	1
5675	Amphitrite cirrata	Polychète	Terebellid worm	1	<0,1	1
8593	Amphiura sp.	Ophiures	Brittle star	6	0,1	521
4219	Anomia sp.	Anomies	Jingle shells	3	<0,1	31
7389	Anonyx sp.	Gammarides	Gammarids	3	<0,1	8
2218	Anthoptilum grandiflorum	Plume de mer	Sea pen	32	24,6	1762
5002	Aphroditella hastata	Souris de mer	Sea Mouse	15	0,8	33
6594	Arcoscalpellum michelottianum	Balane	Barnacle	4	0,1	4
8138	Argis dentata	Crevette verte	Arctic Argid	28	21,3	3875
3418	Arrhoges occidentalis	Pied-de-pélican	American Pelicanfoot	16	0,8	135
8742	Ascidia sp.	Ascidie	Sea squirts	71	5,9	1571
8680	Ascidiacea	Ascidies, tuniqués sessiles	Ascidians, Sessile Tunicates	19	<0,1	34
1120	Asconema foliatum	Éponge	Sponge	2	8,5	-
4231	Astarte borealis	Astarte	Boreal Astarte	1	<0,1	2
4227	<i>Astarte</i> sp.	Astartes	Astartes	26	0,1	73
8396	Asterias rubens	Astérie boréale commune	Purple Seastar	1	<0,1	1

Code STRAP	Nom scientifique	Nom français	Nom anglais	Occurrence	Poids (kg)	Nombre
8390	Asteroidea	Étoiles de mer	Sea Stars	1	<0,1	1
8113	Atlantopandalus propingvus	Crevette	Shrimp	16	0,5	125
2097	Atolla wyvillei	Méduse	Jellyfish	2	0,1	2
2085	Aurelia aurita	Méduse de lune	Moon Jelly	1	<0,1	1
5678	Axionice maculata	Polychète	Terebellid worm	1	<0,1	2
6595	Balanidae	Balanes	Barnacles	2	<0,1	14
4102	Bathyarca sp.	Bivalves	Bathyarks	1	<0,1	1
4904	Bathypolypus bairdii	Poulpe	North Atlantic Octopus	42	2,9	72
3995	Bivalvia	Bivalves	Bivalves .	4	<0,1	6
2158	Bolocera tuediae	Anémone de mer	Anemone	56	18,1	488
8793	Boltenia echinata	Cactus de mer	Cactus Sea Squirt	4	0,1	25
8792	Boltenia ovifera	Patate de mer	Sea Potato	15	9,9	124
3488	Boreotrophon sp.	Murex	Murex	1	<0,1	1
8798	Botrylloides sp.	Ascidie	Tunicate	6	0,1	-
5755	Brada inhabilis	Polychète	Flabelligerid worm	5	<0,1	5
8378	Brisaster fragilis	Oursin coeur	Heart Urchin	66	206,3	24925
2670	Bryozoa	Bryozoaires	Bryozoans	12	<0,1	-
3520	Buccinum cyaneum	Buccin bleu	Bluish Whelk	16	0,9	60
3523	Buccinum scalariforme	Buccin	Ladder Whelk	5	<0,1	7
3516	Buccinum sp.	Buccins	Whelk	6	0,3	26
3517	Buccinum undatum	Buccin commun	Waved Whelk	9	0,1	10
8173	Calocaris templemani	Crevette fouisseuse	Lobster Shrimp	5	<0,1	8
8206	Cancer irroratus	Crabe commun	Common Rock Crab	1	0,2	1
2684	Celleporina	Bryozoaire marin	Marine Bryozoan	1	<0,1	-
2685	Celleporina surcularis	Bryozoaire marin	Marine Bryozoan	3	<0,1	-
4545	Cephalopoda	Céphalopodes	Cephalopods	1	<0,1	1
8429	Ceramaster granularis	Étoile de mer	Sea Star	13	0,6	29
8213	Chionoecetes opilio	Crabe des neiges	Snow Crab	88	96,2	652
6593	Chirona hameri	Balane turbané	Turban Barnacle	4	0,6	24
4167	Chlamys islandica	Pétoncle d' Islande	Iceland Scallop	8	0,7	18
4351	Ciliatocardium ciliatum	Coque d'Islande	Iceland Cockle	5	0,5	20
3908	Colga villosa	Nudibranche	Nudibranch	3	<0,1	3
3577	Colus pubescens	Buccin	Hairy Whelk	5	0,1	5
3575	Colus sp.	Buccins	Whelks	1	<0,1	1
3576	Colus stimpsoni	Buccin	Whelk	1	<0,1	1
8447	Crossaster papposus	Soleil de mer épineux	Spiny Sun Star	17	0,5	58
3422	Cryptonatica affinis	Ļunaties	Arctic moonsnail	4	<0,1	4
8407	Ctenodiscus crispatus	Étoile de mer	Mud Star	82	49,8	12639

Code STRAP	Nom scientifique	Nom français	Nom anglais	Occurrence	Poids (kg)	Nombre
8312	Cucumaria frondosa	Concombre de mer	Orange Footed Sea Cucumber	3	0,2	3
4526	Cuspidaria glacialis	Mye	Gacial Dipperclam	18	0,1	99
4525	Cuspidaria sp.	Myes	Dipperclams	1	<0,1	3
2080	Cyanea capillata	Crinière de lion	Lion's Mane	72	94,5	118
4268	Cyclocardia borealis	Vénéricarde boréale	Northern Cyclocardia	2	<0,1	5
8761	Dendrodoa pulchella	Ascidie	Tunicate	3	<0,1	4
3895	Dendronotus niveus	Nudibranche orangé	Orange Nudibranch	2	<0,1	2
8408	Diplopteraster multipes	Étoile de mer	Sea Štar	1	<0,1	1
2191	Drifa glomerata	Corail mou	Soft coral	25	0,7	-
2183	Duva florida	Corail mou	Sea Cauliflower	8	0,1	17
8373	Echinarachnius parma	Dollar de sable	Common Sand Dollar	3	0,5	27
7383	Epimeria loricata	Gammaride	Gammarid	5	<0,1	24
2157	<i>Epizoanthus</i> sp.	Anémone de mer	Sea Anemone	20	<0,1	100
8075	Eualus fabricii	Bouc Arctique	Arctic Eualid	8	0,1	211
8081	Eualus gaimardii belcheri	Bouc	Circumpolar Eualid	1	<0,1	1
8080	Eualus gaimardii gaimardii	Bouc	Circumpolar Eualid	6	0,3	270
8077	Eualus macilentus	Bouc du Groenland	Greenland Shrimp	14	2,7	2351
8074	<i>Eualus</i> sp.	Bouc	Eualid	5	<0,1	-
8778	Eudistoma vitreum	Ascidie	Tunicate	12	0,2	71
5461	Euphrosine borealis	Polychète	Seaworm	1	<0,1	1
8033	Eusergestes arcticus	Crevette	Shrimp	4	<0,1	12
7195	Eusirus cuspidatus	Gammaride	Gammarid	2	<0,1	3
3437	Euspira pallida	Lunatie du Groenland	Pale Moonsnail	8	<0,1	13
2295	Fecampiidae	Vers flats	Flatworms	7	<0,1	6
2224	Flabellum alabastrum	Madrépore	Cup coral	5	0,2	25
2184	Gersemia rubiformis	Corail mou	Sea Strawberry	16	0,1	-
5902	Golfingia margaritacea	Sipunculide	Sipunculid	1	<0,1	1
4770	Gonatus fabricii	Encornet atlantoboréal	Boreoatlantic Armhook Squid	1	<0,1	1
8540	Gorgonocephalus sp.	Gorgonocéphales	Basket Stars	26	49,2	328
2217	Halipteris finmarchica	Plume de mer	Sea pen	16	5,4	353
5934	Hamingia arctica	Échiure	Echiurid	1	<0,1	2
8263	Heliometra glacialis	Lis de mer	Feather star	5	<0,1	22
1131	Hemigellius arcofer	Éponge	Sponge	1	0,6	-
3090	Hemithiris psittacea	Brachiopode	Lamp Shell	9	0,2	137
8483	<i>Henricia</i> sp.	Étoiles de mer	Sea Stars	36	0,3	105
4437	Hiatella arctica	Şaxicave arctique	Arctic Saxicave	3	<0,1	3
8431	Hippasteria phrygiana	Étoile de mer	Sea Star	32	14,4	55
8154	Homarus americanus	Homard américain	American Lobster	1	0,9	1

Code STRAP	Nom scientifique	Nom français	Nom anglais	Occurrence	Poids (kg)	Nombre
2150	Hormathia digitata	Anémone	Anemone	21	0,8	139
2167	Hormathia nodosa	Anémone noduleuse	Rugose Anemone	3	0,3	7
8217	Hyas araneus	Crabe lyre	Atlantic Lyre Crab	18	2,5	278
8218	Hyas coarctatus	Crabe lyre	Arctic Lyre Crab	32	9,2	1409
1341	Hydrozoa	Hydrozoaires	Hydrozoans	29	0,1	-
6977	Hyperia galba	Hypéride	Hyperiid	2	<0,1	3
4753	Illex illecebrosus	Encornet rouge nordique	Northern Shortfin Squid	108	580,1	2959
5003	Laetmonice filicornis	Polychète	Seaworm ·	33	0,2	145
8092	Lebbeus groenlandicus	Bouc	Spiny Lebbeid	12	2,4	608
8095	Lebbeus microceros	Bouc	Shrimp	2	<0,1	2
8093	Lebbeus polaris	Bouc	Polar Lebbeid	37	1,1	716
8091	Lebbeus sp.	Boucs	Lebbeids	2	<0,1	-
8513	Leptasterias groenlandica	Étoile de mer du Groenland	Greenland Sea Star	7	<0,1	13
8511	Leptasterias polaris	Étoile de mer polaire	Polar Sea Star	6	0,9	15
8521	Leptychaster arcticus	Stelléridé	Sea Star	2	<0,1	2
2207	Liponema multicorne	Anémone	Sea anemone	8	0,8	28
8196	Lithodes maja	Crabe épineux du Nord	Norway King Crab	50	36,2	104
2050	Lucernaria quadricornis	Lucernaire à quatres cornes	Horned Stalked Jellyfish	1	<0,1	1
4395	Macoma calcarea	Bivalve	Chalky Macoma	5	<0,1	41
5309	Maldane sarsi	Polychètes	Bamboo worm	1	<0,1	1
3219	Margarites costalis	Margarite rosé du Nord	Boreal Rosy Margarite	9	<0,1	25
3216	Margarites groenlandicus	Troque	Greenland marguerite	1	<0,1	2
4025	Megayoldia thraciaeformis	Bivalve	Broad Yoldia	29	4,2	845
8322	Molpadia oolitica	Holothurie	Sea Cucumber	1	<0,1	1
8164	Munidopsis curvirostra	Munidopsis curvirostra	Squat Lobster	11	<0,1	69
4128	Musculus discors	Moule lisse	Discordant mussel	1	<0,1	1
4126	Musculus sp.	Moules	Mussels	1	<0,1	1
4121	<i>Mytilus</i> sp.	Moules	Mussels	4	0,1	11
3000	Nemertea	Némerte	Ribbon Worm	4	<0,1	6
2219	Nephtheidae	Coraux mous	Soft corals	16	0,2	-
5113	<i>Nephtys</i> sp.	Polychète errante	Red-Lined Worm	3	<0,1	3
3566	Neptunea decemcostata	Neptunée à dix côtes	Wrinkle Whelk	1	<0,1	1
3565	<i>Neptunea</i> sp.	Buccins	Whelks	1	<0,1	1
4019	<i>Nuculana</i> sp.	Bivalves	Nutclams	2	<0,1	3
5961	<i>Nymphon</i> sp.	Araignées de mer	Sea Spiders	24	<0,1	85
8575	Ophiacantha bidentata	Ophiure épineuse	Brittle Star	9	<0,1	31
8583	Ophiopholis aculeata	Ophiure paquerette	Daisy Brittle Star	46	0,6	448
8585	Ophioscolex glacialis	Ophiure	Brittle star	21	<0,1	74

Code STRAP	Nom scientifique	Nom français	Nom anglais	Occurrence	Poids (kg)	Nombre
8552	Ophiura robusta	Ophiure	Brittle Star	1	<0,1	4
8553	Ophiura sarsii	Ophiure	Brittle Star	60	17,2	9113
8530	Ophiuroidea	Ophiures	Brittle Stars	5	<0,1	30
8178	<i>Pagurus</i> sp.	Bernard hermite droitier	Hermit Crab	12	0,1	27
8111	Pandalus borealis	Crevette nordique	Northern Shrimp	114	1721,8	287750
8112	Pandalus montagui	Crevette ésope	Striped Pink Shrimp	77	246,2	79600
8057	Pasiphaea multidentata	Sivade rose, Crevette blanche	Pink Glass Shrimp	67	53,4	16544
8781	Pelonaia corrugata	Ascidie	Tunicate	1	<0,1	1
2203	Pennatula aculeata	Plume de mer	Sea Pen	77	2,4	1142
2201	Pennatulacea	Plumes de mer	Sea Pens	2	<0,1	40
2096	Periphylla periphylla	Méduse à coronne	Crown jellyfish	36	62,2	51
2255	Pleurobrachia pileus	Groseille de mer ronde	Sea Gooseberry	15	0,1	97
3578	Plicifusus kroeyeri	Colus	Arctic Whelk	2	<0,1	2
8783	Polycarpa fibrosa	Ascidie	Tunicate	3	0,4	280
4950	Polychaeta	Polychètes	Polychaetes	49	0,6	235
1109	<i>Polymastia</i> sp.	Éponge	Sponge	15	0,4	35
5007	Polynoidae	Polychète errante	Fifteen-Scaled Worm	22	0,1	37
5264	Polyphysia crassa	Polychète	Sea worm	3	<0,1	3
8135	Pontophilus norvegicus	Crevette	Norwegian Shrimp	79	2,9	1708
8435	Poraniomorpha sp.	Étoile de mer	Sea star	5	0,2	6
1101	Porifera	Éponges	Sponges	86	23,4	-
2573	Priapulus caudatus	Priapulide	Priapulid	2	<0,1	2
8433	Pseudarchaster parelii	Étoile de mer	Sea Star	14	0,3	29
5935	Pseudobonellia iraidii	Bonellie	Spoon Worm	1	<0,1	1
8520	Psilaster andromeda	Étoile de mer	Sea Star	13	6,1	1136
8294	Psolus phantapus	Holothurie	Sea Cucumber	2	<0,1	3
8410	Pteraster militaris	Étoile de mer	Sea Star	7	0,1	13
8412	Pteraster obscurus	Étoile de mer	Sea Star	1	<0,1	1
8411	Pteraster pulvillus	Étoile de mer	Sea Star	8	<0,1	14
8409	<i>Pteraster</i> sp.	Étoiles de mer	Sea stars	1	0,1	18
2210	Ptilella grandis	Plume de mer	Sea Pen	27	75,8	2510
2153	Ptychodactis patula	Anémone beige évasée	Anemone	2	<0,1	2
1353	Ptychogena lactea	Méduse	Jellyfish	12	1,1	327
1107	Radiella hemisphaerica	Éponge	Sponge	13	1,1	208
7211	Rhachotropis aculeata	Gammaride	Gammarid	7	<0,1	23
1380	Rhodaliidae	Siphonophore benthique	Benthic siphonophore	9	0,2	44
4557	Rossia sp.	Sépioles	Bobtails	35	0,5	69
8129	Sabinea sarsii	Crevette	Sars Shrimp	5	0,1	105

Code STRAP	Nom scientifique	Nom français	Nom anglais	Occurrence	Poids (kg)	Nombre
8128	Sabinea septemcarinata	Crevette	Sevenline Shrimp	15	0,4	156
8127	Sabinea sp.	Crevette	Shrimp	2	<0,1	13
3491	Scabrotrophon fabricii	Murex	Murex	4	<0,1	5
3715	Scaphander punctostriatus	Céphalaspide	Giant Canoe Bubble	23	0,2	80
8119	Sclerocrangon boreas	Crevette de roche	Scultured Shrimp	16	21,7	2234
2040	Scyphozoa	Scyphozoaires	Scyphozoans	7	0,3	44
2679	Securiflustra securifrons	Bryozoaires marins	Marine bryozoans	3	<0,1	-
8035	Sergia robusta	Sergistidé écarlate	Scarlet Sergestid	1	<0,1	1
4191	Similipecten greenlandicus	Pétoncle	Greenland Glass-Scallop	2	<0,1	2
8445	Solaster endeca	Soleil de mer pourpre	Purple Sunstar	6	0,6	8
8087	Spirontocaris liljeborgii	Bouc épineux	Friendly Blade Shrimp	29	0,2	135
8084	Spirontocaris sp.	Bouc	Blade Shrimp	10	0,1	-
8085	Spirontocaris spinus	Bouc perroquet	Parrot Shrimp	13	1,2	573
7750	Stegocephalus inflatus	Gammaride	Gammarid	3	<0,1	3
8570	Stegophiura nodosa	Ophiure	Brittle Star	1	<0,1	1
8515	Stephanasterias albula	Étoile de mer	Sea star	5	<0,1	12
2159	Stephanauge nexilis	Anémone de mer	Sea anemone	13	1,4	146
2173	Stomphia coccinea	Anémone marbrée	Anemone	24	0,7	66
8363	Strongylocentrotus sp.	Oursins	Sea Urchins	38	14,2	744
1112	Stylocordyla borealis	Éponge	Sponge	15	<0,1	191
6791	Syscenus infelix	Isopode	Isopod	58	0,8	548
1108	Tentorium semisuberites	Éponge	Sponge	11	<0,1	30
3101	Terebratulina septentrionalis	Térébratule du Nord	Northern Lamp Shell	11	<0,1	34
6972	Themisto libellula	Hypéride	Hyperiid	8	<0,1	164
1114	Thenea muricata	Éponge	Sponge	2	0,2	9
1357	Thuiaria thuja	Hydrozoaire	Bottlebrush Hydroid	4	<0,1	7
2152	Urticina crassicornis	Anémone de mer	Sea Anemone	1	<0,1	2
3452	Velutinidae	Gastéropode	Snail	1	<0,1	1
1127	Weberella bursa	Éponge	Sponge	3	1,6	10
4074	Yoldia sp.	Bivalves	Bivalves	1	<0,1	1
	Total	Invertebrés	Invertebrates		3 765	471 015

Autres

Code STRAP	Nom scientifique	Nom français	Nom anglais	Occurrence	Poids (kg)	Nombre
9970	-	Capsule de raies	Skates Eggs	1	<0,1	_
9965	-	Capsule de raie lisse	Smooth Skate egg	2	<0,1	3
9966	-	Capsule de raie épineuse	Thorny Skate egg	16	0,8	28

Annexe 3. Nombre de spécimens mesurés et pesés et statistiques descriptives de la longueur en 2020. Les codes taxonomiques (STRAP) suivent Miller et Chabot (2014), avec les mises à jour des noms scientifiques par le registre mondial des espèces marines (<u>WoRMS</u> 2018).

Vertébrés

Code	Name and Additional	Nombre	mesuré		Loi	ngueur (cı	n)	
STRAP	Nom scientifique	Longueur	Poids	Min	P1*	Médiane	P99*	Max
90	Amblyraja radiata	1090	405	10,0	11,4	35,4	63,4	78,2
696	Ammodytes sp.	7	6	8,2	8,2	15,0	20,2	20,2
700	Anarhichas lupus	199	79	9,8	9,9	25,4	75,3	77,0
701	Anarhichas minor	7	7	29,4	29,4	81,0	92,0	92,0
718	Anisarchus medius	17	5	11,3	11,3	13,1	15,8	15,8
320	Arctozenus risso	397	134	17,6	18,5	23,3	27,5	28,1
193	Argentina silus	169	62	7,6	7,6	17,0	33,5	37,6
811	Artediellus atlanticus	112	32	5,1	5,2	8,1	12,1	13,4
810	Artediellus sp.	48	18	4,4	4,4	7,1	9,9	9,9
812	Artediellus uncinatus	50	33	5,5	5,5	7,0	8,5	8,5
838	Aspidophoroides monopterygius	101	26	6,7	7,3	12,7	15,4	15,4
837	Aspidophoroides olrikii	3	3	6,0	6,0	7,1	8,1	8,1
102	Bathyraja spinicauda	1	1	123,0	123,0	123,0	123,0	123,0
451	Boreogadus saida	198	71	4,6	4,8	12,0	17,3	18,7
865	Careproctus reinhardti	9	6	7,5	7,5	11,1	15,4	15,4
27	Centroscyllium fabricii	403	116	14,3	14,8	44,1	67,2	73,8
150	Clupea harengus	734	94	14,0	17,1	26,3	37,4	40,1
721	Cryptacanthodes maculatus	12	4	22,4	22,4	26,0	63,8	63,8
982	Cryptopsaras couesii	1	1	20,9	20,9	20,9	20,9	20,9
849	Cyclopterus lumpus	65	60	8,6	8,6	24,4	41,9	41,9
461	Enchelyopus cimbrius	1033	174	5,6	11,7	19,5	27,5	30,0
711	Eumesogrammus praecisus	169	31	7,6	10,0	14,3	22,4	23,0
847	Eumicrotremus terraenovae	206	20	2,7	2,9	6,0	13,1	70,8
438	Gadus morhua	4515	1801	4,6	14,9	28,2	62,7	106,0
439	Gadus ogac	6	6	24,3	24,3	33,2	36,2	36,2
426	Gasterosteus aculeatus aculeatus	23	9	5,4	5,4	6,2	6,9	6,9
890	Glyptocephalus cynoglossus	2727	1676	6,3	9,3	28,1	42,8	48,9
205	Gonostomatidae Gymnelus viridis	2 10	2	13,1	13,1	13,5	13,9	13,9
746	Gymnocanthus tricuspis		9	8,5	8,5	14,1	18,0	18,0
823 809	Hemitripterus americanus	109 1	42	9,2	9,5	15,9	24,8	25,2
809 889	Hippoglossoides platessoides	5281	0 2203	39,4	39,4	39,4	39,4	39,4
893		66	65	6,8	10,1	19,3	42,7	55,3
832	Hippoglossus hippoglossus Icelus spatula	29	15	33,1	33,1	87,6	154,0 12,1	154,0 12,1
836	Leptagonus decagonus	29 267	51	4,5	4,5	6,7 18,0		23,7
717	Leptoclinus maculatus	288	70	6,7	7,1		21,9	
891	Limanda ferruginea	183	66	8,0	8,5	12,5	18,3	19,3
868	Limanda remuginea Liparis bathyarcticus	44	27	12,9 3,0	17,5 3,0	25,2 11,5	37,5 26,5	37,6 26,5
966	Lophius americanus	13	13	6,0	6,0	65,0	103,2	103,2
716	Lumpenus lampretaeformis	200	57	15,4	16,3	28,3	40,6	42,1
710 750	Lycenchelys paxillus						~~ ~	22,2
750 752	Lycenchelys verrillii	1 1	1 1	22,2 10,8	22,2 10,8	22,2 10,8	22,2 10,8	10,8
727	Lycodes esmarkii	7	7	18,7	18,7	26,2	45,1	45,1
728	Lycodes lavalaei	56	37	10,7	10,7	25,2	45,1 45,4	45,1
726	Lycodes sp.	4	4	15,2	15,2	17,6	26,2	26,2
734	Lycodes terraenovae	2	1	24,3	24,3	29,9	35,4	35,4
734	Lycodes vahlii	122	47	2 4 ,3 10,5	11,1	29,9 17,9	39,3	40,9
91	Malacoraja senta	264	107	8,5	9,3	17,9	58,9	59,8
187	Mallotus villosus	1034	129	8,3	9,3 9,4	13,9	16,3	17,1
745	Melanostigma atlanticum	209	53	5,0	6,2	10,6	13,6	14,2
449	Meruccius bilinearis	98	94	13,0	13,0	27,1	39,9	39,9
271	Myctophiformes	7	4	9,0	9,0	14,1	16,1	16,1
818	Myoxocephalus aenaeus	6	6	13,6	13,6	20,4	23,4	23,4
310	my skotopharae denada	- 0	<u> </u>	10,0	10,0	۷٠,٦	<u> ۲</u> ۵,7	۷٠,٦

Code STRAP	Nom scientifique	Nombre r	Longueur (cm)					
		Longueur	Poids	Min	P1*	Médiane	P99*	Max
820	Myoxocephalus octodecemspinosus	2	2	19,8	19,8	22,3	24,7	24,7
819	Myoxocephalus scorpius	145	72	4,2	4,3	27,7	39,1	40,5
12	Myxine glutinosa	1162	252	20,9	23,6	36,5	47,8	54,5
368	Nemichthys scolopaceus	2	2	45,3	45,3	68,6	91,8	91,8
478	Nezumia bairdii	1517	209	7,9	9,4	23,4	31,7	35,0
275	Notoscopelus kroyeri	12	12	11,5	11,5	15,1	16,4	16,4
874	Paraliparis calidus	10	7	7,1	7,1	9,8	11,1	11,1
856	Paraliparis copei copei	14	14	6,1	6,1	10,8	13,7	13,7
15	Petromyzon marinus	1	1	32,4	32,4	32,4	32,4	32,4
444	Phycis chesteri	461	286	14,8	16,9	26,3	37,9	44,2
443	Pollachius virens	1	1	75,1	75,1	75,1	75,1	75,1
244	Polymetme thaeocoryla	1	0	10,9	10,9	10,9	10,9	10,9
94	Rajella fyllae	1	1	9,6	9,6	9,6	9,6	9,6
892	Reinhardtius hippoglossoides	4645	2103	12,0	15,2	27,5	50,4	76,0
572	Scomber scombrus	268	85	6,9	7,3	11,1	32,2	36,8
398	Scomberesox saurus saurus	7	7	26,9	26,9	36,5	38,8	38,8
792	Sebastes spp.	13179	4372	3.1	8.1	22.5	35.5	47.5
24	Squalus acanthias	3	3	67,3	67,3	71,6	79,8	79,8
220	Sternoptychidae	1	1	4,7	4,7	4,7	4,7	4,7
373	Synaphobranchus kaupii	2	2	45,4	45,4	45,4	45,4	45,4
814	Triglops murrayi	571	86	5,2	7,0	11,6	16,1	19,3
447	Urophycis tenuis	508	478	13,8	21,9	36,9	65,6	88,6

Code STRAP	Nom scientifique	Nombre mesuré		Longueur (cm)				
		Longueur	Poids	Min	P1*	Médiane	P99*	Max
8138	Argis dentata	443	0	0,7	0,9	1,7	2,2	2,3
8113	Atlantopandalus propinqvus	83	0	1,2	1,2	1,8	2,3	2,3
8206	Cancer irroratus	1	0	11,1	11,1	11,1	11,1	11,1
8213	Chionoecetes opilio	609	20	0,7	1,0	4,6	12,5	13,3
8075	Eualus fabricii	99	0	0,5	0,5	0,8	1,1	1,1
8081	Eualus gaimardii belcheri	1	0	1,1	1,1	1,1	1,1	1,1
8080	Eualus gaimardii gaimardii	35	0	0,6	0,6	1,0	1,2	1,2
8077	Eualus macilentus	140	0	0,7	0,7	1,1	1,3	1,4
8074	Eualus sp.	1	0	0,9	0,9	0,9	0,9	0,9
8033	Eusergestes arcticus	6	0	1,6	1,6	1,7	1,9	1,9
4770	Gonatus fabricii	0	1	_	-	-	-	-
8154	Homarus americanus	0	1	_	-	-	-	-
8217	Hyas araneus	192	1	0,9	0,9	2,0	6,3	7,2
8218	Hyas coarctatus	401	7	0,8	0,9	1,9	4,9	6,7
4753	Illex illecebrosus	1834	358	10,6	14,7	21,0	24,7	27,2
8092	Lebbeus groenlandicus	162	0	0,5	0,8	1,5	1,8	1,9
8095	Lebbeus microceros	2	0	0,9	0,9	1,0	1,1	1,1
8093	Lebbeus polaris	214	0	0,6	0,7	1,0	1,4	1,5
8196	Lithodes maja	100	6	1,1	1,2	7,6	11,9	12,2
8111	Pandalus borealis	17519	28	0,6	1,0	2,1	2,8	3,1
8112	Pandalus montagui	1991	0	0,6	0,8	1,3	2,1	2,2
8057	Pasiphaea multidentata	2284	0	0,7	1,5	2,5	3,1	3,3
8135	Pontophilus norvegicus	951	0	0,7	0,8	1,2	1,7	1,8
8129	Sabinea sarsii	60	0	0,6	0,6	1,0	1,5	1,5
8128	Sabinea septemcarinata	57	0	0,8	0,8	1,2	1,7	1,7
8127	Sabinea sp.	1	0	1,4	1,4	1,4	1,4	1,4
8119	Sclerocrangon boreas	445	0	1,0	1,1	1,7	2,7	2,9
8035	Sergia robusta	1	0	2,2	2,2	2,2	2,2	2,2
8087	Spirontocaris liljeborgii	52	0	0,5	0,5	1,1	1,4	1,4
8084	Spirontocaris sp.	2	0	0,6	0,6	0,7	0,8	0,8
8085	Spirontocaris spinus	123	0	0,5	0,6	1,2	1,6	1,6

^{*} P1 : 1er centile P99 : 99e centile