Fisheries and Oceans Canada

Pêches et Océans Canada

Sciences des écosystèmes et des océans

Canadian Science Advisory Secretariat (CSAS)

Research Document 2021/054

Quebec Region

Preliminary results from the ecosystemic survey in August 2020 in the Estuary and northern Gulf of St. Lawrence

Hugo Bourdages, Claude Brassard, Mathieu Desgagnés, Peter Galbraith, Johanne Gauthier, Laurie Isabel and Caroline Senay

Fisheries and Oceans Canada
Maurice Lamontagne Institute 850 Route de la Mer
Mont-Joli, Quebec G5H $3 Z 4$

Foreword

This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Published by:
Fisheries and Oceans Canada
Canadian Science Advisory Secretariat
200 Kent Street
Ottawa ON K1A 0E6
http://www.dfo-mpo.gc.ca/csas-sccs/
csas-sccs@dfo-mpo.gc.ca

© Her Majesty the Queen in Right of Canada, 2021
ISSN 1919-5044
ISBN 978-0-660-39991-1 Cat. No. Fs70-5/2021-054E-PDF

Correct citation for this publication:

Bourdages, H., Brassard, C., Desgagnés, M., Galbraith, P., Gauthier, J., Isabel, L. and Senay, C. 2021. Preliminary results from the ecosystemic survey in August 2020 in the Estuary and northern Gulf of St. Lawrence. DFO Can. Sci. Advis. Sec. Res. Doc. 2021/054. iv +93 p .

Aussi disponible en français:

Bourdages, H., Brassard, C., Desgagnés, M., Galbraith, P., Gauthier, J., Isabel, L. et Senay, C. 2021. Résultats préliminaires du relevé écosystémique d'août 2020 dans l'estuaire et le nord du golfe du Saint-Laurent. Secr. can. de consult. sci. du MPO. Doc. de rech. 2021/054. $i v+94 p$.

TABLE OF CONTENTS

ABSTRACT iv
INTRODUCTION 1
SURVEY DESCRIPTION 2
DATA ANALYSIS 3
RESULTS 4
BIODIVERSITY 5
Fish 5
Invertebrates 6
PHYSICAL OCEANOGRAPHIC CONDITIONS 6
ACKNOWLEDGEMENTS 7
REFERENCES CITED 7
FIGURES 9
APPENDICES 82

Abstract

Fisheries and Oceans Canada conducts an annual multidisciplinary survey in the Estuary and northern Gulf of St. Lawrence. The objectives of this survey are varied; assess the biodiversity of species found near the bottom; estimate the abundance of groundfish and invertebrates; assess physical and biological (phytoplankton and zooplankton) oceanographic conditions; monitor the pelagic ecosystem; and collect samples for various research projects. In 2020, the survey was conducted between August 12 and September 5 on board the CCGS Teleost. Due to the context of the Covid-19 pandemic, the number of days at sea and the number of scientists on board the ship had to be reduced. The survey successfully carried out 147 trawl tows as well as 66 CTD water column casts, and 34 zooplankton samples.

This report presents the results of the 147 tows. In total, 78 fish taxa and 206 invertebrate taxa were identified during the mission. Historical perspectives (catch rates, spatial distribution and length frequency) are presented for 25 taxa. These commercial fishery-independent data will be used in several stock assessments including cod (Gadus morhua), redfish (Sebastes spp.), Greenland halibut (Reinhardtius hippoglossoides), Atlantic halibut (Hippoglossus hippoglossus), witch flounder (Glyptocephalus cynoglossus) and northern shrimp (Pandalus borealis).

A preliminary analysis of water temperature data collected in 2020 shows that conditions have warmed at 150 m and deeper, reaching new records since 1915 at 200 and 300 m . The cold intermediate layer was warmer in 2020 than in 2019 except in the Estuary where it remained stable. Surface waters were also warmer than normal, by $1.5^{\circ} \mathrm{C}$, in July-August.

INTRODUCTION

Fisheries and Oceans Canada conducts an annual bottom trawl survey in the Estuary and the northern Gulf of St. Lawrence. This is a multi-species, commercial fishery-independent survey. Its purpose is to assess the ecosystem with consistent and standardized protocols. This survey examines, among other things, spatial and temporal changes in the distribution and relative abundance of fish and their assemblages. It also aims to gather information on the biological parameters of commercial species.

The main objectives are to:

1. assess groundfish and Northern Shrimp population abundance and condition;
2. assess environmental conditions;
3. conduct a biodiversity inventory of benthic and demersal megafauna;
4. assess phytoplankton and mesozooplankton abundance;
5. monitor the pelagic ecosystem;
6. conduct an inventory of marine mammals (cancelled in 2020);
7. conduct an inventory of seabirds (cancelled in 2019 and 2020);
8. collect samples for various research projects.

In 2020, the survey was conducted between August 12 and September 5 onboard the CCGS Teleost (mission IML-2020-012). This mission took place in the context of the Covid-19 pandemic. Sanitary measures had to be put in place so that the mission could be carried out.

First, the number of days at sea has been reduced from 33 to 25 days so that the science crew boarding coincides with the crew change of the CCGS Teleost. So we were going to create a "bubble" with the two crews throughout the duration of the mission. It was therefore not possible to disembark or make crew changes. Normally, at mid-survey there is a change of science team. In the end, following the reduction in the duration of the mission, 147 fishing stations were successfully carried out, while on average around 190 stations are made.

The science crew has also been reduced from 15 to 9 scientists. Observers for marine mammals and seabirds did not participate to the survey, so the objectives of inventorying these species could not be achieved. The number of oceanographers has been reduced from 2 to 1. There is normally an oceanographer on duty at all times. With this reduction, oceanographic activities had to be reduced and focused on daylight hours. In the end, the number of vertical water column profiles (CTDs) was reduced by approximately 33% and the numbers of zooplankton samples were reduced by more than 50%. The number of scientists on the fishing team has been reduced by 3 people. This reduction has resulted in a review of the fish and invertebrate sampling protocols. The number of biological characteristics measured on fish and invertebrates has been reduced, for example, there have been no individual weights collected for non-commercial species, no individual length measurements of sea pens, otoliths of Greenland halibut and witch flounder were not collected. In addition, the number of protocols for collecting samples for DFO and academia research projects has been reduced. Finally, the shrimp samples were not measured during the mission but were brought back to the laboratory and were analyzed in the fall.

SURVEY DESCRIPTION

The survey covers the waters of the Laurentian Channel and north of it, from the Lower Estuary in the west to the Strait of Belle Isle and the Cabot Strait in the east, namely, the Northwest Atlantic Fisheries Organization (NAFO) divisions 4R, 4S and the northern part of 4T (Figure 1). Since 2008, the coverage of division 4T has been increased in the upstream part of the Lower Estuary in order to sample the depths between 37 and 183 m . The study area is $118,587 \mathrm{~km}^{2}$.

A stratified random sampling strategy was used for this survey. This technique consists in subdividing the study area into more homogeneous strata. The area was divided into 54 strata, which were divided based on depth, NAFO division and substrate type (Figure 2). A total of 200 trawl stations was initially allocated in the study area, which is a number proportional to the stratum surface, with a minimum of two stations per stratum. The tow positions were chosen randomly within each stratum. Since 2014, a new rule was added to respect a minimum distance of 10 km between stations in the same stratum.

The fishing gear used on the CCGS Teleost is a four-sided Campelen 1800 shrimp trawl equipped with a Rockhopper footgear ("bicycle") (McCallum and Walsh 2002). The trawl lengthening and codend are equipped with a $12.7-\mathrm{mm}$ knotless nylon lining. Standard trawling tows last 15 minutes, starting from the time the trawl touched the sea floor as determined by the Scanmar ${ }^{\top M}$ hydroacoustic system. Towing speed is 3 knots. Information on trawl geometry (horizontal spread of the doors and wings, vertical opening of the trawl, depth) was recorded for each tow using Scanmar ${ }^{\top \mathrm{M}}$ hydroacoustic sensors mounted on the fishing gear.

In 2020, 147 fishing stations were successfully completed (52 in 4R, 62 in 4S and 33 in 4T), which represent 40 stations less than what has been achieved on average since 1990 (Annex 1). The decrease in the number of stations completed was caused by a shortening in the duration of the survey by 8 days. A lot of effort was made to cover the entire study area. Eleven strata were not sampled with a minimum of two stations (Figure 3, Appendix 1). These partially or uncovered strata were distributed throughout the study area and not located in a particular sector.

For each fishing tow, the catch was sorted and weighed by taxa; biological data were then collected on a sub-sample. For fish, crab and squid, size and weight were gathered by individual. For some species, sex, maturity, and the weight of certain organs (stomach, liver, gonads) were also evaluated. Count of soft rays of the anal fin for redfish was conducted to separate the two species. Otoliths were saved for cod and Atlantic halibut to conduct ageing analysis. A sample of approximately 2 kg of shrimps was frozen for laboratory analysis at the Maurice Lamontagne Institute where the sample was sorted and weighed by species and by stage of maturity for the northern shrimp. The shrimps were measured individually. The other invertebrates were counted (no individual measurements) and photographed. The photos are archived in a photo catalogue with associated keywords (taxonomic identification, station description, date, etc.).
Since 2001, digital photos have supported an increased effort in the identification of species. These additional efforts have targeted fish since 2004 (Dutil et al. 2009) and invertebrates since 2005 (Nozères et al. 2014). An identification guide for marine fishes in the estuary and northern Gulf of St. Lawrence (Nozères et al. 2010), a shrimp atlas (Savard and Nozères 2012) and a guide for invertebrates (Nozères and Archambault 2014) were used during the mission to identify most taxa. The taxon codes and their names follow the list of Miller and Chabot (2014), with annual updates according to the World Register of Marine Species (WoRMS).
Additional samples were taken for various scientific projects:
9. Water samples for genetic analysis of environmental DNA;
10. Samples of herring, capelin and mackerel for maturity determination;
11. Beluga and marine mammal preys (several fish species and northern shrimp) in order to follow the evolution of isotopic signatures of key species in the St. Lawrence ecosystem;
12. Stomachs of several fish species in order to describe their diet;
13. Samples of small demersal fish;
14. Blood samples from Atlantic halibut and Greenland halibut to characterize the state of health of the ecosystem from molecular markers;
15. Small redfish (< 11 cm) for genetic identification of the species (Sebastes fasciatus and S. mentella) and the population of new cohorts observed in the Gulf;
16. Monitoring redfish growth from the 2011 cohort;
17. Atlantic halibut, Greenland halibut and thorny skate gonad samples to determine stage of maturity;
18. Squid samples to study its trophic role in the ecosystem;
19. Sponges (Porifera) for identifications;

Oceanographic conditions such as temperature, conductivity (salinity), turbidity, dissolved oxygen, luminosity and fluorescence were sampled during this survey. A total of 55 vertical profiles of the water column were done at the fishing stations and 11 more on extra stations that fall under the Atlantic Zone Monitoring Program (AZMP). The various equipment, CTD SeaBird 911Plus ${ }^{\text {TM }}$, dissolved oxygen sensor (SBE 43), photometer (Biospherical) and fluorometer (EcoFLNTU Wetlabs) were coupled to the rosette of Niskin bottles. For each profile obtained using the rosette, water samples were also taken at several depths to determine their salinity, pH , dissolved oxygen concentration (Winkler titration), nutritive salt content (nitrite, nitrate, phosphate, silicate) and chlorophyll content. In addition, a CTD SBE 19P/us ${ }^{\text {TM }}$ device (temperature and salinity), coupled to a dissolved oxygen sensor (SBE 63), was also installed on the back of the trawl, thereby allowing oceanographic data to be collected for the 147 fishing tows.

To study of zooplankton distribution and biomass for the study area consisted of vertical tows from the sea floor to the surface using a zooplankton net ($202 \mu \mathrm{~m}$) at 34 stations.
Water column hydroacoustic data at four frequencies (38, 70, 120 and 200 kHz) were recorded using a SIMRAD ${ }^{T M}$ EK60 echosounder during the entirety of the mission. These data will be used to develop a three-dimensional database to map the pelagic ecosystem.

DATA ANALYSIS

The analysis of 2020 abundance and biomass data was integrated into the combined annual summer survey series initiated in 1990. These combined series were developed following a comparative study between the two vessel-gear tandems (1990-2005: CCGS Alfred Needler URI 81'/114' trawl; 2004-2020: CCGS Teleost - Campelen 1800 trawl) to establish specific correction factors for about twenty species caught (Bourdages et al. 2007). Results from this study led to an adjustment of Needler catches into Teleost equivalent catches.

Given that over the years, some strata were not sampled by a minimum of two successful tows (Appendix 1), a multiplicative model was used to estimate their catch rate indexes in number and weight. This model provided a predicted value for strata with less than two tows with the data of the current year and the previous three years. Thus, indicators presented for the series are representative of a standard total area of $116115 \mathrm{~km}^{2}$, the sum of the area of all strata. In
addition, reference points were also added to the catch rate figures. The solid line represents the 1990-2019 period average (long-term average) and the two dotted lines associated to the mean ± 0.5 standard deviation corresponding respectively to the upper and lower reference limits.
Note that the distinction between the two redfish species, S. fasciatus and S. mentella, is based on the analysis of the soft anal fin rays count and the depth of capture of individuals (H. Bourdages, DFO Mont-Joli, pers. comm.).
Length frequency distributions are presented in two different forms. The first figure shows the distribution for the last two years of the series plus the average distribution for the 1990-2019 period (long-term average distribution). Frequency values are expressed as the average number of individuals caught per tow in increment of 1 cm , except for the northern shrimp $(0.5 \mathrm{~mm})$ and Atlantic halibut (3 cm). The second figure represents the length distributions in length mean per class length for each year of the historical surveys series (1990 to 2020).
The geographical distribution of catches by weight per tow (kg/15 minutes tow, except for sea pens number/15 minutes tow) was made for periods of four or five years. The interpolation of CPUE (catch per unit of effort) was performed on a grid covering the study area using a ponderation inversely proportional to the distance (R version 2.13.0, Rgeos library; R Development Core Team 2011). The isoline conto urs were then plotted for four CPUE levels which approximate the $20^{\text {th }}, 40^{\text {th }}, 60^{\text {th }}$ and $80^{\text {th }}$ percentiles of the non-zero values. The catch rate distribution for the 2019 survey only is also presented in a bubbles type map.

The preliminary results for the abundance and biomass indices, the catch rate distribution maps, and the size frequency distributions for about 25 taxa commercially fished are presented at figures 5 to 62 . These results are preliminary and must be considered as such until validations and laboratory analyses have been completed.

The distribution of total species richness and species richness of 3 taxonomic groupings is presented in figures 63 to 66 . Species richness is expressed as the number of species collected, total or per grouping, at each station in 2020. Taxonomic groupings were made to observe specifically the distribution of species richness for species with similar ecological characteristics: fishes, shrimp and invertebrates (excluding shrimp).

The average weight per tow for 57 taxa of fish and 99 taxa of invertebrates is given in figures 67 and 68. In these figures, a color code is used to represent the difference between the CPUE in a given year and the average CPUE in the time series divided by the standard deviation of this average for each taxon.
The catches per tow for fish taxa are available on the St. Lawrence Global Observatory (SLGO).
Finally, Appendix 2 provides a list of all taxa, vertebrates and invertebrates, caught among the 147 successful tows achieved during the 2020 survey. The occurrence, or the number of tows where the species was identified, as well as the total catch, by weight and numbers, are also presented. The number of specimens measured per taxon and some descriptive statistics for the length parameter are also presented in Appendix 3.

RESULTS

Warning: the bottom trawl survey is designed to sample demersal species. However, catches may also include pelagic species and species associated with coastal or rocky habitats which are more difficult to trawl. Although these taxa are found in catches, they have a low catchability by trawl net. Some caution is required when interpreting the results obtained for these taxa.

BIODIVERSITY

In total, 78 fish taxa and 206 invertebrate taxa were identified in 2020 (Appendix 2).
In 2020, the biomass of the two redfish species combined accounted for 90% of the biomass of all captured organisms, while it averaged 15\% between 1995 and 2012 (Figure 4). The Atlantic redfish (Sebastes mentella) constituted, alone, more than 85% of the catches made during the survey.

Species richness is particularly high near the coasts such as north of Anticosti, the Strait of Belle Isle and southwest of Newfoundland (Figure 63). The Strait of Belle-Isle is particularly diverse in terms of invertebrates (Figure 65) and shrimps (Figure 66), many species of which cannot be found anywhere else. This high richness is imputable to the Labrador Current entering the Gulf by the Strait of Belle Isle which allows the establishment of arctic species in this area. Similarly, areas rich in fish species are seen at the Cabot Strait at great depths (Figure 64). At these stations, the presence of rare species coming from the depths of the Atlantic can be observed.

Fish

The abundance and the biomass of the black dogfish (Centroscyllium fabricii) have been above average for the past nine years (Figures 5 to 7).

Capelin (Mallotus villosus) was mainly distributed from the Estuary to Anticosti Island during the 2020 survey. We note its almost absence in the catches along the North Shore east of Havre-Saint-Pierre and in the Strait of Belle Isle whereas capelin is normally a regular catch in these regions (Figure 8).
For the past thirteen years, abundance and biomass of Atlantic halibut (Hippoglossus hippoglossus) has remained above the series average (Figures 9 to 11).

The abundance and biomass of Greenland halibut (Reinhardtius hippoglossoides) are increasing from 2019. In 2020, abundance is slightly above average and biomass is equal to average. The size frequency distributions indicate that the 2019 cohort (16 cm mode) is below the series mean in abundance while the abundance of fish 22 cm to 39 cm is above this mean (Figures 12 to 14).
The lumpfish (Cyclopterus lumpus) was a rare but regular catch in this survey. Abundance and biomass have been above the series average since many years (Figures 15 to 17).
Atlantic herring (Clupea harengus) was a frequent catch in this survey and was distributed throughout the northern Gulf of St. Lawrence with the exception of the depths of the Laurentian Channel. The highest catches are observed along the west coast of Newfoundland (Figure 18).
Atlantic wolffish (Anarhichas lupus) and spotted wolffish (Anarhichas minor) were caught on 24 and 6 occasions, respectively in 2020. These catches were mainly distributed in the northern eastern part of the Gulf of St. Lawrence (Figures 19 and 20).
Since 2007, silver hake (Merluccius bilinearis) has been more common in the northern Gulf, before it was only occasionally observed (Figures 21 to 23).
The abundance and biomass of the longfin hake (Phycis chesteri) are near the average in 2020 (Figures 24 to 26).
The abundance and biomass of white hake (Urophycis tenuis) has been above or equal the average since eight years (Figures 27 to 29).

In 2020, the abundance and biomass indices of cod (Gadus morhua) increased, the abundance index is above average while the biomass index is similar to the average of the series. A length frequency mode is observed from 22 to 29 cm (juvenile cod). The geographic distribution of catches in 2020 is comparable to previous years (Figures 30 to 32).
American plaice (Hippoglossoides platessoides) was frequently caught and its abundance is stable and above average (Figures 33 to 35).
Witch flounder (Glyptocephalus cynoglossus) was frequently caught. The strong cohorts from 2007 and 2009 have contributed to the increase in biomass; these fish are now larger than 30 cm (Figures 36 to 38).
Thorny skate (Amblyraja radiata) and smooth skate (Malacoraja senta) were both very frequently caught. The abundance of thorny skate is increasing and decreasing for smooth skate (Figures 39 to 44).

Arctic cod (Boreogadus saida) is a small cold water demersal fish. Catches in recent years have been made in the Estuary, along the North Shore and on the west coast of Newfoundland (Figures 45 to 46).

Acadian redfish abundance (Sebastes fasciatus) is near the average of the time series, while biomass is above the latter (Figures 47 to 49).
Three strong cohorts (2011, 2012 and 2013) of Atlantic redfish (Sebastes mentella) have contributed to the increase in abundance and biomass since 2013. The 2011 cohort, which is the most abundant, now has a modal size of 23 cm . These redfish are distributed throughout the channels of the northern Gulf of St. Lawrence (Figures 50 to 52).

Invertebrates

The three most abundant shrimp species in the deep waters of the northern Gulf of St. Lawrence, namely northern shrimp (Pandalus borealis), striped pink shrimp (Pandalus montagui) and pink glass shrimp (Pasiphaea multidentata), have been declining for several years (Figure 68).
The abundance and biomass of the northern shrimp (Pandalus borealis) has declined significantly since 2003 to reach the lowest values in the historical series since 2017 (Figures 53 to 55).
Northern shortfin squid (IIlex illecebrosus), a seasonal pelagic species from the south, has been present in over 50% of the tows since 2017 in all areas except the estuary and Strait of Belle Isle. This strong squid presence had not been observed for several years (Figures 59 to 61).

For the second year in a row, a lobster (Homarus americanus) was caught in the study area at a depth of over 300 m between the northern Gaspé Peninsula and Anticosti Island. No lobster was caught during this survey prior to 2019 (Annex 2).
Four species of sea pens were present in the northern Gulf of St. Lawrence. The larger sea pens (Anthoptilum grandiflorum, Halipteris finmarchica, Pennatula grandis) are distributed in the deeper areas of the Laurentian Channel, while the spiny sea pen (Pennatula aculeata) had a more widespread distribution within the survey (Figures 59 to 62).

PHYSICAL OCEANOGRAPHIC CONDITIONS

A preliminary analysis of water temperature data collected in 2020 (Figures 69 and 70) shows that conditions have warmed at 150 m and deeper, reaching new records since 1915 at 200,

250 (not shown) and 300 m (note that these annual record may change with the addition of data sampled during the fall). Compared to conditions observed in August 2019, waters at 200 and 300 m have warmed by about $0.2^{\circ} \mathrm{C}$ and by 0.3 and $0.4^{\circ} \mathrm{C}$ at 250 and 150 m where inter-annual variability is higher. The August cold intermediate layer (CIL) minimum temperature was much warmer in 2020 than in 2019 except in the Estuary where it remained stable. Surface waters were also much warmer than normal, by $1.5^{\circ} \mathrm{C}$, in July-August.

Air temperatures over the Gulf were below normal in April 2020, near normal in May and July and above-normal in June and August. This led to above normal average surface water temperatures for the period of May-August (+1.0 standard deviations [SD] relative to the 19822010 climatology and $+0.8^{\circ} \mathrm{C}$) as well as for July-August ($+2.0 \mathrm{SD} ;+1.5^{\circ} \mathrm{C}$).

At the end of winter 2020, the volume of water in the surface mixed layer with temperatures lower than $-1^{\circ} \mathrm{C}$ was near the climatological mean, forecasting a warming of the summer Cold Intermediate Layer compared with 2019 conditions. Its average minimum temperature of $-0.1^{\circ} \mathrm{C}$, estimated for 2019 using only data from the August survey, was $0.3^{\circ} \mathrm{C}$ warmer than 2019 conditions, and was above-normal (+0.7 SD; Figure 70). The regional exception was the Estuary, where the CIL minimum temperature volume was similar to 2019 conditions ($0.4{ }^{\circ} \mathrm{C}$; +0.3 SD; Figure 69) and of slightly larger volume.

Beneath the cold intermediate water layer, the estuarine flow that carries deep water to the channel heads has carried the increasingly warm waters that had been transitioning through Cabot Strait, central Gulf and Esquiman Channel for the past several years further upstream. Consequently, deep temperatures in August have increased since 2019 below 150 m almost everywhere (Figure 69). Taking into consideration all the data recorded in different months of the year, the four regions along the deep Laurentian Channel, meaning the Estuary, northwestern Gulf, Central Gulf and Cabot Strait, are all experiencing record temperatures at $300 \mathrm{~m}\left(5.9^{\circ} \mathrm{C}, 6.3^{\circ} \mathrm{C}, 6.9^{\circ} \mathrm{C}, 7.2^{\circ} \mathrm{C}\right)$. The annual mean has thus far exceeded $7^{\circ} \mathrm{C}$ in Cabot Strait for the second consecutive year. The Gulf-wide average temperature at 300 m has reached a record level since 1915 of $6.75^{\circ} \mathrm{C}$, an increase of $0.24^{\circ} \mathrm{C}$ since 2019 (Figure 70).

ACKNOWLEDGEMENTS

We would like to thank both crews of the CCGS Teleost and wish to highlight the excellent work of the 2020 scientific team. The science team consisted of Hugo Bourdages, Nicolas Coulombe, Laurie Isabel, Jean-François Lussier, Marie-Claude Marquis, Jordan Ouellette-Plante, Eric Parent, Pierre-Marc Scallon-Chouinard et Caroline Senay. We also thank Denis Bernier for his support for the development of data entry tools and data management.
Finally, we would like to thank Charley Cyr for reviewing this document.

REFERENCES CITED

Bourdages, H., Savard, L., Archambault, D. and Valois, S. 2007. Results from the August 2004 and 2005 comparative fishing experiments in the northern Gulf of St. Lawrence between the CCGS Alfred Needler and the CCGS Teleost. Can. Tech. Rep. Fish. Aquat. Sci. 2750: ix + 57 p .
Dutil, J.-D., Nozères, C., Scallon-Chouinard, P.-M., Van Guelpen, L., Bernier, D., Proulx, S., Miller, R. and Savenkoff, C. 2009. Poissons connus et méconnus des fonds marins du Saint-Laurent. Le naturaliste canadien 133: 70-82.

McCallum, B. and Walsh, S.J. 2002. An update on the performance of the Campelen 1800 during bottom trawl surveys in NAFO subareas 2 and 3 in 2001. NAFO SCR Doc. 02/36. 16 p .
Miller, R. and Chabot, D. 2014. Code List of Marine Plants, Invertebrates and Vertebrates Used by the Quebec Region of DFO. Can. Data Rep. Fish. Aquat. Sci. 1254: iv +115 p.
Nozères, C., Archambault, D., Chouinard, P.-M., Gauthier, J., Miller, R., Parent, E., Schwab, P., Savard, L., and Dutil, J.-D. 2010. Identification guide for marine fishes of the estuary and northern Gulf of St. Lawrence and sampling protocols used during trawl surveys between 2004 and 2008. Can. Tech. Rep. Fish. Aquat. Sci. 2866: xi + 243 p.
Nozères, C. and Archambault, D. 2014. Portfolio pour l'identification rapide d'invertébrés capturés au chalut dans l'estuaire et le nord du golfe du Saint-Laurent. Rapp. manus. can. sci. halieut. aquat. 3033 : iv +30 p.

Nozères C., Archambault, D. and Miller, R. 2014. Photocatalogue of invertebrates of the Estuary and northern Gulf of St. Lawrence from trawl surveys (2005-2013). Can. Manuscr. Rep. Fish. Aquat. Sci. 3035 : iv + 221 p.
R Development Core Team. 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. (Accessed November 30 2017).
Savard, L. and Nozères, C. 2012. Atlas of shrimp species of the Estuary and northern Gulf of St. Lawrence. Can. Tech. Rep. Fish. Aquat. Sci. 3007: vi + 67 p

FIGURES

Figure 1. NAFO Divisions of the Estuary and Gulf of St. Lawrence and names of locations mentioned in the text.

Figure 2. Stratification scheme used for the groundfish and shrimp research survey in the Estuary and northern Gulf of St. Lawrence.

Figure 3. Locations of successful sampling stations (trawl and oceanography) and additional oceanographic stations for the 2020 survey.

Figure 4. Biomass (1 000000 of tons) of redfish spp. and all other species sampled in 4RST survey. Error bars represent 95% confidence intervals.

Black dogfish

Figure 5. Mean numbers and mean weights per 15 minutes tow observed during the survey for black dogfish in $4 R S T$. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990-2019 period (solid line) and upper and lower reference (see text) limits (dashed lines).

Black dogfish

Figure 6. Length frequency distributions (mean number per 15 minutes tow) observed during the survey for black dogfish in 4RST.

Black dogfish

Figure 7. Black dogfish catch rates (kg/15 minutes tow) distribution.

Capelin

Figure 8. Capelin catch rates (kg/15 minutes tow) distribution.

Figure 9. Mean numbers and mean weights per 15 minutes tow observed during the survey for Atlantic halibut in 4RST. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990-2019 period (solid line) and upper and lower reference (see text) limits (dashed lines).

Figure 10. Length frequency distributions (mean number per 15 minutes tow) observed during the survey for Atlantic halibut in 4RST.

Figure 11. Atlantic halibut catch rates (kg/15 minutes tow) distribution.

Greenland halibut

Figure 12. Mean numbers and mean weights per 15 minutes tow observed during the survey for Greenland halibut in 4RST. Error bars indicate the 95\% confidence interval and the horizontal lines indicate the mean of the 1990-2019 period (solid line) and upper and lower reference (see text) limits (dashed lines).

Greenland halibut

Figure 13. Length frequency distributions (mean number per 15 minutes tow) observed during the survey for Greenland halibut in 4RST.

Greenland halibut

Figure 14. Greenland halibut catch rates (kg/15 minutes tow) distribution.

Figure 15. Mean numbers and mean weights per 15 minutes tow observed during the survey for lumpfish in 4RST. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990-2019 period (solid line) and upper and lower reference (see text) limits (dashed lines).

Lumpfish

Figure 16. Length frequency distributions (mean number per 15 minutes tow) observed during the survey for lumpfish in 4RST.

Figure 17. Lumpfish catch rates (kg/15 minutes tow) distribution.

Figure 18. Herring catch rates ($\mathrm{kg} / 15$ minutes tow) distribution.

Figure 19. Atlantic wolffish catch rates (kg/15 minutes tow) distribution.

Spotted wolffish

Figure 20. Spotted wolffish catch rates (kg/15 minutes tow) distribution.

Figure 21. Mean numbers and mean weights per 15 minutes tow observed during the survey for silver hake in $4 R S T$. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990-2019 period (solid line) and upper and lower reference (see text) limits (dashed lines).

Silver hake

Figure 22. Length frequency distributions (mean number per 15 minutes tow) observed during the survey for silver hake in 4RST.

Silver hake

Figure 23. Silver hake catch rates (kg/15 minutes tow) distribution.

Figure 24. Mean numbers and mean weights per 15 minutes tow observed during the survey for longfin hake in $4 R S T$. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990-2019 period (solid line) and upper and lower reference (see text) limits (dashed lines).

Longfin hake

Figure 25. Length frequency distributions (mean number per 15 minutes tow) observed during the survey for longfin hake in 4RST.

Longfin hake

Figure 26. Longfin hake catch rates (kg/15 minutes tow) distribution.

Figure 27. Mean numbers and mean weights per 15 minutes tow observed during the survey for white hake in $4 R S T$. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990-2019 period (solid line) and upper and lower reference (see text) limits (dashed lines).

Figure 28. Length frequency distributions (mean number per 15 minutes tow) observed during the survey for white hake in 4RST.

Figure 29. White hake catch rates (kg/15 minutes tow) distribution.

Figure 30. Mean numbers and mean weights per 15 minutes tow observed during the survey for cod in 4RS. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990-2019 period (solid line) and upper and lower reference (see text) limits (dashed lines).

Figure 31. Length frequency distributions (mean number per 15 minutes tow) observed during the survey for cod in $4 R S$.

Figure 32. Cod catch rates (kg/15 minutes tow) distribution.

American plaice

Figure 33. Mean numbers and mean weights per 15 minutes tow observed during the survey for American plaice in 4RST. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990-2019 period (solid line) and upper and lower reference (see text) limits (dashed lines).

American Plaice

Figure 34. Length frequency distributions (mean number per 15 minutes tow) observed during the survey for American plaice in 4RST.

American plaice

Figure 35. American plaice catch rates (kg/15 minutes tow) distribution.

Figure 36. Mean numbers and mean weights per 15 minutes tow observed during the survey for witch flounder in 4RST. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990-2019 period (solid line) and upper and lower reference (see text) limits (dashed lines).

Witch flounder

Figure 37. Length frequency distributions (mean number per 15 minutes tow) observed during the survey for witch flounder in 4RST.

Witch flounder

Figure 38. Witch flounder catch rates (kg/15 minutes tow) distribution.

Thorny skate

Figure 39. Mean numbers and mean weights per 15 minutes tow observed during the survey for thorny skate in 4RST. Error bars indicate the 95\% confidence interval and the horizontal lines indicate the mean of the 1990-2019 period (solid line) and upper and lower reference (see text) limits (dashed lines).

Thorny skate

Figure 40. Length frequency distributions (mean number per 15 minutes tow) observed during the survey for thorny skate in 4RST.

Thorny skate

Figure 41. Thorny skate catch rates (kg/15 minutes tow) distribution.

Figure 42. Mean numbers and mean weights per 15 minutes tow observed during the survey for smooth skate in $4 R S T$. Error bars indicate the 95% confidence interval and the horizontal lines indicate the mean of the 1990-2019 period (solid line) and upper and lower reference (see text) limits (dashed lines).

Smooth skate

Figure 43. Length frequency distributions (mean number per 15 minutes tow) observed during the survey for smooth skate in 4RST.

Smooth skate

Figure 44. Smooth skate catch rates (kg/15 minutes tow) distribution.

Arctic cod

Figure 45. Length frequency distributions (mean number per 15 minutes tow) observed during the survey for Arctic cod in 4RST.

Figure 46. Arctic cod catch rates (kg/15 minutes tow) distribution.

Acadian redfish

Figure 47. Mean numbers and mean weights per 15 minutes tow observed during the survey for Acadian redfish in 4RST. Error bars indicate the 95\% confidence interval and the horizontal lines indicate the mean of the 1990-2019 period (solid line) and upper and lower reference (see text) limits (dashed lines).

Acadian redfish

Figure 48. Length frequency distributions (mean number per 15 minutes tow) observed during the survey for Acadian redfish in 4RST.

Acadian redfish

Figure 49. Acadian redfish catch rates (kg/15 minutes tow) distribution.

Deepwater redfish

Figure 50. Mean numbers and mean weights per 15 minutes tow observed during the survey for deepwater redfish in 4RST. Error bars indicate the 95\% confidence interval and the horizontal lines indicate the mean of the 1990-2019 period (solid line) and upper and lower reference (see text) limits (dashed lines).

Deepwater redfish

Figure 51. Length frequency distributions (mean number per 15 minutes tow) observed during the survey for deepwater redfish in 4RST.

Deepwater redfish

Figure 52. Deepwater redfish catch rates (kg/15 minutes tow) distribution.

Figure 53. Mean numbers and mean weights per 15 minutes tow observed during the survey for northern shrimp in 4RST. Error bars indicate the 95\% confidence interval and the horizontal lines indicate the mean of the 1990-2019 period (solid line) and upper and lower reference (see text) limits (dashed lines).

Figure 54. Carapace length frequency distributions (mean number per 15 minutes tow) observed during the survey for northern shrimp in 4RST.

Figure 55. Northern shrimp catch rates (kg/15 minutes tow) distribution.

Figure 56. Mean numbers and mean weights per 15 minutes tow observed during the survey for northern shortfin squid in 4RST. Error bars indicate the 95\% confidence interval and the horizontal lines indicate the mean of the 1990-2019 period (solid line) and upper and lower reference (see text) limits (dashed lines).

Figure 57. Mantle length frequency distributions (mean number per 15 minutes tow) observed during the survey for northern shortfin squid in 4RST.

Northern shortfin squid

Figure 58. Northern shortfin squid catch rates (kg/15 minutes tow) distribution.

Sea pen (Anthoptilum grandiflorum)

Figure 59. Sea pen (Anthoptilum grandiflorum) catch rates (nb/15 minutes tow) distribution.

Sea pen (Halipteris finmarchica)

Figure 60. Sea pen (Halipteris finmarchica) catch rates (nb/15 minutes tow) distribution.

Sea pen (Pennatula aculeata)

Figure 61. Sea pen (Pennatula aculeate) catch rates (nb/15 minutes tow) distribution.

Sea pen (Pennatula grandis)

Figure 62. Sea pen (Pennatula grandis) catch rates (nb/15 minutes tow) distribution.

Total

Figure 63. Species richness expressed as the number of species collected by station.
Fishes

Figure 64. Species richness expressed as the number of species collected by station for the fish grouping.

Invertebrates (excluding shrimps)

Figure 65. Species richness expressed as the number of species collected by station for the invertebrates grouping excluding the shrimps.

Figure 66. Species richness expressed as the number of species collected by station for the shrimps grouping.

Fish

Argentiniformes, Argentinidae

Argentina silus		0.017 ± 0.02
Aulopiformes, Paralepididae		
Arctozenus risso		0.142 ± 0.093
Gadiformes, Gadidae		
Boreogadus saida		0.022 ± 0.045
Enchelyopus cimbrius		0.371 ± 0.191
Gadus morhua		21.5
Gadus ogac		0.031 ± 0.032
Melanogrammus aeglefinus		0.012 ± 0.025
Pollachius virens		0.026 ± 0.044
Phycis chesteri		0.530 ± 0.282
Urophycis tenuis		1.582 ± 0.714
Gadiformes, Macrouridae		
Nezumia bairdii		0.839 ± 0.718
Gadiformes, Merlucciidae		
Merluccius bilinearis		0.084 ± 0
Lophiiformes, Lophiidae		
Lophius americanus		0.138
Myxiniformes, Myxinidae		
Myxine glutinosa		1.246 ± 0.628
Perciformes, Anarhichadidae		
Anarhichas lupus		0.498 ± 0.2
Anarhichas minor		0.100 ± 0.092
Perciformes, Cryptacanthodidae		
Perciformes, Stichaeidae		
Eumesogrammus praecisus		0.086 ± 0.110
		0.020 ± 0.021
Lumpenus lampretaeformis		0.046 ± 0.058
Stichaeus punctatus		0.000 ± 0.000

Figure 67. Average weight per 15-minute tow during the fish taxa survey. The colour code represents the anomaly value of the difference between the CPUE in a given year and the average CPUE in the time series divided by the standard deviation of this average for each taxon.

Fish

Perciformes，Zoarcidae

Gymnelus viridis																			$\stackrel{\square}{0}$	¢	¢	¢obo	O	\％	\％	京	$\stackrel{\square}{0}$	\％	\％	\％	\％	$\stackrel{\vdots}{6}$	0.002 ± 0.002
Melanostigma atlanticum	$\stackrel{\infty}{0}$	＂		\％		Now in	¢					$\stackrel{\circ}{\circ}$					d	H	N	告	器	骨		\％	¢	$\begin{aligned} & 0.0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { mo } \\ & \stackrel{0}{0} \end{aligned}$		$\stackrel{\circ}{\circ}$	莒	荌		0.026 ± 0.016
Lycenchelys paxillus																			흥	응	응			O!	$\begin{aligned} & \circ \\ & \hline 0 \end{aligned}$	뭉	Bo			O	－	\％	0.000 ± 0.000
Lycenchelys verrillii																			\％	\％	\％	당		ob	O!	号	! !		－	\％	\％	$\stackrel{\circ}{\circ}$	0.000 ± 0.000
Lycodes esmarkii																			¢	\％	¢	$\stackrel{\rightharpoonup}{0}$		$\frac{5}{6}$	$\stackrel{\text { ¢ }}{0}$	„.	:		$\stackrel{\substack{0}}{\substack{0}}$	\％	\＃	$\stackrel{\rightharpoonup}{\square}$	0.008 ± 0.007
Lycodes lavalaei																			$\stackrel{\circ}{\circ}$	స	\％	N্ডio		$\begin{gathered} \stackrel{\infty}{\circ} \\ \stackrel{\circ}{\circ} \end{gathered}$	స్రి	$\stackrel{0}{0}$			咢	今	뀽	¢	0.151 ± 0.087
Lycodes terraenovae																			¢	\％	\％	응			－	\％		চ⿳亠口冋几	\％	O	\％	¢	0.006 ± 0.006
Lycodes vahlii																			N	\％	$\stackrel{\sim}{\square}$	No№		$\stackrel{\square}{\square}$	\％	¢	$\stackrel{\circ}{\stackrel{\circ}{\circ}}$		$\stackrel{\bar{m}}{\square}$	\％	\％	\％	0.161 ± 0.079
Pleuronectiformes，Pleuronectidae																																	
Glyptocephalus cynoglossus	\％	$\stackrel{8}{\text { i }}$	＋	－	管	¢	$\stackrel{9}{7}$	＋	皆	－	\％${ }^{\frac{1}{4}}$	号		N	－	尔	＋	¢	¢	$\stackrel{\square}{\circ}$	ก	¢	$\stackrel{\circ}{\text { co }}$	$\stackrel{\sim}{\sim}$	$\stackrel{\text { ¢ }}{ }$	N	$\underset{\sim}{\text { i }}$	－	$\stackrel{\text { ¢ }}{ }$	$\stackrel{\sim}{m}$	8	$\stackrel{\Gamma}{¢}$	2.015 ± 0.885
Hippoglossoides platessoides	¢	N	\％	$\stackrel{\text { di }}{\substack{\text { ¢ }}}$	気	$\stackrel{\text { ¢ }}{\text { ¢ }}$	－	$\stackrel{セ}{6}$	$\stackrel{0}{0}$	${ }_{¢}^{\text {¢ }}$	$\stackrel{\square}{\sim}$	－		$\stackrel{\text { ¢ }}{\sim}$	尔	＋		\％	$\stackrel{\text { \％}}{\substack{\text { ® }}}$	$\stackrel{\circ}{\square}$	\％	¢	¢	N	¢	¢	¢		\％	¢	$\stackrel{\text { ¢ }}{0}$	$\stackrel{\square}{8}$	5.107 ± 1.656
Hippoglossus hippoglossus	フิ	\％	$\stackrel{\infty}{\square}$	ㅇ．	\％	$\stackrel{0}{\circ}$	～	\％	O．	पू	$\stackrel{\infty}{\square}$	\％		ค ${ }_{\circ}^{\text {¢ }}$	\％	管	\％	$\stackrel{+}{\circ}$	$\stackrel{\text { ® }}{+}$	స్ల	$\stackrel{\circ}{\circ}$	令	－	$\stackrel{\circ}{\square}$	$\stackrel{\text { ® }}{\sim}$	\％	${ }_{6}$	\％	\％	$\stackrel{0}{0}$	\％	$\stackrel{0}{+}$	1.815 ± 1.872
Reinhardtius hippoglossoides	$\stackrel{\square}{\square}$	$\stackrel{\gtrless}{\sim}$	$\stackrel{\text { ® }}{\sim}$	－	ํ．	\％	$\stackrel{\text { N }}{\sim}$		$\stackrel{\text { N }}{\stackrel{\text { N }}{\sim}}$	$\stackrel{\text { ¢ }}{\stackrel{\circ}{\text { ¢ }} \text {－}}$				$\begin{array}{l\|l} \stackrel{\rightharpoonup}{\dot{N}} \\ \stackrel{\rightharpoonup}{\mathrm{~N}} \\ \hline \end{array}$		$\underset{\sim}{\circ}$			厄్ల్ల	$\stackrel{\circ}{\stackrel{\circ}{\square}}$	$\stackrel{\circ}{\text { ¢ }}$	$\begin{aligned} & \text { セo } \\ & \text { N } \\ & \hline \end{aligned}$		家	¢	$\underset{\sim}{\sim}$	$\stackrel{ٌ}{\text { ஷ் }}$		$\stackrel{\stackrel{y}{*}}{\stackrel{\rightharpoonup}{\sim}}$	$\stackrel{8}{6}$	「	へิ．	20.419 ± 10.389
Rajiformes，Rajidae																																	
Amblyraja radiata Malacoraja senta	$\stackrel{\Gamma}{\square}$	$\stackrel{\circ}{\sim}$	ल	¢	$\stackrel{\text { ci }}{\text { ¢ }}$	$\stackrel{\text { í }}{\text { ¢ }}$	$\stackrel{\%}{\sim}$	～	N	${ }_{\text {¢ }}^{\text {¢ }}$		～		\％			$\stackrel{\square}{+}$	${ }^{\circ}$	$\stackrel{\infty}{\square}$	$\stackrel{0}{60}$	－	$\stackrel{\text { \％}}{+}$	＋\％	$\stackrel{\circ}{\circ}$	$\stackrel{\substack{* \\+\\ \hline}}{ }$	$\stackrel{\text { \％}}{+}$	$\stackrel{\text { \％}}{+}$	\％	\％	$\stackrel{\text { \％}}{\substack{\text { d }}}$	$\stackrel{\%}{\oplus}$	$\stackrel{4}{8}$	4.268 ± 1.360
	$\stackrel{\text { ¢ }}{ }$	สี	$\stackrel{\square}{\square}$	$\stackrel{\text { ¢ }}{ }$	¢	¢	$\stackrel{\bullet}{\square}$	$\stackrel{\text { \％}}{\circ}$	¢	ホ̛	$\stackrel{\Gamma}{\text { N }}$	N		N\％	\％	－	O		N	ฝ	¢	＋		\％	$\stackrel{\circ}{\square}$	$\stackrel{\square}{0}$	\％	\％	¢	\％	莒	$\stackrel{\oplus}{\circ}$	1.194 ± 1.068

Scorpaeniformes，Agonidae

Scorpaeniformes，Cottidae

Scorpaeniformes，Cyclopteridae

Figure 67．Continued．

Fish

Scorpaeniformes，Hemitripteridae

Scorpaeniformes，Liparidae

Scorpaeniformes，Scorpaenidae

iatus	\|若	身	$\dot{\text { ま゙ }}$	ヘึ	$\begin{array}{\|l\|} \hline \stackrel{\circ}{\varphi} \\ \stackrel{\rightharpoonup}{6} \\ \hline \end{array}$	$\underset{\mathrm{i}}{\stackrel{\circ}{\mathrm{o}}}$	$\stackrel{\stackrel{\rightharpoonup}{i}}{ }$	©	$\stackrel{\oplus}{\stackrel{\circ}{\sim}}$	\mp	©	©	＋	$\stackrel{\pi}{\approx}$	$\dot{6}$	$\stackrel{\text { ल゙ }}{\dot{j}}$	๓	ศ่	$\stackrel{\varphi}{\varphi}$	$\underset{\sim}{\infty}$	$\stackrel{ٌ}{r}$											20.523 ± 19.358
astes mentella	À	$\underset{\sim}{\underset{\sim}{\infty}}$	$\stackrel{y}{\mathrm{~g}}$	N゙	$\begin{aligned} & \text { gi } \\ & \underset{\sim}{*} \end{aligned}$	$\stackrel{\stackrel{O}{0}}{\stackrel{0}{0}}$	$\underset{\sim}{\sim}$	$\stackrel{\otimes \otimes}{\dot{\oplus}}$	$\stackrel{\square}{6}$		$\stackrel{\unrhd \circ}{\stackrel{\circ}{\tau}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\text { ¢ }}{\sim}$	$\stackrel{\circ}{\circ}$	$\stackrel{\sim}{0}$	®	$\stackrel{\square}{\sim}$	$\stackrel{\text {＋}}{\stackrel{+}{+}}$	$\stackrel{\text { ® }}{\text { ¢ }}$	$\stackrel{\sim}{\sim}$	$\stackrel{8}{\text { ¢ }}$	－					$\frac{\infty}{ल}$					05.358 ± 209.080

Squaliformes，Etmopteridae

Squaliformes，Squalidae

Figure 67．Continued．

Invertebrates

ANNELIDA

Polychaeta

Polychaeta，

Aphroditella hastata			\％		O	亏⿳亠口冖丁口欠	\％	\％	\％	\％	！	$\stackrel{\circ}{\circ}$	\％			0.004 ± 0.004
Polychaeta			\％	\％	\％	\％	\％	\％	\％	\％	\％	ذ				0.003 ± 0.002

ARTHROPODA

Malacostraca

Amphipoda，Epimeriidae

Figure 68．Average weight per 15－minute tow during the invertebrates．The colour code represents the anomaly value of the difference between the CPUE in a given year and the average CPUE in the time series divided by the standard deviation of this average for each taxon．

Invertebrates

Figure 68. Continued.

Invertebrates

CNIDARIA

Anthozoa

Actiniaria,

Actiniaria, Actiniidae

Hydrozoa

Hydrozoa,

Scyphozoa
Scyphozoa,

Figure 68. Continued.

Invertebrates

ECHINODERMATA

Asteroidea

Echinoidea

Echinoida, Camarodontae

Holothuroidea

Dendrochirotida, Cucumariidae

Cucumaria frondosa	\%	\%	\%	-	$\stackrel{\rightharpoonup}{\text { ¢ }}$	$\stackrel{\rightharpoonup}{\circ}$	\%	\%	$\stackrel{\square}{\circ}$	츨	สั	\%	\%	$\stackrel{\text { ¢ }}{0}$!	0.043 ± 0.076
Dendrochirotida, Psolidae																
Psolus phantapus	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	응	\%	-	0.000 ± 0.001

Ophiuroidea

Euryalida, Gorgonocephalidae

Figure 68. Continued.

Invertebrates

Ophiurida,

MOLLUSCA
Bivalvia

Cephalopoda

Gastropoda

Figure 68. Continued.

Invertebrates

Neogastropoda, Muricidae

Neotaenioglossa, Aporrhaidae

Nudibranchia,

Trochoidea, Margaritidae
Margarites sp. $\left.\quad \begin{array}{ll|l|l|l|l|l|l|l|}\hline 0\end{array}\right)$

Polyplacophora

Polyplacophora,

PORIFERA

Porifera,

SIPUNCULA

Sipuncula,

Figure 68. Continued.

Water temperatures in the Gulf

August/août 2020

Figure 69. Mean temperature profiles observed in each region of the Gulf during August 2020. The shaded area represents the 1981-2010 climatological monthly mean ± 0.5 SD for August. Mean profiles for August and September 2019 are also shown for comparison. The violet outline on the map shows the area over which sea surface temperature is averaged for figure 70.

Water temperatures in the Gulf

Figure 70. Water temperatures in the Gulf. Sea-surface temperature averaged over the Estuary and the northern Gulf (see violet outline on map of figure 69) for July-August and May-August (1982-2020) (red lines). Layer-averaged temperature for the Gulf of St. Lawrence at 150, 200 and 300 m (green lines). Cold intermediate layer minimum temperature index in the Gulf of St. Lawrence adjusted to July 15, with 2020 value estimated only from August survey data (blue line).

APPENDICES

Appendix 1. Number of successful stations per stratum for the DFO survey.

Stratum	NAFO	$\begin{gathered} \text { Surface } \\ \left(\mathrm{km}^{2}\right) \\ \hline \end{gathered}$	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
401	4 T	545	3	4	4	4	3	3	3	3	3	3	3	3	3	3	3	6	3	3	3	3	0	3	3	2	2	3	2	2	2	2	1
402	4 T	909	3	5	5	3	3	1	3	2	3	5	3	3	3	2	0	3	3	3	3	3	3	3	3	3	2	3	2	2	2	2	2
403	4 T	1190	3	3	3	3	3	3	10	10	3	5	3	3	3	3	6	4	3	3	3	3	3	3	3	2	2	3	2	2	1	2	2
404	4 T	792	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	6	3	3	3	3	0	3	3		2	3	2	2	2	2	2
405	4 T	1478	3	3	3	3	3	3	3	2	4	4	4	3	3	3	2	9	3	3	3	3	3	3	3		2	3	2	2	2	2	2
406	4 T	2579	5	3	3	3	3	3	5	5	3	5	3	4	5	3	5	6	4	4	4	3	3	3	4	3	3	4	4	4	3	3	4
407	4 T	2336	5	3	3	3	3	3	3	3	2	3	3	3	3	5	3	5	3	3	3	3	0	3	3	2	4	4	2	3	4	3	3
408	4 T	2734	4	5	5	3	2	3	3	2	5	5	4	3	3	3	2	11	4	4	4	4	3	3	4	3	4	4	2	4	3	2	2
409	4 T	909	3	3	3	3	0	3	4	3	3	4	4	4	3	3	3	4	3	3	3	3	3	3	2	3	2	2	2	2	2	2	2
410	4 T	1818	2	3	3	3	4	6	10	6	5	4	4	4	5	3	3	6	3	3	3	3	3	3	3	3	3	3	3	3	2	2	3
411	4 T	1859	3	3	3	3	4	7	9	7	6	9	5	9	4	3	5	8	3	3	3	3	3	3	3	3	3	2	3	3	3	2	3
412	4 T	1283	3	3	3	3	4	5	3	3	3	4	4	4	3	3	2	5	3	3	3	3	3	3	3	3	2	2	2	2	2	2	2
413	4 T	731	3	4	3	3	0	3	3	4	3	4	4	4	3	3	1	5	3	3	3	3	3	3	3	2	2	2	2	2	2	2	1
414	4 T	388	3	2	3	3		3	3	3	3	4	4	4	3	3	3	6	3	3	2	1	3	3	2	3	2	2	2	0	2	1	0
801	4 R	1214	3	3	3	4	3	3	3	3	4	5	5	5	2	3	3	4	3	3	3	3	2	3	3	3	3	3	2	3	3	3	2
802	4R	1369	3	3	3	3	3	3	3	3	3	3	3	3	2	8	3	8	2	3	3	3	0	3	3	3	3	3	2	3	3	3	2
803	4 S	6976	14	3	2	4	3	3	3	3	4	5	3	4	6	2	1	14	6	8	8	7	3	6	7	3	10	8	5	8	8	4	4
804	4 S	2490	5	4	3	3	4	3	3	3	3	3	3	6	3	2	3	10	3	3	3	3	3	3	3	3	4	4	4	4	3	3	3
805	4 S	5762	14	7	4	4	6	4	11	8	4	5	5	5	12	8	4	10	8	7	7	6	4	5	7	5	7	7	9	7	5	6	6
806	4 S	2127	4	4	3	3	3	3	3	3	3	3	3	3	3	3	5	4	3	3	2	3	3	3	3	3	3	3	3	3	3	3	3
807	4 S	2370	3	12	11	10	5	5	4	4	3	3	4	3	2	1	0	7	3	3	3	3	3	2	3	3	4	4	4	4	3	2	3
808	4 S	2428	4	7	6	4	5	4	3	3	2	4	3	3	3	3	0	3	3	3	3	3	2	3	3	2	4	4	4	4	4	0	2
809	4 R	1547	3	9	7	6	4	3	3	3	3	3	3	3	3	3	1	5	3	3	3	3	3	3	2	3	3	3	4	3	3	0	3
810	4R	765	3	4	5	4	3	3	3	3	4	4	4	4	6	5	3	8	3	3	4	3	0	3	3	2	3	2	2	2	2	1	1
811	4R	1506	3	4	4	4	5	3	8	6	3	3	3	3	3	3	3	7	3	3	3	2	2	2	3	2	2	2	2	2	2	0	2
812	4R	4648	7	9	8	11	4	3	3	3	3	3	3	3	3	3	4	5	5	4	5	4	5	3	5	3	8	7	6	6	5	6	5
813	4R	3958	6	6	5	9	3	4	6	5	7	4	6	8	2	5	3	9	5	3	5	3	4	4	6	3	6	6	4	3	5	5	6
814	4 S	1029	3	4	4	4	3	0	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	2	2	2	2	2	2
815	4 S	4407	9	15	11	8	5	4	3	3	8	9	9	2	6	3	3	14	5	5	6	5	5	3	6	4	6	7	6	6	5	6	4
816	4 S	5032	9	11	9	9	6	6	17	17	20	21	21	1	6	4	4	11	7	7	7	6	4	4	3	6	6	8	7	7	5	6	4
817	4 S	3646	7	18	11	7	9	10	9	5	11	17	13	14	8	5	2	7	5	5	4	5	3	3		4	5	4	6	6	5	5	6
818	4 S	2774	4	7	5	4	3	3	3	4	4	4	4	5	7	5	1	6	4	4	2	4	3	4		3	4	5	4	5	4	4	5
819	4 S	1441	3	7	9	5	4	5	3	2	3	3	4	1	1	3	0	8	2	3	3	2	3	3	3	3	2	2	2	2	2	1	2
820	4 R	1358	3	3	3	3	3	3	7	5	6	5	5	3	2	3	3	14	3	3	3	3	0	2	3	3	3	3	2	3	3	0	2
821	4R	1272	3	3	3	3	2	3	3	2	3	3	3	3	3	3	3	7	3	3	3	3	2	4	3	3	3	2	2	3	3	0	2
822	4 R	3245	6	4	3	2	3	3	6	4	10	8	10	9	3	3	3	8	4	4	4	3	4	2	4	2	5	3	4	2	3	4	5
823	4R	556	3	3	3	3	2	3	2	3	1	3	2	3	2	5	2	10	3	3	3	3	2	3	3	3	3	3	2	2	3	3	2
824	4R	837	3	1	3	1	3	3	3	3	3	3	2	3	2	2	3	6	3	3	3	3	2	3	3	2	2	2	1	2	2	2	2
827	4 S	3231	0	1	1	1	3	3	0	2	3	1	3	0	2	2	3	6	4	4	3	3			3	2	2	3	3	3	4	0	2
828	4 S	2435	4	1	2	2	3	3	3	3	3	1	0	1	0	3	3	1	3	3	3	3	3	2	2	2	2	2	2	4	4	3	2
829	4 S	2692	3	2	3	3	3	3	3	0	3	3	2	0	2	1	0	8	4	4	3	2	3	2	2	3	2	4	3	2	3	1	2
830	4 S	1917	3	3	4	3	3	3	2	2	3	3	3	2	1	1	0	6	3	3	3	3	3	3	2	3	2	4	4	3	3	3	2
831	4 S	1204	3	0	2	3	3	3	3	2	3	4	3	3	1	3	3	4	3	3	3	3	3	3	3	2	2	2	2	2	2	1	2
832	4 S	3962	4	12	11	7	7	9	8	5	3	3	3	3	2	3	4	8	4	5	5	3	4	3	6	4	4	4	3	5	5	4	5
833	4 S	559	3	1	3	3	3	3	3	3	3	3	3	0	3	3	2	6	3	3	3	3	3	3	3	1	2	2	2	2	2	2	1
835	4 R	2641	0	6	7	6	3	3	3	3	6	5	6	5	6	3	3	8	5	5	5	4	0	4	5	2	4	3	3	4	4	0	3
836	4R	3149	0	7	8	6	3	3	3	3	3	3	3	3	3	2	4	10	5	3	5	4	3	4	4	3	5	5	2	3	4	3	5
837	4R	2668	0	5	6	3	2	3	4	4	3	3	3	3	5	5	2	4	4	3	5	3	3	2	5	,	4	4	3	3	2	3	3
838	4R	3378	0	9	8	7	5	5	0	0	0	2	0	4	4	0	3	10	6	3	6	0	0	3	5	0	6	4	5	3	5	3	5
839	4 S	4390	0	2	5	5	3	2	2	1	2	3	3	0	0	3	2	3	6	5	4	3	3	2	2	3	2	3	2	2	2	1	1
840	4R	765	0	3	3	1	1	0	0	0	0	0	0	2	0	0	0	5	3	0	3	0	0	1	3	0	2	3	2	0	1	0	2
841	4 S	816	0	0	1	3	3	3	3	0	2	1	2	3	2	3	3	3	3	3	2	3	3	3	2	3	2	2	2	2	1	2	1
Total		116115	191	250	239	214	175	182	217	185	204	224	209	183	171	163	133	354	192	183	189	164	132	156	178	141	177	182	159	163	160	124	143
851	4 T	456	-	-	-	-	-	-	-	-		-	-		-			-			3	3	3	3	3	3	2	2	2	2	2	1	1
852	4 T	427	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	3	3	3	2		2	2	2	1	2	2	1
854	4 T	465	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	3	3	2	2	2	2	2	2	2	2	0	1
855	4 T	928	-		-		-		-	$-$	-	-	-	-	-	-	-	-	-	-	3	4	3	2	3		2	2	2	2	2	1	1

Appendix 2. Occurrences and total catches, in weight and number, by taxon during the 2020 survey (147 successful tows). Taxonomic codes (STRAP) follow Miller and Chabot (2014), with scientific name updates by the World Marine Species Registry (WoRMS 2018,
http://www.marinespecies.org)

Vertebrates

Code STRAP	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
90	Amblyraja radiata	Raie épineuse	Thorny Skate	122	1144.7	1768
696	Ammodytes sp.	Lançons	Sand Lances	6	0.1	9
700	Anarhichas lupus	Loup atlantique	Atlantic Wolffish	24	81.5	205
701	Anarhichas minor	Loup tacheté	Spotted Wolffish	6	32.3	7
718	Anisarchus medius	Lompénie naine	Stout Eelblenny	1	0.1	17
320	Arctozenus risso	Lussion blanc	White Barracudina	72	7.1	398
193	Argentina silus	Grande argentine	Atlantic Argentine	18	11.7	173
811	Artediellus atlanticus	Hameçon atlantique	Atlantic Hookear Sculpin	19	1.2	152
810	Artediellus sp.	Hameçons	Hookear Sculpins	5	0.4	95
812	Artediellus uncinatus	Hameçon neigeux	Arctic Hookear Sculpin	6	0.4	76
838	Aspidophoroides monopterygius	Poisson-alligator atlantique	Alligatorfish	26	0.3	101
837	Aspidophoroides olrikii	Poisson-alligator arctique	Arctic Alligatorfish	2	0	3
102	Bathyraja spinicauda	Raie à queue épineuse	Spinytail Skate	1	9.3	1
290	Benthosema glaciale	Lanterne glacière	Glacier Lanternfish	4	0	9
451	Boreogadus saida	Saïda franc	Arctic Cod	28	3.8	306
865	Careproctus reinhardti	Petite limace de mer	Sea Tadpole	9	0.2	9
27	Centroscyllium fabricii	Aiguillat noir	Black Dogfish	23	785.1	973
150	Clupea harengus	Hareng atlantique	Atlantic Herring	54	1586.2	9973
721	Cryptacanthodes maculatus	Terrassier tacheté	Wrymouth	4	1.1	12
982	Cryptopsaras couesii	Petit pêcheur abyssal	Triplewart Seadevil	1	0.2	1
849	Cyclopterus lumpus	Grosse poule de mer	Lumpfish	33	63.7	66
461	Enchelyopus cimbrius	Motelle à quatre barbillons	Fourbeard Rockling	93	43.7	1264
711	Eumesogrammus praecisus	Quatre-lignes atlantique	Fourline Snakeblenny	19	4.1	159
847	Eumicrotremus terraenovae	Petite poule Terre-Neuve	Newfoundland Spiny Lumpsucker	18	6	282
438	Gadus morhua	Morue franche	Atlantic Cod	68	3408.6	10065
439	Gadus ogac	Ogac, morue ogac	Greenland Cod	3	2.4	6
426	Gasterosteus aculeatus aculeatus	Épinoche à trois épines	Threespine Stickleback	4	0.1	23
890	Glyptocephalus cynoglossus	Plie grise	Witch Flounder	116	585.9	3408
205	Gonostomatidae	Cyclothones	Bristlemouths	2	<0.1	2
746	Gymnelus viridis	Unernak caméléon	Fish Doctor	4	0.1	10
823	Gymnocanthus tricuspis	Tricorne arctique	Arctic Staghorn Sculpin	18	6.3	106
809	Hemitripterus americanus	Hémitriptère atlantique	Sea Sculpin	1	1.4	1

$\begin{aligned} & \text { Code } \\ & \text { STRAP } \end{aligned}$	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
889	Hippoglossoides platessoides	Plie canadienne	American Plaice	125	1182.1	13292
893	Hippoglossus hippoglossus	Flétan atlantique	Atlantic Halibut	37	657.6	66
832	Icelus spatula	Icèle spatulée	Spatulate Sculpin	6	0.1	29
836	Leptagonus decagonus	Agone atlantique	Atlantic Poacher	21	6.1	351
717	Leptoclinus maculatus	Lompénie tachetée	Daubed Shanny	28	2.8	473
891	Limanda ferruginea	Limande à queue jaune	Yellowtail Flounder	4	35	183
868	Liparis bathyarcticus	Limace nébuleuse	Nebulous Snailfish	12	1.9	44
966	Lophius americanus	Baudroie d'Amérique	Monkfish, Goosefish	11	70.6	13
716	Lumpenus lampretaeformis	Lompénie-serpent	Snakeblenny	24	5.7	242
750	Lycenchelys paxillus	Lycode commune	Common Wolf Eel	1	<0.1	1
752	Lycenchelys verrillii	Lycode à tête longue	Wolf Eelpout	1	<0.1	1
727	Lycodes esmarkii	Lycode d'Esmark	Esmark's Eelpout	4	1.2	7
728	Lycodes lavalaei	Lycode du Labrador	Newfoundland Eelpout	14	7.6	56
726	Lycodes sp.	Lycodes	Eelpouts	1	0.2	4
734	Lycodes terraenovae	Lycode atlantique	Atlantic Eelpout	2	0.3	2
730	Lycodes vahlii	Lycode à carreaux	Vahl's Eelpout	19	4.4	122
91	Malacoraja senta	Raie lisse	Smooth Skate	76	51.2	274
187	Mallotus villosus	Capelan	Capelin	47	126	12309
745	Melanostigma atlanticum	Molasse atlantique	Atlantic Soft Pout	33	0.8	269
449	Merluccius bilinearis	Merlu argenté	Silver Hake	39	16.6	99
272	Myctophidae	Poissons-lanterne	Lanternfishes	20	0.8	260
271	Myctophiformes	Poissons des profondeurs	Deepwater Fishes	5	0.1	7
818	Myoxocephalus aenaeus	Chaboisseau bronzé	Little Sculpin, Grubby	2	0.7	6
820	Myoxocephalus octodecemspinosus	Chaboisseau à dix-huit-épines	Longhorn Sculpin	1	0.2	2
819	Myoxocephalus scorpius	Chaboisseau à épines courtes	Shorthorn Sculpin	18	43.9	147
12	Myxine glutinosa	Myxine du nord	Northern Hagfish	79	99.4	1568
368	Nemichthys scolopaceus	Avocette ruban	Atlantic Snipe Eel	2	0.1	2
478	Nezumia bairdii	Grenadier du grand Banc	Common Grenadier	83	102.3	3227
275	Notoscopelus kroyeri	Lanterne-voilière nordique	Kroyer's Lanternfish	4	0.3	12
874	Paraliparis calidus	Limace ardente	Lowfin Snailfish	8	0.1	10
856	Paraliparis copei copei	Limace à museau noir	Blacksnout Seasnail	4	0.1	14
15	Petromyzon marinus	Lamproie marine	Sea Lamprey	1	0.1	1
444	Phycis chesteri	Merluche à longues nageoires	Longfin Hake	31	66.5	499
443	Pollachius virens	Goberge	Pollock	1	4.8	1
244	Polymetme thaeocoryla	Poisson lumineux	Ligthfishes	1	<0.1	1
94	Rajella fyllae	Raie ronde	Round Skate	1	<0.1	1
892	Reinhardtius hippoglossoides	Flétan du Groenland, turbot	Greeenland Halibut, Turbot	110	3204.1	12980
572	Scomber scombrus	Maquereau bleu	Atlantic Mackerel	39	11.3	270

$\begin{aligned} & \text { Code } \\ & \text { STRAP } \end{aligned}$	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
398	Scomberesox saurus saurus	Balaou	Atlantic Saury	3	,	7
796	Sebastes fasciatus	Sébaste acadien	Acadian Redfish	65	4564.1	28064
794	Sebastes mentella	Sébaste atlantique	Deepwater Redfish	115	74837.4	439975
24	Squalus acanthias	Aiguillat commun	Spiny Dogfish	2	4.8	3
220	Sternoptychidae	Haches	Hatchetfishes	1	<0.1	1
373	Synaphobranchus kaupii	Anguille égorgée bécuée	Northern Cutthroat Eel	1	0.2	2
814	Triglops murrayi	Faux-trigle armé	Moustache Sculpin	41	16.4	1340
447	Urophycis tenuis	Merluche blanche	White Hake	73	289.8	514
	Total	Vertébrés	Vertebrates		93207	546431

Invertebrates

$\begin{aligned} & \text { Code } \\ & \text { STRAP } \end{aligned}$	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
1100	-	Invertébrés	Invertebrates	2	<0.1	3
2182	Actinauge cristata	Anémone de mer	Anemone	34	28.6	2352
2165	Actiniaria	Actinies et Anémones	Sea Anemones	9	0.7	13
2162	Actinostola callosa	Anémones de mer	Anemone	46	214	2336
6771	Aega psora	Isopode	Isopod	8	<0.1	10
2676	Alcyonidium gelatinosum	Bryozoaire marin	Marine bryozoans	3	0.1	-
3891	Aldisa zetlandica	Nudibranche	Nudibranch	4	<0.1	5
6930	Amphipoda	Amphipodes	Amphipods	1	<0.1	1
5675	Amphitrite cirrata	Polychète	Terebellid worm	1	<0.1	1
8593	Amphiura sp.	Ophiures	Brittle star	6	0.1	521
4219	Anomia sp.	Anomies	Jingle shells	3	<0.1	31
7389	Anonyx sp.	Gammarides	Gammarids	3	<0.1	8
2218	Anthoptilum grandiflorum	Plume de mer	Sea pen	32	24.6	1762
5002	Aphroditella hastata	Souris de mer	Sea Mouse	15	0.8	33
6594	Arcoscalpellum michelottianum	Balane	Barnacle	4	0.1	4
8138	Argis dentata	Crevette verte	Arctic Argid	28	21.3	3875
3418	Arrhoges occidentalis	Pied-de-pélican	American Pelicanfoot	16	0.8	135
8742	Ascidia sp.	Ascidie	Sea squirts	71	5.9	1571
8680	Ascidiacea	Ascidies, tuniqués sessiles	Ascidians, Sessile Tunicates	19	<0.1	34
1120	Asconema foliatum	Éponge	Sponge	2	8.5	-
4231	Astarte borealis	Astarte	Boreal Astarte	1	<0.1	2
4227	Astarte sp.	Astartes	Astartes	26	0.1	73
8396	Asterias rubens	Astérie boréale commune	Purple Seastar	1	<0.1	1

Code STRAP	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
8390	Asteroidea	Etoiles de mer	Sea Stars	1	<0.1	1
8113	Atlantopandalus propinqvus	Crevette	Shrimp	16	0.5	125
2097	Atolla wyvillei	Méduse	Jellyfish	2	0.1	2
2085	Aurelia aurita	Méduse de lune	Moon Jelly	,	<0.1	1
5678	Axionice maculata	Polychète	Terebellid worm	1	<0.1	2
6595	Balanidae	Balanes	Barnacles	2	<0.1	14
4102	Bathyarca sp.	Bivalves	Bathyarks	1	<0.1	1
4904	Bathypolypus bairdii	Poulpe	North Atlantic Octopus	42	2.9	72
3995	Bivalvia	Bivalves	Bivalves	4	<0.1	6
2158	Bolocera tuediae	Anémone de mer	Anemone	56	18.1	488
8793	Boltenia echinata	Cactus de mer	Cactus Sea Squirt	4	0.1	25
8792	Boltenia ovifera	Patate de mer	Sea Potato	15	9.9	124
3488	Boreotrophon sp.	Murex	Murex	1	<0.1	1
8798	Botrylloides sp.	Ascidie	Tunicate	6	0.1	-
5755	Brada inhabilis	Polychète	Flabelligerid worm	5	<0.1	5
8378	Brisaster fragilis	Oursin coeur	Heart Urchin	66	206.3	24925
2670	Bryozoa	Bryozoaires	Bryozoans	12	<0.1	-
3520	Buccinum cyaneum	Buccin bleu	Bluish Whelk	16	0.9	60
3523	Buccinum scalariforme	Buccin	Ladder Whelk	5	<0.1	7
3516	Buccinum sp.	Buccins	Whelk	6	0.3	26
3517	Buccinum undatum	Buccin commun	Waved Whelk	9	0.1	10
8173	Calocaris templemani	Crevette fouisseuse	Lobster Shrimp	5	<0.1	8
8206	Cancer irroratus	Crabe commun	Common Rock Crab	1	0.2	1
2684	Celleporina	Bryozoaire marin	Marine Bryozoan	1	<0.1	-
2685	Celleporina surcularis	Bryozoaire marin	Marine Bryozoan	3	<0.1	-
4545	Cephalopoda	Céphalopodes	Cephalopods	1	<0.1	1
8429	Ceramaster granularis	Étoile de mer	Sea Star	13	0.6	29
8213	Chionoecetes opilio	Crabe des neiges	Snow Crab	88	96.2	652
6593	Chirona hameri	Balane turbané	Turban Barnacle	4	0.6	24
4167	Chlamys islandica	Pétoncle d' Islande	Iceland Scallop	8	0.7	18
4351	Ciliatocardium ciliatum	Coque d'Islande	Iceland Cockle	5	0.5	20
3908	Colga villosa	Nudibranche	Nudibranch	3	<0.1	3
3577	Colus pubescens	Buccin	Hairy Whelk	5	0.1	5
3575	Colus sp.	Buccins	Whelks	1	<0.1	1
3576	Colus stimpsoni	Buccin	Whelk	1	<0.1	1
8447	Crossaster papposus	Soleil de mer épineux	Spiny Sun Star	17	0.5	58
3422	Cryptonatica affinis	Lunaties	Arctic moonsnail	4	<0.1	4
8407	Ctenodiscus crispatus	Étoile de mer	Mud Star	82	49.8	12639

Code STRAP	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
8312	Cucumaria frondosa	Concombre de mer	Orange Footed Sea Cucumber	3	0.2	3
4526	Cuspidaria glacialis	Mye	Gacial Dipperclam	18	0.1	99
4525	Cuspidaria sp.	Myes	Dipperclams	1	<0.1	3
2080	Cyanea capillata	Crinière de lion	Lion's Mane	72	94.5	118
4268	Cyclocardia borealis	Vénéricarde boréale	Northern Cyclocardia	2	<0.1	5
8761	Dendrodoa pulchella	Ascidie	Tunicate	3	<0.1	4
3895	Dendronotus niveus	Nudibranche orangé	Orange Nudibranch	2	<0.1	2
8408	Diplopteraster multipes	Étoile de mer	Sea Star	1	<0.1	1
2191	Drifa glomerata	Corail mou	Soft coral	25	0.7	-
2183	Duva florida	Corail mou	Sea Cauliflower	8	0.1	17
8373	Echinarachnius parma	Dollar de sable	Common Sand Dollar	3	0.5	27
7383	Epimeria loricata	Gammaride	Gammarid	5	<0.1	24
2157	Epizoanthus sp.	Anémone de mer	Sea Anemone	20	<0.1	100
8075	Eualus fabricii	Bouc Arctique	Arctic Eualid	8	0.1	211
8081	Eualus gaimardii belcheri	Bouc	Circumpolar Eualid	1	<0.1	1
8080	Eualus gaimardii gaimardii	Bouc	Circumpolar Eualid	6	0.3	270
8077	Eualus macilentus	Bouc du Groenland	Greenland Shrimp	14	2.7	2351
8074	Eualus sp.	Bouc	Eualid	5	<0.1	-
8778	Eudistoma vitreum	Ascidie	Tunicate	12	0.2	71
5461	Euphrosine borealis	Polychète	Seaworm	1	<0.1	1
8033	Eusergestes arcticus	Crevette	Shrimp	4	<0.1	12
7195	Eusirus cuspidatus	Gammaride	Gammarid	2	<0.1	3
3437	Euspira pallida	Lunatie du Groenland	Pale Moonsnail	8	<0.1	13
2295	Fecampiidae	Vers flats	Flatworms	7	<0.1	6
2224	Flabellum alabastrum	Madrépore	Cup coral	5	0.2	25
2184	Gersemia rubiformis	Corail mou	Sea Strawberry	16	0.1	-
5902	Golfingia margaritacea	Sipunculide	Sipunculid	1	<0.1	1
4770	Gonatus fabricii	Encornet atlantoboréal	Boreoatlantic Armhook Squid	1	<0.1	1
8540	Gorgonocephalus sp.	Gorgonocéphales	Basket Stars	26	49.2	328
2217	Halipteris finmarchica	Plume de mer	Sea pen	16	5.4	353
5934	Hamingia arctica	Échiure	Echiurid	1	<0.1	2
8263	Heliometra glacialis	Lis de mer	Feather star	5	<0.1	22
1131	Hemigellius arcofer	Éponge	Sponge	1	0.6	-
3090	Hemithiris psittacea	Brachiopode	Lamp Shell	9	0.2	137
8483	Henricia sp.	Étoiles de mer	Sea Stars	36	0.3	105
4437	Hiatella arctica	Saxicave arctique	Arctic Saxicave	3	<0.1	3
8431	Hippasteria phrygiana	Étoile de mer	Sea Star	32	14.4	55
8154	Homarus americanus	Homard américain	American Lobster	1	0.9	1

$\begin{aligned} & \text { Code } \\ & \text { STRAP } \end{aligned}$	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
2150	Hormathia digitata	Anémone	Anemone	21	0.8	139
2167	Hormathia nodosa	Anémone noduleuse	Rugose Anemone	3	0.3	7
8217	Hyas araneus	Crabe lyre	Atlantic Lyre Crab	18	2.5	278
8218	Hyas coarctatus	Crabe lyre	Arctic Lyre Crab	32	9.2	1409
1341	Hydrozoa	Hydrozoaires	Hydrozoans	29	0.1	
6977	Hyperia galba	Hypéride	Hyperiid	2	<0.1	3
4753	Illex illecebrosus	Encornet rouge nordique	Northern Shortfin Squid	108	580.1	2959
5003	Laetmonice filicornis	Polychète	Seaworm	33	0.2	145
8092	Lebbeus groenlandicus	Bouc	Spiny Lebbeid	12	2.4	608
8095	Lebbeus microceros	Bouc	Shrimp	2	<0.1	2
8093	Lebbeus polaris	Bouc	Polar Lebbeid	37	1.1	716
8091	Lebbeus sp.	Boucs	Lebbeids	2	<0.1	-
8513	Leptasterias groenlandica	Étoile de mer du Groenland	Greenland Sea Star	7	<0.1	13
8511	Leptasterias polaris	Étoile de mer polaire	Polar Sea Star	6	0.9	15
8521	Leptychaster arcticus	Stelléridé	Sea Star	2	<0.1	2
2207	Liponema multicorne	Anémone	Sea anemone	8	0.8	28
8196	Lithodes maja	Crabe épineux du Nord	Norway King Crab	50	36.2	104
2050	Lucernaria quadricornis	Lucernaire à quatres cornes	Horned Stalked Jellyfish	1	<0.1	1
4395	Macoma calcarea	Bivalve	Chalky Macoma	5	<0.1	41
5309	Maldane sarsi	Polychètes	Bamboo worm	1	<0.1	1
3219	Margarites costalis	Margarite rosé du Nord	Boreal Rosy Margarite	9	<0.1	25
3216	Margarites groenlandicus	Troque	Greenland marguerite	1	<0.1	2
4025	Megayoldia thraciaeformis	Bivalve	Broad Yoldia	29	4.2	845
8322	Molpadia oolitica	Holothurie	Sea Cucumber	,	<0.1	1
8164	Munidopsis curvirostra	Munidopsis curvirostra	Squat Lobster	11	<0.1	69
4128	Musculus discors	Moule lisse	Discordant mussel	1	<0.1	1
4126	Musculus sp.	Moules	Mussels	1	<0.1	1
4121	Mytilus sp.	Moules	Mussels	4	0.1	11
3000	Nemertea	Némerte	Ribbon Worm	4	<0.1	6
2219	Nephtheidae	Coraux mous	Soft corals	16	0.2	-
5113	Nephtys sp.	Polychète errante	Red-Lined Worm	3	<0.1	3
3566	Neptunea decemcostata	Neptunée à dix côtes	Wrinkle Whelk	1	<0.1	1
3565	Neptunea sp.	Buccins	Whelks	1	<0.1	1
4019	Nuculana sp.	Bivalves	Nutclams	2	<0.1	3
5961	Nymphon sp.	Araignées de mer	Sea Spiders	24	<0.1	85
8575	Ophiacantha bidentata	Ophiure épineuse	Brittle Star	9	<0.1	31
8583	Ophiopholis aculeata	Ophiure paquerette	Daisy Brittle Star	46	0.6	448
8585	Ophioscolex glacialis	Ophiure	Brittle star	21	<0.1	74

Code STRAP	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
8552	Ophiura robusta	Ophiure	Brittle Star	1	<0.1	4
8553	Ophiura sarsii	Ophiure	Brittle Star	60	17.2	9113
8530	Ophiuroidea	Ophiures	Brittle Stars	5	<0.1	30
8178	Pagurus sp.	Bernard hermite droitier	Hermit Crab	12	0.1	27
8111	Pandalus borealis	Crevette nordique	Northern Shrimp	114	1721.8	287750
8112	Pandalus montagui	Crevette ésope	Striped Pink Shrimp	77	246.2	79600
8057	Pasiphaea multidentata	Sivade rose, Crevette blanche	Pink Glass Shrimp	67	53.4	16544
8781	Pelonaia corrugata	Ascidie	Tunicate	1	<0.1	1
2203	Pennatula aculeata	Plume de mer	Sea Pen	77	2.4	1142
2201	Pennatulacea	Plumes de mer	Sea Pens	2	<0.1	40
2096	Periphylla periphylla	Méduse à coronne	Crown jellyfish	36	62.2	51
2255	Pleurobrachia pileus	Groseille de mer ronde	Sea Gooseberry	15	0.1	97
3578	Plicifusus kroeyeri	Colus	Arctic Whelk	2	<0.1	2
8783	Polycarpa fibrosa	Ascidie	Tunicate	3	0.4	280
4950	Polychaeta	Polychètes	Polychaetes	49	0.6	235
1109	Polymastia sp.	Éponge	Sponge	15	0.4	35
5007	Polynoidae	Polychète errante	Fifteen-Scaled Worm	22	0.1	37
5264	Polyphysia crassa	Polychète	Sea worm	3	<0.1	3
8135	Pontophilus norvegicus	Crevette	Norwegian Shrimp	79	2.9	1708
8435	Poraniomorpha sp.	Étoile de mer	Sea star	5	0.2	6
1101	Porifera	Éponges	Sponges	86	23.4	-
2573	Priapulus caudatus	Priapulide	Priapulid	2	<0.1	2
8433	Pseudarchaster parelii	Étoile de mer	Sea Star	14	0.3	29
5935	Pseudobonellia iraidii	Bonellie	Spoon Worm	,	<0.1	1
8520	Psilaster andromeda	Étoile de mer	Sea Star	13	6.1	1136
8294	Psolus phantapus	Holothurie	Sea Cucumber	2	<0.1	3
8410	Pteraster militaris	Étoile de mer	Sea Star	7	0.1	13
8412	Pteraster obscurus	Étoile de mer	Sea Star	1	<0.1	1
8411	Pteraster pulvillus	Étoile de mer	Sea Star	8	<0.1	14
8409	Pteraster sp.	Étoiles de mer	Sea stars	1	0.1	18
2210	Ptilella grandis	Plume de mer	Sea Pen	27	75.8	2510
2153	Ptychodactis patula	Anémone beige évasée	Anemone	2	<0.1	2
1353	Ptychogena lactea	Méduse	Jellyfish	12	1.1	327
1107	Radiella hemisphaerica	Éponge	Sponge	13	1.1	208
7211	Rhachotropis aculeata	Gammaride	Gammarid	7	<0.1	23
1380	Rhodaliidae	Siphonophore benthique	Benthic siphonophore	9	0.2	44
4557	Rossia sp.	Sépioles	Bobtails	35	0.5	69
8129	Sabinea sarsii	Crevette	Sars Shrimp	5	0.1	105

$\begin{gathered} \text { Code } \\ \text { STRAP } \end{gathered}$	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
8128	Sabinea septemcarinata	Crevette	Sevenline Shrimp	15	0.4	156
8127	Sabinea sp.	Crevette	Shrimp	2	<0.1	13
3491	Scabrotrophon fabricii	Murex	Murex	4	<0.1	5
3715	Scaphander punctostriatus	Céphalaspide	Giant Canoe Bubble	23	0.2	80
8119	Sclerocrangon boreas	Crevette de roche	Scultured Shrimp	16	21.7	2234
2040	Scyphozoa	Scyphozoaires	Scyphozoans	7	0.3	44
2679	Securiflustra securifrons	Bryozoaires marins	Marine bryozoans	3	<0.1	-
8035	Sergia robusta	Sergistidé écarlate	Scarlet Sergestid	1	<0.1	
4191	Similipecten greenlandicus	Pétoncle	Greenland Glass-Scallop	2	<0.1	2
8445	Solaster endeca	Soleil de mer pourpre	Purple Sunstar	6	0.6	8
8087	Spirontocaris liljeborgii	Bouc épineux	Friendly Blade Shrimp	29	0.2	135
8084	Spirontocaris sp.	Bouc	Blade Shrimp	10	0.1	-
8085	Spirontocaris spinus	Bouc perroquet	Parrot Shrimp	13	1.2	573
7750	Stegocephalus inflatus	Gammaride	Gammarid	3	<0.1	3
8570	Stegophiura nodosa	Ophiure	Brittle Star	1	<0.1	1
8515	Stephanasterias albula	Étoile de mer	Sea star	5	<0.1	12
2159	Stephanauge nexilis	Anémone de mer	Sea anemone	13	1.4	146
2173	Stomphia coccinea	Anémone marbrée	Anemone	24	0.7	66
8363	Strongylocentrotus sp.	Oursins	Sea Urchins	38	14.2	744
1112	Stylocordyla borealis	Éponge	Sponge	15	<0.1	191
6791	Syscenus infelix	Isopode	Isopod	58	0.8	548
1108	Tentorium semisuberites	Éponge	Sponge	11	<0.1	30
3101	Terebratulina septentrionalis	Térébratule du Nord	Northern Lamp Shell	11	<0.1	34
6972	Themisto libellula	Hypéride	Hyperiid	8	<0.1	164
1114	Thenea muricata	Éponge	Sponge	2	0.2	9
1357	Thuiaria thuja	Hydrozoaire	Bottlebrush Hydroid	4	<0.1	7
2152	Urticina crassicornis	Anémone de mer	Sea Anemone	1	<0.1	2
3452	Velutinidae	Gastéropode	Snail	1	<0.1	1
1127	Weberella bursa	Éponge	Sponge	3	1.6	10
4074	Yoldia sp.	Bivalves	Bivalves	1	<0.1	1
	Total	Invertebrés	Invertebrates		3765	471015

Others

Code STRAP	Scientific Name	French Name	English Name	Occurrence	Weight (kg)	Number
9970	-	Capsule de raies		1	<0.1	
9965	-	Capsule de raie lisse	Smooth Skate egg	2	<0.1	3
9966	-	Capsule de raie épineuse	Thorny Skate egg	16	0.8	

Appendix 3. Number of measured and weighed specimens and descriptive statistics for the length in 2020. Taxonomic codes (STRAP) follow Miller and Chabot (2014), with scientific name updates by the World Marine Species Registry (WoRMS 2018, http://www.marinespecies.org).

Vertebrates

$\begin{aligned} & \text { Code } \\ & \text { STRAP } \end{aligned}$	Scientific name	Sampled number		Length (cm)				
		Length	Weight	Min	P1 ${ }^{*}$	Median	P99*	Max
90	Amblyraja radiata	1090	405	10.0	11.4	35.4	63.4	78.2
696	Ammodytes sp.	7	6	8.2	8.2	15.0	20.2	20.2
700	Anarhichas lupus	199	79	9.8	9.9	25.4	75.3	77.0
701	Anarhichas minor	7	7	29.4	29.4	81.0	92.0	92.0
718	Anisarchus medius	17	5	11.3	11.3	13.1	15.8	15.8
320	Arctozenus risso	397	134	17.6	18.5	23.3	27.5	28.1
193	Argentina silus	169	62	7.6	7.6	17.0	33.5	37.6
811	Artediellus atlanticus	112	32	5.1	5.2	8.1	12.1	13.4
810	Artediellus sp.	48	18	4.4	4.4	7.1	9.9	9.9
812	Artediellus uncinatus	50	33	5.5	5.5	7.0	8.5	8.5
838	Aspidophoroides monopterygius	101	26	6.7	7.3	12.7	15.4	15.4
837	Aspidophoroides olrikii	3	3	6.0	6.0	7.1	8.1	8.1
102	Bathyraja spinicauda	1	1	123.0	123.0	123.0	123.0	123.0
451	Boreogadus saida	198	71	4.6	4.8	12.0	17.3	18.7
865	Careproctus reinhardti	9	6	7.5	7.5	11.1	15.4	15.4
27	Centroscyllium fabricii	403	116	14.3	14.8	44.1	67.2	73.8
150	Clupea harengus	734	94	14.0	17.1	26.3	37.4	40.1
721	Cryptacanthodes maculatus	12	4	22.4	22.4	26.0	63.8	63.8
982	Cryptopsaras couesii	1	1	20.9	20.9	20.9	20.9	20.9
849	Cyclopterus lumpus	65	60	8.6	8.6	24.4	41.9	41.9
461	Enchelyopus cimbrius	1033	174	5.6	11.7	19.5	27.5	30.0
711	Eumesogrammus praecisus	169	31	7.6	10.0	14.3	22.4	23.0
847	Eumicrotremus terraenovae	206	20	2.7	2.9	6.0	13.1	70.8
438	Gadus morhua	4515	1801	4.6	14.9	28.2	62.7	106.0
439	Gadus ogac	6	6	24.3	24.3	33.2	36.2	36.2
426	Gasterosteus aculeatus aculeatus	23	9	5.4	5.4	6.2	6.9	6.9
890	Glyptocephalus cynoglossus	2727	1676	6.3	9.3	28.1	42.8	48.9
205	Gonostomatidae	2	2	13.1	13.1	13.5	13.9	13.9
746	Gymnelus viridis	10	9	8.5	8.5	14.1	18.0	18.0
823	Gymnocanthus tricuspis	109	42	9.2	9.5	15.9	24.8	25.2
809	Hemitripterus americanus	1	0	39.4	39.4	39.4	39.4	39.4
889	Hippoglossoides platessoides	5281	2203	6.8	10.1	19.3	42.7	55.3
893	Hippoglossus hippoglossus	66	65	33.1	33.1	87.6	154.0	154.0
832	Icelus spatula	29	15	4.5	4.5	6.7	12.1	12.1
836	Leptagonus decagonus	267	51	6.7	7.1	18.0	21.9	23.7
717	Leptoclinus maculatus	288	70	8.0	8.5	12.5	18.3	19.3
891	Limanda ferruginea	183	66	12.9	17.5	25.2	37.5	37.6
868	Liparis bathyarcticus	44	27	3.0	3.0	11.5	26.5	26.5
966	Lophius americanus	13	13	6.0	6.0	65.0	103.2	103.2
716	Lumpenus lampretaeformis	200	57	15.4	16.3	28.3	40.6	42.1
750	Lycenchelys paxillus	1	1	22.2	22.2	22.2	22.2	22.2
752	Lycenchelys verrillii	1	1	10.8	10.8	10.8	10.8	10.8
727	Lycodes esmarkii	7	7	18.7	18.7	26.2	45.1	45.1
728	Lycodes lavalaei	56	37	10.3	10.3	25.2	45.4	45.4
726	Lycodes sp.	4	4	15.2	15.2	17.6	26.2	26.2
734	Lycodes terraenovae	2	1	24.3	24.3	29.9	35.4	35.4
730	Lycodes vahlii	122	47	10.5	11.1	17.9	39.3	40.9
91	Malacoraja senta	264	107	8.5	9.3	17.8	58.9	59.8
187	Mallotus villosus	1034	129	8.3	9.4	13.9	16.3	17.1
745	Melanostigma atlanticum	209	53	5.0	6.2	10.6	13.6	14.2
449	Merluccius bilinearis	98	94	13.0	13.0	27.1	39.9	39.9
271	Myctophiformes	7	4	9.0	9.0	14.1	16.1	16.1
818	Myoxocephalus aenaeus	6	6	13.6	13.6	20.4	23.4	23.4

Code	Scientific name	Sampled number				Length (cm)		
		Length	Weight	Min	P1 *	Median	P99*	Max
820		2	2	19.8	19.8	22.3	24.7	24.7
819		145	72	4.2	4.3	27.7	39.1	40.5
12		1162	252	20.9	23.6	36.5	47.8	54.5
368		2	2	45.3	45.3	68.6	91.8	91.8
478		1517	209	7.9	9.4	23.4	31.7	35.0
275		12	12	11.5	11.5	15.1	16.4	16.4
874	Paraliparis calidus	10	7	7.1	7.1	9.8	11.1	11.1
856	Paraliparis copei copei	14	14	6.1	6.1	10.8	13.7	13.7
15	Petromyzon marinus	1	1	32.4	32.4	32.4	32.4	32.4
444	Phycis chesteri	461	286	14.8	16.9	26.3	37.9	44.2
443	Pollachius virens	1	1	75.1	75.1	75.1	75.1	75.1
244	Polymetme thaeocoryla	1	0	10.9	10.9	10.9	10.9	10.9
94	Rajella fyllae	1	1	9.6	9.6	9.6	9.6	9.6
892	Reinhardtius hippoglossoides	4645	2103	12.0	15.2	27.5	50.4	76.0
572	Scomber scombrus	268	85	6.9	7.3	11.1	32.2	36.8
398	Scomberesox saurus saurus	7	7	26.9	26.9	36.5	38.8	38.8
792	Sebastes spp.	13179	4372	3.1	8.1	22.5	35.5	47.5
24	Squalus acanthias	3	3	67.3	67.3	71.6	79.8	79.8
220	Sternoptychidae	1	1	4.7	4.7	4.7	4.7	4.7
373	Synaphobranchus kaupii	2	2	45.4	45.4	45.4	45.4	45.4
814	Triglops murrayi	571	86	5.2	7.0	11.6	16.1	19.3
447	Urophycis tenuis	508	478	13.8	21.9	36.9	65.6	88.6

Invertebrates

Code STRAP	Scientific name	Sampled number		Length (cm)				
		Length	Weight	Min	P1*	Median	P99*	Max
8138	Argis dentata	443	0	0.7	0.9	1.7	2.2	2.3
8113	Atlantopandalus propinqvus	83	0	1.2	1.2	1.8	2.3	2.3
8206	Cancer irroratus	1	0	11.1	11.1	11.1	11.1	11.1
8213	Chionoecetes opilio	609	20	0.7	1.0	4.6	12.5	13.3
8075	Eualus fabricii	99	0	0.5	0.5	0.8	1.1	1.1
8081	Eualus gaimardii belcheri	1	0	1.1	1.1	1.1	1.1	1.1
8080	Eualus gaimardii gaimardii	35	0	0.6	0.6	1.0	1.2	1.2
8077	Eualus macilentus	140	0	0.7	0.7	1.1	1.3	1.4
8074	Eualus sp.	1	0	0.9	0.9	0.9	0.9	0.9
8033	Eusergestes arcticus	6	0	1.6	1.6	1.7	1.9	1.9
4770	Gonatus fabricii	0	1	-				
8154	Homarus americanus	0	1					
8217	Hyas araneus	192	1	0.9	0.9	2.0	6.3	7.2
8218	Hyas coarctatus	401	7	0.8	0.9	1.9	4.9	6.7
4753	Illex illecebrosus	1834	358	10.6	14.7	21.0	24.7	27.2
8092	Lebbeus groenlandicus	162	0	0.5	0.8	1.5	1.8	1.9
8095	Lebbeus microceros	2	0	0.9	0.9	1.0	1.1	1.1
8093	Lebbeus polaris	214	0	0.6	0.7	1.0	1.4	1.5
8196	Lithodes maja	100	6	1.1	1.2	7.6	11.9	12.2
8111	Pandalus borealis	17519	28	0.6	1.0	2.1	2.8	3.1
8112	Pandalus montagui	1991	0	0.6	0.8	1.3	2.1	2.2
8057	Pasiphaea multidentata	2284	0	0.7	1.5	2.5	3.1	3.3
8135	Pontophilus norvegicus	951	0	0.7	0.8	1.2	1.7	1.8
8129	Sabinea sarsii	60	0	0.6	0.6	1.0	1.5	1.5
8128	Sabinea septemcarinata	57	0	0.8	0.8	1.2	1.7	1.7
8127	Sabinea sp.	1	0	1.4	1.4	1.4	1.4	1.4
8119	Sclerocrangon boreas	445	0	1.0	1.1	1.7	2.7	2.9
8035	Sergia robusta	1	0	2.2	2.2	2.2	2.2	2.2
8087	Spirontocaris liljeborgii	52	0	0.5	0.5	1.1	1.4	1.4
8084	Spirontocaris sp.	2	0	0.6	0.6	0.7	0.8	0.8
8085	Spirontocaris spinus	123	0	0.5	0.6	1.2	1.6	1.6

[^0]
[^0]: * P1 : $1^{\text {st }}$ percentile \quad P99:99 ${ }^{\text {th }}$ percentile

