

Fisheries and Oceans Canada

Sciences des écosystèmes et des océans

s Ecosystems and Oceans Science

Secrétariat canadien de consultation scientifique (SCCS)

Document de recherche 2018/028

Région du Pacifique

État des stocks de hareng du Pacifique (*Clupea pallasii*) dans les eaux de la Colombie-Britannique en 2017 et prévisions pour 2018

J.S. Cleary¹, S. Hawkshaw², M.H. Grinnell¹, et C. Grandin¹

¹Station biologique du Pacifique Pêches et Océans Canada 3190, chemin Hammond Bay Nanaimo (C.-B.) V9T 6N7

 ²Institut des sciences de la mer Pêches et Océans Canada
 9860, chemin Saanich Ouest Sidney (C.-B.) V8L 5T5

Avant-propos

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Publié par :

Pêches et Océans Canada Secrétariat canadien de consultation scientifique 200, rue Kent Ottawa (Ontario) K1A 0E6

> http://www.dfo-mpo.gc.ca/csas-sccs/ csas-sccs@dfo-mpo.gc.ca

© Sa Majesté la Reine du chef du Canada, 2019 ISSN 2292-4272

La présente publication doit être citée comme suit :

Cleary, J.S., Hawkshaw, S., Grinnell, M.H., et Grandin, C. 2019. État des stocks de hareng du Pacifique (*Clupea pallasii*) dans les eaux de la Colombie-Britannique en 2017 et prévisions pour 2018. Secr. can. de consult. sci. du MPO. Doc. de rech. 2018/028. v + 296 p

Also available in English :

Cleary, J.S., Hawkshaw, S., Grinnell, M.H., and Grandin, C. 2019. Status of B.C. Pacific Herring (Clupea pallasii) in 2017 and forecasts for 2018. DFO Can. Sci. Advis. Sec. Res. Doc. 2018/028. v + 285 p.

TABLE DES MATIÈRES

RÉSUMÉ0				
1	INT	RODUCTION	1	
	1.1	CONTEXTE DE L'ÉVALUATION DE 2017	1	
	1.2	CYCLE BIOLOGIQUE	2	
	1.3	STRUCTURE DES STOCKS		
	1.4	CONSIDÉRATIONS ÉCOSYSTÉMIQUES	4	
	1.5 PÊCHES AU HARENG			
	1.6	GESTION DES STOCKS DE HARENG PRINCIPAUX	5	
	1.7	POINTS DE RÉFÉRENCE BIOLOGIQUES	6	
	1.7.	.1 Point de référence limite	7	
	1.7.	2. Points de référence supérieurs des stocks	7	
	1.8	HISTORIQUE DES ÉVALUATIONS	9	
2	МО	DÉLISATION DE L'ÉVALUATION DES STOCKS	10	
	2.1	DONNÉES D'ENTRÉE	11	
	2.1.	.1 Données sur les prises	11	
	2.1.	.2 Données biologiques	13	
	2.1.	.3 Indice d'abondance	15	
	2.1.	.4 Paramètres biologiques présumés	17	
	2.1.	.5 Résumés des données propres aux régions d'évaluation des stocks princip	bales.17	
	2.2	MODÈLE STATISTIQUE DES PRISES SELON L'ÂGE	18	
	2.2.	Changements par rapport à l'évaluation de 2016	18	
	2.2.	.2 Description du modèle	19	
	2.2.	.3 Distributions de probabilité <i>a priori</i>	19	
	2.3	ANALYSES DE LA SENSIBILITÉ	19	
	2.3.	.1 Mortalité naturelle	20	
	2.3.	.2 Paramètres d'écart	21	
	2.3.	.3 Distributions de probabilité <i>a priori</i> de la capturabilité des relevés	22	
	2.3.	.4 Maturité selon l'âge	23	
	2.4	RÉSULTATS DU MODÈLE D'ÉVALUATION	24	
	2.4.	.1 Modèles de référence	24	
	2.4.	.2 Diagnostic du modèle	25	
	2.4.	.3 Ajustements aux données de relevé et sur les proportions selon l'âge	25	
	2.4.	.4 Estimations des paramètres	25	
	2.4.	.5 Biomasse et état des stocks	25	
	2.4.	.6 Recrutement	28	
	2.4.	.7 Taux de récolte effectif	28	
	2.4.	.8 Analyse de la productivité	29	
	2.5	HYPOTHÈSES ET INCERTITUDES	29	
	2.6	ANALYSES RÉTROSPECTIVES	30	

3 RECOMMANDATIONS ET OPTIONS LIÉES AU RENDEMENT				
3.1 BIOMASSE PROJETÉE EN 2018				
3.2 TABLES DE DÉCISION	31			
3.2.1 Mesures du rendement	31			
4 BESOINS FUTURS DE RECHERCHE ET DE DONNÉES	31			
REMERCIEMENTS				
RÉFÉRENCES				
7 TABLEAUX				
8 FIGURES	61			
ANNEXE A. DESCRIPTION DU MODÈLE				
ANNEXE B. DONNÉES D'ENTRÉE				
ANNEXE C. SÉRIES CHRONOLOGIQUES DE DONNÉES SUR LES				
STOCKS SECONDAIRES				
ANNEXE D. ANALYSE DE RAPPROCHEMENT				

RÉSUMÉ

Le présent document contient les résultats de l'évaluation des stocks de hareng du Pacifique (Clupea pallasii) dans les eaux de la Colombie-Britannique réalisée à l'aide des données de 2017. Ces résultats serviront de fondement aux avis qui seront formulés à court terme à l'intention des gestionnaires des pêches et des intervenants relativement à l'état actuel des stocks et aux répercussions probables de différentes options de récolte. Une plateforme actualisée du modèle statistique intégré fondé sur les prises des deux sexes selon l'âge (ISCAM) a été appliquée de façon indépendante à chacune des cinq zones de stock principales, et adaptée en fonction des données sur les indices du frai indépendants des pêches, des estimations annuelles des prises commerciales depuis 1951, et des données sur la structure selon l'âge provenant des pêches commerciales et de la charte du programme de la pêche à l'essai. Des évaluations exhaustives des stocks ont été effectuées dans cinq zones principales : Haida Gwaii (HG); district de Prince Rupert (DPR); côte centrale (CC); détroit de Georgia (DG) et côte ouest de l'île de Vancouver (COIV). Les résumés des résultats sont reflétés dans le rétablissement des stocks, l'état du stock reproducteur en 2017 et la biomasse projetée du stock reproducteur en 2018. Les données concernant deux zones de stock secondaires (zone 27 et zone 2 Ouest) sont également présentées à l'annexe C.

Le modèle a été utilisé pour estimer les paramètres stock-recrutement, la mortalité naturelle variable dans le temps, les coefficients de capturabilité associés aux séries chronologiques des relevés, ainsi que les paramètres de sélectivité pour la pêche commerciale et les séries de relevés pour lesquelles on dispose de données sur l'âge. Des estimations a posteriori médianes et des intervalles de crédibilité à 90 % de la biomasse du stock reproducteur, du recrutement, de la mortalité naturelle variable dans le temps et de la biomasse d'équilibre non exploitée du stock reproducteur sont présentées pour les paramétrages des modèles d'évaluation 1 et 2 (AM2 et AM1).

La biomasse d'équilibre non exploitée du stock reproducteur (SB_0), le principal point de référence biologique pour le hareng du Pacifique, est estimée à partir d'une relation stock-recrutement du modèle Beverton-Holt (paramétrée dans le modèle d'évaluation) ajustée aux tendances moyennes à long terme du poids selon l'âge et de la mortalité naturelle. Des projections sur un an de la biomasse du stock reproducteur pour 2018 ont été établies pour chaque zone de stock principale, selon une fourchette de prises constantes, afin d'estimer les probabilités que les mesures de cette biomasse et des taux de récolte soient inférieures et supérieures aux points de contrôle historiques appliqués pour la gestion du hareng du Pacifique, tel qu'il est indiqué dans la règle de contrôle des prises de hareng. La présente évaluation renferme en outre des données sur l'état actuel et projeté du stock en 2018 par rapport à un point de référence limite (PRL) de 0,3 SB_0 .

1 INTRODUCTION

1.1 CONTEXTE DE L'ÉVALUATION DE 2017

Des évaluations des stocks de hareng du Pacifique ont été effectuées dans cing grandes régions d'évaluation des stocks de la Colombie-Britannique : Haida Gwaii (HG); district de Prince Rupert (DPR); côte centrale (CC); détroit de Georgia (DG) et côte ouest de l'île de Vancouver (COIV). Nous présentons également des données correspondant à deux régions d'évaluation des stocks secondaires : la zone 27 (Z27) et la zone 2 Ouest (Z2O). Les évaluations des cinq zones de stock de hareng principales sont présentées dans le corps du présent rapport, et les évaluations des deux zones de stock secondaires sont présentées à l'annexe C. Les procédures de gestion du hareng du Pacifique (Culpea pallasii) se subdivisent en plusieurs composantes clés. Aux fins des présentes, la procédure de gestion est envisagée comme un ensemble d'activités menant à des prises au cours d'une année donnée. Les composantes de la procédure englobent les éléments suivants : les données recueillies et leur quantité; les hypothèses concernant la structure du stock; le modèle d'évaluation du stock utilisé; et la règle de contrôle des prises (RCP) de hareng utilisée pour la conversion mathématique de certaines estimations de l'état actuel du stock en un total autorisé des captures (TAC) (de la Mare 1998) et les erreurs de mise en œuvre. L'efficacité d'une procédure est fonction des objectifs de la gestion du stock, y compris la probabilité d'atteindre le niveau de biomasse cible, la probabilité d'éviter les niveaux de biomasse limites, la moyenne des prises, la variabilité des prises et d'autres mesures. Ainsi, l'efficacité d'une procédure de gestion ne peut être évaluée que si les objectifs de gestion sont bien compris.

La gestion du hareng du Pacifique a été assujettie à une règle de contrôle des prises bien établie, mais si l'on tient compte de la définition énoncée ci-dessus, la procédure de gestion n'a pas été appliquée de manière constante dans la pratique. Depuis sa mise en œuvre en 1986 et sa mise à l'essai officielle (Haist 1988¹; Hall *et al.* 1988), pas une seule de ses composantes n'est restée inchangée : à compter de 1988, les données de relevé ont été recueillies en plongée; la règle de contrôle des prises, après avoir été appliquée aux estimations actuelles de la biomasse du stock reproducteur, a été appliquée aux estimations projetées de la biomasse du stock reproducteur (pour les stocks secondaires), et les hypothèses du modèle d'évaluation, modifiées à plusieurs occasions, ont reposé sur différentes formules distinctes et ponctuelles, diverses hypothèses possibles pour q, ou d'autres encore qui concernaient des estimations empiriques du poids selon l'âge et des estimations de la mortalité naturelle variable dans le temps, pour ne citer que quelques exemples. En plus des changements opérationnels dans l'application des procédures de gestion, certaines données probantes indiquent que des changements environnementaux et écologiques ont entraîné des changements apparents dans la taille selon l'âge et la mortalité naturelle qui auraient nui à l'efficacité des procédures même si elles avaient été appliquées de façon uniforme. Il est par conséquent difficile d'attribuer les écarts par rapport aux prévisions initiales concernant l'efficacité des procédures de gestion (probabilité de fermetures de pêches et variabilité annuelle moyenne des prises) à une cause en particulier.

L'évaluation de cette année présente deux scénarios de référence pour chacun des cinq stocks principaux : « AM1 », dans lequel les paramètres de capturabilité des relevés en surface (1951 à 1987) et en plongée (1988 à 2017) (q_1 et q_2) sont estimés selon une distribution a priori, et

¹ V. Haist., 1988. An evaluation of three harvest strategies based on forecast stock biomass for B.C. herring fisheries, Comité d'examen de l'évaluation des stocks du Pacifique, Ministère des Pêches et des Océans du Canada, document de travail H88-3. Manuscrit non publié.

« AM2 », dans lequel la capturabilité des relevés en surface (q_1) est estimée et celle des relevés en plongée est fixe ($q_2 = 1$). Le code de modélisation ISCAM utilisé en 2017 a été mis à jour en fonction de la nouvelle plateforme (voir une description détaillée dans l'analyse de rapprochement, à l'annexe D).

Les scénarios des analyses de la sensibilité par l'AM2 et l'AM1 visaient à étudier :

- 1. l'estimation de la mortalité naturelle variable dans le temps par rapport à la mortalité naturelle constante;
- 2. erreurs sur les variables du paramétrage de la méthode et les erreurs dues à l'observation;
- 3. la sensibilité à l'élargissement de la distribution a priori de q;
- 4. la juxtaposition de la maturité et de la sélectivité selon l'âge.

Des analyses de la sensibilité sont présentées pour les cinq stocks principaux.

1.2 CYCLE BIOLOGIQUE

Le hareng du Pacifique est une espèce pélagique qui migre entre ses aires de reproduction dans les eaux côtières et ses aires d'alimentation dans les eaux hauturières du Pacifique Nord. Dans le Pacifique Est, l'aire de répartition du hareng s'étend de la Californie à la mer de Beaufort. Dans le sud de la Colombie-Britannique, la majorité des harengs intègrent le stock reproducteur et atteignent la maturité sexuelle à l'âge 3, mais certains sont plus précoces et viennent grossir la population des reproducteurs dès l'âge 2. Dans le nord de la Colombie-Britannique, le hareng a tendance à frayer pour la première fois à l'âge 3 ou 4; les recrues d'âge 2 sont rares, voire inexistantes (Taylor 1964). Selon les observations, les harengs passent leur premier hiver dans le détroit de Georgia avant de rejoindre les populations immatures et adultes dans les aires d'alimentation hauturières; dans d'autres régions de la côte, les jeunes harengs semblent commencer leur migration vers le large à la fin de leur premier été (Hourston et Haegele 1980). Le hareng arrive à maturité et s'intègre au stock reproducteur principalement à l'âge 3 en Colombie-Britannique, mais l'âge au recrutement tend à augmenter en fonction de la latitude dans cette aire de répartition.

Le hareng est une espèce itéropare et revient frayer chaque année une fois parvenu à maturité, jusqu'à ce qu'il meure naturellement ou soit pêché. Les données d'étiquetage sur plusieurs années indiquent de manière générale et évidente que le hareng retourne chaque année dans la même grande région géographique, mais pas forcément à la même plage ou à la même baie de frai chaque année (Hay *et al.* 2001; Flostrand *et al.* 2009). Chaque femelle produit de 20 000 à 40 000 œufs environ, et de façon relativement constante 100 œufs environ par gramme de poids corporel (les femelles plus grosses produisent plus d'œufs que les femelles plus petites et jeunes) (Hourston et Haegele 1980; Hay 1985).

Il est difficile d'évaluer l'âge de la maturité chez le hareng en raison de la rareté des études menées sur les poissons adultes dans les zones hauturières. Des évaluations histologiques d'ovaires en formation suggèrent que le quart environ des harengs du Pacifique arrivent à maturité à l'âge 2, et que 90 % au moins sont matures à l'âge 3 (Doug Hay, données non publiées²). Ces observations corroborent celles des études sur les stocks du sud de la Colombie-Britannique, tel qu'il a été expliqué auparavant.

En Colombie-Britannique, le hareng se déplace principalement en grands rassemblements et il adopte des comportements migratoires saisonniers. Les stocks principaux de Haïda Gwaii (HG) et du district de Prince Rupert (DPR) se nourrissent dans le détroit d'Hécate pendant l'été et

² Pêches et Océans Canada, Station biologique du Pacifique, Nanaimo (C.-B.).

l'automne, et demeurent dans les zones hauturières du détroit avant de migrer, en février, vers les zones côtières de frai où ils restent de mars à mai. Le stock principal de la côte centrale (CC) se nourrit dans le sud du détroit d'Hécate et du détroit de la Reine-Charlotte pendant l'été et au début de l'automne, se confinant aux zones hauturières avant de migrer vers les eaux côtières de la CC en février en vue de la saison du frai, en mars et avril. Le stock principal du détroit de Georgie (DG) se nourrit au large de la côte ouest de l'île de Vancouver pendant l'été et au début de l'automne, et il retourne vers le DG au début d'octobre, où il reste jusqu'à la période de frai, en mars et avril. Le stock principal de la côte ouest de l'île de Vancouver (COIV) se nourrit dans les zones hauturières du sud de l'île de Vancouver pendant l'été et au début de l'automne (il se mélange alors au stock migrateur du DG), et retourne vers la côte à la fin de l'automne en vue du frai en mars et avril, alors que certains harengs précoces peuvent frayer en janvier et février.

1.3 STRUCTURE DES STOCKS

La recherche sur la structure des stocks de hareng du Pacifique comprend des études sur la génétique et diverses méthodes d'étiquetage. Beacham et al. (2008) ont examiné la structure génétique de la population de hareng du Pacifique de la Colombie-Britannique et des régions adjacentes à partir de variations de microsatellites. Cette recherche a permis de recenser quatre stocks de hareng du Pacifique dans les eaux de la Colombie-Britannique, ainsi que des stocks dans les eaux du sud-est de l'Alaska et les eaux des États de Washington et de Californie. En Colombie-Britannique, les différences liées au moment du frai sont ressorties comme le principal mécanisme d'isolement entre les stocks, bien qu'il soit admis que l'isolement géographique des populations reproductrices puisse aussi contribuer dans une certaine mesure au maintien de la différenciation génétique entre les stocks. Selon les conclusions de la recherche génétique, la faible différenciation génétique entre les populations de hareng du Pacifique dans les eaux de la Colombie-Britannique concorde avec les taux observés de vagabondage entre les populations, lesquels seraient suffisants pour homogénéiser les fréquences des allèles sur de vastes superficies. Toutefois, Beacham et al. (2008) soulignent que même si les taux de vagabondage entre les populations de hareng du Pacifique de la Colombie-Britannique peuvent contribuer à une différenciation génétique minimale dans différentes zones, ces taux pourraient s'avérer insuffisants pour compenser la surexploitation de l'espèce dans certaines régions.

Depuis les années 1930, le hareng du Pacifique de la Colombie-Britannique a fait l'objet de trois campagnes de récupération des étiquettes. Dans le cadre de la première campagne, de 1936 à 1967, des étiquettes internes ont été placées dans la cavité abdominale; durant celle de 1979 à 1992, on a utilisé des étiquettes externes de type « ancre » et, pour la campagne de 1999 à 2006, des micromarques codées internes ont été utilisées. L'analyse la plus récente des données des micromarques codées indique une variation importante de 53 à 90 % de la fidélité d'une région à l'autre (Flostrand *et al.* 2009), ce qui correspond aux résultats antérieurs de Stevenson (1954), de Hourston (1982), de Ware *et al.* (2000), de Hay *et al.* (2001), et de Ware et Schweigert (2001).

Le concept du stock de hareng des eaux de la Colombie-Britannique a évolué au fil du temps en réponse à la nécessité de gérer les pêches. Ces dernières années, les stocks migrateurs ont été exploités pour la pêche du hareng rogué, la pêche pour la consommation humaine et la pêche à l'appât, mais il existe des raisons de croire que certains stocks résidents, que l'on retrouve généralement dans les anses, sont aussi exploités pour la pêche à l'appât. Actuellement, aux fins de la gestion des pêches, les stocks de hareng du Pacifique des eaux de la Colombie-Britannique sont gérés dans cinq zones principales et deux zones secondaires (figure 2). Les termes *principales* et *secondaires* font référence aux différences relatives entre les échelles géographiques et de biomasse de la zone visée. Établies à partir des registres historiques des prises commerciales et des lieux de frai, les limites des régions d'évaluation principales et secondaires correspondent grosso modo à l'habitat de stocks migrateurs de hareng relativement distincts. Chaque région d'évaluation des stocks compte différentes zones statistiques, plus ou moins nombreuses selon le cas, qui sont subdivisées en sections puis en emplacements. Des cartes indiquant les limites des aires de répartition des stocks et les zones statistiques de chaque région d'évaluation des stocks sont publiées dans les <u>pages sur les</u> pontes et les prises de hareng du site Web de Pêches et Océans Canada.

1.4 CONSIDÉRATIONS ÉCOSYSTÉMIQUES

Le hareng est une espèce fourrage qui joue un rôle clé dans l'écosystème marin, en plus de servir de nourriture à diverses espèces (Schweigert *et al.* 2010). Il est une proie importante pour de nombreux piscivores, notamment le saumon du Pacifique (coho et quinnat), le merlu du Chili, le flétan du Pacifique, la plie à grande bouche et l'aiguillat commun. On pense aussi que le hareng pourrait tenir une place importante dans le régime alimentaire des mammifères marins prédateurs comme les otaries de Steller et de Californie, les phoques communs, les otaries à fourrure du Nord, les marsouins communs, les dauphins à flancs blancs du Pacifique, ainsi que les baleines à bosse et grises. La série chronologique visée par l'évaluation du hareng du Pacifique de 1951 à 2017 indique une augmentation de la taille des populations de phoques, d'otaries et de cétacés à fanons, qui se nourrissent de hareng (MPO 2003, 2010; Caretta *et al.* 2011; Crawford et Irvine 2011).

Le MPO compile actuellement des données en vue de la mise au point d'approches de modélisation des écosystèmes dans l'espoir que cette initiative(avec d'autres initiatives de modélisation des écosystèmes de chercheurs de l'Université de la Colombie-Britannique) aideront à comprendre comment les interactions environnementales et écologiques se sont répercutées jusqu'ici et se répercuteront dans le futur sur les stocks de hareng du Pacifique de la Colombie-Britannique.

Entre-temps, la région du Pacifique du MPO s'est engagée à réaliser une évaluation de la stratégie de gestion afin de déterminer le rendement des procédures de gestion relatives aux effets de l'écosystème sur la mortalité et la croissance naturelles du hareng du Pacifique. L'évaluation du rendement des procédures de gestion compte tenu de l'incidence de tels changements écosystémiques sur les stocks de hareng du Pacifique de la Colombie-Britannique fait partie des priorités du MPO en matière de recherche.

1.5 PÊCHES AU HARENG

Il y a longtemps que le hareng du Pacifique est pêché en Colombie-Britannique et qu'il fournit un éventail de produits alimentaires. Les Premières Nations pêchaient traditionnellement le hareng entier et ses œufs à des fins alimentaires, sociales et rituelles. La pêche commerciale au hareng du Pacifique a débuté au XIX^e siècle en Colombie-Britannique. Tout d'abord concentrée sur le marché alimentaire local, elle s'est rapidement étendue à l'exportation de hareng salé à sec vers les marchés orientaux. En 1937, une pêche minotière a également été établie pour la production de farine et d'huile de poisson (Hourston et Haegele 1980). De 1951 à 1965, la moyenne des prises de hareng du Pacifique s'établissait à 143 000 tonnes.

Du début des années 1930 à la fin des années 1960, le hareng a été pêché à des fins commerciales et de transformation (pêche minotière) en produits de valeur relativement faible, comme la farine et l'huile de poisson. Les pêches ont augmenté de manière considérable au début des années 1960, mais elles ne pouvaient pas être durables. Dès 1965, sous l'effet combiné de la surpêche et d'une succession de faibles classes d'âge attribuables à des

conditions environnementales défavorables et à une faible biomasse reproductrice, la plupart des poissons plus âgés avaient disparu de la biomasse du stock reproducteur. La pêche commerciale s'est effondrée et a été fermée par le gouvernement fédéral en 1967 pour favoriser le rétablissement de la ressource. Pendant la fermeture, en vigueur de 1967 à 1971, des activités de pêche limitées se sont poursuivies à de faibles niveaux (Hourston 1980). À cette époque, l'intérêt allait croissant pour la pêche au hareng rogué à des fins d'exportation au Japon, où les stocks de hareng avaient été décimés. La petite pêche expérimentale au hareng rogué amorcée en 1971 a connu une expansion rapide, jusqu'à l'imposition d'un taux de récolte en 1983 pour réguler les prises. Une série de classes d'âge plus abondantes que la moyenne observée au début des années 1970 a contribué à un rétablissement rapide des stocks et à la réouverture de toutes les zones à la pêche commerciale. En comparaison des prises moyennes de 1951 à 1965, la prise moyenne des 35 dernières années (1983 à 2017) a été de 27 000 tonnes.

1.6 GESTION DES STOCKS DE HARENG PRINCIPAUX

La règle de contrôle des prises de hareng du Pacifique se présente comme suit (Martell *et al*.2012) :

$$U_{T+1}' = \begin{cases} 0 & SB_{T+1} \le 0.25 \cdot SB_0 \\ \min\left(\frac{SB_{T+1} - 0.25 \cdot SB_0}{SB_{T+1}}, \ 0.2\right) & SB_{T+1} > 0.25 \cdot SB_0 \end{cases}$$
(1)

dans laquelle *T* correspond à l'année terminale de l'évaluation d'un stock; SB_{T+1} à la biomasse prévue avant la pêche pour l'année T+1, et SB_0 à la biomasse d'équilibre non exploitée du stock reproducteur. Le résultat de la règle de contrôle des prises correspond au taux de récolte annuelle prévue, réduit à zéro lorsque le stock reproducteur tombe sous le niveau seuil de 0,25 de la SB_0 .

Pour les zones de stock principales, la règle de contrôle des prises est un hybride des politiques relatives à l'échappée constante et au taux de récolte constant qui permet d'abaisser les taux de récolte dans les zones où un taux de récolte annuelle prévue de 20 % risquerait de faire tomber la biomasse de reproducteurs adultes prévue avant la pêche (l'« échappée ») en deçà du seuil de 0,25 de la *SB*₀ (Cleary*et al.* 2010; Cleary et Schweigert 2012).

Cette valeur seuil a été établie à partir de simulations (Hall 1986; Haist 1988¹; Hall *et al.* 1988; Zheng *et al.* 1993; Haist *et al.* 1993) suggérant que lorsque les stocks dépassent 0,25 de la SB_0 , la RCP hybride est plus susceptible de réduire l'écart des prises et le nombre de fermetures des pêches que la règle de l'échappée constante.

Contrairement aux prévisions des analyses effectuées à la fin des années 1980, certains stocks de hareng seraient fréquemment tombés sous les niveaux seuils. À compter de 1986, divers modèles d'évaluation se sont succédé, avec chaque fois des hypothèses et des données différentes qui, d'une année à l'autre, ont produit des estimations nouvelles des niveaux actuels et non exploités de la biomasse du stock reproducteur. Par conséquent, il est impossible de comparer les estimations actuelles et historiques des évaluations des stocks. Les plans antérieurs de gestion intégrée des pêches nous offrent donc les meilleures approximations pour établir si les stocks étaient supérieurs ou inférieurs aux seuils. Selon cette analyse, 3 des stocks principaux de hareng, savoir ceux de la COIV, de la CC et du DG, ont été en deçà du seuil pendant 32 %, 21 % et 46 % des années, respectivement, de 1986 à 2013. On ne comprend pas bien l'incidence relative de la récolte, les interactions environnementales et écologiques à l'origine de fluctuations dans la mortalité et la croissance naturelles, ainsi que d'autres modèles

d'évaluation (en particulier les modèles plus prudents appliqués avant 2011) ou d'autres facteurs influant sur les stocks estimés moins abondants que le niveau seuil.

Depuis l'introduction de la RCP pour le hareng du Pacifique, l'environnement politique des pêches canadiennes a changé : en 2009, on a adopté un Cadre pour la pêche durable qui renfermait un Cadre décisionnel pour les pêches en conformité avec l'approche de précaution, ci-après appelé le cadre de l'AP du MPO. Le cadre de l'AP est l'une des composantes du Cadre pour la pêche durable, la stratégie nationale du MPO pour promouvoir le progrès vers une approche écosystémique de la gestion des pêches canadiennes. Dans la Demande d'information et d'avis scientifiques de 2017, la Gestion des pêches sollicitait des avis sur le hareng du Pacifique conformes à l'exigence du Cadre visant la caractérisation de l'incertitude et du risque. La région du Pacifique du MPO s'est engagée à renouveler le cadre de gestion du hareng du Pacifique, notamment en mettant à jour les analyses de simulation fondant les règles de contrôle des prises. Bien que la RCP pour le hareng n'ait pas été conçue pour répondre à l'intention du Cadre, elle satisfait néanmoins du point de vue de la forme à l'exigence visant la réduction du taux de pêche lorsque l'état du stock présente une abondance faible pour favoriser la croissance du stock jusqu'au point de référence cible de la biomasse. Des analyses de simulation de la RCP seront réalisées dans le cadre d'un processus d'évaluation de la stratégie de gestion. Elles seront axées sur l'établissement de procédures de gestion conformes à la politique du cadre décisionnel, notamment en évitant les points de référence limites (PRL) assortis d'une forte probabilité et en définissant des points de référence supérieurs des stocks (RSS) ou des niveaux de biomasse cibles.

1.7 POINTS DE RÉFÉRENCE BIOLOGIQUES

La biomasse d'équilibre non exploitée du stock reproducteur (SB_0) est prise en compte dans la procédure de gestion du hareng du Pacifique depuis 1986, année où la valeur « 0,25 de la SB_0 » été adoptée comme seuil de pêche commerciale dans la règle de contrôle des prises. Les avis scientifiques annuels présentent l'état estimé des stocks par rapport à la movenne à long terme de la biomasse du stock reproducteur non exploitée, ainsi que des tables de décision probabilistes indiquant la biomasse projetée avant la pêche par rapport à la SB_0 (p. ex. 0,25 ou 0.30 de la SB₀). Les estimations des séries chronologiques du poids selon l'âge montrent des déclins marqués des moyennes pour tous les stocks principaux de 1980 à 2010, ainsi que des tendances à la hausse et à la baisse de la mortalité naturelle estimée. Compte tenu de ces dynamiques non stationnaires, la SB_0 est calculée à partir des moyennes à long terme du poids selon l'âge et de la mortalité naturelle, et les estimations dynamiques de la SB₀ (fondées sur des séries chronologiques plus courtes ou pendant des périodes de productivité « élevée » ou « faible ») ne sont pas présentées. En ce qui concerne le calcul des points de référence, le cadre de l'AP du MPO recommande « d'utiliser une série chronologique aussi longue que possible pour établir les points de référence pour un stock. » De nombreux stocks présenteront des variations substantielles de productivité sur une longue période de temps, et cette variation doit être prise en compte lors de l'établissement des points de référence.

Les preuves d'absence de stationnarité et la modélisation de trois types de sélectivité (en raison de l'utilisation concurrente de divers types d'engins de pêche) limitent notre capacité de calculer et d'évaluer des points de référence à l'équilibre comme le rendement maximal soutenu de la biomasse (B_{RMSRMS}) dans la procédure de gestion. Des tentatives antérieures d'estimation de la B_{RMS} des stocks de hareng du Pacifique dans les eaux de la Colombie-Britannique ont donné des résultats anormalement élevés pour la mortalité par pêche au rendement maximal soutenu (F_{RMS}) (Martell *et al.* 2012).

Des tentatives d'estimation de la F_{RMS} avec le modèle ISCAM sont présentées à la section 2.3.4 des analyses de la sensibilité pour un seul type d'engin (pêche au hareng rogué à la senne) afin

de déterminer si le chevauchement ou l'absence de chevauchement des courbes de maturité et de sélectivité ont une incidence sur les estimations de la F_{RMS} .

1.7.1 Point de référence limite

Le Secrétariat canadien de consultation scientifique (SCCS) a récemment examiné et approuvé la publication « La sélection et le rôle des points de référence limites pour le hareng du Pacifique (Clupea pallasii) en Colombie-Britannique, Canada » (Kronlund et al. 2018), une contribution importante et nouvelle de la recherche dans le domaine des points de référence biologiques du hareng du Pacifique et d'autres espèces fourrages. Le cadre de l'AP du MPO précise qu'un point de référence limite (PRL) doit être établi avant, et non après la survenance d'un dommage sérieux, et que ce dommage doit être évité s'il est assorti d'une probabilité élevée. Kronlund et al. (2018) utilisent une analyse de la productivité fondée sur les données probantes à jour disponibles et les hypothèses du modèle d'évaluation des stocks pour évaluer si l'état des stocks principaux de hareng du Pacifique de la Colombie-Britannique présente des signes de dommages sérieux possibles. L'analyse a révélé des états récents et persistants de productivité basse et de biomasse faible pour les zones de gestion de la côte centrale, de Haïda Gwaji et de la côte ouest de l'île de Vancouver. Un PRL fondé sur la biomasse du stock reproducteur de 0,30 de la SB₀ a été recommandé pour les stocks de la CC, de HG et de la COIV d'après les résultats de l'analyse de la productivité et conformément aux pratiques exemplaires recommandées à l'échelle internationale. L'analyse n'a pas diagnostiqué d'états de productivité basse et de biomasse faible persistants pour le district de Prince Rupert et le détroit de Georgie, mais un PRL de 0,30 de la SB₀ a néanmoins été recommandé pour ces stocks selon les pratiques exemplaires et en raison de leur proximité géographique avec des stocks pour lesquels on a détecté ces états récemment.

Afin d'atténuer les conséquences à court terme pour les utilisateurs de la ressource, les auteurs recommandent l'intégration progressive de toute nouvelle procédure de gestion (c.-à-d. toute modification à la collecte des données, aux modèles d'évaluation des stocks ou aux règles de contrôle des prises) visant à éviter de dépasser les PRL et à atteindre les cibles. Il n'était pas du ressort des auteurs du présent document de formuler des recommandations précises sur la *façon* d'appliquer les PRL dans le contexte des avis annuels fondés sur les modèles d'évaluation des stocks. Toutefois, le cadre de référence exige que la présente évaluation rende compte des estimations actuelles de la biomasse du stock reproducteur pour chaque stock principal par rapport au PRL.

1.7.2 Points de référence supérieurs des stocks

Des objectifs détaillés, comprenant à la fois les PRL et les points de référence cibles (PRC), devront être établis pour atteindre les objectifs de renouvellement du système de gestion du hareng du Pacifique et de conformité au cadre de l'AP du MPO. Le cadre définit également le point de référence supérieur des stocks (RSS) comme la ligne de démarcation entre la zone de prudence et la zone saine. Le cadre présente un cas particulier où le point RSS équivaut au point déclenchant une réduction du taux de récolte en présence d'un déclin du stock (figure 1). Une représentation plus générale établit une distinction entre les points de référence biologiques correspondant aux limites et aux cibles, d'une part, et les points déclenchant une mesure de gestion – généralement, une règle de contrôle des prises – pour éviter de dépasser les limites et atteindre les cibles (voir notamment Kronlund *et al.* 2018). Le point RSS et le PRC peuvent être équivalents, mais le PRC ne peut jamais être inférieur au point RSS. Le point RSS doit dépasser suffisamment le PRL pour que les rétroactions en réponse aux mesures de gestions permettent au système de gestion de dépister le déclin d'un stock. Les mesures de gestion sont inscrites dans une procédure de gestion qui inclut le choix des données, le modèle

d'évaluation des stocks appliqué et une recommandation relative aux prises découlant de la règle de contrôle.

Le cadre définit le point RSS comme étant la ligne de démarcation entre la zone de prudence et la zone saine, mais il ne donne aucune directive sur la manière de délimiter de façon le point de rupture entre ces zones.

La méthode hybride fondée sur l'échappée constante et le taux de récolte constant intégrée à la RCP pour le hareng visait à maintenir un niveau d'échappée correspondant au seuil de pêche commerciale. Dans le cas qui nous occupe, la procédure de gestion a traité le PRL comme un point de contrôle opérationnel (PCO) des mesures de gestion. Dans la RCP en vigueur (Cleary *et al.* 2010), cette mesure de « réduction progressive » du taux de récolte vise à éviter la fermeture de pêches commerciales et à favoriser la croissance des stocks. Toutefois, la réduction abrupte de 0,31 à 0,25 de la *SB*₀ restreint énormément la gamme des estimations de la biomasse pour lesquelles la réduction des taux de récolte pourrait freiner le déclin du stock avant la fermeture de la pêche commerciale. Cette caractéristique de la RCP produit l'effet « tout ou rien » observé dans les résultats de la simulation présentés par Cox et al. (2015)³ et le MPO (2015). Il en découle que pour trois des stocks, la biomasse du stock reproducteur est tombée sous ce niveau beaucoup plus souvent que prévu (section 1.6).

Kronlund et al. (2018, annexe F) présentent un examen exhaustif des méthodes permettant d'établir des points de référence limites et cibles pour les stocks de hareng et autres clupéidés dans le monde. Voici des exemples de méthodes suivies pour établir le point RSS :

- 1. Définition de points RSS provisoires aux niveaux de biomasse auxquels on s'attend à une croissance des stocks considérant un niveau moyen de recrutement (MPO 2005); recommandation pour le hareng atlantique du sud du golfe du Saint-Laurent.
- 2. Définition du point RSS, appelé B_{BUF} (limite tampon), au niveau le plus faible de la biomasse historique observée du stock reproducteur ayant produit un bon recrutement; recommandation pour le hareng de l'Atlantique de la côte ouest de Terre-Neuve (division 4R de l'OPANO) (McQuinn et al. 1999).
- Définition de la limite biologique (*B*_{LIM}) au niveau minimal de la biomasse du stock reproducteur pour assurer un recrutement adéquat d'après les données disponibles sur le paramètre stock-recrutement, et définition du niveau de précaution de la biomasse du stock (*B*_{PA}) à 5,0 millions de tonnes, soit 2 fois la *B*_{LIM} de 2,5 millions de tonnes; recommandation pour le hareng norvégien à frai printanier (Tjelmeland et Røttingen 2009).

Dans ces exemples, les points de référence biologiques correspondent aux points de contrôle opérationnel inférieur et supérieur dans une RCP « en bâton de hockey ».

Pour les pêches de la Région des Maritimes, on définit habituellement un point RSS (et la limite entre les zones de prudence et saine) équivalant au double du PRL. Voici les approches fondées sur un modèle qui sont utilisées (MPO 2012) :

 Définition du PRL à 40 % de la biomasse du stock reproducteur au rendement maximal soutenu (*SSB*_{RMS}) et du point RSS à 80 % de la *SSB*_{RMS}; recommandation pour le flétan de l'Atlantique (3NOPs, 4VWX+), la morue franche (4VsW), l'aiglefin (4X5Y) et la plie canadienne (4VWX).

³ S.P. Cox, A.J. Benson, J.S. Cleary, et N.G. Taylor. 2019. Points de référence limites proposés comme base pour choisir parmi des règles de récolte alternatives pour le hareng du Pacifique (*Clupea pallasii*) de la Colombie-Britannique. MPO, Avis scientifique du Secrétariat canadien de consultation scientifique. Sous presse.

- 5. Définition du PRL à partir de l'analyse des données du paramètre stock-recrutement, le point RSS proposé correspondant au double du PRL; recommandation pour la morue franche (4X5Y).
- 6. Définition des points de référence à partir de l'analyse de la capacité de charge : le PRL correspond au quart et le point RSS à la moitié de la capacité de charge; recommandation pour le crabe des neiges (4VWX).

À défaut d'estimations fondées sur des modèles, des approches empiriques sont utilisées pour établir les valeurs approximatives de la B_{RMS} , le PRL et le point RSS étant définis à 40 % et 80 % de celle-ci (MPO 2012). Toutefois, pour les raisons examinées par Kronlund et al. (2018), les estimations des statistiques liées au RMS ne sont pas plausibles pour le hareng du Pacifique en Colombie-Britannique.

Sinclair et Starr (2005) suggèrent d'utiliser la moyenne à long terme de la biomasse (B_{moy}) comme valeur d'approximation du point RSS. L'approche consistant à définir un PRC historique est recommandée pour la fausse limande (Holt *et al.* 2016) et la morue du Pacifique (Forrest *et al.* 2015). La biomasse moyenne à long terme peut être remplacée par la biomasse moyenne au cours d'une période productive ($B_{moy-prod}$).

Les points RSS proposés pour le hareng du Pacifique sont les suivants :

- 1. Point RSS = biomasse moyenne à long terme du stock reproducteur, SBmoy
- 2. Point RSS = biomasse moyenne à long terme pendant une période productive, SBmoy-prod
- 3. Point RSS = $2 \times PRL$ (p. ex. 0,60 de la *SB*₀)
- 4. Point RSS = SB_0

Dans leur analyse, Kronlund et al. (2018) examinent diverses valeurs de substitution de la B_{RMS} qui toutes ont été jugées peu plausibles et donc rejetées. Par conséquent, nous n'incluons pas ici de valeurs proposées qui sont fondées sur la B_{RMS} .

Il est recommandé de procéder à des essais de simulation pour déterminer l'incidence des PRL, des points RSS et des PRC choisis sur les procédures de gestion envisagée et de comprendre les compromis escomptés dans le rendement des résultats de la gestion. Les résultats de gestion sont liés à des objectifs mesurables d'évitement des PRL assortis d'une forte probabilité et de maintien des stocks aux niveaux correspondant au PRC avec la probabilité souhaitée, établis pour une période de temps établie compte tenu du cycle biologique et de la compréhension actuelle de la dynamique des stocks. Le MPO s'est engagé à mettre en place un processus d'évaluation de la stratégie de gestion du hareng du Pacifique en collaboration avec les gestionnaires et les utilisateurs de la ressource. Cet effort sera axé sur l'évaluation des points de référence et des procédures de gestion afin d'assurer la pleine conformité du cadre de gestion du hareng du Pacifique au cadre de l'AP du MPO (MPO 2009).

1.8 HISTORIQUE DES ÉVALUATIONS

Les évaluations annuelles des stocks principaux de hareng du Pacifique dans les eaux de la Colombie-Britannique sont fondées sur un modèle des prises selon l'âge depuis le début des années 1980 (Haist et Stocker 1984; Haist et Schweigert 2006). Depuis, diverses composantes du modèle ont fait l'objet de restructurations fréquentes (tous les deux ou trois ans) pour régler les problèmes relevés par les pairs. Un changement important a été opéré en 2011 (Martell *et al.* 2012) pour que le modèle estime le paramètre de mise à l'échelle du relevé du frai en

plongée (q_2) plutôt que de le fixer à 1,0, comme c'était le cas de certains modèles d'évaluation

antérieurs. L'autre changement important apporté en 2011 a été d'établir dans la RCP des seuils fixés pour la pêche commerciale fondés sur l'estimation la plus récente de la SB_0 par le modèle (cessation de la pêche lorsque le stock estimé tombe sous le seuil de 0,25 de la SB_0). Dans les itérations précédentes du modèle, les seuils de la pêche commerciale étaient fixés à un niveau absolu de 0,25 de la SB_0 , établi selon les estimations de 1996 (Schweigert *et al.* 1997). Dans le présent document, l'expression « modèle d'évaluation 1 » (AM1) se rapporte à la procédure de gestion la plus récente, qui se caractérise ainsi : en facteur de mise à l'échelle q_1 pour les relevés en surface (1951 à 1987) et q_2 pour les relevés en plongée (1988 à 2017) est estimé à partir de valeurs *a priori* informatives, et les seuils de pêche commerciale sont aussi estimés. L'expression « modèle d'évaluation 2 » (AM2) désigne une approximation de la procédure de gestion historique, dans laquelle la valeur pour les relevés en surface (1951 à 1987) est estimée, la valeur pour les relevés en plongée q_2 (1988 à 2017) est fixée à 1,0 et les seuils sont fixés aux niveaux de 1996.

Il a maintes fois été demandé d'évaluer les conséquences possibles de l'application de l'AM1 au lieu de l'AM2 pour la modélisation par simulation. Ces demandes témoignaient des préoccupations par rapport au fait que les conséquences possibles de l'application de l'AM1 n'avaient pas fait l'objet à l'essais de simulation avant sa mise en œuvre en 2011 et l'absence de signes de rétablissement dans certaines zones, qui ensemble ont conduit à une remise en question du rendement de l'AM1. Après un examen par les pairs par l'intermédiaire du SCCS, les deux procédures de gestion ont été mises en œuvre pour l'élaboration d'avis scientifiques concernant le hareng du Pacifique durant les années antérieures.

Pour répondre aux préoccupations soulevées par les processus antérieurs du SCCS et la mise en œuvre de chaque approche, la réponse scientifique de 2016 (MPO 2016) comprend un tableau des principales caractéristiques et limites de l'AM1 et de l'AM2 que le Groupe de travail technique sur le hareng (GTTH) a élaboré en appui à la prise de décisions à court terme (voir MPO 2016, tableau A.1). L'état des stocks de hareng de la Colombie-Britannique en 2017 et les prévisions pour 2018 sont présentés sous forme de mises à jour des deux évaluations des stocks : selon l'AM1 (Martell *et al.* 2012) et selon l'AM2 (approximation de Cleary et Schweigert 2012).

2 MODÉLISATION DE L'ÉVALUATION DES STOCKS

Nous avons appliqué un modèle statistique des prises selon l'âge dans un cadre d'estimation bayésien pour évaluer le stock de hareng du Pacifique à l'échelle côtière. Le modèle a été ajusté aux données sur les prises, à deux indices de relevé de la biomasse relative des reproducteurs et aux données sur la structure selon l'âge dérivées des pêches commerciales et de la pêche à l'essai du hareng. Une matrice du poids moyen selon l'âge de 1951 à 2017 a également été estimée à l'extérieur du modèle à partir d'échantillons biologiques prélevés sur des poissons capturés à la senne (hareng rogué, de consommation et d'appât, pêche à l'essai à la senne). Les données sur d'autres paramètres biologiques (croissance, régime de maturité) ont été tirées d'analyses externes et intégrées au modèle d'évaluation à titre de paramètres fixes et présumés constants dans le temps (section 2.1.5).

Les tableaux 13 à 171 présentent les points de référence fondés sur l'estimation de la moyenne à long terme de la biomasse d'équilibre non exploitée du stock reproducteur (SB_0) et les estimations de l'état actuel du stock par rapport aux estimations de la biomasse du stock reproducteur non exploitée (SB_{2017}/SB_0). Les tableaux 18 à 27 présentent les estimations de la SB et des niveaux d'épuisement (SB_{2017}/SB_0) pour les 10 dernières années. Le rendement maximal soutenu (RMS) et le taux de récolte annuelle produisant un RMS (U_{RMS}) sont présentés uniquement dans le contexte de l'analyse de la sensibilité portant sur les interactions de la maturité selon l'âge et de la sélectivité selon l'âge (section 2.3.4).

Les tables de décision sur la récolte reposent sur les projections sur un an à partir du modèle d'évaluation et compte tenu de fourchettes de niveaux de prises présumés (tableaux 38 à 47). Les projections sur un an de la biomasse du stock reproducteur reposent sur une moyenne quinquennale des estimations récentes de la mortalité naturelle et du poids selon l'âge. Pour chaque niveau de prises, les tables de décision indiquent la probabilité que la biomasse du

stock reproducteur projetée pour 2018 tombe sous le PRL (0,30 de la SB_0), le seuil fixé pour la pêche commerciale (pour l'AM2), et la probabilité que le taux de récolte effectif pour chaque niveau de prises dépasse les taux de récolte cibles de 10 et 20 % (section 3.2).

2.1 DONNÉES D'ENTRÉE

Des séries chronologiques de données dépendantes et indépendantes de la pêche sont utilisées pour évaluer les stocks de hareng du Pacifique. Les tableaux de toutes les données d'entrée se trouvent à l'annexe B.

La présente section décrit les sources de données dépendantes de la pêche (prises et échantillons biologiques validés provenant des pêches commerciales) et indépendantes de la pêche (échantillons biologiques du programme de pêche à l'essai et relevé de dépôts d'œufs (aussi appelé relevé du frai) qui sont utilisées pour estimer un indice relatif de la biomasse du stock reproducteur chez le hareng. Les séries chronologiques de données sur les prises commerciales, les données des relevés du frai, sur le poids moyen selon l'âge et sur la proportion selon l'âge sont utilisées comme données d'entrée du modèle d'évaluation.

La présente section traite des tendances observées dans les données, mais les observations significatives sont interprétées en association avec les résultats du modèle d'évaluation (section 2.4). Pour aider le lecteur à visualiser les ensembles de données collectives, nous les avons résumés en fonction des zones principales de stock dans les figures 3 à 7.

2.1.1 Données sur les prises

Les données sur la pêche commerciale sont présentées pour la période de 1951 à 2017 (figure 3).

Tous les renseignements sur les prises sont tirés des cale de débarquement ou des vérifications à quai. Anciennement, les données des cale de débarquement étaient additionnées pour une saison de pêche, soit du 1^{er} juillet au 30 juin. À compter de la saison 1997-1998, les données sur les prises de hareng rogué ont été remplacées par des données sur le poids au déchargement vérifié à l'usine par suite de l'adoption d'un système de quotas regroupés pour toutes les pêches, exception faite des pêches au filet maillant dans le détroit de Georgie et le district de Prince Rupert, qui sont demeurées ouvertes. À partir de la saison 1998-1999, les données sur le poids au déchargement vérifié à l'usine ont été publiées pour toutes les pêches côtières de hareng de consommation et rogué. Les données sur les débarquements des pêches secondaires (au hareng destiné à des usages spéciaux et aux œufs sur varech) proviennent des cale de débarquement, auxquelles s'est ajouté récemment le poids au déchargement vérifié à l'usine.

Aux fins de l'évaluation des stocks, les données sur les prises sont résumées selon le type d'engin et la catégorie de pêche, comme suit :

Engin 1 : autres pêches Prises de la pêche minotière commerciale historique (1951 à 1967), de la pêche hivernale à la senne (hareng de consommation et d'appât, 1968 à 2017) et de la pêche pour des usages spéciaux (jusqu'en 2017).

Engin 2 : Hareng rogué à la senne Prises commerciales et prises du pêche à l'à l'essai attribuer au pêche du hareng rogué à la senne (1972 à 2017).

Engin 3 : Hareng rogué au filet maillant Prises commerciales et prises du pêche à l'à l'essai attribuer au pêche du hareng rogué au filet maillant (1972 à 2017).

À l'heure actuelle, le modèle d'évaluation des stocks utilise des données sur les prises qui ne comprennent pas la mortalité attribuable à la pêche commerciale aux œufs sur varech, à la pêche récréative ou à la pêche à des fins alimentaires, sociales et rituelles. Les prises des pêches récréatives ou à des fins alimentaires, sociales et rituelles sont négligeables. La pêche commerciale aux œufs sur varech requiert un permis délivré en fonction du poids validé du produit de la collecte (c.-à-d. les œufs adhérant au varech), et non des tonnes de poissons utilisés ou pondus. Il est impossible actuellement d'établir avec certitude le taux de mortalité attribuable à cette pêche au sein de la population, mais des méthodes d'estimation de la mortalité attribuable à la pêche aux œufs sur varech sont en cours d'élaboration.

Les données sur les prises commerciales sont regroupées selon trois types d'engin et périodes de pêche :

- 1. pêches minotières et au hareng de consommation et d'appât;
- 2. pêche au hareng rogué à la senne et à l'à l'essai;
- 3. pêche au hareng rogué au filet maillant.

Les données des échantillonnages biologiques sont regroupées de la même façon pour établir les proportions selon l'âge. Il convient de souligner que des poissons entiers sont capturés dans le cadre des pêches au hareng rogué à la senne et au filet maillant, mais les œufs sont les seuls produits utilisés.

Les activités de pêche récentes dans les régions d'évaluation des stocks principales sont résumées ci-dessous. La figure 3 présente un résumé des prises par pêche et par zone de stock dans lesquelles des activités de pêches commerciales au hareng de consommation et d'appât, destiné à des usages spéciaux et rogué ont eu lieu. Les données sur les prises brutes de chaque zone de stock de 1951 à 2017 sont présentées à l'annexe B.

Haida Gwaii

La zone de Haida Gwaii a été fermée à la pêche commerciale au hareng rogué de 2002 à 2013 et de 2015 à 2017, et à la pêche commerciale aux œufs sur varech de 2004 à 2013 et de 2015 à 2017. Des possibilités de pêche commerciale au hareng rogué et aux œufs sur varech ont été offertes en 2014, mais elles n'ont pas été exploitées à la suite d'une entente conclue entre le secteur commercial et les Premières Nations locales. Les Premières Nations pratiquent la pêche à des fins alimentaires, sociales et rituelles dans leurs territoires traditionnels, pour récolter des œufs sur varech sauvages ou selon une technique de mise en étang fermé.

District de Prince Rupert

Actuellement, cinq pêches commerciales sont en activité dans le DPR. Il s'agit de la pêche hivernale au hareng de consommation et d'appât, de novembre à février; de la pêche au hareng rogué à la senne, en février et mars; de la pêche au hareng rogué au filet maillant, en février et mars; de la pêche aux œufs sur varech, de mars à mai, et de la pêche au hareng destiné à des usages spéciaux, qui utilise plusieurs engins et se déroule pendant toute l'année, mais principalement en automne et en hiver. Les Premières Nations pratiquent la pêche à des fins

alimentaires, sociales et rituelles dans leurs territoires traditionnels, pour récolter le hareng entier toute l'année, les œufs sur varech ou les œufs sur rameaux de mars à mai.

Côte centrale

La côte centrale a été fermée aux pêches commerciales au hareng rogué et aux œufs sur varech de 2007 à 2013. Des possibilités de pêche commerciale au hareng rogué et aux œufs sur varech ont été exploitées de 2014 à 2016. Des possibilités de pêche commerciale au hareng rogué et aux œufs sur varech ont aussi été offertes en 2017, mais seule cette dernière a été exploitée. Les Premières Nations pratiquent la pêche à des fins alimentaires, sociales et rituelles dans leurs territoires traditionnels, pour récolter les œufs sur rameaux en mars et avril, et les œufs sur varech en étang ouvert ou fermé.

Détroit de Georgie

On compte actuellement quatre pêches commerciales en activité dans le DG. Il s'agit de la pêche hivernale au hareng de consommation et d'appât, de novembre à février; de la pêche au hareng rogué à la senne, en février et mars; de la pêche au hareng rogué au filet maillant, en février et mars, et de la pêche au hareng destiné à des usages spéciaux, qui utilise plusieurs engins et se déroule pendant toute l'année, mais principalement en automne et en hiver. Les Premières Nations pratiquent la pêche à des fins alimentaires, sociales et rituelles dans leurs territoires traditionnels, pour récolter le hareng entier toute l'année, ainsi que les œufs sur rameaux en février et mars.

Côte ouest de l'île de Vancouver

La côte ouest de l'île de Vancouver est fermée à la pêche commerciale au hareng rogué et aux œufs sur varech depuis 2006 (sauf en 2011 pour cette dernière). Les Premières Nations pratiquent la pêche à des fins alimentaires, sociales et rituelles dans leurs territoires traditionnels, pour récolter le hareng entier toute l'année, les œufs sur rameau en mars et avril, ainsi que les œufs sur varech en étang ouvert ou fermé. Aucune possibilité de pêche commerciale n'a été offerte en 2014 à la suite d'une injonction interlocutoire imposée par une cour fédérale.

2.1.2 Données biologiques

Le modèle utilise les données tirées des échantillons biologiques concernant le poids moyen selon l'âge et la proportion selon l'âge par type d'engin et période de pêche (n = 3) de 1951 à 2017.

Des échantillons biologiques sont prélevés dans le cadre des principales pêches commerciales au hareng et du programme de pêche à l'essai. Le programme d'affrètement de senneurs pour la pêche à l'essai a débuté en 1975. Les senneurs affrétés recueillent quotidiennement de l'information sur les sondages, les lieux de rapport et la taille approximative des rassemblements de hareng du Pacifique avant le frai, ainsi que des échantillons biologiques provenant des rassemblements avant le frai au moyen de sennes coulissantes. L'objectif actuel du programme d'échantillonnage biologique dans le cadre de la pêche à l'essai est de prélever des échantillons dans diverses zones ouvertes et fermées à la pêche commerciale (il s'agit de l'unique source de données biologiques pour les zones fermées). Un contrat d'échantillonnage des prises à quai a été conclu en vue de prélever de 15 à 20 échantillons de hareng dans chacune des pêches au hareng rogué à la senne et au filet maillant (pendant la validation). De plus, des échantillons de prises sont prélevés dans le cadre des pêches au hareng de consommation et d'appât, et un petit nombre d'échantillons sont prélevés dans le cadre des pêches commerciales aux œufs sur varech et au hareng destiné à des usages spéciaux. Dans toutes les campagnes d'échantillonnage, un « échantillon de hareng » (un seau) contient une centaine de poissons, pour lesquels les données suivantes sont recueillies : longueur; poids; sexe; longueur et poids des gonades, et maturité. Le tableau B.29 indique le nombre d'échantillons biologiques prélevés par année et par région d'évaluation des stocks.

Aux fins de l'évaluation des stocks, tous les poissons d'un « échantillon de hareng » sont soumis à un examen indépendant (aucune pondération des échantillons biologiques selon la prise ou le frai). Les données sur les proportions selon l'âge sont regroupées pour trois types d'engins et par période de pêche :

- 1. Échantillons des pêches minotières historiques et au hareng de consommation et d'appât
- 2. Échantillons des pêches au hareng rogué à la senne et à l'essai
- 3. Échantillons des pêches au hareng rogué au filet maillant

Les prises commerciales sont regroupées de la même façon.

Une matrice de poids selon l'âge propre au stock a été établie pour chacun des cinq stocks principaux. La matrice du poids selon l'âge pour la période 1951 à 2017 est fondée sur le poids moyen de l'ensemble des poissons pêchés à la senne (engins 1 et 2, le cas échéant) pour chaque catégorie d'âge de 2 à 10 et plus. Les poissons pêchés au filet maillant sont exclus du calcul du poids moyen en fonction de l'âge parce que cet engin est sélectif quant à la taille. L'annexe B présente un résumé du nombre d'échantillons biologiques utilisés dans le calcul des proportions selon l'âge, du poids selon l'âge par année et la région d'évaluation des stocks.

L'âge des harengs est déterminé au laboratoire de sclérochronologie du MPO de la Station biologique du Pacifique, située à Nanaimo en Colombie-Britannique. Depuis 1985, le 1^{er} janvier est utilisé par convention comme date d'anniversaire aux fins de la détermination de l'âge des espèces de poissons à aileron. Avant ce changement, la date d'anniversaire des harengs du Pacifique était fixée au 1^{er} juillet pour les poissons dont l'anniversaire biologique tombait entre la mi-mars (stocks du sud) et le début de juin (stocks du nord). La valeur correspondant à l'âge des poissons des échantillons prélevés entre le 1^{er} juillet et le 31 décembre est « incrémentée » de 1 : au moment de l'importation des données sur les poissons capturés entre le 1^{er} juillet et le 31 décembre, l'âge est augmenté de 1 (les poissons d'âge 2 sont traités comme des poissons d'âge 3). Selon ce protocole (en place depuis 1985), il est tenu pour acquis que les poissons d'âge 3). Selon ce protocole (en place depuis 1985), il est tenu pour acquis que les poissons d'âge a saison suivante de la pêche au hareng rogué, en mars et avril. Les données sur l'âge des harengs datant d'avant 1985 ont été ajustées en fonction de ce protocole pour assurer l'uniformité d'une année à l'autre.

Les erreurs liées à la détermination de l'âge sont actuellement analysées et corrigées tout au long du processus. L'âge des écailles de 10 % environ des harengs de chaque échantillon est établi indépendamment par deux techniciens afin d'assurer la précision des échantillons et l'uniformité entre les techniciens. D'autres étapes sont suivies en cas de désaccord entre les techniciens quant à l'âge des écailles. Le deuxième technicien (chargé de vérifier la précision) reconsidère l'âge attribué et, s'il est d'accord avec le premier technicien, l'âge est confirmé. S'ils ne sont pas d'accord, le premier technicien (qui a établi l'âge des écailles en premier) reconsidère l'âge attribué et, s'il est d'accord avec le deuxième technicien, l'âge est confirmé. Si les techniciens n'arrivent pas à s'entendre sur un âge, une étiquette est apposée sur l'écaille pour indiquer que l'âge n'a pas été confirmé. Le plus souvent, il est impossible de confirmer l'âge des écailles présentant des motifs trop imprécis ou anarchiques pour en donner une interprétation définitive. Si la précision d'un échantillon est inférieure à 80 %, le deuxième technicien contre-vérifie un plus grand nombre d'écailles pour s'assurer que le premier technicien n'est pas biaisé ou n'interprète pas mal les motifs. L'âge définitif confirmé est la seule

source de données sur l'âge utilisée par le modèle d'évaluation, et les estimations de la précision dérivées des données ne sont pas incluses comme source d'erreur.

Les erreurs liées à la détermination de l'âge sont plus fréquentes chez les juvéniles parce qu'il est plus difficile de différencier les poissons de 2 ans de ceux de 3 ans, ou les poissons de 3 ans de ceux de 4 ans. La croissance est en effet plus rapide chez les juvéniles et certaines marques peuvent être confondues avec des anneaux. Les erreurs sont moins fréquentes après 4 ans, car les schèmes de croissance sont plus faciles à reconnaître et la croissance est plus lente, plus dense et moins variable. Dans certains stocks, notamment ceux des zones statistiques 14, 17 et 23 à 25, les harengs présentent des schèmes de croissance plus difficiles à interpréter.

Les données sur le poids moyen selon l'âge jouent un rôle déterminant dans l'évaluation, pour plusieurs raisons (figure 4). Premièrement, l'utilisation d'une série chronologique de données sur le poids selon l'âge dans le modèle d'évaluation permet de suivre les effets des variations dans le temps du poids selon l'âge, un paramètre pertinent et important pour le hareng du Pacifique (on parle aussi de non-stationnarité). Deuxièmement, ces données sont déterminantes pour estimer la biomasse actuelle : celle-ci correspondant à la somme du produit, élément par élément, des vecteurs du nombre selon l'âge et du poids selon l'âge, les variations du poids selon l'âge la feront varier considérablement, même si les nombres selon l'âge sont fixes. Troisièmement, les variations du poids moyen selon l'âge ont une incidence sur l'estimation de la biomasse d'équilibre non exploitée, qui constitue le point de référence principal pour le hareng du Pacifique.

Les figures 5 et 6 présentent les proportions selon l'âge et le nombre d'échantillons biologiques par année.

Il est évident que le poids selon l'âge a diminué de manière mesurable dans tous les stocks principaux de hareng depuis le milieu des années 1980 jusqu'à 2010, comme le montre la figure 4. Il s'est stabilisé ou a augmenté pour tous les stocks au cours des cinq dernières années. La diminution du poids selon l'âge peut être attribuée à des facteurs comme les effets de la pêche (c.-à-d. la sélectivité des engins de pêche) et environnementaux (changements de la productivité des océans), ou aux modifications apportées aux protocoles d'échantillonnage (raccourcissement de la période de collecte des échantillons). Une baisse du poids selon l'âge est observée dans les cinq stocks principaux et, malgré les fermetures de zones au cours des dix dernières années, elle s'est poursuivie dans les stocks de HG et de la COIV. Cette tendance a été observée dans les eaux de la Colombie-Britannique et des États-Unis, de la Californie à l'Alaska (Schweigert et al. 2002). Les variations du poids selon l'âge ne sont pas propres au hareng du Pacifique : elles touchent aussi le merlu du Chili (Taylor et al. 2014) et le flétan du Pacifique. Il conviendrait d'étudier la cause directe et les répercussions de ces déclins dans le contexte du cadre d'évaluation, car les variations des schèmes de croissance donneront des estimations différentes des points de référence et des taux de récolte optimaux. Même si les mécanismes à l'origine des variations du poids selon l'âge restent incompris, le modèle tient compte des variations observées dans le rétablissement des stocks et les prédictions.

2.1.3 Indice d'abondance

Des relevés de dépôts d'œufs (du frai) de hareng ont été effectués sur toute la côte de la Colombie-Britannique à partir des années 1930. Depuis 1951, des séries chronologiques des données des relevés du frai sont utilisées pour l'évaluation du stock de hareng du Pacifique. Avant 1988, les relevés du frai étaient effectués à partir de la surface, soit en marchant sur la plage à marée basse, soit en utilisant la traînée d'une yole pour estimer la longueur et la largeur du frai sur le littoral. En 1988, des méthodes de relevé en plongée autonome ont été introduites

pour mesurer le frai du hareng le long des transects. Ces méthodes ont été adoptées sur toute la côte après quelques années.

Les deux méthodes de relevé (en surface ou en plongée) visent à recueillir de l'information sur la longueur du frai (parallèle à la rive), sa largeur (perpendiculaire à la rive) et le nombre de couches d'œufs par type de végétation.

Les données sont utilisées pour calculer la densité des œufs par frayère et, ultimement, pour estimer rétrospectivement la biomasse des reproducteurs qui auraient déposé leurs œufs. En 2017, le relevé du frai a été effectué conformément à tous les protocoles normalisés décrits dans la version 2013 du <u>manuel d'instruction pour les relevés des pontes du hareng</u>. Un exposé détaillé du contexte, des méthodes et des équations est donné dans le <u>rapport technique</u> provisoire de l'indice de frai.

Aux fins de l'évaluation des stocks, les données des relevés du frai sont représentées par deux indices indépendants :

- 1. L'indice des relevés en surface pour la période 1951 à 1987
- 2. L'indice des relevés en plongée pour la période 1988 à 2017

Les indices du frai sont dérivés de la Base de données sur l'évaluation des stocks de hareng et exprimés en unités de tonnes métriques de biomasse de stock reproducteur de hareng. La figure 7 résume les séries chronologiques de l'indice du frai par zone principale de stock pour la période de 1951 à 2017 pour 1951 à 1987 (observations en surface), et 1988 à 2017 (observations en plongée). Les données des relevés en surface sont traitées de façon à obtenir des estimations de la largeur moyenne de format comparable à celui des données des relevés en plongée, et les observations sont combinées avec les estimations des relevés en plongée pour obtenir un indice de relevé unique.

Pour quatre des zones de stock principales (HG, CC, DG et COIV), les estimations numériques de la biomasse du stock reproducteur (valeurs de l'indice du frai) ont diminué de 2016 à 2017. Dans le DPR, les estimations numériques de la biomasse du stock reproducteur (valeurs de l'indice du frai) sont restées stables de 2016 à 2017.

Proportions et prises selon l'âge

Le modèle ISCAM estime les prises selon l'âge pour chacun des trois types d'engin à partir des données sur les proportions selon l'âge. La procédure d'estimation ajuste une fonction logistique aux coefficients de sélectivité selon l'âge de chaque type d'engin.

La figure 5 présente un résumé des estimations des proportions selon l'âge des échantillons biologiques pour l'engin 2 (pêche au hareng rogué à la senne, pêche à l'essai à la senne, pêche aux œufs sur varech, le cas échéant) par zone de stock. La matrice des données sur le poids moyen selon l'âge est calculée à partir des échantillons biologiques présentés à la figure 5. Des tableaux des nombres selon l'âge pour les engins 1, 2 et 3 sont présentés à l'annexe B.

Un ajustement a été apporté aux procédures d'analyse aux fins de la compilation des données sur les proportions et le poids selon l'âge pour la côte centrale en 2014 et 2015. Les échantillons biologiques de la zone 08 sont pondérés en fonction de leur contribution relative moyenne au cours des 20 dernières années (7 %) étant donné que le protocole d'échantillonnage utilisé en 2014 et 2015 a donné lieu au prélèvement d'un nombre exceptionnellement élevé d'échantillons dans la zone statistique 08. Il a été jugé nécessaire de sous-pondérer les échantillons de la zone 08 étant donné que le poids selon l'âge de ces poissons y est constamment inférieur à celui des poissons des zones 06 et 07 (MPO 2014, 2016).

Les tendances propres à chaque stock sont analysées dans les sections qui suivent.

2.1.4 Paramètres biologiques présumés

Tel qu'il est expliqué à la section 1.2, il ressort de l'évaluation histologique des ovaires en formation que 25 % environ des harengs du Pacifique arrivent à maturité à l'âge 2, et qu'au moins 90 % y arrivent à l'âge 3 (Doug. Hay, données non publiées²). Aux fins de l'évaluation, un régime fixe de maturité est utilisé pour tous les stocks de hareng : 25 % d'adultes chez les poissons d'âge 2; 90 % chez les poissons d'âge 3, et 100 % chez les poissons d'âge 4 et plus (voir la description à la section 2.3.4).

Le poids et la longueur selon l'âge ne sont pas pris en compte dans le modèle d'évaluation actuel, ce qui nécessite d'entrer des données sur la croissance asymptotique : L_∞ = 27, alpha [α] et bêta [β] pour l'allométrie longueur-poids (α = 4,5e 06, β = 3,127), et le coefficient de croissance Brody (k = 0,48) ont été tirés du site FishBase (2017). L'âge à 50 % de maturité a été estimé à 2,055. Une matrice de données empiriques sur la proportion selon l'âge est générée à partir de cette analyse et doit être intégrée au modèle d'évaluation des prises selon l'âge.

2.1.5 Résumés des données propres aux régions d'évaluation des stocks principales

La présente section offre une brève description des données d'entrée du modèle d'évaluation pour chacune des régions d'évaluation des stocks principales de hareng du Pacifique de 1951 à 2017. On dispose de quatre séries chronologiques de données pour chaque région d'évaluation des stocks principale : prises par type d'engin; indice du frai; nombre selon l'âge et poids selon l'âge. Les tableaux correspondant à chaque série chronologique sont présentés à l'annexe B.

Haida Gwaii

Il n'y a pas eu de pêche commerciale en 2017 (figure 3). L'indice du frai est passé de 6 888 tonnes en 2016 à 3 016 tonnes en 2017 (figure 7). De façon générale, le poids moyen selon l'âge pour les poissons d'âge 2 à 10 et plus a été stable ou a augmenté à compter de 2010 (figure 4). En 2017, la proportion de poissons d'âge 3 était la plus forte, et les classes d'âge supérieures (6 et plus) comptaient pour 33 % (figure 5). Le poids moyen et la proportion selon l'âge en 2017 ont été calculés à partir de 8 échantillons biologiques (figure 6). Chaque échantillon comptait une centaine de poissons.

District de Prince Rupert

En 2017, les prises commerciales ont totalisé 2 849 tonnes (figure 3). L'indice du frai est passé de 18 985 tonnes en 2016 à 19 235 tonnes en 2017 (figure 7). De façon générale, le poids moyen selon l'âge pour les poissons d'âge 2 à 10 et plus a été stable ou a augmenté à compter de 2010 (figure 4). En 2017, la proportion de poissons d'âge 5 était la plus forte, et les classes d'âge supérieures (6 et plus) comptaient pour 28 % (figure 5). Le poids moyen et la proportion selon l'âge en 2017 ont été calculés à partir de 51 échantillons biologiques (figure 6). Chaque échantillon comptait une centaine de poissons.

Côte centrale

Il n'y a pas eu de pêche commerciale au hareng rogué en 2017 (figure 3), de sorte que les prises pour 2017 sont nulles. L'indice du frai est passé de 32 508 tonnes en 2016 à 23 517 tonnes en 2017 (figure 7). De façon générale, le poids moyen selon l'âge pour les poissons d'âge 2 à 10 et plus a été stable ou a augmenté à compter de 2010 (figure 4). En 2017, la proportion de poissons d'âge 5 était la plus forte, et les classes d'âge supérieures (6 et plus) comptaient pour 22 % (figure 5). Le poids moyen et la proportion selon l'âge en 2017 ont été calculés à partir de 44 échantillons biologiques (figure 6). Chaque échantillon comptait une centaine de poissons.

Détroit de Georgie

En 2017, les prises commerciales ont totalisé 25 279 tonnes (figure 3). L'indice du frai est passé de 129 502 tonnes en 2016 à 81 064 tonnes en 2017 (figure 7). De façon générale, le poids moyen selon l'âge pour les poissons d'âge 2 à 10 et plus a été stable ou a augmenté à compter de 2010 (figure 4). En 2017, les proportions de poissons d'âge 3 à 5 étaient relativement égales, et les classes d'âge supérieures (6 et plus) comptaient pour 17 % (figure 5). Le poids moyen et la proportion selon l'âge en 2017 ont été calculés à partir de 148 échantillons biologiques (figure 6). Chaque échantillon comptait une centaine de poissons.

Côte ouest de l'île de Vancouver

Il n'y a pas eu de pêche commerciale en 2017 (figure 3). L'indice du frai est passé de 20 528 tonnes en 2016 à 15 734 tonnes en 2017 (figure 7). De façon générale, le poids moyen selon l'âge pour les poissons d'âge 2 à 10 et plus a été stable ou a augmenté à compter de 2010 (figure 4). En 2017, la proportion de poissons d'âge 4 était la plus forte, et les classes d'âge supérieures (6 et plus) comptaient pour 10 % (figure 5). Les calculs du poids moyen selon l'âge et de la proportion selon l'âge en 2017 ont été calculés à partir de 19 échantillons biologiques (figure 6). Chaque échantillon comptait une centaine de poissons.

2.2 MODÈLE STATISTIQUE DES PRISES SELON L'ÂGE

La présente évaluation rend compte d'un scénario de référence utilisé dans un modèle des prises selon l'âge ajusté à trois sources de données : les prises commerciales; l'indice de biomasse selon un relevé du frai, et les proportions selon l'âge. L'évaluation repose principalement sur l'indice de biomasse selon le relevé du frai (en surface de 1951 à 1987, en plongée de 1988 à 2017) pour inférer la taille des stocks principaux de hareng.

L'évaluation utilise des méthodes bayésiennes pour superposer l'intégration de données *a priori* informatives et l'incertitude dans les paramètres afin de permettre une interprétation probabiliste des résultats. L'étude de l'incertitude ne se limite pas aux paramètres : l'incertitude entourant les hypothèses structurales fait également l'objet d'analyses rétrospectives (section 2.6).

L'évaluation présente les résultats de deux procédures de gestion possibles pour chacun des stocks et des scénarios, soit les modèles d'évaluation 1 (AM1) et 2 (AM2) (section 1.8).

2.2.1 Changements par rapport à l'évaluation de 2016

Le modèle d'évaluation a été compilé avec la version 11.6 du logiciel AD Model Builder, lancée le 20 décembre 2016. Aucun changement n'a été apporté aux méthodes utilisées pour compiler les données d'entrée du modèle (indices de relevé, prises, données biologiques). Les ajustements à certaines procédures analytiques du modèle ISCAM sont décrits dans l'analyse de rapprochement (annexe D). Ces changements, traités comme des mises à jour régulières d'une année à l'autre, se traduisent par de légères différences dans les estimations et les

projections du modèle si l'on compare les résultats des scénarios de référence de 2016 à ceux qui figurent dans le document d'évaluation de septembre 2016.

La mise à jour la plus importante a trait à l'estimation de la structure de l'écart. Martell et al. (2012) recourent à une méthode à erreurs sur les variables (partage de l'écart entre l'erreur due à l'observation et au traitement) pour paramétrer la précision totale comme équivalant à l'écart-type total de l'erreur due au traitement plutôt qu'à l'écart total. Conformément à la recommandation des examinateurs en 2011 et aux pratiques exemplaires, la présente évaluation comprend des mises à jour de la méthode à erreurs sur les variables pour représenter le partage de la précision totale (annexe A). Ce nouveau partage de l'écart total a une incidence sur les estimations du modèle concernant les paramètres principaux et la biomasse non exploitée (SB_0). L'analyse de rapprochement (annexe D) présente une comparaison de ces différences.

2.2.2 Description du modèle

Un modèle statistique bayésien des prises selon l'âge a été appliqué pour évaluer séparément chacun des cinq stocks principaux de hareng du Pacifique. Le modèle statistique intégré des prises selon l'âge (ISCAM) a été examiné et mis en œuvre pour la première fois en 2011 dans le cadre de l'évaluation du hareng du Pacifique (Martell *et al.* 2012). Les mises à jour du modèle ISCAM sont expliquées dans l'analyse de rapprochement présentée à l'annexe D, et chaque élément du modèle est expliqué en détail à l'annexe A.

Les distributions marginales *a posteriori* des paramètres de modèle estimés ont été construites à l'aide de l'algorithme Metropolis-Hastings du logiciel AD Model Builder (Fournier *et al.* 2012). Pour chaque zone d'évaluation principale, un échantillon systématique de 5 000 points a été prélevé sur une chaîne de longueur 5 millions censée représenter un échantillon aléatoire de la distribution marginale *a posteriori*. Les mêmes étapes d'analyse (méthodes bayésiennes) sont appliquées annuellement depuis septembre 2011 (Martell *et al.* 2012), et sont conformes aux évaluations des années précédentes au moyen du modèle des prises de hareng selon l'âge (HCAM et HCAMv2) (Cleary et Schweigert 2012; Schweigert *et al.* 2009).

La procédure d'estimation bayésienne intègre l'ensemble des sources d'incertitude générant une distribution *a posteriori* pour chaque paramètre estimé dans le modèle. Les échantillons sont ensuite utilisés pour construire les distributions marginales des quantités dérivées (p. ex. la *SB*₀).

2.2.3 Distributions de probabilité a priori

Les tableaux 1 et 2, ainsi que les figures 21 à 30 présentent les distributions de probabilité *a priori* des paramètres principaux pour chaque stock principal. La forme de chaque distribution reste identique à celle qui a été établie par Martell et al. (2012) et qui a été appliquée dans toutes les évaluations subséquentes. Les valeurs initiales de chaque paramètre principal ont été établies à partir des estimations de la densité *a posteriori* maximale (DPM) de l'évaluation de 2016 pour chaque zone de stock. Les valeurs *a priori* et leurs écarts-types demeurent les mêmes. Il sera question de la sensibilité des estimations du modèle aux hypothèses sur l'écart-type des distributions *a priori* de *q* à la section 2.3.3.

2.3 ANALYSES DE LA SENSIBILITÉ

Nous avons étudié la sensibilité des résultats du modèle d'évaluation du scénario de référence (voir l'analyse de rapprochement de l'annexe D) aux hypothèses suivantes :

1. Mortalité naturelle variable dans le temps présumée

- 2. Valeurs initiales présumées des paramètres d'écart ϑ^2 et ρ
- 3. Probabilité *a priori* des paramètres de capturabilité des relevés (q_1 et q_2)
- 4. Valeurs fixes présumées de la maturité selon l'âge

De plus amples détails et résultats sont présentés ci-après pour chacune des analyses de la sensibilité.

2.3.1 Mortalité naturelle

Dans le scénario de référence du modèle d'évaluation, il est présumé que la mortalité naturelle M varie dans le temps (la mortalité naturelle instantanée est présumée égale pour tous les âges, mais variable dans le temps) (Fu *et al.* 2004). L'estimation des écarts annuels de M variable dans le temps selon une méthode de marche aléatoire a débuté en 2006 (Haist et Schweigert 2006). L'introduction du modèle *ISCAM* (Martell *et al.* 2012) a ouvert la voie à une approche plus parcimonieuse fondée sur la fonction spline cubique et qui réduit le nombre de paramètres estimés de M à 12 (auparavant, plus d'une soixantaine d'écarts annuels étaient estimés).

Pour la présente analyse de la sensibilité, nous avons étudié les effets de l'estimation d'une seule constante *M* selon l'âge et dans le temps. Cette analyse de la sensibilité portait principalement sur l'incidence de l'utilisation de la mortalité naturelle variable dans le temps dans le modèle d'évaluation, compte tenu des tendances à la hausse récentes dans les estimations de *M* pour les stocks de HG, de la CC et de la COIV. Soit dit en passant, une approche différente de l'estimation de *M* est utilisée pour l'évaluation de certains stocks de hareng du Pacifique en Alaska (*M* constante est estimée pour des périodes prédéterminées définies par les changements dans l'oscillation décennale du Pacifique). Nous n'avons toutefois pas considéré un tel scénario pour la présente évaluation, car la réalisation de l'analyse nécessaire pour déterminer les périodes d'estimation de *M* n'entrait pas dans le cadre de référence.

Le scénario de la mortalité naturelle constante estimée a été appliqué à tous les stocks principaux et au paramétrage des deux modèles d'évaluation (AM2 et AM1), puis les résultats ont été comparés à ceux du modèle utilisant *M* variable dans le temps. Les résultats sont présentés aux figures 66 à 89.

Les estimations du modèle ont été influencées par la méthode utilisée pour estimer *M*. L'ajout de *M* variable dans le temps semble améliorer les ajustements du modèle et empiriques à l'indice du frai dans l'AM2 et l'AM1, pour tous les stocks (figures 66 à 75). La plus grande différence entre l'estimation de *M* variable dans le temps et de *M* constante apparaît au cours des 5 dernières années d'ajustements du modèle à l'indice du frai. Par exemple, les essais de sensibilité du modèle à *M* constante, tant pour l'AM1 que pour l'AM2 appliqués au stock de HG (figure 67), indiquent un ajustement nettement insuffisant au déclin de l'indice du frai de 2014 à 2017. Selon les résultats obtenus avec l'AM1 et l'AM2 pour le stock de la CC, les analyses de la sensibilité à *M* constante semblent surestimer l'ampleur de l'augmentation dans les données de relevé (figure 71). L'ajustement insuffisant à la baisse de l'indice de relevé se répercute également sur l'estimation de la biomasse du stock reproducteur (voir notamment la figure 76 pour le stock de HG).

Il est vrai que les estimations de la mortalité naturelle variable dans le temps fluctuent beaucoup sur de courtes périodes pour certains stocks (figures 83 à 87), fluctuations qui peuvent être attribuables à des périodes de forte prédation, aux interactions trophiques ou aux écarts dus au modèle Il ressort clairement des résultats des quatre passages du modèle (AM1 – M constante; AM1 – M variable dans le temps; AM2 – M constante; AM2 – M variable dans le temps) que les différents paramétrages de l'AM1 et de l'AM2 produisent des tendances très semblables de la biomasse du stock reproducteur au fil du temps. Autrement dit, il ne semble pas y avoir de lien entre la méthode utilisée pour estimer M et le choix de q a priori. Voir par exemple les figures 76 et 77.

Pour la plupart des stocks, les résultats liés à la biomasse du stock reproducteur et les écarts de recrutement diffèrent peu entre les passages du modèle présumant *M* constante dans le temps et *M* variable dans le temps, tant pour l'AM2 que pour l'AM1 (figures 76 et 77 et 78 à 82, respectivement). Les écarts de recrutement montrent des tendances similaires à celles de la biomasse du stock reproducteur, et la variation entre *M* constante et *M* variable dans le temps est plus marquée pour les stocks de HG et de la COIV (mais pas entre l'AM1 et l'AM2). Les tendances de q_t sont similaires d'un stock à l'autre, les variations entre les modélisations avec *M* constante et *M* variable dans le temps étant les plus marquées dans les estimations de q_2 par AM1 et AM2. Par exemple, l'AM2 donne une estimation supérieure à celle de l'AM1 pour q_2 avec *M* constante et *M* variable dans le temps pour HG (figure 88) et la COIV (figure 89).

Les tracés, les diagrammes d'autocorrélation et les diagrammes par paires des simulations Monte Carlo par chaîne de Markov (MCCM) du modèle avec *M* constante et *M* variable dans le temps sont très similaires d'un passage à l'autre pour le DPR, la CC, le DG et la COIV. Les figures 32 à 60 présentent les résultats pour *M* variable dans le temps (les résultats pour *M* constante ne sont pas présentés). Seuls font exception les résultats obtenus par l'AM2 pour HG : les tracés, les diagrammes d'autocorrélation et les diagrammes par paires présentent des signes de dérive et d'autocorrélation persistantes (figures 90, 91 et 92, respectivement).

La vraisemblance totale, les valeurs du critère d'information d'Akaike (CIA) et la différence dans la vraisemblance par rapport au scénario de référence ont également été examinées pour tous les passages du modèle et chaque groupe de stock (tableau 54). Exception faite du DG, les vraisemblances totales sont plus élevées et les valeurs CIA sont plus faibles lorsque l'AM1 et l'AM2 sont appliqués avec *M* variable dans le temps, des résultats suggérant que dans l'ensemble, le modèle est mieux ajusté aux données si le paramètre *M* variable dans le temps est utilisé.

Il semble indiqué de retenir le scénario de référence intégrant *M* variable dans le temps pour les fins de l'évaluation dont il est question ici, ce que l'analyse de rapprochement (annexe D) semble confirmer (cohérence accrue entre les ajustements présumés et empiriques à l'indice du frai, questions liées à l'autocorrélation entre les paramètres et la convergence du modèle avec *M* constante).

2.3.2 Paramètres d'écart

Le principal paramètre d'écart de la méthode à erreurs sur les variables est l'inverse de l'écart total φ^2 (c.-à-d. la précision totale, varphi). L'écart total est partagé entre les erreurs dues à l'observation et au traitement par le paramètre de modèle rho (ρ), soit la part de l'écart total due à une erreur d'observation (Punt et Butterworth 1993; Deriso *et al.* 2007).

Dans le modèle ISCAM, les écarts-types de l'erreur due au traitement (tau, τ) et à l'observation (sigma, σ) sont reliés et modélisés au moyen des équations suivantes pour kappa (κ) :

$$\kappa = \left(\frac{1}{\sqrt{(\sigma^2 + \tau^2)}}\right)^2 \tag{2}$$

et rho (ρ)

$$\rho = \sigma^2 \left(\frac{1}{\sqrt{(\sigma^2 + \tau^2)}}\right)^2.$$
(3)

Dans le scénario de référence, les valeurs initiales de κ et de ρ correspondent aux valeurs estimées de la DPM selon l'évaluation de 2016, ce qui a entraîné un terme d'erreur d'observation (σ = 0,58) et un terme d'erreur de traitement (τ = 0,69). Pour analyser la sensibilité du modèle aux valeurs initiales de θ^2 et de ρ , nous les avons fait varier en laissant le modèle estimer tous les paramètres directeurs.

Il ressort de cette analyse que si ρ et κ sont estimés, la valeur initiale n'a pas d'incidence sur l'estimation des paramètres du modèle, comme le montrent les résultats de l'AM2 et de l'AM1 pour le détroit de Georgie (tableaux 49 et 50). La même tendance est observée dans l'analyse de rapprochement (annexe D) pour l'AM2 et l'AM1, les deux paramétrages de *M* dans la première analyse de la sensibilité (section 2.3.1) et tous les stocks. L'analyse de rapprochement a aussi permis de vérifier ce qui se passe si κ ou ρ est fixe alors que l'autre paramètre est estimé. Nous avons constaté que ces scénarios produisent des estimations qui sont fortement dépendantes de la valeur initiale de κ et de ρ . Compte tenu de cette observation et parce que nous ne disposons d'aucune information externe pour déterminer les avantages de fixer l'un ou l'autre de ces paramètres, nous avons choisi le scénario de référence dans lequel les deux paramètres sont estimés.

2.3.3 Distributions de probabilité *a priori* de la capturabilité des relevés

Il existe deux versions de modèle de référence d'évaluation du stock, qui diffèrent par le traitement des paramètres de capturabilité des relevés du frai (q_1 et q_2) dominants durant la période des relevés en surface (1951 à 1987) et des relevés en plongée (1988 à 2017), respectivement. Il s'agit des modèles d'évaluation AM1 (estimations de q_1 et de q_2 avec

distributions de probabilité *a priori*) et AM2 (estimation de q_1 , $q_2 = 1$).

Il a été reproché à l'AM1 de recourir à des distributions de probabilité *a priori* sur q_1 et q_2 qui limitent outre mesure les estimations. Une distribution bayésienne *a priori* du paramètre de mise à l'échelle *q* des relevés en plongée a été établie à partir d'une analyse d'études sur le terrain menées dans les années 1980 et 1990 qui ne portaient pas sur le hareng du Pacifique (voir l'explication détaillée à l'annexe C de Martell *et al.* 2012). Tenant compte des préoccupations manifestées et des résultats de l'analyse de rapprochement (annexe D), nous avons effectué des analyses de la sensibilité pour déterminer l'incidence d'un élargissement de la distribution *a priori* de *q* par la modification de l'écart-type, tout en maintenant la moyenne constante. Dans le scénario de référence de l'AM1, la moyenne des distributions *a priori* de *q* est fixée à 0,566, et l'écart-type est fixé à 0,274 pour q_1 et q_2 . Aux fins de l'analyse de la sensibilité, nous avons appliqué des scénarios dans lesquels l'écart-type a été augmenté à 0,5, 2,0 et 3,0 pour q_1 et q_2 . Parce que la construction d'une nouvelle distribution *a priori* n'entrait pas dans le cadre du présent document, nous n'avons pas appliqué de scénarios utilisant d'autres valeurs *a priori* moyennes ou d'autres types de distribution.

Par ailleurs, l'étape 9 de l'analyse de rapprochement (annexe D) fait ressortir clairement la relation directe entre les valeurs *a priori* moyennes et la biomasse estimée du stock reproducteur. Autrement dit, la diminution des valeurs *a priori* moyennes entraîne une estimation plus élevée de la biomasse du stock reproducteur. Les estimations du modèle indiquent de faibles augmentations de la biomasse du stock reproducteur, de l'épuisement et de la mortalité naturelle lorsque l'écart-type de la distribution *a priori* de *q* augmente, et des diminutions négligeables des estimations de q_1 et de q_2 pour tous les groupes de stocks (figures 96 à 110).

Le tableau 53 présente les estimations de la médiane de la distribution *a posteriori* de la SB_{2017} , de la $SB_{0,17}/SB_{0}$, ainsi que des deux valeurs de *q* utilisées dans l'AM1 appliqué aux trois scénarios de référence d'analyse de la sensibilité (dans lesquels la distribution *a priori* de *q* est élargie par augmentation de l'écart-type). Les résultats ne révèlent aucune tendance constante pour ce qui concerne la relation entre l'écart-type de la distribution *a priori* de *q* et les valeurs *a priori* estimées. Par exemple, pour les stocks de HG et de la CC, une augmentation de l'écart-type de la distribution de get de q₂ et, conséquemment, une légère augmentation de la SB_{2017} estimée. Pour le DPR, le DG et la COIV, l'augmentation de l'écart-type de la distribution *a priori* a entraîné une augmentation des estimations de *q*₂ dans les modèles. Peu importe le scénario, il apparaît que l'incidence sur l'estimation de la SB_{2017} , de la SB_{0} et de la SB_{2017}/SB_{0} est somme toute négligeable.

2.3.4 Maturité selon l'âge

Pour le vecteur de la maturité du scénario de référence, il est présumé que 25 % des poissons d'âge 2 et 90 % des poissons d'âge 3 sont matures, et que 100 % des poissons d'âge 4 et plus sont matures. Sur la base de ces hypothèses, l'âge à 50 % de maturité est estimé à 2,3 ans environ. Dans les scénarios de référence appliqués à tous les stocks de hareng du Pacifique de la Colombie-Britannique, ces valeurs sont fixées en fonction de l'évaluation histologique des ovaires en formation (Hay 1985; Hay et McCarter 1999). Dans leur analyse récente visant à établir les points de référence limites pour les stocks de hareng du Pacifique de la Colombie-Britannique, Kronlund et al. (2018) discutent des régimes de maturité et de sélectivité des pêches en fonction de l'estimation de la F_{RMS} . Lorsque la courbe de maturité se situe à gauche des courbes de sélectivité des pêches et que, par conséquent, l'âge estimé à 50 % de maturité est beaucoup plus précoce que l'âge à 50 % de sélectivité, l'interprétation du modèle veut que la partie de la population qui est mature sans avoir encore été sélectionnée par les engins est invulnérable à la pêche.

Kronlund et al. (2018) soupçonnent que ce phénomène (la juxtaposition des courbes de maturité et de sélectivité) contribue aux estimations élevées de la F_{RMS} dans le modèle ISCAM. Lorsque les valeurs de la F_{RMS} sont élevées, les taux de récolte durables qui en découlent sont également élevés. D'ailleurs, les estimations de la F_{RMS} dont font état Kronlund et al. (2018) et le MPO (2015) comptent parmi les plus élevées jamais déclarées pour une espèce de hareng dans le monde.

Aux fins de l'analyse de la sensibilité dont il est question ici, le vecteur de la maturité selon l'âge équivaut à la sélectivité de la pêche au hareng rogué à la senne (engin 2), et le point de référence d'équilibre de la F_{RMS} est ensuite estimé de nouveau. Hay (1985) a établi que la maturation selon l'âge varie en fonction de la latitude et qu'en général, plus la température de l'eau est chaude, plus la maturation du hareng devrait être précoce. Il faut en déduire que les stocks de hareng du Pacifique de la Colombie-Britannique pourraient présenter des régimes de

maturité différents puisqu'ils sont répartis sur différentes latitudes. En l'absence d'études histologiques récentes sur lesquelles fonder de nouvelles estimations de la maturité selon l'âge, nous avons vérifié la sensibilité du modèle aux valeurs fixes du scénario de référence en posant que le vecteur de la maturité selon l'âge équivaut à la sélectivité de la pêche au hareng rogué à la senne (engin 2; tableau 48). Nous avons choisi la pêche au hareng rogué à la senne pour fixer le paramètre de la sélectivité parce que les sennes ciblent des rassemblements de poissons avant le frai sans tenir compte de la taille, de sorte qu'il est possible de tirer un échantillonnage de la structure selon l'âge d'une partie de la population de poissons matures.

Il ressort des estimations obtenues pour les paramètres directeurs que les différences sont négligeables entre le modèle actuel utilisant des valeurs fixes pour le vecteur de la maturité (scénario de référence) et le scénario de l'analyse de la sensibilité, dans lequel la maturité selon l'âge équivaut à la sélectivité selon l'âge (résultats non présentés). Nous avons examiné les estimations du *RMS*, de la F_{RMS} , de la SB_0 et de la SB_{2017} selon les scénarios de référence et d'analyse de la sensibilité au régime de maturité (DG : tableaux 51 et 52), et nous avons constaté que la plupart du temps, les estimations de la F_{RMS} sont numériquement inférieures dans le scénario d'analyse de la sensibilité. Seul fait exception le stock de HG (AM2), pour lequel la F_{RMS} estimée est supérieure dans le scénario d'analyse de la sensibilité à la maturité. Cela dit, comme ce scénario donne dans tous les cas des estimations très élevées de la F_{RMS} , on peut supposer que ce changement ne suffit pas pour générer des estimations de la F_{RMS} assez fiables pour être intégrées à une procédure de gestion.

2.4 RÉSULTATS DU MODÈLE D'ÉVALUATION

2.4.1 Modèles de référence

Les modèles de référence aux fins de la présente évaluation annuelle du hareng du Pacifique ont été choisis en fonction des résultats de l'analyse de rapprochement (annexe D) et de l'analyse de la sensibilité (section 2.3). Pour l'évaluation de 2016, deux versions du modèle de référence d'évaluation du stock ont été appliquées, qui diffèrent par le traitement des paramètres de capturabilité du relevé du frai (q_1 et q_2) pour la période du relevé en surface (1951 à 1987) et celle du relevé en plongée (1988 à 2017), respectivement. Il s'agit des modèles d'évaluation AM1 (estimations de q_1 et de q_2 avec distributions de probabilité *a priori*) et AM2 (estimation de q_1 , $q_2 = 1$). Au vu des résultats de l'analyse de rapprochement (annexe D) et des analyses de la sensibilité (section 2.3), l'application de ces deux modèles de référence semble indiquée pour chacun des cinq stocks principaux de hareng. Comme ces analyses ne sont pas suffisantes pour comprendre les interactions complexes entre q et les paramètres de gestion, une analyse par simulation-évaluation sera nécessaire pour déterminer quels paramétrages de q (AM1 ou AM2) seraient préférables. D'autres sources de données (nouvelles analyses, avis d'experts, etc.) pourraient également éclairer la construction de distributions bayésiennes *a priori* propres à chaque stock pour q.

De plus, les analyses de la sensibilité appuient l'utilisation continue de la mortalité naturelle variable dans le temps basé sur la meilleure cohérence des ajustements empiriques à l'indice de relevé du frai, questions liées à l'autocorrélation entre les paramètres et la convergence du modèle avec des scénarios utilisant *M* constante.

Parce que les estimations des modèles concernant la biomasse du stock reproducteur et la biomasse du stock reproducteur non exploitée sont fortement influencées par les valeurs initiales de ρ et de κ lorsque l'un ou l'autre de ces paramètres est fixe, et à défaut d'information externe pour déterminer s'il faut privilégier l'attribution d'une valeur fixe à l'un ou l'autre de ces paramètres, nous avons choisi un scénario de référence qui estime ces deux paramètres.

Le tableau 1 présente les paramétrages des modèles d'évaluation de référence AM1 et AM2.

2.4.2 Diagnostic du modèle

La distribution *a priori* conjointe a été établie de manière approximative à l'aide des processus de Monte Carlo à chaînes de Markov (MCCM) intégrés au logiciel AD Model Builder (Fournier *et al.* 2012). Pour les scénarios de référence AM2 et AM1 et tous les scénarios d'analyse de la sensibilité, des échantillons *a posteriori* ont été prélevés systématiquement toutes les 1 000 itérations sur une chaîne en contenant 5 millions (5 000 échantillons *a posteriori*). Le diagnostic de la convergence a été fondé sur un examen visuel des tracés (figures 32 à 40) et des diagrammes d'autocorrélation des chaînes *a posteriori* (figures 42 à 50). L'autocorrélation était mineure pour tous les paramètres à chaque exécution des scénarios de référence AM2 et AM1, et il n'y a aucune preuve solide d'un manque de convergence.

2.4.3 Ajustements aux données de relevé et sur les proportions selon l'âge

La figure a) de chacune des figures 8 à 17 illustre les ajustements des modèles AM2 et AM1 aux données de relevé du frai pour chacune des cinq régions d'évaluation des stocks principales : Haida Gwaii (HG); district de Prince Rupert (DPR); côte centrale (CC); détroit de Georgie (DG) et côte ouest de l'île de Vancouver (COIV). Les figures 111 à 125 présentent les estimations des proportions selon l'âge dans les cinq régions d'évaluation des stocks principales.

2.4.4 Estimations des paramètres

Les distributions de probabilité *a priori* et les distributions marginales de probabilité *a posteriori* des paramètres estimés sont présentées aux figures 21 à 30. Les estimations *a posteriori* de la médiane, des 5^e et 95^e centiles, ainsi que des DPM des paramètres principaux sont présentées aux tableaux 3 à 12. La démarche suivie pour choisir les valeurs et les distributions *a priori* est décrite à l'annexe A.

2.4.5 Biomasse et état des stocks

La section suivante présente les distributions *a posteriori* propres à chacun des stocks principaux de hareng du Pacifique pour les paramètres et les quantités qui en sont déduites : ajustements du modèle à l'indice de relevé du frai; recrutement à l'âge 2; mortalité naturelle instantanée et rétablissements de la biomasse du stock reproducteur.

Pour faciliter la reconnaissance et l'interprétation des tendances dans les résultats et l'incertitude pour chaque grande zone de stock, les figures 8 à 17 présentent des graphiques bâtis à partir de ces quatre ensembles de résultats des modèles pour les séries chronologiques de 1951 à 2017, par zone de stock. Nous présentons également des estimations médianes *a posteriori* du paramètre de mise à l'échelle du relevé du frai (*q*; tableau 2), les rapports entre les estimations de la DPM des recrues d'âge 2 et la biomasse du stock reproducteur (figure 20), ainsi que la sélectivité des engins de pêche selon l'âge (figures 61 à 65).

Le rapport entre la biomasse estimée du stock reproducteur et le PRL est présenté à la figure 19.

Haida Gwaii

Les estimations des modèles d'évaluation de référence AM2 et AM1 indiquent une tendance à la baisse de la biomasse du stock reproducteur depuis 2013 (figures 8 et 9, tableaux 18 et 19). Pour la plupart des années depuis 2000, y compris 2017, le stock de la COIV a affiché un état de productivité basse et de biomasse faible (figure 19). L'AM2 a estimé la biomasse médiane

du stock reproducteur en 2017 (SB_{2017}) à 3 963 t, soit 17 % de la SB_0 . L'AM1 a estimé la biomasse médiane du stock reproducteur en 2017 (SB_{2017}) à 7 336 t, soit 25 % de la SB_0 . Les estimations des modèles AM2 et AM1 indiquent toutes les deux que la SB_{2017} est inférieure au

PRL de 0,30 de la SB_0 (figure 19) avec une probabilité supérieure à 50 %. Le schéma des estimations de la biomasse est similaire pour l'AM2 et l'AM1, mais celles de l'AM2 concernant la SB_{2017} et l'état des stocks par rapport à la SB_0 sont inférieures à celles de l'AM1, en raison surtout des différences dans les estimations de q_2 par le modèle (tableau 2).

Aucun recrutement apparent n'est prévu dans la population reproductrice en 2017 : la figure 20 montre que le nombre de recrues d'âge 2 par rapport au nombre de reproducteurs est proche de l'origine de la courbe stock-recrutement de Beverton-Holt, et la figure 112 indique une proportion plus forte de poissons de 3 ans que de poissons de 2 ans. Bien que les estimations des modèles concernant la mortalité naturelle actuelle demeurent très incertaines, on observe une tendance à la hausse dans les estimations médianes de la mortalité naturelle depuis 2012 (figures 8 et 9).

La biomasse projetée du stock reproducteur avant la pêche s'établit à 4 346 t (AM2) ou 7 302 t (AM1) en 2018, des niveaux similaires à ceux de la SB_{2017} , et se compose comme suit : 34 % (médiane) de poissons d'âge 3 et 38 % (médiane) de poissons d'âge 4 et plus (tableau 13).

District de Prince Rupert

Depuis le milieu des années 1990, le stock du DPR se caractérise par deux périodes de biomasse constante et stable : 1996 à 2003 et 2006 à 2017 (figures 10 et 11, tableaux 20 et 21). L'AM2 a estimé la biomasse médiane du stock reproducteur en 2017 (SB_{2017}) à 21 738 t, soit 34 % de la SB_0 . L'AM1 a estimé la biomasse médiane du stock reproducteur en 2017 (SB_{2017}) à 22 820 t, soit 36 % de la SB_0 . Si l'on compare les estimations médianes, l'AM2 et

l'AM1 estiment que la SB_{2017} est supérieure au PRL de 0,30 de la SB_0 avec une probabilité supérieure à 50 %, mais inférieure à 95 % (figure 19). L'AM2 et l'AM1 donnent des estimations numériques de la biomasse du stock reproducteur très similaires en raison des similitudes entre les estimations des modèles pour q_1 et q_2 (tableau 2).

Autant l'AM2 que l'AM1 ont estimé un recrutement important de l'âge 2 en 2014 par rapport aux 10 années précédentes, principalement en raison des données sur la structure selon l'âge indiquant une forte proportion d'échantillons de cette classe d'âge. La figure 20 montre un nombre de recrues d'âge 2 en 2017 proche de la moyenne, juste au-dessous de la courbe stock-recrutement de Beverton-Holt. Sur la figure 115, on constate une proportion plus forte de poissons d'âge 4 et 5 que de poissons d'âge 2 et 3. Bien que les estimations de la mortalité naturelle actuelle demeurent très incertaines dans le modèle, on observe une tendance à la baisse des estimations médianes de la mortalité naturelle depuis 2006 (figures 10 et 11).

Autant l'AM2 que l'AM1 prévoient une tendance stable continue de la biomasse du stock reproducteur, avec une biomasse projetée du stock reproducteur avant la pêche de 23 924 t (AM2) et 24 903 t en 2018 (AM1, tableau 14), soit 23 % (médiane) de poissons d'âge 3 et 68 % (médiane) de poissons d'âge 4 et plus (tableau 14).

Côte centrale

Après une augmentation de 2012 à 2016, l'indice de relevé a diminué de 2016 à 2017 (figures 12 et 13). Les modèles d'évaluation de référence AM2 et AM1 ont tous les deux estimé que la biomasse du stock reproducteur suit une tendance à la hausse depuis 2012 (figures 12 et 13, tableaux 22 et 23).

L'AM2 a estimé la biomasse médiane du stock reproducteur en 2017 (SB_{2017}) à 30 474 t, soit 55 % de la SB_0 . L'AM1 a estimé la biomasse médiane du stock reproducteur en 2017 (SB_{2017}) à 49 620 t, soit 80 % de la SB_0 . Si l'on compare les estimations médianes, l'AM2 et l'AM1

estiment que la SB_{2017} est supérieure au PRL de 0,30 de la SB_0 avec une probabilité supérieure à 95 % (figure 19). Le schéma des estimations de la biomasse est similaire pour l'AM2 et l'AM1, mais celles de l'AM2 concernant la SB_{2017} et l'état des stocks par rapport à la SB_0 sont inférieures à celles de l'AM1, en raison surtout des différences dans les estimations de q_2 par le modèle (tableau 2).

La figure 20 indique un nombre moyen ou inférieur à la moyenne de recrues d'âge 2 en 2017. On estime que les poissons d'âge 5, issus de la cohorte de 2012, composaient la proportion la plus grande en 2017 (figure 118).

Il n'y a pas eu de recrutement apparent dans la population reproductrice en 2017 (figure 20).

Les estimations des modèles concernant la mortalité naturelle actuelle sont restées très incertaines ces dernières années. Les figures 12 et 13 indiquent une tendance à la baisse de la mortalité naturelle estimée depuis 2008.

La biomasse projetée du stock reproducteur avant la pêche s'établit à 32 458 t (AM2) ou 50 259 t (AM1) en 2018, des niveaux similaires à ceux de la SB_{2017} , et se compose comme suit : 25 % (médiane) de poissons d'âge 3 et 66 % (médiane) de poissons d'âge 4 et plus (tableau 15).

Détroit de Georgie

Après une augmentation de 2013 à 2016, l'indice de relevé a diminué de 2016 à 2017 (figures 14 et 15). Les modèles d'évaluation de référence AM2 et AM1 ont tous les deux estimé que la biomasse du stock reproducteur suit une tendance à la hausse depuis 2010 (figures 14 et 15, tableaux 24 et 25).

L'AM2 a estimé la biomasse médiane du stock reproducteur en 2017 (SB_{2017}) à 114 626 t, soit 81 % de la SB_0 . L'AM1 a estimé la biomasse médiane du stock reproducteur en 2017 (SB_{2017}) à 175 960 t, soit 108 % de la SB_0 . Si l'on compare les estimations médianes, l'AM2 et l'AM1

estiment que la SB_{2017} est supérieure au PRL de 0,30 de la SB_0 avec une probabilité supérieure à 95 % (figure 19). Le schéma des estimations de la biomasse est similaire pour l'AM2 et l'AM1, mais celles de l'AM2 concernant la SB_{2017} et l'état des stocks par rapport à la SB_0 sont inférieures à celles de l'AM1, en raison surtout des différences dans les estimations de q_2 par le modèle (tableau 2).

La figure 20 indique un nombre moyen ou inférieur à la moyenne de recrues d'âge 2 en 2017. On estime que les poissons d'âge 3 et 4 composaient la proportion la plus grande en 2017, ce qui est conséquent avec les 5 années précédentes (figure 121). Bien que les estimations de la mortalité naturelle actuelle demeurent très incertaines dans les modèles, on observe une tendance à la baisse des estimations médianes de la mortalité naturelle depuis 2007 (figures 14 et 15).

La biomasse projetée du stock reproducteur avant la pêche s'établit à 125 285 t (AM2) ou 169 910 t (AM1) en 2018, des niveaux inférieurs à ceux de la SB_{2017} , et se compose comme suit : 25 % (médiane) de poissons d'âge 3 et 67 % (médiane) de poissons d'âge 4 et plus (tableau 16).

Côte ouest de l'île de Vancouver

Après une période prolongée de productivité basse et de biomasse faible à compter de 2005, le stock de la COIV a connu une augmentation en 2016, puis il a diminué de nouveau en 2017. En raison de ces faibles niveaux de biomasse, le stock de la COIV se caractérise par des différences apparemment marquées dans la biomasse des relevés d'une année à l'autre. Les modèles d'évaluation de référence AM2 et AM1 ont estimé que la biomasse du stock reproducteur a diminué de 2016 à 2017 (tableaux 26 et 27). L'AM2 a estimé la biomasse médiane du stock reproducteur en 2017 (SB_{2017}) à 17 742 t, soit 37 % de la SB_0 . L'AM1 a estimé la biomasse médiane du stock reproducteur en 2017 (SB_{2017}) à 17 742 t, soit 37 % de la SB_0 . L'AM1 a stimé la biomasse médiane du stock reproducteur en 2017 (SB_{2017}) à 32 810 t, soit 56 % de la SB_0 . Si l'on compare les estimations médianes, l'AM2 et l'AM1 estiment que la SB_{2017} est

supérieure au PRL de 0,30 de la SB_0 dans une probabilité supérieure à 50 %, mais inférieure à 95 % (figure 19). Le schéma des estimations de la biomasse est similaire pour l'AM2 et l'AM1, mais celles de l'AM2 concernant la SB_{2017} et l'état des stocks par rapport à la SB_0 sont inférieures à celles de l'AM1, en raison surtout des différences dans les estimations de q_2 par le modèle (tableau 2).

Il ne semble pas y avoir eu de recrutement dans la population reproductrice en 2017 : la figure 20 montre que le nombre de recrues d'âge 2 est inférieur à la moyenne, et la figure 124 montre une proportion plus forte de poissons d'âge 4 que de poissons d'âge 2 et 3. Bien que les estimations de la mortalité naturelle actuelle demeurent très incertaines dans les modèles, on observe une tendance à la hausse des estimations médianes de la mortalité naturelle depuis 2014 (figures 16 et 17).

La biomasse projetée du stock reproducteur avant la pêche en 2018 s'établit à 20 003 t (AM2) ou 34 886 t (AM1), des niveaux similaires à ceux de la SB_{2017} , et se compose comme suit : 32 % (médiane) de poissons d'âge 3 et 48 % (médiane) de poissons d'âge 4 et plus (tableau 17).

2.4.6 Recrutement

Le recrutement fait référence au nombre de poissons d'âge 2 qui intègrent une population au début de chaque année (le début étant fixé au 1^{er} janvier conformément aux conventions sur la détermination de l'âge). Le modèle estime le recrutement de l'âge 2 comme un paramètre libre, en tenant compte de la contrainte liée à la variation des estimations annuelles en fonction d'une relation stock-recrutement de Beverton-Holt avec un écart-type estimé qui n'est pas connu (figure 20). On estime que le recrutement de l'âge 2 a été moyen ou inférieur à la moyenne en 2017 dans les stocks de HG, du DPR, de la CC et de la COIV. On estime que le recrutement de l'âge 2 a été supérieur à la moyenne dans le stock du DG en 2017. Les estimations du recrutement dans les cinq stocks principaux (AM2 seulement) sont présentées aux tableaux 29 à 37.

2.4.7 Taux de récolte effectif

Depuis 1983, un taux de récolte cible maximal de 20 % est imposé pour la gestion des pêches du hareng du Pacifique. Pour le hareng du Pacifique des zones principales de stock, le taux de récolte effectif est calculé comme suit pour l'AM2 et l'AM1 :

$$U_t = \frac{C_t}{SB_t + C_t} \tag{4}$$

les valeurs SB_t et C_t correspondant à la biomasse estimée du stock reproducteur et au taux de récolte durant l'année t. La figure 18 présente les estimations des séries chronologies des taux de récolte effectifs pour chaque zone de stock.

2.4.8 Analyse de la productivité

Kronlund et al. (2018) utilisent une analyse de la productivité excédentaire pour évaluer si les stocks principaux de hareng du Pacifique de la Colombie-Britannique présentent des états indicateurs de risque de dommages sérieux. Cette analyse a permis de relever des états récents et persistants de productivité basse et de biomasse faible dans les zones de gestion de la côte centrale (CC), de Haïda Gwaii (HG) et de la côte ouest de l'île de Vancouver (COIV).

L'analyse de la productivité a été mise à jour pour les stocks principaux de hareng du Pacifique par ajout de données sur les prises de 2017 et d'estimations de la DPM de la biomasse du stock reproducteur pour l'AM2 et l'AM1. Les figures 8 à 17 montrent les analyses de la productivité par l'AM2 et l'AM1 dans les 5 régions d'évaluation des stocks principales (HG, DPR, CC, DG et COIV), respectivement. Une comparaison des résultats de l'analyse de la productivité mise à jour avec ceux de Kronlund et al. (2018) révèle une similitude des résultats clés qui appuie leurs recommandations. La figure 19 présente la médiane des distributions *a posteriori* de la biomasse estimée du stock reproducteur en 2017 pour chaque stock principal, juxtaposée au PRL estimé. Les points suivants présentent la SB_{2017} estimée par rapport au PRL (0,30 de la $\cdot SB_0$) :

- 1. HG : La productivité de la biomasse du stock reproducteur et le taux de productivité sont négatifs (AM2 et AM1) et, à plus de 50 % de probabilité, la biomasse estimée du stock reproducteur en 2017 est inférieure au PRL de 0,30 de la SB₀ (AM2 et AM1).
- DPR : La productivité de la biomasse du stock reproducteur et le taux de productivité sont positifs (AM2 et AM1) et, à plus de 50 % de probabilité, la biomasse estimée du stock reproducteur en 2017 est supérieure au PRL de 0,30 de la SB₀ (AM2 et AM1).
- 3. CC : La productivité de la biomasse du stock reproducteur et le taux de productivité sont positifs (AM2 et AM1) et, à plus de 95 % de probabilité, la biomasse estimée du stock reproducteur en 2017 a été supérieure au PRL de 0,30 de la *SB*₀ (AM2 et AM1).
- 4. HG : La productivité de la biomasse du stock reproducteur et le taux de productivité sont positifs (AM2 et AM1) et, à plus de 95 % de probabilité, la biomasse estimée du stock reproducteur en 2017 est supérieure au PRL de 0,30 de la SB₀ (AM2 et AM1).
- 5. COIV : La productivité de la biomasse du stock reproducteur et le taux de productivité sont négatifs (AM2 et AM1). AM1 : À 28 % de probabilité, la biomasse estimée du stock reproducteur en 2017 est supérieure au PRL de 0,30 de la SB₀; AM2 : À 43 % de probabilité, la biomasse estimée du stock reproducteur en 2017 est inférieure au PRL de 0,30 de la SB₀.

2.5 HYPOTHÈSES ET INCERTITUDES

La présente évaluation repose sur des méthodes bayésiennes qui superposent l'intégration des données *a priori* informatives et des incertitudes inhérentes aux paramètres afin de permettre une interprétation probabiliste des résultats. Les mesures de l'incertitude utilisées dans le cadre de l'évaluation sous-estiment la véritable incertitude entourant l'état actuel des stocks et des projections parce qu'elles ne tiennent pas compte des autres modèles structurels de la dynamique des populations de hareng du Pacifique (p. ex. la mortalité naturelle) et des processus de pêche (p. ex. la sélectivité), des effets des différents systèmes de pondération des données et du fondement scientifique des choix liés aux distributions de probabilité *a priori*. Les modèles d'évaluation des stocks de référence AM2 et AM1 intègrent l'incertitude considérable inhérente à plusieurs paramètres importants du modèle : la capturabilité du relevé de frai (*q*); la productivité du stock (paramètre d'inclinaison de la courbe [*h*]] de la relation stock-recrutement); le taux de mortalité naturelle (*M*), et les écarts de recrutement. Bien que les résultats de la méthode bayésienne ici présentés tiennent compte de l'incertitude des estimations, il y a lieu de croire que cette incertitude inhérente au modèle sous-estime la véritable incertitude entourant l'état actuel des stocks et des projections, en raison notamment de l'absence de choix quant au modèle structurel, de l'incertitude associée à la pondération des données, des erreurs d'évaluation et de l'incertitude scientifique associée au choix des distributions de probabilité *a priori*. Pour établir une procédure de gestion qui résiste à l'incertitude véritable entourant l'état actuel des stocks et les projections, il est impératif de procéder à des essais rigoureux au moyen de simulations fondées sur les rétroactions.

Des analyses rétrospectives sont nécessaires pour comprendre les biais d'estimation.

2.6 ANALYSES RÉTROSPECTIVES

Les profils du biais rétrospectif dans les estimations de la biomasse du stock reproducteur et du recrutement à l'âge 2 pour tous les stocks principaux (AM1 et AM2) ont été examinés en éliminant successivement les dix dernières années de données. Les résultats sont présentés aux figures 161 à 165 et aux figures 166 à 175, respectivement, pour l'AM1 et l'AM2.

Il se dégage de ces figures deux types de profils rétrospectifs. Pour les stocks de HG, de la CC et de la COIV, les profils rétrospectifs généraux sont les mêmes pour l'AM1 et l'AM2. Plus précisément, ni l'AM1 ni l'AM2 ne permettent de dégager un profil de biais rétrospectif plus important et, pour chacun de ces stocks, le modèle ISCAM semble sous-estimer et surestimer la biomasse du stock avec la même fréquence.

Pour les stocks du DPR et du DG, l'AM1 et l'AM2 surestiment plus souvent qu'ils ne sousestiment la biomasse du stock reproducteur. Si on compare les résultats de l'AM1 et de l'AM2 pour le DPR et le DG, il semble que l'AM1 surestime la biomasse du stock reproducteur dans une plus grande mesure que l'AM2.

3 RECOMMANDATIONS ET OPTIONS LIÉES AU RENDEMENT

3.1 BIOMASSE PROJETÉE EN 2018

Les estimations de la biomasse du stock reproducteur avant la pêche (avant toute forme d'exploitation en 2018) et la contribution relative des poissons d'âge 3 et 4 à 10 sont présentées aux tableaux 13 à 17. Les avis aux gestionnaires pour chaque zone de stock en 2018 sont présentés ci-après dans les sections traitant de chaque stock, sous forme de deux ensembles de tables de décision liées aux deux modèles d'évaluation (AM2 et AM1; tableaux 38 à 47). Les tableaux des résultats de l'AM2 présentent les probabilités que la biomasse projetée du stock reproducteur après la récolte en 2018 (SB_{2018}) tombe sous le point de référence limite (PRL) de

0,3 de la SB₀, ou sous le seuil historique de pêche fixé pour chaque stock (établi à 0,25 de

 $la \cdot SB_0$ d'après l'évaluation de 1996 (Schweigert *et al.* (1997)), et que le taux de récolte excède les cibles de 10 % (fixée par Gestion des pêches) et de 20 % (conformément à la règle de contrôle des prises, RCP) pour un éventail de niveaux de prises constants. Les tableaux des résultats de l'AM1 présentent les probabilités que la biomasse projetée du stock reproducteur après la récolte en 2018 (SB_{2018}) tombe sous le PRL de 0,3 de la SB_0 , et que le taux de récolte excède les cibles de 10 % et de 20 % pour un éventail de niveaux de prises constants en 2018.

3.2 TABLES DE DÉCISION

Les tables de décision pour 2018 sont présentées pour les applications des scénarios de référence selon l'AM1 et l'AM2 pour les cinq zones de stock principales (HG, DPR, CC, DG et COIV). L'exemple qui suit illustre comment interpréter les tableaux pour le DPR :

En fonction des hypothèses de l'AM2 pour le DPR (tableau 40, ligne 10), pour des prises de 5 000 t en 2018, la probabilité estimée que le taux de récolte (U) excède le taux cible de 20 % est de 0,503 (50 %), et la probabilité que la SB_{2018} soit inférieure au seuil fixe (12 100 t) est estimée à 0,144 (14 %). À ce niveau de prises, la probabilité que la SB_{2018} tombe sous le PRL est de 0,444 (44 %).

3.2.1 Mesures du rendement

La section suivante explique les mesures du rendement et les en-têtes de colonne aux fins de l'interprétation des tables de décision :

- 1. TAC pour 2018 : éventail de totaux autorisés des captures, exprimés en tonnes métriques.
- P(SB_{2018 <} PRL = 0,3 SB₀) : probabilité que la biomasse du stock reproducteur après la récolte tombe sous le PRL de 0,3 de la SB₀ en 2018.
- 3. Med($SB_{2018}/0,3 SB_0$) : rapport médian entre la biomasse projetée du stock reproducteur après la récolteet le PRL de 0,3 de la SB_0 en 2018.
- P(SB₂₀₁₈ < [valeur]) : probabilité que la biomasse du stock reproducteur après la récolte en 2018 soit inférieure au seuil fixé en 1996.
- 5. Med(*SB*₂₀₁₈/[valeur]) : rapport médian entre la biomasse projetée du stock reproducteur après la récolte en 2018 et le seuil fixé en 1996.
- P(U₂₀₁₈ > 20 %) : probabilité que le taux d'exploitation soit supérieur au taux de récolte cible de 20 % en 2018.
- 7. $P(U_{2018} > 10 \%)$: probabilité que le taux d'exploitation soit supérieur au taux de récolte cible de 10 % en 2018.
- 8. $Med(U_{2018})$: taux d'exploitation médian en 2018.

Il est à noter que dans les tables de décision, les seuils fixes et le taux de récolte de 20 % sont fondés sur la règle de contrôle des prises en vigueur.

4 BESOINS FUTURS DE RECHERCHE ET DE DONNÉES

1. Le processus engagé pour évaluer la stratégie de gestion doit se poursuivre. Chaque stock principal de hareng du Pacifique devra faire l'objet d'essais par simulation des procédures de gestion.
- 2. Toutes les sources de mortalité du hareng doivent être quantifiées, y compris la mortalité et la récolte d'œufs attribuables aux activités de récolte d'œufs sur varech et sur rameaux.
- 3. De nouvelles données devront être recueillies aux fins de la recherche sur la maturité selon l'âge pour chaque stock de hareng du Pacifique des eaux de la Colombie-Britannique.

5 REMERCIEMENTS

Le présent document de recherche rend compte du premier examen approfondi du code, des équations, des hypothèses relatives aux données et de la présentation des résultats, des figures et des tableaux du logiciel ADMB depuis l'introduction du modèle ISCAM en 2011.

Nous aimerions exprimer notre gratitude aux personnes et organismes suivants :

- Kristen Daniel et Matt Thompson, pour leur expertise en matière de gestion de la collecte et du stockage des données de relevé, sur les prises et biologiques dans le cadre du programme d'évaluation du hareng du Pacifique.
- Le laboratoire de sclérochronologie de la Station biologique du Pacifique du MPO, pour sa rapidité à déterminer l'âge des harengs.
- Tous ceux qui ont contribué à la collecte des données de relevé et sur les prises : la Société de conservation et de recherche sur le hareng; J.O. Thomas; Tideview Services et les Premières Nations de la région qui participent aux activités de relevé dans le cadre d'accords conclus au titre de la Stratégie relative aux pêches autochtones et du Programme autochtone de gestion des ressources aquatiques et océaniques.
- Rob Kronlund, pour son appui concernant l'application du code du langage **R** pour générer des graphiques de productivité et ses conseils en matière de conformité à l'approche de précaution.
- Robyn Forrest, pour son appui concernant l'analyse de rapprochement et certaines mises à jour des estimations des points de référence.
- Andy Edwards et Chris Grandin, pour la mise au point du <u>gabarit csas-latex</u>, sans lequel nous n'aurions pas pu préparer le présent document.

Enfin, l'auteur principal tient à remercier chaleureusement chacun des coauteurs pour leur expertise et leur soutien indéfectible.

6 RÉFÉRENCES CITÉES

- Beacham, T.D., Schweigert, J.F., MacConnachie, C., Le, K.D. and Flostrand, L. 2008. Use of microsatellites to determine population structure and migration of Pacific Herring in British Columbia and adjacent regions. Trans. Am. Fish. Soc 137. 1795–1811.
- Caretta, J.V., Forney, K.A., Olesen, E., Martien, K., Muto, M.M., Lowry, M.S., Barlow, J., Baker, J., Hanson, B., Lynch, D., Carswell, L., Brownell Jr., R.L., Robbins, J., Mattila, D.K., Ralls, K. and Hill, M.C. 2011. U.S. Pacific Marine Mammal Stock Assessments. National Oceanic and Atmospheric Administration NOAA-TM-NMFS-SWFSC-488. 378p.
- Cleary, J.S., Cox, S.P. and Schweigert, J.F. 2010. Performance evaluation of harvest control rules for Pacific herring management in British Columbia, Canada. ICES Journal of Marine Science 67. 2005–2011.

- Cleary, J.S. and Schweigert, J.F. 2012. Stock assessment and management advice for the British Columbia herring stocks: 2010 assessment and 2011 forecasts. DFO Can. Sci. Advis. Sec. Res. Doc. 2011/115. viii + 90p.
- Crawford, W.R. and Irvine, J.R. 2011. State of physical, biological, and selected fishery resources of Pacific Canadian marine ecosystems in 2010. DFO Can. Sci. Advis. Sec. Res. Doc. 2011/054. x + 163p.
- de la Mare, W.K. 1998. Tidier fisheries management requires a new MOP (management oriented paradigm). Reviews in Fish Biology and Fisheries 8. 349–356.
- Deriso, R.B., Maunder, M.N. and Skalski, J.R. 2007. Variance estimation in integrated assessment models and its importance for hypothesis testing. Can. J. Fish. Aquat. Sci. 64(2). 187–197.
- FishBase. 2017. <u>World wide web electronic publication</u>. In R. Froese and D. Pauly, eds., version 2017-06. (Accessed August 18, 2018)
- Flostrand, L.A., Schweigert, J.F., Daniel, K.S. and Cleary, J.S. 2009. Measuring and modelling Pacific herring spawning-site fidelity and dispersal using tag-recovery dispersal curves. ICES Journal of Marine Science 66. 1754–1761.
- Forrest, R.E., Lacko, K.L., Kronlund, A.R., Starr, P.J. and McClelland, E.K. 2015. Assessment of Pacific Cod (*Gadus macrocephalus*) for Hecate Strait (5CD) and Queen Charlotte Sound (5AB) in 2013. DFO Can. Sci. Advis. Sec. Res. Doc. 2015/052. xii + 197p.
- Fournier, D. and Archibald, C. 1982. A general theory for analyzing catch at age data. Can. J. Fish. Aquat. Sci. 39(8). 1195–1207.
- Fournier, D.A., Skaug, H.J., Ianelli, J., Magnusson, A., Maunder, M.N., Nielsen, A. and Siebert, J. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27. 233–249.
- Fu, C., Schweigert, J. and Wood, C.C. 2004. An evaluation of alternative age-structured models for risk assessment of Pacific herring stocks in British Columbia. DFO Can. Sci. Advis. Sec. Res. Doc. 2004/011. ii + 55p.
- Gavaris, S. and Ianelli, J. 2002. Statistical Issues in Fisheries' Stock Assessments. Scan. J. Stat. 29(2). 245–267.
- Haist, V., Fournier, D.A. and Schweigert, J.F. 1993. Estimation of density-dependent natural mortality in British Columbia herring stocks through SSPA and its impact on sustainable harvest strategies. In S. J. Smith, J. J. Hunt and D. Rivard, eds., Risk evaluation and biological reference points for fisheries management, 269–282. Can. Spec. Publ. Fish. Aquat. Sci. 120.
- Haist, V. and Schweigert, J.S. 2006. Catch-age models for Pacific herring: Evaluation of alternative assumptions about fishery and stock dynamics and alternative error distributions. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/064. ii + 55 p.
- Haist, V. and Stocker, M. 1984. Stock assessment for British Columbia herring in 1983 and forecasts of the potential catch in 1984. Canadian Manuscript Report of Fisheries and Aquatic Sciences 1751, Department of Fisheries and Oceans.
- Hall, D.L. 1986. Alternative harvest strategies for Pacific herring. Master's thesis, University of British Columbia, Vancouver, B.C.
- Hall, D.L., Hilborn, R., Stocker, M. and Walters, C.J. 1988. Alternative harvest strategies for Pacific herring (*Clupea harengus pallasi*). Can. J. Fish. Aquat. Sci 45. 88S897.

- Hay, D.E. 1985. Reproductive biology of Pacific herring (*Clupea harengus pallasi*). Can. J. Fish. Aquat. Sci. 42 (Suppl. 1). 111–126.
- Hay, D.E. and McCarter, P.B. 1999. Age of sexual maturation and recruitment in Pacific Herring. DFO Can. Stock. Assess. Sec. Res. Doc. 99/175. 42 p.
- Hay, D.E., McCarter, P.B. and Daniel, K.S. 2001. Tagging of Pacific herring (*Clupea pallasi*) from 1936-1992: A review with comments on homing, geographic fidelity, and straying. Can. J. Fish. Aquat. Sci. 58. 1356–1370.
- Holt, K.R., Starr, P.J., Haigh, R. and Krishka, B. 2016. Stock assessment and harvest advice for Rock Sole (Lepidopsetta spp.) in British Columbia. DFO Can. Sci. Advis. Sec. Res. Doc 2016/009. ix + 256 p.
- Hourston, A.S. 1980. The decline and recovery of Canada's Pacific herring stocks. Rapp. P.-v. Reun. Cons. Int. Explor. Mer 177. 143–153.
- Hourston, A.S. 1982. Homing by Canada's west coast herring to management units and divisions as indicated by tag recoveries. Can. J. Fish. Aquat. Sci 39. 1414–1422.
- Hourston, A.S. and Haegele, C.W. 1980. Herring on Canada's Pacific coast. Can. Spec. Publ. of Fish. and Aquat. Sci. 48 Fs 41-31/48E. 23p.
- Kronlund, A.R., Forrest, R.E., Cleary, J.S. and Grinnell, M.H. 2018. The selection and role of limit reference points for Pacific Herring (*Clupea pallasii*) in British Columbia, Canada. DFO Can. Sci. Advis. Sec. Res. Doc. 2018/009. ix + 125 p.
- Martell, S.J., Cleary, J. and Haist, V. 2012. Moving towards the sustainable fisheries framework for Pacific herring: data, models, and alternative assumptions; stock assessment and management advice for the British Columbia Pacific Herring stocks: 2011 assessment and 2012 forecasts. DFO Can. Sci. Advis. Sec. Res. Doc. 2011/136. xii + 136–151 p.
- McAllister, M.K. and Ianelli, J. 1997. Bayesian stock assessment using catch-age data and the sampling: importance resampling algorithm. Can. J. Fish. Aquat. Sci. 54(2). 284–300.
- McQuinn, I.H., M.Hammill and Lefebvre, L. 1999. An Assessment and Risk Projections of the West Coast of Newfoundland (NAFO division 4R) Herring Stocks (1965 to 2000). DFO Can. Sci. Advis. Sec. Res. Doc. 1999/119. 94p.
- MPO, 2003. Otarie de Steller (Eumetopias jubatus). Secr. can. de consult. sci. du MPO, Rapp. sur l'état des stocks 2003/037.
- MPO, 2005. Hareng du sud du golfe du Saint-Laurent Niveaux de référence applicables a la biomasse du stock reproducteur. MPO, Secr. can. consult. sci. Avis. sci. 2005/070.
- MPO. 2009. Cadre décisionnel pour les pêches en conformité avec l'approche de précaution (modifié pour la dernière fois le 23 mai 2009, bien que les figures aient changé depuis).
- MPO. 2010. Évaluation des populations de phoques communs du Pacifique (Phoca vitulina richardsi). Secr. can. de consult. sci. du MPO, Avis sci. 2009/011.
- MPO. 2012. Points de référence conformes à l'approche de précaution pour une variété de stocks dans la région des Maritimes Secr. can. de consult. sci. du MPO, Avis sci. 2012/035.
- MPO. 2014. Évaluation et gestion des stocks de hareng du Pacifique en Colombie-Britannique : état en 2013 et prévisions pour 2014. Secr. can. de consult. sci., Avis sci. 2014/003.
- MPO. 2015. Points de référence limites éventuels comme base pour choisir parmi les autres règles de contrôle des prises pour le hareng du Pacifique (Clupea pallasii) en Colombie-Britannique. Secr. can. de consult. sci. du MPO, Avis sci. 2015/062.

- MPO. 2016. Évaluation du homard d'Amérique à Terre-Neuve. Secr. can. de consult. sci. du MPO, Avis sci. 2016/052.
- Myers, R.A., Bowen, K.G. and Barrowman, N.J. 1999. Maximum reproductive rate of fish at low population sizes. Can. J. Fish. Aquat. Sci. 56. 2404–2419.
- Punt, A.E. and Butterworth, D.S. 1993. Variance estimates for fisheries assessment: their importance and how best to evaluate them. In S. I. Smith, J. J. Hunt, and D. Rivard, eds., Risk Evaluation and Biological Reference Points for Fisheries Management, 145–162. Can. Spec. Publ. Fish. Aquat. Sci. 120.
- Richards, L., Schnute, J. and Olsen, N. 1997. Visualizing catch-age analysis: a case study. Can. J. Fish. Aquat. Sci. 54(7). 1646–1658.
- Schnute, J.T. and Richards, L.J. 1995. The influence of error on population estimates from catch-age models. Can. J. Fish. Aquat. Sci. 52. 2063–2077.
- Schweigert, J., Christensen, L. and Haist, V. 2009. Stock assessment for British Columbia herring in 2008 and forecasts of the potential catch in 2009. DFO Can. Sci. Advis. Sec. Res. Doc. 2009/019. lv + 61p.
- Schweigert, J., Funk, F., Oda, K. and Moore, T. 2002. Herring size-at-age variation in the North Pacific. In W. Peterson and D. Hay, eds., REX workshop on temporal variations in size at-age for fish species in coastal areas around the Pacific Rim, 47–57. PICES Science Report 20.
- Schweigert, J.F., Boldt, J.L., Flostrand, L. and Cleary, J.S. 2010. A review of factors limiting recovery of Pacific herring stocks in Canada. ICES Journal of Marine Science 67. 1903–1913.
- Schweigert, J.S., Fort, C. and Hamer, L. 1997. Stock assessments for British Columbia herring in 1996 and forecasts of the potential catch in 1997. Can. Tech. Rep. Fish. Aquat. Sci. 2173. 73p.
- Sinclair, A.F. and Starr, P.J. 2005. Assessment of Pacific Cod in Hecate Strait (5CD) and Queen Charlotte Sound (5AB), January, 2005. DFO Can. Sci. Advis. Sec. Res. Doc. iii + 97p.
- Stevenson, J.C. 1954. The movement of herring in British Columbia waters as determined by tagging with a description of tagging and tag recovery methods. ICES Special Scientific Meeting on Herring Tagging and Results 55. 39p.
- Taylor, F.H.C. 1964. Life history and present status of British Columbia herring stocks. Bulletin of the Fisheries Research Board of Canada 143. 81p.
- Taylor, N., Hicks, A.C., Taylor, I.G., Grandin, C. and Cox, S. 2014. Status of the Pacific Hake (whiting) stock in U.S. and Canadian waters in 2014 with a management strategy evaluation. International Joint Technical Committee for Pacific Hake.
- Tjelmeland, S. and Røttingen, I. 2009. Objectives and harvest control rules in the management of the fishery of Norwegian spring-spawning herring. ICES J. Mar. Sci. 66. 1793–1799.
- Walters, C.J. and Ludwig, D. 1994. Calculation of Bayes posterior probability distributions for key population parameters. DFO Can. Sci. Advis. Sec. Res. Doc. 51. 713–722.
- Ware, D.M. and Schweigert, J. 2001. Metapopulation structure and dynamics of British Columbia herring. DFO Can. Stock. Assess. Sec. Res. Doc. 2001/127. 28 p.

- Ware, D.M., Tovey, C., Hay, D. and McCarter, B. 2000. Straying rates and stock structure of British Columbia herring. Can. Tech. Rep. Fish. Aquat. Sci.. 32 p.
- Zheng, J., Funk, F.C., Kruse, G.H. and Fagen, R. 1993. Evaluation of threshold management strategies for Pacific herring in Alaska. In G. Kruse, D. M. Eggers, R. J. Marasco, C. Pautzke and T. J. Quinn II, eds., Proceedings of the international symposium on management strategies for exploited fish populations, 141–166. University of Alaska Fairbanks, Alaska Sea Grant College Program Report 93-01.

7 TABLEAUX

Tableau 1. Param	ètres estimés i	et fixes et d	listributions of	de probabilité d	a priori ι	ıtilisés a	lans tous	les
modèles appliqué	s aux régions d	d'évaluation	des stocks.					

Paramètre	Nombre estimé	Bornes [inférieure, supérieure]	Distribution a <i>priori</i> (moyenne, ET) (valeur unique = fixe)
Log-recrutement $[ln(R_0)]$	1	[-5, 15]	Uniforme
Inclinaison (h)	1	[0,2, 1]	Bêta (α = 10, β = 4,925373)
Log-mortalité naturelle [ln(M)]	1	[-5, 5]	Normale [ln(0,4), 0,4]
Log-recrutement moyen [ln(R)]	1	[-5, 15]	Uniforme
Log-recrutement initial [ln(<i>R</i> _{init})]	1	[-5, 15]	Uniforme
Rapport d'écart, rho ($ ho$)	1	[0,001, 0,999]	Bêta (α = 17,08696, β = 39,0559)
Inverse de l'écart total, kappa (κ)	1	[0,01, 5]	Gamma ($k = 25$), $\theta = 28,75$)
Pêche – âge à 50 % de sélectivité logistique (\hat{a}_k)	3	[0, 1]	Aucune
Pêche – ET de la sélectivité logistique (γ^{k})	3	[0, Inf.]	Aucune
Écarts log-recrutement (ω_t)	67	Aucune	Normale (0, τ)
Écarts log-recrutement initial ($\omega_{init,t}$)	8	Aucune	Normale (0, τ)

Tableau 2. Paramètres estimés de la capturabilité (q) et distributions de probabilité a priori utilisés dans tous les modèles appliqués aux régions d'évaluation des stocks (RES). Les valeurs estimées représentent les médianes des distributions a posteriori générées par simulation MCCM.

RES	Modèle	Relevé	Bornes	<i>q₁</i> estimé	q₂ estimé	<i>A priori</i> (moyenne, ET)	SB 2017	S₿₀	Épuisement S B ₂₀₁₇ /SB ₀
HG	AM1	Surface	Aucune	0,352	0,582	Normale (0,566, 0,274)	7,336	29,818	0,246
HG	AM1	Plongée	Aucune	0,352	0,582	Normale (0,566, 0,274)	7,336	29,818	0,246
HG	AM2	Surface	Aucune	0,410	0,999	Normale (1,000, 1,000)	3,963	23,098	0,171
HG	AM2	Plongée	Aucune	0,410	0,999	Normale (1,000, 0,010)	3,963	23,098	0,171
DPR	AM1	Surface	Aucune	0,555	0,972	Normale (0,566, 0,274)	22,821	62,595	0,358
DPR	AM1	Plongée	Aucune	0,555	0,972	Normale (0,566, 0,274)	22,821	62,595	0,358
DPR	AM2	Surface	Aucune	0,562	1,001	Normale (1,000, 1,000)	21,738	61,097	0,344
DPR	AM2	Plongée	Aucune	0,562	1,001	Normale (1,000, 0,010)	21,738	61,097	0,344
CC	AM1	Surface	Aucune	0,299	0,640	Normale (0,566, 0,274)	49,624	62,063	0,801
CC	AM1	Plongée	Aucune	0,299	0,640	Normale (0,566, 0,274)	49,624	62,063	0,801
CC	AM2	Surface	Aucune	0,335	0,999	Normale (1,000, 1,000)	30,474	55,347	0,545
CC	AM2	Plongée	Aucune	0,335	0,999	Normale (1,000, 0,010)	30,474	55,347	0,545
DG	AM1	Surface	Aucune	0,667	0,621	Normale (0,566, 0,274)	175,962	162,050	1,078
DG	AM1	Plongée	Aucune	0,667	0,621	Normale (0,566, 0,274)	175,962	162,050	1,078

RES	Modèle	Relevé	Bornes	q₁ estimé	q₂ estimé	<i>A priori</i> (moyenne, ET)	SB 2017	SB ₀	Épuisement S B ₂₀₁₇ /SB ₀
DG	AM2	Surface	Aucune	1,032	0,999	Normale (1,000, 1,000)	114,626	138,795	0,813
DG	AM2	Plongée	Aucune	1,032	0,999	Normale (1,000, 0,010)	114,626	138,795	0,813
COIV	AM1	Surface	Aucune	0,623	0,547	Normale (0,566, 0,274)	32,805	58,491	0,559
COIV	AM1	Plongée	Aucune	0,623	0,547	Normale (0,566, 0,274)	32,805	58,491	0,559
COIV	AM2	Surface	Aucune	0,837	0,999	Normale (1,000, 1,000)	17,742	46,890	0,373
COIV	AM2	Plongée	Aucune	0,837	0,999	Normale (1,000, 0,010)	17,742	46,890	0,373

Tableau 3. Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM des paramètres clés pour Haida Gwaii, AM2. Pour le paramètre q (capturabilité), 1 en indice = relevé en surface; 2 en indice = relevé en plongée. Tau (τ) et sigma (σ) sont des valeurs calculées.

Paramètre	5 %	50 %	95 %	DPM
Ro	203,312	269,439	367,078	274,779
Inclinaison (h)	0,657	0,783	0,895	0,802
Μ	0,225	0,406	0,707	0,378
\overline{R}	140,381	168,819	202,671	178,579
\overline{R}_{init}	8,852	30,174	167,867	33,279
ρ	0,217	0,280	0,352	0,266
9	0,788	0,960	1,153	1,030
q_1	0,338	0,410	0,497	1,030
<i>q</i> 2	0,982	0,999	1,016	0,400
τ	0,775	0,865	0,969	0,999
σ	0,470	0,539	0,619	0,844

Tableau 4. Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM des paramètres clés pour le district de Prince Rupert, AM2. Pour le paramètre q (capturabilité), 1 en indice = relevé en surface; 2 en indice = relevé en plongée. Tau (τ) et sigma (σ) sont des valeurs calculées.

Paramètre	5 %	50 %	95 %	DPM
Ro	240,142	314,335	468,732	303,776
Inclinaison (h)	0,531	0,689	0,847	0,719
М	0,231	0,442	0,750	0,423
\overline{R}	165,540	190,647	218,290	197,632
\overline{R}_{init}	59,488	203,137	1 076,189	242,920
ρ	0,228	0,297	0,375	0,296
9	0,973	1,190	1,451	1,266
q_1	0,491	0,562	0,643	1,266
<i>q</i> 2	0,984	1,001	1,017	0,553
τ	0,679	0,766	0,869	1,000
σ	0,433	0,499	0,575	0,746

Tableau 5. Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM des paramètres clés pour la côte centrale, AM2. Pour le paramètre q (capturabilité), 1 en indice = relevé en surface; 2 en indice = relevé en plongée. Tau (τ) et sigma (σ) sont des valeurs calculées.

Paramètre	5 %	50 %	95 %	DPM
Ro	296.607	375.869	492.689	363.272
Inclinaison (h)	0,679	0,805	0,906	0,826
Μ	0,273	0,483	0,802	0,443
\overline{R}	219,256	247,640	282,208	248,300
\overline{R}_{init}	55,743	208,721	1 137,437	250,969
ρ	0,177	0,239	0,314	0,220
9	1,013	1,228	1,486	1,307
q_1	0,287	0,335	0,383	1,307
<i>q</i> 2	0,983	0,999	1,015	0,339
τ	0,699	0,786	0,882	0,999
σ	0,378	0,439	0,513	0,773

Tableau 6. Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM des paramètres clés pour le détroit de Georgie, AM2. Pour le paramètre q (capturabilité), 1 en indice = relevé en surface; 2 en indice = relevé en plongée. Tau (τ) et sigma (σ) sont des valeurs calculées.

Paramètre	5 %	50 %	95 %	DPM
Ro	1 259,159	1 574,375	2 106,512	1 513,440
Inclinaison (h)	0,597	0,744	0,872	0,775
М	0,255	0,462	0,772	0,455
\overline{R}	897,756	1 038,515	1 199,972	1 068,490
\overline{R}_{init}	41,313	154,565	850,954	276,788
ρ	0,209	0,282	0,367	0,273
9	1,234	1,529	1,861	1,643
q_1	0,875	1,032	1,215	1,643
<i>q</i> 2	0,983	0,999	1,016	1,016
τ	0,605	0,683	0,779	0,999
σ	0,368	0,429	0,499	0,665

Tableau 7. Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM des paramètres clés pour l'île de Vancouver, AM2. Pour le paramètre q (capturabilité), 1 en indice = relevé en surface; 2 en indice = relevé en plongée. Tau (τ) et sigma (σ) sont des valeurs calculées.

Paramètre	5 %	50 %	95 %	DPM
R ₀	431,237	561,851	763,668	552,814
Inclinaison (h)	0,601	0,728	0,854	0,737
М	0,330	0,609	1,041	0,584
\overline{R}	315,368	367,836	429,757	372,587
\overline{R}_{init}	33,745	165,316	1 375,869	263,372
ρ	0,235	0,308	0,391	0,296
9	1,068	1,305	1,581	1,413
q_1	0,697	0,837	0,992	1,413
<i>q</i> 2	0,983	0,999	1,016	0,841
τ	0,639	0,727	0,825	0,999
σ	0,424	0,484	0,555	0,706

Tableau 8. Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM des paramètres clés pour Haida Gwaii, AM1. Pour le paramètre q (capturabilité), 1 en indice = relevé en surface; 2 en indice = relevé en plongée. Tau (τ) et sigma (σ) sont des valeurs calculées.

Paramètre	5 %	50 %	95 %	DPM
Ro	274,441	395,526	579,489	428,809
Inclinaison (h)	0,661	0,791	0,895	0,810
М	0,230	0,419	0,715	0,393
\overline{R}	185,805	253,962	348,186	285,661
\overline{R}_{init}	9,266	33,143	185,100	38,260
ρ	0,212	0,274	0,347	0,260
ϑ	0,818	0,998	1,208	1,085
q_1	0,276	0,352	0,439	1,085
<i>q</i> ₂	0,425	0,582	0,789	0,329
τ	0,758	0,851	0,958	0,544
σ	0,456	0,523	0,606	0,826

Tableau 9. Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM des paramètres clés pour le district de Prince Rupert, AM1. Pour le paramètre q (capturabilité), 1 en indice = relevé en surface; 2 en indice = relevé en plongée. Tau (τ) et sigma (σ) sont des valeurs calculées.

Paramètre	5 %	50 %	95 %	DPM
Ro	226,824	332,403	535,021	348,116
Inclinaison (h)	0,537	0,688	0,842	0,720
М	0,227	0,445	0,787	0,436
\overline{R}	144,494	196,334	298,229	230,983
\overline{R}_{init}	59,871	206,269	1 289,433	259,552
ρ	0,222	0,297	0,376	0,298
9	0,969	1,188	1,447	1,273
q_1	0,444	0,555	0,658	1,273
<i>q</i> 2	0,726	0,972	1,225	0,516
τ	0,678	0,768	0,870	0,889
σ	0,433	0,498	0,577	0,743

Tableau 10. Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM des paramètres clés pour la côte centrale, AM1. Pour le paramètre q (capturabilité), 1 en indice = relevé en surface; 2 en indice = relevé en plongée. Tau (τ) et sigma (σ) sont des valeurs calculées.

Paramètre	5 %	50 %	95 %	DPM
R ₀	375,561	516,341	733,568	504,723
Inclinaison (h)	0,672	0,797	0,905	0,820
Μ	0,283	0,492	0,800	0,463
\overline{R}	268,622	349,195	462,475	352,658
\overline{R}_{init}	60,618	224,560	1 261,456	296,544
ρ	0,174	0,234	0,314	0,212
9	1,057	1,289	1,558	1,375
q_1	0,249	0,299	0,353	1,375
<i>q</i> 2	0,478	0,640	0,846	0,301
τ	0,686	0,769	0,863	0,641
σ	0,365	0,425	0,499	0,757

Tableau 11. Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM des paramètres clés pour le détroit de Georgie, AM1. Pour le paramètre q (capturabilité), 1 en indice = relevé en surface; 2 en indice = relevé en plongée. Tau (τ) et sigma (σ) sont des valeurs calculées.

Paramètre	5 %	50 %	95 %	DPM
R ₀	1 965,234	2 967,525	4 614,864	3 109,920
Inclinaison (h)	0,547	0,712	0,858	0,748
М	0,305	0,544	0,896	0,549
\overline{R}	1 369,045	2 021,505	3 051,534	2 288,370
\overline{R}_{init}	62,609	293,147	2,085,613	595,950
ρ	0,197	0,269	0,354	0,248
9	1,273	1,579	1,925	1,729
q_1	0,475	0,667	0,900	1,729
<i>q</i> ₂	0,463	0,621	0,813	0,611
τ	0,598	0,679	0,773	0,587
σ	0,352	0,412	0,481	0,660

Tableau 12. Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM des paramètres clés pour la côte ouest de l'île de Vancouver, AM1. Pour le paramètre q (capturabilité), 1 en indice = relevé en surface; 2 en indice = relevé en plongée. Tau (τ) et sigma (σ) sont des valeurs calculées.

Paramètre	5 %	50 %	95 %	DPM
Ro	648,416	906,951	1 291,767	899,234
Inclinaison (h)	0,607	0,740	0,866	0,760
М	0,381	0,658	1,052	0,646
\overline{R}	471,923	633,105	859,035	652,612
\overline{R}_{init}	45,616	241,000	1 744,953	397,812
ρ	0,239	0,313	0,397	0,301
θ	1,138	1,385	1,675	1,508
q_1	0,494	0,623	0,770	1,508
<i>q</i> 2	0,405	0,547	0,745	0,625
τ	0,620	0,702	0,795	0,540
σ	0,415	0,475	0,544	0,681

Tableau 13. Distribution a posteriori (5^e centile, médiane et 95^e centile) des points de référence proposés pour les modèles appliqués au stock de Haida Gwaii. Les chiffres donnés pour la biomasse sont en milliers de tonnes.

	AM2			AM1			
Point de référence	5 %	50 %	95 %	5 %	50 %	95 %	
SBo	18,319	23,098	30,163	22,781	29,818	40,026	
0,3 <i>SB</i> 0	5,496	6,929	9,049	6,834	8,945	12,008	
<i>SB</i> 2017	1,980	3,963	8,005	3,434	7,336	15,433	
<i>SB</i> ₂₀₁₇ / <i>SB</i> ₀	0,083	0,171	0,347	0,118	0,246	0,495	
SB ₂₀₁₈	1,900	4,346	11,326	3,044	7,302	18,483	
Proportion d'âge 3	0,09	0,34	0,70	0,09	0,31	0,67	
Proportion d'âge 4 à 10	0,15	0,38	0,68	0,17	0,42	0,71	

Tableau 14. Distribution a posteriori (5^e centile, médiane et 95^e centile) des points de référence proposés pour les modèles appliqués au stock du district de Prince Rupert. Les chiffres donnés pour la biomasse sont en milliers de tonnes.

		AM2			AM1	
Point de référence	5 %	50 %	95 %	5 %	50 %	95 %
SBo	46,919	61,097	92,122	47,786	62,595	91,271
0,3 <i>SB</i> 0	14,076	18,329	27,637	14,336	18,779	27,381
SB2017	12,656	21,738	36,537	12,213	22,821	41,708
<i>SB</i> 2017/ <i>SB</i> 0	0,193	0,344	0,595	0,182	0,358	0,669
SB ₂₀₁₈	12,893	23,924	44,818	12,606	24,903	50,081
Proportion d'âge 3	0,07	0,23	0,55	0,07	0,24	0,54
Proportion d'âge 4 à 10	0,39	0,68	0,87	0,39	0,68	0,87

Tableau 15. Distribution a posteriori (5^e centile, médiane et 95^e centile) des points de référence proposés pour les modèles appliqués au stock de la côte centrale. Les chiffres donnés pour la biomasse sont en milliers de tonnes.

		AM2			AM1	
Point de référence	5 %	50 %	95 %	5 %	50 %	95 %
SBo	44,424	55,347	71,220	49,235	62,063	81,175
0,3 <i>SB</i> 0	13,327	16,604	21,366	14,770	18,619	24,352
SB ₂₀₁₇	18,518	30,474	47,125	27,553	49,624	85,709
<i>SB</i> 2017/ <i>SB</i> 0	0,328	0,545	0,898	0,449	0,801	1,324
SB2018	17,728	32,458	60,684	25,958	50,259	96,481
Proportion d'âge 3	0,07	0,25	0,56	0,07	0,22	0,52
Proportion d'âge 4 à 10	0,38	0,66	0,85	0,42	0,69	0,87

Tableau 16. Distribution a posteriori (5^e centile, médiane et 95^e centile) des points de référence proposés pour les modèles appliqués au stock du détroit de Georgie. Les chiffres donnés pour la biomasse sont en milliers de tonnes.

		AM2			AM1	
Point de référence	5 %	50 %	95 %	5 %	50 %	95 %
SBo	110,088	138,795	199,081	126,823	162,050	229,336
0,3 <i>SB</i> 0	33,026	41,638	59,724	38,047	48,615	68,801
SB2017	70,478	114,626	176,690	102,598	175,962	304,613
<i>SB</i> ₂₀₁₇ / <i>SB</i> ₀	0,464	0,813	1,313	0,610	1,078	1,796
SB2018	71,847	125,285	216,387	92,908	169,910	323,468
Proportion d'âge 3	0,09	0,25	0,51	0,10	0,26	0,52
Proportion d'âge 4 à 10	0,42	0,67	0,85	0,40	0,64	0,82

Tableau 17. Distribution a posteriori (5^e centile, médiane et 95^e centile) des points de référence proposés pour les modèles appliqués au stock de la côte ouest de l'île de Vancouver. Les chiffres donnés pour la biomasse sont en milliers de tonnes.

		AM2			AM1	
Point de référence	5 %	50 %	95 %	5 %	50 %	95 %
SBo	37,870	46,890	61,469	45,961	58,491	76,910
0,3 <i>SB</i> 0	11,361	14,067	18,441	13,788	17,547	23,073
<i>SB</i> 2017	9,719	17,742	30,650	16,877	32,805	62,881
<i>SB</i> ₂₀₁₇ <i>/SB</i> ₀	0,201	0,373	0,654	0,297	0,559	1,021
SB2018	10,183	20,003	41,001	16,914	34,886	73,564
Proportion d'âge 3	0,11	0,32	0,63	0,11	0,31	0,60
Proportion d'âge 4 à 10	0,24	0,48	0,72	0,27	0,51	0,74

Tableau 18. Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM de la biomasse du stock reproducteur (en milliers de tonnes) et de la biomasse relative du stock reproducteur de Haida Gwaii, AM2.

	Biomas	sse du sto	ck reprod	ucteur	Ép	uisemen	t (SB _t /SI	B ₀)
Année	5 %	50 %	95 %	DPM	5 %	50 %	95 %	DPM
2007	4,238	5,556	7,289	5,564	0,162	0,241	0,347	0,249
2008	4,149	5,376	6,949	5,381	0,159	0,233	0,330	0,241
2009	4,818	6,385	8,422	6,421	0,187	0,276	0,400	0,288
2010	5,163	6,825	9,034	6,885	0,201	0,296	0,422	0,309
2011	5,436	7,225	9,610	7,326	0,210	0,313	0,447	0,328
2012	8,076	10,743	14,095	10,928	0,311	0,465	0,659	0,490
2013	11,531	15,683	21,145	16,076	0,450	0,680	0,989	0,721
2014	8,211	11,377	15,778	11,580	0,320	0,493	0,728	0,519
2015	5,368	7,510	10,539	7,488	0,214	0,325	0,480	0,336
2016	3,456	5,067	7,378	4,890	0,139	0,219	0,332	0,219
2017	1,980	3,963	8,005	3,714	0,083	0,171	0,347	0,166

Tableau 19. Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM de la biomasse du stock reproducteur (en milliers de tonnes) et de la biomasse relative du stock reproducteur de Haida Gwaii, AM1.

	Biomas	sse du sto	ck reprod	lucteur	Épuisement (<i>SB</i> t/ <i>SB</i> ₀)			
Année	5 %	50 %	95 %	DPM	5 %	50 %	95 %	DPM
2007	6,590	10,020	15,163	10,688 0),223	0,335	0,495	0,358
2008	6,411	9,743	14,569	10,349 (),217	0,325	0,474	0,347
2009	7,513	11,542	17,630	12,352 (),255	0,387	0,571	0,414
2010	8,068	12,372	18,833	13,215 (),275	0,413	0,607	0,443
2011	8,470	13,040	19,754	14,051 (),290	0,437	0,644	0,471
2012	12,677	19,273	29,456	21,002 (),426	0,646	0,956	0,704
2013	18,173	28,258	44,081	30,878 (),613	0,948	1,425	1,034
2014	12,965	20,425	32,198	22,130 0),436	0,687	1,047	0,741
2015	8,510	13,504	21,355	14,329 (),286	0,452	0,690	0,480
2016	5,611	9,109	15,150	9,479 (),193	0,306	0,481	0,318
2017	3,434	7,336	15,433	7,350 0),118	0,246	0,495	0,246

Tableau 20 Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM de la biomasse du stock reproducteur (en milliers de tonnes) et de la biomasse relative du stock reproducteur du district de Prince Rupert, AM2.

	Biomas	se du sto	ck reprod	ucteur	Épuisement (<i>SB</i> t/ <i>SB</i> ₀)			
Année	5 %	50 %	95 %	DPM	5 %	50 %	95 %	DPM
2007	12,907	15,796	19,389	15,824	0,161	0,256	0,361	0,278
2008	12,899	15,652	18,956	15,757	0,159	0,254	0,358	0,277
2009	12,252	14,926	18,261	15,152	0,151	0,243	0,347	0,266
2010	13,114	16,238	20,199	16,643	0,164	0,264	0,382	0,292
2011	13,721	17,213	21,708	17,715	0,171	0,281	0,407	0,311
2012	12,876	16,201	20,362	16,608	0,161	0,264	0,382	0,292
2013	13,359	16,885	21,429	17,167	0,169	0,275	0,401	0,301
2014	13,501	17,058	22,048	17,150	0,172	0,277	0,404	0,301
2015	17,474	22,434	29,462	22,119	0,230	0,365	0,533	0,388
2016	16,056	22,186	30,874	21,188	0,223	0,358	0,534	0,372
2017	12,656	21,738	36,537	19,950	0,193	0,344	0,595	0,350

Tableau 21. Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM de la biomasse du stock reproducteur (en milliers de tonnes) et de la biomasse relative du stock reproducteur du district de Prince Rupert, AM1.

	Biomas	se du sto	ck reprod	ucteur	Épuisement (<i>SB</i> t/ <i>SB</i> ₀)			
Année	5 %	50 %	95 %	DPM	5 %	50 %	95 %	DPM
2007	11,621	16,371	23,886	18,095	0,154	0,260	0,415	0,316
2008	11,552	16,156	23,295	17,925	0,153	0,258	0,406	0,313
2009	10,876	15,485	22,519	17,258	0,145	0,246	0,391	0,302
2010	11,539	16,845	25,171	19,043	0,155	0,269	0,434	0,333
2011	11,878	17,867	27,374	20,338	0,158	0,286	0,470	0,356
2012	11,221	16,758	25,494	19,006	0,148	0,268	0,438	0,332
2013	11,825	17,472	26,532	19,561	0,156	0,280	0,458	0,342
2014	12,180	17,731	27,096	19,568	0,161	0,285	0,462	0,342
2015	15,926	23,386	35,747	25,259	0,213	0,376	0,606	0,442
2016	14,960	23,248	36,587	24,015	0,211	0,370	0,607	0,420
2017	12,213	22,821	41,708	22,465	0,182	0,358	0,669	0,393

Tableau 22. Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM de la biomasse du stock reproducteur (en milliers de tonnes) et de la biomasse relative du stock reproducteur de la côte centrale, AM2.

	Biomas	sse du sto	ck reprod	ucteur	Épuisement (<i>SB</i> t/ <i>SB</i> ₀)			
Année	5 %	50 %	95 %	DPM	5 %	50 %	95 %	DPM
2007	5,449	7,059	9,122	7,090 (0,088	0,128	0,179	0,134
2008	5,153	6,544	8,290	6,579 (0,083	0,118	0,166	0,124
2009	6,847	8,821	11,283	8,885 (D,111	0,159	0,225	0,168
2010	7,093	9,097	11,616	9,173 (0,115	0,164	0,231	0,173
2011	6,917	8,880	11,318	8,990 (0,112	0,160	0,226	0,170
2012	6,913	8,766	11,111	8,904 (D,111	0,158	0,220	0,168
2013	11,405	14,469	18,373	14,687 (0,185	0,262	0,363	0,278
2014	13,099	16,660	21,147	16,811 (0,213	0,302	0,415	0,318
2015	17,864	23,166	29,857	23,057 (0,292	0,420	0,573	0,436
2016	18,758	25,594	34,909	25,041 (0,316	0,462	0,663	0,473

Biomasse du stock reproducteur				Ép	uisemen	t (SB _t /SI	B ₀)	
Année	5 %	50 %	95 %	DPM	5 %	50 %	95 %	DPM
2017	18,518	30,474	47,125	29,068	0,328	0,545	0,898	0,549

Tableau 23. Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM de la biomasse du stock reproducteur (en milliers de tonnes) et de la biomasse relative du stock reproducteur de la côte centrale, AM1.

Biomasse du stock reproducteur					Épuisement (<i>SB</i> t/ <i>SB</i> ₀)			
Année	5 %	50 %	95 %	DPM	5 %	50 %	95 %	DPM
2007	7,836	11,871	17,873	11,980	0,126	0,191	0,282	0,201
2008	7,257	10,781	15,897	10,826	0,115	0,174	0,255	0,182
2009	9,604	14,295	21,044	14,382	0,152	0,231	0,339	0,242
2010	9,929	14,533	21,533	14,665	0,156	0,234	0,345	0,247
2011	9,692	14,102	20,553	14,269	0,151	0,227	0,333	0,240
2012	9,666	13,956	20,222	14,163	0,151	0,224	0,328	0,238
2013	15,991	23,350	33,881	23,627	0,250	0,374	0,548	0,397
2014	18,531	27,463	40,102	27,574	0,292	0,441	0,642	0,464
2015	25,765	38,288	57,187	38,088	0,409	0,616	0,891	0,640
2016	27,170	42,295	65,236	41,067	0,439	0,679	1,007	0,690
2017	27,553	49,624	85,709	47,245	0,449	0,801	1,324	0,794

Tableau 24. Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM de la biomasse du stock reproducteur (en milliers de tonnes) et de la biomasse relative du stock reproducteur du détroit de Georgie, AM2.

	Biom	asse du ste	ock reprodu	ucteur É	Épuisement (SB _t /SB₀)			
Année	5 %	50 %	95 %	DPM 5%	50 %	95 %	DPM	
2007	51,501	61,301	73,024	61,534 0,294	0,442	0,594	0,472	
2008	34,294	40,763	48,769	40,934 0,195	0,293	0,394	0,314	
2009	35,968	43,374	52,733	43,772 0,205	0,312	0,426	0,336	
2010	30,352	37,181	45,835	37,762 0,173	0,267	0,371	0,290	
2011	47,016	57,128	69,512	58,274 0,265	0,411	0,566	0,447	
2012	51,043	61,795	74,306	63,017 0,289	0,443	0,606	0,484	
2013	49,075	60,294	73,551	61,565 0,282	0,433	0,596	0,473	
2014	58,491	72,454	90,433	73,777 0,338	0,521	0,725	0,566	
2015	61,861	76,714	95,968	76,745 0,358	0,549	0,769	0,589	
2016	72,642	94,623	124,030	91,992 0,438	0,675	0,954	0,706	
2017	70,478	114,626	176,690	108,263 0,464	0,813	1,313	0,831	

Tableau 25. Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM de la biomasse du stock reproducteur (en milliers de tonnes) et de la biomasse relative du stock reproducteur du détroit de Georgie, AM1.

Biomasse du stock reproducteur					Épuisement (SB _t /SB₀)			
Année	5 %	50 %	95 %	DPM 5%	50 %	95 %	DPM	
2007	72,203	102,036	148,583	109,193 0,423	0,630	0,881	0,697	
2008	47,655	67,150	96,708	71,419 0,276	0,413	0,578	0,456	
2009	50,761	72,538	105,194	77,288 0,292	0,445	0,626	0,493	
2010	43,960	63,915	93,533	68,793 0,256	0,393	0,557	0,439	
2011	67,606	97,506	141,995	105,839 0,390	0,603	0,843	0,675	
2012	73,269	105,225	153,117	114,458 0,425	0,649	0,903	0,730	
2013	71,934	105,326	155,515	115,224 0,420	0,649	0,921	0,735	
2014	87,213	129,233	195,165	141,603 0,514	0,796	1,148	0,903	
2015	91,712	135,900	206,825	146,332 0,540	0,838	1,202	0,933	
2016	107,939	159,039	243,017	165,401 0,642	0,977	1,425	1,055	
2017	102,598	175,962	304,613	174,053 0,610	1,078	1,796	1,110	

Tableau 26. Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM de la biomasse du stock reproducteur (en milliers de tonnes) et de la biomasse relative du stock reproducteur de la côte ouest de l'île de Vancouver, AM2.

Biomasse du stock reproducteur					Épuisement (SB _t /SB₀)			
Année	5 %	50 %	95 %	DPM	5 %	50 %	95 %	DPM
2007	3,693	4,790	6,269	4,762	0,068	0,102	0,147	0,104
2008	3,344	4,361	5,650	4,311	0,062	0,093	0,132	0,095
2009	3,466	4,607	6,063	4,571	0,065	0,098	0,141	0,100
2010	3,956	5,206	6,846	5,205	0,074	0,110	0,159	0,114
2011	4,896	6,460	8,461	6,506	0,092	0,137	0,198	0,143
2012	4,809	6,293	8,152	6,365	0,090	0,133	0,190	0,140
2013	5,900	7,765	10,092	7,883	0,110	0,165	0,234	0,173
2014	8,621	11,571	15,346	11,732	0,164	0,245	0,350	0,257
2015	11,634	15,462	20,542	15,570	0,224	0,329	0,468	0,341
2016	14,870	20,999	29,306	20,674	0,295	0,444	0,657	0,453
2017	9,719	17,742	30,650	16,730	0,201	0,373	0,654	0,367

Tableau 27. Estimations des valeurs a posteriori (5^e centile, médiane, 95^e centile) et de la DPM de la biomasse du stock reproducteur (en milliers de tonnes) et de la biomasse relative du stock reproducteur de la côte ouest de l'île de Vancouver, AM1.

Biomasse du stock reproducteur				Épuisement (SBt/SB₀)				
Année	5 %	50 %	95 %	DPM	5 %	50 %	95 %	DPM
2007	6,044	9,334	14,211	9,446	0,104	0,159	0,237	0,167
2008	5,441	8,290	12,541	8,372	0,092	0,142	0,210	0,148
2009	5,624	8,691	13,281	8,797	0,096	0,148	0,223	0,155
2010	6,390	9,827	14,915	10,014	0,107	0,168	0,251	0,177
2011	7,989	12,226	18,486	12,503	0,134	0,209	0,311	0,221
2012	7,798	11,867	17,898	12,191	0,132	0,203	0,299	0,215
2013	9,693	14,754	22,496	15,238	0,166	0,254	0,372	0,269
2014	14,515	22,144	34,033	22,771	0,248	0,379	0,562	0,402
2015	19,512	29,894	46,018	30,338	0,337	0,510	0,755	0,536

Biomasse du stock reproducteur				ucteur É	puisemer	nt (SB _t /SI	B ₀)
Année	5 %	50 %	95 %	DPM 5%	50 %	95 %	DPM
2016	25,003	39,983	63,975	39,797 0,441	0,683	1,034	0,703
2017	16,877	32,805	62,881	31,451 0,297	0,559	1,021	0,555

Tableau 28. Estimations des valeurs a posteriori (5^e centile, médiane et 95^e centile) et de la DPM du recrutement (en millions) pour Haida Gwaii, AM2.

Année	5 %	50 %	95 %	DPM
2007	45,364	67,715	100,366	69,395
2008	214,571	305,933	427,808	313,902
2009	36,695	55,731	83,631	56,922
2010	151,844	216,903	308,909	223,925
2011	98,928	144,632	214,370	149,881
2012	439,485	619,548	873,784	642,306
2013	39,085	59,838	91,435	62,227
2014	95,218	148,221	222,806	154,405
2015	63,965	102,918	160,281	106,673
2016	164,023	263,481	423,954	274,364
2017	89,968	161,524	293,441	164,264

Tableau 29. Estimations des valeurs a posteriori (5^e centile, médiane et 95^e centile) et de la DPM du recrutement (en millions) pour Haida Gwaii, AM1.

Année	5 %	50 %	95 %	DPM
2007	72,330	122,838	205,207	134,841
2008	348,772	560,068	904,803	617,965
2009	59,518	100,715	170,201	110,659
2010	245,868	397,882	648,226	440,453
2011	158,426	263,777	434,052	291,885
2012	707,285	1 137,465	1 839,733	1 262,680
2013	62,886	107,006	183,873	120,037
2014	153,952	265,872	446,896	301,321
2015	105,063	186,791	323,965	209,912
2016	270,934	480,776	871,557	543,612
2017	149,677	299,341	595,936	326,612

Année	5 %	50 %	95 %	DPM
2007	104,977	144,976	200,071	146,981
2008	103,405	142,132	192,825	144,736
2009	164,664	225,630	305,527	231,602
2010	197,855	271,965	373,017	283,517
2011	105,391	148,499	206,399	154,810
2012	158,992	224,478	312,115	233,028
2013	54,151	79,339	114,953	82,724
2014	321,590	457,424	644,653	476,964
2015	131,743	200,060	303,238	206,389
2016	70,478	152,191	273,211	157,147
2017	55,692	168,332	419,835	165,248

Tableau 30. Estimations des valeurs a posteriori (5^e centile, médiane et 95^e centile) et de la DPM du recrutement (en millions) pour le district de Prince Rupert, AM2.

Tableau 31. Estimations des valeurs a posteriori (5^e centile, médiane et 95^e centile) et de la DPM du recrutement (en millions) pour le district de Prince Rupert, AM1.

Année	5 %	50 %	95 %	DPM
2007	89,964	152,048	268,686	178,432
2008	86,872	150,743	259,039	176,200
2009	135,779	237,976	415,023	282,585
2010	162,636	287,955	519,352	347,161
2011	85,608	156,285	284,661	190,329
2012	131,204	235,289	423,120	284,539
2013	44,941	82,985	156,847	101,713
2014	269,139	481,378	895,587	585,569
2015	113,419	211,156	409,530	254,488
2016	66,373	157,500	350,715	193,923
2017	55,819	172,399	488,926	197,426

Tableau 32. Estimations des valeurs a posteriori (5^e centile, médiane et 95^e centile) et de la DPM du recrutement (en millions) pour la côte centrale, AM2.

Annáo	E 0/	E0 %	05.9/	DDM
Annee	5 %	50 %	95 %	DFIN
2007	84,202	120,161	168,135	121,315
2008	409,923	545,926	727,587	554,045
2009	135,215	179,088	239,652	182,106
2010	262,587	351,853	472,789	357,336
2011	82,166	110,036	146,957	112,173
2012	255,670	339,626	450,977	346,729
2013	97,566	131,311	176,755	134,573
2014	347,180	462,850	633,525	478,746
2015	79,318	113,912	163,533	114,854
2016	172,311	248,327	356,820	248,047
2017	140,691	227,930	372,651	225,389

Année	5 %	50 %	95 %	DPM
2007	130,467	213,586	350,027	217,480
2008	601,983	950,322	1 471,786	966,016
2009	196,938	303,543	467,999	307,190
2010	379,529	582,750	899,986	589,202
2011	117,640	180,812	274,425	184,103
2012	369,049	569,022	861,806	576,013
2013	142,861	219,122	341,129	224,645
2014	504,343	785,986	1 208,346	809,549
2015	118,061	193,175	310,674	194,648
2016	258,826	426,918	685,410	427,971
2017	218,296	390,351	711,013	386,566

Tableau 33. Estimations des valeurs a posteriori (5^e centile, médiane et 95^e centile) et de la DPM du recrutement (en millions) pour la côte centrale, AM1.

Tableau 34. Estimations des valeurs a posteriori (5^e centile, médiane et 95^e centile) et de la DPM du recrutement (en millions) pour le détroit de Georgie, AM2.

Année	5 %	50 %	95 %	DPM
2007	420,854	553,045	731,554	562,277
2008	1 496,360	1 928,035	2 492,647	1 961,540
2009	269,436	356,442	470,534	362,262
2010	1 606,186	2 109,830	2 781,046	2 170,870
2011	944,392	1 245,785	1 633,543	1 282,050
2012	515,338	692,891	920,727	718,691
2013	964,150	1 286,695	1 705,967	1 337,900
2014	975,258	1 319,465	1 770,971	1 368,380
2015	966,090	1 310,950	1 805,304	1 355,170
2016	1 130,790	1 544,565	2 128,139	1 568,220
2017	1 275,259	1 908,830	2 868,578	1 902,520

Tableau 35. Estimations des valeurs a posteriori (5^e centile, médiane et 95^e centile) et de la DPM du recrutement (en millions) pour le détroit de Georgie, AM1.

Année	5 %	50 %	95 %	DPM
2007	703,122	1 148,915	1 882,181	1 262,980
2008	2 455,043	3 979,880	6 412,505	4 377,240
2009	453,080	743,778	1 215,545	818,666
2010	2 712,752	4 391,960	7 245,316	4 902,680
2011	1 604,539	2 599,425	4 224,158	2 882,080
2012	892,314	1 459,210	2 377,970	1 637,060
2013	1 675,319	2 778,430	4 515,300	3 125,370
2014	1 712,128	2 897,045	4 821,711	3 287,180
2015	1 719,617	2 950,585	5 054,329	3 323,610
2016	1 994,658	3 428,265	5 848,275	3 826,490
2017	2 263,749	4 002,960	7 090,808	4 333,230

Année	5 %	50 %	95 %	DPM
2007	99,469	144,784	209,079	145,427
2008	194,871	269,663	374,775	271,850
2009	109,496	150,257	208,059	150,932
2010	281,963	387,474	529,938	389,266
2011	69,731	98,472	137,318	98,759
2012	82,231	114,714	159,180	116,458
2013	216,594	304,051	418,850	312,256
2014	150,075	211,678	296,786	218,256
2015	501,407	718,974	1 021,657	745,120
2016	112,790	169,923	254,002	172,534
2017	126,822	210,754	350,694	210,581

Tableau 36. Estimations des valeurs a posteriori (5^e centile, médiane et 95^e centile) et de la DPM du recrutement (en millions) pour la côte ouest de l'île de Vancouver, AM2.

Tableau 37. Estimations des valeurs a posteriori (5^e centile, médiane et 95^e centile) et de la DPM du recrutement (en millions) pour la côte ouest de l'île de Vancouver, AM1.

Année	5 %	50 %	95 %	DPM
2007	178,626	302,884	496,911	311,263
2008	339,621	556,995	884,488	572,949
2009	188,368	299,087	476,590	307,995
2010	477,083	767,273	1 226,877	785,699
2011	119,122	193,029	311,491	198,439
2012	141,246	226,647	361,858	233,837
2013	379,403	602,759	967,530	632,822
2014	260,745	422,615	684,580	442,479
2015	887,202	1 437,735	2 356,512	1 514,200
2016	205,382	346,416	586,115	355,929
2017	231,267	432,178	783,754	432,184

2018 TAC (t)	P(<i>SB</i> ₂₀₁₈ < 0,3 <i>SB</i> ₀)	Med(<i>SB</i> ₂₀18∕ 0,3 <i>SB</i> ₀)	P(<i>SB</i> ₂₀₁₈ < 10 700 t)	Med(<i>SB</i> ₂₀₁₈ / 10 700 t)	P(<i>U</i> ₂₀₁₈ > 20 %)	P(<i>U</i> ₂₀₁₈ > 10 %)	Med(<i>U</i> ₂₀₁₈)
0	0,808	0,630	0,938	0,406	0,000	0,000	0,000
400	0,821	0,598	0,943	0,387	0,041	0,399	0,088
457	0,824	0,593	0,944	0,384	0,068	0,501	0,100
500	0,825	0,589	0,944	0,382	0,096	0,570	0,109
600	0,829	0,581	0,945	0,377	0,177	0,697	0,129
770	0,835	0,569	0,946	0,369	0,332	0,829	0,163
800	0,836	0,566	0,946	0,368	0,359	0,847	0,169
965	0,842	0,553	0,948	0,360	0,501	0,905	0,200
1 000	0,843	0,550	0,948	0,358	0,529	0,915	0,207
1 500	0,857	0,515	0,952	0,335	0,791	0,978	0,295
1 620	0,860	0,508	0,953	0,329	0,830	0,982	0,315
1 700	0,862	0,502	0,954	0,325	0,851	0,986	0,328

Tableau 38. Table de décision probabiliste pour Haida Gwaii, AM2.

Tableau 39. Table de décision probabiliste pour Haida Gwaii, AM1.

2018	P(SB ₂₀₁₈ <	Med(SB ₂₀₁₈ /	P(<i>U</i> ₂₀₁₈ >	P(<i>U</i> ₂₀₁₈ >	Med(<i>U</i> ₂₀₁₈)
TAC (t)	0,3SB ₀)	0,3SB 0)	20 %)	10 %)	
0	0,654	0,808	0,000	0,000	0,000
400	0,669	0,785	0,002	0,116	0,053
457	0,671	0,781	0,006	0,170	0,061
500	0,673	0,778	0,013	0,212	0,066
600	0,676	0,772	0,032	0,324	0,079
770	0,682	0,762	0,086	0,504	0,101
800	0,684	0,760	0,096	0,537	0,104
965	0,689	0,749	0,170	0,660	0,125
1 000	0,690	0,748	0,184	0,683	0,129
1 500	0,710	0,718	0,446	0,878	0,188
1 620	0,715	0,711	0,504	0,908	0,201
1 700	0,718	0,706	0,542	0,920	0,210

2018 TAC (t)	P(<i>SB</i> ₂₀₁₈ < 0,3 <i>SB</i> ₀)	Med(SB ₂₀₁₈ / 0,3SB ₀)	P(SB ₂₀₁₈ < 10 700 t)	Med(<i>SB</i> ₂₀₁₈ / 10 700 t)	P(<i>U</i> ₂₀₁₈ > 20 %)	P(<i>U</i> ₂₀₁₈ > 10 %)	Med(<i>U</i> ₂₀₁₈)
0	0,265	1,271	0,034	1,977	0,000	0,000	0,000
2 400	0,361	1,169	0,077	1,817	0,025	0,483	0,098
2 440	0,362	1,167	0,077	1,814	0,027	0,500	0,100
2 545	0,367	1,163	0,079	1,808	0,034	0,548	0,104
3 000	0,382	1,144	0,090	1,778	0,087	0,705	0,122
3 500	0,400	1,122	0,103	1,745	0,171	0,822	0,142
4 000	0,419	1,099	0,116	1,711	0,277	0,902	0,162
4 500	0,436	1,078	0,130	1,678	0,385	0,946	0,181
5 000	0,451	1,057	0,144	1,646	0,503	0,970	0,201
5 200	0,460	1,049	0,147	1,633	0,546	0,977	0,208
5 500	0,469	1,037	0,156	1,613	0,605	0,983	0,220
6 000	0,485	1,016	0,168	1,580	0,687	0,989	0,239
7 000	0,522	0,976	0,198	1,517	0,807	0,995	0,276

Tableau 40. Table de décision probabiliste pour le district de Prince Rupert, AM2.

Tableau 41. Table de décision probabiliste pour le district de Prince Rupert, AM1.

2018 TAC (t)	P(<i>SB</i> ₂₀₁₈ < 0,3 <i>SB</i> ₀)	Med(SB ₂₀₁₈ ∕ 0,3SB₀)	P(<i>U</i> ₂₀₁₈ > 20 %)	P(<i>U</i> ₂₀₁₈ > 10 %)	Med(<i>U</i> ₂₀₁₈)
0	0,264	1,311	0,000	0,000	0,000
2 400	0,339	1,208	0,029	0,443	0,095
2 440	0,340	1,206	0,033	0,459	0,096
2 545	0,343	1,202	0,041	0,502	0,100
3 000	0,356	1,184	0,094	0,651	0,118
3 500	0,374	1,163	0,168	0,778	0,137
4 000	0,392	1,143	0,258	0,858	0,155
4 500	0,408	1,121	0,358	0,913	0,174
5 000	0,425	1,101	0,462	0,945	0,193
5 200	0,432	1,092	0,501	0,956	0,200
5 500	0,441	1,079	0,553	0,967	0,211
6 000	0,456	1,059	0,633	0,979	0,229
7 000	0,486	1,017	0,763	0,992	0,265

2018 TAC (t)	P(SB ₂₀₁₈ < 0,3SB ₀)	Med(SB₂₀18∕ 0,3SB₀)	P(SB ₂₀₁₈ < 10 700 t)	Med(<i>SB</i> ₂₀₁₈ / 10 700 t)	P(<i>U</i> ₂₀₁₈ > 20 %)	P(<i>U</i> ₂₀₁₈ > 10 %)	Med(<i>U</i> ₂₀₁₈)
0	0,034	1,933	0,047	1,844	0,000	0,000	0,000
3 000	0,069	1,791	0,087	1,712	0,011	0,386	0,091
3 320	0,074	1,776	0,092	1,697	0,021	0,500	0,100
4 000	0,083	1,744	0,102	1,667	0,069	0,709	0,120
4 500	0,090	1,721	0,111	1,645	0,121	0,810	0,135
5 150	0,100	1,690	0,124	1,616	0,215	0,893	0,153
6 000	0,115	1,649	0,142	1,578	0,360	0,942	0,178
6 800	0,133	1,612	0,159	1,543	0,502	0,968	0,200
6 900	0,135	1,608	0,162	1,538	0,522	0,970	0,203
7 000	0,137	1,603	0,165	1,534	0,540	0,973	0,206
9 000	0,184	1,511	0,212	1,445	0,791	0,992	0,261
10 550	0,221	1,440	0,250	1,378	0,894	0,997	0,303
12 000	0,259	1,372	0,286	1,315	0,936	0,999	0,341

Tableau 42. Table de décision probabiliste pour la côte centrale, AM2.

Tableau 43. Table de décision probabiliste pour la côte centrale, AM1.

2018 TAC (t)	P(<i>SB</i> ₂₀₁₈ < 0,3 <i>SB</i> ₀)	Med(<i>SB</i> ₂₀₁₈ ∕ 0,3 <i>SB</i> ₀)	P(<i>U</i> ₂₀₁₈ > 20 %)	P(<i>U</i> ₂₀₁₈ > 10 %)	Med(<i>U</i> ₂₀₁₈)
0	0,007	2,675	0,000	0,000	0,000
3 000	0,014	2,545	0,001	0,088	0,059
3 320	0,015	2,530	0,002	0,133	0,065
4 000	0,016	2,501	0,009	0,260	0,078
4 500	0,018	2,481	0,018	0,372	0,088
5 150	0,021	2,455	0,037	0,502	0,100
6 000	0,024	2,421	0,079	0,657	0,116
6 800	0,027	2,387	0,132	0,766	0,132
6 900	0,028	2,383	0,139	0,777	0,133
7 000	0,028	2,379	0,147	0,788	0,135
9 000	0,037	2,299	0,347	0,922	0,172
10 550	0,045	2,234	0,502	0,964	0,201
12 000	0,056	2,173	0,635	0,982	0,227

2018 TAC (t)	P(SB ₂₀₁₈ < 0,3SB ₀)	Med(SB ₂₀₁₈ ∕ 0,3SB₀)	P(SB ₂₀₁₈ < 10 700 t)	Med(<i>SB</i> ₂₀₁₈ / 10 700 t)	P(<i>U</i> ₂₀₁₈ > 20 %)	P(<i>U</i> ₂₀₁₈ > 10 %)	Med(<i>U</i> ₂₀₁₈)
0	0,003	2,951	0,000	5,910	0,000	0,000	0,000
12 000	0,008	2,729	0,000	5,466	0,010	0,422	0,094
12 800	0,009	2,714	0,000	5,436	0,016	0,500	0,100
14 000	0,010	2,692	0,000	5,391	0,030	0,616	0,109
15 000	0,011	2,671	0,000	5,353	0,047	0,695	0,117
17 500	0,013	2,623	0,000	5,259	0,116	0,842	0,136
20 000	0,015	2,573	0,000	5,166	0,210	0,918	0,154
26 200	0,025	2,453	0,000	4,937	0,501	0,983	0,200
30 000	0,031	2,382	0,001	4,798	0,671	0,992	0,228
35 000	0,041	2,291	0,002	4,617	0,824	0,997	0,263
36 000	0,044	2,273	0,003	4,582	0,848	0,997	0,270
38 000	0,049	2,236	0,003	4,508	0,883	0,998	0,285

Tableau 44. Table de décision probabiliste pour le détroit de Georgie, AM2.

Tableau 45. Table de décision probabiliste pour le détroit de Georgie, AM1.

2018 TAC (t)	P(<i>SB</i> ₂₀₁₈ < 0,3 <i>SB</i> ₀)	Med(<i>SB</i> ₂₀₁₈ / 0,3 <i>SB</i> ₀)	P(<i>U</i> ₂₀₁₈ > 20 %)	P(<i>U</i> ₂₀₁₈ > 10 %)	Med(<i>U</i> ₂₀₁₈)
0	0,001	3,452	0,000	0,000	0,000
12 000	0,002	3,275	0,002	0,151	0,069
12 800	0,003	3,264	0,003	0,197	0,074
14 000	0,003	3,247	0,005	0,277	0,081
15 000	0,003	3,232	0,009	0,342	0,086
17 500	0,004	3,193	0,025	0,501	0,100
20 000	0,004	3,156	0,054	0,641	0,114
26 200	0,006	3,066	0,189	0,851	0,148
30 000	0,009	3,008	0,316	0,922	0,168
35 000	0,011	2,935	0,472	0,961	0,195
36 000	0,012	2,919	0,501	0,968	0,200
38 000	0,015	2,890	0,559	0,977	0,211

2018 TAC (t)	P(SB ₂₀₁₈ < 0,3SB ₀)	Med(SB₂₀₁ଃ∕ 0,3SB₀)	P(SB ₂₀₁₈ < 10 700 t)	Med(SB ₂₀₁₈ / 10 700 t)	P(<i>U</i> ₂₀₁₈ > 20 %)	P(<i>U</i> ₂₀₁₈ > 10 %)	Med(<i>U</i> ₂₀₁₈)
0	0,203	1,413	0,447	1,064	0,000	0,000	0,000
2 000	0,272	1,315	0,505	0,993	0,033	0,476	0,097
2 075	0,276	1,311	0,508	0,990	0,040	0,503	0,100
3 000	0,310	1,267	0,537	0,957	0,193	0,812	0,143
3 610	0,330	1,239	0,553	0,936	0,342	0,905	0,170
4 300	0,354	1,208	0,576	0,912	0,502	0,955	0,200
5 000	0,380	1,175	0,596	0,888	0,644	0,978	0,231
6 000	0,410	1,130	0,623	0,854	0,790	0,990	0,272
7 500	0,459	1,063	0,662	0,801	0,906	0,997	0,332
8 000	0,476	1,041	0,675	0,784	0,928	0,999	0,352
9 000	0,503	0,996	0,698	0,751	0,957	1,000	0,389
10 000	0,533	0,952	0,717	0,718	0,974	1,000	0,426

Tableau 46. Table de décision probabiliste pour la côte ouest de l'île de Vancouver, AM2.

Tableau 47. Table de décision probabiliste pour la côte ouest de l'île de Vancouver, AM1.

2018 TAC (t)	P(SB ₂₀₁₈ < 0,3SB ₀)	Med(SB ₂₀₁₈ / 0,3SB ₀)	P(<i>U</i> ₂₀₁₈ > 20 %)	P(<i>U</i> ₂₀₁₈ > 10 %)	Med(<i>U</i> ₂₀₁₈)
0	0,050	1,980	0,000	0,000	0,000
2 000	0,070	1,904	0,002	0,091	0,056
2 075	0,071	1,901	0,003	0,103	0,058
3 000	0,085	1,866	0,018	0,343	0,084
3 610	0,092	1,843	0,046	0,500	0,100
4 300	0,102	1,817	0,101	0,656	0,118
5 000	0,110	1,791	0,180	0,771	0,137
6 000	0,124	1,753	0,309	0,873	0,163
7 500	0,146	1,698	0,501	0,947	0,200
8 000	0,154	1,680	0,563	0,957	0,213
9 000	0,169	1,644	0,665	0,975	0,237
10 000	0,185	1,608	0,746	0,986	0,261

			Maturité selon l'âge										
Stock	Modèle	2	3	4	5	6	7	8	9	10			
HG	AM1	0,0377	0,1565	0,4680	0,8066	0,9519	1,0	1,0	1,0	1,0			
HG	AM2	0,0407	0,1644	0,4767	0,8084	0,9513	1,0	1,0	1,0	1,0			
DPR	AM1	0,0439	0,2736	0,7556	0,9621	0,9952	1,0	1,0	1,0	1,0			
DPR	AM2	0,0455	0,3020	0,7970	0,9727	0,9969	1,0	1,0	1,0	1,0			
CC	AM1	0,0393	0,4822	0,9550	0,9979	1,0000	1,0	1,0	1,0	1,0			
CC	AM2	0,0430	0,5087	0,9597	0,9982	1,0000	1,0	1,0	1,0	1,0			
DG	AM1	0,0503	0,5025	0,9506	0,9973	1,0000	1,0	1,0	1,0	1,0			
DG	AM2	0,0627	0,5657	0,9620	0,9980	1,0000	1,0	1,0	1,0	1,0			
COIV	AM1	0,0393	0,4822	0,9550	0,9979	1,0000	1,0	1,0	1,0	1,0			
COIV	AM2	0,0430	0,5087	0,9597	0,9982	1,0000	1,0	1,0	1,0	1,0			

Tableau 48. Scénario aux fins de l'analyse de la sensibilité au régime de maturité : maturité selon l'âge égale à la sélectivité de la pêche au hareng rogué à la senne.

	Réfé	Référence		1		2		3	3 4		5	
Paramètres directeurs	Initiale	Estimée	Initiale	Estimée	Initiale	Estimée	nitiale	Estimé	e Initiale	Estimée	Initiale	Estimée
Log-recrutement $[ln(R_0)]$	7,28	8,04	7,28	8,04	7,28	8,04	7,28	8,04	7,28	8,04	7,28	8,04
Inclinaison (<i>h</i>)	0,80	0,70	0,80	0,70	0,80	0,70	0,80	0,70	0,80	0,70	0,80	0,70
Log-mortalité naturelle [$ln(M)$]	-0,69	-0,60	-0,69	-0,60	-0,69	-0,60	-0,69	-0,60	-0,69	-0,60	-0,69	-0,60
Log-recrutement moyen $[ln(\overline{R})]$	7,09	7,74	7,09	7,74	7,09	7,74	7,09	7,74	7,09	7,74	7,09	7,74
Log-recrutement initial [ln(\overline{R}_{init})]	5,97	6,39	5,97	6,39	5,97	6,39	5,97	6,39	5,97	6,39	5,97	6,39
Rapport d'écart, rho ($ ho$)	0,41	0,25	0,50	0,25	0,06	0,25	0,33	0,25	0,41	0,25	0,80	0,25
Inverse de l'écart total, kappa (κ)	1,22	1,73	0,50	1,73	1,47	1,73	2,89	1,73	1,22	1,73	0,80	1,73
Sigma (σ)	0,58	0,38	1,00	0,38	0,20	0,38	0,34	0,38	0,58	0,38	1,00	0,38
Tau (τ)	0,69	0,66	1,00	0,66	0,80	0,66	0,48	0,66	0,69	0,66	0,50	0,66

Tableau 49. Sensibilité aux paramètres d'écart : estimations des paramètres directeurs pour le DG, AM1.

Tableau 50. Sensibilité aux paramètres d'écart : estimations des paramètres directeurs pour le DG, AM2.

	Référence		1		2			3		4		5	
Paramètres directeurs	Initiale	Estimée	Initiale	Estimée	Initiale	Estimée	Initiale	Estimée	Initiale	Estimée	Initiale	Estimée	
Log-recrutement $[ln(R_0)]$	7,28	7,32	7,28	7,32	7,28	7,32	7,28	7,32	7,28	7,32	7,28	7,32	
Inclinaison (<i>h</i>)	0,80	0,80	0,80	0,80	0,80	0,80	0,80	0,80	0,80	0,80	0,80	0,80	
Log-mortalité naturelle [$ln(M)$]	-0,69	-0,79	-0,69	-0,79	-0,69	-0,79	-0,69	-0,79	-0,69	-0,79	-0,69	-0,79	
Log-recrutement moyen $[ln(\overline{R})]$	7,09	6,97	7,09	6,97	7,09	6,97	7,09	6,97	7,09	6,97	7,09	6,97	
Log-recrutement initial [ln(\overline{R}_{init})]	5,97	5,62	5,97	5,62	5,97	5,62	5,97	5,62	5,97	5,62	5,97	5,62	
Rapport d'écart, rho ($ ho$)	0,41	0,27	0,50	0,27	0,06	0,27	0,33	0,27	0,41	0,27	0,80	0,27	
Inverse de l'écart total, kappa (κ)	1,22	1,64	0,50	1,64	1,47	1,64	2,89	1,64	1,22	1,64	0,80	1,64	
Sigma (<i>o</i>)	0,58	0,41	1,00	0,41	0,20	0,41	0,34	0,41	0,58	0,41	1,00	0,41	
Tau (τ)	0,69	0,67	1,00	0,67	0,80	0,67	0,48	0,67	0,69	0,67	0,50	0,67	

	Scé	nario de	référer	Scénario d'analyse de la sensibilité maturité égale à la sélectivit					
Stock	SB ₀	SB 2017	F RMS	RMS	SB₀	SB ₂₀₁₇	F RMS	RMS	
HG	29,85	7,35	4,80	5,21	20,80	5,39	5,44	8,23	
DPR	57,18	22,46	2,11	7,13	46,29	21,80	1,97	8,73	
CC	59,48	47,25	1,02	13,39	49,16	43,49	0,77	15,51	
DG	156,76	174,05	1,01	60,26	138,02	157,84	0,87	77,74	
COIV	56,64	31,45	1,44	18,17	48,95	32,77	0,97	20,86	

Tableau 51. Points de référence de la sensibilité à la maturité pour le DG, AM1.

Tableau 52. Points de référence de la sensibilité à la maturité pour le DG, AM2.

	Scé	nario de	référer	Scénario d'analyse de la sensibilité maturité égale à la sélectivi					
Stock	SB ₀	SB 2017	F RMS	RMS	SB ₀	SB ₂₀₁₇	F RMS	RMS	
HG	22,31	3,71	5,44	8,23	16,87	3,56	4,12	13,55	
DPR	56,95	19,95	2,11	7,13	46,86	20,76	1,83	8,00	
CC	52,92	29,07	1,02	13,39	43,61	29,16	0,79	11,67	
DG	130,24	108,26	1,01	60,26 ⁻	114,81	103,93	0,69	44,49	
COIV	45,62	16,73	1,44	18,17	38,42	18,36	0,92	12,24	

RES	Modèle	Bornes	q₁ estimé	q₂ estimé	<i>A priori</i> (moyenne, ET)	SB 2017	SB₀	Épuisement S B ₂₀₁₇ /SB ₀
HG	AM1	Aucune	0,272	0,436	Normale (0.566_3.000)	9,900	35,578	0,276
HG	AM1	Aucune	0,280	0,451	(0,566, 2,000) (0,566, 2,000)	9,443	34,915	0,268
HG	AM1	Aucune	0,307	0,511	(0,566, 0,500) (0,566, 0,500)	8,404	32,093	0,263
DPR	AM1	Aucune	0,662	1,316	Normale (0,566, 3,000)	16,605	70,550	0,230
DPR	AM1	Aucune	0,629	1,224	Normale (0,566, 2,000)	17,687	66,088	0,262
DPR	AM1	Aucune	0,614	1,159	Normale (0,566, 0,500)	18,699	65,569	0,279
CC	AM1	Aucune	0,259	0,558	Normale (0,566, 3,000)	57,564	65,190	0,886
CC	AM1	Aucune	0,263	0,568	(0,566, 2,000)	55,987	64,549	0,865
CC	AM1	Aucune	0,281	0,617	Normale (0,566, 0,500)	51,345	62,587	0,820
DG	AM1	Aucune	0,775	0,716	Normale (0,566, 3,000)	157,944	158,276	1,005
DG	AM1	Aucune	0,813	0,740	(0,566, 2,000)	152,897	154,692	0,979
DG	AM1	Aucune	0,725	0,672	Normale (0,566, 0,500)	166,909	158,442	1,052
COIV	AM1	Aucune	0,646	0,561	Normale (0,566, 3,000)	32,694	57,959	0,561
COIV	AM1	Aucune	0,649	0,563	(0,566, 2,000)	31,926	57,906	0,553
COIV	AM1	Aucune	0,641	0,559	(0,566, 0,500)	32,757	58,282	0,563

Tableau 53. Estimations des paramètres de capturabilité (q) et des distributions de probabilité a priori utilisés dans l'AM1 aux fins de l'analyse de la sensibilité au paramètre q. Les valeurs estimées sont les médianes des distributions a posteriori générées par simulation MCCM.

Zone	Paramétrage du modèle	Sensibilité du modèle	Vraisemblance données prises	Vraisemblance indice relevé 1	Vraisemblance indice relevé 2	Données comp. âge Vraisemblance engin 1	Données comp. âge Vraisemblance engin 2	Données comp. âge Vraisemblance engin 3	Vraisemblance relation S-R	Vraisemblance totale	Différence vraisemblance totale et MVT, AM2	N ^{bre} paramètres estimés totaux	CIA
HG	AM2	M variable temps	129,12	-29,52	-17,14	60,30	371,52	67,66	-79,10	502,84	0,00	174,00	-657,69
HG	AM2	M constante	129,58	-32,51	-30,85	43,66	345,43	61,05	-99,34	417,01	85,83	162,00	-510,02
DPR	AM2	M variable temps	229,35	-33,00	-9,80	135,62	316,56	312,53	-64,35	886,92	0,00	232,00	-1 309,84
DPR	AM2	<i>M</i> constante	229,15	-26,49	-12,83	131,23	310,49	307,04	-73,76	864,83	22,09	220,00	- 1 289,66
CC	AM2	M variable temps	170,74	-22,36	-6,01	93,55	540,21	248,12	-69,45	954,79	0,00	198,00	-1 513,58
CC	AM2	<i>M</i> constante	170,69	-29,30	-35,66	95,10	545,32	241,86	-80,49	907,51	47,28	186,00	-1 443,02
DG	AM2	<i>M</i> variable temps	151,85	-22,89	-14,98	96,45	483,57	142,60	-57,91	778,69	0,00	187,00	-1 183,37
DG	AM2	<i>M</i> constante	267,18	-23,39	-11,85	387,41	493,27	368,23	-57,10	1 423,75	-645,07	242,00	-2 363,50
COIV	AM2	<i>M</i> variable temps	151,85	-22,89	-14,98	96,45	483,57	142,60	-57,91	778,69	0,00	187,00	-1 183,37
COIV	AM2	<i>M</i> constante	151,87	-32,06	-32,53	96,16	462,36	149,98	-79,02	716,77	61,91	175,00	-1 083,55
HG	AM1	<i>M</i> variable temps	129,27	-27,78	-15,81	61,91	368,90	67,21	-76,79	506,91	0,00	174,00	-665,82
HG	AM1	<i>M</i> constante	129,36	-32,78	-34,12	65,15	335,42	65,25	-97,57	430,72	76,19	162,00	-537,43
DPR	AM1	M variable temps	229,41	-33,22	-9,67	135,56	313,60	314,07	-63,83	885,92	0,00	232,00	-1 307,84
DPR	AM1	<i>M</i> constante	229,28	-26,31	-12,24	130,66	305,62	309,10	-72,01	864,09	21,83	220,00	-1 288,18
CC	AM1	<i>M</i> variable temps	170,89	-21,25	-3,52	93,57	536,84	247,68	-66,85	957,36	0,00	198,00	-1 518,73
CC	AM1	<i>M</i> constante	170,64	-29,18	-35,17	95,09	541,70	243,09	-78,71	907,47	49,90	186,00	-1 442,94
DG	AM1	<i>M</i> variable temps	152,00	-20,12	-15,51	96,26	479,93	142,46	-53,53	781,49	0,00	187,00	-1 188,97
DG	AM1	M constante	267,80	-23,05	-11,67	391,35	493,37	372,14	-54,20	1 435,73	-654,25	242,00	-2 387,47
COIV	AM1	<i>M</i> variable temps	152,00	-20,12	-15,51	96,26	479,93	142,46	-53,53	781,49	0,00	187,00	-1 188,97
COIV	AM1	M constante	151,85	-32,16	-33,15	96,25	462,06	150,26	-78,86	716,25	65,23	175,00	-1 082,51

Tableau 54. Composantes de la log-vraisemblance, totaux et valeurs CIA des modèles d'analyse de la sensibilité à M.

8 FIGURES

Figure 1. Zones selon le cadre de l'approche de précaution de Pêches et Océans Canada.

Projection : C.-B. Albers (NAD 1983)

Figure 2. Limites des régions d'évaluation des stocks de hareng du Pacifique en Colombie-Britannique. Les régions d'évaluation des stocks principales sont Haida Gwaii (HG); le district de Prince Rupert (DPR); la côte centrale (CC); le détroit de Georgie (DG) et la côte ouest de l'île de Vancouver (COIV). Les régions d'évaluation des stocks secondaires sont la zone 27 (Z27) et la zone 2 Ouest (Z2O). Unités : kilomètres (km).

Figure 3. Série chronologique des prises totales débarquées en milliers de tonnes métriques (t x 10^3) de hareng du Pacifique de 1951 à 2017 dans les régions d'évaluation des stocks principales. Légende : « Engin 1 » représente les pêches minotières, au hareng de consommation et d'appât, et destiné à des usages spéciaux; « Engin 2 » représente la pêche au hareng rogué à la senne; « Engin 3 » représente la pêche au hareng rogué à la senne; « Engin 3 » représente la pêche au hareng rogué au filet maillant.

Figure 4. Série chronologique du poids selon l'âge en kilogrammes (kg) pour les poissons d'âge 3 (cercles) et des moyennes mobiles sur 5 ans du poids selon l'âge (lignes) pour le hareng du Pacifique de 1951 à 2017 dans les régions d'évaluation des stocks principales. Les lignes représentent les moyennes mobiles sur 5 ans pour le hareng d'âge 2 à 10 (en ordre croissant à partir de la ligne inférieure); la ligne noire épaisse met en évidence le hareng d'âge 3. Les valeurs manquantes du poids selon l'âge (années pour lesquelles on ne dispose d'aucun échantillon biologique) sont imputées selon l'une des deux méthodes suivantes : les valeurs manquantes au début de la série chronologique sont imputées en étendant la première valeur non manquante à rebours; les autres valeurs manquantes sont imputées comme la moyenne des cinq années précédentes. Les résumés biologiques tiennent compte uniquement des échantillons prélevés à la senne (pêche commerciale et pêche à l'essai) en raison de la sélectivité en fonction de la taille des autres types d'engins tels que les filets maillants. La classe d'âge 10 est un groupe « plus » qui comprend les poissons d'âge 10 et plus.

Figure 6. Nombre d'échantillons biologiques de hareng du Pacifique prélevés par année dans les régions d'évaluation des stocks principales de 1951 à 2017. Les résumés biologiques tiennent compte uniquement des échantillons prélevés à la senne (pêche commerciale et pêche à l'essai) en raison de la sélectivité en fonction de la taille des autres types d'engins tels que les filets maillants.

Figure 7. Série chronologique de l'indice du frai en milliers de tonnes métriques ($t \ge 10^3$) pour le hareng du Pacifique de 1951 à 2017 dans les régions d'évaluation des stocks principales. L'indice du frai comporte deux périodes distinctes définies par la méthode de relevé dominante : relevés en surface (de 1951 à 1987) et relevés en plongée (de 1988 à 2017). L'indice du frai représente uniquement les données brutes de relevé; il n'est pas mis à l'échelle à l'aide du paramètre de mise à l'échelle du relevé du frai, q.

Figure 8. Résultats pour le hareng du Pacifique dans la région d'évaluation des stocks principale de Haida Gwaii, AM2. Graphique a) : ajustement du modèle à la série chronologique de données mises à l'échelle de relevé du frai en milliers de tonnes métriques (t x 10^3). L'indice du frai comporte deux périodes distinctes définies par la méthode de relevé dominante : relevés en surface (de 1951 à 1987) et relevés en plongée (de 1988 à 2017). Les données de relevé du frai (indice du frai) sont mises à l'échelle de l'abondance à l'aide du paramètre de mise à l'échelle du relevé du frai q. Graphique b) : Estimations des valeurs a posteriori de la mortalité naturelle instantanée. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. Graphique c) : nombre reconstitué de recrues d'âge 2 en millions. Le cercle et la ligne verticale représentent les médianes et les intervalles de crédibilité de 90 %, respectivement. Graphique d) : estimation des valeurs a posteriori de la biomasse du stock reproducteur (SBt) pour chaque année t en milliers de tonnes métriques. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. La biomasse projetée du stock reproducteur en supposant qu'il n'y ait aucune pêche (SB2018) est également illustrée : le cercle et la ligne verticale représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. Les barres verticales représentent les prises commerciales, exception faite de la récolte des œufs sur varech. Graphiques e) et f) : diagramme de phase de la productivité de la biomasse du stock reproducteur et du taux de productivité de la biomasse du stock reproducteur par rapport à la biomasse du stock reproducteur, respectivement, pour la période du relevé en plongée (estimations de la densité a posteriori maximale, DPM). L'ombrage gris est de plus en plus foncé à mesure que l'on avance dans la série chronologique; le triangle représente 2016. L'échelle de l'axe dans la partie supérieure des graphiques e) et f) correspond à l'épuisement de la biomasse du stock reproducteur. SB/SB₀. Graphiques a), d), e) et f) : les lignes rouges représentent les médianes, et l'ombrage rouge représente les intervalles de confiance de 90 % du point de référence limite (PRL), soit 0,3 de la biomasse du stock reproducteur non exploitée, SB₀; le cas échéant, les lignes bleues représentent les seuils fixés en 1996. Les échelles sont différentes pour l'AM2 et l'AM1 (figures distinctes).

Figure 9. Résultats pour le hareng du Pacifique dans la région d'évaluation des stocks principale de Haida Gwaii, AM1. Graphique a) : ajustement du modèle à la série chronologique de données mises à l'échelle de relevé du frai en milliers de tonnes métriques (t x 10^3). L'indice du frai comporte deux périodes distinctes définies par la méthode de relevé dominante : relevés en surface (de 1951 à 1987) et relevés en plongée (de 1988 à 2017). Les données de relevé du frai (indice du frai) sont mises à l'échelle de l'abondance à l'aide du paramètre de mise à l'échelle du relevé du frai q. Graphique b) : Estimations des valeurs a posteriori de la mortalité naturelle instantanée. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. Graphique c) : nombre reconstitué de recrues d'âge 2 en millions. Le cercle et la ligne verticale représentent les médianes et les intervalles de crédibilité de 90 %, respectivement. Graphique d) : estimation des valeurs a posteriori de la biomasse du stock reproducteur (SBt) pour chaque année t en milliers de tonnes métriques. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. La biomasse projetée du stock reproducteur en supposant qu'il n'y ait aucune pêche (SB2018) est également illustrée : le cercle et la ligne verticale représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. Les barres verticales représentent les prises commerciales, exception faite de la récolte des œufs sur varech. Graphiques e) et f) : diagramme de phase de la productivité de la biomasse du stock reproducteur et du taux de productivité de la biomasse du stock reproducteur par rapport à la biomasse du stock reproducteur, respectivement, pour la période du relevé en plongée (estimations de la densité a posteriori maximale, DPM). L'ombrage gris est de plus en plus foncé à mesure que l'on avance dans la série chronologique; le triangle représente 2016. L'échelle de l'axe dans la partie supérieure des graphiques e) et f) correspond à l'épuisement de la biomasse du stock reproducteur, SB/SB₀. Graphiques a), d), e) et f) : les lignes rouges représentent les médianes, et l'ombrage rouge représente les intervalles de confiance de 90 % du point de référence limite (PRL), soit 0,3 de la biomasse du stock reproducteur non exploitée, SB₀; le cas échéant, les lignes bleues représentent les seuils fixés en 1996. Les échelles sont différentes pour l'AM2 et l'AM1 (figures distinctes).

Figure 10. Résultats pour le hareng du Pacifique dans la région d'évaluation des stocks principale du district de Prince Rupert, AM2. Graphique a) : ajustement du modèle à la série chronologique de données mises à l'échelle de relevé du frai en milliers de tonnes métriques (t x 10^3). L'indice du frai comporte deux périodes distinctes définies par la méthode de relevé dominante : relevés en surface (de 1951 à 1987) et relevés en plongée (de 1988 à 2017). Les données de relevé du frai (indice du frai) sont mises à l'échelle de l'abondance à l'aide du paramètre de mise à l'échelle du relevé du frai q. Graphique b) : Estimations des valeurs a posteriori de la mortalité naturelle instantanée. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. Graphique c) : nombre reconstitué de recrues d'âge 2 en millions. Le cercle et la ligne verticale représentent les médianes et les intervalles de crédibilité de 90 %, respectivement. Graphique d) : estimation des valeurs a posteriori de la biomasse du stock reproducteur (SBt) pour chaque année t en milliers de tonnes métriques. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. La biomasse projetée du stock reproducteur en supposant qu'il n'y ait aucune pêche (SB2018) est également illustrée : le cercle et la ligne verticale représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. Les barres verticales représentent les prises commerciales, exception faite de la récolte des œufs sur varech. Graphiques e) et f) : diagramme de phase de la productivité de la biomasse du stock reproducteur et du taux de productivité de la biomasse du stock reproducteur par rapport à la biomasse du stock reproducteur, respectivement, pour la période du relevé en plongée (estimations de la densité a posteriori maximale, DPM). L'ombrage gris est de plus en plus foncé à mesure que l'on avance dans la série chronologique: le triangle représente 2016. L'échelle de l'axe dans la partie supérieure des graphiques e) et f) correspond à l'épuisement de la biomasse du stock reproducteur, SB/SB0. Graphiques a), d), e) et f) : les lignes rouges représentent les médianes, et l'ombrage rouge représente les intervalles de confiance de 90 % du point de référence limite (PRL), soit 0,3 de la biomasse du stock reproducteur

non exploitée, *SB*₀; le cas échéant, les lignes bleues représentent les seuils fixés en 1996. Les échelles sont différentes pour l'AM2 et l'AM1 (figures distinctes).

Figure 11. Résultats pour le hareng du Pacifique dans la région d'évaluation des stocks principale du district de Prince Rupert, AM1. Graphique a) : ajustement du modèle à la série chronologique de données mises à l'échelle de relevé du frai en milliers de tonnes métriques (t x 10^3). L'indice du frai comporte deux périodes distinctes définies par la méthode de relevé dominante : relevés en surface (de 1951 à 1987) et relevés en plongée (de 1988 à 2017). Les données de relevé du frai (indice du frai) sont mises à l'échelle de l'abondance à l'aide du paramètre de mise à l'échelle du relevé du frai q. Graphique b) : Estimations des valeurs a posteriori de la mortalité naturelle instantanée. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. Graphique c) : nombre reconstitué de recrues d'âge 2 en millions. Le cercle et la ligne verticale représentent les médianes et les intervalles de crédibilité de 90 %, respectivement. Graphique d) : estimation des valeurs a posteriori de la biomasse du stock reproducteur (SBt) pour chaque année t en milliers de tonnes métriques. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. La biomasse projetée du stock reproducteur en supposant qu'il n'y ait aucune pêche (SB2018) est également illustrée : le cercle et la ligne verticale représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. Les barres verticales représentent les prises commerciales, exception faite de la récolte des œufs sur varech. Graphiques e) et f) : diagramme de phase de la productivité de la biomasse du stock reproducteur et du taux de productivité de la biomasse du stock reproducteur par rapport à la biomasse du stock reproducteur, respectivement, pour la période du relevé en plongée (estimations de la densité a posteriori maximale, DPM). L'ombrage gris est de plus en plus foncé à mesure que l'on avance dans la série chronologique; le triangle représente 2016. L'échelle de l'axe dans la partie supérieure des graphiques e) et f) correspond à l'épuisement de la biomasse du stock reproducteur, SB/SB₀. Graphiques a), d), e) et f) : les lignes rouges représentent les médianes, et l'ombrage rouge représente les intervalles de confiance de 90 % du point de référence limite (PRL), soit 0,3 de la biomasse du stock reproducteur non exploitée, SB_0 ; le cas échéant, les lignes bleues représentent les seuils fixés en 1996. Les échelles sont différentes pour l'AM2 et l'AM1 (figures distinctes).

Figure 12. Résultats pour le hareng du Pacifique dans la région d'évaluation des stocks principale de la côte centrale, AM2. Graphique a) : ajustement du modèle à la série chronologique de données mises à l'échelle de relevé du frai en milliers de tonnes métriques (t x 10^3). L'indice du frai comporte deux périodes distinctes définies par la méthode de relevé dominante : relevés en surface (de 1951 à 1987) et relevés en plongée (de 1988 à 2017). Les données de relevé du frai (indice du frai) sont mises à l'échelle de l'abondance à l'aide du paramètre de mise à l'échelle du relevé du frai q. Graphique b) : Estimations des valeurs a posteriori de la mortalité naturelle instantanée. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. Graphique c) : nombre reconstitué de recrues d'âge 2 en millions. Le cercle et la ligne verticale représentent les médianes et les intervalles de crédibilité de 90 %, respectivement. Graphique d) : estimation des valeurs a posteriori de la biomasse du stock reproducteur (SBt) pour chaque année t en milliers de tonnes métriques. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. La biomasse projetée du stock reproducteur en supposant qu'il n'y ait aucune pêche (SB2018) est également illustrée : le cercle et la ligne verticale représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. Les barres verticales représentent les prises commerciales, exception faite de la récolte des œufs sur varech. Graphiques e) et f) : diagramme de phase de la productivité de la biomasse du stock reproducteur et du taux de productivité de la biomasse du stock reproducteur par rapport à la biomasse du stock reproducteur, respectivement, pour la période du relevé en plongée (estimations de la densité a posteriori maximale, DPM). L'ombrage gris est de plus en plus foncé à mesure que l'on avance dans la série chronologique; le triangle représente 2016. L'échelle de l'axe dans la partie supérieure des graphiques e) et f) correspond à l'épuisement de la biomasse du stock reproducteur, SB/SB₀. Graphiques a), d), e) et f) : les lignes rouges représentent les médianes, et l'ombrage rouge représente les intervalles de confiance de 90 % du point de référence limite (PRL), soit 0,3 de la biomasse du stock reproducteur non exploitée. SB₀: le cas échéant, les lignes bleues représentent les seuils fixés en 1996. Les échelles sont différentes pour l'AM2 et l'AM1 (figures distinctes).

Figure 13. Résultats pour le hareng du Pacifique dans la région d'évaluation des stocks principale de la côte centrale, AM1. Graphique a) : ajustement du modèle à la série chronologique de données mises à l'échelle de relevé du frai en milliers de tonnes métriques (t x 10^3). L'indice du frai comporte deux périodes distinctes définies par la méthode de relevé dominante : relevés en surface (de 1951 à 1987) et relevés en plongée (de 1988 à 2017). Les données de relevé du frai (indice du frai) sont mises à l'échelle de l'abondance à l'aide du paramètre de mise à l'échelle du relevé du frai q. Graphique b) : Estimations des valeurs a posteriori de la mortalité naturelle instantanée. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. Graphique c) : nombre reconstitué de recrues d'âge 2 en millions. Le cercle et la ligne verticale représentent les médianes et les intervalles de crédibilité de 90 %, respectivement. Graphique d) : estimation des valeurs a posteriori de la biomasse du stock reproducteur (SBt) pour chaque année t en milliers de tonnes métriques. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. La biomasse projetée du stock reproducteur en supposant qu'il n'y ait aucune pêche (SB2018) est également illustrée : le cercle et la ligne verticale représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement, Les barres verticales représentent les prises commerciales, exception faite de la récolte des œufs sur varech. Graphiques e) et f) : diagramme de phase de la productivité de la biomasse du stock reproducteur et du taux de productivité de la biomasse du stock reproducteur par rapport à la biomasse du stock reproducteur, respectivement, pour la période du relevé en plongée (estimations de la densité a posteriori maximale, DPM). L'ombrage gris est de plus en plus foncé à mesure que l'on avance dans la série chronologique; le triangle représente 2016. L'échelle de l'axe dans la partie supérieure des graphiques e) et f) correspond à l'épuisement de la biomasse du stock reproducteur, SB/SB₀. Graphiques a), d), e) et f) : les lignes rouges représentent les médianes, et l'ombrage rouge représente les intervalles de confiance de 90 % du point de référence limite (PRL), soit 0,3 de la biomasse du stock reproducteur non exploitée, SB_0 ; le cas échéant, les lignes bleues représentent les seuils fixés en 1996. Les échelles sont différentes pour l'AM2 et l'AM1 (figures distinctes).

Figure 14. Résultats pour le hareng du Pacifique dans la région d'évaluation des stocks principale du détroit de Georgie, AM2. Graphique a) : ajustement du modèle à la série chronologique de données mises à l'échelle de relevé du frai en milliers de tonnes métriques (t x 10^3). L'indice du frai comporte deux périodes distinctes définies par la méthode de relevé dominante : relevés en surface (de 1951 à 1987) et relevés en plongée (de 1988 à 2017). Les données de relevé du frai (indice du frai) sont mises à l'échelle de l'abondance à l'aide du paramètre de mise à l'échelle du relevé du frai q. Graphique b) : Estimations des valeurs a posteriori de la mortalité naturelle instantanée. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. Graphique c) : nombre reconstitué de recrues d'âge 2 en millions. Le cercle et la ligne verticale représentent les médianes et les intervalles de crédibilité de 90 %, respectivement. Graphique d) : estimation des valeurs a posteriori de la biomasse du stock reproducteur (SBt) pour chaque année t en milliers de tonnes métriques. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. La biomasse projetée du stock reproducteur en supposant qu'il n'y ait aucune pêche (SB2018) est également illustrée : le cercle et la ligne verticale représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. Les barres verticales représentent les prises commerciales, exception faite de la récolte des œufs sur varech. Graphiques e) et f) : diagramme de phase de la productivité de la biomasse du stock reproducteur et du taux de productivité de la biomasse du stock reproducteur par rapport à la biomasse du stock reproducteur, respectivement, pour la période du relevé en plongée (estimations de la densité a posteriori maximale, DPM). L'ombrage gris est de plus en plus foncé à mesure que l'on avance dans la série chronologique; le triangle représente 2016. L'échelle de l'axe dans la partie supérieure des graphiques e) et f) correspond à l'épuisement de la biomasse du stock reproducteur, SB/SB₀. Graphiques a), d), e) et f) : les lignes rouges représentent les médianes, et l'ombrage rouge représente les intervalles de confiance de 90 % du point de référence limite (PRL), soit 0,3 de la biomasse du stock reproducteur non exploitée, SB₀; le cas échéant, les lignes bleues représentent les seuils fixés en 1996. Les échelles sont différentes pour l'AM2 et l'AM1 (figures distinctes).

Figure 15. Résultats pour le hareng du Pacifique dans la région d'évaluation des stocks principale du détroit de Georgie, AM1. Graphique a) : ajustement du modèle à la série chronologique de données mises à l'échelle de relevé du frai en milliers de tonnes métriques (t x 10^3). L'indice du frai comporte deux périodes distinctes définies par la méthode de relevé dominante : relevés en surface (de 1951 à 1987) et relevés en plongée (de 1988 à 2017). Les données de relevé du frai (indice du frai) sont mises à l'échelle de l'abondance à l'aide du paramètre de mise à l'échelle du relevé du frai q. Graphique b) : Estimations des valeurs a posteriori de la mortalité naturelle instantanée. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. Graphique c) : nombre reconstitué de recrues d'âge 2 en millions. Le cercle et la ligne verticale représentent les médianes et les intervalles de crédibilité de 90 %, respectivement. Graphique d) : estimation des valeurs a posteriori de la biomasse du stock reproducteur (SBt) pour chaque année t en milliers de tonnes métriques. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. La biomasse projetée du stock reproducteur en supposant qu'il n'y ait aucune pêche (SB2018) est également illustrée : le cercle et la ligne verticale représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. Les barres verticales représentent les prises commerciales, exception faite de la récolte des œufs sur varech. Graphiques e) et f) : diagramme de phase de la productivité de la biomasse du stock reproducteur et du taux de productivité de la biomasse du stock reproducteur par rapport à la biomasse du stock reproducteur, respectivement, pour la période du relevé en plongée (estimations de la densité a posteriori maximale, DPM). L'ombrage gris est de plus en plus foncé à mesure que l'on avance dans la série chronologique; le triangle représente 2016. L'échelle de l'axe dans la partie supérieure des graphiques e) et f) correspond à l'épuisement de la biomasse du stock reproducteur, SB/SB₀. Graphiques a), d), e) et f) : les lignes rouges représentent les médianes, et l'ombrage rouge représente les intervalles de confiance de 90 % du point de référence limite (PRL), soit 0,3 de la biomasse du stock reproducteur non exploitée, SB_0 ; le cas échéant, les lignes bleues représentent les seuils fixés en 1996. Les échelles sont différentes pour l'AM2 et l'AM1 (figures distinctes).

Figure 16. Résultats pour le hareng du Pacifique dans la région d'évaluation des stocks principale de la côte ouest de l'île de Vancouver, AM2. Graphique a) : ajustement du modèle à la série chronologique de

données mises à l'échelle de relevé du frai en milliers de tonnes métriques (t x 10^3). L'indice du frai comporte deux périodes distinctes définies par la méthode de relevé dominante : relevés en surface (de 1951 à 1987) et relevés en plongée (de 1988 à 2017). Les données de relevé du frai (indice du frai) sont mises à l'échelle de l'abondance à l'aide du paramètre de mise à l'échelle du relevé du frai q. Graphique b) : Estimations des valeurs a posteriori de la mortalité naturelle instantanée. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. Graphique c) : nombre reconstitué de recrues d'âge 2 en millions. Le cercle et la ligne verticale représentent les médianes et les intervalles de crédibilité de 90 %, respectivement. Graphique d) : estimation des valeurs a posteriori de la biomasse du stock reproducteur (SB_t) pour chaque année t en milliers de tonnes métriques. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. La biomasse projetée du stock reproducteur en supposant qu'il n'y ait aucune pêche (SB2018) est également illustrée : le cercle et la ligne verticale représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. Les barres verticales représentent les prises commerciales, exception faite de la récolte des œufs sur varech. Graphiques e) et f) : diagramme de phase de la productivité de la biomasse du stock reproducteur et du taux de productivité de la biomasse du stock reproducteur par rapport à la biomasse du stock reproducteur, respectivement, pour la période du relevé en plongée (estimations de la densité a posteriori maximale, DPM). L'ombrage gris est de plus en plus foncé à mesure que l'on avance dans la série chronologique: le triangle représente 2016. L'échelle de l'axe dans la partie supérieure des graphiques e) et f) correspond à l'épuisement de la biomasse du stock reproducteur, SB/SB₀. Graphiques a), d), e) et f) : les lignes rouges représentent les médianes, et l'ombrage rouge représente les intervalles de confiance de 90 % du point de référence

*limite (PRL), soit 0,3 de la biomasse du stock reproducteur non exploitée, SB*₀; *le cas échéant, les lignes bleues représentent les seuils fixés en 1996. Les échelles sont différentes pour l'AM2 et l'AM1 (figures distinctes).*

Figure 17. Résultats pour le hareng du Pacifique dans la région d'évaluation des stocks principale de la côte ouest de l'île de Vancouver, AM1. Graphique a) : ajustement du modèle à la série chronologique de

données mises à l'échelle de relevé du frai en milliers de tonnes métriques (t x 10^3). L'indice du frai comporte deux périodes distinctes définies par la méthode de relevé dominante : relevés en surface (de 1951 à 1987) et relevés en plongée (de 1988 à 2017). Les données de relevé du frai (indice du frai) sont mises à l'échelle de l'abondance à l'aide du paramètre de mise à l'échelle du relevé du frai q. Graphique b) : Estimations des valeurs a posteriori de la mortalité naturelle instantanée. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. Graphique c) : nombre reconstitué de recrues d'âge 2 en millions. Le cercle et la ligne verticale représentent les médianes et les intervalles de crédibilité de 90 %, respectivement. Graphique d) : estimation des valeurs a posteriori de la biomasse du stock reproducteur (SB_t) pour chaque année t en milliers de tonnes métriques. La ligne et la zone ombrée représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. La biomasse projetée du stock reproducteur en supposant qu'il n'y ait aucune pêche (SB2018) est également illustrée : le cercle et la ligne verticale représentent la médiane et l'intervalle de crédibilité de 90 %, respectivement. Les barres verticales représentent les prises commerciales, exception faite de la récolte des œufs sur varech. Graphiques e) et f) : diagramme de phase de la productivité de la biomasse du stock reproducteur et du taux de productivité de la biomasse du stock reproducteur par rapport à la biomasse du stock reproducteur, respectivement, pour la période du relevé en plongée (estimations de la densité a posteriori maximale, DPM). L'ombrage gris est de plus en plus foncé à mesure que l'on avance dans la série chronologique; le triangle représente 2016. L'échelle de l'axe dans la partie supérieure des graphiques e) et f) correspond à l'épuisement de la biomasse du stock reproducteur, SB/SB₀. Graphiques a), d), e) et f) : les lignes rouges représentent les médianes, et l'ombrage rouge représente les intervalles de confiance de 90 % du point de référence

*limite (PRL), soit 0,3 de la biomasse du stock reproducteur non exploitée, SB*₀; le cas échéant, les lignes bleues représentent les seuils fixés en 1996. Les échelles sont différentes pour l'AM2 et l'AM1 (figures distinctes).

Figure 18. Taux de récolte effectif pour le hareng du Pacifique dans les régions d'évaluation des stocks principales, AM2 et l'AM1. Le taux de récolte effectif pour l'année t (U_t) est obtenu par la formule $U_t = \frac{C_t}{SB_t + C_t}$, où C_t correspond aux prises de l'année t, et SB_t à la biomasse estimée du stock reproducteur de l'année t. Les lignes noires représentent les médianes, et les zones ombragées représentent les intervalles de confiance de 90 % pour la biomasse du stock reproducteur, SB_t . Les tiretés horizontaux représentent $U_t = 0, 2$.

Figure 19. Biomasse estimée du stock reproducteur en 2017 et SB₂₀₁₇en milliers de tonnes (t) pour le hareng du Pacifique dans les régions d'évaluation des stocks principales, AM2 et AM1. Les lignes noires verticales représentent les médianes (lignes pleines) et les intervalles de confiance de 90 % (tiretés) de la SB₂₀₁₇. Les lignes rouges verticales représentent les médianes, et les rectangles rouges ombragés représentent les intervalles de confiance de 90 % pour le point de référence limite, soit 0,3 de la biomasse non exploitée estimée, SB₀. Les lignes verticales bleues représentent les seuils fixés en 1996.

Biomasse du stock reproducteur($t \times 10^3$)

Figure 20. Relation stock-recrutement du modèle Beverton-Holt, établie au moyen d'estimations de la DPM, pour le hareng du Pacifique dans les régions d'évaluation des stocks principales, AM2. Les lignes représentent les relations stock-recrutement du modèle Beverton-Holt. Les étoiles représentent les estimations de la DPM de la biomasse du stock reproducteur non exploitée, *SB*₀, et du recrutement de l'âge 2 dans le stock non exploité, *R*₀. L'ombrage gris est de plus en plus foncé à mesure que l'on avance dans la série chronologique; les triangles représentent l'année en cours, 2017. Légende : tonnes (t).

Figure 21. Distributions de probabilité a priori (lignes) et histogrammes a posteriori comparatifs (barres) utilisés dans l'AM2 pour Haïda Gwaii. Les paramètres q_k représentent les engins, où k = 1 correspond au relevé en surface, et k = 2 correspond au relevé en plongée. Les pointillés rouges représentent les estimations de la DPM.

Figure 22. Distributions de probabilité a priori (lignes) et histogrammes a posteriori comparatifs (barres) utilisés dans l'AM1 pour Haïda Gwaii. Les paramètres q_k représentent les engins, où k = 1 correspond au relevé en surface, et k = 2 correspond au relevé en plongée. Les pointillés rouges représentent les estimations de la DPM.

Figure 23. Distributions de probabilité a priori (lignes) et histogrammes a posteriori comparatifs (barres) utilisés dans l'AM2 pour le district de Prince Rupert. Les paramètres q_k représentent les engins, où k = 1 correspond au relevé en surface, et k = 2 correspond au relevé en plongée. Les pointillés rouges représentent les estimations de la DPM.

Figure 24. Distributions de probabilité a priori (lignes) et histogrammes a posteriori comparatifs (barres) utilisés dans l'AM1 pour le district de Prince Rupert. Les paramètres q_k représentent les engins, où k = 1 correspond au relevé en surface, et k = 2 correspond au relevé en plongée. Les pointillés rouges représentent les estimations de la DPM.

Figure 25. Distributions de probabilité a priori (lignes) et histogrammes a posteriori comparatifs (barres) utilisés dans l'AM2 pour la côte centrale. Les paramètres q_k représentent les engins, où k = 1 correspond au relevé en surface, et k = 2 correspond au relevé en plongée. Les pointillés rouges représentent les estimations de la DPM.

Figure 26. Distributions de probabilité a priori (lignes) et histogrammes a posteriori comparatifs (barres) utilisés dans l'AM1 pour la côte centrale. Les paramètres q_k représentent les engins, où k = 1 correspond au relevé en surface, et k = 2 correspond au relevé en plongée. Les pointillés rouges représentent les estimations de la DPM.

Figure 27. Distributions de probabilité a priori (lignes) et histogrammes a posteriori comparatifs (barres) utilisés dans l'AM2 pour le détroit de Georgie. Les paramètres q_k représentent les engins, où k = 1 correspond au relevé en surface, et k = 2 correspond au relevé en plongée. Les pointillés rouges représentent les estimations de la DPM.

Figure 28. Distributions de probabilité a priori (lignes) et histogrammes a posteriori comparatifs (barres) utilisés dans l'AM1 pour le détroit de Georgie. Les paramètres q_k représentent les engins, où k = 1 correspond au relevé en surface, et k = 2 correspond au relevé en plongée. Les pointillés rouges représentent les estimations de la DPM.

Figure 29. Distributions de probabilité a priori (lignes) et histogrammes a posteriori comparatifs (barres) utilisés dans l'AM2 pour la côte ouest de l'île de Vancouver. Les paramètres q_k représentent les engins, où k = 1 correspond au relevé en surface, et k = 2 correspond au relevé en plongée. Les pointillés rouges représentent les estimations de la DPM.

Figure 30. Distributions de probabilité a priori (lignes) et histogrammes a posteriori comparatifs (barres) utilisés dans l'AM1 pour la côte ouest de l'île de Vancouver. Les paramètres q_k représentent les engins, où k = 1 correspond au relevé en surface, et k = 2 correspond au relevé en plongée. Les pointillés rouges représentent les estimations de la DPM.

Figure 31. Tracés des résultats de simulation MCCM pour les paramètres estimés de l'AM2 appliqué à Haida Gwaii. Chaque simulation MCCM faisait intervenir une chaîne 5 millions d'itérations, et un échantillon était prélevé à chaque millième itération. Le paramètre de capturabilité q₁ correspond au relevé en surface, et q₂ correspond au relevé en plongée. Les paramètres \hat{a}_k (sélectivité selon l'âge à 50 %), et $\hat{\gamma}_k$ (écart-type de la sélectivité à 50 %) correspondent aux engins : k = 1 pour les autres pêches; k = 2 pour la pêche au hareng rogué à la senne; k = 3 pour la pêche au hareng rogué au filet maillant.

Figure 32. Tracés des résultats de simulation MCCM pour les paramètres estimés de l'AM1 appliqué à Haida Gwaii. Chaque simulation MCCM faisait intervenir une chaîne 5 millions d'itérations, et un échantillon était prélevé à chaque millième itération. Le paramètre de capturabilité q₁ correspond au relevé en surface, et q₂ correspond au relevé en plongée. Les paramètres \hat{a}_k (sélectivité selon l'âge à 50 %), et $\hat{\gamma}_k$ (écart-type de la sélectivité à 50 %) correspondent aux engins : k = 1 pour les autres pêches; k = 2 pour la pêche au hareng rogué à la senne; k = 3 pour la pêche au hareng rogué au filet maillant.

Figure 33. Tracés des résultats de simulation MCCM pour les paramètres estimés de l'AM2 appliqué au district de Prince Rupert. Chaque simulation MCCM faisait intervenir une chaîne 5 millions d'itérations, et un échantillon était prélevé à chaque millième itération. Le paramètre de capturabilité q₁ correspond au relevé en plongée. Les paramètres \hat{a}_k (sélectivité selon l'âge à 50 %), et $\hat{\gamma}_k$ (écart-type de la sélectivité à 50 %) correspondent aux engins : k = 1 pour les autres pêches; k = 2 pour la pêche au hareng rogué à la senne; k = 3 pour la pêche au hareng rogué au filet maillant.

Figure 34. Tracés des résultats de simulation MCCM pour les paramètres estimés de l'AM1 appliqué au district de Prince Rupert. Chaque simulation MCCM faisait intervenir une chaîne 5 millions d'itérations, et un échantillon était prélevé à chaque millième itération. Le paramètre de capturabilité q_1 correspond au relevé en surface, et q_2 correspond au relevé en plongée. Les paramètres \hat{a}_k (sélectivité selon l'âge à 50 %), et $\hat{\gamma}_k$ (écart-type de la sélectivité à 50 %) correspondent aux engins : k = 1 pour les autres pêches; k = 2 pour la pêche au hareng rogué à la senne; k = 3 pour la pêche au hareng rogué au filet maillant.

Figure 35. Tracés des résultats de simulation MCCM pour les paramètres estimés de l'AM2 appliqué à la côte centrale. Chaque simulation MCCM faisait intervenir une chaîne 5 millions d'itérations, et un échantillon était prélevé à chaque millième itération. Le paramètre de capturabilité q₁ correspond au relevé en surface, et q₂ correspond au relevé en plongée. Les paramètres \hat{a}_k (sélectivité selon l'âge à 50 %), et $\hat{\gamma}_k$ (écart-type de la sélectivité à 50 %) correspondent aux engins : k = 1 pour les autres pêches; k = 2 pour la pêche au hareng rogué à la senne; k = 3 pour la pêche au hareng rogué au filet maillant.

Figure 36. Tracés des résultats de simulation MCCM pour les paramètres estimés de l'AM1 appliqué à la côte centrale. Chaque simulation MCCM faisait intervenir une chaîne 5 millions d'itérations, et un échantillon était prélevé à chaque millième itération. Le paramètre de capturabilité q₁ correspond au relevé en surface, et q₂ correspond au relevé en plongée. Les paramètres \hat{a}_k (sélectivité selon l'âge à 50 %), et $\hat{\gamma}_k$ (écart-type de la sélectivité à 50 %) correspondent aux engins : k = 1 pour les autres pêches; k = 2 pour la pêche au hareng rogué à la senne; k = 3 pour la pêche au hareng rogué au filet maillant.

Figure 37. Tracés des résultats de simulation MCCM pour les paramètres estimés de l'AM2 appliqué au détroit de Georgie. Chaque simulation MCCM faisait intervenir une chaîne 5 millions d'itérations, et un échantillon était prélevé à chaque millième itération. Le paramètre de capturabilité q₁ correspond au relevé en surface, et q₂ correspond au relevé en plongée. Les paramètres \hat{a}_k (sélectivité selon l'âge à 50 %), et $\hat{\gamma}_k$ (écart-type de la sélectivité à 50 %) correspondent aux engins : k = 1 pour les autres pêches; k = 2 pour la pêche au hareng rogué à la senne; k = 3 pour la pêche au hareng rogué au filet maillant.

Figure 38. Tracés des résultats de simulation MCCM pour les paramètres de l'AM1 appliqué au détroit de Georgie. Chaque simulation MCCM faisait intervenir une chaîne 5 millions d'itérations, et un échantillon était prélevé à chaque millième itération. Le paramètre de capturabilité q₁ correspond au relevé en surface, et q₂ correspond au relevé en plongée. Les paramètres \hat{a}_k (sélectivité selon l'âge à 50 %), et $\hat{\gamma}_k$ (écart-type de la sélectivité à 50 %) correspondent aux engins : k = 1 pour les autres pêches; k = 2 pour la pêche au hareng rogué à la senne; k = 3 pour la pêche au hareng rogué au filet maillant.

Figure 39. Tracés des résultats de simulation MCCM pour les paramètres estimés de l'AM2 appliqué à la côte ouest de l'île de Vancouver. Chaque simulation MCCM faisait intervenir une chaîne 5 millions d'itérations, et un échantillon était prélevé à chaque millième itération. Le paramètre de capturabilité q₁ correspond au relevé en surface, et q₂ correspond au relevé en plongée. Les paramètres \hat{a}_k (sélectivité selon l'âge à 50 %), et $\hat{\gamma}_k$ (écart-type de la sélectivité à 50 %) correspondent aux engins : k = 1 pour les autres pêches; k = 2 pour la pêche au hareng rogué à la senne; k = 3 pour la pêche au hareng rogué au filet maillant.

Figure 40. Tracés des résultats de simulation MCCM pour les paramètres estimés de l'AM1 appliqué à la côte ouest de l'île de Vancouver. Chaque simulation MCCM faisait intervenir une chaîne 5 millions d'itérations, et un échantillon était prélevé à chaque millième itération. Le paramètre de capturabilité q₁ correspond au relevé en surface, et q₂ correspond au relevé en plongée. Les paramètres \hat{a}_k (sélectivité selon l'âge à 50 %), et $\hat{\gamma}_k$ (écart-type de la sélectivité à 50 %) correspondent aux engins : k = 1 pour les autres pêches; k = 2 pour la pêche au hareng rogué à la senne; k = 3 pour la pêche au hareng rogué au filet maillant.

Figure 41. Diagrammes d'autocorrélation des résultats de simulation MCCM pour les paramètres estimés de l'AM2 appliqué à Haida Gwaii. Voir la figure 32 pour la description des paramètres.

Figure 42. Diagrammes d'autocorrélation des résultats de simulation MCCM pour les paramètres estimés de l'AM1 appliqué à Haida Gwaii. Voir la figure 32 pour la description des paramètres.

Figure 43. Diagrammes d'autocorrélation des résultats de simulation MCCM pour les paramètres estimés de l'AM2 appliqué au district de Prince Rupert. Voir la figure 34 pour la description des paramètres.

Figure 44. Diagrammes d'autocorrélation des résultats de simulation MCCM pour les paramètres estimés de l'AM1 appliqué au district de Prince Rupert. Voir la figure 34 pour la description des paramètres.

Figure 45. Diagrammes d'autocorrélation des résultats de simulation MCCM pour les paramètres estimés de l'AM2 appliqué à la côte centrale. Voir la figure 36 pour la description des paramètres.

Figure 46. Diagrammes d'autocorrélation des résultats de simulation MCCM pour les paramètres estimés de l'AM1 appliqué à la côte centrale. Voir la figure 36 pour la description des paramètres.

Figure 47. Diagrammes d'autocorrélation des résultats de simulation MCCM pour les paramètres estimés de l'AM2 appliqué au détroit de Georgie. Voir la figure 38 pour la description des paramètres.

Figure 48. Diagrammes d'autocorrélation de la MCCM pour les paramètres estimés de l'AM1 appliqué au détroit de Georgie. Voir la figure 38 pour la description des paramètres.

Figure 49. Diagrammes d'autocorrélation des résultats de simulation MCCM pour les paramètres estimés de l'AM2 appliqué à la côte ouest de l'île de Vancouver. Voir la figure 40 pour la description des paramètres.

Figure 50. Diagrammes d'autocorrélation des résultats de simulation MCCM pour les paramètres estimés de l'AM1 appliqué à la côte ouest de l'île de Vancouver. Voir la figure 40 pour la description des paramètres.

Figure 51. Diagrammes par paires des résultats de simulation MCCM pour les paramètres estimés de l'AM2 appliqué à Haida Gwaii. Voir la figure 32 pour la description des paramètres.

Figure 52. Diagrammes par paires des résultats de simulation MCCM pour les paramètres estimés de l'AM1 appliqué à Haida Gwaii. Voir la figure 32 pour la description des paramètres.

Figure 53. Diagrammes par paires des résultats de simulation MCCM pour les paramètres estimés de l'AM2 appliqué au district de Prince Rupert. Voir la figure 34 pour la description des paramètres.

Figure 54. Diagrammes par paires des résultats de simulation MCCM pour les paramètres estimés de l'AM1 appliqué au district de Prince Rupert. Voir la figure 34 pour la description des paramètres.

Figure 55. Diagrammes par paires des résultats de simulation MCCM pour les paramètres estimés de l'AM2 appliqué à la côte centrale. Voir la figure 36 pour la description des paramètres.

Figure 56. Diagrammes par paires des résultats de simulation MCCM pour les paramètres estimés de l'AM1 appliqué à la côte centrale. Voir la figure 36 pour la description des paramètres.

Figure 57. Diagrammes par paires des résultats de simulation MCCM pour les paramètres estimés de l'AM2 appliqué au détroit de Georgie. Voir la figure 38 pour la description des paramètres.

Figure 58. Diagrammes par paires des résultats de simulation MCCM pour les paramètres estimés de l'AM1 appliqué au détroit de Georgie. Voir la figure 38 pour la description des paramètres.

Figure 59. Diagrammes par paires des résultats de simulation MCCM pour les paramètres estimés de l'AM2 appliqué à la côte ouest de l'île de Vancouver. Voir la figure 40 pour la description des paramètres.

Figure 60. Diagrammes par paires des résultats de simulation MCCM pour les paramètres estimés de l'AM1 appliqué à la côte ouest de l'île de Vancouver. Voir la figure 40 pour la description des paramètres.

Figure 61. Paramètres de sélectivité estimés et fixes de Haida Gwaii, AM2.

Figure 62. Paramètres de sélectivité estimés et fixes du district de Prince Rupert, AM2.

Figure 63. Paramètres de sélectivité estimés et fixes de la côte centrale, AM2.

Figure 64. Paramètres de sélectivité estimés et fixes du détroit de Georgie, AM2.

Figure 65. Paramètres de sélectivité estimés et fixes de la côte ouest de l'île de Vancouver, AM2.

Figure 66. Scénario d'analyse de la sensibilité à la mortalité naturelle : Ajustements à l'indice (lignes) et valeurs d'entrée (points) du modèle tenant compte de la mortalité naturelle, relevé en surface de Haida Gwaii.

Figure 67. Scénario de sensibilité à la mortalité naturelle : Ajustements à l'indice (lignes) et valeurs d'entrée (points) du modèle tenant compte de la mortalité naturelle, relevé en plongée de Haida Gwaii.

Figure 68. Scénario de sensibilité à la mortalité naturelle : Ajustements à l'indice (lignes) et valeurs d'entrée (points) du modèle tenant compte de la mortalité naturelle, relevé en surface du district de Prince Rupert.

Figure 69. Scénario de sensibilité à la mortalité naturelle : Ajustements à l'indice (lignes) et valeurs d'entrée (points) du modèle tenant compte de la mortalité naturelle, relevé en plongée du district de Prince Rupert.

Figure 70. Scénario de sensibilité à la mortalité naturelle : Ajustements à l'indice (lignes) et valeurs d'entrée (points) du modèle tenant compte de la mortalité naturelle, relevé en surface de la côte centrale.

Figure 71. Scénario de sensibilité à la mortalité naturelle : Ajustements à l'indice (lignes) et valeurs d'entrée (points) du modèle tenant compte de la mortalité naturelle, relevé en plongée de la côte centrale.

Figure 72. Scénario de sensibilité à la mortalité naturelle : Ajustements à l'indice (lignes) et valeurs d'entrée (points) du modèle tenant compte de la mortalité naturelle, relevé en surface du détroit de Georgie.

Figure 73. Scénario de sensibilité à la mortalité naturelle : Ajustements à l'indice (lignes) et valeurs d'entrée (points) du modèle tenant compte de la mortalité naturelle, relevé en plongée du détroit de Georgie.

Figure 74. Scénario de sensibilité à la mortalité naturelle : Ajustements à l'indice (lignes) et valeurs d'entrée (points) du modèle tenant compte de la mortalité naturelle, relevé en surface de la côte ouest de l'île de Vancouver.

Figure 75. Scénario de sensibilité à la mortalité naturelle : Ajustements à l'indice (lignes) et valeurs d'entrée (points) du modèle tenant compte de la mortalité naturelle, relevé en plongée de la côte ouest de l'île de Vancouver.

Figure 76. Scénario d'analyse de la sensibilité à la mortalité naturelle : trajectoires de la biomasse du modèle du modèle tenant compte de la mortalité naturelle pour Haida Gwaii.

Figure 77. Scénario d'analyse de la sensibilité à la mortalité naturelle : trajectoires de la biomasse du modèle tenant compte de la mortalité naturelle pour la côte ouest de l'île de Vancouver.

Figure 78. Scénario d'analyse de la sensibilité à la mortalité naturelle : écarts du recrutement du modèle tenant compte de la mortalité naturelle pour Haida Gwaii.

Figure 79. Scénario de sensibilité à la mortalité naturelle : écarts du recrutement du modèle tenant compte de la mortalité naturelle pour le district de Prince Rupert.

Figure 80. Scénario de sensibilité à la mortalité naturelle : écarts de recrutement du modèle tenant compte de la mortalité naturelle pour la côte centrale.

Figure 81. Scénario de sensibilité à la mortalité naturelle : écarts du recrutement du modèle tenant compte de la mortalité naturelle pour le détroit de Georgie.

Figure 82. Scénario d'analyse de la sensibilité à la mortalité naturelle : écarts du recrutement du modèle tenant compte de la mortalité naturelle pour la côte ouest de l'île de Vancouver.

Figure 83. Scénario d'analyse de la sensibilité à la mortalité naturelle : sensibilité au paramètre de la mortalité naturelle pour le stock de Haida Gwaii.

Figure 84. Scénario d'analyse de la sensibilité à la mortalité naturelle : sensibilité au paramètre de la mortalité naturelle pour le stock du district de Prince Rupert.

Figure 85. Scénario d'analyse de la sensibilité à la mortalité naturelle : sensibilité au paramètre de la mortalité naturelle pour le stock de la côte centrale.

Figure 86. Scénario d'analyse de la sensibilité à la mortalité naturelle : sensibilité au paramètre de la mortalité naturelle pour le stock du détroit de Georgie.

Figure 87. Scénario d'analyse de la sensibilité à la mortalité naturelle : sensibilité au paramètre de la mortalité naturelle pour le stock de la côte ouest de l'île de Vancouver.

Figure 88. Scénario d'analyse de la sensibilité à la mortalité naturelle : paramétrage de q des modèles tenant compte de la mortalité naturelle pour le stock de Haida Gwaii.

Figure 89. Scénario d'analyse de la sensibilité à la mortalité naturelle : paramétrage de q des modèles tenant compte de la mortalité naturelle pour le stock de la côte ouest de l'île de Vancouver.

Figure 90. Distributions de probabilité a priori (lignes) et histogrammes a posteriori comparatifs (barres) utilisés dans l'AM2 appliqué à Haida Gwaii, en supposant un taux de mortalité naturelle constant. Les paramètres q_k représentent les engins, où k = 1 correspond au relevé en surface, et k = 2 correspond au relevé en plongée. Les pointillés rouges représentent les estimations de la DPM.

Figure 91. Tracés des résultats de simulation MCCM pour les paramètres estimés de l'AM2 appliqué à Haida Gwaii, en supposant un taux de mortalité naturelle constant. Chaque simulation MCCM faisait intervenir une chaîne 5 millions d'itérations, et un échantillon était prélevé à chaque millième itération. Le paramètre de capturabilité q_1 correspond au relevé en surface, et q_2 correspond au relevé en plongée. Les paramètres \hat{a}_k (sélectivité selon l'âge à 50 %), et $\hat{\gamma}_k$ (écart-type de la sélectivité à 50 %) correspondent aux engins : k = 1 pour les autres pêches; k = 2 pour la pêche au hareng rogué à la senne; k = 3 pour la pêche au hareng rogué au filet maillant.

Figure 92. Diagrammes par paires des résultats de simulation MCCM pour les paramètres estimés de l'AM2 appliqué à Haida Gwaii, en supposant un taux de mortalité naturelle constant. Voir la figure 32 pour la description des paramètres.

Figure 93. Distributions de probabilité a priori (lignes) et histogrammes a posteriori comparatifs (barres) utilisés dans l'AM1 appliqué à Haida Gwaii, en supposant un taux de mortalité naturelle constant. Les paramètres q_k représentent les engins, où k = 1 correspond au relevé en surface, et k = 2 correspond au relevé en plongée. Les pointillés rouges représentent les estimations de la DPM.

Figure 94. Tracés des résultats de simulation MCCM pour les paramètres estimés de l'AM1 appliqué à Haida Gwaii, en supposant un taux de mortalité naturelle constant. Chaque simulation MCCM faisait intervenir une chaîne 5 millions d'itérations, et un échantillon était prélevé à chaque millième itération. Le paramètre de capturabilité q₁ correspond au relevé en surface, et q₂ correspond au relevé en plongée. Les paramètres \hat{a}_k (sélection en fonction de l'âge à 50 %), et $\hat{\gamma}_k$ (écart-type de sélection à 50 %) correspondent aux engins : k = 1 pour les autres pêches; k = 2 pour la pêche au hareng rogué à la senne; k = 3 pour la pêche au hareng rogué au filet maillant.

Figure 95. Diagrammes par paires des résultats de simulation MCCM pour les paramètres estimés de l'AM1 appliqué à Haida Gwaii, en supposant un taux de mortalité naturelle constant. Voir la figure 32 pour la description des paramètres.

Figure 96. Scénario d'analyse de la sensibilité à la valeur a priori de q : biomasse (a), épuisement (b), mortalité naturelle (c) et paramètre q de relevé (d) dans le modèle d'analyse de la sensibilité, où l'écarttype de la distribution a priori du paramètre de relevé q est fixé à 3 pour le stock de Haida Gwaii.

Figure 97. Scénario d'analyse de la sensibilité à la valeur a priori de q : biomasse (a), épuisement (b), mortalité naturelle (c) et paramètre q de relevé (d) dans le modèle d'analyse de la sensibilité, où l'écarttype de la distribution a priori du paramètre de relevé q est fixé à 2 pour le stock de Haida Gwaii.

Figure 98. Scénario d'analyse de la sensibilité à la valeur a priori de q : biomasse (a), épuisement (b), mortalité naturelle (c) et paramètre q de relevé (d) dans le modèle d'analyse de la sensibilité, où l'écarttype de la distribution a priori du paramètre de relevé q est fixé à 0,5 pour le stock de Haida Gwaii.

Figure 99. Scénario d'analyse de la sensibilité à la valeur a priori de q : biomasse (a), épuisement (b), mortalité naturelle (c) et paramètre q de relevé (d) dans le modèle d'analyse de la sensibilité, où l'écarttype de la distribution a priori du paramètre de relevé q est fixé à 3 pour le stock du district de Prince Rupert.

Figure 100. Scénario d'analyse de la sensibilité à la distribution a priori de q : biomasse (a), épuisement (b), mortalité naturelle (c) et paramètre q de relevé (d) dans le modèle d'analyse de la sensibilité, où l'écart-type de la distribution a priori du paramètre de relevé q est fixé à 2 pour le stock du district de Prince Rupert.

Figure 101. Scénario d'analyse de la sensibilité à la distribution a priori de q : biomasse (a), épuisement (b), mortalité naturelle (c) et paramètre q de relevé (d) dans le modèle d'analyse de la sensibilité, où l'écart-type de la distribution a priori du paramètre de relevé q est fixé à 0,5 pour le stock du district de Prince Rupert.

Figure 102. Scénario d'analyse de la sensibilité à la distribution a priori de q : biomasse (a), épuisement (b), mortalité naturelle (c) et paramètre q de relevé (d) dans le modèle d'analyse de la sensibilité, où l'écart-type de la distribution a priori du paramètre de relevé q est fixé à 3 pour le stock de la côte centrale.

Figure 103. Scénario d'analyse de la sensibilité à la distribution a priori de q : biomasse (a), épuisement (b), mortalité naturelle (c) et paramètre q de relevé (d) dans le modèle d'analyse de la sensibilité, où l'écart-type de la distribution a priori du paramètre de relevé q est fixé à 2 pour le stock de la côte centrale.

Figure 104. Scénario d'analyse de la sensibilité à la distribution a priori de q : biomasse (a), épuisement (b), mortalité naturelle (c) et paramètre q de relevé (d) dans le modèle d'analyse de la sensibilité, où l'écart-type de la distribution a priori du paramètre de relevé q est fixé à 0,5 pour le stock de la côte centrale.

Figure 105. Scénario d'analyse de la sensibilité à la distribution a priori de q : biomasse (a), épuisement (b), mortalité naturelle (c) et paramètre q de relevé (d) dans le modèle d'analyse de la sensibilité, où l'écart-type de la distribution a priori du paramètre de relevé q est fixé à 3 pour le stock du détroit de Georgie.

Figure 106. Scénario d'analyse de la sensibilité à la distribution a priori de q : biomasse (a), épuisement (b), mortalité naturelle (c) et paramètre q de relevé (d) dans le modèle d'analyse de la sensibilité, où l'écart-type de la distribution a priori du paramètre de relevé q est fixé à 2 pour le stock du détroit de Georgie.

Figure 107. Scénario d'analyse de la sensibilité à la valeur a priori de q : biomasse (a), épuisement (b), mortalité naturelle (c) et paramètre q de relevé (d) dans le modèle d'analyse de la sensibilité, où l'écarttype de la distribution a priori du paramètre de relevé q est fixé à 0,5 pour le stock du détroit de Georgie.

Figure 108. Scénario d'analyse de la sensibilité à la valeur a priori de q : biomasse (a), épuisement (b), mortalité naturelle (c) et paramètre q de relevé (d) dans le modèle d'analyse de la sensibilité, où l'écarttype de la distribution a priori du paramètre de relevé q est fixé à 3 pour le stock de la côte ouest de l'île de Vancouver.

Figure 109. Scénario d'analyse de la sensibilité à la valeur a priori de q : biomasse (a), épuisement (b), mortalité naturelle (c) et paramètre q de relevé (d) dans le modèle d'analyse de la sensibilité, où l'écarttype de la distribution a priori du paramètre de relevé q est fixé à 2 pour le stock de la côte ouest de l'île de Vancouver.

Figure 110. Scénario d'analyse de la sensibilité à la valeur a priori de q : biomasse (a), épuisement (b), mortalité naturelle (c) et paramètre q de relevé (d) dans le modèle d'analyse de la sensibilité, où l'écarttype de la distribution a priori du paramètre de relevé q est fixé à 0,5 pour le stock de la côte ouest de l'île de Vancouver.

Figure 111. Proportion estimée selon l'âge et l'année pour l'engin 1 (autres pêches), Haida Gwaii. La surface de chaque cercle reflète la proportion selon l'âge, et la somme de chacune des colonnes est 1; les zéros ne sont pas indiqués. La classe d'âge 10 est un groupe « plus ».

Figure 112. Proportion estimée selon l'âge et l'année pour l'engin 2 (pêche au hareng rogué à la senne), Haida Gwaii. La surface de chaque cercle reflète la proportion selon l'âge, et la somme de chacune des colonnes est 1; les zéros ne sont pas indiqués. La classe d'âge 10 est un groupe « plus ».

Figure 113. Proportion estimée selon l'âge et l'année pour l'engin 3 (pêche au hareng rogué au filet maillant), Haida Gwaii. La surface de chaque cercle reflète la proportion selon l'âge, et la somme de chacune des colonnes est 1; les zéros ne sont pas indiqués. La classe d'âge 10 est un groupe « plus ».

Figure 114. Proportion estimée selon l'âge et l'année pour l'engin 1 (autres pêches), district de Prince Rupert. La surface de chaque cercle reflète la proportion selon l'âge, et la somme de chacune des colonnes est 1; les zéros ne sont pas indiqués. La classe d'âge 10 est un groupe « plus ».

Figure 115. Proportion estimée selon l'âge et l'année pour l'engin 2 (pêche au hareng rogué à la senne), district de Prince Rupert. La surface de chaque cercle reflète la proportion selon l'âge, et la somme de chacune des colonnes est 1; les zéros ne sont pas indiqués. La classe d'âge 10 est un groupe « plus ».

Figure 116. Proportion estimée selon l'âge et l'année pour l'engin 3 (pêche au hareng rogué au filet maillant), district de Prince Rupert. La surface de chaque cercle reflète la proportion selon l'âge, et la somme de chacune des colonnes est 1; les zéros ne sont pas indiqués. La classe d'âge 10 est un groupe « plus ».

Figure 117. Proportion estimée selon l'âge et l'année pour l'engin 1 (autres pêches), la côte centrale. La surface de chaque cercle reflète la proportion selon l'âge, et la somme de chacune des colonnes est 1; les zéros ne sont pas indiqués. La classe d'âge 10 est un groupe « plus ».

Figure 118. Proportion estimée selon l'âge et l'année pour l'engin 2 (pêche au hareng rogué à la senne), côte centrale. La surface de chaque cercle reflète la proportion selon l'âge, et la somme de chacune des colonnes est 1; les zéros ne sont pas indiqués. La classe d'âge 10 est un groupe « plus ».

Figure 119. Proportion estimée selon l'âge et l'année pour l'engin 3 (pêche au hareng rogué au filet maillant), côte centrale. La surface de chaque cercle reflète la proportion selon l'âge, et la somme de chacune des colonnes est 1; les zéros ne sont pas indiqués. La classe d'âge 10 est un groupe « plus ».

Figure 120. Proportion estimée selon l'âge et l'année pour l'engin 1 (autres pêches), détroit de Georgie. La surface de chaque cercle reflète la proportion selon l'âge, et la somme de chacune des colonnes est 1; les zéros ne sont pas indiqués. La classe d'âge 10 est un groupe « plus ».

Figure 121. Proportion estimée selon l'âge et l'année pour l'engin 2 (pêche au hareng rogué à la senne), détroit de Georgie. La surface de chaque cercle reflète la proportion selon l'âge, et la somme de chacune des colonnes est 1; les zéros ne sont pas indiqués. La classe d'âge 10 est un groupe « plus ».

Figure 122. Proportion estimée selon l'âge et l'année pour l'engin 3 (pêche au hareng rogué au filet maillant), détroit de Georgie. La surface de chaque cercle reflète la proportion selon l'âge, et la somme de chacune des colonnes est 1; les zéros ne sont pas indiqués. La classe d'âge 10 est un groupe « plus ».

Figure 123. Proportion estimée selon l'âge et l'année pour l'engin 1 (autres pêches), côte ouest de l'île de Vancouver. La surface de chaque cercle reflète la proportion selon l'âge, et la somme de chacune des colonnes est 1; les zéros ne sont pas indiqués. La classe d'âge 10 englobe tous les poissons d'âge supérieur.

Figure 124. Proportion estimée selon l'âge et l'année pour l'engin 2 (pêche au hareng rogué à la senne), côte ouest de l'île de Vancouver. La surface de chaque cercle reflète la proportion selon l'âge, et la somme de chacune des colonnes est 1; les zéros ne sont pas indiqués. La classe d'âge 10 est un groupe « plus ».

Figure 125. Proportion estimée selon l'âge et l'année pour l'engin 3 (pêche au hareng rogué au filet maillant), côte ouest de l'île de Vancouver. La surface de chaque cercle reflète la proportion selon l'âge, et la somme de chacune des colonnes est 1; les zéros ne sont pas indiqués. La classe d'âge 10 est un groupe « plus ».

Figure 126. HG – résidus après ajustements pour l'âge, engin 1.

10			0.0	0
10 -			00	Ŷ
9 -	100100	• • • • • • • • O	<u> </u>	
8 -	. 00	$\bigcirc \bigcirc \bigcirc \circ \cdots \circ \cdot \circ \circ$	00	0
7 -	000	$\bigcirc \circ \bigcirc \bigcirc \bigcirc \bigcirc \circ \circ$	00	0
Ď ₄ 6 −	000	$\bigcirc \circ \circ \bigcirc \circ \bigcirc \circ \circ \circ \circ$	• O	0
5 -	• • O	$\circ \circ \bigcirc \circ \bigcirc \circ \bigcirc \circ \bigcirc \circ$	0 0	0
4 -	$\bigcirc \circ$	00.00.00	00	0
3 -	• · · ·	🔾	147.1	15
2 -				
84			1 1	
	1974	1978 1981 1984	1990	1999
	Année			

Figure 128. HG – résidus après ajustements pour l'âge, engin 3.

Figure 129. DPR – résidus après ajustements pour l'âge, engin 1.

Figure 130. DPR – résidus après ajustements pour l'âge, engin 2.

Figure 131. DPR – résidus après ajustements pour l'âge, engin 3.

Année

Figure 132. CC – résidus après ajustements pour l'âge, engin 1.

Figure 134. CC – résidus après ajustements pour l'âge, engin 3.

Figure 136. DG – résidus après ajustements pour l'âge, engin 2.

Figure 138. COIV – résidus après ajustements pour l'âge, engin 1.

Figure 140. COIV – résidus après ajustements pour l'âge, engin 3.

Figure 141. HG – ajustements pour l'âge, engin 1.

Figure 142. HG – ajustements pour l'âge, engin 2.

Figure 143. HG – ajustements pour l'âge, engin 3.

Figure 144. DPR – ajustements pour l'âge, engin 1.

Figure 145. DPR – ajustements pour l'âge, engin 2.

Figure 146. DPR – ajustements pour l'âge, engin 3.

Figure 147. CC – ajustements pour l'âge, engin 1.

Figure 148. CC – ajustements pour l'âge, engin 2.

Figure 149. CC – ajustements pour l'âge, engin 3.

Figure 150. DG – ajustements pour l'âge, engin 1.

Figure 151. DG – ajustements pour l'âge, engin 2.

Figure 152. DG – ajustements pour l'âge, engin 3.

Figure 153. COIV – ajustements pour l'âge, engin 1.

Figure 154. COIV – ajustements pour l'âge, engin 2.

Figure 155. COIV – ajustements pour l'âge, engin 3.

Figure 156. Évaluation rétrospective du stock reproducteur de Haida Gwaii, AM2.

Figure 157. Évaluation rétrospective du stock reproducteur du district de Prince Rupert, AM2.

Figure 158. Évaluation rétrospective du stock reproducteur de la côte centrale, AM2.

Figure 159. Évaluation rétrospective du stock reproducteur du détroit de Georgie, AM2.

Figure 160. Évaluation rétrospective du stock reproducteur de la côte ouest de l'île de Vancouver, AM2.

Figure 161. Évaluation rétrospective du stock reproducteur de Haida Gwaii, AM1.

Figure 162. Évaluation rétrospective du stock reproducteur du district de Prince Rupert, AM1.

Figure 163. Évaluation rétrospective du stock reproducteur de la côte centrale, AM1.

Figure 164. Évaluation rétrospective du stock reproducteur du détroit de Georgie, AM1.

Figure 165. Évaluation rétrospective du stock reproducteur de la côte ouest de l'île de Vancouver, AM1.

Figure 166. Évaluation rétrospective du recrutement du stock de Haida Gwaii, AM2.

Figure 167. Évaluation rétrospective du recrutement du stock du district de Prince Rupert, AM2.

Figure 168. Évaluation rétrospective du recrutement du stock de la côte centrale, AM2.

Figure 169. Évaluation rétrospective du recrutement du stock du détroit de Georgie, AM2.

Figure 170. Évaluation rétrospective du recrutement du stock de la côte ouest de l'île de Vancouver, AM2.

Figure 171. Évaluation rétrospective du recrutement du stock de Haida Gwaii, AM1.

Figure 172. Évaluation rétrospective du recrutement du stock du district de Prince Rupert, AM1.

Figure 173. Évaluation rétrospective du recrutement du stock de la côte centrale, AM1.

Figure 174. Évaluation rétrospective du recrutement du stock du détroit de Georgie, AM1.

Figure 175. Évaluation rétrospective du recrutement du stock de la côte ouest de l'île de Vancouver, AM1.

ANNEXE A. DESCRIPTION DU MODÈLE

A.1 INTRODUCTION

La modélisation de l'évaluation des stocks a été réalisée à l'aide d'un modèle statistique intégré des prises selon l'âge (ISCAM), élaboré par S. Martell (Martell *et al.* 2012). Le modèle ISCAM a été élaboré à l'aide du logiciel AD Model Builder, dont le code source et la documentation sont accessibles en ligne dans les deux cas. Le modèle ISCAM utilise un modèle statistique des prises selon l'âge appliqué dans un cadre d'estimation bayésien.

Les passages du modèle ISCAM et la compilation des résultats ont été minimalisés à l'aide du progiciel ISCAM-gui, développé à la Station biologique du Pacifique. Le progiciel ISCAM-gui est écrit dans le langage d'analyse statistique R, et son interface utilisateur graphique permet d'exécuter divers scénarios du modèle ISCAM et de présenter les résultats sous forme comparative.

A.2 DESCRIPTION DU MODÈLE

La section qui suit explique les fondements mathématiques du modèle sous-jacent de modélisation structurée en fonction de l'âge, le modèle ISCAM, de la version état d'équilibre utilisée pour calculer les points de référence, des modèles d'observation utilisés pour prédire les observations, ainsi que des composantes de la fonction objective à la base de la formulation du critère statistique utilisé pour estimer les paramètres du modèle. La liste documentée des symboles utilisés dans les équations du modèle figure au tableau A.1. La documentation présentée ici constitue une version révisée du guide de l'utilisateur du modèle ISCAM accessible en ligne. Une grande partie du texte et des équations est tirée directement de la version originale du guide de l'utilisateur du modèle ISCAM.

Il convient de souligner que toutes les équations du modèle sont présentées de manière à pouvoir être appliquées à un modèle structuré en fonction du sexe utilisant « S ». Les modèles peuvent ainsi être construits avec des données pour les femelles seulement, les mâles et les femelles, ou des données combinées pour les deux sexes.

La documentation du modèle décrit toutes les caractéristiques du modèle ISCAM fondé sur les prises selon l'âge, dont certaines ne sont pas appliquées au hareng du Pacifique. La liste suivante décrit les modifications apportées aux fins de l'évaluation du hareng du Pacifique.

- 1. Les données ne tiennent pas compte du sexe, S = 1.
- 2. La mortalité totale est constante d'un âge à l'autre, Z_t , = Z_t .
- 3. La fécondité et la maturité sont synonymes et utilisées de façon interchangeable.
- 4. La totalité de Z_t se produit avant le frai.
- 5. La biomasse du stock reproducteur non exploitée est représentée par B_0 dans la description du modèle et par SB_0 dans le corps du texte.

A.3 MÉTHODES ANALYTIQUES : CONSIDÉRATIONS LIÉES À L'ÉTAT D'ÉQUILIBRE

A.3.1 MODÈLE STATIQUE STRUCTURÉ EN FONCTION DE L'ÂGE

Pour les conditions d'équilibre représentées dans le tableau A.2, nous présumons que le vecteur du paramètre Θ dans l'équation A.13 est inconnu et qu'il sera estimé en ajustant le modèle ISCAM aux données. Pour un ensemble donné de paramètres de croissance et de maturité selon l'âge définis par l'équation A.14, la croissance est présumée conforme au

modèle de von Bertalanffy (équation A.15), le poids moyen selon l'âge étant donné par la relation allométrique de l'équation A.16, et la vulnérabilité selon l'âge par une fonction logistique fondée sur l'âge (équation A.17). Les termes *vulnérabilité* et *sélectivité* sont utilisés de façon interchangeable dans le présent document même si, en principe, la *sélectivité* se rapporte aux engins de pêche et la *vulnérabilité* à tous les processus qui influent sur la disponibilité du poisson pour la pêche. Les paramètres de sélectivité peuvent être fixes ou estimés.

La survie des populations non exploitées et exploitées est définie par les équations A.19 et A.20, respectivement. Il est présumé que le taux de mortalité totale est égal pour tous les individus d'âge A et plus (le groupe « plus »). Les fonctions d'incidence se rapportent aux quantités à vie ou par recrue telles que la biomasse du stock reproducteur par recrue (ϕ_E , équation A.21) ou la biomasse vulnérable par recrue (ϕ_B , équation A.22).

Il convient de souligner que les indices en majuscule et en minuscule correspondent aux conditions liées à la non-exploitation et à l'exploitation, respectivement. La biomasse du stock reproducteur non exploitée est établie au moyen de l'équation A.24, et le rapport recrutement-compensation (Myers *et al.* 1999) est établi par l'équation A.25. Le recrutement de stabilisation (équilibre) pour un taux donné de mortalité par pêche F_e est donné par l'équation A.26. Il est à noter que nous présumons que le recrutement suit le modèle de recrutement du stock de Beverton-Holt, représenté par l'équation A.39, où le taux de survie maximal chez les juvéniles, s_o , est établi comme suit :

$$s_o = \frac{\kappa}{\phi_E},$$

et le terme dépendant de la densité est établi comme suit :

$$\beta = \frac{\kappa - 1}{R_o \phi_E}$$

qui se réduit à l'équation A.26.

Le rendement à l'équilibre, C_{e} , compte tenu d'un taux donné de mortalité par pêche, est obtenu par l'équation A.27. Ces conditions d'équilibre sont à la base de divers points de référence tels que F_{RMS} et B_{RMS} .

A.3.2. POINTS DE RÉFÉRENCE FONDÉS SUR LE RENDEMENT MAXIMAL SOUTENU

Le modèle ISCAM calcule la mortalité au rendement maximal soutenu (F_{RMS}) après avoir établi la valeur de F_e , pour obtenir la dérivée égale à zéro de l'équation A.27. Ce résultat est obtenu par calcul numérique selon la méthode de Newton-Raphson, où la valeur initiale de F_{RMS} est présumée égale à M. La F_{RMS} estimée sert de base au calcul d'autres points de référence comme le RMS et la B_{RMS} à l'aide des équations du tableau A.2.

A.4 MÉTHODES ANALYTIQUES : DYNAMIQUE D'ÉTAT

Le modèle ISCAM estime le vecteur de paramètre au moyen de l'équation A.28 du tableau A.3. Les paramètres estimés R_0 , h, et M, sont les paramètres directeurs qui définissent la taille et la productivité globales de la population.

Les composantes de l'écart du modèle sont partagées selon une méthode à erreurs sur les variables. Le paramètre d'écart principal est l'inverse de l'écart total ϑ^2 (la précision totale). Ce paramètre peut être fixe ou estimé. Il est estimé dans le présent modèle. L'écart total est partagé entre les composantes d'erreur due à l'observation et d'erreur due au traitement par le

paramètre de modèle ρ , qui représente la part de l'écart total attribuable à une erreur d'observation [équation A.29, Punt et Butterworth (1993); Deriso *et al.* (2007)].

Les variables d'état non observées de l'équation A.30 comprennent les nombres selon l'âge d'une année $t(N_{t,a})$, la biomasse totale d'une année $t(B_t)$, la biomasse du stock reproducteur (SB_t) et le taux de mortalité totale selon l'âge $(Z_{t,a})$. Les nombres initiaux selon l'âge au cours de la première année (équation A.31) et les recrues annuelles (équation A.32) sont traités comme des paramètres estimés et utilisés pour initialiser les valeurs des séries de nombres selon l'âge.

La vulnérabilité selon l'âge, présumée invariable dans le temps, est modélisée à l'aide d'une fonction logistique à deux paramètres (équation A.33). La mortalité par pêche annuelle pour

chaque engin k et une année t est exprimée par l'exposant du vecteur estimé Γ_{kt}

(équation A.34). Le vecteur des paramètres du logarithme des taux de mortalité par pêche $\Gamma_{k't}$ est un vecteur borné (valeurs minimale et maximale de -30,0 et de 3,0, respectivement). Dans l'espace arithmétique, cela correspond à une valeur minimale de 9,36 e^{-14} et à une valeur maximale de 20,01 pour les taux annuels de mortalité par pêche. Pour les années où il n'y a aucune prise déclarée pour une flottille donnée, le paramètre du taux de mortalité par pêche n'est pas estimé, l'hypothèse implicite étant qu'il n'y a pas eu de pêche au cours de cette année.

Les variables d'état de chaque année sont mises à jour à l'aide des équations A.35 à A.38, où la biomasse du stock reproducteur correspond au produit des nombres selon l'âge et de la biomasse mature selon l'âge (équation A.35). Le taux de mortalité totale est obtenu par l'équation A.36, et le total des prises (en poids) pour chaque engin est obtenu par l'équation A.37, en supposant que la mortalité naturelle et la mortalité par pêche surviennent simultanément tout au long de l'année.

Les nombres selon l'âge sont étalés dans le temps à l'aide de l'équation A.38, où les membres du groupe plus (âge *A*) sont tous présumés présenter le même taux de mortalité totale.

Le recrutement à l'âge *k* est présumé suivre un modèle de Beverton-Holt pour le hareng du Pacifique (équation A.39), où le taux maximal de survie des juvéniles (*s*_o) est défini par *s*_o = κ/ϕ_E . Dans le modèle de Beverton-Holt, β est dérivé en résolvant l'équation A.39 pour β à partir des estimations de *h* et de *R*_o.

A.5 RÉSIDUS, VRAISEMBLANCES ET COMPOSANTES DES VALEURS DE LA FONCTION OBJECTIVE

La fonction objective comprend cinq composantes principales :

- 1. La log-vraisemblance négative des données sur les prises
- 2. La log-vraisemblance négative des données sur l'abondance relative
- 3. La log-vraisemblance négative des données sur la composition selon l'âge
- 4. Les distributions *a priori* des paramètres du modèle
- 5. Trois fonctions de pénalité invoquées pour régulariser la solution pendant les phases intermédiaires de l'estimation des paramètres non linéaires Les fonctions de pénalité :
 - a. limitent les estimations du recrutement annuel conformément à la fonction stockrecrutement de Beverton-Holt;
 - b. limitent faiblement les écarts (logarithmiques) de recrutement à une distribution normale;

c. limitent faiblement les estimations du logarithme de la mortalité par pêche à une distribution normale [$\sim N(\ln(0,2), 4,0)$] pour éviter que les estimations des prises excèdent la biomasse estimée.

Les essais ont montré que le modèle est insensible aux modifications des paramètres de la fonction de pénalité, et donc que les autres composantes de la vraisemblance et les distributions de probabilité *a priori* tiennent une place prépondérante dans la fonction objective.

Les composantes de la fonction objective sont examinées plus en détail dans les sections qui suivent.

A.5.1 DONNÉES SUR LES PRISES

Il est présumé que les erreurs de mesure dans les observations relatives aux prises ont une distribution log-normale, et que l'équation suivante permet d'obtenir les résidus :

$$\eta_{k,t} = \ln(C_{k,t} + o) - \ln(C_{k,t} + o)$$
(A.1)

où *o* est une constante de faible valeur (e^{-10}) qui permet de définir le résidu dans le cas d'une observation de prise nulle. Les résidus sont présumés normalement distribués, et l'écart-type σ_C est défini par l'utilisateur. Actuellement, il est présumé que l'écart-type est le même pour les prises observées de chaque engin *k*. La log-vraisemblance négative (compte non tenu de la constante de mise à l'échelle) pour les données sur les prises est obtenue par :

$$\ell_{C} = \sum_{k} [T_{k} \ln(\sigma_{C}) + \frac{\sum_{t} (\eta_{k,t})^{2}}{2\sigma_{C}^{2}}]$$
(A.2)

où T_k correspond au nombre total d'observations des prises par l'engin k.

A.5.2 DONNÉES SUR L'ABONDANCE RELATIVE

Pour le hareng du Pacifique, les données sur l'abondance relative sont présumées proportionnelles à la biomasse du stock reproducteur, de sorte que le *k*ième relevé estime la biomasse vulnérable disponible pour l'engin d'échantillonnage :

$$V_{k,t} = \sum_{a} SB_{t,a} e^{-\lambda_{k,t} M_{t,a}} f_{a,t}$$
(A.3)

où $v_{k,a}$ correspond à la sélectivité selon l'âge de l'engin k, et w_a au poids moyen selon l'âge. Une fraction de la mortalité totale $\lambda_{k,t}$ est définie par l'utilisateur pour ajuster les nombres selon l'âge en fonction du moment du relevé. Les résidus entre les indices d'abondance relative observés et prévus sont obtenus par :

$$\epsilon_{k,t} = \ln(I_{k,t}) - \ln(q_k) + \ln(V_{k,t})$$
(A.4)

où $I_{k't}$ correspond à l'indice d'abondance relative observé, q_k au coefficient de capturabilité de l'indice k, et $V_{k't}$ à la biomasse vulnérable prévue au moment de l'échantillonnage. Le coefficient de capturabilité q_k est évalué selon l'estimation de la vraisemblance maximale conditionnelle :

$$q_k = \frac{1}{N_k} \sum_{t \in I_{k,t}} \ln(I_{k,t}) - \ln(V_{k,t})$$

où N_k correspond au nombre d'observations de l'abondance relative pour l'indice k (pour de plus amples explications, se reporter à Walters et Ludwigpuor 1994). La log-vraisemblance négative des données sur l'abondance relative est obtenue par :

$$\ell_I = \sum_k \sum_{t \in I_{k,t}} \ln(\sigma_{k,t}) + \frac{\epsilon_{k,t}^2}{2\sigma_{k,t}^2}$$
(A.5)

où

$$\sigma_{k,t} = \frac{\rho \varphi^2}{\omega_{k,t}}$$

 $\rho \varphi^2$ correspond à la part de l'erreur totale attribuable aux erreurs d'observation, et $\omega_{k't}$ au poids relatif défini par l'utilisateur pour l'observation *t* de l'engin *k*.

Les termes de $\omega_{k,t}$ permettent de pondérer chaque observation en fonction de l'erreur totale $\rho \varphi^2$; par exemple, utiliser $\omega_{k,t} = 0$ pour exclure une observation en particulier, ou $\omega_{k,t} = 2,0$ pour doubler le poids. Pour attribuer un écart égal à toutes les observations, il suffit d'utiliser $\omega_{k,t} = 1$. Il est à noter que si $\omega_{k,t} = 0$, alors l'équation A.5 n'est pas définie. Pour permettre l'évaluation de la vraisemblance, le modèle ISCAM ajoutera la constante de faible valeur e^{-10} (ce qui équivaut à

présumer que l'écart est très important) à $\omega_{k't}$.

Dans le cas de l'évaluation du hareng du Pacifique, il a été présumé que les données de relevé du frai après 1988 étaient 1,166 fois plus précises que les données recueillies avant le début des relevés en plongée (1951 à 1987). Pour ce faire, la valeur 1 a été attribuée aux pondérations de la fonction objective pour les données de 1951 à 1987, et une pondération relative de 1,166 a été attribuée aux données contemporaines. L'écart-type des erreurs d'observation est fonction des valeurs estimées de ρ et de ϕ^2 .

A.5.3 DONNÉES SUR LA COMPOSITION SELON L'ÂGE

Selon la théorie de l'échantillonnage, les données sur la composition selon l'âge doivent être dérivées d'une distribution multinomiale (Fournier et Archibald 1982). Cependant, le modèle ISCAM présume que les proportions selon l'âge sont dérivées d'une distribution logistique à plusieurs variables (Schnute et Richards 1995; Richards *et al.* 1997). Le modèle ISCAM déroge au modèle multinomial traditionnel en raison des choix concernant la pondération des données sur la composition selon l'âge dans la fonction objective. Premièrement, la distribution multinomiale exige de préciser la taille effective de l'échantillon. Cette pondération peut se faire de façon arbitraire ou par repondération itérative (McAllister et lanelli 1997; Gavaris et lanelli 2002), une procédure qui risque d'induire des divergences en présence de proportions selon l'âge multiples et potentiellement contradictoires. Les hypothèses relatives à la taille effective de l'échantillon peuvent avoir une grande incidence sur les résultats globaux du modèle.

La distribution logistique à plusieurs variables permet notamment de pondérer les données sur la proportion selon l'âge en fonction de l'estimation de la vraisemblance maximale conditionnelle de l'écart des proportions selon l'âge.

Par conséquent, la contribution des données sur la composition selon l'âge à la fonction objective globale est « autopondérée » et conditionnelle aux autres composantes du modèle. L'indice du type d'engin n'étant pas pris en compte pour des raisons de clarté, les proportions observées et prévues selon l'âge doivent satisfaire à la contrainte :

$$\sum_{a=1}^{A} p_{t,a} = 1$$

pour chaque année. Les résidus entre les proportions observées ($p_{t,a}$) et prévues ($\hat{p}_{t,a}$) sont obtenus par :

$$\eta_{t,a} = \ln(p_{t,a}) - \ln(\hat{p}_{t,a}) - \frac{1}{A} \sum_{a=1}^{A} \left[\ln(p_{t,a}) - \ln(\hat{p}_{t,a}) \right]$$
(A.6)

L'estimation de la vraisemblance maximale conditionnelle de l'écart est obtenue par :

$$\hat{\tau}^2 = \frac{1}{(A-1)T} \sum_{t=1}^T \sum_{a=1}^A \eta_{t,a}^2$$

et la log-vraisemblance négative évaluée en fonction de l'estimation de la vraisemblance maximale conditionnelle de l'écart est obtenue par :

$$\ell_A = (A - 1)T\ln(\hat{\tau}^2).$$
(A.7)

En bref, la vraisemblance logistique à plusieurs variables des données sur la composition selon l'âge équivaut simplement au logarithme de l'écart résiduel pondéré en fonction des observations numériques sur plusieurs années et dans différentes classes d'âge.

A.5.4 RELATION STOCK-RECRUTEMENT

Aux fins de la présente évaluation du stock, le recrutement est présumé suivre le modèle de Beverton-Holt. Le modèle ISCAM traite le recrutement annuel et la composition initiale selon l'âge comme des variables latentes, et les résidus entre les recrues estimées et les modèles déterministes de la relation stock-recrutement servent de base à l'estimation de la biomasse du stock reproducteur non exploitée et de la compensation par le recrutement. Les résidus entre les recrues estimées et prévues sont obtenus par :

$$\delta_t = \ln(\bar{R}e^{w_t}) - R_t) \tag{A.8}$$

où R_t est obtenu par l'équation A.39, k représentant l'âge au recrutement. Il est à noter qu'un terme de correction des biais associés aux erreurs du processus log-normal est inclus dans l'équation A.39.

La log-vraisemblance négative des écarts de recrutement est obtenue par la densité normale (compte non tenu de la constante de mise à l'échelle) :

$$\ell_{\delta} = n \ln(\tau) + \frac{\sum_{t=1+k}^{T} \delta_t^2}{2\tau^2} \tag{A.9}$$

Les équations A.8 et A.9 sont essentielles pour estimer la biomasse du stock reproducteur non exploitée et la compensation du recrutement au moyen des modèles de recrutement. La relation entre (s_{α} , β) et (B_{α} , κ) est définie comme suit :

$$s_o = \frac{\kappa}{\phi_E} \tag{A.10}$$

$$\beta = \frac{\kappa - 1}{B_o} \quad (Beverton - Holt) \tag{A.11}$$

où s_o correspond au taux de survie maximal des juvéniles, β à l'effet de la densité sur le recrutement, et B_o à la biomasse non exploitée du stock reproducteur. La biomasse d'équilibre non exploitée du stock reproducteur par recrue est obtenue par ϕ_E , soit la somme des produits de la survie selon l'âge et de la fécondité relative. S'il est présumé que le taux de mortalité naturelle peut varier dans le temps, le calcul de ϕ_E et de la biomasse non exploitée du stock reproducteur correspondante (B_o) est fondé sur le taux moyen de mortalité naturelle pour la période complète. Ce calcul subtil a des répercussions sur les calculs des points de référence en présence de tendances à la hausse ou à la baisse des taux de mortalité naturelle (les estimations de la B_o diminuent).

A.5.5 ESTIMATION DES PARAMÈTRES ET INCERTITUDES

L'estimation des paramètres et la quantification de l'incertitude ont été effectuées à l'aide des outils du logiciel AD Model Builder (ADMB). Ce logiciel permet de créer des programmes informatiques d'estimation des paramètres et des distributions de probabilités associées pour les modèles statistiques non linéaires. Le logiciel est disponible gratuitement sur le site <u>du projet</u> <u>ADMB</u>. Il a été utilisé pour développer le modèle ISCAM; le code source et la documentation de la version originale sur laquelle le modèle ISCAM est basé sont accessibles gratuitement sur la page du <u>projet ISCAM</u> ou du <u>dépôt Subversion sur GitHub</u>.

La fonction objective comporte cinq composantes distinctes minimalisées par ADMB :

 $f = \log$ -vraisemblances négatives + contraintes + *a priori* des paramètres + *a priori* de relevé + pénalités de convergence.

La section qui suit explique en détail chacune des composantes de la fonction objective.

Log-vraisemblances négatives Les log-vraisemblances négatives se rapportent expressément aux éléments liés aux données et au partage de l'écart, dont une description détaillée a été donnée auparavant dans la section A.5. Le vecteur de la fonction objective est composé de quatre éléments distincts :

$$\vec{\ell} = \ell_C, \ell_I, \ell_A, \ell_\delta. \tag{A.12}$$

Tel qu'il a été expliqué auparavant, la vraisemblance est définie pour les données sur les prises R_C , les données de relevé R_I , les données sur la composition selon l'âge R_A et les résidus de la relation stock-recrutement R_δ . Chacun de ces éléments est exprimé dans un espace logarithmique négatif, et ADMB tente d'estimer les paramètres du modèle en minimalisant la somme de ces éléments.

Contraintes Deux contraintes sont décrites ici :

- 6. Les bornes des paramètres
- 7. Les contraintes assurant qu'un vecteur de paramètre est égal à 0

Dans le modèle ISCAM, l'utilisateur doit définir les bornes inférieures et supérieures des

paramètres directeurs définis dans le fichier de contrôle $[\ln(R_o), h, \ln(M), \ln(\overline{R}), \ln(\overline{R}), \rho, \vartheta]$. Tous les paramètres de sélectivité estimés $\vec{\gamma}_k$ sont exprimés dans l'espace logarithmique, avec des valeurs minimales et maximales de -5,0 et 5,0, respectivement. Les valeurs minimales et maximales fixées dans le code doivent permettre de couvrir un large éventail de sélectivités. De même, les taux estimés de mortalité par pêche doivent être compris (dans un espace logarithmique) entre une valeur minimale de -30 et une valeur maximale de 3,0, et sont également fixés. Les écarts du logarithme du recrutement annuel sont également compris entre des valeurs minimales et maximales de -15,0 et 15,0, et une contrainte supplémentaire assure que le vecteur des écarts est égal à 0. Cette contrainte est nécessaire pour estimer le recrutement moyen \overline{R} . Enfin, les écarts du logarithme des taux de mortalité naturelle doivent être compris entre -5,0 et 5,0.

Distributions *a priori* des paramètres Chacun des sept paramètres directeurs définis dans le fichier de contrôle $[\ln(R_o), h, \ln(M), \ln(\overline{R}), \ln(\overline{R}), \rho, \vartheta]$ doit être borné, et l'utilisateur peut également définir une distribution a priori informative pour chacun de ces paramètres. Cinq distributions a priori distinctes peuvent être définies : uniforme; normale; log-normale, bêta et gamma. Pour le hareng du Pacifique, une distribution a priori uniforme bornée a été définie pour le logarithme du recrutement du stock non exploité U (-5,15); une distribution a priori bêta a été présumée pour l'inclinaison (10,0, 4,92); une distribution a priori normale a été définie pour le logarithme du taux de mortalité naturelle N (-0,79, 0,4); une distribution a priori uniforme bornée a été définie pour le logarithme du recrutement initial et du recrutement moyen U(-5,0, 15,0); une distribution a priori bêta a été définie pour le paramètre de partage de l'écart $\rho \tilde{\beta}$ (17,086, 39,0559), et une distribution a priori gamma a été définie pour le paramètre de l'inverse de l'écart-type total $\vartheta \tilde{T}$ (25, 28,75). Le paramètre de mise à l'échelle q de chaque relevé n'est pas traité comme un paramètre inconnu dans le code. Plutôt, l'estimation de la densité a posteriori maximale (DMP) de ln(q), conditionnelle à tous les autres paramètres, est utilisée comme paramètre de mise à l'échelle de la biomasse du stock reproducteur prévue en fonction de l'indice de biomasse observée par relevé acoustique. L'AM1 présume des distributions a priori informatives N(0.569, 0.276) pour le logarithme des paramètres q des deux relevés. L'AM2 présume une distribution *a priori* non informative N(0, 1) pour q_1 , et informative N(1, 0, 01) pour q_2

A.6 TABLEAUX

Tableau A.1. Liste des symboles et des constantes, et description des variables utilisées dans le modèle ISCAM.

Indices						
Symbole	Valeur	Description				
S	-	Sexe				
a	-	Âge				
t	-	Année				
k	-	Engin				
Mesures du modèle						
Symbole	Valeur	Description				
S	1	Nombre de sexes				
á, A	2, 10	Classe d'âge la plus jeune et la plus âgée (A étant un groupe « plus »)				
ť, T	1951, 2017	Première et dernière année des données sur les prises				
K	5	Nombre d'engins, y compris les engins de relevé				
Observations (données)						
Symbole	Valeur	Description				
Ck,t	-	Prises selon le poids par engin k pour l'année t				
Ik,t	-	Indice d'abondance relative de l'engin k pour l'année t				
Paramètres estimés						
Symbole	Valeur	Description				
Ro	-	Âge- \hat{a} des recrues dans des conditions de non-exploitation				
h	_	Inclinaison de la courbe de la relation stock-recrutement				
\overline{R}	_					
R =		Recrutement moyen selon l'âge- a de l'année t à l'année T				
R _{init}	-	Recrutement moyen selon l'âge- \acute{a} pour l'année \acute{t}				
M_s	-	Taux de mortalité naturelle instantanée				
$\hat{a}_{k}, \hat{\gamma}_{k}$	-	Paramètres de sélectivité de l'engin k				
$\Gamma_{k,t}$	-	Logarithme de la mortalité instantanée par pêche pour l'engin <i>k</i> dans l'année <i>t</i>				
ω_t	-	Écarts entre l'âge- \widetilde{a} et \overline{R} de l'année \widetilde{t} à l'année T				
∅init,t	-	Écarts entre l'âge- \acute{a} et \overline{R}_{init} pour l'année \acute{t}				
qs	-	Paramètre de capturabilité de l'engin de relevé k				
ρ	-	Part de l'écart total attribuable à l'erreur d'observation				
9 ²	-	Précision totale (inverse de l'écart) de l'erreur totale				
Écart-type						
Symbole	Valeur	Description				
0	-	Écart-type des erreurs d'observation dans l'indice de relevé				
τ	-	Écart-type des erreurs de traitement (écarts de recrutement)				
σ_{C}	-	Écart-type des prises observées par engin				
Résidus						
Symbole	Valeur	Description				
$\frac{\delta_t}{\delta_t}$	-	Résidu du recrutement annuel				
nt	-	Erreur résiduelle dans les prises prévues				
Paramètras fixas da arajasanas et da maturitá						
Farametres fixes de croissance et de maturite Symbole Valeur Description						
las	-	Longueur asymptotique en mm. sexe s				
ís	-	Coefficient de croissance Brody, sexe s				
n _s	_	Âge théorigue à longueur zéro, sexe s				
ά.	-	Scalaire d'une allométrie longueur-poids sexe s				
^{~s} h́	-	Paramètre de puissance d'une allométrie longueur-poids, sexe s				
à,	-	Âge à 50 % de maturité, sexe s				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						

Symbole	Valeur	Description
γs		Écart-type à 50 % de maturité, sexe <i>s</i>

Tableau A.2. Modèle d'équilibre structuré en fonction de l'âge, en présumant une vulnérabilité inégale selon l'âge, une fécondité selon l'âge et un recrutement de type Ricker.

		Paramétres		
$\Theta = (R_o, h, M);$	$R_o > 0;$	0,2 <i>≤ h</i> < 1,0;	M > 0	(A.13)
				(

$$\Phi = (l_{\infty,s}, \hat{k}_{S}, t_{0,s}, \hat{a}_{s}, \hat{b}_{s}, a_{s}, \hat{\gamma}_{s}, \hat{a}_{k}, \hat{\gamma}_{k})$$
(A.14)

#### Renseignements sur le schéma d'âge

$$l_{a,s} = l(1 - e^{(-k_s(a - t_{0,s}))})$$
(A.15)  

$$w_{a,s} = \dot{q}_s (l_{a,s})^{\dot{b}_s}$$
(A.16)

$$v_{a} = (1 + e^{\left(\frac{-(\hat{a}-a)}{\hat{y}}\right)})^{-1}$$
(A.17)
$$f_{a,s} = w_{a,s}(1 + e^{\left(\frac{-(\hat{a}_{s}-a_{s})}{\hat{y}_{s}}\right)})^{-1}$$

#### Survie

$$\iota_{a} = \begin{cases} \frac{1}{S}, & a = 1 \\ \iota_{a-1}e^{-M}, & a > 1 \\ \frac{\iota_{a-1}}{(1-e^{-M})}, & a = A \end{cases}$$
(A.19)
(A.19)
(A.20)

$$\iota_{a} = \begin{cases} \frac{1}{S}, & a = 1\\ \hat{\iota}_{a-1,s}e^{-M-F_{e}v_{a-1,s}}, & a > 1\\ \frac{\hat{\iota}_{a-1,s}e^{-M-F_{e}v_{a-1,s}}}{(1-e^{-M-F_{e}v_{a,s}})}, & a = A \end{cases}$$
(A.20)

#### Fonctions d'incidence

$$\Phi E = \sum_{s=1}^{s} \sum_{a=1}^{\infty} l_a f_{a,s}, \ \Phi e = \sum_{s=1}^{s} \sum_{a=1}^{\infty} \hat{l}_a f_{a,s}$$
(A.21)

$$\Phi \mathsf{B} = \sum_{s=1}^{s} \sum_{a=1}^{\infty} l_a w_{a,s} v_{a,s}, \ \Phi \mathsf{b} = \sum_{s=1}^{s} \sum_{a=1}^{\infty} \hat{l_a} w_{a,s} v_{a,s}$$
(A.22)

$$\Phi q = \sum_{s=1}^{s} \sum_{a=1}^{\infty} \frac{\hat{l}_{a} w_{a,s} v_{a,s}}{M + F_{e} v_{a,s}} \left(1 - e^{\left(-M - F_{e} v_{a,s}\right)}\right)$$
(A.23)

#### Conditions d'équilibre

$$B_o = R_o \varphi_B \tag{A.24}$$

$$k = \frac{4h}{1-h} \tag{A.25}$$

$$k = R_e = R_o \frac{k - \frac{\Phi E}{\Phi e}}{k} (Beverton-Holt)$$
(A.26)

$$C_e = F_e R_e \varphi_q \tag{A.27}$$
Tableau A.3. Modèle statistique des prises selon l'âge selon l'équation de Baranov.

Paramètres estimés  

$$\Theta = (R_0, h, M, \overline{R}, \overline{R}_{init}, \mathscr{P}, \rho, \Gamma_{k,t} \{w_t\}_{t=1-A}^{t=T}, \{w_{init,t}\}_{t=t-A}^{t=t-1})$$
(A.28)

$$\sigma = \sqrt{p\vartheta}, \tau = \sqrt{(1-p)\vartheta} \tag{A.29}$$

## États non observés

(A.30)

## États initiaux

$$N_{t,a,s} = \frac{1}{s} \bar{R}_{init} e^{w_{init,t}} e^{-M(a-1)}; (t-A) < t < 1; 2 \le a \le A$$
(A.31)

$$N_{t,a,s} = \frac{1}{S} \overline{R} e^{w_t}; 1 \le t \le T; a = 1$$
(A.32)
(A.33)

$$v_{k,a} = \frac{1}{1 + e^{-\frac{(a - \hat{a}_k)}{\hat{\gamma}_k}}}$$

$$F_{k,t} = e^{T_{k,t}}$$
(A.34)

Dynamique des états (t >1)

$$B_{t,s,} = \sum_{a} N_{t,a,s} f_{a,s}$$
(A.35)
(A.36)

$$Z_{t,a,s} = M + \sum_{k} F_{k,t} v_{k,t,a,s}$$
(A.30)

$$\hat{C}_{k,t} = \sum_{s} \sum_{\substack{a \\ \frac{s_{o}E_{t-1}}{2} e^{(\omega_t - 0.5\tau^2)}}} \frac{N_{t,a,s} W_{a,s} F_{k,t} v_{k,t,a,s} (1 - e^{-Z_{t,a,s}})^{nt}}{Z_{t,a,s}}$$
(A.37)
(A.38)

$$N_{t,a,s} = \begin{cases} \frac{\partial D^{L-1}}{1+\beta E_{t-1}} e^{(a_t - 0.57^{-})} & a = 1\\ N_{t-1,a-1,s} e^{(-Z_{t-1,a-1,s})} & a > 1\\ N_{t-1,a,s} e^{(-Z_{t-1,a,s})} & a = A \end{cases}$$
(A.36)

## Modèle de recrutement

$$R_t = \frac{s_0 B_{t-k}}{1+\beta B_{t-k}} e^{\delta_t - 0.5\tau^2}$$
 (Beverton-Holt) (A.39)

 $N_{t,a,s}, B_t, s, Z_{t,a,s}$ 

## ANNEXE B. DONNÉES D'ENTRÉE

Les données d'entrée ci-après ont été utilisées pour l'évaluation des stocks des cinq régions principales : Haida Gwaii (HG); le district de Prince Rupert (DPR); la côte centrale (CC), le détroit de Georgie (DG) et la côte ouest de l'île de Vancouver (COIV). Les mêmes données sont également fournies pour deux régions d'évaluation des stocks secondaires qui ne sont pas visées par l'évaluation : la zone 27 (Z27) et la zone 2 Ouest (Z2O). Les tableaux B.1 à B.7

présentent les séries chronologiques des prises en milliers de tonnes métriques (t x 10³) pour les stocks de HG, du DPR, de la CC, du DG, de la COIV, de l'Z27 et de l'Z20, respectivement. Les tableaux B.8 à B.14 présentent des séries chronologiques de l'indice du frai en milliers de

tonnes métriques (t x 10³) pour les régions d'évaluation des stocks susmentionnées,

respectivement. Les tableaux B.15 à B.21 présentent les séries chronologiques des nombres selon l'âge pour les régions d'évaluation des stocks susmentionnées, respectivement. Les tableaux B.22 à B.28 présentent les séries chronologiques du poids selon l'âge pour les régions d'évaluation des stocks susmentionnées, respectivement. Le tableau B.29 présente le nombre d'échantillons biologiques prélevés par année et par région d'évaluation des stocks.

Tableau B.1. Prises de hareng du Pacifique en milliers de tonnes métriques (t x 10³) par période de 1951 à 2017 dans la région d'évaluation des stocks de Haida Gwaii. Légende : « Engin 1 » représente les pêches minotières, les pêches au hareng de consommation et d'appât, et les pêches au hareng destiné à des usages spéciaux; « Engin 2 » représente la pêche au hareng rogué à la senne; « Engin 3 » représente la pêche au hareng rogué au filet maillant.

	Prises (t x 10³) par période			
Année	Engin 1	Engin 2	Engin 3	
1951	2,847	0,000	0,000	
1952	10,147	0,000	0,000	
1953	0,000	0,000	0,000	
1954	1,786	0,000	0,000	
1955	0,498	0,000	0,000	
1956	77,461	0,000	0,000	
1957	21,803	0,000	0,000	
1958	11,147	0,000	0,000	
1959	6,828	0,000	0,000	
1960	0,000	0,000	0,000	
1961	0,576	0,000	0,000	
1962	7,632	0,000	0,000	
1963	14,705	0,000	0,000	
1964	28,772	0,000	0,000	
1965	35,448	0,000	0,000	
1966	2,746	0,000	0,000	
1967	0,213	0,000	0,000	
1968	0,080	0,000	0,000	
1969	0,000	0,000	0,000	
1970	0,000	0,000	0,000	
1971	0,102	0,000	0,000	

	Prises (t	x 10³) par	période
Année	Engin 1	Engin 2	Engin 3
1972	0,849	3,124	0,000
1973	0,000	7,520	0,000
1974	0,000	6,191	0,127
1975	0,017	7,602	0,105
1976	0,374	11,939	1,802
1977	0,021	11,125	1,489
1978	0,000	9,172	2,553
1979	0,050	5,817	2,086
1980	0,000	2,106	1,210
1981	0,043	3,884	1,705
1982	0,018	2,353	1,407
1983	0,067	4,601	0,929
1984	0,096	4,016	0,535
1985	0,044	4,571	1,493
1986	0,000	2,613	0,890
1987	0,033	2,028	0,000
1988	0,032	0,000	0,000
1989	0,042	1,419	0,000
1990	0,008	5,534	1,170
1991	0,001	3,898	0,543
1992	0,000	2,524	0,000
1995	0,000	2,099	0,000
1994	0,000	0,299	0,000
1995	0,000	0,000	0,000
1990	0,000	0,000	0,000
1998	0,000	1,371	0,000
1999	0,000	2 4 9 3	0,000
2000	0,000	1 765	0,000
2001	0.000	0.000	0.000
2002	0.000	0.706	0.000
2003	0.000	0.000	0.000
2004	0,000	0,000	0,000
2005	0,000	0,000	0,000
2006	0,000	0,000	0,000
2007	0,000	0,000	0,000
2008	0,000	0,000	0,000
2009	0,000	0,000	0,000
2010	0,000	0,000	0,000
2011	0,000	0,000	0,000
2012	0,000	0,000	0,000
2013	0,000	0,000	0,000
2014	0,000	0,000	0,000
2015	0,000	0,000	0,000

	Prises (t x 10 ³ ) par période			
Année	Engin 1	Engin 2	Engin 3	
2016 2017	0,000	0,000	0,000	
2017	0,000	0,000	0,000	

Tableau B.2. Prises de hareng du Pacifique en milliers de tonnes métriques (t x 10³) par période de 1951 à 2017 dans la région d'évaluation des stocks du district de Prince Rupert. Légende : « Engin 1 » représente les pêches minotières, les pêches au hareng de consommation et d'appât, et les pêches au hareng destiné à des usages spéciaux; « Engin 2 » représente la pêche au hareng rogué à la senne; « Engin 3 » représente la pêche au hareng rogué au filet maillant.

	Prises (t	: x 10³) par	[•] période
Année	Engin 1	Engin 2	Engin 3
1951	45,865	0,000	0,000
1952	52,379	0,000	0,000
1953	1,865	0,000	0,000
1954	27,277	0,000	0,000
1955	17,806	0,000	0,000
1956	10,182	0,000	0,000
1957	28,035	0,000	0,000
1958	4,523	0,000	0,000
1959	10,224	0,000	0,000
1960	18,476	0,000	0,000
1961	42,746	0,000	0,000
1962	27,660	0,000	0,000
1963	40,228	0,000	0,000
1964	29,930	0,000	0,000
1965	44,211	0,000	0,000
1966	17,295	0,000	0,000
1967	7,998	0,000	0,000
1968	2,068	0,000	0,000
1969	0,000	0,000	0,000
1970	1,330	0,000	0,000
1971	3,500	0,000	0,000
1972	0,877	3,613	0,004
1973	0,218	1,388	0,000
1974	0,182	2,122	1,515
1975	0,155	1,536	0,011
1976	0,564	3,466	0,276
1977	0,792	5,856	1,494
1978	3,519	2,038	3,031
1979	1,810	1,271	1,236
1980	0,738	1,641	1,046
1981	1,682	1,051	0,356
1982	1,815	0,170	0,000
1983	0,000	0,000	0,000

Prises (t x 10 ³ ) par période				
Année	Engin 1	Engin 2	Engin 3	
1984	0,173	1,653	1,880	
1985	0,253	3,018	3,476	
1986	0,375	3,732	4,573	
1987	0,122	2,077	4,071	
1988	0,079	3,550	4,340	
1989	0,071	3,657	4,745	
1990	0,043	2,285	2,361	
1991	0,019	1,348	2,143	
1992	0,142	1,238	3,797	
1993	0,008	2,200	4,112	
1994	0,001	2,363	2,324	
1995	0,000	0,706	1,355	
1996	0,000	0,000	3,086	
1997	0,000	0,000	5,541	
1998	0,000	0,000	3,217	
1999	0,000	0,256	1,859	
2000	0,000	1,239	3,076	
2001	0,000	1,012	1,906	
2002	0,001	2,061	2,432	
2003	0,005	1,446	2,562	
2004	0,011	1,909	2,192	
2005	0,000	1,750	2,050	
2006	0,000	0,957	1,661	
2007	0,000	0,000	0,969	
2008	0,000	0,513	1,148	
2009	0,000	0,713	1,286	
2010	0,000	0,475	1,010	
2011	0,000	0,883	1,264	
2012	0,000	0,466	0,917	
2013	0,000	0,743	1,284	
2014	0,169	0,718	1,116	
2015	0,435	0,737	0,991	
2010	0,310	0,729	1,300	
2017	0,432	1,019	1,398	

Tableau B.3. Prises de hareng du Pacifique en milliers de tonnes métriques (t x 10³) par période de 1951 à 2017 dans la région d'évaluation des stocks de la côte centrale. Légende : « Engin 1 » représente les pêches minotières, les pêches au hareng de consommation et d'appât, et les pêches au hareng destiné à des usages spéciaux; « Engin 2 » représente la pêche au hareng rogué à la senne; « Engin 3 » représente la pêche au hareng rogué au filet maillant.

	Prises (t x 10 ³ ) par période			
Année	Engin 1	Engin 2	Engin 3	
1951	42,458	0,000	0,000	
1952	33,195	0,000	0,000	
1953	0,768	0,000	0,000	
1954	24,616	0,000	0,000	
1955	11,594	0,000	0,000	
1956	43,627	0,000	0,000	
1957	23,261	0,000	0,000	
1958	9,849	0,000	0,000	
1959	27,870	0,000	0,000	
1960	4,037	0,000	0,000	
1961	31,704	0,000	0,000	
1962	15,709	0,000	0,000	
1963	44,054	0,000	0,000	
1964	31,895	0,000	0,000	
1965	15,670	0,000	0,000	
1966	37,482	0,000	0,000	
1967	21,890	0,000	0,000	
1968	1,528	0,000	0,000	
1969	0,000	0,000	0,000	
1970	0,209	0,000	0,000	
1971	3,614	0,000	0,000	
1972	0,388	8,755	0,137	
1973	0,035	6,653	1,112	
1974	0,000	3,621	5,267	
1975	0,000	3,343	5,395	
1976	0,000	6,198	6,213	
1977	0,320	3,881	6,904	
1978	0,000	4,769	9,277	
1979	0,005	0,000	0,000	
1980	0,010	0,000	0,528	
1981	0,006	0,263	2,304	
1982	0,041	2,258	4,071	
1983	0,000	2,061	3,579	
1984	0,002	3,588	3,582	
1985	0,000	2,915	2,294	
1986	0,038	2,173	1,176	
1987	0,000	2,695	0,920	
1988	0,028	3,529	0,970	
1989	0,000	6,531	2,911	
1990	0,000	5,305	3,046	

	Prises	(t x 10 ³ ) pa	r période
Année	Engin 1	Engin 2	Engin 3
1991	0,000	7,097	1,806
1992	0,088	7,163	1,111
1993	0,000	8,478	2,038
1994	0,000	9,757	2,122
1995	0,000	8,131	1,451
1996	0,000	3,897	0,402
1997	0,000	3,276	0,344
1998	0,000	7,976	0,646
1999	0,000	6,013	1,511
2000	0,000	6,394	0,972
2001	0,000	5,613	0,517
2002	0,000	2,894	0,399
2003	0,000	2,299	0,289
2004	0,000	2,988	0,000
2005	0,000	3,778	0,000
2006	0,000	3,072	0,000
2007	0,000	0,398	0,000
2008	0,000	0,000	0,000
2009	0,000	0,000	0,000
2010	0,000	0,000	0,000
2011	0,000	0,000	0,000
2012	0,000	0,000	0,000
2013	0,000	0,000	0,000
2014	0,000	0,000	0,687
2015	0,000	0,626	0,000
2016	0,000	0,213	0,000
2017	0,000	0,000	0,000

-			
	Prises (	t x 10³) pa	r période
Année	Engin 1	Engin 2	Engin 3
1951	43,798	0,000	0,000
1952	45,885	0,000	0,000
1953	8,425	0,000	0,000
1954	65,767	0,000	0,000
1955	68,641	0,000	0,000
1956	72,062	0,000	0,000
1957	59,608	0,000	0,000
1958	20,628	0,000	0,000
1959	50,025	0,000	0,000
1960	68,037	0,000	0,000
1961	46,215	0,000	0,000
1962	65,303	0,000	0,000
1963	68,847	0,000	0,000
1964	76,881	0,000	0,000
1965	47,819	0,000	0,000
1966	33,338	0,000	0,000
1967	31,043	0,000	0,000
1968	1,893	0,000	0,000
1969	0,194	0,000	0,000
1970	0,244	0,000	0,000
1971	1,700	0,000	0,000
1972	2,753	5,921	0,137
1973	4,005	1,604	2,040
1974	0,485	0,439	3,093
1975	0,405	0,469	5,305
1976	5,069	0,202	6,966
1977	5,676	4,098	7,735
1978	13,049	3,723	7,230
1979	13,576	0,000	6,762
1980	2,472	0,169	3,1//
1981	4,907	2,081	5,065
1982	3,938	3,312	5,583
1983	0,824	1,180	8,613
1984	0,870	4,126	6,039
1985	0,773	2,762	3,495
1900	0,432	0,102	0,000
1907 1099	0,244	3,111 1 /71	5,998 5,000
1020	0,700	1,471 1/17	5,900
1909	1,033	1,41/	5,919

	Prises (t x 10 ³ ) par période			
Année	Engin 1	Engin 2	Engin 3	
1990	0,233	0,000	7,886	
1991	0,562	1,131	9,410	
1992	1,216	3,610	8,870	
1993	0,617	4,391	8,733	
1994	1,032	5,134	11,572	
1995	0,643	4,359	8,190	
1996	0,541	7,338	6,233	
1997	0,402	9,274	6,148	
1998	0,954	5,754	6,896	
1999	1,471	4,887	6,838	
2000	1,156	6,454	7,594	
2001	1,423	7,276	7,683	
2002	1,328	9,299	7,986	
2003	2,194	10,600	8,083	
2004	1,356	7,019	5,226	
2005	1,988	7,929	8,954	
2006	2,177	9,308	7,277	
2007	1,071	3,865	5,286	
2008	1,201	6,046	2,752	
2009	0,547	5,685	3,937	
2010	0,539	4,540	3,244	
2011	0,713	0,000	4,415	
2012	4,090	3,170	4,079	
2013	4,543	6,099	5,905	
2014	7,835	6,880	5,595	
2015	7,825	8,417	3,726	
2016	7,550	7,627	6,133	
2017	7,260	8,796	9,223	

Tableau B.5. Prises de hareng du Pacifique en milliers de tonnes métriques (t x 10³) par période de 1951 à 2017 dans la région d'évaluation des stocks de la côte ouest de l'île de Vancouver. Légende : « Engin 1 » représente les pêches minotières, les pêches au hareng de consommation et d'appât, et les pêches au hareng destiné à des usages spéciaux; « Engin 2 » représente la pêche au hareng rogué à la

senne; « Engin 3 » représente la pêche au hareng rogué au filet maillant.				
		Prises	(t x 10³) par	[·] période
ŀ	Année	Engin 1	Engin 2	Engin 3
	1951	21,821	0,000	0,000
	1952	27,008	0,000	0,000
	1953	0,020	0,000	0,000
	1954	33,209	0,000	0,000
	1955	6,123	0,000	0,000
	1956	17,098	0,000	0,000
	1957	2,612	0,000	0,000
	1958	0,556	0,000	0,000
	1959	69,223	0,000	0,000
	1960	53,911	0,000	0,000
	1961	26,435	0,000	0,000
	1962	23,684	0,000	0,000
	1963	18,206	0,000	0,000
	1964	21,266	0,000	0,000
	1965	16,046	0,000	0,000
	1966	10,843	0,000	0,000
	1967	15,145	0,000	0,000
	1968	0,000	0,000	0,000
	1969	0,000	0,000	0,000
	1970	0,000	0,000	0,000
	1971	0,000	0,000	0,000
	1972	0,000	6,894	0,000
	1973	0,000	16,766	1,537
	1974	0,000	12,394	3,940
	1975	0,001	17,798	8,309
	1976	0,000	22,820	16,005
	1977	0,029	17,458	12,556
	1978	2,839	5,151	14,755
	1979	0,084	10,472	8,138
	1980	0,000	1,682	2,300
	1981	0,002	5,008	3,079
	1982	0,002	2,370	3,115
	1983	0,000	6,141	2,434
	1984	0,000	5,/18	0,858
	1985	0,001	0,177	0,000
	1980	0,001	0,203	0,000
	190/	0,000	13,403	2,471
	1900	0,000	0,270	1,448
	1989	0,000	9,774	3,515

	Prises (	t x 10³) pai	r période
Année	Engin 1	Engin 2	Engin 3
1990	0,000	7,890	1,959
1991	0,000	6,299	2,336
1992	0,000	3,086	0,627
1993	0,000	5,612	0,000
1994	0,001	5,332	0,706
1995	0,004	1,947	0,000
1996	0,001	0,790	0,000
1997	0,000	6,656	0,000
1998	0,000	5,450	1,534
1999	0,000	3,405	0,968
2000	0,000	0,926	0,700
2001	0,000	0,000	0,000
2002	0,000	0,433	0,388
2003	0,000	2,571	0,945
2004	0,000	3,861	0,593
2005	0,000	3,373	0,896
2006	0,000	0,000	0,000
2007	0,000	0,000	0,000
2008	0,000	0,000	0,000
2009	0,000	0,000	0,000
2010	0,000	0,000	0,000
2011	0,000	0,000	0,000
2012	0,000	0,000	0,000
2013	0,000	0,000	0,000
2014	0,000	0,000	0,000
2015	0,000	0,000	0,000
2016	0,000	0,000	0,000
2017	0,000	0,000	0,000

Tableau B.6. Prises de hareng du Pacifique en milliers de tonnes métriques (t x $10^3$ ) par période de 1951
à 2017 dans la région d'évaluation des stocks de la zone 27. Légende : « Engin 1 » représente les
pêches minotières, les pêches au hareng de consommation et d'appât, et les pêches au hareng destiné à
des usages spéciaux; « Engin 2 » représente la pêche au hareng rogué à la senne; « Engin 3 »
représente la pêche au hareng rogué au filet maillant.

	Prises (t x 10 ³ ) par période			
Année	Engin 1	Engin 2	Engin 3	
1951	0,000	0,000	0,000	
1952	0,000	0,000	0,000	
1953	0,000	0,000	0,000	
1954	1,920	0,000	0,000	
1955	5,939	0,000	0,000	
1956	0,000	0,000	0,000	
1957	0,000	0,000	0,000	
1958	0,000	0,000	0,000	
1959	0,407	0,000	0,000	
1960	0,000	0,000	0,000	
1961	1,149	0,000	0,000	
1962	0,173	0,000	0,000	
1963	0,031	0,000	0,000	
1904	0,323	0,000	0,000	
1900	0,769	0,000	0,000	
1900	0,951	0,000	0,000	
1907	0,051	0,000	0,000	
1060	0,000	0,000	0,000	
1909	0,000	0,000	0,000	
1970	0,000	0,000	0,000	
1972	0,000	0,000	0,000	
1973	0.000	0.000	0.000	
1974	0.000	0.508	0.018	
1975	0,000	0,000	0,000	
1976	0,000	0,000	0,079	
1977	0,000	0,000	0,000	
1978	0,075	0,000	0,075	
1979	0,000	0,422	0,270	
1980	0,000	0,000	0,519	
1981	0,000	0,000	0,671	
1982	0,000	0,238	0,332	
1983	0,000	0,000	0,163	
1984	0,000	0,000	0,171	
1985	0,000	0,000	0,000	
1986	0,000	0,000	0,000	
1987	0,000	0,000	0,000	
1988	0,000	0,000	0,000	
1989	0,000	0,000	0,000	
1990	0,000	0,000	0,000	

	Prises (t x 10 ³ ) par période		
Année	Engin 1	Engin 2	Engin 3
1991	0,000	0,000	0,000
1992	0,000	0,335	0,000
1993	0,000	0,000	0,367
1994	0,000	0,000	0,345
1995	0,000	0,088	0,000
1996	0,000	0,000	0,000
1997	0,000	0,000	0,000
1998	0,000	0,000	0,000
1999	0,000	0,000	0,000
2000	0,000	0,000	0,000
2001	0,000	0,000	0,000
2002	0,000	0,000	0,000
2003	0,000	0,000	0,000
2004	0,000	0,000	0,000
2005	0,000	0,000	0,000
2006	0,000	0,000	0,000
2007	0,000	0,000	0,000
2008	0,000	0,000	0,000
2009	0,000	0,000	0,000
2010	0,000	0,000	0,000
2011	0,000	0,000	0,000
2012	0,000	0,000	0,000
2013	0,000	0,000	0,000
2014	0,000	0,000	0,000
2015	0,000	0,000	0,000
2016	0,000	0,000	0,000
2017	0,000	0,000	0,000

Tablazu R.7. Prisas da barana du Pacifique en milliors de tennos métriques ( $t \ge 1/\beta$ ) par période de 1051
Tableau D.T. Frises de naieng du Facilique en millers de tonnes metiques (1 x 10) par pendue de 1951
à 2017 dans la région d'évaluation des stocks de la zone 2 Ouest. Légende : « Engin 1 » représente les
pêches minotières, les pêches au hareng de consommation et d'appât, et les pêches au hareng destiné à
des usages spéciaux; « Engin 2 » représente la pêche au hareng rogué à la senne; « Engin 3 »
représente la pêche au hareng rogué au filet maillant.

	Prises	(t x 10 ³ ) pa	r période
Année	Engin 1	Engin 2	Engin 3
1951	0.000	0.000	0.000
1952	0.000	0.000	0.000
1953	0,000	0,000	0,000
1954	0,000	0,000	0,000
1955	0,000	0,000	0,000
1956	0,000	0,000	0,000
1957	0,106	0,000	0,000
1958	0,000	0,000	0,000
1959	0,000	0,000	0,000
1960	0,000	0,000	0,000
1961	0,000	0,000	0,000
1962	0,000	0,000	0,000
1963	0,000	0,000	0,000
1964	0,312	0,000	0,000
1965	1,251	0,000	0,000
1966	0,172	0,000	0,000
1967	0,000	0,000	0,000
1968	0,000	0,000	0,000
1969	0,000	0,000	0,000
1970	0,000	0,000	0,000
1971	0,000	0,000	0,000
1972	0,000	0,000	0,000
1973	0,000	0,706	0,000
1974	0,000	0,403	0,000
1975	0,000	0,449	0,000
1976	0,000	0,000	0,000
19/7	0,000	0,000	0,000
1978	0,000	0,575	0,000
1979	0,048	0,643	0,000
1980	0,000	0,000	0,000
1981	0,000	0,770	0,000
1982	0,000	1,225	0,000
1983	0,000	2,518	0,000
1984	0,000	0,000	0,000
1905	0,000	0,199	0,000
1900	0,000		0,000
1907	0,000		0,000
1080	0,000	0,000	0,000
1909	0,000	0,000	0,000

Prises (t x 10 ³ ) par période				
Année	Engin 1	Engin 2	Engin 3	
1990	0,000	2,272	0,000	
1991	0,000	2,558	0,000	
1992	0,000	1,284	0,000	
1993	0,000	1,306	0,000	
1994	0,000	0,000	0,000	
1995	0,000	0,000	0,000	
1996	0,000	0,000	0,000	
1997	0,000	0,000	0,000	
1998	0,000	0,179	0,000	
1999	0,000	0,000	0,000	
2000	0,000	0,000	0,000	
2001	0,000	0,000	0,000	
2002	0,000	0,000	0,000	
2003	0,000	0,000	0,000	
2004	0,000	0,000	0,000	
2005	0,000	0,000	0,000	
2006	0,000	0,000	0,000	
2007	0,000	0,000	0,000	
2008	0,000	0,000	0,000	
2009	0,000	0,000	0,000	
2010	0,000	0,000	0,000	
2011	0,000	0,000	0,000	
2012	0,000	0,000	0,000	
2013	0,000	0,000	0,000	
2014	0,000	0,000	0,000	
2015	0,000	0,000	0,000	
2016	0,000	0,000	0,000	
2017	0,000	0,000	0,000	

Tableau B.8. Indice du frai de hareng du Pacifique en milliers de tonnes métriques (t x  $10^3$ ) par période de 1951 à 2017 dans la région d'évaluation des stocks de Haida Gwaii. L'indice du frai comporte deux périodes distinctes définies par la méthode de relevé dominante : relevés en surface (de 1951 à 1987) et relevés en plongée (de 1988 à 2017). L'indice du frai représente uniquement les données brutes de relevé; il n'est pas mis à l'échelle à l'aide du paramètre de mise à l'échelle du relevé du frai, *q*.

Année	Indice de frai (t x	10 ³ )	Relevé
1951	4,	,213	Surface
1952	2,	,578	Surface
1953	7,	,555	Surface
1954	12,	,408	Surface
1955	6,	,437	Surface
1956	6,	,042	Surface
1957	1,	,592	Surface
1958	0,	,815	Surface
1959	8,	,981	Surface
1960	6,	,599	Surface
1961	8,	,981	Surface
1962	5,	,730	Surface
1963	7,	,297	Surface
1964	4,	,104	Surface
1965	1,	,378	Surface
1966	2,	,824	Surface
1967	0,	,710	Surface
1968	0,	,833	Surface
1969	2,	,075	Surface
1970	5,	,552	Surface
1971	13,	,291	Surface
1972	9,	,542	Surface
1973	7,	,960	Surface
1974	14,	,510	Surface
1975	9,	,686	Surface
1976	15,	,986	Surface
1977	15,	,717	Surface
1978	16,	,885	Surface
1979	14,	,289	Surface
1980	30,	,455	Surface
1981	18,	,823	Surface
1982	22,	,159	Surface
1983	19,	,470	Surface
1984	22,	,120	Surface
1985	17,	,232	Surface
1986	5,	,679	Surface
1987	10,	,750	Surface
1988	13,	,631	Plongée
1989	23,	,638	Plongée
1990	25,	,404	Plongée
1991	16,	,204	Plongée
1992	11,	,068	Plongée

Année	Indice de frai (t x 10 ³ )	Relevé
1993	6,462	Plongée
1994	12,806	Plongée
1995	4,701	Plongée
1996	7,374	Plongée
1997	10,778	Plongée
1998	20,622	Plongée
1999	8,971	Plongée
2000	5,341	Plongée
2001	13,859	Plongée
2002	2,286	Plongée
2003	7,398	Plongée
2004	4,906	Plongée
2005	3,614	Plongée
2006	4,097	Plongée
2007	9,436	Plongée
2008	4,213	Plongée
2009	9,794	Plongée
2010	6,845	Plongée
2011	7,554	Plongée
2012	9,720	Plongée
2013	16,025	Plongée
2014	10,566	Plongée
2015	13,102	Plongée
2016	6,888	Plongée
2017	3,016	Plongée

Tableau B.9. Indice du frai de hareng du Pacifique en milliers de tonnes métriques ( $t \ge 10^3$ ) par période de 1951 à 2017 dans la région d'évaluation des stocks du district de Prince Rupert. L'indice du frai comporte deux périodes distinctes définies par la méthode de relevé dominante : relevés en surface (de 1951 à 1987) et relevés en plongée (de 1988 à 2017). L'indice du frai représente uniquement les données brutes de relevé; il n'est pas mis à l'échelle à l'aide du paramètre de mise à l'échelle du relevé du frai, q.

Année	Indice du frai (t x 10 ³ )	Relevé
1951	27,149	Surface
1952	24,047	Surface
1953	28,468	Surface
1954	13,535	Surface
1955	14,482	Surface
1956	14,533	Surface
1957	27,518	Surface
1958	9,882	Surface
1959	40,961	Surface
1960	16,545	Surface
1961	12,059	Surface
1962	26,329	Surface
1963	16,981	Surface
1964	26,919	Surface

Année	Indice du frai (t x 10 ³ )	Relevé
1965	6,055	Surface
1966	7,105	Surface
1967	3.386	Surface
1968	5 197	Surface
1969	0.965	Surface
1970	8 814	Surface
1070	8 480	Surface
1072	8 77/	Surface
1072	10,050	Surface
1973	0.244	Surface
1974	9,244	Surface
1975	10,565	Surface
1976	15,199	Surface
1977	10,425	Surface
1978	4,734	Surface
1979	7,600	Surface
1980	11,001	Surface
1981	12,939	Surface
1982	16,108	Surface
1983	23,575	Surface
1984	25,702	Surface
1985	30,675	Surface
1986	25,580	Surface
1987	38,673	Surface
1988	33,957	Plongée
1989	14,876	Plongée
1990	21,177	Plongée
1991	24,305	Plongée
1992	38,585	Plongée
1993	23,328	Plongée
1994	14.683	Plonaée
1995	16.879	Plonaée
1996	22,664	Plongée
1997	23 565	Plongée
1998	17 997	Plongée
1999	27 742	Plongée
2000	17 943	Plongée
2000	35 070	Plongée
2001	20 503	Plongée
2002	34 630	Plongée
2003	31 104	Plongée
2004	00 170	Plongéo
2003	20,172	Plongée
2000	10,200	Plongée
2007	10,700	Plongée
2008	12,728	Piongee
2009	11,961	Piongee
2010	28,607	Piongee
2011	21,097	Plongée
2012	22,716	Plongée
2013	25,755	Plongée

Année	Indice du frai (t x 10 ³ )	Relevé
2014	17,125	Plongée
2015	17,407	Plongée
2016	18,985	Plongée
2017	19,235	Plongée

Tableau B.10. Indice du frai de hareng du Pacifique en milliers de tonnes métriques (t x  $10^3$ ) par période de 1951 à 2017 dans la région d'évaluation des stocks de la côte centrale. L'indice du frai comporte deux périodes distinctes définies par la méthode de relevé dominante : relevés en surface (de 1951 à 1987) et relevés en plongée (de 1988 à 2017). L'indice du frai représente uniquement les données brutes de relevé; il n'est pas mis à l'échelle à l'aide du paramètre de mise à l'échelle du relevé du frai, q.

Année	Indice du frai (t x 10 ³ )	Relevé
1951	15,390	Surface
1952	10,295	Surface
1953	18,237	Surface
1954	13,967	Surface
1955	13,564	Surface
1956	6,626	Surface
1957	4,607	Surface
1958	3,549	Surface
1959	3,904	Surface
1960	12,615	Surface
1961	4,265	Surface
1962	11,948	Surface
1963	6,485	Surface
1964	6,464	Surface
1965	2,097	Surface
1966	1,863	Surface
1967	5,434	Surface
1968	5,790	Surface
1969	1,837	Surface
1970	8,230	Surface
1971	4,156	Surface
1972	3,572	Surface
1973	12,434	Surface
1974	8,852	Surface
1975	8,037	Surface
1976	13,849	Surface
1977	14,613	Surface
1978	7,747	Surface
1979	5,669	Surface
1980	12,957	Surface
1981	15,811	Surface
1982	16,239	Surface
1983	18,214	Surface
1984	13,788	Surface

Année	Indice du frai (t x 10 ³ )	Relevé
1985	8,483	Surface
1986	20,056	Surface
1987	12,431	Surface
1988	26,467	Plongée
1989	21,098	Plongée
1990	28,551	Plongée
1991	18,429	Plongée
1992	42,594	Plongée
1993	31,717	Plongée
1994	28,790	Plongée
1995	21,343	Plongée
1996	20,344	Plongée
1997	27,016	Plongée
1998	29,736	Plongée
1999	30,208	Plongée
2000	30,810	Plongée
2001	24,334	Plongée
2002	20,318	Plongée
2003	24,401	Plongée
2004	28,245	Plongée
2005	23,903	Plongée
2006	9,081	Plongée
2007	9,264	Plongée
2008	4,255	Plongée
2009	10,771	Plongée
2010	8,671	Plongée
2011	10,534	Plongée
2012	7,592	Plongée
2013	20,369	Plongée
2014	13,309	Plongée
2015	32,146	Plongée
2016	32,508	Plongée
2017	23,517	Plongée

Tableau B.11. Indice du frai de hareng du Pacifique en milliers de tonnes métriques (t x  $10^3$ ) par période de 1951 à 2017 dans la région d'évaluation des stocks du détroit de Georgie. L'indice du frai comporte deux périodes distinctes définies par la méthode de relevé dominante : relevés en surface (de 1951 à 1987) et relevés en plongée (de 1988 à 2017). L'indice du frai représente uniquement les données brutes de relevé; il n'est pas mis à l'échelle à l'aide du paramètre de mise à l'échelle du relevé du frai, q.

Année	Indice du frai (t x 10 ³ )	Relevé
1951	66,143	Surface
1952	72,376	Surface
1953	111,307	Surface
1954	82,141	Surface
1955	69,854	Surface
1956	25,667	Surface
1957	24,465	Surface
1958	16,911	Surface
1959	47,864	Surface
1960	55,709	Surface
1961	44,326	Surface
1962	35,596	Surface
1963	37,381	Surface
1964	35,954	Surface
1965	38,390	Surface
1966	7,211	Surface
1967	9,647	Surface
1968	9,442	Surface
1969	14,039	Surface
1970	34,163	Surface
1971	38,921	Surface
1972	25,139	Surface
1973	16,191	Surface
1974	40,571	Surface
1975	70,208	Surface
1976	60,996	Surface
1977	78,113	Surface
1978	101,784	Surface
1979	63,973	Surface
1980	85,679	Surface
1981	54,754	Surface
1982	101,025	Surface
1983	66,201	Surface
1984	26,054	Surface
1985	25,024	Surface
1986	41,575	Surface
1987	41,737	Surface
1988	24,976	Plongée
1989	66,052	Plongée
1990	67,150	Plongée

Année	Indice du frai (t x 10 ³ )	Relevé
1991	45,827	Plongée
1992	82,710	Plongée
1993	90,197	Plongée
1994	67,138	Plongée
1995	64,898	Plongée
1996	71,325	Plongée
1997	58,181	Plongée
1998	74,616	Plongée
1999	85,094	Plongée
2000	72,688	Plongée
2001	100,248	Plongée
2002	117,862	Plongée
2003	152,150	Plongée
2004	122,839	Plongée
2005	102,764	Plongée
2006	50,258	Plongée
2007	38,524	Plongée
2008	34,507	Plongée
2009	53,652	Plongée
2010	50,454	Plongée
2011	85,001	Plongée
2012	52,636	Plongée
2013	83,693	Plongée
2014	120,468	Plongée
2015	104,481	Plongée
2016	129,502	Plongée
2017	81,064	Plongée

Tableau B.12. Indice du frai de hareng du Pacifique en milliers de tonnes métriques ( $t \ge 10^3$ ) par période de 1951 à 2017 dans la région d'évaluation des stocks de la côte ouest de l'île de Vancouver. L'indice du frai comporte deux périodes distinctes définies par la méthode de relevé dominante : relevés en surface (de 1951 à 1987) et relevés en plongée (de 1988 à 2017). L'indice du frai représente uniquement les données brutes de relevé; il n'est pas mis à l'échelle à l'aide du paramètre de mise à l'échelle du relevé du frai, q.

Année	Indice du frai (t x 10 ³ )	Relevé
1951	19,597	Surface
1952	13,310	Surface
1953	39,571	Surface
1954	20,648	Surface
1955	15,112	Surface
1956	27,183	Surface
1957	44,114	Surface
1958	18,986	Surface
1959	12,979	Surface
1960	6,015	Surface
1961	10,556	Surface
1962	34,470	Surface
1963	11,245	Surface
1964	22,761	Surface
1965	11,891	Surface
1966	3,722	Surface
1967	4,813	Surface
1968	11,029	Surface
1969	10,465	Surface
1970	26,912	Surface
1971	36,206	Surface
1972	41,857	Surface
1973	19,481	Surface
1974	25,540	Surface
1975	49,149	Surface
1976	64,200	Surface
1977	58,679	Surface
1978	45,607	Surface
1979	66,397	Surface
1980	62,308	Surface
1981	51,929	Surface
1982	33,483	Surface
1983	16,771	Surface
1984	24,087	Surface
1985	29,590	Surface
1986	39,514	Surface
1987	16,858	Surface
1988	46,242	Plongée
1989	47,718	Plongée
1990	46,464	Plongée
1991	29,996	Plongée

Année	Indice du frai (t x 10 ³ )	Relevé
1992	42,366	Plongée
1993	34,392	Plongée
1994	25,249	Plongée
1995	27,128	Plongée
1996	33,121	Plongée
1997	45,362	Plongée
1998	41,011	Plongée
1999	19,734	Plongée
2000	12,799	Plongée
2001	13,414	Plongée
2002	21,242	Plongée
2003	31,397	Plongée
2004	16,432	Plongée
2005	9,664	Plongée
2006	2,875	Plongée
2007	2,246	Plongée
2008	2,739	Plongée
2009	10,607	Plongée
2010	2,464	Plongée
2011	9,663	Plongée
2012	5,407	Plongée
2013	12,342	Plongée
2014	13,937	Plongée
2015	11,323	Plongée
2016	20,528	Plongée
2017	15,734	Plongée

Tableau B.13. Indice du frai de hareng du Pacifique en milliers de tonnes métriques (t x  $10^3$ ) par période de 1951 à 2017 dans la région d'évaluation des stocks de la zone 27. L'indice du frai comporte deux périodes distinctes définies par la méthode de relevé dominante : relevés en surface (de 1951 à 1987) et relevés en plongée (de 1988 à 2017). L'indice du frai représente uniquement les données brutes de relevé; il n'est pas mis à l'échelle à l'aide du paramètre de mise à l'échelle du relevé du frai, q.

Année	Indice du frai (t x 2	10³)	Relevé
1951	1,	955	Surface
1952	0,	484	Surface
1953	4,	618	Surface
1954	2,	646	Surface
1955	0,	575	Surface
1956	0,	001	Surface
1957	0,	184	Surface
1958	0,	039	Surface
1959	0,	060	Surface
1960	0,	224	Surface
1961	0,	169	Surface
1962	0,	102	Surface
1963	0,	407	Surface

Indice du frai (t x 10 ³ )	Relevé
S.O.	Surface
2,517	Surface
0,082	Surface
0,046	Surface
0,142	Surface
2,198	Surface
2,434	Surface
0,290	Surface
0,250	Surface
2,578	Surface
S.O.	Surface
1,606	Surface
0,210	Surface
0,638	Surface
3,595	Surface
6,909	Surface
14,419	Surface
1.828	Surface
1,468	Surface
2,500	Surface
3,004	Surface
1.382	Surface
3,495	Surface
0,952	Surface
1,612	Plongée
4,612	Plongée
5,212	Plongée
3,213	Plongée
2,779	Plongée
5,576	Plongée
5,229	Plongée
2,484	Plongée
1,332	Plongée
1,963	Plongée
2,156	Plongée
0,657	Plongée
1,301	Plongée
0,220	Plongée
0,917	Plongée
0,963	Plongée
1,223	Plongée
1,918	Plongée
2,044	Plongée
2,248	Plongée
0,796	Plongée
1,201	Plongée
0,846	Plongée
0,547	Plongée
	Indice du frai $(t \times 10^3)$ S.O. 2,517 0,082 0,046 0,142 2,198 2,434 0,290 0,250 2,578 S.O. 1,606 0,210 0,638 3,595 6,909 14,419 1,828 1,468 2,500 3,004 1,382 3,495 0,952 1,612 4,612 5,212 3,213 2,779 5,576 5,229 2,484 1,332 1,963 2,156 0,657 1,301 0,220 0,917 0,963 1,223 1,918 2,044 2,248 0,796 1,201 0,846 0,547

Année	Indice du frai (t x 10 ³ )	Relevé
2012	0,744	Plongée
2013	0,914	Plongée
2014	1,307	Plongée
2015	2,169	Plongée
2016	0,814	Plongée
2017	0,026	Plongée

Tableau B.14. Hareng du Pacifique – Indice du frai en milliers de tonnes métriques (t x  $10^3$ ) par période de 1951 à 2017 dans la région d'évaluation des stocks de la zone 2 Ouest. L'indice du frai comporte deux périodes distinctes définies par la méthode de relevé dominante : relevés en surface (de 1951 à 1987) et relevés en plongée (de 1988 à 2017). L'indice du frai représente uniquement les données brutes de relevé; il n'est pas mis à l'échelle à l'aide du paramètre de mise à l'échelle du relevé du frai, q.

Année	Indice du frai (t x 10 ³ )	Relevé
1951	S.O.	Surface
1952	S.O.	Surface
1953	0,203	Surface
1954	S.O.	Surface
1955	S.O.	Surface
1956	S.O.	Surface
1957	0,004	Surface
1958	0,157	Surface
1959	1,916	Surface
1960	1,569	Surface
1961	0,558	Surface
1962	1,715	Surface
1963	1,436	Surface
1964	0,969	Surface
1965	0,439	Surface
1966	0,024	Surface
1967	0,262	Surface
1968	0,073	Surface
1969	0,593	Surface
1970	0,577	Surface
1971	0,604	Surface
1972	1,011	Surface
1973	1,604	Surface
1974	1,675	Surface
1975	1,154	Surface
1976	0,826	Surface
1977	1,174	Surface
1978	0,832	Surface
1979	0,494	Surface
1980	2,114	Surface
1981	1,811	Surface
1982	4,781	Surface
1983	4,869	Surface

Année	Indice du frai (t x 10 ³ )	Relevé
1984	2,522	Surface
1985	1,719	Surface
1986	0,684	Surface
1987	0,989	Surface
1988	3,380	Plongée
1989	2,719	Plongée
1990	9,057	Plongée
1991	2,985	Plongée
1992	3,909	Plongée
1993	0,089	Plongée
1994	0,248	Plongée
1995	S.O.	Plongée
1996	S.O.	Plongée
1997	S.O.	Plongée
1998	0,469	Plongée
1999	S.O.	Plongée
2000	0,288	Plongée
2001	0,035	Plongée
2002	0,149	Plongée
2003	1,462	Plongée
2004	2,996	Plongée
2005	0,575	Plongée
2006	1,828	Plongée
2007	1,469	Plongée
2008	2,000	Plongée
2009	2,871	Plongée
2010	2,725	Plongée
2011	2,641	Plongée
2012	2,416	Plongée
2013	2,076	Plongée
2014	1,368	Plongée
2015	S.O.	Plongée
2016	3,001	Plongée
2017	S.O.	Plongée

Tableau B.15. Nombre selon l'âge pour le hareng du Pacifique dans la région d'évaluation des stocks de Haida Gwaii de 1951 à 2017. Légende : « Engin 1 » représente les pêches minotières, les pêches au hareng de consommation et d'appât, et les pêches au hareng destiné à des usages spéciaux; « Engin 2 » représente la pêche au hareng rogué à la senne; « Engin 3 » représente la pêche au hareng rogué au filet maillant. La classe d'âge 10 est un groupe « plus » qui comprend les poissons d'âge 10 et plus.

		Nombre selon l'âge								
Année	Engin	2	3	4	5	6	7	8	9	10
1951	1	1	226	781	226	170	62	9	1	0
1952	1	381	485	760	479	92	25	2	0	0
1956	1	2	216	130	838	113	37	10	0	2
1957	1	983	1 142	746	454	1 265	116	21	6	0
1958	1	2 324	466	35	5	4	4	0	0	0
1959	1	1	60	27	7	0	0	0	0	0
1962	1	13	161	177	41	28	7	1	0	0
1963	1	3	402	218	146	17	16	0	1	1
1964	1	5	81	314	94	28	6	0	0	0
1965	1	17	840	116	46	22	10	2	0	0
1984	1	11	68	4	8	16	73	4	1	1
1972	2	36	386	454	190	72	29	11	5	1
1973	2	3	700	372	471	138	29	13	0	0
1974	2	2	493	653	286	147	30	5	1	0
1975	2	38	1 521	2 056	1 677	573	117	22	6	0
1976	2	18	116	1 557	1 225	948	263	40	3	0
1977	2	3	630	258	947	739	486	144	13	0
1978	2	2	323	214	117	323	174	65	12	4
1979	2	57	45	322	191	217	154	29	4	1
1980	2	17	2 819	151	182	94	64	39	19	3
1981	2	9	175	4 201	267	151	90	35	9	6
1982	2	30	167	163	3 117	88	60	36	19	5
1983	2	96	103	69	135	1 434	77	31	18	5
1984	2	83	1 200	154	92	336	1 382	35	11	5
1985	2	47	531	1 132	144	160	404	1 119	16	3
1986	2	109	135	1 041	1 902	191	155	380	905	15
1987	2	57	342	192	799	1 239	126	142	190	194
1988	2	61	855	126	80	197	249	23	28	57
1989	2	175	625	2 364	143	56	139	99	22	37
1990	2	11	487	918	3 033	199	93	193	86	33
1991	2	227	140	361	972	1 303	125	61	135	63
1992	2	23	1 243	159	270	402	992	77	19	43
1993	2	12	128	2 240	165	225	448	436	43	15
1994	2	75	52	61	590	129	133	132	39	8
1995	2	119	96	12	24	193	49	40	26	12
1996	2	351	560	92	35	43	165	26	12	4
1997	2	465	435	550	86	25	73	88	14	6
1998	2	10	1 470	758	315	73	18	33	30	9
1999	2	101	57	1 557	419	195	62	16	10	13

			Nombre selon l'âge							
Année	Engin	2	3	4	5	6	7	8	9	10
2000	2	183	415	85	1 271	171	97	9	10	4
2001	2	243	375	264	58	252	37	16	3	1
2002	2	859	758	728	367	87	374	42	14	3
2003	2	2	1 597	387	134	75	25	51	10	3
2004	2	394	43	442	77	32	22	11	5	3
2005	2	17	606	205	374	51	31	16	6	3
2006	2	139	72	318	70	111	21	3	0	2
2007	2	6	247	78	114	32	56	12	1	0
2008	2	86	68	583	70	79	17	15	0	2
2009	2	1	645	76	222	20	29	4	5	1
2010	2	92	95	658	62	171	19	15	3	2
2011	2	21	521	90	370	65	100	9	4	0
2012	2	144	122	314	33	168	15	25	2	3
2013	2	0	739	136	140	21	45	6	4	0
2014	2	16	41	767	129	106	16	38	6	3
2015	2	35	224	56	533	61	81	18	14	4
2016	2	75	73	77	26	170	20	9	1	1
2017	2	102	238	74	83	37	148	36	11	10
1974	3	0	9	76	40	26	5	0	0	1
1975	3	0	0	9	16	12	2	1	0	0
1976	3	0	0	1	29	81	19	3	0	0
1978	3	0	1	8	19	32	65	33	6	1
1979	3	0	0	50	50	50	40	7	1	1
1980	3	0	35	42	376	195	209	65	15	1
1981	3	0	2	677	75	85	44	17	5	0
1982	3	0	1	18	464	18	14	6	4	1
1983	3	0	0	10	21	665	23	19	5	4
1984	3	0	11	5	18	35	313	7	1	1
1985	3	0	0	22	3	6	16	96	1	0
1986	3	0	0	48	205	22	21	42	65	2
1990	3	0	2	36	189	44	37	74	37	14
1991	3	0	0	10	85	175	36	27	41	20
1999	3	0	4	185	137	175	60	16	8	16

240

Tableau B.16. Nombre selon l'âge pour le hareng du Pacifique dans la région d'évaluation des stocks du district de Prince Rupert de 1951 à 2017. Légende : « Engin 1 » représente les pêches minotières, les pêches au hareng de consommation et d'appât, et les pêches au hareng destiné à des usages spéciaux; « Engin 2 » représente la pêche au hareng rogué à la senne; « Engin 3 » représente la pêche au hareng rogué au filet maillant. La classe d'âge 10 est un groupe « plus » qui comprend les poissons d'âge 10 et plus.

			Nombre selon l'âge									
Année	Engin	2	3	4	5	6	7	8	9	10		
1951	1	203	852	2 7 3 9	486	263	124	12	2	1		
1952	1	282	522	1 994	2 679	364	61	18	2	0		
1953	1	17	541	327	361	158	14	1	0	0		
1954	1	56	753	772	638	351	69	16	1	0		
1955	1	31	55	795	177	59	12	2	0	0		
1956	1	169	978	160	319	43	9	3	2	0		
1957	1	397	666	1 767	817	658	78	19	2	0		
1958	1	388	302	78	106	17	20	0	0	0		
1959	1	54	1 000	785	216	205	53	39	5	0		
1960	1	2 067	263	1 186	374	174	106	28	8	0		
1961	1	419	2 508	313	774	187	69	25	5	0		
1962	1	53	535	789	119	171	55	17	8	5		
1963	1	1 342	454	621	753	123	101	17	2	2		
1964	1	126	2 208	344	372	301	24	20	4	1		
1965	1	201	457	1 723	365	401	345	70	18	7		
1966	1	0	23	93	102	71	83	42	14	7		
1973	1	35	73	12	20	7	4	2	0	0		
1975	1	1	9	13	37	12	10	2	2	0		
1976	1	0	8	11	16	27	29	57	14	0		
1977	1	2	120	80	117	85	55	38	12	2		
1978	1	12	90	247	140	130	101	48	15	9		
1979	1	11	72	76	182	144	121	62	34	17		
1980	1	13	672	67	82	77	61	44	20	11		
1981	1	30	238	1 623	294	302	260	123	64	33		
1982	1	7	144	280	520	130	78	44	22	7		
1984	1	9	168	76	75	50	97	15	1	2		
1985	1	97	52	163	178	74	34	26	5	2		
2014	1	4	11	41	45	40	23	5	5	2		
2015	1	98	373	32	18	17	15	4	3	0		
2016	1	6	80	158	10	23	30	22	11	5		
2017	1	7	57	79	237	28	14	18	16	8		
1972	2	0	38	128	460	42	27	17	1	1		
1973	2	2	263	35	242	212	27	10	6	0		
1974	2	1	113	336	47	104	28	2	1	0		
1975	2	172	366	690	1 329	345	299	77	18	5		
1976	2	0	6	49	226	357	52	17	6	0		
1977	2	1	210	49	297	495	197	43	12	6		
1978	2	9	93	261	76	168	162	19	5	2		
1979	2	27	182	123	319	123	189	65	15	8		

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			Nombre selon l'âge									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Année	Engin	2	3	4	5	6	7	8	9	10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1980	2	18	2 262	208	147	113	100	37	11	3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1981	2	15	370	2 710	110	56	49	13	5	2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1982	2	100	296	115	1 025	44	21	6	3	0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1983	2	437	1 016	822	242	2 256	171	52	27	10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1984	2	17	1 138	436	314	448	721	31	9	4	
19862997785342 6166112984013135198724219044903271 4232811651366019882191 3061 64625135248882611619892227841 3071 001178162129231019902339201 1431 4311 400203168364819922151 6991 58725122828714626261993254321 7831 216162177175631419942443258853 2461 4872762489636199521406732974951 898692107563519962291 7632417611531614010719972356151 447216681331285061998247024657689430232731999217957063504257618151820012791 430875235702315260396200122288491 526593312	1985	2	130	328	2 237	516	263	429	327	8	6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1986	2	99	778	534	2 616	611	298	401	313	5	
19882191 3061 64625135248882611619892227841 3071 001178162129231019902339201 1431 4311 04020316810921199121131 99039151964939168364819922151 6991 58725122828714626261993254321 7831 216162177175631419942443258853 2461 4872762489636199521406732974951 898692107563519962291 7632417611531614010719972356151 447216681331285061998247024657689430232731999217957063504257618151820002771 113811 13249864689201820012791 430875235702315260396200222288491 5268461864	1987	2	42	1 904	490	327	1 423	281	165	136	60	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1988	2	19	1 306	1 646	251	352	488	82	61	16	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1989	2	22	784	1 307	1 001	178	162	129	23	10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1990	2	33	920	1 143	1 431	1 040	203	168	109	21	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1991	2	113	1 990	391	519	649	391	68	36	48	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1992	2	15	1 699	1 587	251	228	287	146	26	26	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1993	2	5	432	1 783	1 216	162	177	175	63	14	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1994	2	44	325	885	3 246	1 487	276	248	96	36	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1995	2	140	673	297	495	1 898	692	107	56	35	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1996	2	29	1 763	241	76	115	316	140	10	7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1997	2	35	615	1 447	216	68	133	128	50	6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1998	2	4	702	465	768	94	30	23	27	3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1999	2	17	95	706	350	425	76	18	15	18	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2000	2	77	1 111	381	1 132	498	646	89	20	18	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2001	2	79	1 430	875	235	702	315	260	39	6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2002	2	228	849	1 526	846	186	430	167	82	13	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2003	2	11	2 253	502	593	312	90	131	47	22	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2004	2	23	50	1 700	273	238	98	19	28	3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2005	2	21	856	268	1 297	279	166	59	13	13	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2006	2	29	327	887	176	460	78	32	9	3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2007	2	27	355	161	78	22	72	9	7	1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2008	2	69	578	2 062	448	310	65	135	29	10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2009	2	11	847	703	1 723	286	197	45	59	3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2010	2	41	1 095	888	377	676	108	54	10	13	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2011	2	17	1 230	1 058	527	208	294	49	19	6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2012	2	97	301	1 452	717	312	164	123	13	4	
20142911066318623010241154201524112061685491621857123920162343039871323668771261020172333824411035154274664311197430141223631001975300152840000	2013	2	20	1 167	490	609	328	89	62	25	1	
201524112061685491621857123920162343039871323668771261020172333824411035154274664311197430141223631001975300152840000	2014	2	9	110	663	186	230	102	41	15	4	
20162343039871323668771261020172333824411035154274664311197430141223631001975300152840000	2015	2	41	1 206	168	549	162	185	71	23	9	
20172333824411 035154274664311197430141223631001975300152840000	2016	2	34	303	987	132	366	87	71	26	10	
197430141223631001975300152840000	2017	2	33	382	441	1 035	154	274	66	43	11	
1975 3 0 0 15 28 4 0 0 0 0	1974	3	0	1	41	22	36	3	1	0	0	
	1975	3	0	0	15	28	4	0	0	0	0	
1976 3 0 0 9 33 13 2 0 0 0	1976	3	0	0	9	33	13	2	0	0	0	
1977 3 0 3 6 56 152 41 19 4 0	1977	3	0	3	6	56	152	41	19	4	0	
1978 3 0 0 31 9 49 50 10 2 0	1978	3	0	0	31	9	49	50	10	2	0	
1979 3 3 3 21 108 41 58 21 5 1	1979	3	3	3	21	108	41	58	21	5	1	

				No	mbre s	elon l'â	ge			
Année	Engin	2	3	4	5	6	7	8	9	10
1980	3	0	17	43	154	110	104	45	17	3
1981	3	0	2	166	66	98	63	24	8	0
1984	3	0	5	10	65	108	290	17	6	4
1985	3	0	2	90	82	87	120	164	2	3
1986	3	0	5	55	686	242	111	99	73	3
1987	3	0	10	53	122	973	283	155	105	60
1988	3	0	3	46	51	153	318	83	36	20
1989	3	0	0	22	145	65	112	104	16	12
1990	3	0	0	34	116	231	56	63	33	11
1991	3	0	0	39	171	288	287	61	40	30
1992	3	0	3	112	80	195	225	164	34	43
1993	3	0	0	62	302	71	138	99	61	12
1994	3	0	0	24	160	434	110	101	54	16
1995	3	0	1	10	144	295	334	35	16	13
1996	3	0	4	21	29	132	167	135	16	7
1997	3	0	1	123	73	88	128	130	70	18
1998	3	0	7	33	466	222	107	122	76	49
1999	3	0	0	78	119	357	97	33	14	23
2000	3	0	1	17	187	166	342	76	9	13
2001	3	0	3	58	97	337	215	266	55	9
2002	3	0	1	62	178	103	241	139	135	20
2003	3	0	3	40	323	226	92	107	46	33
2004	3	0	1	244	151	412	172	55	53	29
2005	3	0	0	6	350	136	195	44	10	13
2006	3	0	0	14	36	303	77	69	7	0
2007	3	1	11	40	208	108	630	150	65	15
2008	3	0	1	126	102	224	108	519	77	40
2009	3	0	1	20	406	187	144	53	92	11
2010	3	0	0	19	72	492	145	78	31	30
2011	3	0	2	49	138	282	601	108	45	19
2012	3	0	0	35	110	150	225	370	54	28
2013	3	1	47	18	209	242	100	102	54	9
2014	3	0	1	55	120	363	277	105	72	19
2015	3	0	18	10	150	209	342	213	52	30
2016	3	0	2	234	65	172	216	198	88	26
2017	3	0	2	40	557	119	158	122	76	23

Tableau B.17. Nombre selon l'âge pour le hareng du Pacifique dans la région d'évaluation des stocks district de la côte centrale de 1951 à 2017. Légende : « Engin 1 » représente les pêches minotières, les pêches au hareng de consommation et d'appât, et les pêches au hareng destiné à des usages spéciaux; « Engin 2 » représente la pêche au hareng rogué à la senne; « Engin 3 » représente la pêche au hareng rogué au filet maillant. La classe d'âge 10 est un groupe « plus » qui comprend les poissons d'âge 10 et plus.

					Nombre	e selon l	'âge			
Année	Engin	2	3	4	5	6	7	8	9	10
1951	1	129	1 518	2 693	638	269	66	3	0	0
1952	1	267	1 035	1 551	1 966	232	79	23	2	1
1953	1	274	822	702	779	297	39	13	0	0
1954	1	126	2 222	646	147	41	5	0	2	0
1955	1	156	181	1 749	213	36	9	0	0	0
1956	1	853	688	465	2 880	146	17	2	0	1
1957	1	785	2 377	506	292	693	34	1	0	0
1958	1	880	2 298	474	48	22	21	0	0	0
1959	1	189	2 463	1835	403	40	22	21	1	0
1960	1	616	328	375	79	16	1	1	0	0
1961	1	450	902	302	831	282	26	3	2	1
1962	1	78	464	145	21	80	19	1	0	0
1963	1	4	329	630	59	31	32	2	0	0
1964	1	164	549	320	118	17	1	0	0	0
1965	1	143	637	591	277	95	6	1	0	0
1977	1	2	65	37	59	16	13	6	0	0
1972	2	80	548	508	472	127	80	21	1	0
1973	2	16	670	247	206	156	25	6	2	0
1974	2	44	281	613	313	212	105	15	4	0
1975	2	103	2 932	2 269	2 477	764	283	60	6	2
1976	2	163	637	2 234	1 132	912	246	80	13	1
1977	2	17	435	565	793	414	213	48	10	1
1978	2	3	359	212	278	323	152	49	15	5
1980	2	99	1 933	170	235	106	67	18	10	3
1981	2	105	431	2 147	263	230	88	20	11	3
1982	2	59	548	376	2 112	182	160	51	17	3
1983	2	29	381	840	589	3 109	274	169	40	14
1984	2	274	460	637	1 143	1 016	2 563	142	52	6
1985	2	149	2 052	410	457	698	638	987	24	7
1986	2	330	973	2 379	516	384	404	367	697	37
1987	2	518	1 181	748	1 629	295	231	294	236	291
1988	2	59	3 528	606	326	370	87	76	78	64
1989	2	72	260	4 300	517	202	158	42	45	46
1990	2	121	403	347	4 985	511	260	202	51	53
1991	2	226	1 348	480	440	3 947	453	166	105	33
1992	2	146	4 241	828	199	250	1 362	155	44	39
1993	2	318	597	5 621	851	177	225	916	99	41
1994	2	85	1 538	620	3 888	549	148	199	257	24
1995	2	101	592	2 254	897	4 615	609	193	221	168

		Nombre selon l'âge									
Année	Engin	2	3	4	5	6	7	8	9	10	
1996	2	667	1 1 1 4	323	926	388	1 698	325	83	77	
1997	2	146	3 892	1 161	249	422	274	583	106	38	
1998	2	34	2 393	2 793	553	155	202	198	192	51	
1999	2	39	440	2 141	1 709	326	81	106	97	66	
2000	2	16	865	490	1 572	1 186	263	53	41	41	
2001	2	112	340	1 194	517	1 173	831	181	38	28	
2002	2	337	1 875	581	971	338	1 124	475	78	15	
2003	2	21	2 060	1 079	333	388	180	317	120	25	
2004	2	37	225	2 085	542	112	147	75	70	18	
2005	2	42	2 311	1 037	2 101	566	125	112	60	40	
2006	2	53	702	3 246	585	967	199	44	31	8	
2007	2	32	700	444	739	190	185	37	10	3	
2008	2	224	162	659	184	246	44	43	8	2	
2009	2	130	2 104	308	238	67	63	8	10	2	
2010	2	41	387	1 597	133	189	51	52	2	6	
2011	2	124	1 359	427	671	85	63	18	16	4	
2012	2	171	236	1 082	267	373	53	35	11	7	
2013	2	36	659	177	333	77	78	6	4	2	
2014	2	61	94	299	57	90	18	19	3	0	
2015	2	9	532	183	291	65	75	10	5	1	
2016	2	70	161	971	166	258	50	69	19	5	
2017	2	43	252	196	662	132	137	35	18	10	
1972	3	0	3	49	214	35	26	2	0	0	
1973	3	0	4	40	71	33	7	2	1	0	
1974	3	0	2	113	187	123	61	9	1	0	
1975	3	0	17	133	240	85	33	11	0	0	
1976	3	0	10	230	364	431	144	37	5	1	
1977	3	0	5	59	161	143	61	18	6	0	
1978	3	0	14	96	318	410	190	41	5	1	
1980	3	0	9	7	68	65	72	31	18	4	
1981	3	4	23	779	209	236	163	84	28	10	
1982	3	0	32	79	1 016	89	79	31	10	1	
1983	3	0	9	129	234	1 245	90	70	11	5	
1984	3	0	3	34	152	200	696	55	13	6	
1985	3	0	41	70	121	251	290	492	13	10	
1986	3	0	19	256	128	107	171	141	238	9	
1987	3	0	8	76	440	115	77	97	80	88	
1988	3	0	24	58	84	154	86	42	57	61	
1989	3	0	2	196	178	123	117	41	26	27	
1990	3	0	0	10	551	143	53	66	9	15	
1991	3	0	3	14	41	417	60	44	19	5	
1992	3	0	54	54	33	51	475	76	26	11	
1993	3	0	2	342	112	44	45	211	17	8	
1994	3	0	30	94	1 287	237	69	83	135	16	

							1.0					
		Nombre seion Lage										
Année	Engin	2	3	4	5	6	7	8	9	10		
1995	3	0	3	112	101	823	135	23	29	41		
1996	3	0	2	8	102	65	306	59	12	12		
1997	3	0	7	15	32	117	99	197	37	10		
1998	3	0	5	149	142	90	183	164	217	81		
1999	3	0	1	132	416	166	62	51	57	42		
2000	3	0	3	14	277	285	71	11	6	18		
2001	3	0	0	39	46	422	225	57	9	2		
2002	3	0	3	30	105	38	237	83	7	1		
2003	3	0	4	33	103	238	104	306	114	23		
2014	3	0	1	261	36	248	122	109	22	15		

Tableau B.18. Nombre selon l'âge pour le hareng du Pacifique dans la région d'évaluation des stocks du détroit de Georgie de 1951 à 2017. Légende : « Engin 1 » représente les pêches minotières, les pêches au hareng de consommation et d'appât, et les pêches au hareng destiné à des usages spéciaux; « Engin 2 » représente la pêche au hareng rogué à la senne; « Engin 3 » représente la pêche au hareng rogué au filet maillant. La classe d'âge 10 est un groupe « plus » qui comprend les poissons d'âge 10 et plus.

		Nombre selon l'âge									
Année	Engin	2	3	4	5	6	7	8	9	10	
1951	1	326	4 413	2 371	556	110	27	8	2	0	
1952	1	1 008	4 900	2 191	589	114	23	6	1	0	
1953	1	763	3 509	1 897	285	96	15	4	0	0	
1954	1	200	6 011	4 845	1 520	432	124	27	3	0	
1955	1	227	2 533	2 048	350	57	6	0	0	0	
1956	1	280	2 550	2 628	2 307	529	86	26	5	3	
1957	1	84	3 829	1 566	761	333	38	3	1	1	
1958	1	588	3 548	1 528	428	363	212	29	5	0	
1959	1	1 616	6 073	1 455	251	55	24	12	2	1	
1960	1	288	1 921	1 368	135	20	6	3	0	1	
1961	1	1 292	1 252	1 191	765	263	39	4	0	0	
1962	1	317	2 348	608	212	114	30	9	0	0	
1963	1	427	1 388	734	113	33	14	2	0	0	
1964	1	259	2 650	1 507	172	36	11	5	0	0	
1965	1	555	1 870	891	95	36	8	5	0	0	
1966	1	184	274	191	114	18	9	0	0	0	
1972	1	394	1 313	1 337	696	143	51	5	1	0	
1973	1	47	1 294	1 432	1 188	585	82	14	2	0	
1974	1	15	63	7	1	0	0	0	0	0	
1975	1	97	265	54	9	6	2	0	1	0	
1976	1	272	872	1 723	914	272	117	41	18	2	
1977	1	110	1 349	584	439	118	33	13	4	3	
1978	1	42	695	815	207	145	59	10	7	2	
1979	1	44	437	1 002	703	213	121	30	7	3	
1980	1	121	1 753	969	773	345	91	52	15	4	

		Nombre selon l'âge										
Année	Engin	2	3	4	5	6	7	8	9	10		
1981	1	176 1 5	521	1 554	715	391	135	21	5	0		
1982	1	80 8	339	711	349	133	92	19	2	1		
1983	1	60 3	336	507	392	211	77	91	44	9		
1984	1	279 5	598	435	321	153	63	19	8	6		
1985	1	681 9	993	464	188	77	25	8	2	0		
1986	1	116 5	501	177	50	15	3	1	0	0		
1987	1	192 3	306	273	88	17	4	2	0	0		
1988	1	32 5	550	158	140	25	6	2	1	0		
1989	1	278 ´	174	450	74	62	9	2	0	0		
1990	1	37 4	427	102	144	16	19	0	0	0		
1991	1	162 2	286	313	57	56	7	2	0	0		
1992	1	31 5	526	92	56	4	1	1	0	0		
1993	1	253 3	302	316	67	26	3	6	1	0		
1994	1	42 2	287	134	81	9	5	0	0	0		
1995	1	294 3	329	413	125	54	8	2	0	1		
1996	1	421 8	321	199	157	41	18	3	0	0		
1997	1	112 3	304	70	16	4	1	2	1	0		
1998	1	60 6	599	596	99	19	8	2	0	0		
1999	1	1/5 4	416	619	217	46	9	2	0	0		
2000	1	422	130	259	210	65	18	2	2	0		
2001	1	91 3		326	85	50	22	6	2	0		
2002	1		949	369	93 75	10	5	2	0	1		
2003	1	20 0	5//	303	15	21	5	2	2 1	0		
2004	1	40 4	200	402	100	30	9 17	0	1	0		
2005	1	4Z 2	207	134	134 64	43	17	ა ი	1	0		
2000	1	01 57 4	54	142	104	40 25	14	2	0	0		
2007	1	320 0	224	1 1 2 /	276	20	22	ے 15	1	0		
2000	1	020 2 8 6	204	150	52	10	22	0	0	0		
2003	1	272	103	705	50	29	10	2	3	0		
2010	1	354 1 (	100	126	114	10	6	0	0	0		
2012	1	246 2 3	382	1 917	172	143	9	4	0	0		
2013	1	823 14	129	1 1 1 6	674	51	39	4	0	Õ		
2014	1	148 1 9	940	618	350	241	18	18	3	0		
2015	1	671 13	365	1 292	345	151	75	12	2	0		
2016	1	842 1 (	)25	1 153	656	152	36	8	2	1		
2017	1	439 12	216	900	722	341	68	11	2	0		
1972	2	428 1 8	319	1 655	903	174	50	6	1	0		
1973	2	16 2	208	81	49	23	2	Ō	0	Ō		
1975	2	191 28	352	1 452	408	174	83	25	9	Ō		
1976	2	135 2	279	456	166	38	26	17	5	1		
1977	2	79 13	315	474	341	91	30	18	6	3		
1978	2	29 1 2	209	1 477	396	253	47	10	1	2		
1979	2	23 2	282	461	394	132	73	29	9	6		
				No	ombre se	elon l'âg	je					
-------	-------	--------	-----------------------------------------	---------	------------	------------	-----------	----------	---------	----		
Année	Engin	2	3	4	5	6	7	8	9	10		
1980	2	103	2 061	656	733	408	107	51	11	5		
1981	2	660	3 111	2 493	903	774	297	52	23	2		
1982	2	371	1 875	1 354	1 127	253	282	135	30	4		
1983	2	358	3 759	3 407	2 134	1 372	381	366	150	35		
1984	2	894	2 869	2 101	935	515	242	81	35	11		
1985	2	2 818	3 815	1 558	651	276	108	47	5	1		
1986	2	818	3 603	1 423	396	123	48	9	5	0		
1987	2	855	2 584	2 861	1 176	273	82	29	10	5		
1988	2	327	3 568	883	900	242	61	13	4	0		
1989	2	643	1 157	3 435	607	456	102	20	2	1		
1990	2	496	3 251	607	1 070	170	97	23	3	1		
1991	2	701	1 191	2 125	473	770	118	74	10	1		
1992	2	260	2 762	691	843	176	260	30	16	1		
1993	2	963	2 138	1 747	379	326	76	84	8	2		
1994	2	279	2 5 1 8	1 594	1 120	238	168	42	9	0		
1995	2	664	1 317	2 080	1 010	627	155	62	20	6		
1996	2	1 125	4 051	1 170	1 198	481	280	57	19	1		
1997	2	805	3 810	1667	428	464	185	107	9	5		
1998	2	349	3 992	2 608	1 005	216	166	62	16	2		
1999	2	231	898	1 553	687	245	6/	26	10	2		
2000	2	692	2 444	1 237	1432	570	13/	19	13	1		
2001	2	499	2 8 3 0	1 047	504 607	231	109	39	0	2		
2002	2	413	2 0 0 0 0	1 323	1 060	127	108	21	4	0		
2003	2	200	3 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	J 240	1 000	310	67	33	/ 0	1		
2004	2	227	1 2 1 2	1 200	902	220	07 85	14	0 10	1		
2005	2	1 / 20	1 2 2 /	1 005	724	JUZ 442	00	30	10 Q	4		
2000	2	1430	2 /60	1 38/	647	324	90 17/	40	10	1		
2007	2	75	2 403	2 5 3 1	562	215	80	+0 27	8	2		
2000	2	16	2 644	2 551	559	173	58	25	10	1		
2010	2	566	164	3 4 2 8	269	300	70	26	7	4		
2010	2	319	3 243	576	1 031	105	57	22	4	1		
2012	2	82	1 757	2 391	208	391	36	11	4	0		
2013	2	245	1 190	1 457	1311	102	160	13	2	2		
2014	2	134	973	482	577	472	45	45	4	1		
2015	2	363	2 399	2 350	541	308	160	13	9	0		
2016	2	512	1 342	1 808	923	202	110	70	7	4		
2017	2	392	1 312	1 3 1 9	1 071	398	85	36	12	2		
1972	3	46	119	481	300	71	15	2	1	0		
1973	3	0	39	68	84	25	7	1	0	0		
1974	3	0	48	418	310	165	40	9	Ō	0		
1975	3	0	9	78	65	22	6	1	0	0		
1976	3	0	5	349	385	112	26	6	1	0		
1977	3	0	54	456	755	263	60	8	2	0		

				No	ombre se	elon l'âg	je			
Année	Engin	2	3	4	5	6	7	8	9	10
1978	3	0	4	115	170	202	65	8	2	0
1979	3	0	7	141	332	82	35	9	0	1
1980	3	0	15	69	336	252	66	14	2	0
1981	3	1	25	207	262	426	183	32	3	1
1982	3	0	37	128	237	123	173	118	14	3
1983	3	0	2	113	120	96	38	30	7	1
1984	3	0	54	231	238	147	71	13	5	7
1985	3	1	34	286	356	259	101	41	9	9
1987	3	0	48	684	642	317	163	50	11	5
1988	3	0	75	122	395	160	45	19	3	2
1989	3	0	13	331	181	213	64	18	3	0
1990	3	0	115	160	771	167	133	20	4	1
1991	3	0	14	306	187	436	79	51	13	1
1992	3	0	74	174	510	137	221	31	17	5
1993	3	0	104	363	154	196	37	49	2	2
1994	3	1	45	300	537	183	95	30	8	2
1995	3	0	21	243	341	242	52	22	4	2
1996	3	0	21	86	247	119	56	10	4	1
1997	3	0	30	113	104	202	108	54	16	6
1998	3	0	45	450	438	185	191	57	26	6
1999	3	0	18	245	307	176	56	28	5	1
2000	3	0	12	161	488	309	99	24	4	0
2001	3	0	31	190	263	345	154	34	7	3
2002	3	0	45	206	285	149	178	45	5	2
2003	3	0	32	293	452	316	139	87	29	6
2004	3	0	25	278	451	276	116	25	13	1
2005	3	0	5	91	352	207	80	28	9	1
2006	3	0	7	119	315	322	160	40	11	1
2007	3	0	144	397	801	802	551	146	42	7
2008	3	1	32	857	468	318	159	56	18	1
2009	3	0	42	63	466	166	99	29	11	1
2010	3	0	1	222	67	428	114	60	23	8
2011	3	0	103	77	1 171	205	260	61	18	8
2012	3	1	247	1 306	154	398	50	28	4	2
2013	3	0	27	286	689	84	160	8	4	2
2014	3	0	23	110	489	799	75	106	9	2
2015	3	0	100	456	386	645	634	55	29	3
2016	3	2	159	618	564	252	263	229	27	18
2017	3	1	56	622	1 022	645	187	86	39	3

Tableau B.19. Nombre selon l'âge pour le hareng du Pacifique dans la région d'évaluation des stocks district de la côte ouest de l'île de Vancouver de 1951 à 2017. Légende : « Engin 1 » représente les pêches minotières, les pêches au hareng de consommation et d'appât, et les pêches au hareng destiné à des usages spéciaux; « Engin 2 » représente la pêche au hareng rogué à la senne; « Engin 3 » représente la pêche au hareng rogué au filet maillant. La classe d'âge 10 est un groupe « plus » qui comprend les poissons d'âge 10 et plus.

				١	lombre	selon l'	âge			
Année	Engin	2	3	4	5	6	7	8	9	10
1951	1	508	1 519	1 666	272	58	12	1	1	0
1952	1	97	1 435	1 230	1 824	245	72	16	2	0
1953	1	565	2 220	1 086	65	19	2	0	0	0
1954	1	163	3 852	1 681	338	42	9	5	1	1
1955	1	422	1 490	494	86	16	1	0	0	0
1956	1	575	2 990	743	282	52	7	2	2	0
1957	1	16	423	146	2	1	0	0	0	0
1958	1	154	579	322	75	34	20	5	1	0
1959	1	155	1 650	1 004	528	141	88	74	21	4
1960	1	255	1 575	671	252	81	27	10	4	2
1961	1	274	248	118	26	1	0	0	0	0
1962	1	59	1 031	130	31	10	0	0	0	0
1963	1	39	985	1 110	106	14	4	0	0	0
1964	1	30	713	305	123	10	3	0	0	0
1965	1	18	283	411	82	27	3	0	0	0
1966	1	1	124	100	64	8	3	0	0	0
1978	1	29	935	479	259	311	45	19	7	5
1984	1	2	42	10	2	1	3	0	0	0
1972	2	51	291	756	387	55	18	12	1	0
1973	2	18	784	625	823	277	40	7	2	0
1974	2	436	2 333	1 298	738	480	120	12	2	1
1975	2	60	5 437	2 005	1 153	806	505	130	17	1
1976	2	19	818	4 332	1 828	1 196	746	251	40	0
1977	2	35	838	2 097	2 507	834	301	112	19	3
1978	2	41	2 396	1 066	1 000	1 104	264	77	11	4
1979	2	30	530	1 966	554	414	306	60	20	5
1980	2	86	1 317	448	661	218	182	73	14	3
1981	2	138	1 415	1 173	433	512	231	94	21	0
1982	2	160	1 210	1 401	1 316	2/5	466	132	/1	15
1983	2	135	723	/01	702	566	142	173	34	29
1984	2	888	1 231	425	286	316	191	35	33	8
1985	2	/53	1 695	446	114	83	99	53	4	(
1986	2	157	2 094	1 233	344	130	93	73	24	3
1987	2	760	803	1624	1 0 1 1	346	120	65	51	18
1988	2	191	4 548	5/1	1 100	736	209	55	33	16
1989	2	146	903	3 482	3/6	495	259	39	10	2
1990	2	33		849	3 Z33	307	406	125	10	6
1991	2	482	1 202	1 543	180	2 420	220	251	48 70	2
1992	2	97	2 860	630	803	360	1 017	126	73	13

				٨	lombre	selon l'â	ige			
Année	Engin	2	3	4	5	6	7	8	9	10
1993	2	214	1 528	2 255	380	416	226	423	51	31
1994	2	182	1 361	1 449	1 862	491	311	330	97	15
1995	2	40	646	1 200	1 023	1 277	334	220	155	35
1996	2	1 122	1 537	907	1 412	928	955	203	84	60
1997	2	144	4 068	478	268	395	293	197	32	20
1998	2	119	1 149	3 155	336	149	172	98	59	16
1999	2	70	961	1 044	1 641	325	112	63	31	16
2000	2	278	1 110	929	849	1 286	177	60	30	10
2001	2	165	1 074	475	197	178	222	31	5	5
2002	2	368	2 662	1 136	371	140	157	131	15	1
2003	2	96	2 191	2 042	705	135	62	42	33	4
2004	2	391	1 316	2 450	1 004	286	64	21	11	1
2005	2	157	1 655	939	680	237	71	12	2	3
2006	2	174	430	387	91	62	9	1	0	0
2007	2	7	303	211	66	11	4	0	0	0
2008	2	54	255	559	119	32	8	6	1	1
2009	2	44	1 204	284	230	41	10	0	0	0
2010	2	356	597	859	105	91	14	2	0	0
2011	2	62	806	270	123	12	6	0	0	0
2012	2	19	168	561	93	53	6	3	0	0
2013	2	15	106	66	209	22	20	2	0	0
2014	2	8	209	41	8	9	2	0	1	0
2015	2	217	368	781	105	27	43	6	0	1
2016	2	46	754	195	144	16	3	5	1	0
2017	2	27	81	703	140	87	17	2	2	0
1973	3	0	49	143	323	84	18	6	1	0
1974	3	0	46	54	46	24	6	0	0	0
1975	3	0	8	82	102	57	19	1	0	0
1976	3	0	9	529	445	206	87	33	4	1
1977	3	2	12	59	153	63	44	19	5	1
1978	3	0	1	27	125	284	116	40	4	2
1979	3	0	/	148	152	143	108	11	2	0
1980	3	0	0	24	213	102	65	44	3	1
1981	3	0	5	59	42	102	53	20	0	0
1982	3	0	5	103	3/4	101	234	35	10	1
1983	3	0	2	81	136	256	37	56	2	1
1984	3	0	10	40	107	194	190	32	20	2
1987	3	0	10	135	340	30	12	16 4 5	5	2
1988	3	0	27	35	204	147	64	15	6	2
1989	3	0	1	208	42	85	36	6	4	0
1990	3	0	6	35	307	37	46	11	3	U
1991	3	0	1	25	41	223	28	28	2	1
1992	3	0	35	/5	1/1	()	166	16	14	2
1994	3	1	35	199	340	33	7	4	1	0

		Nombre selon l'âge										
Année E	Engin	2	3	4	5	6	7	8	9	10		
1998	3	0	5	344	99	87	181	111	51	21		
1999	3	0	8	106	527	159	44	31	12	1		
2000	3	0	8	47	169	330	39	16	14	2		
2002	3	0	0	55	154	82	110	120	12	2		
2003	3	0	15	99	203	142	77	103	57	4		
2004	3	0	5	179	154	158	92	24	14	5		
2005	3	0	4	54	294	143	61	22	1	2		

Tableau B.20. Nombre selon l'âge pour le hareng du Pacifique dans la région d'évaluation des stocks district de la zone 27 de 1951 à 2017. Légende : « Engin 1 » représente les pêches minotières, les pêches au hareng de consommation et d'appât, et les pêches au hareng destiné à des usages spéciaux; « Engin 2 » représente la pêche au hareng rogué à la senne; « Engin 3 » représente la pêche au hareng rogué au filet maillant. La classe d'âge 10 est un groupe « plus » qui comprend les poissons d'âge 10 et plus.

		Nombre selon l'âge								
Année	Engin	2	3	4	5	6	7	8	9	10
1954	1	0	127	108	27	2	3	0	0	0
1955	1	96	491	702	98	20	4	1	0	0
1964	1	0	44	29	21	1	0	0	0	0
1965	1	2	26	52	47	10	1	2	2	0
1978	1	1	38	4	14	12	2	0	0	0
1979	2	1	10	55	10	2	1	1	0	0
1981	2	17	103	467	63	101	12	0	0	0
1982	2	7	370	105	439	43	84	8	1	0
1983	2	4	21	32	11	29	0	4	0	0
1986	2	6	64	172	7	4	5	7	6	0
1987	2	48	78	45	100	3	0	3	1	4
1988	2	8	232	41	23	57	6	3	0	1
1989	2	1	59	268	38	39	53	6	2	0
1990	2	17	210	132	367	54	66	72	6	2
1991	2	33	145	33	38	83	10	18	8	0
1992	2	49	1 004	158	48	41	71	14	18	7
1993	2	72	228	248	32	10	9	32	2	4
1994	2	14	300	232	292	52	20	27	5	3
1995	2	24	91	504	348	352	59	19	23	8
1996	2	107	172	49	123	104	86	18	2	2
1997	2	23	441	42	9	23	27	9	0	0
1998	2	4	112	140	14	1	8	7	2	0
1999	2	59	213	257	189	31	4	4	2	1
2000	2	15	355	158	63	49	8	1	3	1
2001	2	13	41	70	25	24	19	2	1	1
2002	2	35	293	73	47	3	11	4	1	0
2003	2	3	295	214	36	23	1	4	1	0
2004	2	5	83	209	76	4	6	3	0	0

		Nombre selon l'âge									
Année	Engin	2	3	4	5	6	7	8	9	10	
2005	2	1	97	43	23	13	1	1	0	0	
2007	2	5	209	140	72	16	10	1	0	0	
2008	2	6	12	218	80	44	5	1	0	0	
2009	2	9	448	73	143	23	18	0	1	0	
2010	2	15	35	154	25	36	6	7	0	0	
2011	2	6	105	64	74	8	10	2	1	0	
2012	2	25	109	318	76	85	10	8	0	1	
2013	2	42	255	51	127	29	35	1	0	1	
1976	3	0	7	77	51	33	12	7	0	0	
1979	3	0	1	46	16	19	11	1	0	0	
1980	3	0	3	7	53	9	2	1	0	0	
1982	3	0	1	7	60	10	28	3	0	0	
1983	3	0	0	7	12	50	2	9	0	0	
1984	3	0	0	18	182	72	144	11	5	0	
1993	3	0	17	276	73	41	39	60	5	7	
1994	3	0	6	91	287	46	16	18	2	3	

Tableau B.21. Nombre selon l'âge pour le hareng du Pacifique dans la région d'évaluation des stocks district de la zone 2 Ouest de 1951 à 2017. Légende : « Engin 1 » représente les pêches minotières, les pêches au hareng de consommation et d'appât, et les pêches au hareng destiné à des usages spéciaux; « Engin 2 » représente la pêche au hareng rogué à la senne; « Engin 3 » représente la pêche au hareng rogué au filet maillant. La classe d'âge 10 est un groupe « plus » qui comprend les poissons d'âge 10 et plus.

		Nombre selon l'âge										
Année	Engin	2	3	4	5	6	7	8	9	10		
1957	1	0	26	13	1	1	0	0	0	0		
1965	1	0	23	4	14	4	3	2	0	0		
1981	1	2	4	52	1	1	0	0	0	0		
1973	2	0	11	28	26	66	7	2	1	0		
1974	2	16	54	49	46	17	24	4	0	0		
1975	2	2	171	123	47	13	14	4	0	0		
1976	2	46	13	80	46	9	0	0	0	0		
1978	2	0	15	53	21	86	13	12	6	0		
1979	2	8	101	123	87	123	74	10	6	4		
1980	2	0	119	26	11	8	5	0	1	0		
1981	2	107	50	837	143	86	56	20	5	0		
1982	2	31	648	25	887	71	37	20	6	1		
1983	2	23	45	1 893	101	1 111	98	42	25	18		
1984	2	32	8	3	175	12	253	9	3	1		
1985	2	5	29	52	28	218	28	631	7	1		
1986	2	3	1	42	43	20	76	27	152	2		
1987	2	152	273	2	5	5	6	32	4	14		
1988	2	27	1 119	292	4	8	10	12	25	15		
1989	2	6	42	934	195	6	6	12	10	17		

		Nombre selon l'âge										
Année	Engin	2	3	4	5	6	7	8	9	10		
1990	2	5	36	42	1901	412	11	5	14	21		
1991	2	17	415	54	80	2 163	501	26	15	17		
1992	2	179	197	270	32	55	1 198	243	11	19		
1993	2	27	367	449	386	55	125	1 097	140	20		
1994	2	10	23	82	28	18	4	11	10	2		
1998	2	252	407	269	212	32	7	18	2	0		
1999	2	120	249	216	110	56	12	4	2	0		
2000	2	13	56	16	0	2	0	1	0	0		
2001	2	17	33	158	95	47	27	8	2	2		
2002	2	448	281	53	236	104	73	30	16	3		
2003	2	7	879	95	11	45	12	14	5	4		
2004	2	139	76	555	58	13	12	2	0	2		
2005	2	4	297	96	654	45	6	9	0	2		
2006	2	50	65	82	32	209	16	8	3	0		
2007	2	2	374	73	42	21	120	10	3	1		
2008	2	61	3	75	15	5	4	15	0	1		
2009	2	21	590	20	99	18	20	18	24	4		
2010	2	55	210	240	18	63	14	36	17	12		
2011	2	20	455	167	212	15	32	6	4	1		
2012	2	34	91	176	70	75	7	14	2	4		
2013	2	2	412	57	123	42	32	0	4	1		
2014	2	14	1	116	18	55	28	25	3	5		
2015	2	14	266	11	47	4	27	10	6	1		
2016	2	17	46	342	13	50	8	2	0	0		
2017	2	37	70	48	340	17	36	13	4	0		
1974	3	78	17	9	24	9	14	2	0	0		

Tableau B.22. Poids selon l'âge en kilogrammes (kg) pour le hareng du Pacifique dans la région d'évaluation des stocks de Haida Gwaii de 1951 à 2017. Les résumés biologiques tiennent compte uniquement des échantillons prélevés à la senne (pêche commerciale et pêche à l'essai) en raison de la sélectivité en fonction de la taille des autres types d'engins tels que les filets maillants. La classe d'âge 10 est un groupe « plus » qui comprend les poissons d'âge 10 et plus.

				Poid	s selon l	'âge			
Année	2	3	4	5	6	7	8	9	10
1951	0,058	0,067	0,085	0,099	0,114	0,126	0,142	0,096	0,158
1952	0,039	0,076	0,101	0,116	0,136	0,152	0,143	0,096	0,158
1953	0,048	0,072	0,093	0,107	0,125	0,139	0,142	0,096	0,158
1954	0,048	0,072	0,093	0,107	0,125	0,139	0,142	0,096	0,158
1955	0,048	0,072	0,093	0,107	0,125	0,139	0,142	0,096	0,158
1956	0,043	0,088	0,110	0,121	0,147	0,160	0,166	0,096	0,158
1957	0,041	0,086	0,119	0,135	0,143	0,165	0,166	0,180	0,158
1958	0,046	0,075	0,100	0,122	0,147	0,161	0,152	0,113	0,158
1959	0,062	0,088	0,098	0,117	0,138	0,153	0,154	0,116	0,158
1960	0,048	0,082	0,104	0,120	0,140	0,156	0,156	0,120	0,158

				Poid	s selon l	'âge			
Année	2	3	4	5	6	7	8	9	10
1961	0,048	0,084	0,106	0,123	0,143	0,159	0,159	0,125	0,158
1962	0,053	0,091	0,116	0,136	0,157	0,150	0,168	0,131	0,158
1963	0,058	0,088	0,118	0,144	0,166	0,162	0,158	0,173	0,184
1964	0,057	0,092	0,110	0,136	0,162	0,183	0,159	0,133	0,164
1965	0,056	0,097	0,115	0,150	0,184	0,184	0,257	0,137	0,165
1966	0,055	0,090	0,113	0,138	0,163	0,168	0,180	0,140	0,166
1967	0,056	0,092	0,114	0,141	0,166	0,169	0,184	0,143	0,167
1968	0,056	0,092	0,114	0,142	0,168	0,173	0,188	0,145	0,169
1969	0,056	0,092	0,113	0,141	0,169	0,175	0,193	0,139	0,166
1970	0,056	0,093	0,114	0,142	0,170	0,174	0,200	0,141	0,167
1971	0,056	0,092	0,114	0,141	0,167	0,172	0,189	0,141	0,167
1972	0,059	0,107	0,150	0,171	0,212	0,231	0,242	0,250	0,250
1973	0,073	0,099	0,145	0,180	0,213	0,236	0,239	0,163	0,184
1974	0,110	0,089	0,126	0,157	0,194	0,213	0,244	0,254	0,187
1975	0,059	0,087	0,120	0,156	0,188	0,206	0,209	0,230	0,191
1976	0,063	0,099	0,124	0,152	0,184	0,207	0,236	0,240	0,196
1977	0,054	0,106	0,134	0,150	0,177	0,203	0,218	0,243	0,201
1978	0,070	0,096	0,131	0,155	0,170	0,189	0,207	0,235	0,254
1979	0,059	0,104	0,130	0,160	0,173	0,189	0,208	0,203	0,222
1900	0,054	0,004	0,104	0,140	0,173	0,100	0,194	0,230	0,220
1001	0,002	0,090	0,114	0,130	0,100	0,177	0,102	0,200	0,200
1902	0,004	0,102	0,119	0,120	0,142	0,104	0,174	0,193	0,203
108/	0,009	0,090	0,125	0,141	0,133	0,107	0,179	0,200	0,200
1085	0,004	0,034	0,110	0,130	0,141	0,152	0,172	0,104	0,135
1986	0,002	0,101	0,120	0,147	0,101	0,100	0,100	0,200	0,204
1987	0,070	0,117	0,141	0,155	0,171	0,100	0,100	0,202	0,220
1988	0,001	0.089	0,102	0 150	0,100	0,174	0,100	0,100	0,200
1989	0.055	0.093	0.119	0.145	0.159	0.178	0.192	0.193	0.205
1990	0.066	0.098	0.116	0.139	0.154	0.167	0.184	0.193	0.198
1991	0,061	0,085	0,113	0,127	0,142	0,156	0,163	0,176	0,182
1992	0,059	0,095	0,120	0,143	0,148	0,174	0,179	0,174	0,197
1993	0,077	0,101	0,116	0,128	0,148	0,153	0,161	0,183	0,194
1994	0,069	0,094	0,119	0,125	0,138	0,148	0,147	0,155	0,183
1995	0,060	0,093	0,129	0,139	0,150	0,159	0,181	0,175	0,186
1996	0,062	0,090	0,110	0,133	0,145	0,153	0,155	0,159	0,151
1997	0,056	0,087	0,105	0,122	0,151	0,152	0,160	0,163	0,171
1998	0,062	0,080	0,084	0,109	0,120	0,136	0,140	0,148	0,149
1999	0,058	0,089	0,103	0,111	0,128	0,137	0,148	0,141	0,169
2000	0,055	0,081	0,096	0,114	0,129	0,137	0,144	0,143	0,162
2001	0,052	0,080	0,100	0,115	0,131	0,143	0,160	0,167	0,211
2002	0,054	0,077	0,099	0,117	0,127	0,139	0,148	0,162	0,159
2003	0,048	0,084	0,110	0,120	0,142	0,148	0,167	0,155	0,179
2004	0,050	0,056	0,102	0,115	0,135	0,137	0,146	0,166	0,166

				Poid	s selon l	'âge			
Année	2	3	4	5	6	7	8	9	10
2005	0,055	0,079	0,082	0,115	0,122	0,144	0,147	0,162	0,146
2006	0,051	0,068	0,086	0,096	0,112	0,116	0,139	0,162	0,141
2007	0,061	0,077	0,083	0,107	0,114	0,134	0,131	0,105	0,158
2008	0,048	0,069	0,089	0,095	0,112	0,114	0,137	0,150	0,132
2009	0,039	0,067	0,085	0,102	0,099	0,118	0,115	0,134	0,144
2010	0,059	0,074	0,092	0,110	0,125	0,131	0,160	0,139	0,166
2011	0,054	0,070	0,080	0,098	0,112	0,121	0,129	0,129	0,148
2012	0,050	0,078	0,092	0,103	0,116	0,125	0,120	0,160	0,131
2013	0,050	0,079	0,110	0,116	0,116	0,126	0,143	0,135	0,144
2014	0,057	0,076	0,102	0,126	0,130	0,128	0,133	0,138	0,123
2015	0,061	0,087	0,091	0,109	0,117	0,114	0,125	0,130	0,139
2016	0,054	0,076	0,094	0,104	0,115	0,121	0,117	0,124	0,148
2017	0,057	0,082	0,096	0,117	0,120	0,129	0,135	0,144	0,140

Tableau B.23. Poids selon l'âge en kilogrammes (kg) pour le hareng du Pacifique dans la région d'évaluation des stocks du district de Prince Rupert de 1951 à 2017. Les résumés biologiques tiennent compte uniquement des échantillons prélevés à la senne (pêche commerciale et pêche à l'essai) en raison de la sélectivité en fonction de la taille des autres types d'engins tels que les filets maillants. La classe d'âge 10 est un groupe « plus » qui comprend les poissons d'âge 10 et plus.

				Poid	s selon l	'âge			
Année	2	3	4	5	6	7	8	9	10
1951	0,038	0,074	0,094	0,113	0,123	0,132	0,142	0,138	0,132
1952	0,047	0,084	0,116	0,131	0,150	0,166	0,167	0,222	0,132
1953	0,039	0,080	0,111	0,131	0,143	0,157	0,155	0,180	0,132
1954	0,040	0,072	0,106	0,131	0,145	0,162	0,183	0,193	0,132
1955	0,046	0,081	0,101	0,121	0,143	0,159	0,154	0,183	0,132
1956	0,037	0,076	0,094	0,114	0,141	0,152	0,170	0,199	0,132
1957	0,029	0,075	0,104	0,117	0,136	0,157	0,166	0,168	0,132
1958	0,034	0,074	0,112	0,132	0,140	0,163	0,165	0,184	0,132
1959	0,044	0,086	0,104	0,120	0,146	0,151	0,164	0,151	0,132
1960	0,038	0,068	0,106	0,122	0,148	0,160	0,182	0,176	0,132
1961	0,040	0,074	0,108	0,131	0,145	0,160	0,161	0,193	0,132
1962	0,045	0,082	0,110	0,141	0,168	0,176	0,196	0,200	0,265
1963	0,039	0,067	0,106	0,130	0,155	0,166	0,189	0,225	0,224
1964	0,044	0,072	0,093	0,122	0,133	0,156	0,152	0,156	0,148
1965	0,053	0,098	0,116	0,144	0,157	0,169	0,187	0,195	0,216
1966	0,044	0,110	0,143	0,155	0,170	0,175	0,189	0,196	0,183
1967	0,045	0,086	0,114	0,138	0,157	0,169	0,182	0,194	0,207
1968	0,045	0,087	0,114	0,138	0,154	0,167	0,180	0,193	0,196
1969	0,046	0,090	0,116	0,140	0,154	0,167	0,178	0,187	0,190
1970	0,047	0,094	0,120	0,143	0,158	0,169	0,183	0,193	0,199
1971	0,045	0,093	0,121	0,143	0,159	0,169	0,182	0,193	0,195
1972	0,046	0,100	0,137	0,163	0,199	0,225	0,233	0,249	0,259
1973	0,033	0,083	0,117	0,164	0,179	0,198	0,210	0,216	0,208

				Poid	s selon l	'âge			
Année	2	3	4	5	6	7	8	9	10
1974	0,067	0,086	0,121	0,166	0,184	0,195	0,204	0,175	0,210
1975	0,025	0,061	0,113	0,137	0,165	0,167	0,182	0,179	0,199
1976	0,043	0,089	0,133	0,158	0,173	0,203	0,211	0,227	0,214
1977	0,054	0,086	0,118	0,151	0,169	0,184	0,196	0,196	0,223
1978	0,055	0,093	0,123	0,143	0,166	0,182	0,196	0,231	0,240
1979	0,057	0,097	0,129	0,148	0,167	0,184	0,191	0,214	0,216
1980	0,055	0,080	0,116	0,146	0,169	0,179	0,188	0,207	0,221
1981	0,047	0,083	0,101	0,133	0,156	0,170	0,182	0,202	0,215
1982	0,038	0,077	0,109	0,117	0,151	0,172	0,178	0,185	0,207
1983	0,035	0,078	0,104	0,122	0,135	0,154	0,170	0,191	0,199
1984	0,046	0,075	0,090	0,111	0,124	0,135	0,157	0,177	0,187
1985	0,030	0,079	0,098	0,110	0,122	0,134	0,149	0,177	0,176
1986	0,056	0,092	0,118	0,137	0,147	0,158	0,169	0,179	0,204
1987	0,055	0,084	0,107	0,128	0,142	0,153	0,160	0,172	0,175
1988	0,051	0,074	0,097	0,117	0,135	0,151	0,152	0,164	0,185
1989	0,056	0,075	0,096	0,116	0,136	0,147	0,166	0,160	0,195
1990	0,050	0,089	0,108	0,122	0,138	0,152	0,166	0,176	0,192
1991	0,041	0,076	0,106	0,120	0,129	0,141	0,148	0,160	0,173
1992	0,047	0,076	0,093	0,120	0,133	0,141	0,149	0,167	0,178
1993	0,054	0,077	0,096	0,109	0,126	0,137	0,142	0,151	0,156
1994	0,042	0,072	0,093	0,100	0,110	0,134	0,138	0,141	0,157
1995	0,040	0,074	0,092	0,112	0,121	0,131	0,149	0,100	0,102
1990	0,052	0,072	0,095	0,111	0,129	0,134	0,143	0,140	0,172
1009	0,030	0,000	0,004	0,104	0,119	0,131	0,130	0,145	0,150
1990	0,045	0,007	0,000	0,092	0,102	0,120	0,130	0,140	0,152
2000	0,000	0,073	0,030	0,104	0,110	0,113	0,130	0,133	0,132
2000	0,040	0,070	0,000	0,104	0,110	0,110	0,130	0,131	0,140
2001	0,042	0,007	0.085	0,100	0,124	0,120	0,107	0 148	0,156
2002	0.042	0,000	0.086	0 110	0 126	0 140	0 146	0,140	0,100
2004	0.050	0.065	0.086	0 100	0 115	0 131	0 143	0 152	0 144
2005	0.038	0.064	0.071	0.100	0.106	0.119	0.138	0.139	0.152
2006	0.048	0.063	0.080	0.091	0.110	0.121	0.131	0.143	0.120
2007	0.040	0.058	0.070	0.090	0.107	0.110	0.120	0.127	0.144
2008	0,044	0,058	0,082	0,095	0,108	0,117	0,132	0,132	0,153
2009	0,032	0,072	0.082	0,102	0,113	0,120	0,129	0,137	0,152
2010	0,045	0,066	0,087	0,098	0,112	0,118	0,127	0,107	0,150
2011	0,040	0,069	0,082	0,102	0,111	0,125	0,138	0,145	0,141
2012	0,054	0,060	0,081	0,091	0,102	0,113	0,118	0,137	0,125
2013	0,036	0,075	0,080	0,098	0,109	0,124	0,130	0,139	0,153
2014	0,044	0,066	0,097	0,095	0,109	0,116	0,127	0,129	0,136
2015	0,039	0,066	0,080	0,114	0,112	0,124	0,131	0,130	0,122
2016	0,041	0,062	0,085	0,097	0,119	0,118	0,120	0,131	0,123
2017	0,048	0,074	0,085	0,101	0,113	0,128	0,126	0,128	0,133

Tableau B.24. Poids selon l'âge en kilogrammes (kg) pour le hareng du Pacifique dans la région d'évaluation des stocks de la côte centrale de 1951 à 2017. Les résumés biologiques tiennent compte uniquement des échantillons prélevés à la senne (pêche commerciale et pêche à l'essai) en raison de la sélectivité en fonction de la taille des autres types d'engins tels que les filets maillants. La classe d'âge 10 est un groupe « plus » qui comprend les poissons d'âge 10 et plus.

				Poid	s selon l	'âge			
Année	2	3	4	5	6	7	8	9	10
1951	0,048	0,084	0,114	0,137	0,146	0,156	0,161	0,173	0,148
1952	0,047	0,087	0,112	0,131	0,148	0,158	0,164	0,173	0,148
1953	0,036	0,083	0,108	0,127	0,147	0,162	0,170	0,173	0,148
1954	0,026	0,062	0,093	0,117	0,138	0,133	0,165	0,131	0,148
1955	0,038	0,072	0,097	0,120	0,143	0,135	0,165	0,159	0,148
1956	0,041	0,083	0,111	0,127	0,143	0,158	0,122	0,159	0,180
1957	0,040	0,082	0,108	0,122	0,132	0,149	0,173	0,159	0,154
1958	0,037	0,072	0,096	0,115	0,131	0,142	0,159	0,156	0,156
1959	0,039	0,076	0,093	0,110	0,104	0,129	0,135	0,127	0,157
1960	0,045	0,064	0,081	0,104	0,108	0,147	0,124	0,152	0,159
1961	0,038	0,077	0,098	0,121	0,125	0,135	0,122	0,158	0,209
1962	0,045	0,080	0,107	0,136	0,143	0,155	0,122	0,150	0,167
1963	0,060	0,082	0,103	0,123	0,142	0,154	0,166	0,149	0,170
1964	0,046	0,086	0,108	0,127	0,128	0,154	0,134	0,147	0,172
1965	0,052	0,104	0,127	0,147	0,168	0,176	0,242	0,151	0,175
1966	0,048	0,086	0,109	0,131	0,141	0,155	0,157	0,151	0,179
1967	0,050	0,088	0,111	0,133	0,145	0,159	0,164	0,150	0,173
1968	0,051	0,089	0,112	0,132	0,145	0,160	0,172	0,150	0,174
1969	0,050	0,090	0,113	0,134	0,145	0,161	0,174	0,150	0,175
1970	0,050	0,091	0,114	0,136	0,149	0,162	0,182	0,150	0,175
1971	0,050	0,089	0,112	0,133	0,145	0,159	0,170	0,150	0,175
1972	0,061	0,094	0,117	0,141	0,157	0,165	0,195	0,193	0,174
1973	0,059	0,099	0,130	0,156	0,173	0,183	0,197	0,234	0,174
1974	0,049	0,087	0,121	0,143	0,165	0,178	0,194	0,214	0,175
1975	0,045	0,084	0,119	0,144	0,166	0,186	0,199	0,204	0,220
1976	0,044	0,081	0,108	0,136	0,155	0,175	0,191	0,200	0,210
1977	0,060	0,089	0,117	0,139	0,166	0,184	0,199	0,222	0,225
1978	0,049	0,086	0,114	0,134	0,161	0,186	0,216	0,227	0,244
1979	0,050	0,085	0,116	0,139	0,163	0,182	0,200	0,213	0,215
1980	0,043	0,081	0,099	0,123	0,144	0,163	0,167	0,201	0,226
1981	0,044	0,076	0,102	0,119	0,135	0,154	0,177	0,181	0,234
1982	0,052	0,088	0,109	0,130	0,139	0,152	0,168	0,182	0,156
1983	0,061	0,091	0,111	0,129	0,142	0,149	0,157	0,173	0,187
1984	0,059	0,090	0,108	0,122	0,135	0,142	0,156	0,176	0,178
1985	0,062	0,095	0,123	0,140	0,150	0,165	0,173	0,175	0,203
1986	0,058	0,099	0,127	0,142	0,155	0,167	0,173	0,180	0,203
1987	0,047	0,091	0,122	0,149	0,107	0,179	0,184	0,190	0,208
1988	0,054	0,084	0,114	0,139	0,171	0,184	0,189	0,196	0,209
1989	0,050	0,083	0,103	0,130	0,140	0,173	0,180	0,180	0,194

	Poids selon l'âge									
Année	2	3	4	5	6	7	8	9	10	
1990	0,050	0,083	0,106	0,126	0,148	0,168	0,179	0,188	0,198	
1991	0,048	0,084	0,106	0,129	0,145	0,165	0,178	0,187	0,202	
1992	0,050	0,086	0,105	0,124	0,136	0,151	0,168	0,187	0,196	
1993	0,049	0,085	0,105	0,120	0,133	0,140	0,154	0,167	0,177	
1994	0,048	0,083	0,107	0,122	0,134	0,148	0,158	0,163	0,171	
1995	0,044	0,079	0,106	0,123	0,135	0,144	0,152	0,156	0,163	
1996	0,061	0,078	0,102	0,126	0,140	0,148	0,158	0,166	0,170	
1997	0,046	0,076	0,089	0,105	0,132	0,143	0,149	0,160	0,162	
1998	0,042	0,072	0,087	0,101	0,117	0,140	0,146	0,154	0,162	
1999	0,054	0,068	0,090	0,105	0,114	0,129	0,148	0,154	0,160	
2000	0,051	0,077	0,088	0,113	0,127	0,138	0,145	0,166	0,175	
2001	0,044	0,073	0,097	0,106	0,126	0,136	0,147	0,157	0,171	
2002	0,048	0,067	0,088	0,108	0,119	0,130	0,137	0,141	0,157	
2003	0,047	0,077	0,088	0,112	0,126	0,137	0,143	0,151	0,162	
2004	0,048	0,070	0,091	0,096	0,112	0,125	0,136	0,137	0,148	
2005	0,038	0,068	0,075	0,106	0,109	0,126	0,136	0,140	0,148	
2006	0,039	0,060	0,079	0,092	0,111	0,115	0,128	0,135	0,134	
2007	0,041	0,065	0,075	0,096	0,102	0,118	0,120	0,140	0,109	
2008	0,038	0,057	0,076	0,087	0,103	0,115	0,126	0,134	0,147	
2009	0,033	0,066	0,073	0,092	0,103	0,122	0,135	0,132	0,135	
2010	0,048	0,067	0,084	0,093	0,105	0,103	0,123	0,154	0,132	
2011	0,032	0,060	0,072	0,091	0,100	0,118	0,118	0,134	0,156	
2012	0,031	0,056	0,074	0,083	0,099	0,103	0,112	0,135	0,130	
2013	0,046	0,076	0,085	0,095	0,104	0,113	0,118	0,128	0,140	
2014	0,050	0,066	0,087	0,094	0,101	0,107	0,111	0,107	0,139	
2015	0,056	0,069	0,075	0,096	0,100	0,111	0,116	0,111	0,105	
2016	0,049	0,075	0,086	0,093	0,111	0,121	0,119	0,125	0,150	
2017	0,046	0,077	0,094	0,103	0,107	0,120	0,119	0,111	0,138	

Tableau B.25. Poids selon l'âge en kilogrammes (kg) pour le hareng du Pacifique dans la région d'évaluation des stocks du détroit de Georgie de 1951 à 2017. Les résumés biologiques tiennent compte uniquement des échantillons prélevés à la senne (pêche commerciale et pêche à l'essai) en raison de la sélectivité en fonction de la taille des autres types d'engins tels que les filets maillants. La classe d'âge 10 est un groupe « plus » qui comprend les poissons d'âge 10 et plus.

		Poids selon l'âge										
Année	2	3	4	5	6	7	8	9	10			
1951	0,042	0,090	0,113	0,138	0,159	0,171	0,200	0,186	0,201			
1952	0,043	0,090	0,113	0,139	0,160	0,176	0,168	0,178	0,201			
1953	0,032	0,076	0,097	0,127	0,151	0,160	0,134	0,182	0,201			
1954	0,043	0,084	0,107	0,139	0,165	0,182	0,196	0,185	0,201			
1955	0,050	0,089	0,105	0,128	0,150	0,172	0,174	0,183	0,201			
1956	0,047	0,085	0,108	0,122	0,144	0,161	0,178	0,176	0,201			
1957	0,043	0,083	0,114	0,141	0,155	0,172	0,212	0,194	0,192			
1958	0,045	0,076	0,111	0,145	0,159	0,166	0,181	0,191	0,197			

				Poid	s selon l	'âge			
Année	2	3	4	5	6	7	8	9	10
1959	0,049	0,083	0,101	0,133	0,158	0,176	0,176	0,180	0,144
1960	0,050	0,092	0,114	0,126	0,157	0,134	0,177	0,185	0,143
1961	0,057	0,080	0,110	0,126	0,150	0,171	0,181	0,185	0,175
1962	0,049	0,089	0,104	0,140	0,153	0,167	0,184	0,187	0,170
1963	0,047	0,084	0,106	0,123	0,145	0,182	0,179	0,186	0,166
1964	0,055	0,097	0,115	0,136	0,160	0,190	0,163	0,185	0,160
1965	0,058	0,104	0,121	0,142	0,145	0,150	0,117	0,186	0,163
1966	0,048	0,101	0,137	0,162	0,169	0,194	0,165	0,186	0,167
1967	0,052	0,095	0,117	0,141	0,155	0,177	0,161	0,186	0,165
1968	0,052	0,096	0,119	0,141	0,155	0,179	0,157	0,185	0,164
1969	0,053	0,099	0,122	0,144	0,157	0,178	0,152	0,185	0,164
1970	0,053	0,099	0,123	0,146	0,156	0,175	0,150	0,186	0,164
1971	0,052	0,098	0,124	0,147	0,158	0,180	0,157	0,186	0,165
1972	0,058	0,089	0,127	0,145	0,165	0,175	0,199	0,185	0,164
1973	0,057	0,100	0,129	0,160	0,175	0,193	0,198	0,201	0,164
1974	0,064	0,080	0,114	0,199	0,162	0,180	0,172	0,188	0,164
1975	0,042	0,083	0,112	0,142	0,169	0,193	0,200	0,212	0,164
1976	0,050	0,085	0,124	0,146	0,174	0,192	0,206	0,225	0,219
1977	0,057	0,089	0,117	0,139	0,162	0,191	0,201	0,203	0,242
1978	0,050	0,085	0,110	0,132	0,151	0,166	0,168	0,199	0,209
1979	0,062	0,087	0,119	0,141	0,161	0,175	0,199	0,205	0,221
1980	0,050	0,079	0,107	0,132	0,155	0,167	0,181	0,190	0,216
1981	0,060	0,086	0,109	0,135	0,155	0,171	0,183	0,180	0,192
1982	0,061	0,093	0,113	0,126	0,150	0,160	0,167	0,167	0,192
1983	0,057	0,086	0,114	0,133	0,141	0,155	0,169	0,183	0,198
1984	0,061	0,088	0,115	0,140	0,156	0,160	0,167	0,176	0,202
1985	0,062	0,086	0,114	0,135	0,157	0,170	0,187	0,193	0,232
1986	0,066	0,089	0,111	0,132	0,149	0,172	0,197	0,195	0,203
1987	0,061	0,087	0,105	0,122	0,137	0,151	0,166	0,155	0,175
1988	0,058	0,089	0,113	0,130	0,141	0,155	0,164	0,201	0,202
1989	0,064	0,084	0,106	0,127	0,139	0,147	0,156	0,158	0,182
1990	0,058	0,085	0,106	0,128	0,147	0,157	0,161	0,146	0,226
1991	0,062	0,089	0,110	0,128	0,143	0,155	0,163	0,151	0,185
1992	0,059	0,090	0,112	0,132	0,149	0,159	0,175	0,174	0,198
1993	0,056	0,092	0,112	0,129	0,141	0,153	0,156	0,160	0,147
1994	0,052	0,081	0,105	0,121	0,135	0,141	0,151	0,161	0,188
1995	0,060	0,085	0,110	0,131	0,145	0,162	0,163	0,179	0,175
1996	0,062	0,083	0,106	0,126	0,146	0,156	0,172	0,169	0,177
1997	0,046	0,082	0,101	0,119	0,137	0,146	0,154	0,167	0,176
1998	0,050	0,072	0,094	0,108	0,119	0,133	0,144	0,156	0,148
1999	0,045	0,080	0,099	0,114	0,126	0,134	0,143	0,151	0,139
2000	0,052	0,072	0,095	0,111	0,129	0,139	0,153	0,160	0,163
2001	0,060	0,085	0,099	0,120	0,133	0,148	0,155	0,145	0,144
2002	0,049	0,079	0,096	0,107	0,125	0,132	0,141	0,164	0,059

	Poids selon l'âge								
Année	2	3	4	5	6	7	8	9	10
2003	0,047	0,077	0,093	0,105	0,111	0,128	0,140	0,128	0,131
2004	0,043	0,072	0,089	0,099	0,109	0,112	0,124	0,122	0,132
2005	0,048	0,074	0,091	0,106	0,117	0,126	0,130	0,121	0,137
2006	0,045	0,069	0,087	0,102	0,111	0,119	0,127	0,139	0,178
2007	0,062	0,075	0,083	0,100	0,115	0,123	0,130	0,143	0,134
2008	0,026	0,066	0,086	0,094	0,103	0,110	0,116	0,133	0,124
2009	0,045	0,064	0,069	0,103	0,116	0,125	0,135	0,154	0,178
2010	0,040	0,056	0,079	0,085	0,112	0,119	0,114	0,112	0,141
2011	0,035	0,069	0,072	0,091	0,095	0,108	0,119	0,143	0,122
2012	0,048	0,071	0,083	0,086	0,095	0,101	0,111	0,124	0,140
2013	0,049	0,069	0,089	0,102	0,107	0,116	0,118	0,128	0,122
2014	0,037	0,079	0,091	0,108	0,119	0,122	0,126	0,146	0,111
2015	0,043	0,069	0,080	0,089	0,102	0,111	0,117	0,106	0,127
2016	0,046	0,073	0,084	0,091	0,099	0,115	0,129	0,125	0,110
2017	0,049	0,071	0,087	0,095	0,103	0,110	0,110	0,116	0,117

Tableau B.26. Poids selon l'âge en kilogrammes (kg) pour le hareng du Pacifique dans la région d'évaluation des stocks de la côte ouest de l'île de Vancouver de 1951 à 2017. Les résumés biologiques tiennent compte uniquement des échantillons prélevés à la senne (pêche commerciale et pêche à l'essai) en raison de la sélectivité en fonction de la taille des autres types d'engins tels que les filets maillants. La classe d'âge 10 est un groupe « plus » qui comprend les poissons d'âge 10 et plus.

				Poid	s selon l	'âge			
Année	2	3	4	5	6	7	8	9	10
1951	0,050	0,087	0,114	0,134	0,149	0,160	0,205	0,196	0,149
1952	0,054	0,090	0,114	0,139	0,157	0,170	0,178	0,190	0,149
1953	0,043	0,080	0,100	0,121	0,147	0,145	0,192	0,193	0,149
1954	0,054	0,085	0,106	0,126	0,147	0,166	0,155	0,193	0,149
1955	0,058	0,083	0,108	0,125	0,151	0,131	0,182	0,193	0,149
1956	0,058	0,086	0,106	0,119	0,139	0,144	0,182	0,140	0,149
1957	0,053	0,085	0,107	0,126	0,148	0,151	0,178	0,182	0,149
1958	0,051	0,069	0,097	0,108	0,125	0,128	0,138	0,169	0,149
1959	0,051	0,081	0,097	0,113	0,124	0,133	0,137	0,150	0,149
1960	0,059	0,090	0,106	0,121	0,134	0,145	0,160	0,174	0,165
1961	0,058	0,090	0,117	0,141	0,173	0,140	0,159	0,163	0,157
1962	0,057	0,092	0,107	0,125	0,128	0,140	0,155	0,168	0,157
1963	0,056	0,090	0,112	0,123	0,137	0,145	0,150	0,165	0,157
1964	0,061	0,093	0,114	0,135	0,145	0,130	0,152	0,164	0,157
1965	0,069	0,107	0,129	0,147	0,171	0,159	0,155	0,167	0,158
1966	0,042	0,111	0,133	0,149	0,162	0,179	0,154	0,165	0,157
1967	0,057	0,098	0,119	0,136	0,149	0,150	0,153	0,166	0,157
1968	0,057	0,100	0,121	0,138	0,153	0,153	0,153	0,165	0,157
1969	0,057	0,102	0,123	0,141	0,156	0,154	0,154	0,165	0,157
1970	0,056	0,104	0,125	0,142	0,158	0,159	0,154	0,166	0,157
1971	0,054	0,103	0,124	0,141	0,156	0,159	0,154	0,166	0,157

	Poids selon l'âge								
Année	2	3	4	5	6	7	8	9	10
1972	0,064	0,103	0,138	0,160	0,173	0,181	0,202	0,160	0,157
1973	0,063	0,103	0,135	0,160	0,184	0,192	0,190	0,254	0,157
1974	0,062	0,085	0,123	0,149	0,172	0,186	0,184	0,217	0,231
1975	0,055	0,092	0,128	0,165	0,189	0,207	0,220	0,241	0,207
1976	0,054	0,087	0,120	0,152	0,181	0,195	0,211	0,222	0,182
1977	0,063	0,088	0,125	0,143	0,169	0,183	0,192	0,195	0,215
1978	0,060	0,080	0,108	0,134	0,154	0,174	0,188	0,204	0,228
1979	0,062	0,083	0,110	0,141	0,166	0,184	0,200	0,201	0,192
1980	0,059	0,081	0,107	0,131	0,160	0,178	0,192	0,208	0,209
1981	0,061	0,090	0,110	0,137	0,151	0,175	0,180	0,186	0,205
1982	0,071	0,089	0,110	0,126	0,142	0,150	0,171	0,180	0,186
1983	0,061	0,094	0,119	0,141	0,155	0,166	0,174	0,195	0,192
1984	0,068	0,100	0,130	0,153	0,166	0,175	0,185	0,189	0,203
1985	0,069	0,101	0,135	0,161	0,182	0,186	0,207	0,185	0,204
1986	0,068	0,103	0,131	0,160	0,181	0,192	0,198	0,204	0,222
1987	0,069	0,102	0,137	0,163	0,181	0,200	0,203	0,205	0,210
1988	0,068	0,103	0,130	0,160	0,177	0,195	0,202	0,206	0,214
1989	0,064	0,097	0,127	0,149	0,171	0,188	0,193	0,197	0,212
1990	0,062	0,101	0,130	0,154	0,172	0,188	0,199	0,215	0,197
1991	0,066	0,094	0,123	0,141	0,161	0,177	0,186	0,198	0,206
1992	0,069	0,101	0,120	0,149	0,164	0,177	0,188	0,197	0,205
1993	0,000	0,097	0,122	0,141	0,159	0,109	0,170	0,107	0,190
1994	0,005	0,095	0,119	0,130	0,150	0,100	0,104	0,175	0,170
1990	0,070	0,090	0,122	0,144	0,100	0,175	0,102	0,109	0,100
1990	0,070	0,000	0,110	0,130	0,131	0,104	0,170	0,101	0,190
1008	0,004	0,091	0,103	0,132	0,149	0,101	0,170	0,175	0,179
1000	0,053	0,000	0,104	0,110	0,132	0,143	0,150	0,150	0,155
2000	0,004	0,000	0,000	0,113	0,120	0,144	0,102	0,100	0,107
2000	0,000	0,000	0,107	0,100	0,147	0,155	0,102	0,171	0,170
2007	0.062	0 084	0 103	0 125	0 144	0 157	0 170	0 187	0 218
2003	0,061	0.093	0.103	0.121	0.139	0.154	0.176	0.167	0.192
2004	0.064	0.082	0.103	0.110	0.124	0.134	0.156	0.166	0.127
2005	0.056	0.075	0.091	0.112	0.120	0.133	0.138	0.152	0.137
2006	0.055	0.069	0.088	0.102	0.117	0.110	0.128	0.164	0.172
2007	0.055	0.073	0.080	0.092	0.098	0,131	0,154	0,167	0,169
2008	0.056	0.060	0.088	0.103	0.116	0.132	0.145	0.139	0.162
2009	0,046	0.075	0.078	0,104	0,110	0,114	0,144	0,158	0,153
2010	0,044	0,071	0,085	0,092	0,106	0,117	0,110	0,156	0,159
2011	0,046	0.066	0.072	0.096	0.099	0,112	0,136	0,157	0,163
2012	0,052	0,078	0,087	0,099	0,110	0,117	0,122	0,155	0,161
2013	0.056	0,079	0,094	0,105	0,121	0,122	0,134	0,153	0.160
2014	0,059	0,081	0,096	0,124	0,140	0,150	0,129	0,164	0,159
2015	0,060	0,075	0,086	0,098	0,102	0,109	0,108	0,157	0,130

	Poids selon l'âge									
Année	2	3	4	5	6	7	8	9	10	
2016 2017	0,063 0,065	0,077 0,081	0,082 0,095	0,092 0,102	0,094 0,110	0,121 0,119	0,135 0,137	0,146 0,121	0,155 0,153	

Tableau B.27. Poids selon l'âge en kilogrammes (kg) pour le hareng du Pacifique dans la région d'évaluation des stocks de la zone 27 de 1951 à 2017. Les résumés biologiques tiennent compte uniquement des échantillons prélevés à la senne (pêche commerciale et pêche à l'essai) en raison de la sélectivité en fonction de la taille des autres types d'engins tels que les filets maillants. La classe d'âge 10 est un groupe « plus » qui comprend les poissons d'âge 10 et plus.

				Poid	s selon l	'âge			
Année	2	3	4	5	6	7	8	9	10
1951	0,046	0,077	0,101	0,125	0,134	0,145	0,174	0,184	0,196
1952	0,046	0,077	0,101	0,125	0,134	0,145	0,174	0,184	0,196
1953	0,046	0,077	0,101	0,125	0,134	0,145	0,174	0,184	0,196
1954	0,046	0,077	0,101	0,125	0,134	0,145	0,174	0,184	0,196
1955	0,046	0,085	0,105	0,135	0,142	0,181	0,174	0,184	0,196
1956	0,046	0,081	0,103	0,130	0,138	0,163	0,174	0,184	0,196
1957	0,046	0,081	0,103	0,130	0,138	0,163	0,174	0,184	0,196
1958	0,046	0,081	0,103	0,130	0,138	0,163	0,174	0,184	0,196
1959	0,046	0,081	0,103	0,130	0,138	0,163	0,174	0,184	0,196
1960	0,046	0,082	0,103	0,131	0,139	0,166	0,174	0,184	0,196
1961	0,046	0,081	0,103	0,130	0,138	0,164	0,174	0,184	0,196
1962	0,046	0,081	0,103	0,130	0,138	0,164	0,174	0,184	0,196
1963	0,046	0,081	0,103	0,130	0,138	0,164	0,174	0,184	0,196
1964	0,046	0,093	0,110	0,136	0,158	0,164	0,174	0,184	0,196
1965	0,110	0,109	0,135	0,151	0,170	0,172	0,187	0,184	0,196
1966	0,059	0,089	0,111	0,135	0,149	0,165	0,177	0,184	0,196
1967	0,062	0,091	0,112	0,137	0,151	0,166	0,177	0,184	0,196
1968	0,065	0,093	0,114	0,138	0,153	0,166	0,178	0,184	0,196
1969	0,068	0,095	0,117	0,139	0,156	0,167	0,178	0,184	0,196
1970	0,073	0,095	0,118	0,140	0,156	0,167	0,179	0,184	0,196
1971	0,065	0,093	0,114	0,138	0,153	0,166	0,178	0,184	0,196
1972	0,067	0,093	0,115	0,138	0,154	0,167	0,178	0,184	0,196
1973	0,068	0,094	0,116	0,139	0,154	0,167	0,178	0,184	0,196
1974	0,068	0,094	0,116	0,139	0,155	0,167	0,178	0,184	0,196
1975	0,068	0,094	0,116	0,139	0,154	0,167	0,178	0,184	0,196
1976	0,067	0,094	0,115	0,138	0,154	0,167	0,178	0,184	0,196
1977	0,068	0,094	0,116	0,139	0,154	0,167	0,178	0,184	0,196
1978	0,055	0,078	0,103	0,131	0,154	0,152	0,178	0,184	0,196
1979	0,035	0,083	0,103	0,125	0,136	0,151	0,178	0,184	0,196
1980	0,059	0,088	0,110	0,134	0,150	0,160	0,178	0,184	0,196
1981	0,062	0,092	0,111	0,129	0,138	0,148	0,178	0,184	0,196
1982	0,056	0,093	0,110	0,126	0,136	0,147	0,166	0,145	0,196
1983	0,051	0,088	0,106	0,114	0,128	0,152	0,137	0,177	0,196

	Poids selon l'âge								
Année	2	3	4	5	6	7	8	9	10
1984	0,053	0,089	0,108	0,126	0,138	0,152	0,167	0,175	0,196
1985	0,056	0,090	0,109	0,126	0,138	0,152	0,165	0,173	0,196
1986	0,068	0,114	0,138	0,156	0,196	0,205	0,199	0,227	0,196
1987	0,067	0,107	0,151	0,165	0,183	0,161	0,211	0,233	0,196
1988	0,062	0,100	0,137	0,154	0,178	0,190	0,186	0,197	0,262
1989	0,043	0,104	0,138	0,177	0,199	0,213	0,198	0,249	0,229
1990	0,063	0,101	0,138	0,171	0,197	0,216	0,226	0,242	0,234
1991	0,065	0,094	0,119	0,153	0,174	0,201	0,206	0,204	0,230
1992	0,060	0,102	0,133	0,154	0,182	0,203	0,221	0,234	0,251
1993	0,058	0,089	0,119	0,128	0,175	0,185	0,197	0,156	0,221
1994	0,070	0,095	0,111	0,136	0,155	0,168	0,186	0,188	0,194
1995	0,060	0,100	0,117	0,131	0,151	0,168	0,175	0,201	0,183
1996	0,056	0,089	0,111	0,135	0,144	0,165	0,169	0,191	0,183
1997	0,048	0,082	0,109	0,133	0,134	0,149	0,158	0,194	0,207
1998	0,043	0,075	0,097	0,099	0,124	0,133	0,153	0,149	0,198
1999	0,049	0,072	0,089	0,106	0,105	0,139	0,124	0,175	0,173
2000	0,053	0,080	0,089	0,113	0,134	0,136	0,150	0,134	0,185
2001	0,051	0,074	0,091	0,102	0,111	0,114	0,114	0,121	0,163
2002	0,085	0,092	0,099	0,123	0,096	0,119	0,145	0,165	0,185
2003	0,057	0,100	0,107	0,115	0,133	0,149	0,163	0,149	0,181
2004	0,055	0,082	0,101	0,105	0,129	0,128	0,116	0,149	0,177
2005	0,034	0,068	0,077	0,108	0,134	0,130	0,154	0,144	0,178
2006	0,056	0,083	0,095	0,111	0,120	0,128	0,138	0,145	0,177
2007	0,056	0,068	0,074	0,090	0,100	0,117	0,129	0,150	0,180
2008	0,047	0,066	0,079	0,088	0,096	0,111	0,106	0,147	0,179
2009	0,045	0,073	0,073	0,101	0,113	0,114	0,129	0,154	0,178
2010	0,051	0,068	0,082	0,088	0,092	0,104	0,100	0,148	0,178
2011	0,045	0,064	0,074	0,092	0,100	0,102	0,123	0,058	0,178
2012	0,046	0,068	0,081	0,084	0,091	0,099	0,104	0,132	0,114
2013	0,055	0,076	0,086	0,106	0,119	0,115	0,147	0,128	0,121
2014	0,048	0,070	0,079	0,094	0,103	0,107	0,121	0,124	0,154
2015	0,049	0,069	0,080	0,093	0,101	0,105	0,119	0,118	0,149
2016	0,049	0,070	0,080	0,094	0,103	0,105	0,123	0,112	0,143
2017	0,050	0,071	0,081	0,094	0,103	0,106	0,123	0,123	0,136

Tableau B.28. Poids selon l'âge en kilogrammes (kg) pour le hareng du Pacifique dans la région d'évaluation des stocks de la zone 2 Ouest de 1951 à 2017. Les résumés biologiques tiennent compte uniquement des échantillons prélevés à la senne (pêche commerciale et pêche à l'essai) en raison de la sélectivité en fonction de la taille des autres types d'engins tels que les filets maillants. La classe d'âge 10 est un groupe « plus » qui comprend les poissons d'âge 10 et plus.

				Poid	s selon l	'âge			
Année	2	3	4	5	6	7	8	9	10
1951 1952	0,057 0,057	0,078 0,078	0,101 0,101	0,104 0,104	0,129 0,129	0,196 0,196	0,216 0,216	0,171 0,171	0,195 0,195

Année   2   3   4   5   6   7   8   9   10     1953   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1955   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1955   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1958   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1959   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1961   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1963   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1964   0.057   0.076   0.118					Poid	s selon l	'âge			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Année	2	3	4	5	6	7	8	9	10
1954   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1955   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1957   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1958   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1960   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1961   0.57   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1963   0.57   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1964   0.57   0.084   0.113   0.140   0.196   0.216   0.171   0.195     1964   0.57   0.086 <t< td=""><td>1953</td><td>0,057</td><td>0,078</td><td>0,101</td><td>0,104</td><td>0,129</td><td>0,196</td><td>0,216</td><td>0,171</td><td>0,195</td></t<>	1953	0,057	0,078	0,101	0,104	0,129	0,196	0,216	0,171	0,195
1955   0,057   0,078   0,101   0,104   0,129   0,196   0,216   0,171   0,195     1956   0,057   0,078   0,101   0,104   0,129   0,196   0,216   0,171   0,195     1958   0,057   0,078   0,101   0,104   0,129   0,196   0,216   0,171   0,195     1958   0,057   0,078   0,101   0,104   0,129   0,196   0,216   0,171   0,195     1960   0,057   0,078   0,101   0,104   0,129   0,196   0,216   0,171   0,195     1962   0,057   0,078   0,101   0,104   0,129   0,196   0,216   0,171   0,195     1965   0,057   0,078   0,101   0,104   0,129   0,196   0,216   0,171   0,195     1966   0,57   0,078   0,101   0,104   0,129   0,196   0,216   0,171   0,195     1967   0,086	1954	0,057	0,078	0,101	0,104	0,129	0,196	0,216	0,171	0,195
1956   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1957   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1959   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1960   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1961   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1963   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1964   0.057   0.084   0.170   0.199   0.196   0.216   0.171   0.195     1965   0.057   0.084   0.170   0.123   0.146   0.196   0.216   0.171   0.195     1976   0.57   0.086	1955	0,057	0,078	0,101	0,104	0,129	0,196	0,216	0,171	0,195
1957   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1958   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1950   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1960   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1962   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1963   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1966   0.057   0.084   0.113   0.117   0.143   0.196   0.216   0.171   0.195     1967   0.057   0.086   0.122   0.127   0.153   0.196   0.216   0.171   0.195     1970   0.057	1956	0,057	0,078	0,101	0,104	0,129	0,196	0,216	0,171	0,195
1958   0,057   0,078   0,101   0,104   0,129   0,196   0,216   0,171   0,195     1950   0,057   0,078   0,101   0,104   0,129   0,196   0,216   0,171   0,195     1960   0,057   0,078   0,101   0,104   0,129   0,196   0,216   0,171   0,195     1962   0,057   0,078   0,101   0,104   0,129   0,196   0,216   0,171   0,195     1963   0,057   0,078   0,101   0,104   0,129   0,196   0,216   0,171   0,195     1965   0,057   0,084   0,113   0,117   0,143   0,196   0,216   0,171   0,195     1966   0,057   0,086   0,119   0,123   0,149   0,196   0,216   0,171   0,195     1976   0,057   0,086   0,119   0,123   0,158   0,196   0,216   0,171   0,195     1977   0,057	1957	0,057	0,078	0,101	0,104	0,129	0,196	0,216	0,171	0,195
1959   0,057   0,078   0,101   0,104   0,129   0,196   0,216   0,171   0,195     1960   0,057   0,078   0,101   0,104   0,129   0,196   0,216   0,171   0,195     1962   0,057   0,078   0,101   0,104   0,129   0,196   0,216   0,171   0,195     1963   0,057   0,078   0,101   0,104   0,129   0,196   0,216   0,171   0,195     1964   0,057   0,078   0,101   0,104   0,129   0,196   0,216   0,171   0,195     1965   0,057   0,085   0,116   0,120   0,146   0,196   0,216   0,171   0,195     1968   0,057   0,086   0,119   0,123   0,149   0,196   0,216   0,171   0,195     1970   0,057   0,086   0,119   0,124   0,150   0,196   0,216   0,171   0,195     1977   0,057	1958	0,057	0,078	0,101	0,104	0,129	0,196	0,216	0,171	0,195
1960   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1961   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1963   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1964   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1966   0.057   0.084   0.113   0.117   0.143   0.196   0.216   0.171   0.195     1967   0.057   0.086   0.119   0.123   0.146   0.186   0.216   0.171   0.195     1960   0.057   0.086   0.119   0.124   0.153   0.196   0.216   0.171   0.195     1970   0.057   0.087   0.120   0.125   0.151   0.196   0.216   0.171   0.195     1977   0.057	1959	0,057	0,078	0,101	0,104	0,129	0,196	0,216	0,171	0,195
1961   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1963   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1964   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1965   0.057   0.084   0.113   0.117   0.143   0.196   0.216   0.171   0.195     1966   0.057   0.084   0.112   0.143   0.196   0.216   0.171   0.195     1967   0.057   0.086   0.119   0.123   0.148   0.196   0.216   0.171   0.195     1969   0.057   0.086   0.119   0.124   0.155   0.196   0.216   0.171   0.195     1971   0.057   0.087   0.120   0.125   0.151   0.196   0.216   0.171   0.195     1972   0.057   0.087	1960	0,057	0,078	0,101	0,104	0,129	0,196	0,216	0,171	0,195
1962   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1963   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1964   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1966   0.057   0.084   0.113   0.117   0.143   0.196   0.216   0.171   0.195     1966   0.057   0.086   0.112   0.123   0.149   0.196   0.216   0.171   0.195     1969   0.057   0.086   0.112   0.123   0.158   0.196   0.216   0.171   0.195     1970   0.057   0.086   0.119   0.125   0.151   0.196   0.216   0.171   0.195     1971   0.057   0.087   0.120   0.125   0.151   0.196   0.216   0.171   0.195     1971   0.057	1961	0,057	0,078	0,101	0,104	0,129	0,196	0,216	0,171	0,195
1963   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1964   0.057   0.078   0.101   0.104   0.129   0.196   0.216   0.171   0.195     1965   0.057   0.084   0.113   0.117   0.196   0.216   0.171   0.195     1966   0.057   0.085   0.116   0.120   0.146   0.196   0.216   0.171   0.195     1967   0.057   0.086   0.112   0.123   0.149   0.196   0.216   0.171   0.195     1970   0.057   0.086   0.119   0.122   0.158   0.196   0.216   0.171   0.195     1971   0.057   0.086   0.120   0.125   0.151   0.196   0.216   0.171   0.195     1973   0.057   0.087   0.120   0.125   0.151   0.196   0.216   0.171   0.195     1974   0.057   0.087	1962	0,057	0,078	0,101	0,104	0,129	0,196	0,216	0,171	0,195
1964   0,057   0,078   0,101   0,104   0,129   0,196   0,216   0,171   0,195     1965   0,057   0,058   0,113   0,117   0,143   0,196   0,216   0,171   0,195     1966   0,057   0,085   0,116   0,120   0,144   0,196   0,216   0,171   0,195     1968   0,057   0,086   0,119   0,123   0,149   0,196   0,216   0,171   0,195     1969   0,057   0,086   0,112   0,123   0,148   0,196   0,216   0,171   0,195     1970   0,057   0,086   0,120   0,125   0,151   0,196   0,216   0,171   0,195     1972   0,057   0,087   0,120   0,125   0,151   0,196   0,216   0,171   0,195     1972   0,057   0,094   0,118   0,146   0,178   0,189   0,216   0,171   0,195     1977   0,062	1963	0,057	0,078	0,101	0,104	0,129	0,196	0,216	0,171	0,195
1965   0,057   0,105   0,163   0,170   0,196   0,216   0,171   0,195     1966   0,057   0,084   0,113   0,117   0,143   0,196   0,216   0,171   0,195     1967   0,057   0,086   0,119   0,123   0,146   0,196   0,216   0,171   0,195     1968   0,057   0,086   0,112   0,127   0,153   0,196   0,216   0,171   0,195     1970   0,057   0,086   0,119   0,124   0,150   0,196   0,216   0,171   0,195     1971   0,057   0,087   0,120   0,125   0,151   0,196   0,216   0,171   0,195     1974   0,057   0,087   0,120   0,125   0,151   0,196   0,216   0,171   0,195     1974   0,057   0,084   0,118   0,146   0,148   0,199   0,226   0,171   0,195     1975   0,070   0,110	1964	0,057	0,078	0,101	0,104	0,129	0,196	0,216	0,171	0,195
1966   0,057   0,084   0,113   0,117   0,143   0,196   0,216   0,171   0,195     1967   0,057   0,086   0,119   0,123   0,144   0,196   0,216   0,171   0,195     1968   0,057   0,088   0,122   0,127   0,153   0,196   0,216   0,171   0,195     1970   0,057   0,086   0,119   0,124   0,150   0,196   0,216   0,171   0,195     1971   0,057   0,086   0,119   0,124   0,150   0,196   0,216   0,171   0,195     1972   0,057   0,087   0,120   0,125   0,151   0,196   0,216   0,171   0,195     1974   0,057   0,094   0,118   0,146   0,164   0,178   0,210   0,171   0,195     1975   0,070   0,110   0,163   0,187   0,227   0,230   0,171   0,195     1977   0,662   0,104	1965	0,057	0,105	0,163	0,170	0,199	0,196	0,216	0,171	0,195
1967   0,057   0,085   0,116   0,120   0,146   0,196   0,216   0,171   0,195     1968   0,057   0,088   0,122   0,123   0,149   0,196   0,216   0,171   0,195     1970   0,057   0,088   0,122   0,153   0,196   0,216   0,171   0,195     1971   0,057   0,086   0,119   0,124   0,150   0,196   0,216   0,171   0,195     1972   0,057   0,087   0,120   0,125   0,151   0,196   0,216   0,171   0,195     1973   0,057   0,094   0,118   0,146   0,164   0,178   0,210   0,171   0,195     1974   0,057   0,094   0,118   0,146   0,164   0,178   0,210   0,171   0,195     1976   0,058   0,125   0,153   0,191   0,188   0,199   0,222   0,230   0,195     1977   0,062   0,101	1966	0,057	0,084	0,113	0,117	0,143	0,196	0,216	0,171	0,195
1968   0,057   0,086   0,119   0,123   0,149   0,196   0,216   0,171   0,195     1969   0,057   0,088   0,122   0,127   0,153   0,196   0,216   0,171   0,195     1970   0,057   0,086   0,119   0,124   0,150   0,196   0,216   0,171   0,195     1971   0,057   0,087   0,120   0,125   0,151   0,196   0,216   0,171   0,195     1972   0,057   0,094   0,118   0,146   0,164   0,178   0,210   0,171   0,195     1974   0,057   0,094   0,118   0,146   0,164   0,178   0,210   0,171   0,195     1975   0,070   0,110   0,163   0,187   0,227   0,223   0,226   0,171   0,195     1977   0,662   0,104   0,136   0,163   0,184   0,199   0,222   0,230   0,195     1978   0,662	1967	0,057	0,085	0,116	0,120	0,146	0,196	0,216	0,171	0,195
1969 0,057 0,088 0,122 0,127 0,153 0,196 0,216 0,171 0,195   1970 0,057 0,090 0,126 0,132 0,158 0,196 0,216 0,171 0,195   1971 0,057 0,086 0,119 0,124 0,150 0,196 0,216 0,171 0,195   1972 0,057 0,087 0,120 0,125 0,178 0,189 0,216 0,171 0,195   1973 0,057 0,094 0,118 0,146 0,164 0,178 0,210 0,171 0,195   1975 0,070 0,110 0,163 0,187 0,227 0,235 0,269 0,171 0,195   1976 0,058 0,125 0,153 0,191 0,198 0,199 0,227 0,171 0,195   1977 0,062 0,104 0,136 0,163 0,184 0,199 0,227 0,171 0,195   1979 0,053 0,100 0,137 0,156 0,181 0,190 0,211 0,203 0,1	1968	0,057	0,086	0,119	0,123	0,149	0,196	0,216	0,171	0,195
19700.0570.0900.1260.1320.1580.1960.2160.1710.19519710.0570.0860.1190.1240.1500.1960.2160.1710.19519720.0570.0870.1200.1250.1510.1960.2160.1710.19519730.0570.0040.1180.1460.1780.2100.1710.19519740.0570.0940.1180.1460.1780.2270.2250.2690.1710.19519750.0700.1100.1630.1870.2270.2250.2690.1710.19519760.0580.1250.1530.1910.1980.1990.2260.1710.19519770.0620.1040.1360.1630.1840.1990.2270.1710.19519780.0620.1010.1420.1680.1820.1950.2220.2300.19519790.0530.1000.1370.1560.1810.1900.2110.2030.19519800.0610.0980.1220.1690.2000.2200.2310.2820.19519810.0660.0920.1260.1550.1780.1850.1880.1930.19519820.0660.1130.1230.1560.1810.1850.1840.2100.21219840.0730.1070.1310.1560.1840.1950.233 <td>1969</td> <td>0,057</td> <td>0,088</td> <td>0,122</td> <td>0,127</td> <td>0,153</td> <td>0,196</td> <td>0,216</td> <td>0,171</td> <td>0,195</td>	1969	0,057	0,088	0,122	0,127	0,153	0,196	0,216	0,171	0,195
1971 $0,057$ $0,086$ $0,119$ $0,124$ $0,150$ $0,196$ $0,216$ $0,171$ $0,195$ 1972 $0,057$ $0,087$ $0,120$ $0,125$ $0,151$ $0,196$ $0,216$ $0,171$ $0,195$ 1973 $0,057$ $0,007$ $0,124$ $0,165$ $0,178$ $0,189$ $0,216$ $0,171$ $0,195$ 1974 $0,057$ $0,094$ $0,118$ $0,146$ $0,164$ $0,178$ $0,210$ $0,171$ $0,195$ 1975 $0,070$ $0,110$ $0,163$ $0,187$ $0,227$ $0,235$ $0,269$ $0,171$ $0,195$ 1975 $0,062$ $0,104$ $0,136$ $0,183$ $0,129$ $0,227$ $0,171$ $0,195$ 1977 $0,062$ $0,101$ $0,142$ $0,168$ $0,182$ $0,195$ $0,222$ $0,230$ $0,195$ 1979 $0,053$ $0,100$ $0,137$ $0,156$ $0,181$ $0,190$ $0,211$ $0,203$ $0,195$ 1980 $0,061$ $0,998$ $0,122$ $0,178$ $0,185$ $0,188$ $0,193$ $0,195$ 1981 $0,066$ $0,092$ $0,126$ $0,176$ $0,180$ $0,181$ $0,185$ $0,188$ $0,193$ $0,195$ 1983 $0,075$ $0,108$ $0,141$ $0,158$ $0,184$ $0,212$ $0,227$ $0,222$ $0,227$ 1984 $0,060$ $0,113$ $0,156$ $0,184$ $0,212$ $0,227$ $0,222$ $0,227$ 1984 $0,076$ $0,114$ $0,158$ $0,184$ <	1970	0,057	0,090	0,126	0,132	0,158	0,196	0,216	0,171	0,195
1972 $0,057$ $0,087$ $0,120$ $0,125$ $0,151$ $0,196$ $0,216$ $0,171$ $0,195$ 1973 $0,057$ $0,094$ $0,118$ $0,146$ $0,178$ $0,189$ $0,216$ $0,171$ $0,195$ 1974 $0,057$ $0,094$ $0,118$ $0,146$ $0,164$ $0,178$ $0,210$ $0,171$ $0,195$ 1975 $0,070$ $0,110$ $0,163$ $0,187$ $0,227$ $0,235$ $0,269$ $0,171$ $0,195$ 1976 $0,058$ $0,125$ $0,153$ $0,191$ $0,198$ $0,199$ $0,222$ $0,171$ $0,195$ 1977 $0,062$ $0,104$ $0,136$ $0,163$ $0,184$ $0,199$ $0,227$ $0,171$ $0,195$ 1979 $0,053$ $0,100$ $0,137$ $0,156$ $0,181$ $0,190$ $0,212$ $0,230$ $0,195$ 1980 $0,061$ $0,098$ $0,122$ $0,169$ $0,220$ $0,221$ $0,231$ $0,282$ $0,195$ 1981 $0,066$ $0,092$ $0,126$ $0,155$ $0,178$ $0,185$ $0,188$ $0,193$ $0,195$ 1982 $0,066$ $0,113$ $0,123$ $0,156$ $0,181$ $0,189$ $0,214$ $0,210$ $0,222$ 1983 $0,075$ $0,108$ $0,141$ $0,156$ $0,189$ $0,184$ $0,187$ $0,219$ $0,226$ 1986 $0,080$ $0,116$ $0,149$ $0,162$ $0,184$ $0,212$ $0,227$ $0,232$ $0,207$ 1987 $0,063$ $0,103$ <	1971	0,057	0,086	0,119	0,124	0,150	0,196	0,216	0,171	0,195
1973 $0,057$ $0,107$ $0,124$ $0,165$ $0,178$ $0,189$ $0,216$ $0,171$ $0,195$ $1974$ $0,057$ $0,094$ $0,118$ $0,146$ $0,178$ $0,210$ $0,171$ $0,195$ $1975$ $0,070$ $0,110$ $0,163$ $0,187$ $0,227$ $0,235$ $0,269$ $0,171$ $0,195$ $1976$ $0,058$ $0,125$ $0,153$ $0,191$ $0,198$ $0,199$ $0,227$ $0,171$ $0,195$ $1976$ $0,062$ $0,104$ $0,136$ $0,163$ $0,184$ $0,199$ $0,227$ $0,171$ $0,195$ $1977$ $0,062$ $0,104$ $0,168$ $0,182$ $0,195$ $0,222$ $0,230$ $0,195$ $1979$ $0,053$ $0,100$ $0,137$ $0,156$ $0,181$ $0,190$ $0,222$ $0,231$ $0,282$ $0,195$ $1980$ $0,061$ $0,098$ $0,122$ $0,169$ $0,220$ $0,231$ $0,282$ $0,195$ $1981$ $0,066$ $0,092$ $0,126$ $0,155$ $0,178$ $0,185$ $0,188$ $0,193$ $0,195$ $1982$ $0,066$ $0,113$ $0,123$ $0,156$ $0,181$ $0,185$ $0,184$ $0,214$ $0,210$ $0,222$ $1983$ $0,075$ $0,108$ $0,141$ $0,156$ $0,184$ $0,217$ $0,226$ $0,227$ $0,222$ $1986$ $0,080$ $0,116$ $0,149$ $0,162$ $0,187$ $0,227$ $0,223$ $0,207$ $0,227$ $1986$ $0,063$ <t< td=""><td>1972</td><td>0,057</td><td>0,087</td><td>0,120</td><td>0,125</td><td>0,151</td><td>0,196</td><td>0,216</td><td>0,171</td><td>0,195</td></t<>	1972	0,057	0,087	0,120	0,125	0,151	0,196	0,216	0,171	0,195
1974 $0,057$ $0,094$ $0,118$ $0,146$ $0,178$ $0,210$ $0,171$ $0,195$ $1975$ $0,070$ $0,110$ $0,163$ $0,187$ $0,227$ $0,235$ $0,269$ $0,171$ $0,195$ $1976$ $0,058$ $0,125$ $0,153$ $0,191$ $0,198$ $0,199$ $0,226$ $0,171$ $0,195$ $1977$ $0,062$ $0,104$ $0,136$ $0,163$ $0,184$ $0,199$ $0,227$ $0,171$ $0,195$ $1978$ $0,062$ $0,101$ $0,142$ $0,168$ $0,182$ $0,195$ $0,222$ $0,230$ $0,195$ $1979$ $0,053$ $0,100$ $0,137$ $0,156$ $0,181$ $0,190$ $0,211$ $0,282$ $0,230$ $0,195$ $1980$ $0,061$ $0,098$ $0,122$ $0,169$ $0,200$ $0,220$ $0,231$ $0,282$ $0,195$ $1980$ $0,066$ $0,012$ $0,155$ $0,178$ $0,185$ $0,188$ $0,193$ $0,195$ $1982$ $0,066$ $0,113$ $0,123$ $0,156$ $0,181$ $0,185$ $0,184$ $0,187$ $0,222$ $1983$ $0,075$ $0,108$ $0,141$ $0,158$ $0,185$ $0,184$ $0,187$ $0,224$ $0,219$ $0,226$ $1986$ $0,080$ $0,116$ $0,149$ $0,162$ $0,847$ $0,222$ $0,207$ $0,221$ $0,239$ $0,241$ $1988$ $0,071$ $0,101$ $0,132$ $0,158$ $0,187$ $0,122$ $0,227$ $0,222$ $0,227$ <	1973	0,057	0,107	0,124	0,165	0,178	0,189	0,216	0,171	0,195
1975 $0,070$ $0,110$ $0,163$ $0,187$ $0,227$ $0,235$ $0,269$ $0,171$ $0,195$ $1976$ $0,058$ $0,125$ $0,153$ $0,191$ $0,198$ $0,199$ $0,226$ $0,171$ $0,195$ $1977$ $0,062$ $0,104$ $0,136$ $0,163$ $0,184$ $0,199$ $0,227$ $0,171$ $0,195$ $1978$ $0,062$ $0,101$ $0,142$ $0,168$ $0,182$ $0,195$ $0,222$ $0,230$ $0,195$ $1979$ $0,053$ $0,100$ $0,137$ $0,156$ $0,181$ $0,190$ $0,211$ $0,203$ $0,195$ $1980$ $0,061$ $0,098$ $0,122$ $0,169$ $0,200$ $0,220$ $0,231$ $0,282$ $0,195$ $1980$ $0,066$ $0,092$ $0,126$ $0,155$ $0,178$ $0,185$ $0,188$ $0,193$ $0,195$ $1980$ $0,066$ $0,113$ $0,123$ $0,156$ $0,181$ $0,189$ $0,214$ $0,210$ $0,222$ $1983$ $0,075$ $0,108$ $0,141$ $0,158$ $0,185$ $0,184$ $0,187$ $0,214$ $1984$ $0,073$ $0,107$ $0,131$ $0,156$ $0,187$ $0,227$ $0,227$ $0,222$ $0,227$ $1986$ $0,080$ $0,116$ $0,149$ $0,162$ $0,187$ $0,227$ $0,223$ $0,241$ $1986$ $0,062$ $0,101$ $0,132$ $0,158$ $0,187$ $0,223$ $0,267$ $0,221$ $1988$ $0,071$ $0,101$ $0,143$ <t< td=""><td>1974</td><td>0,057</td><td>0,094</td><td>0,118</td><td>0,146</td><td>0,164</td><td>0,178</td><td>0,210</td><td>0,171</td><td>0,195</td></t<>	1974	0,057	0,094	0,118	0,146	0,164	0,178	0,210	0,171	0,195
1976 $0,058$ $0,125$ $0,153$ $0,191$ $0,198$ $0,199$ $0,226$ $0,171$ $0,195$ $1977$ $0,062$ $0,104$ $0,136$ $0,163$ $0,184$ $0,199$ $0,227$ $0,171$ $0,195$ $1978$ $0,062$ $0,101$ $0,142$ $0,168$ $0,182$ $0,195$ $0,222$ $0,230$ $0,195$ $1979$ $0,053$ $0,100$ $0,137$ $0,156$ $0,181$ $0,190$ $0,211$ $0,203$ $0,195$ $1980$ $0,061$ $0,098$ $0,122$ $0,169$ $0,200$ $0,220$ $0,231$ $0,282$ $0,195$ $1981$ $0,066$ $0,092$ $0,126$ $0,155$ $0,178$ $0,185$ $0,188$ $0,193$ $0,195$ $1982$ $0,066$ $0,113$ $0,123$ $0,156$ $0,181$ $0,189$ $0,214$ $0,210$ $0,222$ $1983$ $0,075$ $0,108$ $0,141$ $0,158$ $0,178$ $0,195$ $0,203$ $0,196$ $0,217$ $1984$ $0,073$ $0,107$ $0,131$ $0,156$ $0,189$ $0,185$ $0,184$ $0,187$ $0,227$ $0,222$ $0,227$ $1986$ $0,080$ $0,116$ $0,149$ $0,162$ $0,184$ $0,212$ $0,227$ $0,232$ $0,207$ $1988$ $0,071$ $0,101$ $0,132$ $0,158$ $0,181$ $0,191$ $0,203$ $0,216$ $0,216$ $1990$ $0,058$ $0,904$ $0,141$ $0,164$ $0,187$ $0,192$ $0,227$ $0,227$ $0,227$	1975	0,070	0,110	0,163	0,187	0,227	0,235	0,269	0,171	0,195
1977 $0,062$ $0,104$ $0,136$ $0,163$ $0,184$ $0,199$ $0,227$ $0,171$ $0,195$ $1978$ $0,062$ $0,101$ $0,142$ $0,168$ $0,182$ $0,195$ $0,222$ $0,230$ $0,195$ $1979$ $0,053$ $0,100$ $0,137$ $0,156$ $0,181$ $0,190$ $0,211$ $0,203$ $0,195$ $1980$ $0,061$ $0,098$ $0,122$ $0,169$ $0,200$ $0,220$ $0,231$ $0,282$ $0,195$ $1981$ $0,066$ $0,092$ $0,126$ $0,155$ $0,178$ $0,185$ $0,188$ $0,193$ $0,195$ $1982$ $0,066$ $0,113$ $0,123$ $0,156$ $0,181$ $0,189$ $0,214$ $0,210$ $0,222$ $1983$ $0,075$ $0,108$ $0,141$ $0,158$ $0,178$ $0,185$ $0,184$ $0,187$ $0,214$ $1984$ $0,073$ $0,107$ $0,131$ $0,156$ $0,189$ $0,185$ $0,184$ $0,187$ $0,219$ $0,226$ $1986$ $0,085$ $0,118$ $0,153$ $0,179$ $0,204$ $0,210$ $0,219$ $0,219$ $0,229$ $1987$ $0,063$ $0,103$ $0,132$ $0,170$ $0,202$ $0,187$ $0,223$ $0,196$ $0,229$ $1988$ $0,071$ $0,101$ $0,143$ $0,158$ $0,181$ $0,191$ $0,203$ $0,216$ $0,217$ $1990$ $0,058$ $0,094$ $0,141$ $0,164$ $0,187$ $0,192$ $0,230$ $0,207$ $0,227$ <	1976	0,058	0,125	0,153	0,191	0,198	0,199	0,226	0,171	0,195
1978 $0,062$ $0,101$ $0,142$ $0,168$ $0,182$ $0,195$ $0,222$ $0,230$ $0,195$ $1979$ $0,053$ $0,100$ $0,137$ $0,156$ $0,181$ $0,190$ $0,211$ $0,203$ $0,195$ $1980$ $0,061$ $0,098$ $0,122$ $0,169$ $0,200$ $0,220$ $0,231$ $0,282$ $0,195$ $1981$ $0,066$ $0,092$ $0,126$ $0,155$ $0,178$ $0,185$ $0,188$ $0,193$ $0,195$ $1982$ $0,066$ $0,113$ $0,123$ $0,156$ $0,181$ $0,189$ $0,214$ $0,210$ $0,222$ $1983$ $0,075$ $0,108$ $0,141$ $0,158$ $0,178$ $0,195$ $0,203$ $0,196$ $0,217$ $1984$ $0,073$ $0,107$ $0,131$ $0,156$ $0,189$ $0,185$ $0,184$ $0,187$ $0,214$ $1985$ $0,085$ $0,118$ $0,153$ $0,179$ $0,204$ $0,210$ $0,219$ $0,226$ $1986$ $0,080$ $0,116$ $0,149$ $0,162$ $0,184$ $0,212$ $0,227$ $0,232$ $0,207$ $1987$ $0,063$ $0,103$ $0,132$ $0,170$ $0,202$ $0,187$ $0,223$ $0,207$ $0,227$ $1988$ $0,071$ $0,101$ $0,143$ $0,158$ $0,181$ $0,191$ $0,203$ $0,216$ $0,216$ $1990$ $0,058$ $0,094$ $0,141$ $0,164$ $0,187$ $0,192$ $0,230$ $0,207$ $0,227$ $1991$ $0,062$ <t< td=""><td>1977</td><td>0,062</td><td>0,104</td><td>0,136</td><td>0,163</td><td>0,184</td><td>0,199</td><td>0,227</td><td>0,171</td><td>0,195</td></t<>	1977	0,062	0,104	0,136	0,163	0,184	0,199	0,227	0,171	0,195
1979 $0,053$ $0,100$ $0,137$ $0,156$ $0,181$ $0,190$ $0,211$ $0,203$ $0,195$ $1980$ $0,061$ $0,098$ $0,122$ $0,169$ $0,200$ $0,220$ $0,231$ $0,282$ $0,195$ $1981$ $0,066$ $0,092$ $0,126$ $0,155$ $0,178$ $0,185$ $0,188$ $0,193$ $0,195$ $1982$ $0,066$ $0,113$ $0,123$ $0,156$ $0,181$ $0,189$ $0,214$ $0,210$ $0,222$ $1983$ $0,075$ $0,108$ $0,141$ $0,158$ $0,178$ $0,195$ $0,203$ $0,196$ $0,217$ $1984$ $0,073$ $0,107$ $0,131$ $0,156$ $0,189$ $0,185$ $0,184$ $0,187$ $0,214$ $1985$ $0,085$ $0,118$ $0,153$ $0,179$ $0,204$ $0,210$ $0,219$ $0,226$ $1986$ $0,080$ $0,116$ $0,149$ $0,162$ $0,184$ $0,212$ $0,227$ $0,232$ $0,207$ $1987$ $0,063$ $0,103$ $0,132$ $0,170$ $0,202$ $0,187$ $0,223$ $0,196$ $0,229$ $1988$ $0,071$ $0,101$ $0,143$ $0,158$ $0,181$ $0,191$ $0,203$ $0,216$ $0,227$ $1990$ $0,058$ $0,094$ $0,141$ $0,164$ $0,187$ $0,192$ $0,230$ $0,207$ $0,227$ $1991$ $0,062$ $0,105$ $0,134$ $0,145$ $0,176$ $0,189$ $0,200$ $0,212$ $0,207$ $1994$ $0,075$ <t< td=""><td>1978</td><td>0,062</td><td>0,101</td><td>0,142</td><td>0,168</td><td>0,182</td><td>0,195</td><td>0,222</td><td>0,230</td><td>0,195</td></t<>	1978	0,062	0,101	0,142	0,168	0,182	0,195	0,222	0,230	0,195
19800,0610,0980,1220,1690,2000,2200,2310,2820,19519810,0660,0920,1260,1550,1780,1850,1880,1930,19519820,0660,1130,1230,1560,1810,1890,2140,2100,22219830,0750,1080,1410,1580,1780,1950,2030,1960,21719840,0730,1070,1310,1560,1890,1850,1840,1870,21419850,0850,1180,1530,1790,2040,2100,2190,2290,22619860,0800,1160,1490,1620,1840,2120,2270,2320,20719870,0630,1030,1320,1700,2020,1870,2230,1960,22919880,0710,1010,1430,1580,1820,2070,2210,2390,24119890,0620,1010,1320,1580,1810,1910,2030,2160,21619900,0580,0940,1410,1640,1870,1920,2300,2070,22719910,0620,0960,1270,1680,1760,1890,2000,2120,20719920,0560,1050,1340,1450,1780,1960,2100,2070,21819930,0680,1040,1280,1460,1690,1770,189 <td>1979</td> <td>0,053</td> <td>0,100</td> <td>0,137</td> <td>0,156</td> <td>0,181</td> <td>0,190</td> <td>0,211</td> <td>0,203</td> <td>0,195</td>	1979	0,053	0,100	0,137	0,156	0,181	0,190	0,211	0,203	0,195
1981 $0,066$ $0,092$ $0,126$ $0,155$ $0,178$ $0,185$ $0,188$ $0,193$ $0,195$ 1982 $0,066$ $0,113$ $0,123$ $0,156$ $0,181$ $0,189$ $0,214$ $0,210$ $0,222$ 1983 $0,075$ $0,108$ $0,141$ $0,158$ $0,178$ $0,195$ $0,203$ $0,196$ $0,217$ 1984 $0,073$ $0,107$ $0,131$ $0,156$ $0,189$ $0,185$ $0,184$ $0,187$ $0,214$ 1985 $0,085$ $0,118$ $0,153$ $0,179$ $0,204$ $0,210$ $0,219$ $0,219$ $0,226$ 1986 $0,080$ $0,116$ $0,149$ $0,162$ $0,184$ $0,212$ $0,227$ $0,232$ $0,207$ 1987 $0,063$ $0,103$ $0,132$ $0,170$ $0,202$ $0,187$ $0,223$ $0,196$ $0,229$ 1988 $0,071$ $0,101$ $0,143$ $0,158$ $0,182$ $0,207$ $0,221$ $0,239$ $0,241$ 1989 $0,062$ $0,101$ $0,132$ $0,158$ $0,181$ $0,191$ $0,203$ $0,216$ $0,216$ 1990 $0,058$ $0,094$ $0,141$ $0,164$ $0,187$ $0,192$ $0,230$ $0,207$ $0,227$ 1991 $0,062$ $0,096$ $0,127$ $0,168$ $0,176$ $0,189$ $0,200$ $0,212$ $0,207$ 1992 $0,056$ $0,105$ $0,134$ $0,145$ $0,178$ $0,196$ $0,210$ $0,207$ $0,218$ 1993 $0,068$ $0,104$ <	1980	0,061	0,098	0,122	0,169	0,200	0,220	0,231	0,282	0,195
1982 $0,066$ $0,113$ $0,123$ $0,156$ $0,181$ $0,189$ $0,214$ $0,210$ $0,222$ 1983 $0,075$ $0,108$ $0,141$ $0,158$ $0,178$ $0,195$ $0,203$ $0,196$ $0,217$ 1984 $0,073$ $0,107$ $0,131$ $0,156$ $0,189$ $0,185$ $0,184$ $0,187$ $0,214$ 1985 $0,085$ $0,118$ $0,153$ $0,179$ $0,204$ $0,210$ $0,219$ $0,226$ 1986 $0,080$ $0,116$ $0,149$ $0,162$ $0,184$ $0,212$ $0,227$ $0,232$ $0,207$ 1987 $0,063$ $0,103$ $0,132$ $0,170$ $0,202$ $0,187$ $0,223$ $0,196$ $0,229$ 1988 $0,071$ $0,101$ $0,143$ $0,158$ $0,182$ $0,207$ $0,221$ $0,239$ $0,241$ 1989 $0,062$ $0,101$ $0,132$ $0,158$ $0,181$ $0,191$ $0,203$ $0,216$ $0,216$ 1990 $0,058$ $0,094$ $0,141$ $0,164$ $0,187$ $0,192$ $0,230$ $0,207$ $0,227$ 1991 $0,062$ $0,096$ $0,127$ $0,168$ $0,176$ $0,189$ $0,200$ $0,212$ $0,207$ 1992 $0,056$ $0,105$ $0,134$ $0,145$ $0,178$ $0,196$ $0,210$ $0,207$ $0,218$ 1993 $0,068$ $0,104$ $0,128$ $0,146$ $0,169$ $0,177$ $0,189$ $0,198$ $0,195$ 1994 $0,075$ $0,115$ $0,133$ <	1981	0,066	0,092	0,126	0,155	0,178	0,185	0,188	0,193	0,195
1983 $0,075$ $0,108$ $0,141$ $0,158$ $0,178$ $0,195$ $0,203$ $0,196$ $0,217$ 1984 $0,073$ $0,107$ $0,131$ $0,156$ $0,189$ $0,185$ $0,184$ $0,187$ $0,214$ 1985 $0,085$ $0,118$ $0,153$ $0,179$ $0,204$ $0,210$ $0,219$ $0,219$ $0,226$ 1986 $0,080$ $0,116$ $0,149$ $0,162$ $0,184$ $0,212$ $0,227$ $0,232$ $0,207$ 1987 $0,063$ $0,103$ $0,132$ $0,170$ $0,202$ $0,187$ $0,223$ $0,196$ $0,229$ 1988 $0,071$ $0,101$ $0,143$ $0,158$ $0,182$ $0,207$ $0,221$ $0,239$ $0,241$ 1989 $0,062$ $0,101$ $0,132$ $0,158$ $0,181$ $0,191$ $0,203$ $0,216$ $0,216$ 1990 $0,058$ $0,094$ $0,141$ $0,164$ $0,187$ $0,192$ $0,230$ $0,207$ $0,227$ 1991 $0,062$ $0,096$ $0,127$ $0,168$ $0,176$ $0,189$ $0,200$ $0,212$ $0,207$ 1992 $0,056$ $0,105$ $0,134$ $0,145$ $0,178$ $0,196$ $0,210$ $0,207$ $0,218$ 1993 $0,068$ $0,104$ $0,128$ $0,146$ $0,169$ $0,177$ $0,189$ $0,198$ $0,195$ 1994 $0,075$ $0,115$ $0,133$ $0,155$ $0,177$ $0,181$ $0,204$ $0,205$ 1996 $0,065$ $0,105$ $0,133$ <	1982	0,066	0,113	0,123	0,156	0,181	0,189	0,214	0,210	0,222
1984 $0,073$ $0,107$ $0,131$ $0,156$ $0,189$ $0,185$ $0,184$ $0,187$ $0,214$ 1985 $0,085$ $0,118$ $0,153$ $0,179$ $0,204$ $0,210$ $0,219$ $0,219$ $0,226$ 1986 $0,080$ $0,116$ $0,149$ $0,162$ $0,184$ $0,212$ $0,227$ $0,232$ $0,207$ 1987 $0,063$ $0,103$ $0,132$ $0,170$ $0,202$ $0,187$ $0,223$ $0,196$ $0,229$ 1988 $0,071$ $0,101$ $0,143$ $0,158$ $0,182$ $0,207$ $0,221$ $0,239$ $0,241$ 1989 $0,062$ $0,101$ $0,132$ $0,158$ $0,181$ $0,191$ $0,203$ $0,216$ $0,216$ 1990 $0,058$ $0,094$ $0,141$ $0,164$ $0,187$ $0,192$ $0,230$ $0,207$ $0,227$ 1991 $0,062$ $0,096$ $0,127$ $0,168$ $0,176$ $0,189$ $0,200$ $0,212$ $0,207$ 1992 $0,056$ $0,105$ $0,134$ $0,145$ $0,178$ $0,196$ $0,210$ $0,207$ $0,218$ 1993 $0,068$ $0,104$ $0,128$ $0,146$ $0,169$ $0,177$ $0,189$ $0,198$ $0,195$ 1994 $0,075$ $0,115$ $0,133$ $0,155$ $0,177$ $0,181$ $0,206$ $0,204$ $0,205$ 1996 $0,065$ $0,105$ $0,133$ $0,155$ $0,174$ $0,177$ $0,201$ $0,202$ $0,205$ 1998 $0,069$ $0,105$ <	1983	0,075	0,108	0,141	0,158	0,178	0,195	0,203	0,196	0,217
1985 $0,085$ $0,118$ $0,153$ $0,179$ $0,204$ $0,210$ $0,219$ $0,219$ $0,226$ 1986 $0,080$ $0,116$ $0,149$ $0,162$ $0,184$ $0,212$ $0,227$ $0,232$ $0,207$ 1987 $0,063$ $0,103$ $0,132$ $0,170$ $0,202$ $0,187$ $0,223$ $0,196$ $0,229$ 1988 $0,071$ $0,101$ $0,143$ $0,158$ $0,182$ $0,207$ $0,221$ $0,239$ $0,241$ 1989 $0,062$ $0,101$ $0,132$ $0,158$ $0,181$ $0,191$ $0,203$ $0,216$ $0,216$ 1990 $0,058$ $0,094$ $0,141$ $0,164$ $0,187$ $0,192$ $0,230$ $0,207$ $0,227$ 1991 $0,062$ $0,096$ $0,127$ $0,168$ $0,176$ $0,189$ $0,200$ $0,212$ $0,207$ 1992 $0,056$ $0,105$ $0,134$ $0,145$ $0,178$ $0,196$ $0,210$ $0,207$ $0,218$ 1993 $0,068$ $0,104$ $0,128$ $0,146$ $0,169$ $0,177$ $0,189$ $0,198$ $0,195$ 1994 $0,075$ $0,115$ $0,139$ $0,151$ $0,177$ $0,181$ $0,204$ $0,209$ 1996 $0,065$ $0,105$ $0,133$ $0,153$ $0,177$ $0,181$ $0,204$ $0,205$ 1997 $0,066$ $0,106$ $0,134$ $0,150$ $0,174$ $0,177$ $0,201$ $0,202$ $0,205$ 1998 $0,069$ $0,105$ $0,132$ $0,168$ <	1984	0,073	0,107	0,131	0,156	0,189	0,185	0,184	0,187	0,214
1986 $0,080$ $0,116$ $0,149$ $0,162$ $0,184$ $0,212$ $0,227$ $0,232$ $0,207$ 1987 $0,063$ $0,103$ $0,132$ $0,170$ $0,202$ $0,187$ $0,223$ $0,196$ $0,229$ 1988 $0,071$ $0,101$ $0,143$ $0,158$ $0,182$ $0,207$ $0,221$ $0,239$ $0,241$ 1989 $0,062$ $0,101$ $0,132$ $0,158$ $0,181$ $0,191$ $0,203$ $0,216$ $0,216$ 1990 $0,058$ $0,094$ $0,141$ $0,164$ $0,187$ $0,192$ $0,230$ $0,207$ $0,227$ 1991 $0,062$ $0,096$ $0,127$ $0,168$ $0,176$ $0,189$ $0,200$ $0,212$ $0,207$ 1992 $0,056$ $0,105$ $0,134$ $0,145$ $0,178$ $0,196$ $0,210$ $0,207$ $0,218$ 1993 $0,068$ $0,104$ $0,128$ $0,146$ $0,169$ $0,177$ $0,189$ $0,198$ $0,195$ 1994 $0,075$ $0,115$ $0,139$ $0,151$ $0,177$ $0,181$ $0,206$ $0,204$ $0,209$ 1996 $0,065$ $0,105$ $0,133$ $0,153$ $0,177$ $0,181$ $0,204$ $0,205$ 1997 $0,066$ $0,106$ $0,134$ $0,150$ $0,174$ $0,177$ $0,201$ $0,202$ $0,205$ 1998 $0,069$ $0,105$ $0,132$ $0,168$ $0,174$ $0,171$ $0,188$ $0,194$ $0,202$ 1999 $0,071$ $0,107$ $0,121$ <	1985	0,085	0,118	0,153	0,179	0,204	0,210	0,219	0,219	0,226
1987 0,063 0,103 0,132 0,170 0,202 0,187 0,223 0,196 0,229   1988 0,071 0,101 0,143 0,158 0,182 0,207 0,221 0,239 0,241   1989 0,062 0,101 0,132 0,158 0,181 0,191 0,203 0,216 0,216   1990 0,058 0,094 0,141 0,164 0,187 0,192 0,230 0,207 0,227   1991 0,062 0,096 0,127 0,168 0,176 0,189 0,200 0,212 0,207   1992 0,056 0,105 0,134 0,145 0,178 0,196 0,210 0,207 0,218   1993 0,068 0,104 0,128 0,146 0,169 0,177 0,189 0,198 0,195   1994 0,075 0,115 0,139 0,151 0,174 0,153 0,200 0,204 0,209   1996 0,065 0,105 0,133 0,153 0,175 0,179 0,201 0,202 0,2	1986	0,080	0,116	0,149	0,162	0,184	0,212	0,227	0,232	0,207
1988 0,071 0,101 0,143 0,158 0,182 0,207 0,221 0,239 0,241   1989 0,062 0,101 0,132 0,158 0,181 0,191 0,203 0,216 0,216   1990 0,058 0,094 0,141 0,164 0,187 0,192 0,230 0,207 0,227   1991 0,062 0,096 0,127 0,168 0,176 0,189 0,200 0,212 0,207   1992 0,056 0,105 0,134 0,145 0,178 0,196 0,210 0,207 0,218   1993 0,068 0,104 0,128 0,146 0,169 0,177 0,189 0,198 0,195   1994 0,075 0,115 0,139 0,151 0,174 0,153 0,200 0,199 0,196   1995 0,064 0,103 0,155 0,177 0,181 0,204 0,209   1996 0,065 0,105 0,133 0,153 0,174 0,177 0,201 0,202 0,205   1997<	1987	0,063	0,103	0,132	0,170	0,202	0,187	0,223	0,196	0,229
1989 0,062 0,101 0,132 0,158 0,181 0,191 0,203 0,216 0,216   1990 0,058 0,094 0,141 0,164 0,187 0,192 0,230 0,207 0,227   1991 0,062 0,096 0,127 0,168 0,176 0,189 0,200 0,212 0,207   1992 0,056 0,105 0,134 0,145 0,178 0,196 0,210 0,207 0,218   1993 0,068 0,104 0,128 0,146 0,169 0,177 0,189 0,198 0,195   1994 0,075 0,115 0,139 0,151 0,174 0,153 0,200 0,199 0,196   1995 0,064 0,103 0,134 0,155 0,177 0,181 0,206 0,204 0,209   1996 0,065 0,105 0,133 0,153 0,175 0,179 0,201 0,204 0,205   1997 0,066 0,106 0,134 0,150 0,174 0,177 0,201 0,202 0,2	1988	0,071	0,101	0,143	0,158	0,182	0,207	0,221	0,239	0,241
1990 0,058 0,094 0,141 0,164 0,187 0,192 0,230 0,207 0,227   1991 0,062 0,096 0,127 0,168 0,176 0,189 0,200 0,212 0,207   1992 0,056 0,105 0,134 0,145 0,178 0,196 0,210 0,207 0,218   1993 0,068 0,104 0,128 0,146 0,169 0,177 0,189 0,198 0,195   1994 0,075 0,115 0,139 0,151 0,174 0,153 0,200 0,199 0,196   1995 0,064 0,103 0,134 0,155 0,177 0,181 0,206 0,204 0,209   1996 0,065 0,105 0,133 0,153 0,175 0,179 0,201 0,204 0,205   1997 0,066 0,106 0,134 0,150 0,174 0,177 0,201 0,202 0,205   1998 0,069 0,105 0,132 0,168 0,174 0,171 0,198 0,194 0,2	1989	0,062	0,101	0,132	0,158	0,181	0,191	0,203	0,216	0,216
1991 0,062 0,096 0,127 0,168 0,176 0,189 0,200 0,212 0,207   1992 0,056 0,105 0,134 0,145 0,178 0,196 0,210 0,207 0,218   1993 0,068 0,104 0,128 0,146 0,169 0,177 0,189 0,198 0,195   1994 0,075 0,115 0,139 0,151 0,174 0,153 0,200 0,199 0,196   1995 0,064 0,103 0,134 0,155 0,177 0,181 0,206 0,204 0,209   1996 0,065 0,105 0,133 0,153 0,175 0,179 0,201 0,204 0,205   1997 0,066 0,106 0,134 0,150 0,174 0,177 0,201 0,202 0,205   1998 0,069 0,105 0,132 0,168 0,174 0,171 0,198 0,194 0,202   1999 0,071 0,107 0,121 0,148 0,168 0,166 0,134 0,187 0,2	1990	0,058	0,094	0,141	0,164	0,187	0,192	0,230	0,207	0,227
1992 0,056 0,105 0,134 0,145 0,178 0,196 0,210 0,207 0,218   1993 0,068 0,104 0,128 0,146 0,169 0,177 0,189 0,198 0,195   1994 0,075 0,115 0,139 0,151 0,174 0,153 0,200 0,199 0,196   1995 0,064 0,103 0,134 0,155 0,177 0,181 0,206 0,204 0,209   1996 0,065 0,105 0,133 0,153 0,175 0,179 0,201 0,204 0,205   1997 0,066 0,106 0,134 0,150 0,174 0,177 0,201 0,202 0,205   1998 0,069 0,105 0,132 0,168 0,174 0,171 0,198 0,194 0,202   1999 0,071 0,107 0,121 0,148 0,168 0,166 0,134 0,187 0,203	1991	0,062	0,096	0,127	0,168	0,176	0,189	0,200	0,212	0,207
1993 0,008 0,104 0,128 0,146 0,109 0,177 0,189 0,198 0,195   1994 0,075 0,115 0,139 0,151 0,174 0,153 0,200 0,199 0,196   1995 0,064 0,103 0,134 0,155 0,177 0,181 0,206 0,204 0,209   1996 0,065 0,105 0,133 0,153 0,175 0,179 0,201 0,204 0,205   1997 0,066 0,106 0,134 0,150 0,174 0,177 0,201 0,202 0,205   1998 0,069 0,105 0,132 0,168 0,174 0,171 0,198 0,194 0,202   1999 0,071 0,107 0,121 0,148 0,168 0,166 0,134 0,187 0,203	1992	0,056	0,105	0,134	0,145	0,178	0,196	0,210	0,207	0,218
1994 0,075 0,115 0,139 0,151 0,174 0,153 0,200 0,199 0,196   1995 0,064 0,103 0,134 0,155 0,177 0,181 0,206 0,204 0,209   1996 0,065 0,105 0,133 0,153 0,175 0,179 0,201 0,204 0,205   1997 0,066 0,106 0,134 0,150 0,174 0,177 0,201 0,202 0,205   1998 0,069 0,105 0,132 0,168 0,174 0,171 0,198 0,194 0,202   1999 0,071 0,107 0,121 0,148 0,168 0,166 0,134 0,187 0,203	1993	0,068	0,104	0,128	0,140	0,169	0,177	0,189	0,198	0,195
1995 0,004 0,103 0,134 0,155 0,177 0,181 0,206 0,204 0,209   1996 0,065 0,105 0,133 0,153 0,175 0,179 0,201 0,204 0,205   1997 0,066 0,106 0,134 0,150 0,174 0,177 0,201 0,202 0,205   1998 0,069 0,105 0,132 0,168 0,174 0,171 0,198 0,194 0,202   1999 0,071 0,107 0,121 0,148 0,168 0,166 0,134 0,187 0,203	1994	0,075	0,115	0,139	0,151	0,174	0,103	0,200	0,199	0,190
1990 0,005 0,105 0,135 0,175 0,179 0,201 0,204 0,205   1997 0,066 0,106 0,134 0,150 0,174 0,177 0,201 0,202 0,205   1998 0,069 0,105 0,132 0,168 0,174 0,171 0,198 0,194 0,202   1998 0,071 0,107 0,121 0,148 0,168 0,166 0,134 0,187 0,203	1995	0,004	0,103	0,134	0,155	0,177	0,101	0,200	0,204	0,209
1997 0,000 0,100 0,134 0,150 0,174 0,177 0,201 0,202 0,205 1998 0,069 0,105 0,132 0,168 0,174 0,171 0,198 0,194 0,202 1999 0,071 0,107 0,121 0,148 0,168 0,166 0,134 0,187 0,203	1990	0,000	0,105	0,133	0,153	0,175	0,179	0,201	0,204	0,205
1990 0,009 0,100 0,102 0,100 0,174 0,171 0,198 0,194 0,202 1999 0.071 0.107 0.121 0.148 0.168 0.166 0.134 0.187 0.203	1997	0,000	0,100	0,104	0,100	0,174	0,177	0,201	0,202	0,200
	1000	0,009	0,105	0,132	0,100	0,174	0,171	0,190	0,194	0,202

	Poids selon l'âge								
Année	2	3	4	5	6	7	8	9	10
2000	0,069	0,083	0,088	0,155	0,204	0,175	0,111	0,198	0,205
2001	0,070	0,104	0,148	0,172	0,177	0,177	0,178	0,215	0,185
2002	0,062	0,106	0,124	0,174	0,197	0,204	0,203	0,204	0,205
2003	0,065	0,103	0,124	0,140	0,182	0,198	0,194	0,185	0,186
2004	0,057	0,095	0,129	0,143	0,162	0,199	0,246	0,198	0,224
2005	0,059	0,084	0,109	0,139	0,155	0,148	0,174	0,200	0,190
2006	0,059	0,077	0,104	0,137	0,169	0,184	0,210	0,211	0,198
2007	0,080	0,082	0,088	0,117	0,141	0,158	0,155	0,175	0,200
2008	0,056	0,075	0,110	0,129	0,156	0,145	0,164	0,194	0,198
2009	0,056	0,088	0,101	0,139	0,156	0,161	0,192	0,190	0,192
2010	0,056	0,092	0,123	0,135	0,168	0,169	0,172	0,185	0,206
2011	0,056	0,094	0,117	0,141	0,128	0,155	0,161	0,157	0,200
2012	0,057	0,092	0,123	0,145	0,172	0,178	0,179	0,180	0,181
2013	0,074	0,085	0,114	0,156	0,180	0,185	0,174	0,196	0,156
2014	0,059	0,055	0,114	0,134	0,176	0,170	0,195	0,163	0,190
2015	0,061	0,093	0,100	0,143	0,131	0,186	0,190	0,210	0,199
2016	0,065	0,087	0,113	0,124	0,140	0,155	0,181	0,181	0,185
2017	0,062	0,097	0,122	0,138	0,132	0,154	0,167	0,174	0,182

Tableau B.29. Nombre d'échantillons biologiques du hareng du Pacifique prélevés dans chacune des régions d'évaluation des stocks de 1951 à 2017. Chaque échantillon comptait une centaine de poissons.

		Nombre	e d'éch	antillo	ons biolo	ogiques	3
Année	Z27	Z20	CC	HG	DPR	DG	COIV
1951	0	0	60	16	53	83	42
1952	0	0	55	24	70	95	54
1953	0	0	31	0	19	113	40
1954	3	0	36	0	30	142	67
1955	16	0	27	0	14	60	30
1956	0	0	69	23	21	135	49
1957	0	1	99	103	103	158	12
1958	0	0	77	58	17	186	32
1959	0	0	103	2	55	223	78
1960	0	0	30	0	92	95	59
1961	0	0	59	0	92	134	15
1962	0	0	20	12	59	90	27
1963	0	0	23	17	74	65	51
1964	2	0	24	11	71	109	25
1965	3	1	36	22	77	83	18
1966	0	0	0	0	10	21	7
1971	2	0	16	0	11	28	11
1972	0	0	41	16	10	148	25
1973	0	2	22	22	11	75	42
1974	0	6	34	26	11	30	77
1975	0	6	116	75	41	69	127

	Nombre d'échantillons biologiques						
Année	Z27	Z20	CC	HG	DPR	DG	COIV
1976	4	3	79	52	12	84	128
1977	0	0	42	44	28	82	87
1978	1	3	36	21	41	80	116
1979	3	9	0	22	52	110	66
1980	5	3	49	70	70	163	56
1981	10	23	91	97	169	273	92
1982	15	21	65	57	59	170	90
1983	3	37	85	38	55	231	46
1984	7	6	90	46	49	163	49
1985	0	13	80	46	63	155	36
1986	3	5	82	67	101	93	46
1987	3	5	70	36	73	129	69
1988	4	17	70	24	65	109	107
1989	5	13	75	40	49	105	89
1990	10	28	89	61	62	98	89
1991	5	36	89	44	60	88	97
1992	15	24	92	36	61	83	87
1993	14	29	103	41	54	90	71
1994	16	2	101	18	82	85	85
1995	15	0	122	6	57	89	86
1996	7	0	68	14	34	121	99
1997	6	0	78	18	35	95	94
1998	8	13	82	30	38	132	92
1999	8	8	66	34	26	86	78
2000	7	1	56	24	51	109	89
2001	2	4	57	15	69	95	38
2002	5	13	76	36	/2	99	83
2003	6	14	69	25	65	137	79
2004	4	9	56	13	40	94	79
2005	2	12	69	14	53	70	52
2006	0	5	64	9	29	/9	23
2007	5	1	26	0	24	119	10
2008	4	2	17	10	57	98	22
2009	8	9	34	12	55	71	29
2010	3	10	20	12	47	84 100	27
2011	3	10	30	13	20	108	20
2012	1	э 7	24 4 E	40	48	144	10
2013	6	1	15	12	44	122	5
2014	0	J ⊿	20	1Z	32 50	93 150	4
2013	0	4 5	20 20	11	0C	100 161	20
2010	0	5 6	20 11	с 0	44 51	101	20 10
2017	U	U	44	0	51	140	19

### ANNEXE C. SÉRIES CHRONOLOGIQUES DE DONNÉES SUR LES STOCKS SECONDAIRES

Le cadre de référence stipule ce qui suit :

1. Pour les zones de stock secondaires, présenter des mises à jour sur l'état des stocks en utilisant les données disponibles des relevés sur le frai et des échantillons biologiques.

Faute de temps, l'information sur les tendances des stocks secondaires de hareng du Pacifique de la zone 27 (Z27) et de la zone 2 Ouest (Z2O) n'a pas fait l'objet d'une analyse formelle. Toutefois, les données sur les prises et sur l'indice du frai, ainsi que l'information sur l'échantillonnage biologique sont présentées à l'annexe B. Nous présentons en outre des séries chronologiques de données sur les prises et l'indice du frai (figures C.1 et C.2, respectivement).

## C.1 FIGURES



Figure C.1. Série chronologique des prises totales débarquées en milliers de tonnes métriques (t x 10³) de hareng du Pacifique de 1951 à 2017 dans les régions d'évaluation des stocks secondaires. Légende : « Engin 1 » représente les pêches minotières, les pêches au hareng de consommation et d'appât, et les pêches au hareng destiné à des usages spéciaux; « Engin 2 » représente la pêche au hareng rogué à la senne; « Engin 3 » représente la pêche au hareng rogué au filet maillant.



Figure C.2. Série chronologique de l'indice du frai en milliers de tonnes métriques (t x  $10^3$ ) de hareng du Pacifique de 1951 à 2017 dans les régions d'évaluation des stocks secondaires. L'indice du frai comporte deux périodes distinctes définies par la méthode de relevé dominante : relevés en surface (de 1951 à 1987) et relevés en plongée (de 1988 à 2017). L'indice du frai représente uniquement les données brutes de relevé; il n'est pas mis à l'échelle à l'aide du paramètre de mise à l'échelle du relevé du frai, q.

# ANNEXE D. ANALYSE DE RAPPROCHEMENT

# D.1 ANALYSE

L'analyse qui suit documente la transition entre le code du modèle des prises selon l'âge et l'approche d'évaluation qui a été élaborée en 2011 (Martell *et al.* 2012) et utilisée jusqu'en 2016, et une version mise à jour de la plateforme du modèle utilisé dans le cadre de la présente évaluation du hareng (V2). La nouvelle plateforme a été utilisée pour l'évaluation de stock réalisée par Grandin et Forrest en 2017, notamment. Les résultats relatifs ne différant pas d'une région à l'autre, nous présentons le détail de l'analyse de rapprochement du stock du détroit de Georgie seulement. Les résultats sommaires des cinq stocks sont donnés s'ils sont informatifs.

Les analyses de la sensibilité effectuées dans le cadre de l'analyse de rapprochement se limitent aux étapes principales suivies pour développer le scénario de référence utilisé pour l'évaluation de 2017. L'abréviation « V0 » désigne la plateforme originale du modèle de 2011; « V1 » désigne la version 2011 modifiée, et « V2 » désigne la nouvelle plateforme mise à jour.

Les résultats présentés pour chaque étape de rapprochement représentent des estimations de la densité *a posteriori* maximale (DPM). La première étape (1A et 1B) consistait à réexécuter le code du modèle d'évaluation 2016 (V0) pour reproduire les résultats de 2016 (MPO 2016). Avant de lancer le modèle, les phases d'estimation des paramètres d'écart rho ( $\rho$ ) et kappa ( $\kappa$ ) ont été modifiées en phases d'estimation 3 et 4, respectivement. Ces paramètres ont été estimés aux phases 3 et 3, respectivement, en 2016. Les étapes 7 et 8 ci-dessous comprennent des descriptions et des équations pour rho et kappa.

Le code modèle V1 comprend également la mise à jour suivante de l'estimation de la structure de l'écart. Les composantes de l'écart du modèle appliquées dans le cadre de modélisation *ISCAM* (p. ex. Grandin et Forrest 2017) ont été partagées selon une méthode à erreurs sur les variables. Le paramètre d'écart principal est l'inverse de l'écart total  $\varphi^2$  (la précision totale, *varphi*). L'écart total est partagé en composantes d'erreurs dues à l'observation et au traitement par le paramètre de modèle  $\rho$  (rho), qui représente la part de l'écart total attribuable à une erreur d'observation (Punt et Butterworth 1993; Deriso *et al.* 2007).

Dans l'évaluation du stock réalisée en 2011 (Martell *et al*. 2011), la précision totale a été paramétrée comme étant l'écart-type total de l'erreur de traitement plutôt que l'écart total (code du modèle V0, de 2011 à 2016).

 $\tau = \frac{1 - rho}{varphi}$  $\sigma = \frac{rho}{varphi}$ 

Lors de l'examen de l'évaluation du stock de 2011 (MPO 2012), il a été relevé que la méthode à erreurs sur les variables aurait dû être paramétrée en fonction de l'écart total (ou inverse de la précision). La correction a été faite dans les versions ultérieures du logiciel (p. ex. Forrest *et al.* 2015; Grandin et Forrest 2017). Toutefois, elle n'avait pas été intégrée au moment de l'évaluation du hareng du Pacifique et, par souci d'uniformité, elle n'a pas été prise en compte dans les itérations ultérieures de l'évaluation.

Pour donner suite à la recommandation formulée par les examinateurs en 2011 et pour assurer la conformité de l'évaluation aux pratiques exemplaires, la présente évaluation fait intervenir une méthode à erreurs sur les variables modifiée qui inclut le partage de la précision totale,

$$\tau = \sqrt{1 - rho} * varphi$$
$$\sigma = \sqrt{rho} * varphi$$

qui correspond maintenant à l'inverse de l'écart total plutôt que l'écart-type total. Une version hybride de V1 a été développée pour permettre la comparaison entre les résultats des modèles V0 à V2. La version hybride utilise les définitions de tau ( $\tau$ ), sigma ( $\sigma$ ) et varphi ( $\phi^2$ ) susmentionnées.

Il semble pertinent de souligner dans le cadre de l'analyse de rapprochement que la modification du partage de l'écart total a des répercussions sur les estimations des paramètres directeurs et de la biomasse non exploitée ( $SB_0$ ) par le modèle. Les tableaux D.1 et D.2 résument les estimations de la DPM des paramètres directeurs pertinents et de la  $SB_0$  qui ont été faites avec les codes des modèles V0 (2011 à 2016), V1 mis à jour et V2 pour l'AM1 (tableau D.1) et l'AM2 (tableau D.2). Une fois la modification intégrée, les modèles V1 et V2 donnent des résultats quasi identiques (tableau D.1), signe que les éventuelles divergences entre le modèle V0 et le modèle V2 pourraient s'expliquer en bonne partie par la mise à jour de la méthode à erreurs sur les variables.

Pour tous les stocks, les estimations de la DPM de la  $SB_0$  à partir des équations mises à jour du modèle (V1 et V2) sont numériquement plus élevées que celles qui avaient été établies avec l'équation précédente (V0), avec des différences plus importantes pour les stocks du DG et du DPR. Les estimations des modèles V0, V1 et V2 concernant la  $SB_0$  du stock de HG varient de 160 tonnes. Les tendances sont similaires entre les paramétrages de *q* de l'AM1 et de l'AM2.

Les étapes de l'analyse de rapprochement décrites au tableau D.3 ont été appliquées aux deux configurations de modèles d'évaluation (AM1 et AM2). Conformément à la convention du MPO (2016), les scénarios de référence sont désignés AM1 lorsque les paramètres de capturabilité des relevés en surface (1951 à 1987) et en plongée (à compter de 1988) sont estimés en fonction d'une distribution *a priori*, et AM2 lorsque les paramètres de capturabilité des relevés en surface sont estimés en plongée sont fixes ( $q_2 = 1$ ).

### Étapes 1 et 2 : Reconstitution de l'évaluation précédente avec des paramètres fixes.

La première étape consistait à vérifier que les valeurs de sortie des modèles V1 et V2 sont identiques aux valeurs d'entrée lorsque toutes les procédures d'estimation sont désactivées. Les valeurs initiales des paramètres directeurs utilisées par les modèles V1 et V2 sont égales aux valeurs estimées de la DPM selon l'évaluation de 2016 (MPO 2016). Après désactivation des procédures d'estimation de tous les paramètres directeurs, les modèles V1 et V2 ont produit des estimations identiques aux valeurs initiales des paramètres directeurs. Il en découle que les deux modèles fonctionnent correctement et n'estiment pas les paramètres lorsque les procédures d'estimation sont désactivées (tableau D.4).

### Étapes 3 et 4 : Estimation de tous les paramètres sauf M

Aux étapes 3A, 3B, 4A et 4B, l'estimation des paramètres a été activée pour V1 et V2, puis les estimations des modèles ont été comparées pour déterminer les similitudes entre les paramètres estimés et les tendances des séries chronologiques. Ici, la mortalité naturelle estimée a été présumée constante dans le temps. On constate que les valeurs estimées diffèrent des valeurs initiales des paramètres directeurs, comme prévu, bien que la différence soit minimale entre V1 et V2 (tableau D.5). Les ajustements du modèle aux données de relevé, et les séries chronologiques d'estimations de la biomasse du stock reproducteur, des écarts de recrutement, de l'épuisement ainsi que la mortalité naturelle estimée présentent des tendances

271

presque identiques (figure D.1). Étant donné que les comparaisons avec l'AM2 (étapes 3B et 4B) donnent les mêmes résultats, ces chiffres ne sont pas inclus à cette étape.

#### Étapes 5 et 6 : Estimations de tous les paramètres, y compris M

L'estimation de la mortalité naturelle variable dans le temps du modèle structuré selon l'âge a été introduite en 2004 dans le modèle d'évaluation du stock de hareng, la mortalité naturelle instantanée étant présumée égale à tous les âges, mais variable en fonction du temps (Fu *et al.* 2004). Le paramétrage actuel de la mortalité naturelle (*M*), selon lequel les écarts annuels de *M* sont estimés au moyen d'un processus de marche aléatoire, a été introduite en 2006 (Haist et Schweigert 2006). L'ampleur moindre des tendances rétrospectives et la cohérence accrue entre les ajustements présumés et empiriques à l'indice de relevé du frai appuient l'inclusion de *M* variable dans le temps. Ce paramétrage de *M* a continué d'être appliqué aux évaluations annuelles du stock de hareng du Pacifique dans les eaux de la Colombie-Britannique.

Les étapes 5A, 5B, 6A et 6B consistent en un nouvel examen des résultats des modèles et des tendances des séries chronologiques tel qu'il est décrit aux étapes 3 et 4, auguel s'ajoute le paramètre de la mortalité naturelle estimée variable dans le temps. Les aiustements du modèle aux données des relevés, et les séries chronologiques d'estimations de la biomasse du stock reproducteur, des écarts de recrutement, de l'épuisement ainsi que la mortalité naturelle estimée présentent des tendances presque identiques pour les modèles V1 et V2 (figure D.2). Les comparaisons avec l'AM2 (étapes 5B et 6B) montrant les mêmes tendances que celles de l'AM1, ces chiffres ne sont pas inclus. La figure D.3 compare les passages du modèle V2 utilisant *M* constante et *M* variable dans le temps dans l'AM1 (étapes 4A par rapport à 6A). L'ajout de *M* variable dans le temps a permis d'améliorer les ajustements du modèle à l'indice du frai, en particulier de 2010 à 2016 (figure D.3b). Le paramétrage différent de M influe aussi sur les estimations de la  $SB_0$  lorsque la  $SB_0$  *M* constante est numériquement supérieure à la  $SB_0$  Mvariabledansletemps (figure D.3c; voir les points à l'extrême gauche de la figure), ainsi que sur les écarts de recrutement (figure D.3d). Les étapes 4B et 6B (comparaison des passages du modèle utilisant *M* constante et *M* variable dans le temps dans l'AM2) montrent des améliorations similaires aux ajustements du modèle à l'indice du frai (figure D.4b). Dans l'AM2, les différences entre les valeurs estimées de la SB₀ sont moins marquées que dans l'AM1 (figure D.4c par rapport à figure D.3c), probablement en raison des différences plus marquées de  $q_1$  (figure D.4g par rapport à figure D.3g).

# Étapes 7 et 8 : Erreurs de traitement et d'observation – Étude de la sensibilité aux paramètres d'écart pour rho et kappa.

Le principal paramètre d'écart de la méthode à erreurs sur les variables est l'inverse de l'écart total  $\varphi^2$  (c.-à-d. la précision totale, *varphi*). L'écart total est partagé en composantes d'erreurs dues à l'observation et au traitement par le paramètre de modèle  $\rho$  (rho), qui représente la part de l'écart total attribuable à une erreur d'observation (Punt et Butterworth 1993; Deriso *et al.* 2007). Dans le modèle ISCAM, les écarts-types de l'erreur due au traitement (tau, *r*) et à l'observation (sigma,  $\sigma$ ) sont reliés et modélisés au moyen des équations suivantes pour kappa ( $\kappa$ ) et rho ( $\rho$ ) :

$$kappa = \left(\frac{1}{\sqrt{\sigma^2 + \tau^2}}\right)^2$$
$$rho = \sigma^2 \left(\frac{1}{\sqrt{\sigma^2 + \tau^2}}\right)^2$$

272

Depuis son introduction en 2011, le modèle ISCAM V1 est paramétré pour estimer à la fois kappa et rho. Les étapes 7 et 8 consistent à étudier la sensibilité de V2 (AM1 et AM2) à différentes valeurs fixes de kappa, rho étant estimé avec M constante (étape 7A) et M variable dans le temps (étape 8A), ainsi qu'à différentes valeurs fixes de rho, kappa étant estimé avec M constante (étape 7B) et M variable dans le temps (étape 8B). Toutes les combinaisons sont décrites au tableau D.6. Les étapes 7C et 8C présentent la situation actuelle : le modèle estime kappa et rho, en utilisant M constante (étape 7C) et M variable dans le temps (étape 8C). Lorsque rho et kappa sont estimés (étapes 7C, 8C), le choix de leur valeur initiale n'a aucune incidence sur les paramètres estimés du modèle. Le même constat vaut pour l'AM1. l'AM2 et les deux paramétrages de M. La figure D.5 présente les estimations du modèle concernant la biomasse du stock reproducteur ( $SB_{t}$ ) et fait la démonstration que les valeurs initiales ne la font pas varier si rho et kappa sont estimés (les ajustements du modèle à l'indice du frai, aux écarts de recrutement, à l'épuisement, à la mortalité naturelle et à q ne sont pas montrés). Dans tous les scénarios dans lesquels rho est estimé et kappa est fixe, et vice versa, que ce soit pour l'AM1 ou pour l'AM2 et avec les deux paramétrages de M, la différence la plus marquée a trait aux estimations du modèle concernant la  $SB_0$ , et donc à l'épuisement estimé ( $SB_t/SB_0$ ). La figure D.6 présente les graphiques a) à g) pour l'étape 7A, la figure D.7 résume les différences entre la SBt et SBt/SB₀ à l'étape 7A (AM1 et AM2), et la figure D.8 résume les différences entre la SB_t et SB_t/SB₀ à l'étape 7B (AM1 et AM2). Les figures D.9 et D.10 présentent uniquement les résultats de l'AM1.

### Étape 9 : Sensibilité à la valeur *a priori* de q

Des estimations de la biomasse du stock reproducteur actuelle et projetée sur un an ont été présentées pour les paramétrages de l'AM1 et de l'AM2 du coefficient q de mise à l'échelle du relevé du frai en 2014, 2015 et 2016 par suite des préoccupations suscitées par le choix de la valeur *a priori* de q et les interactions avec la règle de contrôle des récoltes. Dans sa réponse scientifique de 2016, le Groupe de travail technique sur le hareng décrit en détail les préoccupations d'ordre analytique soulevées par les paramétrages AM1 et AM2 de q (tableau A.1, MPO 2016). L'analyse de rapprochement tient compte de 6 hypothèses *a priori* pour q, qui diffèrent par leurs distributions (informatives et non informatives) et la moyenne de l'*a priori* de q (voir le tableau D.7), ainsi que d'autres scénarios pour étudier l'effet de resserrement ou d'élargissement de la distribution *a priori* de q en modifiant son écart-type tout en maintenant la moyenne constante (tableau D.8).

Dans le scénario utilisant *M* constante, le modèle a généré des estimations de  $q_1$  et  $q_2$  à partir de données *a priori* non informatives (scénario 1) qui sont quasi identiques aux valeurs estimées par l'AM1 (scénario 3, figure D.11g). Ces scénarios ont aussi produit des estimations de la *SB*₀ et des séries chronologiques de la biomasse du stock reproducteur (figure D.11c) quasi identiques. La figure D.12 présente un examen plus approfondi de la sensibilité des estimations du modèle au resserrement et à l'élargissement de l'écart-type de la distribution *a priori* non informative. Avec une distribution *a priori* de *q* non informative et un écart-type de 0,5 à 3,0, les estimations du modèle pour  $q_1$ ,  $q_2$ , *M* et la biomasse du stock reproducteur sont très semblables (figure D.12). En revanche, lorsque l'écart-type de la distribution *a priori* de *q* est réduit à 0,1 (scénario 1d), l'estimation de  $q_1$  et de  $q_2$  est considérablement plus élevée que dans les scénarios 1 et 1a à 1c, l'estimation de *M* est numériquement inférieure, et les données de la série chronologique de la *SB* pour toutes les années après 1965 sont numériquement inférieures.

Les figures D.13 et D.14 explorent les mêmes scénarios pour M variable dans le temps. Lorsque M variable dans le temps et q sont estimés, la valeur *a priori* la plus faible de q (scénario 2) engendre les estimations globales les plus élevées de M variable dans le temps (figure D.13f) et les estimations les plus élevées de la biomasse du stock reproducteur (figure D.13c). La distribution *a priori* non informative (scénario 1) engendre des estimations semblables à la moyenne de 0,75 de l'*a priori* de *q* (scénario 4), et le scénario 6 donne les valeurs de *q* les plus élevées et les valeurs de la biomasse les plus faibles (AM2). À l'instar du scénario utilisant *M* constante, quand la distribution *a priori* de *q* est resserrée ou élargie par modification de l'écart-type de la distribution *a priori* non informative (scénario 1), les estimations de *q* sont autour de 0,75 pour des écarts-types compris entre 0,5 et 3,0.

Une distribution *a priori* non informative avec un écart-type de 0,1 engendre des estimations plus faibles de *M* variable dans le temps et de la biomasse du stock reproducteur comparativement à d'autres scénarios.

# Étape 11 : Mise à l'essai du modèle V2 avec les données d'entrée de 2016 pour les 4 autres stocks principaux

Le modèle V2 a reproduit avec succès les estimations du modèle V1 à partir des données d'entrée de 2016 avec l'AM1 et l'AM2 dans le cadre de scénarios utilisant des valeurs estimées de *M* constante et de *M* variable dans le temps (étapes 3 à 6). Les étapes 3, 4, 5 et 6 ont été répétées pour les 4 autres stocks avec l'AM1 et l'AM2 afin de s'assurer que le modèle V2 fonctionnerait pour tous les stocks et de diagnostiquer tout problème lié à la convergence du modèle ou aux minimums locaux. Les résultats de ces modélisations ne sont pas inclus dans l'analyse de rapprochement.

#### Étape 12 : Résumé des conclusions et paramétrage du scénario de référence pour V2

- 1. Les estimations du modèle V2 concernant la *SB*⁰ de 2016 diffèrent de celles du modèle V1 en raison des modifications apportées au code du modèle à l'égard de la structure de l'écart pour les erreurs de traitement et d'observation.
- Les estimations quasi identiques des paramètres et les trajectoires de la biomasse des modèles V1 et V2 appuient l'adoption du code du modèle V2 pour l'évaluation du hareng en 2017.
- 3. Compte tenu des résultats des analyses de la sensibilité présentés aux étapes 7 et 8 (rho et kappa, AM1 et AM2, *M* constante et variable dans le temps), et aux étapes 9, 10 (distribution *a priori* de *q* et écart-type), nous recommandons de maintenir le paramétrage adopté en 2016 pour rho, kappa et la mortalité naturelle (*M*) dans les modélisations avec l'AM1 et l'AM2. L'analyse de la sensibilité n'a pas été concluante sur la question de savoir s'il y a lieu d'adopter ou d'éliminer l'un ou l'autre des paramétrages de *q*. Il faudra effectuer une analyse simulation-évaluation pour déterminer s'il faut choisir la résolution des paramétrages de l'AM2 ou de l'AM1. Les analyses de la sensibilité ne suffisent pas pour comprendre l'interaction complexe entre l'estimation de rho, de kappa, de *q*, de l'inclinaison de courbe (h) et les processus variables dans le temps comme *M* et la sélectivité, d'une part, et l'incidence de cette interaction sur l'estimation des points de référence biologiques comme la biomasse non exploitée, d'autre part.

Nous recommandons de définir deux scénarios de référence pour chacun des cinq stocks principaux de hareng, savoir l'AM1 et l'AM2, et d'utiliser le modèle V2 avec les mêmes hypothèses et paramètres que ceux de 2016.

# Étape 13 : Ajout des données de 2017 au scénario de référence du modèle V2 pour chaque zone de stock

Le modèle V2 s'est ajusté avec succès aux données d'entrée de 2017 de l'AM1 et de l'AM2 concernant les cinq stocks principaux de hareng.

#### D.2 TABLEAUX

Tableau D.1. Comparaison des estimations de la DPM des paramètres directeurs et de la biomasse non exploitée, SB₀, compte tenu des modifications apportées à l'estimation de la structure de l'écart pour les erreurs de traitement et d'observation (AM1).

AM1								
Paramètres	Version du modèle	DG	DPR	HG	CC	COIV		
	V0	146,46	53,47	32,17	57,89	54,53		
SB₀	V1	160,90	57,82	32,33	60,69	57,69		
	V2	160,81	57,83	32,15	60,71	57,60		
	V0	3 215,71	328,34	453,88	504,45	903,93		
Ro	V1	3 226,89	348,43	450,05	511,89	927,31		
	V2	3 208,58	350,83	446,51	510,40	921,13		
	V0	0,76	0,73	0,81	0,82	0,75		
Inclinaison (h)	V1	0,74	0,72	0,81	0,82	0,76		
	V2	0,74	0,72	0,81	0,82	0,76		
	V0	0,57	0,45	0,40	0,47	0,65		
M (movenne)	V1	0,56	0,44	0,40	0,47	0,65		
(	V2	0,56	0,44	0,40	0,46	0,65		
	V0	2 731,60	235,92	306,18	372,23	724,75		
rbar	V1	2 356,01	229,35	296,02	355,45	672,04		
	V2	2 336,29	231,15	294,38	354,40	666,99		
	V0	813,05	286,36	40,82	324,64	415,03		
rinit	V1	649,46	265,54	39,40	302,57	409,04		
	V2	628,30	262,62	39,06	298,70	404,87		
	V0	0,48	0,66	0,81	0,69	0,54		
tau	V1	0,67	0,75	0,83	0,76	0,68		
	V2	0,67	0,75	0,83	0,76	0,68		
	V0	0,32	0,45	0,47	0,35	0,40		
sigma	V1	0,39	0,51	0,51	0,41	0,46		
	V2	0,37	0,49	0,49	0,39	0,44		

Tableau D.2. Comparaison des estimations de la DPM des paramètres directeurs et de la biomasse non exploitée, SB₀, compte tenu des modifications apportées à l'estimation de la structure de l'écart pour les erreurs de traitement et d'observation (AM2).

AM2							
Paramètres	Version du modèle	DG	DPR	HG	CC	COIV	
	V0	110,71	53,24	23,90	51,35	42,76	
SB₀	V1	130,38	57,55	24,10	54,12	46,50	
	V2	130,84	57,83	23,99	54,18	46,51	
	V0	1 453,11	285,63	285,87	346,47	529,33	
Ro	V1	1 535,98	310,20	286,15	367,04	573,06	
	V2	1 537,69	350,83	284,25	367,10	569,73	
	V0	0,80	0,73	0,80	0,83	0,73	
inclinaison (h)	V1	0,77	0,72	0,80	0,83	0,74	
	V2	0,77	0,72	0,80	0,83	0,74	
	V0	0,50	0,44	0,38	0,45	0,59	
M (movenne)	V1	0,46	0,43	0,38	0,45	0,59	
	V2	0,46	0,44	0,38	0,44	0,59	
	V0	1 206,88	201,61	185,27	247,32	389,91	
rbar	V1	1 082,17	201,04	182,97	249,08	387,38	
	V2	1 079,78	231,15	182,38	249,25	385,18	
	V0	393,27	263,67	34,43	269,29	272,43	
rinit	V1	294,20	250,58	33,99	255,38	273,78	
	V2	285,98	262,62	33,82	252,29	270,02	
	V0	0,48	0,67	0,84	0,72	0,58	
tau	V1	0,67	0,75	0,85	0,78	0,70	
	V2	0,67	0,75	0,85	0,78	0,70	
	V0	0,34	0,45	0,49	0,37	0,42	
sigma	V1	0,42	0,51	0,53	0,43	0,47	
	V2	0,40	0,49	0,51	0,41	0,45	

Tableau D.3. Étapes de l'analyse de rapprochement.

Étape de rapprochement	Description
1A	V1 (AM1) : Attribuer aux paramètres directeurs des valeurs initiales équivalant aux valeurs estimées de la DPM dans l'évaluation de 2016 avec l'AM1. Toutes les estimations sont désactivées.
1B	V1 (AM2) : Attribuer aux paramètres directeurs des valeurs initiales équivalant aux valeurs estimées de la DPM dans l'évaluation de 2016 avec l'AM2. Toutes les estimations sont désactivées.
2A	V2 (AM1) : Attribuer aux paramètres directeurs des valeurs initiales équivalant aux valeurs estimées de la DPM dans l'évaluation de 2016 avec l'AM1. Toutes les estimations sont désactivées.
2B	<b>V2</b> (AM2) : Attribuer aux paramètres directeurs des valeurs initiales équivalant aux valeurs estimées de la DPM dans l'évaluation de 2016 avec l'AM2. Toutes les estimations sont désactivées.

Pour toutes les étapes suivantes, les procédures d'estimation des paramètres sont activées.

Les étapes 3A à 4B estiment la mortalité naturelle comme étant constante dans le temps.

Étape de rapprochement	Description
3А	V1 (AM1) : Attribuer aux paramètres directeurs des valeurs initiales équivalant aux valeurs estimées de la DPM dans l'évaluation de 2016 avec l'AM1. Tous les paramètres sont estimés.
3B	V1 (AM2) : Attribuer aux paramètres directeurs des valeurs initiales équivalant aux valeurs estimées de la DPM dans l'évaluation de 2016 avec l'AM2. Tous les paramètres sont estimés.
4A	V2 (AM1) : Attribuer aux paramètres directeurs des valeurs initiales équivalant aux valeurs estimées de la DPM dans l'évaluation de 2016 avec l'AM1. Tous les paramètres sont estimés.
4B	V2 (AM2) : Attribuer aux paramètres directeurs des valeurs initiales équivalant aux valeurs estimées de la DPM dans l'évaluation de 2016 avec l'AM2. Tous les paramètres sont estimés.

Les étapes 5A à 6B estiment la mortalité naturelle variable dans le temps.

Étape de rapprochement	Description
5A	V1 (AM1) : Selon 3A, avec <i>M</i> variable dans le temps.
5B	V1 (AM2) : Selon 3B, avec <i>M</i> variable dans le temps.
6A	<b>V2</b> (AM1) : Selon 4A, avec <i>M</i> variable dans le temps.

Étape de rapprochement	Description
6B	<b>V2</b> (AM2) : Selon 4B, avec <i>M</i> variable dans le temps.

Toutes les étapes suivantes ne concernent que le modèle V2.

Étape de rapprochement	Description
	Analyse de la sensibilité ( <b>V2</b> , AM1 et AM2) :
7A	Étudier la sensibilité du modèle à différentes valeurs fixes de kappa, rho étant estimé ( <i>M</i> constante).
	Analyse de la sensibilité ( <b>V2</b> , AM1 et AM2) :
7B	Étudier la sensibilité du modèle à différentes valeurs fixes de rho, kappa étant estimé ( <i>M</i> constante).
	Analyse de la sensibilité ( <b>V2</b> , AM1 et AM2) :
7C	Étudier la sensibilité du modèle à différentes valeurs estimées de kappa et de rho ( <i>M</i> constante).
8A	Analyse de la sensibilité ( <b>V2</b> , AM1 et AM2) : Selon 7A, avec <i>M</i> variable dans le temps.
8B	Analyse de la sensibilité ( <b>V2</b> , AM1 et AM2) : Selon 7B, avec <i>M</i> variable dans le temps.
8C	Analyse de la sensibilité ( <b>V2</b> , AM1 et AM2) : Selon 7C, avec <i>M</i> variable dans le temps.
	Analyse de la sensibilité ( <b>V2</b> , AM1 et AM2) :
9A	Étudier la sensibilité du modèle à la valeur <i>a priori</i> MOYENNE de <i>q</i> (y compris les distributions <i>a priori</i> non informatives et informatives), avec <i>M</i> constante.
	Analyse de la sensibilité ( <b>V2</b> , AM1 et AM2) :
9B	Étudier la sensibilité du modèle à l'écart-type de la distribution <i>a priori</i> de <i>q</i> , avec <i>M</i> constante.
	Analyse de la sensibilité ( <b>V2</b> , AM1 et AM2) :
10A	Étudier la sensibilité du modèle à la valeur <i>a priori</i> MOYENNE de <i>q</i> (y compris les valeurs <i>a priori</i> non informatives et informatives), avec <i>M</i> variable dans le temps.
	Analyse de la sensibilité ( <b>V2</b> , AM1 et AM2) :
10B	Étudier la sensibilité du modèle à l'écart-type de la distribution $a$ priori de $q$ , avec $M$ variable dans le temps.

278

Étape de rapprochement	Description
11	V2 : Mettre le modèle V2 à l'essai avec les données d'entrée de 2016 pour les 4 autres stocks principaux.
12	Résumer les conclusions et déterminer le paramétrage de référence de <b>V2</b>
13	Ajouter les données de 2017 au scénario de référence de <b>V2</b> pour chaque zone de stock.

Tableau D.4. Valeurs initiales et estimées des paramètres directeurs pour les étapes 1A, 1B, 2A et 2B.

	Tous les paramètres sont fixes							
Paramètres	1.	A	1B		2A		2B	
directeurs	Initiale	Estimée	Initiale	Estimée	Initiale	Estimée	Initiale	Estimée
log_ro	7,28	7,28	7,28	7,28	7,28	7,28	7,28	7,28
Inclinaison (h)	0,8	0,8	0,8	0,8	0,8	0,8	0,8	0,8
log.m	-0,69186	-0,69186	-0,69186	-0,69186	-0,69186	-0,69186	-0,69186	-0,69186
log_recmoy	7,09	7,09	7,09	7,09	7,09	7,09	7,09	7,09
log_recinit	5,97	5,97	5,97	5,97	5,97	5,97	5,97	5,97
rho	0,413297	0,413297	0,413297	0,413297	0,413297	0,413297	0,413297	0,413297
kappa	1,22062	1,22062	1,22062	1,22062	1,22062	1,22062	1,22062	1,22062
sig	0,58189	0,58189	0,58189	0,58189	0,58189	0,58189	0,58189	0,58189
tau	0,69330	0,69330	0,69330	0,69330	0,69330	0,69330	0,69330	0,69330

Tableau D.5. Paramètres directeurs initiaux et estimés pour les étapes 3A, 3B, 4A et 4B.

	Tous les paramètres sont estimés; la mortalité naturelle estimée est présumée constante dans le temps							
Paramètres	3A		3B		4A		4B	
directeurs	Initiale	Estimée	Initiale	Estimée	Initiale	Estimée	Initiale	Estimée
log_ro	7,28	8,27	7,28	7,61	7,28	8,27	7,28	7,59
Inclinaison (h)	0,8	0,7	0,8	0,7	0,8	0,7	0,8	0,7
log.m	-0,69186	-0,29550	-0,69186	-0,46059	-0,69186	-0,29431	-0,69186	-0,45374
log_avgrec	7,09	7,89	7,09	7,19	7,09	7,89	7,09	7,21
log_recinit	5,97	7,56	5,97	6,84	5,97	7,56	5,97	6,87
rho	0,413297	0,318488	0,413297	0,319655	0,413297	0,298097	0,413297	0,324913
kappa	1,22062	1,43411	1,22062	1,37875	1,22062	1,47583	1,22062	1,41208

	Tous les paramètres sont estimés; la mortalité naturelle estimée est présumée constante dans le temps									
Paramètres	3A		3B		4A		4B			
directeurs	Initiale	Estimée	Initiale	Estimée	Initiale	Estimée	Initiale	Estimée		
sig	0,58189	0,47125	0,58189	0,48150	0,58189	0,44943	0,58189	0,47968		
tau	0,69330	0,68936	0,69330	0,70246	0,69330	0,68964	0,69330	0,69143		

Tableau D.6. Description des scénarios pour rho et kappa, y compris les valeurs initiales pour rho ( $\rho$ ), kappa ( $\kappa$ ), sigma ( $\sigma$ ), tau ( $\tau$ ) et l'écart total.

Scénarios pour rho et kappa	rho	kappa	σ	т	Écart total
1	0,50000	0,50000	1,00	1,00	1,41421
2	0,05882	1,47059	0,20	0,80	0,82462
3	0,33166	2,89287	0,34	0,48	0,58794
4	0,41330	1,22062	0,58	0,69	0,90513
5	0,80000	0,80000	1,00	0,50	1,11803

Tableau D.7. Description de chaque scénario pour la valeur a priori de q, y compris le type de distribution a priori, la moyenne et l'écart-type (ET). La distribution a priori non informative est modélisée comme une distribution uniforme (moyenne, écart-type), et la distribution a priori informative est modélisée comme une distribution normale (moyenne, écart-type).

Scénario pour		<b>q</b> 1		<b>q</b> ₂			
q a priori	Туре	Moyenne	ET	Туре	Moyenne	ET	
1	Non informative	1	1	Non informative	1	1	
2	Informative	0,25	0,274	Informative	0,25	0,274	
3 (AM1)	Informative	0,566	0,274	Informative	0,566	0,274	
4	Informative	0,75	0,274	Informative	0,75	0,274	
5	Informative	1	0,274	Informative	1	0,274	
6 (AM2)	Non informative	1	1	Informative	1	0,01	

Tableau D.8. Description de chaque scénario pour la valeur a priori de q, y compris le type de distribution a priori, la moyenne et l'écart-type (ET). Ce tableau diffère du tableau x.7 en ce sens que d'autres niveaux d'écart-type sont explorés.

Scénario pour		<b>q</b> 1		<b>q</b> ₂			
q a priori	Туре	Moyenne	ET	Туре	Moyenne	ET	
1	Non informative	1	1	Non informative	1	1	
1a	Non informative	1	3	Non informative	1	3	
1b	Non informative	1	2	Non informative	1	2	
1c	Non informative	1	0,5	Non informative	1	0,5	
1d	Non informative	1	0,1	Non informative	1	0,1	

### **D.3 FIGURES**



Figure D1. Comparaison des résultats des modèles V1 et V2 pour les étapes 3A et 4A : a, b) ajustements du modèle à l'indice de relevé, mis à l'échelle par q, pour les séries chronologiques de relevé en surface (a) et en plongée (b); c) série chronologique des estimations de la biomasse du stock reproducteur, la biomasse du stock reproducteur non exploitée (SB₀) étant représentée par un point à compter de 1951; d) série chronologique des écarts estimés du log-recrutement; e) épuisement (SB_t/SB₀); f) mortalité naturelle. Résultats de l'AM1 uniquement.



Figure D2. Comparaison des résultats des modèles V1 et V2 pour les étapes 5A et 6A : a, b) ajustements du modèle à l'indice de relevé, mis à l'échelle par q, pour les séries chronologiques de relevé en surface (a) et en plongée (b); c) série chronologique des estimations de la biomasse du stock reproducteur, la biomasse du stock reproducteur non exploitée (SB₀) étant représentée par un point à compter de 1951; d) série chronologique des écarts estimés du log-recrutement; e) épuisement (SB_t/SB₀); f) mortalité naturelle. Résultats de l'AM1 uniquement.


Figure D3. Comparaison des résultats du modèle V2 pour les étapes 4A (M constante) et 6A (M variable dans le temps) : (a, b) ajustements du modèle à l'indice de relevé, mis à l'échelle par q, pour les séries chronologiques de relevé en surface (a) et en plongée (b); c) série chronologique des estimations de la biomasse du stock reproducteur, la biomasse du stock reproducteur non exploitée (SB₀) étant représentée par un point à compter de 1951; d) série chronologique des écarts estimés du log-recrutement; e) épuisement (SB_t/SB₀); f) mortalité naturelle et g) paramètre q de relevé. Résultats de l'AM1 uniquement.



Figure D4. Comparaison des résultats du modèle V2 pour les étapes 4B (M constante) et 6B (M variable dans le temps) : (a, b) ajustements du modèle à l'indice de relevé, mis à l'échelle par q, pour les séries chronologiques de relevé en surface (a) et en plongée (b); c) série chronologique des estimations de la biomasse du stock reproducteur, la biomasse du stock reproducteur non exploitée (SB₀) étant représentée par un point à compter de 1951; d) série chronologique des écarts estimés du log-recrutement; e) épuisement (SB_t/SB₀); f) mortalité naturelle et g) paramètre q de relevé. Résultats de l'AM2 uniquement.



Figure D5. Comparaison de la biomasse reproductrice estimée (SBt) par V2 lorsque rho et kappa sont estimés avec M constante, étape 7C : AM1 (a) et AM2 (b), et M variant dans le temps; étape 8C : AM1 (c) et AM2 (d). Nota : Les échelles de l'ordonnée diffèrent pour les graphiques a) à d).



Figure D6. Comparaison des résultats du modèle V2 à l'étape 7A (AM1) pour 5 valeurs fixes différentes de kappa (rho estimé, M constante) : (a, b) ajustements du modèle à l'indice de relevé, mis à l'échelle par q, pour les séries chronologiques de relevé en surface (a) et en plongée (b); c) série chronologique des estimations de la biomasse du stock reproducteur, la biomasse du stock reproducteur non exploitée (SB₀) étant représentée par un point à compter de 1951; d) série chronologique des écarts estimés du log-recrutement; e) épuisement (SB_t/SB₀); f) mortalité naturelle et g) paramètre q de relevé. Résultats de l'AM1 uniquement.



Figure D7. Estimations de la biomasse reproductrice (SBt) et de l'épuisement (SB0/SBt) par V2 à l'étape 7A (kappa fixe, rho estimé), AM1 et AM2. M constante seulement



Figure D8. Estimations de la biomasse reproductrice (SBt) et de l'épuisement (SBo/SBt) par V2 à l'étape 7B (rho fixe, kappa estimé), AM1 et AM2. M constante seulement.



Figure D9. Comparaison des résultats du modèle V2 à l'étape 8A (AM1) pour 5 valeurs fixes différentes de kappa (rho estimé, M variable dans le temps) : (a, b) ajustements du modèle à l'indice de relevé, mis à l'échelle par q, pour les séries chronologiques de relevé en surface (a) et en plongée (b); c) série chronologique des estimations de la biomasse du stock reproducteur, la biomasse du stock reproducteur non exploitée (SB₀) étant représentée par un point à compter de 1951; d) série chronologique des écarts estimés du log-recrutement; e) épuisement (SB_t/SB⁰); f) mortalité naturelle et g) paramètre q de relevé. Résultats de l'AM1 uniquement.



Figure D10. Comparaison des résultats du modèle V2 à l'étape 8A (AM1) pour 5 valeurs fixes différentes de rho (kappa estimé, M variable dans le temps) : (a, b) ajustements du modèle à l'indice de relevé, mis à l'échelle par q, pour les séries chronologiques de relevé en surface (a) et en plongée (b); c) série chronologique des estimations de la biomasse du stock reproducteur, la biomasse du stock reproducteur non exploitée (SB₀) étant représentée par un point à compter de 1951; d) série chronologique des écarts estimés du log-recrutement; e) épuisement (SB_t/SB₀); f) mortalité naturelle et g) paramètre q de relevé. Résultats de l'AM1 uniquement.



Figure D11. Comparaison des résultats du modèle V2 à l'étape 9A pour 6 scénarios de distribution a priori de q, tel qu'il est décrit au tableau D.7, avec M variable dans le temps : (a, b) ajustements du modèle à l'indice de relevé, mis à l'échelle par q, pour les séries chronologiques de relevé en surface (a) et en plongée (b); c) série chronologique des estimations de la biomasse du stock reproducteur, la biomasse du stock reproducteur non exploitée (SB₀) étant représentée par un point à compter de 1951; d) série chronologique des écarts estimés du log-recrutement; e) épuisement (SB_t/SB₀); f) mortalité naturelle et g) paramètre q de relevé.



Figure D12. Comparaison des résultats du modèle V2 à l'étape 9B pour le scénario 1 de la distribution a priori de q avec 5 écarts-types différents, tel qu'il est décrit au tableau D.8, avec M constante : (a, b) ajustements du modèle à l'indice de relevé, mis à l'échelle par q, pour les séries chronologiques de relevé en surface (a) et en plongée (b); c) série chronologique des estimations de la biomasse du stock reproducteur, la biomasse du stock reproducteur non exploitée (SB₀) étant représentée par un point à compter de 1951; d) série chronologique des écarts estimés du log-recrutement; e) épuisement (SB_ℓ/SB₀); f) mortalité naturelle et g) paramètre q de relevé.



Figure D13. Comparaison des résultats du modèle V2 à l'étape 10A pour 6 scénarios de distribution a priori de q, tel qu'il est décrit au tableau D.7, avec M variable dans le temps : (a, b) ajustements du modèle à l'indice de relevé, mis à l'échelle par q, pour les séries chronologiques de relevé en surface (a) et en plongée (b); c) série chronologique des estimations de la biomasse du stock reproducteur, la biomasse du stock reproducteur non exploitée (SB₀) étant représentée par un point à compter de 1951; d) série chronologique des écarts estimés du log-recrutement; e) épuisement (SB_t/SB₀); f) mortalité naturelle et g) paramètre q de relevé.



Figure D14. Comparaison des résultats du modèle V2 à l'étape 10B pour 5 scénarios d'écarts-types de la distribution a priori de q, tel qu'il est décrit au tableau D.8, avec M variable dans le temps : (a, b) ajustements du modèle à l'indice de relevé, mis à l'échelle par q, pour les séries chronologiques de relevé en surface (a) et en plongée (b); c) série chronologique des estimations de la biomasse du stock reproducteur, la biomasse du stock reproducteur non exploitée (SB₀) étant représentée par un point à compter de 1951; d) série chronologique des écarts estimés du log-recrutement; e) épuisement (SB_t/SB₀); f) mortalité naturelle et g) paramètre q de relevé.

## **D.4 RÉFÉRENCES**

- DFO. 2012. A review of the Pacific herring assessment framework and stock Assessment and management advice for Pacific herring 2011 status and 2012 forecasts, September 7-9, 2011. DFO Can. Sci. Advis. Sec. Proceed. Ser. 2011/062.
- DFO. 2016. Stock Assessment and Management Advice for BC Pacific Herring: 2016 status and 2017 Forecast. DFO Can. Sci. Advis. Sec. Sci. Resp. 2016/052.
- Deriso, R.B., Maunder, M.N., and Skalski, J.R. 2007. Variance estimation in integrated assessment models and its importance for hypothesis testing. Can. J. Fish. Aquat. Sci. 64(2): 187-197.
- Forrest, R.E., Rutherford, K.L, Lacko, L., Kronlund, A.R., Starr, P.J., and McClelland, E.K. 2015. Assessment of Pacific Cod (*Gadus macrocephalus*) for Hecate Strait (5CD) and Queen Charlotte Sound (5AB) in 2013. DFO Can. Sci. Advis. Sec. Res. Doc. 2015/052. xii + 197 p.
- Fu, C., Schweigert, J., and Wood, C.C. 2004. An evaluation of alternative age- structured models for risk assessment of Pacific herring stocks in British Columbia. DFO Can. Sci. Advis. Sec. Res. Doc. 2004/011. ii + 55 p.
- Grandin, C. and Forrest, R. 2017. Arrowtooth Flounder (*Atheresthes stomias*) Stock Assessment for the West Coast of British Columbia. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/025. v + 87 p.
- Haist, V. and Schweigert J.S. 2006. Catch-age models for Pacific herring: Evaluation of alternative assumptions about fishery and stock dynamics and alternative error distributions. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/064. ii + 55 p.
- Punt, A. E. and Butterworth, D. S. 1993 Variance estimates for fisheries assessment: their importance and how best to evaluate them. In Risk Evaluation and Biological Reference Points for Fisheries Management. Smith, S. 1., Hunt, J. J. and D. Rivard (Eds). Can. Spec. Publ. Fish. Aquat. Sci. 120: 145-162.