

Fisheries and Oceans Canada

Sciences des écosystèmes et des océans

Ecosystems and Oceans Science

Secrétariat canadien de consultation scientifique (SCCS)

Document de recherche 2020/016 Région du Québec

L'état du stock de flétan du Groenland du golfe du Saint-Laurent (4RST) en 2018 : données de la pêche commerciale et des relevés de recherche.

J. Gauthier, M.-C. Marquis, H. Bourdages, J. Ouellette-Plante et C. Nozères

Pêches et Océans Canada Institut Maurice-Lamontagne 850, route de la Mer Mont-Joli (Québec) G5H 3Z4

Avant-propos

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Publié par :

Pêches et Océans Canada Secrétariat canadien de consultation scientifique 200, rue Kent Ottawa (Ontario) K1A 0E6

> http://www.dfo-mpo.gc.ca/csas-sccs/ csas-sccs@dfo-mpo.gc.ca

© Sa Majesté la Reine du chef du Canada, 2020 ISSN 2292-4272

La présente publication doit être citée comme suit :

Gauthier, J., Marquis, M.-C., Bourdages, H., Ouellette-Plante, J. et Nozères, C. 2020. L'état du stock de flétan du Groenland du golfe du Saint-Laurent (4RST) en 2018 : données de la pêche commerciale et des relevés de recherche. Secr. can. de consult. sci. du MPO. Doc. de rech. 2020/016. v + 130 p.

Also available in English:

Gauthier, J., Marquis, M.-C., Bourdages, H., Ouellette-Plante, J. and Nozères, C. 2020. Gulf of St. Lawrence (4RST) Greenland Halibut Stock Status in 2018: Commercial Fishery and Research Survey Data. DFO Can. Sci. Advis. Sec. Res. Doc. 2020/016. v + 127 p.

TABLE DES MATIÈRES

RÉSUMÉ	V
INTRODUCTION	1
BIOLOGIE	1
ÉCOSYSTÈME	2
MÉTHODOLOGIE	3
DONNÉES DE LA PÊCHE COMMERCIALE	3
Statistiques de débarquement et d'effort	
Captures par unité d'effort	4
Échantillonnage des captures commerciales et structure de taille	
Prises accessoires dans la pêche aux filets maillants dirigée au flétan du Groenland	
Prises accessoires de flétan du Groenland dans la pêche dirigée à la crevette	
DONNÉES DES RELEVÉS SCIENTIFIQUES	
Description des relevés	
Indice d'abondance	
Répartition géographique	
Répartition des captures selon la profondeur et la température	
Aire d'occupation	
RecrutementStructure démographique	
Condition	
Taille à la maturité sexuelle	
DESCRIPTION DU RÉGIME ALIMENTAIRE	11
RÉSULTATS	13
PÊCHE COMMERCIALE	
Participants	
Mesures de gestion	
Profondeur de déploiement des filets maillants dans la pêche dirigée au flétan du	
Groenland	
Durée d'immersionLocalisation des activités de pêche aux filets maillants dirigée au flétan du Groenland	
Débarquements et effort	
Capture par unité d'effort journalière	16
Effort de pêche, capture et capture par unité d'effort	
Capture par unité d'effort standardisée - indice de performance de la pêche	
Composition des captures Prises accessoires dans la pêche aux filets maillants dirigée au flétan du Groenland	
Prises accessoires dans la peche aux mets mamants dingée au netair du Groenland Prises accessoires de flétan du Groenland dans la pêche dirigée à la crevette	
RELEVÉS SCIENTIFIQUES	
Distribution spatiale	
Distribution annuelle de la biomasse du flétan du Groenland en fonction de la profonde	ur et
de la température	
Recrutement et structure démographique	
Indices d'abondance et de biomasse	22

23
23
24
24
25
25
25
26
27
28
28
29
29
30
33
77

RÉSUMÉ

Le stock de flétan du Groenland (*Reinhardtius hippoglossoides*) du golfe du Saint-Laurent (divisions OPANO 4RST) est évalué et géré selon un cycle de deux ans. Les indicateurs utilisés pour cette évaluation proviennent des données des statistiques de pêche, de l'échantillonnage des captures commerciales et de relevés scientifiques. Ce document présente les données, les techniques, les analyses et les résultats utilisés lors de la revue par les pairs ayant eu lieu les 20 et 21 février 2019 à l'institut Maurice-Lamontagne.

La pêche dirigée au flétan du Groenland s'est développée à la fin des années 70. Depuis le moratoire sur la pêche aux engins mobiles mis en place en 1993, elle s'effectue presque exclusivement à l'aide de filet maillant. L'effort de pêche est déployé dans trois principaux secteurs soit : l'ouest du golfe du Saint-Laurent, le nord d'Anticosti et le chenal d'Esquiman. Sur la période 2000-2018, la proportion de l'effort déployé dans chacun de ces secteurs était respectivement de 67, 6 et 24 %. Le total autorisé des captures (TAC) est demeuré constant à 4 500 t entre les années de gestion 2004-2005 et 2017-2018. Les débarquements étaient en diminution depuis la saison 2011-2012. En 2018, suite à une évaluation complète de l'état du stock pendant une année intermédiaire, le TAC a été réduit de 25 % pour la saison 2018-2019. Les débarquements préliminaires ont totalisé 1 496 t, soit les plus faibles débarquements des seize dernières années. L'indice de performance de la pêche commerciale a montré une tendance baissière avec une diminution de 48 % en 2018 par rapport au sommet de 2014-2016, rejoignant les valeurs faibles des années 1999-2000. Les indices de biomasse des poissons de plus de 40 cm des relevés mobiles du MPO et des pêches sentinelles, qui sont des données indépendantes de la pêche commerciale, montrent également une tendance à la baisse depuis une dizaine d'années. Ces diminutions sont respectivement de 62 % et 77 % par rapport aux sommets observés au milieu des années 2000.

L'écosystème du golfe du Saint-Laurent subit des changements importants depuis les dernières décennies. On assiste à un réchauffement et à un appauvrissement en oxygène des eaux profondes, ce qui pourrait entraîner une perte et une détérioration de la qualité de l'habitat pour le flétan du Groenland. De plus, l'arrivée de trois cohortes de sébastes exceptionnellement fortes (2011 à 2013) pourrait accroître la compétition interspécifique. Ces conditions écosystémiques ne devraient pas changer à court terme.

INTRODUCTION

BIOLOGIE

Le flétan du Groenland est un poisson plat de la famille des Pleuronectidae qui est également connu sous le nom de flétan noir et turbot. Son nom latin, *Reinhardtius hippoglossoides*, signifie qui ressemble à une langue de cheval. Comme les autres poissons plats, le flétan du Groenland subit d'importants changements physiologiques au cours de son existence. À la naissance, son corps est bilatéralement symétrique et il se déplace comme les poissons ronds. Peu après, il se couche sur l'un de ses flancs pour nager. L'œil de la face inférieure remonte alors graduellement du côté supérieur et le crâne se tord. La migration incomplète de son œil gauche lui procure une vision périphérique très large. Après la métamorphose, son corps en forme de losange, est comprimé et asymétrique. Le flanc supérieur (où se trouvent les yeux) est noirâtre, brun foncé ou gris avec des marques plus pâles, tandis que le côté aveugle est généralement gris pâle. Il se caractérise notamment par la présence d'une ligne latérale droite, d'une nageoire caudale droite, d'une grande bouche et de grandes dents pointues (Figure 1).

Les connaissances actuelles sur le stock du golfe du Saint-Laurent (GSL) indiquent que le frai a lieu en hiver, entre les mois de janvier et mars et se déroulerait dans la partie profonde du chenal Laurentien au sud-ouest de Terre-Neuve (Templeman 1973, Ouellet *et al.* 2011). La femelle produit de gros œufs dont le diamètre varie de 3,4 à 4,7 mm et il est caractérisé par une faible fécondité (Kennedy *et al.* 2009, Dominguez-Petit *et al.* 2012). Ce poisson n'effectue qu'une seule ponte par année et certains individus pourraient ne pas se reproduire tous les ans (Kennedy *et al.* 2009). Les œufs produits, de par leur densité spécifique, seraient mésopélagiques. Pendant la majeure partie de leur développement, ils se retrouveraient à des profondeurs de l'ordre de 300 m et, suite à un changement important de leur densité spécifique dans les derniers jours de développement, l'éclosion se ferait à de plus faibles profondeurs (Ouellet *et al.* 2011). Les larves pélagiques, suite à la résorption de leur sac vitellin, sont surtout retrouvées à des profondeurs de 0 à 50 m. Leur développement se déroulerait dans cette couche de surface et pourrait durer jusqu'à quatre mois. Par la suite, la larve se déposerait sur le fond où la métamorphose se produirait.

La pouponnière principale de flétan du Groenland dans le GSL est localisée dans l'estuaire maritime et une pouponnière secondaire se trouve au nord d'Anticosti (Youcef *et al.* 2013). Les juvéniles de 1 et 2 ans seraient plutôt sédentaires dans ces deux régions et se retrouvent généralement à des profondeurs moindres que les adultes. La croissance est continue chez les juvéniles et l'augmentation de taille entre 1 et 2 ans est affectée par la température, le niveau d'oxygène et la densité des poissons (Youcef *et al.* 2015). Ce poisson est considéré comme un nageur vigoureux, il effectue des migrations verticales journalières importantes et passerait près de 25 % de son temps dans la colonne d'eau (Albert *et al.* 2011).

Le flétan du Groenland présente un dimorphisme sexuel dû à un ralentissement de sa croissance à l'atteinte de la maturité sexuelle. Les mâles qui atteignent la maturité sexuelle à des tailles inférieures à celles des femelles, soit à environ 36 cm comparativement à 46 cm pour les femelles, sont de plus petite taille.

Le flétan du Groenland a une distribution circumpolaire et le GSL représente la limite sud de son aire de répartition. Au début des années 1990, des études sur la composition en espèces de parasites sanguins ont indiqué que la population du GSL est un stock isolé et distinct de la population principale du nord-ouest Atlantique qui se trouve à l'est et au nord du Grand Banc de Terre-Neuve (Arthur et Albert 1993). Ces études ont permis de conclure que le stock de flétan

du Groenland du GSL complète son cycle vital à l'intérieur du GSL qui constitue une zone de gestion pour cette espèce (Figure 2).

ÉCOSYSTÈME

La couche d'eau profonde (> 150 m) du GSL origine du mélange entre les eaux du courant du Labrador (froides, moins salées et bien oxygénées) et celles du courant du Gulf Stream (chaudes, salées et moins bien oxygénées). Ce mélange entre par le chenal Laurentien et progresse jusqu'à la tête des chenaux d'Esquiman, d'Anticosti et Laurentien. La progression des eaux de fond entre le détroit de Cabot et la tête du chenal Laurentien prendrait de trois à quatre ans. Depuis les dernières décennies, les eaux en provenance du courant du Gulf Stream constituent une proportion plus importante du mélange, ce qui a entrainé une augmentation de la température et un appauvrissement en oxygène des eaux profondes du GSL (Galbraith *et al.* 2019).

En 2018, les températures à 150 et 200 m demeurent au-dessus des normales. Les eaux à 300 m ont atteint un nouveau record de température chaude avec 6,39 °C, soit près de 1 °C de plus que la température moyenne de 5,48 °C pour la période1981-2010 (Galbraith *et al.* 2019). La superficie du fond marin recouverte par des températures supérieures à 6 °C demeure élevée dans les chenaux d'Anticosti et d'Esquiman ainsi que dans le centre du golfe. Elle a augmenté grandement dans le nord-ouest du golfe. Selon les prévisions, la température des eaux profondes du GSL demeurera élevée au cours des prochaines années. Ces conditions pourraient être défavorables au flétan du Groenland qui préfère les eaux entre 1 et 4 °C.

Pendant la progression des eaux profondes entre le détroit de Cabot et la tête des chenaux, la respiration *in situ* et l'oxydation de la matière organique entrainent une réduction de l'oxygène dissous. Puisque les eaux de fond parcourent une plus grande distance pour arriver à la tête du chenal Laurentien, c'est dans l'estuaire maritime du Saint-Laurent que l'on retrouve les plus faibles niveaux d'oxygène dissous (OD). À cet endroit, les niveaux d'OD ont diminué de 50 % entre 1930 et 1980 (Gilbert *et al.* 2007, Gilbert *et al.* 2005). Depuis 2016, ils correspondent à des valeurs de moins de 18 % de saturation (Blais *et al.* 2018), soit bien en-deçà du niveau de 30 % considéré comme hypoxique pour certaines espèces dont la morue franche (*Gadus morhua*).

Des études menées sur la tolérance à l'hypoxie et les conséquences des faibles niveaux d'oxygène sur la capacité métabolique du flétan du Groenland ont conclu qu'à 5 °C, les juvéniles ont un seuil critique d'oxygène supérieur à celui des adultes (15 % versus 11 % de saturation), indiquant qu'ils sont moins tolérants à l'hypoxie (Dupont-Prinet et al. 2013). Dans cette étude, l'hypoxie sévère augmentait la durée du processus de digestion chez les juvéniles leur laissant peu de marge de manœuvre sur le plan métabolique à des niveaux près de ceux actuellement présents dans l'estuaire maritime du Saint-Laurent. Il est important de noter que l'estuaire est la principale pouponnière pour le flétan du Groenland. Conséquemment, toute nouvelle dégradation des conditions d'oxygénation pourrait affecter la croissance et la distribution du flétan du Groenland. Une autre étude chez les juvéniles a montré que le taux de croissance entre 1 et 2 ans variait inversement avec les niveaux d'oxygène dissous et diminuait de manière significative lorsque les niveaux d'oxygène étaient inférieures à 25 % de saturation (Youcef et al. 2015). Cette étude a toutefois constaté la plus forte abondance de juvéniles dans les eaux de fond de l'estuaire caractérisées par de faibles niveaux d'oxygène et également constaté une croissance continue des juvéniles au cours de l'année; ces observations suggèrent que les impacts négatifs des faibles niveaux d'OD devraient être limités et/ou largement compensés par d'autres caractéristiques physiques ou biologiques dans l'estuaire maritime comme l'abondance et la disponibilité de nourriture et/ou la faible densité de

prédateurs. Les niveaux OD qui prévalaient dans l'estuaire maritime au moment de cette étude étaient de 20 %, ils étaient de 18 % en 2018.

Des modèles de répartition d'espèces ont été utilisés pour prédire l'impact de plusieurs scénarios de réchauffement et d'appauvrissement en oxygène des eaux de fond du GSL sur la densité locale de la crevette nordique (*Pandalus borealis*), de la morue franche et du flétan du Groenland (Stortini *et al.* 2017). Ces modèles prédisent des changements substantiels d'ici 20 à 40 ans. Des trois espèces étudiées, c'est le flétan du Groenland qui serait le plus affecté par ces changements et le modèle prédit qu'il pourrait perdre environ 55 % de la surface des zones de haute densité sous les effets combinés du réchauffement et de l'appauvrissement en l'oxygène.

Dans les années 1980, l'écosystème du nord du golfe du Saint-Laurent (nGSL) était dominé par les poissons de fond. Puis au début des années 1990, il a connu un effondrement des principaux stocks de poissons de fond dont la morue franche et les sébastes (*Sebastes spp.*). Cette diminution de grands prédateurs avait favorisé l'augmentation des espèces fourragères, dont les différentes espèces de crevette (Figure 3). La biomasse du flétan du Groenland avait augmenté en même temps que celle de la crevette nordique alors que l'abondance d'espèces de poisson de fond de grande taille déclinait (Figure 3). Depuis quelques années, on observe une diminution simultanée de la biomasse de la crevette nordique et du flétan du Groenland alors que la biomasse des poissons de fond, dominée par l'arrivée massive des sébastes, est en augmentation (Bourdages *et al.* 2019).

L'arrivée de trois cohortes (2011 à 2013) exceptionnellement abondantes de sébaste (Senay *et al.* 2018) pourrait occasionner et/ou contribuer à intensifier des interactions de compétition interspécifique directe (pour les ressources alimentaires) ou indirecte (pour l'habitat) avec le flétan du Groenland dans l'écosystème du GSL. Ces espèces présentent des proies communes dans leur régime alimentaire, dont la crevette nordique et la sivade rose (*Pasiphaea multidentata*). L'abondance des sébastes est au plus haut niveau jamais observé dans le GSL et puisqu'il s'agit d'espèces à longue espérance de vie, elles partageront l'écosystème avec le flétan du Groenland à court et à long terme.

Dans l'ensemble, les signaux écosystémiques observés indiquent que la structure de l'écosystème du GSL est en changement, ce qui pourrait être favorable pour certaines espèces comme les sébastes mais défavorable pour d'autres espèces comme la crevette nordique et le flétan du Groenland.

MÉTHODOLOGIE

DONNÉES DE LA PÊCHE COMMERCIALE

Statistiques de débarquement et d'effort

Depuis 1996, les pêcheurs de flétan du Groenland sont tenus de compléter un journal de bord quel que soit la taille du bateau au Québec et pour les bateaux de plus de 35 pieds à Terre-Neuve. Outre les estimations du poids de la capture, des informations telles que la date et la zone de pêche, le type d'engin, l'effort (nombre d'engins), la durée d'immersion des engins et la position y sont notées pour chaque jour en mer.

Pour leur part, les pêcheurs de la flottille des moins de 35 pieds de Terre-Neuve doivent compléter le journal de bord des sciences. Ces documents sont envoyés au secteur des sciences pour analyses. Le niveau de conformité pour ce journal de bord n'est pas très élevé.

Cette flottille compte pour moins de 5 % des débarquements annuels dans la pêche au filet maillant dirigée au flétan du Groenland.

Dans le cadre du programme de vérification à quai, tous les pêcheurs doivent faire peser leurs débarquements à des ports désignés. Les données provenant des journaux de bord sont validées à partir des récépissés d'achat des usines de transformation et des sommaires de pesées à quai et saisies par les équipes en charge de la récolte des statistiques de pêche de chaque région du MPO. Ces données sont ensuite rendues disponibles par chacune des régions dans des fichiers « ZIFF » (Zonal Interchange File Format) qui sont consolidés à l'Institut Maurice-Lamontagne (IML) et contiennent ainsi les informations de toutes les flottilles. Ces fichiers sont généralement considérés finaux deux ans après les activités de pêche qu'ils contiennent. Les données de l'année d'évaluation courante d'un stock sont donc considérées préliminaires.

Les données de débarquements de flétan du Groenland antérieures à 1985 proviennent des Bulletins statistiques de l'OPANO (Bernier et Chabot 2013). De 1985 à 2018, les informations sur les débarquements rapportés dans ce document ont été colligées à partir des fichiers ZIFF (Tableaux 1, 2 et 3). Les données de 1985 à 1997 diffèrent de celles publiées dans Bernier et Chabot (2013) et Morin et Bernier (2003). Les valeurs de débarquement provenant des ZIFF sont légèrement supérieures à celles déjà publiées. Les différences entre ces deux sources de données sont de moins de 1 % à l'exception des années 1989, 1993 et 1997 où les différences sont respectivement de 2 %, 6 % et 7 %.

Des cartes de la répartition spatiale des activités de pêche dans le GSL sont générées en utilisant les données de position (latitude et longitude) et de quadrilatères de pêche extraites des ZIFF. Dans les ZIFF de l'année courante, considérée préliminaire, l'information sur les positions de pêche est parfois manquante et ce manque est plus important pour les données provenant de la région de Terre-Neuve.

Depuis 2013 une autre source de données est disponible pour représenter la répartition spatiale des activités de pêche dirigée au flétan du Groenland dans le GSL. Il s'agit des données provenant du système de surveillance des navires (SSN). Lors des voyages de pêche, ce système permet de positionner les navires par satellite à une fréquence de 30 minutes. Les informations colligées sont le numéro du bateau (NBPC), la position (latitude et longitude), la date et l'heure. Il n'y a pas d'information à savoir si le navire est en situation de pêche. Afin d'écarter les activités de pêche qui ne sont pas dirigées au flétan du Groenland, les informations NBPC et dates des données SSN sont comparées aux données des journaux de bord (ZIFF). Les positions des données SSN qui recoupent à plus ou moins une journée des captures de flétan du Groenland enregistrées dans les journaux de bord sont conservées. Les données de SSN sont ensuite nettoyées sur la base de la vitesse de déplacement des navires déterminée par la distance entre deux positions. Les positions où le navire est en déplacement (vitesse supérieure à 2,5 nœuds) et où le navire est complètement immobile soit en mer ou à quai (vitesse inférieure à 0,5 nœud) sont retirées des analyses. Les positions des navires circulant à des vitesses comprises entre 0,5 et 2,5 nœuds sont conservées. Ces vitesses de déplacement pour des activités de pêche dirigée au flétan du Groenland ont été validées auprès des pêcheurs. Les positions de pêche au flétan du Groenland ont été sommées annuellement dans des carrés d'une minute de longitude par une minute de latitude afin d'être cartographiées.

Captures par unité d'effort

Les données pour le calcul des captures par unité d'effort (CPUE) (kg/filet) sont extraites du fichier consolidé ZIFF. Pour ce sous-ensemble, on ne retient que les activités où l'engin de pêche est le filet maillant et l'espèce visée le flétan du Groenland. Le filet maillant est l'engin de

pêche utilisé pour plus de 98 % des débarquements dans la pêche dirigée au flétan du Groenland. Les données de capture et d'effort sont validées et les activités de pêche où des valeurs sont manquantes (capture ou effort), ou erronées sont exclues des analyses subséquentes.

Les CPUE présentées couvrent les années de 1999 à 2018. Les données des années antérieures à 1996 ne sont pas utilisées principalement en raison du changement de maillage qui est passé de 5,5 à 6 pouces pour les filets maillants utilisés dans la pêche dirigée au flétan du Groenland. Les données des années 1996 à 1998 ne sont pas utilisées puisqu'elles sont très partielles.

Les CPUE sont présentées pour l'ensemble du golfe (4RST) et pour les trois secteurs de pêche (Ouest du Golfe, Nord Anticosti et Esquiman) qui représentent les zones de concentration du flétan du Groenland. Les CPUE non standardisées correspondent à la somme des débarquements annuels divisée par l'effort annuel (somme des filets déployés) (Tableau 4).

La somme des captures ne représente pas la totalité des débarquements puisque des observations ont dû être retirées des analyses parce qu'erronées ou incomplètes. La somme des efforts correspondant aux mêmes observations ne représente donc pas l'effort total déployé par les flottilles pour capturer le débarquement total. De plus, l'information sur l'effort de pêche est souvent manquante dans le ZIFF préliminaire de l'année en cours. Cependant, il est possible d'estimer l'effort de pêche total (effort nominal) correspondant à la totalité des débarquements en utilisant la capture par unité d'effort estimée à partir du sous-ensemble d'observations validées (Tableau 4). De la même façon, il est possible d'estimer la capture et l'effort mensuels par zone de pêche et par année (Tableau 5).

Standardisation des captures par unité d'effort

Les CPUE annuelles ont été standardisées à l'aide d'un modèle multiplicatif (Gavaris 1980) pour tenir compte des changements dans la saison de pêche (mois), des différences entre les zones unitaire de l'OPANO et les différences entre les pratiques de pêche (durée d'immersion). Des régressions linéaires multiples ont été effectuées entre le logarithme des CPUE et les variables mois, zone, durée d'immersion et année afin d'isoler l'effet annuel sans l'effet des autres variables. Le modèle pondère l'effet de ces trois facteurs rendant ainsi les CPUE comparables entre les années. Les analyses ont été faites avec la procédure *GLM* du logiciel SAS (SAS 1996). Les standardisations sont faites séparément pour l'ensemble du golfe (4RST) et pour chacun des secteurs de pêche.

La validation de ces modèles se fait par l'analyse des résidus en fonction des valeurs prédites et des catégories des facteurs étudiés. Les analyses de variance sont toutes significatives (p<0,0001) de même que la contribution de chaque catégorie à la régression multiple (p<0,0001) sauf pour la catégorie OPANO dans le secteur Esquiman (p=0,4005). Le modèle explique 57 % de la variance pour le secteur Esquiman, 50 % pour Anticosti, et 26 % pour le secteur ouest du golfe.

Les CPUE standardisées sont présentées au tableau 6. Les CPUE correspondent à une activité de pêche référence qui se déroule au mois de juillet avec un temps d'immersion de trois jours. Les sous-zones OPANO références sont : 4Si pour l'ensemble du golfe et pour le secteur ouest de golfe, 4Rb pour le secteur Esquiman et 4Sx pour le secteur Anticosti.

Les données servant au calcul des durées d'immersion et de la profondeur de déploiement des filets maillants sont extraites des fichiers de données validés servant au calcul des CPUE. La donnée exacte de profondeur est disponible depuis 2008 dans les ZIFF, auparavant une variable de classe de profondeur y était rapportée.

Échantillonnage des captures commerciales et structure de taille

L'échantillonnage des captures commerciales est assuré par deux programmes distincts soit le programme d'échantillonnage à quai du MPO et le programme des observateurs en mer. Les échantillonneurs du MPO sont répartis sur tout le territoire et leur travail consiste, entre autres, à récolter des données sur la taille et le sexe des poissons au débarquement, soit au quai ou à l'usine. Ce programme a été mis en place au début des années 1980. Le programme des observateurs en mer assure la collecte d'informations détaillées sur les activités de pêche en mer (depuis 1994) incluant des données sur l'espèce ciblée ainsi que sur les prises accessoires et les rejets en mer. Les informations recueillies par ces deux programmes (à quai et en mer) permettent de déterminer annuellement la taille moyenne des poissons ainsi que la proportion des sexes dans les débarquements. Les informations sont d'abord extraites de ces deux bases de données puis une validation est faite. Les échantillons sont rejetés dans les cas où; les poissons n'ont pas été sexés; la proportion des femelles est douteuse (au filet maillant les femelles dominent); la longueur moyenne des mâles est supérieure à celle des femelles; le nombre de poissons mesuré est faible. Les poids d'échantillon manquants où supérieurs au poids de la capture sont corrigés par une relation longueur poids.

Le nombre de poissons mesurés par échantillon varie beaucoup entre les données récoltées par les échantillonneurs du MPO (échantillon de 250 poissons avant 2005, et de 150 depuis) et celles du programme des observateurs (150-200 poissons par échantillon et plusieurs traits échantillonnés par voyage). Dans un premier temps, pour chacun des sexes séparés, une fréquence de longueur relative par échantillon du MPO est calculée et par voyage d'observateur (plusieurs traits). Et dans un deuxième temps, la moyenne des fréquences relatives des échantillons d'une même combinaison de division OPANO, année et trimestre est produite. Les distributions de fréquences de longueur sont ensuite pondérées selon les débarquements annuels par division OPANO et par trimestre pour produire une structure de taille annuelle. La taille moyenne et la proportion de femelles dans la pêche sont calculées à partir des nombres à la longueur obtenus (Tableaux 7 et 8).

Prises accessoires dans la pêche aux filets maillants dirigée au flétan du Groenland

Deux sources de données ont été combinées pour établir un portrait global des prises accessoires soit : les ZIFF et le programme des observateurs en mer. Les ZIFF fournissent l'information complète sur les débarquements totaux déclarés. Le programme des observateurs en mer couvre un certain pourcentage des voyages de pêche et fournit donc une information partielle sur les prises accessoires. Cependant, ce programme est la seule source de données sur les captures qui sont rejetées en mer et qui ne sont pas comptabilisées dans les fichiers ZIFF.

Les pêcheurs de flétan du Groenland ont l'obligation de prendre à bord un observateur à la demande du MPO. Le programme des observateurs en mer vise une couverture minimale de 5 % de tous les voyages de pêche dirigée. Ce pourcentage peut atteindre 15 % pour certaines flottilles comme, par exemple, celle des grands palangriers du Québec. Des informations détaillées sur les traits de pêche sont notées par les observateurs (position, durée, capture par espèce ou taxon, longueur des spécimens pour certaines espèces). Les données du programme des observateurs en mer utilisées pour la présente étude ont été récoltées entre 2000 et 2018 pendant la pêche dirigée au flétan du Groenland dans le golfe du Saint-Laurent afin d'estimer les prises accessoires.

La méthodologie pour le traitement des données des prises accessoires par le programme des observateurs est similaire à celle présentée dans Savard *et al.* (2013). Depuis 2000, 10 082

activités de pêche ont été échantillonnées. Des facteurs de pondération (ratio entre la capture de flétan du Groenland par les turbotiers/Capture de flétan du Groenland dans les activités observées) ont été calculés pour ajuster les résultats obtenus avec la base de données des observateurs à la totalité des activités de pêche de la flottille des turbotiers (Tableau 9).

Prises accessoires de flétan du Groenland dans la pêche dirigée à la crevette

Les crevettiers ont également l'obligation de prendre à bord un observateur à la demande du MPO. Le programme des observateurs en mer vise une couverture de 5 % de tous les voyages de pêche des crevettiers. Les informations récoltées sont les mêmes que pour les turbotiers. La méthodologie pour le traitement de ces données est présentée dans Savard *et al.* (2013). Depuis 2000, 21 697 traits de pêche ont été échantillonnées. Des facteurs de pondération (Σeffort crevettiers/Σeffort observateurs) ont été calculés pour mettre à l'échelle les résultats des données des observateurs à la totalité de l'effort de pêche déployé par la flotte des crevettiers.

Taux d'exploitation relatif

Un indice relatif du taux d'exploitation annuel est obtenu en divisant le poids total des captures commerciales de la pêche aux filets maillants dirigée au flétan du Groenland par la biomasse des flétans du Groenland de plus de 40 cm estimée avec les données du relevé scientifique du MPO du nGSL. Cette méthode ne permet pas d'estimer le taux d'exploitation absolu, ni de le mettre en relation avec des taux d'exploitation cibles. Toutefois, elle permet de suivre les changements relatifs au cours des années.

DONNÉES DES RELEVÉS SCIENTIFIQUES

Description des relevés

Relevé du MPO du nord du golfe du Saint-Laurent

Un relevé de recherche est réalisé annuellement au mois d'août dans l'estuaire maritime et le nord du golfe du Saint-Laurent (nGSL) depuis 1990 pour estimer l'abondance des poissons de fond et de la crevette nordique (Bourdages *et al.* 2019). Ce relevé est effectué par la région du Québec du MPO et il couvre les divisions de l'OPANO 4R, 4S et une partie de 4T (nord du golfe) (Figures 2 et 4).

De 1990 à 2003 et en 2005, le relevé était effectué par le *NGCC Alfred Needler*, équipé d'un chalut à crevette URI 81 '/114' (Université de Rhode Island) muni d'une doublure de 19 mm. Depuis 2004, le relevé est réalisé à bord du *NGCC Teleost* à l'aide d'un chalut à crevette *Campelen 1800* muni d'une doublure de 12,7 mm. Les navires et les chaluts étant très différents, des expériences de pêche comparative ont été menées en 2004 et en 2005 afin d'estimer les différences de capturabilité entre les paires bateau / chalut et d'établir les facteurs de conversion pour une vingtaine d'espèces capturées (Bourdages *et al.* 2007). Ces expériences ont permis de produire une série fusionnée en ajustant les captures du *NGCC Needler* en prises équivalentes du *NGCC Teleost*.

La durée de chalutage pour un trait standard de pêche est de 15 minutes, calculée à partir du contact du chalut avec le fond, déterminé à l'aide du système hydroacoustique *Scanmar*TM. La vitesse de chalutage est fixée à 3 nœuds. Les opérations de pêche se déroulent sur 24 heures.

Le plan d'échantillonnage est aléatoire stratifié. La zone d'étude est divisée en 54 strates et leur découpage a été fait en se basant sur la profondeur, les divisions de l'OPANO et le type de substrat. La stratification utilisée pour l'allocation des stations de pêche est présentée à la figure 4.

Relevé du MPO du sud du golfe du Saint-Laurent

Chaque automne depuis 1971, les scientifiques de la région du Golfe du MPO effectue un relevé au chalut de fond à bord d'un navire de recherche dans le sud du golfe du Saint-Laurent (sGSL) (division 4T de l'OPANO) (Figure 4). L'objectif principal de ce relevé est d'obtenir des indices d'abondance des principales espèces de poisson de fond de cette région.

Ce relevé est basé sur un plan d'échantillonnage aléatoire stratifié. La figure 4 montre l'aire échantillonnée par le relevé du nGSL et celle couverte par le relevé du sGSL. On remarque une zone de chevauchement partiel ou total de certaines strates couvertes par ces deux relevés sur le flanc sud du chenal Laurentien.

De 1971 à 1985, le relevé sGSL était réalisé par le navire *E.E. Prince* équipé d'un chalut Yankee 36. Par la suite, l'engin de pêche a été remplacé par un chalut Western IIA jusqu'à ce jour. Le relevé a été effectué à bord du navire Lady Hammond de 1985 à 1991, du *NGCC Alfred Needler* en 1992 - 2002 et 2004-2005, du Wilfred Templeman en 2003 et du *NGCC Teleost* depuis 2004. Des pêches comparatives ont été réalisées à chacun des changements de navire et/ou de type de chalut afin de produire des facteurs de conversion permettant de produire une série temporelle continue à partir de 1971 (Swain *et al.* 1995, Benoît 2006). Le trait standard de pêche est de 30 minutes à une vitesse de 3,5 nœuds. Le maillage de la doublure de la poche du chalut Western IIA est de 19 mm.

Relevé mobile du programme des pêches sentinelles dans le nGSL

Un relevé mobile du programme des pêches sentinelles (PSM) effectué en juillet depuis 1995 est également utilisé pour évaluer l'état du stock de flétan du Groenland du GSL. Ce relevé suit un plan d'échantillonnage et un protocole de pêche similaire à celui du relevé scientifique du nGSL du MPO. Il couvre les zones OPANO 3Pn, 4RS et une partie de 4T. La portion estuaire maritime n'est toutefois pas couverte par ce relevé (Strates 411 à 414). L'estuaire compte en moyenne 22 % de l'abondance de flétan du Groenland en été, dont la plus importante concentration de juvéniles. Annuellement, entre six et neufs chalutiers de Terre-Neuve et du Québec se partagent près de 300 stations. Les bateaux qui participent au relevé utilisent tous le même type de chalut soit un *Star Balloon* 300 monté sur un bicycle de type *Rock Hopper*. Ce chalut possède un maillage de 145 mm et une doublure, au niveau du cul, de 40 mm. Un trait standard est d'une durée de 30 minutes, à une vitesse de 2,5 nœuds. La capture totale de flétan du Groenland est pesée à chaque trait et un échantillon maximal de 200 poissons est prélevé pour déterminer certaines caractéristiques biologiques dont la taille (longueur à la fourche) et le sexe des poissons. La description du relevé mobile des pêches sentinelles est disponible sur le site de l'OGLS.

Indice d'abondance

Pour le relevé nGSL du MPO et de PSM, un modèle multiplicatif (Gavaris 1980) est utilisé pour corriger les estimations des indices du taux de capture, en nombre et en poids lorsqu'un minimum de deux traits par strate n'a pu être effectué une année donnée. La valeur prédite par le modèle, pour les strates couvertes par moins de deux traits, est calculée à partir des données de l'année en cours et des trois années précédentes. Ainsi, les indicateurs présentés pour une série donnée sont représentatifs d'une superficie standard totale, soit la somme de la superficie des strates échantillonnées i.e. 116 115 km² pour le relevé nGSL et 111 855 km² pour le relevé PSM.

Les indices en nombre et en poids par classe de taille sont obtenus en convertissant les nombres à la longueur en poids à la longueur à chacun des traits à l'aide d'une relation longueur-poids annuelle provenant des relevés du MPO. Des différences de l'ordre de 1 à 10 %

peuvent être observées entre la biomasse totale obtenue avec le poids des captures et celle calculée à partir des nombres capturés convertis en poids à l'aide de la relation longueur-poids. Un ratio est alors appliqué aux valeurs afin de ramener les poids à la longueur à l'équivalent de la biomasse totale obtenue avec le poids des captures. Les poids à la longueur obtenus sont ensuite combinés par classe de taille.

Répartition géographique

La répartition géographique des taux de captures pour les relevés MPO et PSM dans le nGSL, présentée en poids et en nombre par trait, a été compilée pour des périodes de quatre ou cinq ans. L'interpolation des CPUE a été réalisée sur une grille couvrant la zone d'étude en utilisant une pondération inversement proportionnelle à la distance (R version 2.13.0, librairie Rgeos ; R Development Core Team 2011). Les isolignes ont ensuite été tracées pour quatre niveaux de taux de capture qui correspondent approximativement aux 20e, 40e, 60e et 80e percentiles des valeurs non nulles. La répartition géographique du flétan du Groenland est présentée pour la biomasse totale et des cartes de distribution spatiale en nombre par trait sont également présentées pour chacune des classes de taille suivantes : [0-20] cm, [20-30] cm [30-40] cm et > 40 cm.

Pour le relevé du sGSL, des cartes de contour de la distribution géographique du flétan du Groenland ont été créées pour des périodes de près de 10 ans à l'aide du logiciel ACON (ACON Win95 8.37, Pêches et Océans Canada). L'interpolation des contours est basée sur la méthode de triangulation de Delaunay, avec des niveaux de contour représentant les 10, 25, 50, 75 et 90^{ième} centiles des captures non nulles. Pour éviter la formation inappropriée de triangles de Delaunay entre des points distants et des points séparés topologiquement par des barrières, une distance de masquage de 0,7 degré a été utilisée comme limite de distance entre les points de données où les triangles de Delaunay ont été supprimés.

Répartition des captures selon la profondeur et la température

La fréquence cumulée des captures (en poids) a été compilée en fonction de la profondeur et de la température, toutes années confondues avec les données récoltées lors du relevé nGSL du MPO. Cette relation a été représentée graphiquement avec la fréquence relative cumulée du nombre de stations échantillonnées par profondeur dans la zone d'étude. Les 5°, 10°, 25°, 50°, 75°, 90° et 95° centiles de cette distribution sont présentés au tableau 10.

La distribution annuelle de la biomasse totale du flétan du Groenland et de la biomasse par classe de taille en fonction de la profondeur et de la température sont présentées pour l'ensemble du golfe (4RST) et par secteur de pêche avec des graphiques en tracé de boîtes à moustaches des captures (box plot).

Aire d'occupation

Trois descripteurs de répartition spatiale ont été calculés : l'aire d'occupation pondérée (DWAO), le D95 et l'indice de Gini.

Aire d'occupation pondérée

L'aire d'occupation pondérée (design-weighted area of occupancy, DWAO) représente la superficie de la zone d'étude où le flétan du Groenland est présent (Smedbol et al. 2002).

D95

L'indice D95 décrit la concentration géographique. Ce descripteur correspond à la superficie minimale où se concentre 95 % de la biomasse du flétan du Groenland (Swain et Sinclair 1994).

Indice de Gini

L'indice de Gini quantifie le niveau d'homogénéité de la répartition du flétan du Groenland. Cet indice est calculé en utilisant la courbe de Lorenz (Myers et Cadigan 1995). Les valeurs de cet indice s'échelonnent de 0 à 1 où 0 correspond à une répartition homogène parfaite et 1 à une répartition très concentrée.

Recrutement

La force du recrutement est estimée par l'abondance annuelle des poissons de la classe de taille ≥12 et ≤ 21 cm capturés lors des relevés nGSL et sGSL du MPO. Cette classe de taille représente les flétans du Groenland de 1 an. Pour la cohorte 2014, la gamme de taille correspondant à des poissons de 1 an a été réduite pour diminuer la contamination par des poissons de la cohorte 2013 dont la croissance a été inférieure à celle attendue. La force du recrutement pour la cohorte 2014 est estimée par l'abondance des poissons dont la taille est ≥12 et ≤18 cm.

Structure démographique

Les distributions de fréquence de longueur sont présentées de deux façons. Une première figure illustre les distributions pour les deux dernières années de la série (2017 et 2018) ainsi que la distribution moyenne d'une période référence (1990-2017 pour le relevé nGSL et 1995-2017 pour le relevé PSM). Les valeurs de fréquence sont exprimées en nombre moyen d'individus capturés par trait de chalut par incrément d'un centimètre.

Une deuxième représentation consiste en un graphique en bulles où le diamètre des bulles est proportionnel au nombre d'individus capturés pour une taille donnée.

Condition

L'indice de condition de Fulton (K= poids (g)/longueur³ (cm)), calculé à partir des données du relevé nGSL du MPO (1990 à 2018), est utilisé comme indicateur de l'état de santé des flétans du Groenland au mois d'août. L'indice est calculé à partir du poids total du poisson. Il est généralement préférable d'utiliser le poids somatique (poids total du poisson moins le poids des gonades et le poids du contenu stomacal) afin d'éliminer la variabilité dans la mesure de l'indice de condition pouvant être causée par une intensité d'alimentation et/ou un degré de maturation des gonades différents entre les poissons (Dutil *et al.* 1995). Cependant, dans la présente étude, comme le poids somatique n'est pas disponible, le poids total a été jugé adéquat pour le calcul de l'indice de condition, l'indice étant calculé pour la même période d'année en année (août).

Une analyse de covariance (ANCOVA) a été utilisée afin de comparer l'indice de condition entre les années. L'ANCOVA permet d'enlever l'effet linéaire de la longueur du poisson sur l'indice de condition et d'évaluer l'effet de l'année. L'estimation de l'indice de condition annuel est faite par intervalle de taille, soit de 10 à 20 cm, 20 à 30 cm, 30 à 40 cm et plus de 40 cm. Le modèle prédit un indice de condition pour chaque année pour les valeurs de longueur 15, 25, 35 et 45 cm. Ce sont ces prédictions annuelles qui sont comparées entre-elles.

Taille à la maturité sexuelle

Des informations sont récoltées annuellement depuis 1996 lors du relevé nGSL du MPO afin de déterminer la taille à la maturité sexuelle des flétans du Groenland. Le stade de maturité sexuelle est déterminé par inspection visuelle des gonades selon des critères morphologiques pour un maximum de 100 poissons par trait chez des individus de taille supérieure à 22 cm. La

taille à laquelle 50 % des poissons sont matures (L_{50}) est déterminée pour les mâles et les femelles séparément. La procédure *Probit* de SAS utilisant une distribution logistique est employée pour l'estimation du L_{50} .

DESCRIPTION DU RÉGIME ALIMENTAIRE

Les estomacs de flétan du Groenland provenant du relevé MPO du nGSL ont été retenus pour cette analyse. Les estomacs ont été dégelés juste avant leur analyse au laboratoire. Chaque taxon d retrouvé dans un estomac donné j a ensuite été pesé et identifié au niveau taxonomique le plus précis possible. La masse du taxon d d'un estomac donné (M_{dj}) était ensuite saisie dans le champ de la base de données correspondant au stade de digestion du taxon. Un taxon non digéré était entré en stade 1, un taxon partiellement digéré mais encore identifiable à l'espèce en stade 2 et tout le reste en stade 3. Pour la présente étude, les données de tous les stades de digestion ont été utilisées. Cependant, les taxons correspondants à des parasites ou à des déchets (ex : roche, sable, liquide, mucus) ont été retirés. Il en va de même des estomacs évaginés ou n'ayant pu être appariés à une valeur de longueur de poisson.

Cinq mesures (PEV, CM, IR, CIR et FO) ont été utilisées pour classifier l'importance des différents taxons au régime alimentaire du flétan du Groenland. Ces mesures sont issues de la méthode présentée dans Bernier et Chabot (2013). Pour un échantillon de NE_e estomacs comportant NE_{ev} estomacs vides, le pourcentage d'estomacs vides (PEV_e) se calcule ainsi :

$$PEV_e = \frac{NE_{ev}}{NE_e} \times 100 \tag{1}$$

Pour un taxon d de masse M_{dj} retrouvé dans l'estomac j d'un échantillon de NE_e estomacs, la somme des masses M_{dj} de cet échantillon correspond à M_d et contribue à CM_d % du contenu stomacal total M_{tot} retrouvé dans ces NE_e estomacs. D correspond au nombre de différents taxons présents dans l'échantillon e.

$$M_d = \sum_{j=1}^{NE_e} M_{dj} \tag{2}$$

$$M_{tot} = \sum_{d=1}^{D} M_d \tag{3}$$

$$CM_d = \frac{M_d}{M_{tot}} \times 100 \tag{4}$$

Tel que souligné dans l'étude de Bernier et Chabot (2013), l'utilisation seule de CM_d comporte certains risques :

1. Pour un échantillon de NE_e estomacs, la somme des CM_d des D proies retrouvées donne 100 %. Cela implique donc une interdépendance entre les CM_d des différents taxons, où une valeur élevée retrouvée pour un taxon d donné peut être le reflet d'une baisse de l'abondance des taxons alternatifs et non une hausse de l'abondance de ce taxon d dans le régime alimentaire du prédateur.

- 2. Les taxons retrouvés dans les petits estomacs peuvent être désavantagés par rapport à ceux des gros estomacs qui, proportionnellement à la capacité de leur prédateur, pourraient être plus pesants et donc représenter une proportion élevée de M_{tot} .
- 3. CM_d ne tient pas compte des estomacs vides.

Pour diminuer ces risques potentiels, l'indice de remplissage (IR) a également été utilisé comme mesure. L' IR_{dj} est calculé d'après la masse M_{dj} du taxon, la longueur du poisson associé à l'estomac j (L_j , en mm), l'exposant allométrique b et une constante (10^7). Pour cette étude, l'exposant allométrique b (3.24) a été calculé d'après les données d'estomacs disponibles pour le flétan du Groenland et correspond à la pente de la relation linéaire $log(masse) \sim log(longueur)$ remise sous la forme masse = aL^b , où la longueur est en centimètres et la masse en grammes.

Pour un taxon d donné dans un échantillon, la contribution de l'indice de remplissage IR_d de ce taxon correspond à CIR_d . Pour un échantillon e donné, l'indice de remplissage total (IRT) est la somme des IR_d issues des D différents taxons présents dans e.

$$IR_{di} = M_{di} \times L^{-b} \times 10^7 \tag{5}$$

$$IR_d = \frac{\sum_{j=1}^{NE_e} IR_{dj}}{NE_e} \tag{6}$$

$$IRT = \sum_{d=1}^{D} IR_d \tag{7}$$

$$CIR_d = \frac{IR_d}{IRT} \times 100 \tag{8}$$

Pour un échantillon donné de taille NE_e où NE_{ed} estomacs comportent le taxon d, la fréquence d'occurrence (FO_d) de ce taxon est calculée ainsi :

$$FO_d = \frac{NE_{ed}}{NE_e} \times 100 \tag{9}$$

L'analyse détaillée du régime alimentaire a été complétée en utilisant différents regroupements :

- périodes : 2004-2009, 2015-2017, 2018 et 2004-2018. Il est à noter qu'aucun estomac de flétan du Groenland n'a été échantillonné durant les missions écosystémiques 2010-2014.
- classes de longueur : <20, [20-30], [30-40] et >40 cm.
- Régions : estuaire maritime (strates 411-414, 851-852, 854-855) et le reste du nGSL.

Pour chaque taxon observé, les valeurs FO, CM, et CIR ont été calculées. Ces mêmes valeurs ont également été calculées pour les grands groupes de proies suivants : Poissons, Crevettes, Zooplancton (copépodes calanoides, euphausides, gammares, hypérides et mysides), Autres invertébrés (invertébrés ne faisant pas partie des crevettes et du zooplancton) et Proies non identifiables. Par souci de clarté dans les tables, les valeurs d'IR ne sont pas fournies pour chaque taxon. Toutefois, cette valeur peut être obtenue pour un taxon et une période/classe de longueur/région donnée en multipliant les valeurs de C_{IR} et d'IRT correspondantes.

Comme plusieurs dizaines de taxons ont été retrouvés dans les contenus stomacaux du flétan du Groenland, 14 regroupements taxonomiques ont été créés afin de simplifier l'analyse

graphique de son régime alimentaire. Ces regroupements ont été choisis en fonction de la valeur de l'*IR* et du type de proies.

La relation longueur proie \sim longueur flétan du Groenland a été investiguée pour les sébastes ingérés par le flétan du Groenland. L'extraction des données utilisées s'est faite à partir de toutes les données disponibles dans les bases de données, et ce qu'importe le type de mission et l'année de collecte. Comme la digestion rend rapidement impossible la collecte de longueurs valables des sébastes retrouvés dans les contenus stomacaux, très peu de données sont disponibles. Toutefois, quelques longueurs d'otolithes (LO) de sébaste retrouvés dans les estomacs de flétan du Groenland étaient disponibles, et ont permis le calcul de longueurs d'après l'équation de Clay et Clay (1980) :

$$L = -2.13 + 2.48 \times L0 \tag{10}$$

Enfin, les régimes alimentaires du flétan du Groenland et du sébaste ont été comparés graphiquement. Les mêmes regroupements taxonomiques et classes de longueur utilisés pour le flétan du Groenland ont été appliqués pour le sébaste. Seulement les estomacs des campagnes Teleost 2015-17 ont été sélectionnés, puisque les analyses de contenus stomacaux pour le sébaste sont toujours en cours pour l'année 2018.

RÉSULTATS

PÊCHE COMMERCIALE

Jusqu'au milieu des années 1970, les débarquements de flétan du Groenland dans le GSL provenaient principalement des prises accessoires des chalutiers dirigeant soit sur la crevette soit sur la morue (Tableau 3, Figures 5 et 6) . La pêche au filet maillant dirigée au flétan du Groenland s'est développée à partir de 1978. Un total autorisé de capture (TAC) de 7 500 t a été mis en place pour la saison de pêche de 1982 (Tableau 1, Figures 6 et 7). À cette date et jusqu'en 1992, le flétan du Groenland du GSL était géré comme une composante du stock atlantique. Durant cette période, le TAC a varié entre 5 000 t et 10 500 t. De 1988 à 1992, aucune évaluation de l'état du flétan du Groenland du GSL n'a été faite étant donné l'incertitude sur la structure des stocks pour cette espèce à cette époque. Durant ces cinq années, le TAC a été maintenu constant à 10 500 t avec des débarquements qui sont passés de 7 585 à 3 417 t. Les débarquements les plus élevés ont dépassé 8 000 t en 1979 et en 1987 au début de l'exploitation de cette ressource (Figures 5, 6 et 7). Ces forts débarquements ont été suivis par des diminutions abruptes.

Au début des années 1990, des études sur la composition en espèces de parasites ont permis de séparer les populations de flétan du Groenland et de démontrer que la population du GSL était distincte (Arthur et Albert 1993). Les évaluations du stock de flétan du Groenland du GSL ont repris en 1993 et le TAC a été diminué à 4 000 t. Il a été baissé à 2 000 t en 1996 puis augmenté de 3 000 t à 4 000 t en 1997 et 1998. Les débarquements ont fluctué entre 1 945 t et 3 945 t pour la période 1993-1998. Pour les années de gestion 1999-2000 à 2001-2002, le TAC était de 4 500 t et les débarquements ont diminué de 3 674 à 1 288 t. Le TAC a été réduit à 3 500 t pour les deux années de gestion suivantes, soit 2002-2003 et 2003-2004.

De la fin des années 1970 au début des années 1990, plus de 30 % des débarquements provenaient de la pêche aux engins mobiles (EM) (Tableau 3, Figures 5 et 6). Depuis 1993, les captures enregistrées par les engins mobiles sont très faibles (< 1 % en 2018) en raison de l'arrêt des activités de pêche dirigée par les EM et de l'utilisation obligatoire de la grille Nordmore par les crevettiers (1994) (Hurtubise *et al.* 1991, Fréchet *et al.* 2006). Depuis, les

seuls débarquements de flétan du Groenland par des EM (1 à 5 % des captures totales) proviennent des prises accessoires dans d'autres pêcheries (pêche dirigée au sébaste et relevés de recherche).

Depuis l'arrêt de la pêche aux EM, seulement une fraction du TAC qui leur était alloué est transférée à la flotte des engins fixes, ainsi une portion du TAC n'est plus pêchée. Dans ce document, la terminologie *allocation de pêche* (ALL-P) est utilisée pour indiquer la somme des captures allouées à chaque flottille du GSL qui représente la portion du TAC qui peut être capturée par les pêcheurs à engins fixes (Tableaux 1 et 2, Figures 6 et 7). Actuellement, la pêche au flétan du Groenland est effectuée par des bateaux pêchant aux filets maillants dont les ports d'attache sont situés au Québec et sur la côte ouest de Terre-Neuve. La répartition de l'allocation entre ces deux provinces est respectivement de 82 % et 18 %.

Jusqu'en 1998, le cycle de gestion de cette ressource se faisait sur la base de l'année civile et le TAC était établi pour la période du premier janvier au 31 décembre de la même année. Depuis 2000, le cycle de gestion s'échelonne du 15 mai d'une année donnée au 14 mai de l'année suivante. En 1999, pour faire le pont entre ces deux cycles de gestion, le TAC a été établi pour la période du 1^{er} janvier 1999 au 14 mai 2000.

Le TAC a été maintenu constant à 4 500 t des saisons de pêche 2004-2005 à 2017-2018 pour une ALL-P de 3 751t (Tableaux 1 et 3, Figures 6 et 7). Cette ALL-P a été atteinte jusqu'en 2011-2012. Pour la saison de pêche 2017-2018, on observait le plus grand écart entre l'ALL-P et les débarquements qui totalisaient 1 767 t. Ces débarquements étaient très inférieurs à la moyenne de 3 678 t des dix années précédentes.

À l'automne 2017, une mise à jour de l'état du stock de flétan du Groenland du GSL a conclu que le seuil de déclenchement pour une évaluation complète du stock durant une année intermédiaire avait été franchi (MPO 2018a). Suite aux conclusions de la revue par les pairs (MPO 2018b), la décision a été prise de réduire le TAC de 25 % à 3 375 t pour la saison de pêche 2018-2019 avec une ALL-P de 2 813 t.

Les débarquements (préliminaires au 31 décembre 2018) de 2018 totalisaient 1 493 t, soit 53 % de l'ALL-P (Tableaux 1 et 2 , Figure 5), et représentent les plus faibles débarquements depuis 2001-2002. Les flottilles engins fixes du Québec qui comptent la plus grande part de l'ALL-P ont débarqué 999 t sur une possibilité de 2 331 t, soit 43 % de leur allocation. Les flottilles engins fixes de Terre-Neuve ont atteint leur allocation de pêche de 482 t.

En 2018, près de 99 % des débarquements provenaient de captures effectuées avec des filets maillants (Tableau 3, Figure 5). La presque totalité des débarquements de flétan du Groenland provient de la pêche dirigée sur cette espèce. Entre 2005 et 2018, moins de 1 % des débarquements de flétan du Groenland provenait de la pêche dirigée à la morue (moyenne annuelle de 27 t), au sébaste (26,4 t), au flétan atlantique (14,6 t) et à la plie grise (3,6 t).

La pêche s'effectue dans les trois divisions OPANO du GSL soit 4R, 4S, et 4T (Tableau 2, Figure 7). La proportion annuelle des débarquements en provenance de chacune de ces divisions a varié dans le temps. Entre la saison de pêche 2010-2011 et 2016-2017, les proportions étaient de 27, 46 et 27 % respectivement pour 4R, 4S et 4T. En 2018, on notait que 12 % des débarquements provenaient de 4R, 47 % de 4S et 42 % de 4T.

Participants

Conformément aux décisions ministérielles prises au cours des dernières décennies, seules les flottilles de pêche de poisson de fond avec engins fixes de la Gaspésie et de la Côte-Nord du Québec de même que de la côte ouest de Terre-Neuve participent à la pêche commerciale dirigée au flétan du Groenland dans le GSL.

Cette pêche était essentiellement sous régime compétitif avant 1999, mais un régime de quota individuel transférable (QIT) a été mis en place (Tableau 1) depuis. En moyenne sur une base annuelle, de 2004 à 2015, 155 pêcheurs de la région du Québec, dont 79 pêcheurs de la flottille sous QIT, 50 pêcheurs de la flottille compétitive de la Basse-Côte-Nord et 26 pêcheurs de la flottille compétitive autre que Basse-Côte-Nord, ont pris part à la pêche dirigée au flétan du Groenland. Pour Terre-Neuve, en moyenne 80 pêcheurs, tous sous régime compétitif, ont pris part à cette pêche entre 2010 et 2015.

Le nombre de pêcheurs actifs pour cette pêche est en diminution dans les années récentes. Il est passé de 103 à 56 au Québec et de 60 à 29 à Terre-Neuve entre les saisons 2015-2016 et 2018-2019. Il s'agit d'une diminution de près de 50 % pour les deux provinces combinées. Cette diminution pourrait être attribuable au plus faible taux de capture des années récentes et à la possibilité de pratiquer des pêches plus lucratives.

Mesures de gestion

Plusieurs mesures de gestion et de conservation encadrent les activités de pêche (Tableau 1). Ces mesures comprennent, entre autres, des fermetures de zones, des restrictions de périodes de pêche, des caractéristiques d'engins de pêche (taille des mailles et grosseur des hameçons), des quotas de flottilles et une taille minimale des différentes espèces de poisson de fond dans le cadre d'un protocole de petits poissons.

Les mesures actuellement en place dans la pêche comprennent l'obligation de compléter un journal de bord (100 %), de faire peser la captures à quai (100 %) et d'accepter de prendre à bord un observateur à la demande du MPO (couverture de 5 à 15 %selon les flottilles). L'utilisation du système de surveillance des navires (SSN) est obligatoire depuis 2013 sur tous les bateaux à l'exception de ceux de la flottille des moins de 35 pieds de Terre-Neuve et ceux de la Basse-Côte-Nord.

Profondeur de déploiement des filets maillants dans la pêche dirigée au flétan du Groenland

On considère trois secteurs principaux où se pratique la pêche dirigée au flétan du Groenland : l'ouest du golfe, le nord d'Anticosti et Esquiman, qui correspondent aux zones de concentration du flétan du Groenland (Figure 8). Certains des indicateurs sont présentés pour l'ensemble du golfe (4RST) ainsi que pour chacun de ces trois secteurs afin de déterminer la présence de variabilité spatiale pouvant être attribuée à des dynamiques environnementales ou des pratiques de pêche différentes entre les régions.

Dans les activités de pêche aux filets maillants dirigeant sur le flétan du Groenland, la profondeur médiane à laquelle les engins sont déployés pour la période 2008-2017 est de près de 296 m dans les secteurs ouest du golfe et Esquiman, alors qu'elle était de 265 m pour la même période dans le secteur nord Anticosti (Figure 9). Cette différence reflète la bathymétrie propre à chacun de ces secteurs. La médiane de déploiement des filets maillants est de 287 m en 2018, soit quelque 10 m moins profond que la valeur médiane pour les dix années précédentes.

Durée d'immersion

Les conditions de permis pour la pêche du flétan du Groenland au filet maillant indique que la période de temps comprise entre la mise à l'eau et la levée des filets ne doit pas être supérieure à 72 heures (3 jours). Des conditions météorologiques difficiles ou des bris de navire sont des facteurs qui sont pris en compte pour permettre des temps d'immersion qui dépasseraient les 72 heures. La figure 10 indique la proportion annuelle des durées d'immersion des filets

maillants pour les catégories de durée d'immersion de 1, 2, 3 et 4 jours et plus. La catégorie « 4+ » comprend les durée d'immersion de 4 à 8 jours. La proportion des activités 4+ (qui dépassent les 3 jours de temps d'immersion associé aux conditions de permis de pêche) a varié de 13 à 32 % pour la période 1999 à 2017 et se situe à 18 % pour 2018. On note une diminution de la proportion de la catégorie 4+ de 2016 à 2018, sans tendance claire pour la série.

Une certaine tendance s'observe dans le pourcentage d'activité avec des temps d'immersion courts les années où les taux de capture sont plus élevés et une augmentation de la proportion des activités avec des temps d'immersion de trois jours pour les années où les taux de capture sont moins élevés. Ainsi, la proportion des activités présentant 1 jour d'immersion a augmenté entre 2008 et 2012 alors que les taux de capture étaient élevés. En 2017 et 2018, alors que les taux de capture étaient plus faibles, la proportion d'activités avec temps d'immersion de 3 jours est plus élevée

Localisation des activités de pêche aux filets maillants dirigée au flétan du Groenland

Les activités de pêche au filet maillant dirigeant au flétan du Groenland sont localisées dans trois secteurs (Figure 11). Les secteurs ouest du golfe et Esquiman sont fréquentés annuellement alors que le secteur nord Anticosti a une fréquentation sporadique (Figures 11 et 12ab). En moyenne entre 1999 et 2017, 67 %, 25 % et 6 % de l'effort de pêche était respectivement déployé dans les secteurs ouest du golfe, Esquiman et nord Anticosti. Les années où le secteur nord Anticosti n'est pas fréquenté, l'effort de pêche se déplace dans le secteur ouest du golfe. En 2018, 61 % de l'effort de pêche a été déployé dans le secteur ouest du golfe comparativement à 78 % en 2017. Pour cette même période, la proportion de l'effort de pêche déployé dans Esquiman est demeurée sensiblement la même avec 26 % (2018) et 21 % (2017). Le secteur nord Anticosti n'a pas été fréquenté en 2017 et représentait 13 % de l'effort de pêche en 2018.

Débarquements et effort

Dans l'ensemble du golfe, la pêche aux filets maillants dirigeant au flétan du Groenland se déroule d'avril à novembre (Tableau 5 et Figure 13). La plus forte proportion des débarquements est généralement enregistrée en juin et juillet, ces deux mois représentant près de 60 % des captures annuelles. La plus forte proportion des débarquements de tous les secteurs a été enregistrée plus tardivement en 2018, soit en juillet et août.

La figure 14 présente l'effort de pêche et les débarquements cumulés par jour de l'année à partir du début de la saison de pêche soit le 15 mai (jour 135) pour le secteur ouest du golfe. L'information est présentée pour les saisons de pêche 2010 à 2018. La saison de pêche 2018 se distingue des autres saisons par un début plus lent dans le déploiement de l'effort de pêche et des débarquements plus tardifs.

Capture par unité d'effort journalière

Les graphiques des CPUE journalières pour le secteur ouest du golfe présentent différents patrons annuels (Figure 15). Certaines années, la CPUE journalière se maintient assez stable sur toute la saison de pêche (2011, 2016). D'autres années, la CPUE journalière montre une tendance générale à la baisse du début à la fin de la saison de pêche (2012, 2017). Et finalement, certaines années (2014 et 2018), la CPUE augmente généralement sur toute la saison de pêche. La tendance à l'augmentation observée au court de la saison 2018 reflète les commentaires recueillis auprès des pêcheurs.

Effort de pêche, capture et capture par unité d'effort

Pour l'ensemble du golfe (4RST), l'effort de pêche est stable depuis 2015 avec près de 129 000 filets déployés et se situe sous la moyenne de la série 1999-2017 de près de 158 000 filets (Tableau 4, Figure 16). Les débarquements avaient chuté de près de 50 % entre 2016 et 2017. En 2018, ils sont toujours à la baisse à 1 572 t, soit les plus faibles débarquements enregistrés depuis 2002. La CPUE pour l'ensemble du golfe avait diminué de 43 % en 2017 et elle présente toujours une tendance baissière pour 2018 en diminution de 13 %. Elle se situe sous la moyenne de la série depuis 2017 à des valeurs comparables à celles du début des années 2000 alors que les fortes cohortes de 1997 et 1999 n'avaient pas encore recruté à la pêche.

La baisse des débarquements dans l'ensemble du golfe en 2018 est attribuable à la diminution importante des débarquements dans le secteur ouest du golfe. Dans ce secteur, les débarquements avaient diminué de près de 45 % entre 2016 et 2017. En 2018, ils sont toujours à la baisse avec une diminution de 46 % par rapport à 2017 et de 71 % par rapport à la valeur élevée de 2016. L'effort déployé dans ce secteur était plutôt stable de 2015 à 2017, il est en baisse en 2018. Cette diminution est attribuable au déplacement de l'effort de pêche vers le secteur nord Anticosti. La diminution des débarquements qui est plus importante que la diminution de l'effort pour ce secteur entraîne une baisse de la CPUE qui se situe sous la moyenne de la série depuis 2017 (Figure 16).

Le secteur nord Anticosti montre une fréquentation sporadique par les pêcheurs de flétan du Groenland (Figures 12a et 12b). Ce secteur a connu une augmentation d'effort et de débarquements importants de 2006 à 2010 et un effort et des débarquements élevés et soutenus entre 2009 et 2013 (Figure 16). Par la suite, ce secteur a été délaissé jusqu'en 2018 où les débarquements ont totalisé 209 t pour un effort de pêche de plus de 15 500 filets. La CPUE a augmenté en 2018 par rapport à 2017, mais se situe sous la moyenne de la série depuis 2013.

Pour le secteur Esquiman, les débarquements avaient chuté de façon importante entre le sommet des années 2011-2012 et 2017 pour un niveau d'effort tout de même soutenu entrainant une baisse importante et constante de la CPUE de 2011 à 2017. La CPUE passait sous la moyenne de la série en 2013 et, malgré une augmentation en 2018, elle s'y situe toujours (Figure 16).

Capture par unité d'effort standardisée - indice de performance de la pêche

La CPUE standardisée de la pêche commerciale est utilisée comme un indice de performance de la pêche et non comme un indice d'abondance du stock exploitable (Tableau 6). Les tendances entre la série des CPUE standardisées et non standardisées sont similaires (Figures 16 et 17). La CPUE standardisée pour l'ensemble du golfe était plus faible au début des années 2000. Elle a augmenté entre 2001 et 2003 et elle s'était maintenue assez stable jusqu'en 2012. En 2013, la CPUE avait diminué de façon importante, mais elle était remontée l'année suivante à des valeurs similaires à la période de stabilité (2003-2012). Entre 2016 et 2017, l'indice de performance de la pêche commerciale (CPUE standardisée) pour l'ensemble du golfe (4RST) avait diminué de 36 %. Cet indice montre toujours une tendance baissière en 2018 et présente une diminution de 48 % par rapport au sommet de 2014-2016, s'approchant des valeurs faibles des années 2000-2001 (Figure 17). Lorsque l'analyse est faite par secteur de pêche, on note qu'en 2018, seul l'indice de CPUE du secteur ouest du golfe est à la baisse par rapport à 2017. Dans ce secteur, les diminutions cumulées de 2017 et 2018 représentent une baisse de plus de 67 % par rapport aux sommets historiques de 2015 et 2016. Les indices respectifs des secteurs nord Anticosti et Esquiman étaient en diminution constante depuis 2010 et sous la moyenne de

chacune des séries depuis 2013. Bien que ces deux indices soient en augmentation entre 2017 et 2018, ils se situent toujours sous la moyenne de leur série respective (Figure 17).

Composition des captures

La taille moyenne des poissons capturés dans la pêche commerciale a augmenté de 44 à 47.6 cm entre 1995 et 1996 à la suite de l'augmentation du maillage de l'engin de pêche qui passait de 140 mm (5,5 po) à 152 mm (6,0 po) (Tableau 7, Figures 18, 19). La pêche expérimentale menée avec des filets de 140 mm a contribué à la diminution de taille enregistrée en 2002 (Morin et Bernier 2003).

Les variations annuelles dans les tailles commerciales moyennes peuvent s'expliquer en partie par la force des cohortes qui recrutent à la pêche; une forte cohorte entrant dans la pêche fera diminuer la taille moyenne des poissons capturés. D'une façon générale, la taille moyenne qui était en baisse entre 1997 et 2002 (48 à 45 cm) a augmenté de façon constante par la suite pour atteindre 49 cm en 2012, la valeur la plus élevée de la série (Figure 18). Cette augmentation s'explique par la croissance des fortes cohortes de 1997 et 1999 qui ont composé une grande partie des captures entre 2003 et 2006 et par la croissance des bonnes cohortes de 2001 et 2002 qui ont commencé à être exploitées autour de 2006 et qui étaient présentes dans les captures en 2010 (tailles estimées approximativement à plus de 50 cm) (Figure 18). À cette explication s'ajoute une diminution des captures de poisson de taille inférieure à 44 cm, passant de 20 % à 11 % entre 2008 et 2010 (Figure 20). Les plus fortes valeurs de la taille moyenne des flétans du Groenland de cette série sont observées en 2012 et 2016, mais ont fluctué entre ces années. La taille a de nouveau diminué et est stable en 2017 et 2018 au niveau de la moyenne à 44,4 cm pour les mâles, 48,4 cm pour les femelles et 47,8 cm au total.

Les fréquences de longueur par division indiquent que la longueur moyenne (1996-2017) des poissons capturés dans 4R est supérieure à celle des poissons capturés dans 4S et 4T. (Tableau 7, Figure 18). Ce sont les poissons capturés dans la division 4T qui sont en moyenne les plus petits. Cette différence peut s'expliquer par le fait que la principale pouponnière de flétan du Groenland est située dans l'estuaire maritime du Saint-Laurent, qui est localisé dans la division 4T. En 2018, la taille moyenne des flétans du Groenland dans la pêche commerciale est similaire dans les trois divisions à 48 cm.

Les fréquences de longueur par sexe indiquent que la taille moyenne des femelles capturées est plus élevée que celle des mâles (Tableau 7, Figure 18). Les fluctuations annuelles dans les tailles moyennes des mâles et des femelles sont généralement en phase. Les tailles des flétans du Groenland capturés aux filets maillants avec le maillage réglementaire de 152 mm se situent entre 37 et 61 cm pour les femelles et entre 37 et 53 cm pour les mâles (Figure 18).

Pour la période 1996-2017, en moyenne 17°% des poissons capturés dans la pêche au filet maillant dirigée au flétan du Groenland étaient de taille inférieure à 44 cm comparativement à 14°% pour 2018 (Figures 19 et 20). La taille de 44°cm est la taille minimale visée selon les mesures de conservation établies.

La proportion des femelles dans les captures commerciales est en moyenne plus élevée depuis l'augmentation du maillage en 1996 (Tableau 8, Figure 21). Avant ce changement, la moyenne était de 60 % alors qu'elle est de 80°% pour la période qui a suivi (1996 à 2017). En 2018, la proportion de femelles dans la capture pour le golfe est au-dessus de la moyenne à 84°%. Cette proportion est plus faible dans 4R à 74°% en moyenne comparativement à 81°% et 84°% pour 4S et 4T respectivement. En 2018, la proportion de femelle dans les captures commerciales a augmenté dans toutes les divisions et se situe à 77 %, 89 % et 88 % pour 4R, 4S et 4T respectivement. Ce sont parmi les proportions de femelle les plus importantes de la série pour les divisions 4S et 4T.

Le dimorphisme sexuel chez le flétan du Groenland explique la plus grande proportion des femelles dans les captures et la différence observée entre les tailles maximales de chacun des sexes. La taille du maillage utilisé dans la pêche cible le plus possible les poissons sexuellement matures afin qu'ils puissent se reproduire avant d'être capturés et ainsi contribuer au recrutement de la population.

Prises accessoires dans la pêche aux filets maillants dirigée au flétan du Groenland

Bien que la pêche commerciale tente de maximiser la capture de l'espèce visée, la capture accessoire d'espèces marines non ciblées est courante. Les prises accessoires dans la pêche aux filets maillants dirigée au flétan du Groenland ont été estimées pour la période 2000 à 2018 à partir des données du programme d'observateurs en mer. Dans cette pêche, il se capture en moyenne annuellement un peu plus de 460 t de prises accessoires (Figure 22). Près du tiers des captures accessoires est débarqué, le reste étant rejeté en mer. Les prises accessoires représentent en moyenne 18 % du poids des débarquements de flétan du Groenland (Tableau 11, Figure 23). Une diminution des débarquements de flétan du Groenland et une augmentation des prises accessoires a fait augmenter ce pourcentage en 2017 et 2018 à 42 % et 30 % respectivement. Les espèces en prise accessoire les plus fréquentes sont, par ordre d'importance, la plie canadienne (Hippoglossoides platessoides), le crabe des neiges (Chionoecetes opilio), les sébastes (Sebastes spp.), la raie épineuse (Amblyraja radiata), le crabe épineux du nord (Lithodes maja), le flétan atlantique (Hippoglossus hippoglossus), les raies et la plie grise (Glyptocephalus cynoglossus) (Tableau 12 et Figure 24). L'occurrence des sébastes et du flétan atlantique est en augmentation en 2017 et en 2018 par rapport à la moyenne de la série reflétant l'augmentation de leur abondance dans l'écosystème du GSL. Les captures accessoires débarquées comprennent les captures de plie canadienne, de sébastes, du flétan atlantique, de morue franche et de baudroie d'Amérique. Les rejets en mer comprennent des espèces que le pêcheur peut remettre à l'eau comme l'aiguillat noir (Centroscyllium fabricii), la grosse poule de mer (Cyclopterus lumpus), la myxine du nord (Myxine glutinosa)et le loup atlantique (Anarhichas lupus); des espèces à remise à l'eau obligatoire comme le flétan atlantique de moins de 85 cm, le crabe des neiges et les raies; et des espèces sans valeur commerciale comme les étoiles de mer, les œufs de raie, les polychètes, etc.

Prises accessoires de flétan du Groenland dans la pêche dirigée à la crevette

La pêche à la crevette est réalisée avec un chalut à petites mailles qui capture et retient plusieurs espèces de poisson et d'invertébré marins. Bien que les gros individus puissent s'échapper grâce à l'utilisation obligatoire d'une grille séparatrice installée à l'intérieur du chalut, il demeure toujours une certaine quantité de petits spécimens dans les prises des crevettiers. Les captures accessoires de flétan du Groenland dans la pêche à la crevette ont été examinées à partir de la base de données des observateurs en mer de 2000 à 2018 (Tableau 13). Les données de 2000 à 2017 sont également publiées dans Bourdages et Marquis (2019).

La distribution spatiale des prises accessoires de flétan du Groenland lors d'activités de pêche dirigée à la crevette en présence d'un observateur en mer est présentée pour la période de 2000 à 2016 et pour les années 2017 et 2018 (Figure 25). La moyenne des captures (kg/trait) de tous les traits à l'intérieur d'un même carré de 5 minutes est faite pour la période 2000-2016 et annuellement pour 2017 et 2018. On note la présence de flétan du Groenland en moyenne dans 89 % des activités échantillonnées.

Les captures accessoires de flétan du Groenland sont majoritairement de moins de 3 kg par trait de chalut et sont principalement constituées de juvéniles de 1 an, et dans une moindre

mesure de 2 ans (Figure 26). La moyenne annuelle des prises accessoires de flétan du Groenland provenant de la pêche dirigée à la crevette dans l'estuaire et le GSL de 2000 à 2017 est estimée à 91 t (Figure 27). En 2018, elle était de 78 t, ce qui représente 0,57 % de la biomasse des flétans du Groenland de moins de 31 cm estimée par le relevé du MPO dans le nGSL (Tableau 13 et Figure 28).

RELEVÉS SCIENTIFIQUES

Distribution spatiale

L'aire de distribution de la population de flétan du Groenland du golfe est assez bien représentée par l'aire d'étude du relevé nGSL du MPO qui a lieu en août. À cette période de l'année, les plus fortes concentrations de poissons sont observées dans l'estuaire maritime du Saint-Laurent, dans le bassin de Sept-Îles, le chenal Laurentien au sud d'Anticosti et à la tête des chenaux Anticosti et Esquiman. La figure 29 présente la distribution spatiale par blocs de 4 et 5 ans. On observe une augmentation des taux de capture de la période 1990-1994 à 2005-2009 puis une diminution pour la période 2015-2018. La distribution des taux de capture du flétan du Groenland sur le relevé de juillet de PSM montre un patron similaire quoique ce relevé ne couvre pas l'estuaire maritime (Figure 30).

Les flétans du Groenland de 0-20 cm (i.e. ≤1 an) se retrouvent principalement dans l'estuaire dans le bassin de Sept-Îles et au nord d'Anticosti (Figure 31). Des études ont d'ailleurs montré que la pouponnière principale de flétan du Groenland du golfe se trouvait dans l'estuaire et qu'une pouponnière secondaire était localisée au nord d'Anticosti (Youcef *et al.* 2013, Ouellet *et al.* 2011). Des cartes sont présentées pour la distribution par classe de taille des flétans du Groenland (0-20, 20-30, 30-40 et > 40 cm) pour les relevés du nGSL du MPO et des PSM (Figures 32 à 38).

La distribution spatiale des taux de capture (nombre par trait) de flétan du Groenland capturé lors du relevé du sGSL est présentée par bloc de 10 ans entre 1971 et 2018 (Figure 39). Dans l'aire couverte par ce relevé dans les années 70, le flétan du Groenland n'était présent qu'à la pointe de la péninsule gaspésienne avec quelques rares captures dans la Baie des Chaleurs. Dans les années 80, l'abondance du flétan du Groenland augmentait et sa distribution spatiale restait similaire à celle des années 70. Par la suite dans les années 90 et 2000, on note à la fois une augmentation de l'abondance et une expansion de la distribution du flétan du Groenland le long du flanc sud du chenal Laurentien et dans la cuvette du Cap-Breton. Cette expansion s'est poursuivie dans l'intervalle 2010-2017 avec l'observation d'une nouvelle concentration de flétan du Groenland dans la vallée de Shédiac. En 2018, la répartition spatiale est demeurée similaire à celle de 2010-2017.

La perspective historique offerte par le relevé du sGSL suggère que dans les vingt ans qui ont précédé le relevé du nGSL, soit de 1971 à 1989, les conditions qui ont généré l'expansion du stock de flétan du Groenland et l'augmentation de son abondance dans le sud du golfe n'ont pas été réunies suggérant une occupation seulement récente du sGSL par le flétan du Groenland.

Des indices de répartition spatiale calculés à partir des données du relevé nGSL indiquent que le flétan du Groenland occupe plus de 85 000 km² dans le nGSL et que 95 % de sa biomasse se concentre sur moins de 50 000 km². Dans les dernières années, l'aire d'occupation (DWAO) et la superficie où se retrouve 95 % de la biomasse du stock (D95) tendent à diminuer. Parallèlement , l'indice GINI augmente indiquant une concentration de la population de flétan du Groenland dans son aire de distribution (Figure 40). En août, il se retrouve principalement dans les chenaux à des profondeurs variant de 200 à 400 m avec plus de 80 % de sa biomasse

cumulée entre 229 et 366 m, à des températures de fond variant entre 4,4 et 5,7°C (Tableau 10, Figure 41).

Distribution annuelle de la biomasse du flétan du Groenland en fonction de la profondeur et de la température

La distribution annuelle de la biomasse de flétan du Groenland a été regardée par classe de taille (0-20, 20-30, 30-40 et > 40 cm) en fonction de la profondeur et de la température de l'eau où les poissons ont été capturés lors du relevé nGSL du MPO (Figure 42). En moyenne, les poissons de 0-20 cm se retrouvent à des profondeurs moindres (273 m) que les poissons de plus grande taille (près de 300 m). La biomasse par classe de taille en fonction de la profondeur varie un peu, mais elle est généralement similaire d'une année à l'autre. La situation est différente pour la distribution de la biomasse en fonction de la température (Figure 42). Depuis 2010, toutes les gammes de taille de flétan du Groenland se retrouvent dans des eaux de plus en plus chaudes. Ces données indiquent que le flétan du Groenland de toute taille occupe les mêmes profondeurs depuis 1990 et que la température de son milieu augmente. Entre 2010 et 2018, la température médiane des eaux où les poissons de plus de 40 cm sont retrouvés est passée de 5,2 à 6°C (Figure 43). C'est le secteur Esquiman qui subit la plus forte augmentation passant d'une température médiane de 4,9 à 6,6 °C de 2010 à 2018.

Recrutement et structure démographique

Le recrutement varie beaucoup d'une année à l'autre (Figure 44). La première forte cohorte observée est celle de 1997, elle a été suivie d'une autre très forte cohorte en 1999. Depuis la fin des années 1990, on observe une alternance de fortes et de faibles cohortes. Récemment, les cohortes 2010, et 2013 étaient d'abondance élevée et similaire à celles de 1997. La cohorte de 2017 est d'abondance moyenne.

Les indices de recrutement estimés par les relevés du MPO du nGSL et du sGSL montrent généralement une assez bonne corrélation ($r^2 = 0,56$) (Figure 44). Les deux relevés identifient les cohortes 1997, 1999, 2001, 2004, 2010 et 2012 comme étant d'abondance élevée. La cohorte 2013 pour sa part est très abondante et comparable à celle de 1997 dans le relevé du nGSL, mais d'abondance moyenne dans le relevé du sGSL. La cohorte 2017 montre également des abondances divergentes dans les deux relevés. Le relevé du nGSL la montre d'abondance supérieure à la moyenne, alors que le relevé du sGSL indique une abondance inférieure à la moyenne. L'information fournie par le relevé sGSL indique que dans l'aire couverte par ce relevé, il n'y a pas eu de recrutement d'abondance élevée entre 1971 et 1997.

Les distributions de fréquences de longueur du flétan du Groenland observées lors des relevés nGSL, sGSL et PSM sont présentées aux figures 45 et 48. Le patron général fourni par ces trois relevés est similaire, mais la sélectivité des différents chaluts et la zone échantillonnée font en sorte que les flétans du Groenland de plus petite taille sont mieux représentés dans le relevé du nGSL, alors que ceux de plus grande taille sont mieux représentés dans les relevés sGSL et PMS. Le relevé nGSL utilise un plus petit maillage et permet un échantillonnage plus efficace des petits individus de 1 an (mode ~ 16 cm). De plus, ce relevé couvre la portion estuaire qui n'est pas couverte par les deux autres relevés. Le relevé des PSM permet pour sa part d'échantillonner une proportion plus importante de gros individus.

Ces trois relevés montrent bien l'arrivée des deux très fortes cohortes dans l'histoire de ce stock : la cohorte de 1997 (taille modale \sim 16 cm à 1 an en 1998) et celle de 1999 (taille modale \sim 16 cm à 1 an en 2000). Les poissons de ces cohortes ont généré l'augmentation importante de l'abondance du stock dans les années 2000 et ont supporté la pêche. On note une

abondance importante d'individus de plus de 40 cm de 2003 à 2008. Leur abondance diminue de 2009 à 2013 et ils se font rares depuis 2015.

Selon sa courbe de croissance normale, le flétan du Groenland recrute généralement à la pêche à l'âge moyen de 6 ans pour les femelles et de 7 ans pour les mâles. L'abondante cohorte de 2010 présente un mode à 16 cm en 2011, puis à 27 cm en 2012, à 35 cm en 2013, et entre 40 et 44 cm en 2014. Le taux de croissance de cette cohorte aurait été plus rapide que celui des cohortes 1997 et 1999. Elle pourrait avoir commencé à recruter à la pêche en 2014, ce qui expliquerait la diminution de tailles des flétans du Groenland dans la taille commerciale (Figure 18). Elle se démarquait toujours en 2015 à plus de 44 cm. L'arrivée de cette cohorte dans la pêche en 2014 a fait augmenter les taux de capture (Figures 16 et 17).

La situation de l'abondante cohorte 2013 est préoccupante. Les distributions de fréquences de taille montrent une abondance forte en 2014 à 16 cm puis une abondance élevée en 2015 à 20 cm, alors qu'elle était attendue à près de 27 cm. Cette cohorte présente donc un ralentissement de croissance d'environ 45 % entre 1 et 2 ans par rapport au taux de croissance moyen pour ce stock. Le ralentissement de croissance observé pour la cohorte 2013 retardera son recrutement à la pêche. Comme la lecture d'otolithe pour la détermination de l'âge n'est pas actuellement possible pour ce stock de flétan du Groenland, il est difficile de bien suivre les cohortes après l'âge 2.

Indices d'abondance et de biomasse

Les indices d'abondance (nombre moyen par trait) et de biomasse (poids moyen par trait) sont présentés pour les relevés sGSL, nGSL, et PSM (Tableaux 14ab, et 15, Figures 46).

Le relevé sGSL couvre une plus longue période temporelle (1971-2018) que les relevés nGSL (1990-2018) et PSM (1995-2018), mais une portion restreinte de l'aire globale de répartition du flétan du Groenland dans le GSL (Figures 29 et 39). La perspective historique de ce relevé indique que l'abondance et la biomasse du flétan du Groenland était faible de 1971 à 1997 dans la région du GSL échantillonnée (Figure 46). En 1998, l'indice d'abondance a fait un bond important passant de 2,6 à 13 poissons par trait. La biomasse a augmenté plus graduellement. L'abondance et la biomasse ont montré des fluctuations annuelles de 1998 à 2010, tout en restant à des niveaux élevés pour ce relevé. Depuis, les deux indices sont en diminution et en 2018 ils se situent juste sous la moyenne de leur série respective.

Des deux relevés qui sont effectués dans le nGSL, le relevé du MPO couvre une plus grande superficie de l'habitat du flétan du Groenland (Figures 29 et 30). La superficie échantillonnée par le relevé PSM est comprise dans celle du relevé du MPO, mais ne couvre pas l'estuaire maritime. Les indices d'abondance et de biomasse de ces deux relevés montraient des tendances similaires de 1995 à 2008, soit une augmentation importante jusqu'en 2004 suivit d'une stabilité jusqu'en 2008 (Figure 46). Par la suite, alors que l'indice d'abondance du relevé nGSL du MPO présentait une certaine stabilité, son indice de biomasse ainsi que les indices d'abondance et de biomasse du relevé PSM diminuaient rapidement. Les indices de biomasse et d'abondance du relevé PSM se situent sous la moyenne de leur série respective depuis 2015. Les indices du relevé nGSL du MPO se situent sous la moyenne de leur série depuis 2017.

En décomposant l'indice d'abondance (nombre moyen par trait) du relevé nGSL en classes de taille (0-20, 20-30, 30-40 et > 40 cm), on observe que seule la classe de taille 0-20 cm (individus ≤ 1 an) est en augmentation par rapport à 2017 et d'abondance supérieure à la moyenne de la série (Tableau 16, Figure 47). L'abondance des poissons de 20-30 cm (poissons de 2 ans) est en diminution par rapport à 2017, ce qui était attendu puisque leur abondance était faible à 1 an en 2017. Il y a une excellente corrélation entre l'abondance d'une cohorte

donnée à 1 et 2 ans l'année suivante sur le relevé nGSL. L'abondance des poissons de taille 30-40 cm est stable depuis 2015 et se situe au niveau de la moyenne. L'abondance des poissons de plus de 40 cm, qui était en diminution depuis 2015, s'est stabilisée en 2018 et se situe sous la moyenne de la série. En 2018, à l'exception des poissons de 1 an (0-20 cm), les données du nGSL indiquent que les poissons de taille > à 20 cm sont tous d'abondance inférieure à la moyenne de leur série (Figures 47 et 48).

Les indices d'abondance dérivée des données du relevé du PSM indiquent que les flétans du Groenland de toutes les classes de taille sont d'abondance inférieure à la moyenne de leur série respective (Tableau 17, Figures 47 et 48). L'abondance des poissons de plus de 40 cm est toujours en diminution et atteint la plus faible valeur enregistrée pour ce relevé.

Selon les estimations de croissance pour les individus de ce stock, les poissons des cohortes d'abondance élevée de 2010, 2012 et 2013 auraient dû atteindre une taille modale respective de 47, 43 et 40 cm en 2018. On se serait attendu à une augmentation importante de l'abondance des poissons dans la gamme de taille supérieure à 40 cm. Les données des relevés montrent une situation différente (Figures 47 et 48) avec des indices stables ou en diminution par rapport à 2017 et sous la moyenne de leur série.

Les indices de biomasse des poissons de plus de 40 cm des relevés mobiles du nGSL du MPO et du PSM montrent une tendance à la baisse depuis une dizaine d'années. Ces diminutions sont respectivement de 62 % et 77 % par rapport aux sommets observés au milieu des années 2000. Les biomasses estimées en 2018 étaient similaires à celles de 2017 (Figure 49).

Comparaison des données d'abondance des relevés du MPO du sud et du nord du golfe.

Les indices d'abondance (totale, 0-20 cm et > 40 cm) des relevés du MPO du sud et du nord du GSL ont été comparés (Figure 50). Les tendances dans l'abondance totale, l'abondance des recrues de 0-20 cm et l'abondance des poissons de plus de 40 cm sont similaires pour les deux relevés. La meilleure corrélation entre les indices des deux relevés est observée pour les poissons de plus de 40 cm.

Indices normalisés

Les indicateurs normalisés du stock exploitable (poissons de taille > 40 cm) provenant des relevés MPO sGSL, nGSL et PSM et l'indicateur de performance de la pêche commerciale (CPUE standardisée) montrent des tendances généralement similaires (Figure 51). On observe une augmentation importante et continue jusqu'en 2002, puis une période d'abondance élevée pour ce stock et plutôt stable jusqu'en 2011. Par la suite, on observe une tendance baissière jusqu'en 2018. Les quatre indicateurs sont sous la moyenne de cette série normalisée.

Taux d'exploitation

Des taux d'exploitation relatifs sont présentés pour l'ensemble du golfe (4RST) et par secteur de pêche (Tableau 18, Figure 53). Les strates du relevé du nGSL sélectionnées pour déterminer la biomasse par secteur de pêche sont présentées à la figure 52.

Pour l'ensemble du golfe (4RST), le taux d'exploitation moyen pour la série 1996-2017 a été de 6,49 %. Il était de 4,8 % en moyenne pour la période 2001-2008, période où le stock a augmenté et est demeuré abondant. A partir de 2009, les indices de biomasse des poissons > 40 cm ont montré une diminution et le taux d'exploitation a augmenté avec un taux moyen comparable à la moyenne de la série. Ceci pourrait indiquer que les taux d'exploitation des dix dernières années étaient trop élevés.

À l'échelle du golfe (4RST), la diminution importante des débarquements en 2017 et 2018 a maintenu le taux d'exploitation au niveau de la moyenne de la série 1996-2017 (Figure 53). Dans le secteur ouest du golfe, l'indicateur du taux d'exploitation était en augmentation entre 2012 et 2017. Suite à une diminution importante des débarquements et à un niveau stable de la biomasse, le taux d'exploitation pour ce secteur a diminué en 2018 et se situe sous la moyenne de la série. Pour les secteurs nord Anticosti et Esquiman qui ont vu leurs débarquements augmenter en 2018, les taux d'exploitation sont en augmentation et au-dessus de la moyenne de leur série respective.

Indice de condition

L'indice de condition de Fulton des flétans du Groenland évalué lors du relevé nGSL du MPO, est estimé pour quatre tailles de poissons : 15 cm (~1 an); 25 cm (~2 ans); 35 cm (3 à 5 ans) et 45 cm (> 5 ans) (Tableau 19, Figure 54). La condition des poissons de 1 an a fluctué de 1990 à 2018 et elle pourrait être en lien avec l'abondance des différentes cohortes. Lorsque les cohortes seraient abondantes, la condition des poissons serait inférieure à la moyenne. Ainsi l'abondante cohorte de 1999 à 1 an (15 cm) en 2000 présentait un indice de Fulton inférieur à la moyenne de la série. Cette situation se voit également pour l'abondante cohorte de 2010 qui présente un indice de condition inférieur à la moyenne à 1 an en 2011. Récemment, ce stock a connu trois années consécutives de cohortes d'abondance moyenne à forte, 2012-2014. De 2013 à 2015, l'indice de Fulton à 15 cm a montré des valeurs inférieures à la moyenne de la (Figure 54). Des indices de condition inférieurs à la moyenne se sont maintenus avec la croissance des poissons de ces différentes cohortes (séries 25 cm, 35 cm et 45 cm de 2015 à 2017). Un autre facteur qui pourrait jouer sur la condition des flétans du Groenland des récentes cohortes est une possible compétition pour la nourriture et l'habitat avec l'arrivée massive de juvéniles de sébaste dans le golfe du Saint-Laurent entre 2011 et 2015. En 2018, la condition des poissons de 15 et 25 cm est comparable à la moyenne de leur série. La condition des poissons de 35 cm et 45 cm est légèrement inférieure à la movenne de leur série respective et reflète la condition de ces mêmes poissons à 1 an.

Longueur à 50 % de maturité (L50) et ogive de maturité

La taille à laquelle 50 % (L50) des flétans du Groenland sont sexuellement matures a diminué dans la période 1998-2001 pour les mâles et dans la période 1998-2004 pour les femelles. Elle est demeurée relativement stable au niveau de la moyenne de 2004 à 2014 à près de 36 cm pour les mâles et 46 cm pour les femelles. Par la suite, la L50 chez les mâles et les femelles a diminué pour atteindre la valeur la plus faible des séries en 2016 (Figure 55). En 2018, la L50 des mâles et des femelles est sous la moyenne de leur série respective (1996-2017). Elle se situe à 42 cm pour les femelles et à 34 cm pour les mâles. La croissance des flétans du Groenland diminuant après l'atteinte de la maturité sexuelle, une diminution de la L₅₀ pourrait entraîner une diminution de la proportion des flétans du Groenland qui atteindront la taille de 44 cm, soit la taille actuelle du protocole des petits poissons. Des études histologiques des gonades de flétan du Groenland avaient été effectuées en 1997 pour évaluer le stade de maturité sexuelle. Ces études avaient produit des valeurs de L₅₀ similaires à ce qui était déterminé par l'examen visuel pour la même période. Une étude de Kennedy et al. 2009 conclut différemment et indique que l'examen visuel des gonades n'est pas une bon indicateur pour évaluer la maturité sexuelle chez cette espèce. De plus, il semble qu'il pourrait y avoir résorption des œufs avant qu'ils ne soient expulsés. Une étude histologique approfondie sur le flétan du Groenland du GSL pourrait fournir des informations précieuses sur la taille à maturité sexuelle chez ce poisson, d'autant plus que nous observons un certain ralentissement dans leur taux de croissance. La croissance de ce poisson étant ralentie après l'atteinte de la maturité sexuelle, ces données pourraient avoir une incidence sur la gestion de cette ressource.

APPROCHE DE PRÉCAUTION - POINTS DE RÉFÉRENCE

De façon générale, l'approche de précaution (AP) appliquée à la gestion des pêches vise à éviter des atteintes graves aux stocks de poissons ou à leurs écosystèmes et consiste à faire preuve de prudence lorsqu'on ne dispose pas de preuves scientifiques concluantes, et à ne pas utiliser l'absence de données scientifiques pertinentes comme raison pour ne pas prendre de mesures, ou les remettre à plus tard. Cette <u>approche</u> est largement reconnue à l'échelle nationale et internationale comme un élément essentiel d'une gestion durable des pêches.

Une AP est en développement pour le stock de flétan du Groenland du golfe du Saint-Laurent. L'indicateur de suivi de l'état du stock ainsi que le point de référence limite (PRL) ont été définis et adoptés à la revue par les pairs du 22 février 2017 (MPO 2017a, MPO 2018c).

La biomasse des poissons de plus de 40 cm, estimée par les données du relevé estival du MPO, a été sélectionnée comme indicateur de suivi de l'état du stock de flétan du Groenland. Cet indice correspond à la plus longue série chronologique disponible (1990-2018) et représente un proxy de la biomasse du stock reproducteur (BSR). Au cours de la période 1990-2018, le stock a connu des variations importantes de productivité et de biomasse, permettant de tenir compte de ces conditions dans l'établissement des points de référence. De plus, cet indicateur informe sur la biomasse du stock exploitable pour l'année suivante puisque la pêche au flétan du Groenland vise les poissons de 44 cm et plus.

Le point de référence limite (PRL) sélectionné correspond au niveau de biomasse historique le plus bas à partir duquel le stock s'est facilement rétabli (B_{rétablissement} ou B_{rec}) (MPO 2002, MPO 2006, Duplisea et Grégoire 2014). Il correspond à la moyenne géométrique de la BSR de la période 1990 à 1994, soit 10 000 t (Figure 56).

Lors de la revue par les pairs de l'hiver 2018, un point de référence supérieur (PRS) a été proposé par le secteur des Sciences. Ce PRS représente 80 % de la biomasse du rendement maximal durable (B_{rmd}) (MPO 2019). Le proxy proposé pour la B_{rmd} est la moyenne géométrique de la période productive 2004-2012 de l'indicateur soit 63 211 t. Le PRS proposé équivaut à 50 500 t. Selon ce PRS, le stock de flétan du Groenland du GSL se situerait dans la zone de prudence depuis 2016. Le secteur de la Gestion des pêches du MPO, appuyé par le secteur des Sciences, tient des consultations avec le milieu de la pêche et d'autres groupes d'intérêt afin d'en arriver à l'adoption d'un PRS. Des règles de décision pour l'ajustement des prises sont également en élaboration.

DESCRIPTION DU RÉGIME ALIMENTAIRE

Périodes

Quelque 7 233 estomacs de flétan du Groenland ont été retenus pour l'analyse, soit 5 220 estomacs pour la période 2004-2009 et 2 013 estomacs pour celle de 2015-2018 (Tableau 20, Figure 57). Le nombre d'estomacs récolté annuellement a varié de 386 à 971. Les poissons récoltés annuellement pour cette étude sont bien répartis dans l'aire d'étude (Figure 58).

En se basant sur l'indice de remplissage total, les flétans du Groenland de l'année 2018 ont une intensité d'alimentation deux fois plus élevée que la moyenne de toute la série 2004-2018 (Tableau 20). En ne tenant pas compte des classes de longueur, et qu'importe la période considérée, le poisson reste la proie principale du flétan du Groenland (Tableau 23). Trente et un taxons différents de poissons sont identifiés depuis 2004, pour une occurrence moyenne en poisson de près de 20 %. Cette occurrence grimpe à plus de 30 % pour l'année 2018, faisant atteindre aux poissons une importance inégalée dans le régime alimentaire du flétan du Groenland (72 % de l'IRT). Hormis le capelan (*Mallotus villosus*), la mollasse atlantique

(*Melanostima atlanticum*) et les sébastes (*Sebastes spp.*), aucun autre taxon de poissons identifiable au moins au genre n'a été observé dans >1 % des estomacs de la série 2004-18. Le capelan, la proie la plus importance à l'alimentation du flétan du Groenland qu'importe la période selon le pourcentage de l'IRT, est de plus en plus observé dans les estomacs : son occurrence est 3,5 fois plus élevée pour 2018 qu'au cours de la période 2004-2009, contribuant à l'importance accrue de cette proie dans l'alimentation du flétan pour cette même année (Tableau 23 et Figure 59).

Le sébaste n'était pas une proie importante dans les contenus stomacaux de la période 2004-2009 avec une occurrence de <1 %. Au cours des années 2015-2017, sa fréquence d'occurrence a augmenté à plus de 7 %, pour diminuer à 2,5 % en 2018. Cette diminution d'occurrence du sébaste comme proie du flétan du Groenland en 2018 a contribué à la diminution du pourcentage de l'IRT qui est près de quatre fois inférieur à ce qu'il était pour la période 2015-2017 (Tableau 23).

Quinze taxons de crevettes sont rapportés dans les estomacs de flétan du Groenland depuis 2004 (Tableau 23), desquels seulement 3 taxons identifiables au moins au genre ont été observés au cours de chacune des périodes 2004-2009, 2015-2017 et 2018 : la sivade rose (aussi appelée crevette blanche, *Pasiphaea multidentata*), la crevette nordique (*Pandalus borealis*) et le genre *Pandalus sp.*. Qu'importe la période considérée, la crevette nordique est le taxon de crevette le plus important dans l'alimentation du flétan du Groenland. De façon globale, l'occurrence des crevettes dans les contenus stomacaux du flétan du Groenland a diminué de moitié si l'on compare les données de la période 2004-2009 à celle 2018, l'année 2018 (9,1 %) étant bien en déçà de la moyenne de la série temporelle (16,1 %). Seulement 5,6% de l'alimentation du flétan du Groenland repose sur les crevettes en 2018 selon l'indice de remplissage, ce qui constitue une diminution frappante comparativement aux deux périodes précédentes qui étaient à environ 20 %. En termes de pourcentages de masse, on observe grosso modo une diminution de moitié entre les périodes 2004-2009 (31,6 %), 2015-2017 (15,6 %) et 2018 (7,25 %, Tableau 23).

Chez le zooplancton, les 28 taxons rapportés font en sorte que ce groupe de proies est observé dans plus de 10 % des estomacs de flétan du Groenland analysés depuis 2004 (Tableau 23). Les hypéridés du genre *Themisto* et les euphausidés sont les taxons de zooplancton les plus importants dans l'alimentation du flétan du Groenland (Tableau 23 et Figure 59).

Pour le groupe *Autres invertébrés*, composé de 22 taxons qui ne sont ni des crevettes ni du zooplancton, on constate une diminution de l'importance de ce groupe de proies dans l'alimentation du flétan du Groenland de la période 2004-2009 à 2018 (Tableau 23). Cette diminution pourrait s'expliquer par l'expertise accrue en matière de taxonomie au fil des ans. En effet, nos connaissances et habiletés à identifier des proies à différents stades de digestion n'ont fait que s'améliorer avec les années. Comme plusieurs des taxons du groupe *autres invertébrés* sont communément utilisés pour décrire des proies trop digérées pour une identification taxonomique poussée (ex : mollusque, crustacé, isopode), leur utilisation réduite amène donc une diminution de l'importance de ce groupe dans l'alimentation du flétan du Groenland.

Classes de longueur

Les effectifs sont considérables pour chacune des classes de longueur considérées (>1000, Tableau 21). La classe de longueur ayant le pourcentage d'estomacs vides le plus élevé est celle [20-30] cm avec >57 %. Les flétans du Groenland de <20 cm sont ceux où cette occurrence est la plus faible (37 %). C'est également ce groupe de taille qui s'alimente le plus : son IRT (0,32) est le double de la valeur pour la série (0,16, Tableaux 20-21 et Figure 60).

Au contraire des autres classes de longueur misant sur le poisson, les flétans du Groenland de taille <20 cm s'appuient principalement sur les apports en invertébrés pour combler leurs besoins alimentaires (Tableau 24, Figures 60 et 61). De fait, à <20 cm de longueur, la proportion de l'apport en invertébrés comblé par le zooplancton est exactement la même que celui en poisson (36,86 % de l'IRT, Tableau 24). Le capelan, les euphausides et les hypérides *Themisto sp.* sont les trois groupes de proies les plus importantes à cette taille (Tableau 24 et Figure 62).

Le régime alimentaire du flétan du Groenland de 20 à 30 cm est constitué de plus grosses proies que celui des flétans du Groenland < 20 cm. L'importance du zooplancton chute fortement (-27 %) pour voir un apport accru en poissons (+22 %) et en crevette (+17 %) selon l'IRT (Tableau 24 et Figure 61). Le capelan est la proie la plus importante à cette taille et est également la seule espèce de poisson dont la contribution à l'alimentation du flétan du Groenland est d'au moins 10 % dans chacune des différentes classes de longueur considérées pour l'étude (Tableau 24). Quant aux crevettes, la sivade rose et la crevette nordique sont les deux taxons contribuant le plus pour ce groupe de proies (Tableau 24). Pour la crevette nordique, on remarque qu'autant son occurrence que sa contribution à l'alimentation s'accroient avec la longueur des spécimens récoltés (Tableau 24).

Le régime alimentaire du flétan du Groenland de 30 à 40 cm de longueur s'appuie encore davantage sur l'apport en crevettes (+11 % de l'IRT), principalement avec la crevette nordique (Tableau 24). C'est à partir de 30 cm que le sébaste contribue à au moins 1 % du régime alimentaire du flétan du Groenland selon l'IRT.

Quant aux spécimens de >40 cm de longueur, leur régime alimentaire est axé sur le poisson (65 % selon l'IRT, Tableau 24). Le capelan, toujours une des proies principales, est cependant remplacé par le sébaste comme proie contribuant le plus à leur alimentation (Tableau 24).

Estuaire vs nGSL

Dans cette étude, 1105 estomacs de flétan du Groenland provenant de l'estuaire et 6131 estomacs de flétan du Groenland provenant du nGSL ont été analysés (Tableau 22). L'intensité d'alimentation ne contraste pas entre les deux régions, et équivaut à celle retrouvée pour toute la série spatio-temporelle (tableaux 20 et 22). Par contre, l'occurrence d'estomacs vides est nettement moindre dans l'estuaire (40,8 %) que dans le nGSL (52,1 %). Cela pourrait être dû au fait que l'estuaire est moins profond que le reste du nGSL et que les changements rapides de pression lors de la remontée du chalut engendrent moins de régurgitation chez les flétans du Groenland (Bernier et Chabot 2013). Une autre cause potentielle pourrait être la longueur des flétans du Groenland estuariens desquels des estomacs ont été prélevés. En effet, ceux-ci sont beaucoup plus petits (médiane et moyenne de 295 et 300.9 mm) que ceux du nGSL (356 et 346.8 mm pour les mêmes mesures, Tableau 22), et il est observé que les plus petits flétans du Groenland présentent davantage d'estomacs non vides (Tableau 21).

Les flétans du Groenland récoltés dans l'estuaire ont une alimentation basée à majorité sur les invertébrés (Tableau 25 et Figure 63). Parmi ceux-ci, le groupe du zooplancton est le plus important avec près de 32 % de son alimentation selon l'IRT. Les hypérides du genre *Themisto sp.* et les euphausides contribuent le plus dans l'apport de ce groupe. Au cours des trois dernières années, la contribution des hypérides s'est par contre davantage fait sentir dans la région du Chenal Anticosti (Figure 64). Quant aux euphausides, ils sont un intrant stable dans l'alimentation des flétans du Groenland estuariens (Figure 65). Pour ces deux figures ainsi que les quatre suivantes (66 à 69), autant les estomacs vides que ceux ne provenant pas de spécimens de classes de longueur consommant les proies montrées ont été éliminés des données utilisées pour produire les cartes. La crevette n'est que peu consommée dans

l'estuaire (12,23 %) par rapport au nGSL selon l'IRT (22,8 %, Tableau 25). La contribution à l'alimentation du flétan du Groenland de la crevette nordique et de la sivade rose montre des indices de remplissage plus élevés à l'extérieur de l'estuaire (Figures 66-67). Le capelan reste le taxon de poisson le plus important pour le flétan du Groenland de l'estuaire (20,07 % de l'IRT, Tableau 25) et sa contribution au cours des trois dernières années montre une augmentation pour 2018 (Figure 68).

Quant aux flétans du Groenland du reste du nGSL, les apports en poissons (55,2 %) et crevettes (22,8 %) fournissent près de 80 % de son alimentation selon l'IRT (contre 50 % pour les flétan du Groenland estuariens, Tableau 25). L'importance du sébaste dans son alimentation y est plus important (Tableau 2 et Figure 69).

Tailles des sébastes ingérés par le flétan du Groenland

Seulement 31 estomacs de flétan du Groenland ont pu fournir des données sur la taille des sébastes qu'ils contenaient. Des 32 valeurs de longueurs obtenues, la majorité (23) provient de mesures sur des sébastes entiers retrouvés dans les estomacs. Les autres données (9) proviennent d'estimations faites à partir de la taille des otolithes qui ont été récupérés dans les contenus stomacaux. La relation entre la longueur du sébaste ingéré et la longueur du flétan du Groenland est significative (p <0,0001) et explique 43 % de la variabilité (Figure 70). L'étendue de taille des sébastes ingérés par des flétans du Groenland variait de 6,5 à 23 cm. Le plus long sébaste (23 cm) a été retrouvé dans l'estomac d'un flétan du Groenland de 61 cm.

Comparaison des régimes alimentaires du flétan du Groenland et du sébaste

Au total 1 454 estomacs de flétan du Groenland et 2 146 estomacs de sébaste ont été retenus pour cette comparaison (Tableau 26). Peu d'estomacs de sébaste provenant de spécimens de plus de 40 cm sont disponibles en comparaison aux autres classes de longueur. On remarque d'emblée que comparativement au flétan du Groenland, le sébaste conserve une proportion considérable d'invertébrés (~75 %) dans son apport alimentaire tout au long de son développement (Figure 71). Cette importance des invertébrés est également réflétée dans le nombre de taxons retrouvés dans les contenus stomacaux de cette espèce (Tableau 26).

Le hareng et la motelle à quatre barbillons n'ont pas été retrouvés dans les estomacs de sébaste récoltés au cours de 2015-2017, alors que seulement trois occurrences de capelan sont rapportées pour la même période chez ce prédateur. Le regroupement taxonomique *Autres poissons* de la figure 72 rassemble six et neuf taxons de poisson respectivement pour le sébaste et le flétan du Groenland. Deux de ces taxons, le lussion blanc (*Arctozenus risso*) et la mollasse atlantique, sont retrouvés dans les contenus stomacaux des deux prédateurs . A la fois pour le flétan du Groenland et le sébaste, l'importance du regroupement taxonomique *Autres poissons* s'accroit avec la longueur des spécimens, mais n'atteint jamais une contribution dépassant les 15 % de l'apport alimentaire. Le sébaste comme proie contribue à des valeurs de CIR plus élevées chez le flétan du Groenland que le sébaste, et ces valeurs s'accroissent avec la longueur des flétans du Groenland. Le cannibalisme chez le sébaste semble plafonner à partir de 30 cm de longueur. Quant au regroupement taxononomique *Poisson digéré*, combinant les taxons utilisés pour décrire les poissons trop digérés pour une identification, il montre une importance similaire et faible pour les deux espèces.

Chez les crevettes, la sivade rose est beaucoup plus importante dans l'alimentation du sébaste que dans celle du flétan du Groenland. Sa présence dans leur régime alimentaire augmente avec la taille des spécimens. La crevette nordique, de même que le regroupement taxonomique *Autres crevettes*, soutiennent grosso modo l'apport alimentaire des deux prédateurs dans les mêmes proportions pour toutes les gammes de tailles. Parmi le regroupement taxonomique

Autres crevettes, seuls les taxons Pandalus sp., crevette ésope (Pandalus montagui) et crevette digérée ont été observés dans les contenus stomacaux des deux prédateurs.

L'apport des hypérides *Themisto sp.* est toujours plus élevé chez le sébaste que chez le flétan du Groenland, peu importe la classe de taille considérée. Cette même tendance est observée pour les euphausides, à l'exception de la classe de longueur des moins de 20 cm où le flétan du Groenland utilise deux fois plus ce regroupement taxonomique dans son alimentation. Le regroupement *Autres zooplancton* combinent vingt-sept taxons chez le sébaste de moins de 20 cm, comparativement à seulement sept chez le flétan du Groenland. À cette classe de taille, 22 taxons sont retrouvés uniquement dans les contenus stomacaux de sébaste et la majorité (11) sont des copépodes calanoides.

CONCLUSIONS

Le réchauffement des eaux profondes et l'appauvrissement en oxygène dans le golfe du Saint-Laurent pourraient entraîner une perte d'habitat et une détérioration de la qualité de l'habitat pour le flétan du Groenland. De plus, l'arrivée de trois cohortes de sébastes exceptionnellement fortes (2011 à 2013) pourrait accroître la compétition interspécifique. Ces conditions écosystémiques ne devraient pas s'améliorer à court terme.

Les débarquements totalisaient 1 496 t (préliminaires au 31 décembre 2018) soit 53 % de l'allocation disponible à la pêche. Ces débarquements sont les plus faibles des 16 dernières années. Les prises par unité d'effort de la pêche commerciale montre une tendance baissière et présente une diminution de 48 % en 2018 par rapport au sommet de 2014-2016.

Les indices de biomasse des poissons de plus de 40 cm des relevés mobiles du MPO et du programme des pêches sentinelles montrent une tendance à la baisse depuis une dizaine d'années. Ces diminutions sont respectivement de 62 % et 77 % par rapport aux sommets observés au milieu des années 2000.

La diminution des indices d'abondance et de biomasse des poissons > 40 cm correspond à une période où le taux d'exploitation était plus élevé que durant la période précédente lorsque le stock s'est rebâti et est demeuré abondant. Ceci pourrait indiquer que les taux d'exploitations des dix dernières années étaient trop élevés.

L'approche de précaution proposée situe l'indicateur de l'état du stock de flétan du Groenland du golfe du Saint-Laurent dans la zone de prudence en 2018. La trajectoire de l'indicateur est à la baisse depuis une dizaine d'années.

Les perspectives à court terme pour ce stock sont préoccupantes.

REMERCIEMENTS

Des remerciements sont adressés à Sylvain Hurtubise et Hugo Bourdages pour la révision de ce document ainsi qu'aux biologistes et aux techniciens qui ont participé à la récolte des données et des échantillons. Les auteurs remercient également les équipages des navires scientifiques de la Garde côtière canadienne ainsi que les participants au programme des pêches sentinelles mobiles et tiennent à souligner leur excellent travail. Nous tenons à souligner le bon travail des équipes d'échantillonneurs du Québec et de Terre-Neuve. Un merci spécial à Denis Chabot pour son importante contribution aux analyses des régimes alimentaires.

RÉFÉRENCES CITÉES

- Albert, O. T., Lambert, Y., Vollen, T., Freitas, C. et Heggebakken, L. 2011. Distinguishing Pelagic and Demersal Swimming of Deepwater Flatfish by Recording of Body Angles. Am. Fish. Soc. Symposium 76, 2011.
- Arthur, J.R. et Albert, E. 1993. Use of parasites for separating stocks of Greenland halibut (*Reinhardtius hippoglossoides*) in the Canadian northwest Atlantic. Can. J. Fish. Aquat. Sci. 50: 2175-2181.
- Benoît, H.P. 2006. <u>Standardizing the southern Gulf of St. Lawrence bottom-trawl survey time series: Results of the 2004-2005 comparative fishing experiments and other recommendations for the analysis of the survey data.</u> DFO Can. Sci. Advis. Sec. Res. Doc. 2006/008: 80 p.
- Bernier, B. et Chabot, D. 2013. <u>Évaluation de l'état du stock de flétan du Groenland</u> (*Reinhardtius hippoglosoides*) du golfe du Saint-Laurent (4RST) en 2010 et description de son régime alimentaire. Secr. can. de consult. sci. du MPO. Doc. de rech. 2012/140. viii + 85 p.
- Blais, M., Devine, L., Lehoux, C., Galbraith, P.S., Michaud, S., Plourde, S. et Scarratt, M. 2018.

 <u>Les conditions océanographiques chimiques et biologiques dans l'estuaire et le golfe du Saint-Laurent en 2016.</u> Secr. can. de consult. sci. du MPO. Doc. de rech. 2018/037. iv + 61 p.
- Bourdages, H., et Marquis, M.-C. 2019. <u>Évaluation des stocks de crevette nordique de l'estuaire et du golfe du Saint-Laurent en 2017 : données de la pêche commerciale.</u> Secr. can. de consult. sci. du MPO. Doc. de rech. 2018/056. iv + 100 p.
- Bourdages, H., Savard, L. Archambault, D. et Valois, S. 2007. Résultats des expériences de pêche comparative d'août 2004 et 2005 dans le nord du golfe du Saint-Laurent, entre le NGCC Alfred Needler et le NGCC Teleost. Rapp. Tech. Can. Sci. halieut. Aquat. 2750 : ix + 57 p.
- Bourdages, H., Brassard, C., Desgagnés, M., Galbraith, P., Gauthier, J., Nozères, C., Scallon-Chouinard, P.-M. et Senay, C. 2019. Résultats préliminaires du relevé multidisciplinaire de poissons de fond et de crevette d'août 2018 dans l'estuaire et le nord du golfe du Saint-Laurent. Secr. can. de consult. sci. du MPO, Doc. de rech. 2019/037. iv + 87 p.
- Clay, H. et Clay, D. 1980. Age, growth and removals at age of Atlantic redfish (*Sebastes marinus, mentella*) from the Scotian shelf. DFO Can. Sci. Advis. Sec. Sci. Res. Doc. 1980/032.
- Dominguez-Petit, R., Ouellet, P. et Lambert, Y. 2012. Reproductive strategy, egg characteristics and embryonic development of Greenland halibut (*Reinhardtius hippoglossoides*). ICES J. Mar. Sci. 70:342-351, https://doi.org/10.1093/icesjms/fss180.
- Duplisea, D. et Grégoire, F. 2014. <u>A biomass limit reference point for NAFO subareas 3 and 4 Atlantic mackerel (Scomber scrombus).</u> DFO Can. Sci. Advis. Sec. Res. Doc. 2014/066. v + 8 p.
- Dupont-Prinet, A., Vagner, M., Chabot, D. et Audet, C. 2013. Impact of hypoxia on the metabolism of Greenland halibut (*Reinhardtius hippoglossoides*). Can. J. Fish. Aquat. Sci. 70: 461–469. https://doi.org/10.1139/cjfas-2012-0327
- Dutil, J.D., Y. Lambert, G.A. Chouinard et Fréchet. A. 1995. Fish condition: what should we measure in cod (*Gadus morhua*)? DFO Can. Sci. Advis. Sec., Res. Doc 1995/11. 26 pp.

- Fréchet, A. Savenkoff, C. et Gauthier, J. 2006. Mise à jour concernant les mortalités par pêche non comptabilisées. Secr. can. de consult. sci. du MPO. Doc de rech. 2006/086.
- Gavaris, S. 1980. Use of multiplicative model to estimate catch rate and effort from commercial data. Can. J. Fish. Aquat. Sci. 37:2272-2275.
- Galbraith, P.S., Chassé, J., Caverhill, C., Nicot, P., Gilbert, D., Lefaivre, D. et Lafleur, C. 2019. <u>Conditions océanographiques physiques dans le golfe du Saint-Laurent en 2018.</u> Secr. can. de consult. sci. du MPO, Doc. de rech. 2019/046. iv + 83 p.
- Gilbert, D., Sundby, B., Gobeil, C., Mucci, A. et Tremblay, G.-H., 2005. A seventy-two year record of diminishing deep-water oxygen in the St. Lawrence estuary: the northwest Atlantic connection. Limnol. Oceanogr. 50, 1654–1666.
- Gilbert, D., Chabot, D., Archambault, P., Rondeau, B. et Hébert, S. 2007. Appauvrissement en oxygène dans les eaux profondes du Saint-Laurent marin: causes possibles et impacts écologiques. Nat. Can. 131, 67–75.
- Hurtubise, S., Fréchet A. et Savard, L.1991. <u>Les captures accessoires sur les crevettiers et les sébastiers du golfe du St-Laurent.</u> Secr. can. de consult. sci. du MPO, Doc. de rech. 1992/060. 14 p.
- Kennedy, J., Gundersen, A.C. et Boje, J. 2009. When to count your eggs: Is fecundity in Greenland halibut (*Reinhardtius hippoglossoides* W.) down-regulated? Fish. Res. 100: 260–265
- Morin, B. et Bernier, B. 2003. <u>Évaluation et biologie du flétan du Groenland (*Reinhardtius* <u>hippoglossoides</u>) <u>du golfe du Saint-Laurent (4RST) en 2002.</u> Secr. can. de consult. sci. du MPO. Doc de rech. 2003/088. 73 p.</u>
- MPO. 2002. Compte rendu de l'atelier national sur les points de référence concernant les gadidés; 5-8 novembre 2002. Secr. can. de consult. sci. du MPO, Compte rendu 2002/033.
- MPO. 2006. <u>Stratégie de pêche en conformité avec l'approche de précaution.</u> Secr. can. de consult. sci. du MPO, Avis sci. 2006/023.
- MPO. 2017a. Compte rendu de l'examen régional par des pairs sur l'évaluation du stock de flétan du Groenland du golfe du Saint-Laurent (4RST); le 22 février 2017. Secr. can. de consult. sci. du MPO, Compte rendu 2017/037.
- MPO. 2018a. Mise à jour des indicateurs de suivi de l'état du stock de flétan du Groenland du golfe du Saint-Laurent (4RST) en 2017. Secr. can. de consult. sci. du MPO, Rép. des Sci. 2018/004.
- MPO. 2018b. <u>Évaluation du stock de flétan du Groenland du golfe du Saint-Laurent (4RST) en 2017</u>. Secr. can. de consult. sci. du MPO, Avis sci. 2018/035.
- MPO. 2018c. <u>Évaluation du flétan du Groenland du golfe du Saint-Laurent (4RST) en 2016.</u> Secr. can. de consult. sci. du MPO, Avis sci. 2017/049.
- MPO. 2019. <u>Évaluation du stock de flétan du Groenland du golfe du Saint-Laurent (4RST) en 2018.</u> Secr. can. de consult. sci. du MPO, Avis sci. 2019/023.
- Myers, R.A. et Cadigan, N.G. 1995. Was an increase in natural mortality responsible for the collapse of northern cod? Can. J. Fish. Aquat. Sci. 52: 1274–1285.
- Ouellet, P., Bui, A. O.V. et Bernier, B. 2011. Greenland halibut (*Reinhardtius hippoglossoides* Walbaum, 1792) early stage distribution in the Gulf of St. Lawrence. J. Northw. Atl. Fish. Sci. 43: 121–129.

- R Development Core Team. 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. (Accédé le 30 novembre 2017).
- SAS. 1996. Spatial Prediction Using the SAS System. SAS/STAT Technical Report, SAS Institute Inc., Cary, NC. 80 p.
- Savard, L., Gauthier, J., Bourdages, H. et Desgagnés, M. 2013. <u>Prises accessoires de la pêche à la crevette nordique dans l'estuaire et le golfe du Saint-Laurent.</u> Secr. can. de consult. sci. du MPO. Doc. de rech. 2012/151. ii + 56 p.
- Senay, C., Gauthier, J., Bourdages, H., Brassard, C., Duplisea, D., et Ouellette-Plante, J. 2019. <u>L'état des stocks des sébastes (Sebastes mentella et S. fasciatus) de l'unité 1 en 2017.</u> Secr. can. de consult. sci. du MPO. Doc. de rech. 2019/002. viii + 63 p.
- Smedbol, R.K., Shelton, P.A., Swain, D.P., Fréchet, A. et Chouinard, G.A. 2002. Review of population structure, distribution and abundance of cod (*Gadus morhua*) in Atlantic Canada in a species-at-risk context. DFO Can. Sci. Advis. Sec. Res. Doc. 2002/082. 134 p.
- Stortini, C.H., Chabot, D. et Shackell, N.L. 2017. Marine species in ambient low-oxygen regions subject to double jeopardy impacts of climate change. Glob. Chang. Biol. 23, 2284–2296.
- Swain, D.P. et Sinclair, A.F. 1994. Fish distribution and catchability: what is the appropriate measure of distribution? Can. J. Fish. Aquat. Sci. 51: 1046–1054.
- Swain, D.P., Nielsen, G.A. et McKay, D.E. 1995. Incorporating depth-dependent differences in fishing efficiency among vessels in the research survey time series for Atlantic cod (*Gadus morhua*) in the southern Gulf of St. Lawrence. Can. MS Rep. Fish. Aquat. Sci. 2317: 20 p.
- Templeman, W. 1973. Distribution and Abundance of the Greenland Halibut, *Reinhardtius hippoglossoides* (Walbaum), in the Northwest Atlantic. ICNAF Res. Bull. No. 10:83-99.
- Youcef, W. A., Lambert, Y. et Audet, C. 2013. Spatial distribution of Greenland halibut *Reinhardtius hippoglossoides* in relation to abundance and hypoxia in the estuary and Gulf of St. Lawrence. Fish. Oceanogr. 22:1, 41–60.
- Youcef, W. A., Lambert, Y. et Audet, C. 2015. Variations in length and growth of Greenland Halibut juveniles in relation to environmental conditions. Fish. Res. 167, 38–47.

TABLEAUX

Tableau 1. Historique des principales mesures de gestion mises en place pour la pêche dirigée au flétan du Groenland. Comp. : Régime compétitif; QIT : Régime à quota individuel; Ba : Bateau

Année de gestion	TAC (t)	ALL_P	Débarquement (t)	Régime de pêche	Maillage (pouce)	Nombre de Filets	Taille minimale ⁴ (cm)
1980	-	-	7 006	Gel sur l'ém	ission de permis d	le pêche au poissor	
1981	-	-	3 176	-	-	-	-
1982	7 500	-	2 269	Établissement d'un	plan de gestion		
1983	5 000	-	1 105	-	-	-	-
1984	5 000	-	2 126	-	-	-	-
1985	5 000	-	2 369	-	-	-	-
1986	5 000	-	6 595	-	-	-	-
1987	8 900	-	11 080	Problématique de	e prises accessoire	es élevées par les E	EM > 65 pieds
1988	10 500	-	7 569	-	-	-	-
1989	10 500	-	5 136	-	-	-	-
1990	10 500	-	2 445	-	-	-	1
1991	10 500	-	2 293	-	-	-	-
1992	10 500	-	3 419	Comp.	5,5	>120	ı
1993	4 000	-	2 602	Comp.	5,5	>120	ı
	Arrêt de la	a pêche di n progressi	irigée aux engins n	Groenland du GSL on obiles. Informe par les crevett		,	tan du
1994	4 000	-	3 620	Comp.	5,5	120 (Ba < 45 pi.) 160 (Ba > 45 pi.)	-
1995	4 000 (- 900¹)	-	2 426	Comp.	70 % 5,5 30 % 5,7	120	-
1996	2 000	-	1 962	Comp.	30 % 5,7 70 % 6,0	80 = Qc 120 = TNL.	42
1997	3 000	-	2 633	Comp.	6,0	80 = Qc 120 = TNL.	44
1998	4 000	-	3 945	Comp.	6,0	80 = Qc 120 = TNL.	44
1999-2000	4 500	-	3 674	QIT + Comp. = Qc Comp. = TNL.	6,0	80 = Qc 120 = TNL.	44
2000-2001	4 500	-	2 078	Idem	6,0	80/100 = Qc ³ 120 = TNL.	44
2001-2002	4 500	-	1 288	ldem	6,0	120	44
2002-2003	3 500		1 752	Idem	Qc ² = 5,5 et 6,0 TNL. : 6,0	120	44
2003-2004	3 500	2 917	3 573	ldem	Qc ² = 5,5 et 6,0 TNL. : 6,0	120	44
2004-2005	4 500	3 751	3 952	ldem	6,0	120	44
2005-2006	4 500	3 751	4 048	Idem	6,0	120	44
2006-2007	4 500	3 751	3 868	ldem	6,0	120	44
2007-2008	4 500	3 751	3 921	ldem	6,0	120	44

Année de	TAC (t)	ALL_P	Débarquement	Régime de	Maillage	Nombre de	Taille
gestion			(t)	pêche	(pouce)	Filets	minimale4
							(cm)
2008-2009	4 500	3 751	3 770	QIT + Comp. =	6,0	120	44
				Qc			
				Comp. = TNL.			
2009-2010	4 500	3 751	4 268	ldem	6,0	120	44
2010-20115	4 500	3 751	3 972	ldem	6,0	120	44
2011-2012	4 500	3 751	3 872	ldem	6,0	120	44
2012-2013	4 500	3 751	3 481	ldem	6,0	120	44
2013-2014	4 500	3 751	2 774	ldem	6,0	120	44
2014-2015	4 500	3 751	3 179	ldem	6,0	120	44
2015-2016	4 500	3 751	3 410	ldem	6,0	120	44
2016-2017	4 500	3 751	3 300	ldem	6,0	120	44
2017-2018	4500	3751	1 767 ⁶	ldem	6,0	120	44
2018-2019	3 375	2 813	1 493 ⁶	ldem	6,0	120	44

¹ Réduction du TAC visant à protéger les poissons juvéniles

² Pêche expérimentale (4T4 et 4T3a) du QC : pêche avec filets de 5,5 po permise pour une capture équivalente à 30 % du QI des pêcheurs traditionnels. Les autres pêcheurs ont utilisé du 6 po.

³Le nombre maximal de filets a été augmenté de 80 à 100 du 17 juillet 2000 au 14 mai 2001 pour les pêcheurs du QC.

⁴ Taille minimale du protocole des petits poissons.

⁵Établissement de la conciliation de quotas

⁶Données de débarquements préliminaires

Tableau 2. Débarquements (t) par division OPANO et total autorisé des captures (TAC) de flétan du Groenland par année de gestion. L'allocation de pêche (ALL-P) est indiquée à partir de 2003.

Année de		Division OI	PANO		Tatal	T40	ALL D
Gestion	4R	48	4T	n. d.**	Total	TAC	ALL-P
1970	381	496	255	-	1 132	-	-
1971	300	450	204	-	954	-	-
1972	199	379	105	-	683	-	-
1973	216	431	116	-	763	-	-
1974	167	752	92	-	1 011	-	-
1975	195	1 102	247	-	1 544	-	-
1976	517	1 367	135	-	2 019	-	-
1977	1 108	2 298	555	-	3 961	-	-
1978	1 344	3 549	1 354	-	6 247	-	-
1979	2 920	1 889	3 982	-	8 791	-	-
1980	1 631	2 063	3 312	-	7 006	-	-
1981	533	803	1 840	-	3 176	-	-
1982	158	548	1 563	-	2 269	7 500	-
1983	205	444	456	-	1 105	5 000	-
1984	200	571	1 355	-	2 126	5 000	-
1985	213	863	1 292	-	2 369	5 000	-
1986	148	2 161	4 286	-	6 595	5 000	-
1987	229	4 395	6 456	-	11 080	8 900	-
1988	366	2 366	4 838	-	7 569	10 500	-
1989	389	1 872	2 875	-	5 136	10 500	-
1990	304	828	1 313	-	2 445	10 500	-
1991	627	877	789	-	2 293	10 500	-
1992	751	856	1 811	-	3 419	10 500	-
1993	398	709	1 495	-	2 602	4 000	-
1994	507	795	2 318	-	3 620	4 000	-
1995	320	425	1 681	-	2 426	4 000	-
1996	359	532	1 071	-	1 962	2 000	-
1997	549	439	1 645	-	2 633	3 000	-
1998	690	879	2 376	-	3 945	4 000	-
1999-2000	553	837	2 283	-	3 674	4 500	_
2000-2001	513	483	1 082	-	2 078	4 500	-
2001-2002	408	233	647	-	1 288	4 500	_
2002-2003	567	298	888	_	1 752	3 500	-
2003-2004	1 062	807	1 704	-	3 573	3 500	2 917
2004-2005	1 035	1 097	1 820	-	3 952	4 500	3 751
2005-2006	1 192	1 201	1 656	_	4 048	4 500	3 751
2006-2007	1 032	1 696	1 140	-	3 868	4 500	3 751
2007-2008	944	2 107	866	3	3 921	4 500	3 751
2008-2009	739	1 746	1 272	12	3 770	4 500	3 751
2009-2010	1 320	1 890	1 044	15	4 268	4 500	3 751
2010-2011	1 193	1 920	841	18	3 972	4 500	3 751
2011-2012	1 636	1 822	397	17	3 872	4 500	3 751
2012-2013	1 457	1 334	676	13	3 481	4 500	3 751
2013-2014	793	1 387	573	21	2 774	4 500	3 751
2014-2015	488	1 396	1 275	20	3 179	4 500	3 751
2015-2016	477	1 726	1 187	19	3 410	4 500	3 751
2016-2017	519	1 453	1 328	-	3 300	4 500	3 751
2017-2018*	210	823	734	-	1 767	4 500	3 751
2018-2019*	552	532	409	-	1 493	3 375	2 813

^{*}Données préliminaires, **n. d. non déterminé

Tableau 3. Débarquements (t) par engin de pêche et par année de gestion.

Année de Gestion	Filet maillant	Palangre	Chalutier poissons de fond	Sennes	Chalutier à crevette	Autres	Total
1977	1 329	3	1 626	0	993	10	3 961
1978	3 450	0	1 577	0	1 210	10	6 247
1979	3 373	1 901	2 888	0	609	20	8 791
1980	5 239	39	1 042	0	686	0	7 006
1981	2 464	7	409	0	286	10	3 176
1982	1 771	3	165	0	330	0	2 269
1983	469	94	231	0	311	0	1 105
1984	1 026	36	582	0	457	25	2 126
1985	1 451	61	97	1	650	108	2 369
1986	4 941	122	231	1	1 299	0	6 595
1987	8 350	147	1 199	4	1 376	4	11 080
1988	5 793	52	694	19	1 010	1	7 569
1989	4 193	22	404	0	517	0	5 136
1990	1 937	39	178	0	290	0	2 445
1991	1 372	74	141	4	700	2	2 293
1992	2 401	112	156	16	733	0	3 419
1993	2 334	59	62	8	127	12	2 602
1994	3 436	86	18	5	10	66	3 620
1995	2 330	17	10	14	1	54	2 426
1996	1 811	34	93	23	1	0	1 962
1997	2 456	57	89	30	1	0	2 633
1998	3 765	34	117	27	1	0	3 945
1999-2000	3 384	28	188	71	2	1	3 674
2000-2001	1 875	78	99	26	1	0	2 078
2001-2002	1 156	66	39	24	2	0	1 288
2002-2003	1 568	87	54	34	1	8	1 752
2003-2004	3 413	49	66	43	2	0	3 573
2004-2005	3 801	48	40	61	1	0	3 952
2005-2006	3 837	39	49	122	0	0	4 048
2006-2007	3 722	47	48	49	2	0	3 868
2007-2008	3 743	47	15	111	2	4	3 921
2008-2009	3 627	47	28	55	2	12	3 770
2009-2010	4 159	28	52	14	1	15	4 268
2010-2011	3 904	20	18	11	1	18	3 972
2011-2012	3 791	20	27	16	1	18	3 872
2012-2013	3 417	15	19	16	1	13	3 481
2013-2014	2 722	5	11	14	1	21	2 774
2014-2015	3 139	6	3	10	1	20	3 179
2015-2016	3 363	5	7	15	1	19	3 410
2016-2017	3 277	3	8	11	1	0	3 300
2017-2018*	1 744	7	1	14	1	0	1 767
2018-2019*	1 472	5	2	11	0	2	1 493

^{*}Données préliminaires

Tableau 4. Nombre d'observations (obs), capture (t), effort (nombre de filets maillants), capture par unité d'effort (CPUE, kg/filet) et son erreur-type (SE), pourcentage (%) du débarquement correspondant aux observations, débarquements (t) et effort nominal pour les filets maillants par secteur de pêche et par année civile.

4RST

Année	N obs	∑capture	∑effort	CPUE	SE	%	Déb. (t)	Effort
1999	1332	1198	79096	15,15	0,27	36,8	3254	214935
2000	1221	918	83688	10,96	0,21	46,5	1973	179974
2001	405	249	23182	10,75	0,36	21,2	1175	109349
2002	658	434	29200	14,87	0,53	29,9	1450	97659
2003	1161	1407	63856	22,04	0,47	40,7	3462	156894
2004	2586	2811	152127	18,48	0,27	74,5	3775	204197
2005	2664	2834	163802	17,30	0,27	73,2	3871	223773
2006	2291	2986	148991	20,04	0,32	83,6	3573	178219
2007	1898	3199	121159	26,40	0,41	85,0	3762	142540
2008	1986	3091	131091	23,58	0,28	87,9	3518	149137
2009	2027	3481	130865	26,60	0,44	82,0	4244	159591
2010	2002	3552	143085	24,82	0,41	89,5	3970	159872
2011	1851	3222	132475	24,32	0,47	88,3	3650	150028
2012	1777	3001	121075	24,78	0,45	85,6	3504	141443
2013	2192	2235	159792	13,99	0,20	90,3	2474	176957
2014	2002	3141	148411	21,16	0,27	90,9	3454	163268
2015	1759	3130	118439	26,43	0,35	91,4	3425	129583
2016	1814	2980	121245	24,58	0,37	90,7	3286	133677
2017*	1505	1561	111694	13,97	0,22	90,7	1720	123147
2018*	1263	1144	93725	12,21	0,23	72,8	1572	128743

Ouest du golfe

Année	N obs	∑capture	∑effort	CPUE	SE	%	Déb. (t)	Effort
1999	836	731	39775	18,38	0,39	28,6	2555	139073
2000	825	531	49497	10,73	0,26	39,0	1360	126915
2001	362	218	21007	10,37	0,38	30,0	727	70023
2002	614	358	26636	13,44	0,37	45,1	793	59060
2003	1003	1010	51384	19,66	0,43	46,6	2167	110266
2004	2386	2277	136695	16,66	0,21	90,2	2526	151547
2005	2532	2451	155761	15,74	0,21	95,7	2562	162760
2006	1912	2100	118994	17,65	0,31	94,4	2225	126053
2007	1516	2371	92910	25,52	0,44	93,4	2538	99475
2008	1547	2240	98796	22,67	0,30	94,5	2371	104546
2009	1546	2047	99791	20,51	0,30	89,7	2282	111250
2010	1349	1836	94447	19,44	0,33	95,3	1927	99105
2011	1097	1265	79591	15,90	0,31	98,1	1290	81133
2012	954	1145	67249	17,03	0,37	90,7	1262	74144
2013	1208	1090	95171	11,45	0,20	95,3	1144	99865
2014	1484	2679	117635	22,77	0,30	94,0	2851	125144
2015	1282	2790	92716	30,09	0,38	95,0	2937	97596
2016	1255	2560	86004	29,76	0,43	94	2723	91494
2017*	1240	1408	92332	15,25	0,24	94	1500	98330
2018*	963	773	69016	11,20	0,24	96,2	804	71742

Nord Anticosti

Année	N obs	∑capture	∑effort	CPUE	SE	%	Déb. (t)	Effort
1999	136	103	8027	12,83	0,63	91,5	113	8773
2000	73	72	4446	16,21	1,03	97,7	74	4551
2001	40	29	1927	15,05	1,36	64,5	45	2988
2002	31	70	1985	35,16	4,16	77,8	90	2551
2003	33	66	2329	28,18	2,56	97,3	67	2394
2004	7	13	532	-	-	94,6	13	562
2005	3	6	150	-	-	89,0	6	169
2006	111	243	9702	25,00	1,06	93,6	259	10365
2007	65	129	5506	23,37	1,52	97,0	133	5676
2008	89	162	5968	27,18	1,87	100,0	162	5968
2009	172	499	15748	31,68	1,11	94,7	527	16629
2010	299	667	25831	25,84	1,03	99,3	672	26013
2011	279	458	22764	20,13	0,76	96,4	475	23614
2012	201	442	16002	27,61	1,08	88,6	499	18061
2013	359	424	31367	13,52	0,44	97,3	436	32237
2014	113	104	8921	11,70	0,71	98,4	106	9066
2015	-	-	-	-	-	-	0	-
2016	8	5	357	13,20	1,75	88,6	5	403
2017*	7	5	541	8,62	1,69	95,1	5	569
2018*	178	209	15608	13,41	0,58	99,7	210	15655

Esquiman

Année	N obs	∑capture	∑effort	CPUE	SE	%	Déb. (t)	Effort
1999	358	361	31101	11,59	0,35	62,1	581	50082
2000	322	314	29672	10,59	0,35	58,6	537	50635
2001	1	2	102	-	-	0,4	397	25500
2002	13	6	579	11,07	1,89	1,1	562	52636
2003	125	331	10143	32,68	1,50	27,0	1226	37567
2004	192	520	14820	35,06	1,50	42,1	1234	35202
2005	125	373	7652	48,74	2,47	28,8	1297	26569
2006	268	643	20295	31,70	1,18	59,4	1083	34167
2007	317	699	22743	30,73	1,23	64,0	1091	35536
2008	349	688	26293	26,16	0,71	70,2	980	37454
2009	309	935	15326	61,03	1,70	65,2	1435	23506
2010	347	1037	22167	46,79	1,40	76,3	1360	29052
2011	473	1497	29957	49,97	1,30	79,7	1879	37587
2012	620	1413	37740	37,43	1,03	81,1	1741	46535
2013	622	720	32984	21,83	0,51	80,7	893	40872
2014	403	355	21685	16,38	0,61	71,8	495	30202
2015	477	341	25723	13,24	0,35	69,8	488	36852
2016	550	414	34817	11,89	0,30	74,4	557	46797
2017*	258	148	18821	7,87	0,25	70,3	211	26772
2018*	122	162	9101	17,77	0,87	29,2	554	31168

^{*}Données préliminaires

Tableau 5. Capture (t) mensuelle par les filets maillants pour l'ensemble du golfe (4RST), par secteur et par année civile.

4RST

Année	J	F	М	Α	М	J	J	Α	S	0	N	D
1985	0	0	0	30	221	249	188	323	252	178	8	0
1986	-	-	-	149	766	770	792	612	1193	641	18	0
1987	-	-	-	487	1088	1484	1879	2343	1034	33	1	0
1988	-	-	5	307	668	1064	1588	1105	707	340	9	0
1989	-	-	4	183	809	1127	1079	603	247	106	34	1
1990	-	-	2	69	413	456	392	270	163	148	21	2
1991	-	-	-	47	190	382	285	233	167	61	8	0
1992	-	-	-	98	417	595	609	377	229	72	5	-
1993	-	-	-	35	184	521	583	550	295	128	38	-
1994	-	-	-	42	540	714	719	657	276	-	-	-
1995	-	-	-	-	665	826	794	46	-	-	1	-
1996	-	-	-	-	117	995	588	89	11	10	-	-
1997	-	-	-	-	822	1374	252	2	3	3	-	-
1998	-	-	-	-	25	273	2323	465	596	82	2	-
1999	-	-	-	-	10	1222	828	566	448	155	25	1
2000	-	-	-	33	249	452	664	441	114	15	5	-
2001	-	-	-	8	41	185	581	264	57	25	14	-
2002	-	-	-	7	22	254	501	420	155	69	21	-
2003	-	-	1	43	369	1030	1245	521	193	54	5	-
2004	-	-	-	57	694	1155	966	648	210	45	0	-
2005	-	-	-	43	743	1514	757	534	199	80	1	-
2006	-	-	-	43	396	1387	863	645	207	31	1	-
2007	-	-	-	118	726	1538	697	545	95	43	0	-
2008	-	-	-	87	615	1208	893	480	184	49	2	-
2009	-	-	-	130	661	2032	934	317	145	25	-	-
2010	-	-	-	131	561	2066	671	392	111	38	0	-
2011	-	-	-	55	618	1589	970	269	109	40	0	-
2012	-	-	-	95	719	1165	955	376	179	15	0	-
2013	-	-	-	71	319	595	767	386	185	147	4	-
2014	-	-	-	109	799	1080	637	521	247	60	-	-
2015	-	-	-	23	726	1238	769	386	211	72	-	-
2016	-	-	-	45	436	1274	782	430	207	69	40	3
2017*	-	-	-	35	280	559	399	282	110	44	10	-
2018*	-	-	-	57	84	291	498	382	138	84	38	-

Ouest du golfe

Année	J	F	М	Α	М	J	J	Α	S	0	N	D
1999	-	-	-	-	2	1049	671	378	316	116	24	1
2000	-	-	-	32	236	294	377	307	98	11	5	-
2001	-	-	-	8	41	119	382	148	22	5	0	-
2002	-	-	-	2	13	53	181	341	140	46	18	-

Année	J	F	M	Α	М	J	J	Α	S	0	Ν	D
2003	-	-	-	43	359	542	608	362	193	54	5	-
2004	-	-	-	57	256	603	708	648	209	44	0	-
2005	-	-	-	43	307	652	752	530	197	80	1	-
2006	-	-	-	40	61	570	721	598	203	31	1	-
2007	-	-	-	118	632	573	586	493	94	42		-
2008	-	-	-	87	562	537	618	374	164	26	2	-
2009	-	-	-	130	601	578	500	308	141	24	-	-
2010	-	-	-	131	435	697	357	253	48	5	-	-
2011	-	-	-	55	433	306	230	138	87	40	-	-
2012	-	-	-	79	435	329	269	96	40	14	-	-
2013	-	-	-	61	260	191	263	203	112	54	-	-
2014	-	-	_	107	794	654	522	478	239	58	-	-
2015	-	-	-	23	726	1018	633	311	169	57	-	-
2016	-	-	-	45	432	1063	651	341	162	29	-	-
2017*	-	-	-	35	280	486	372	239	71	16	1	-
2018*		-	-	57	84	76	179	219	110	63	15	-

Nord Anticosti

Année	J	F	М	Α	М	J	J	Α	S	0	N	D
1999	-	-	-	-	-	2	8	39	53	11	-	-
2000	-	-	-	1	1	2	41	27	1	-	-	-
2001	-	-	-		0	0	13	25	7	-	-	-
2002	-	-	-	5	1	-	5	70	9	-	-	-
2003	-	-	-	-	3	5	46	13	-	-	-	-
2004	-	-	-	-	-	9	5	-	-	-	-	-
2005	-	-	-	-	6	-	0	1	-	-	-	-
2006	-	-	-	3	-	114	93	45	4	-	-	-
2007	-	-	-	-	8	-	74	51	-	-	-	-
2008	-	-	-	-	-	25	46	89	2	-	-	-
2009	-	-	-	-	3	115	403	5	-	-	-	-
2010	-	-	-	-	1	243	212	126	60	31	-	-
2011	-	-	-	-	20	184	165	87	19	-	-	-
2012	-	-	-	-	12	108	235	92	51	-	-	-
2013	-	-	-	-	23	34	241	119	18	-	-	-
2014	-	-	-	3	1	46	35	21	-	-	-	-
2015	-	-	-	-	-	-	0	-	-	-	-	-
2016	-	-	-	-	-	2	1	3	-	-	-	-
2017*	-	-	-	-	1	4	1	-	-	-	-	-
2018*	-	-	-	-	-	35	103	58	15	-	-	-

Esquiman

Année	J	F	М	Α	М	J	J	Α	S	0	N	D
1999	-	-	-	-	7	172	146	148	78	28	1	-
2000	-	-	-	-	11	156	244	106	15	4	0	-
2001	-	-	-	-	-	65	183	89	28	19	14	-

Année	J	F	М	Α	М	J	J	Α	S	0	Ν	D
2002	-	-	-	-	8	201	311	9	7	23	4	-
2003	-	-	1	-	7	483	590	146	-	-	-	-
2004	-	-	-	-	437	541	253	0	1	1	-	-
2005	-	-	-	-	429	861	3	2	1	1	-	-
2006	-	-	-	-	331	703	48	1	0	0	0	-
2007	-	-	-	-	86	966	37	0	1	1	0	-
2008	-	-	-	-	52	645	227	15	18	23	-	-
2009	-	-	-	-	57	1338	30	3	4	1	-	-
2010	-	-	-	-	125	1123	100	6	3	2	0	-
2011	-	-	-	-	164	1096	572	43	3	-	0	-
2012	-	-	-	16	271	728	449	188	88	1	0	-
2013	-	-	-	10	36	369	262	63	55	93	4	-
2014	-	-	-	-	4	380	78	22	9	2	-	-
2015	-	-	-	-	-	220	136	75	42	15	-	-
2016	-	-	-	-	3	208	131	86	45	40	40	3
2017*	-	-	-	-	-	68	26	43	36	28	9	-
2018*	-	-	-	-	-	180	216	104	13	21	19	-

^{*}Données préliminaires

Tableau 6. Capture annuelle par unité d'effort standardisée (CPUE) et son erreur type (SE) pour la pêche aux filets maillants pour l'ensemble du golfe (4RST) et par secteur de pêche.

Année	4R	ST	Ouest d	lu golfe	Nord A	nticosti	Esqu	iman
	CPUE	SE	CPUE	SE	CPUE	SE	CPUE	SE
1999	21,78	0,50	28,48	0,72	18,06	1,06	11,25	0,40
2000	14,41	0,32	14,75	0,36	22,37	1,54	11,25	0,40
2001	14,70	0,52	13,97	0,48	20,20	1,85	12,73	2,00
2002	20,06	0,59	18,80	0,53	42,10	4,13	33,01	1,73
2003	31,38	0,72	30,10	0,68	33,61	3,03	32,23	1,45
2004	26,53	0,48	25,06	0,44	48,04	2,71	48,40	2,90
2005	24,18	0,43	22,46	0,38	46,05	3,19	33,86	1,42
2006	26,23	0,47	23,68	0,42	43,90	2,71	30,83	1,17
2007	35,12	0,67	34,13	0,66	57,42	2,62	26,73	0,93
2008	33,44	0,63	33,26	0,64	43,59	1,78	67,28	2,59
2009	36,28	0,69	29,58	0,57	35,07	1,46	53,62	2,00
2010	33,11	0,64	27,69	0,56	45,31	1,98	66,95	2,14
2011	29,37	0,58	20,23	0,44	21,74	0,79	48,87	1,46
2012	32,54	0,66	23,39	0,54	17,76	0,97	23,57	0,65
2013	18,78	0,35	15,44	0,32	14,26	2,66	15,93	0,54
2014	29,67	0,57	34,56	0,68	10,39	2,01	13,61	0,42
2015	35,33	0,70	47,11	0,96	20,11	0,92	11,27	0,35
2016	31,85	0,63	44,91	0,92	18,06	1,06	7,53	0,31
2017*	19,32	0,39	21,99	0,45	22,37	1,54	17,21	0,92
2018*	16,60	0,37	15,31	0,35	20,20	1,85	11,25	0,40

^{*}Données préliminaires

Tableau 7. Longueur moyenne (cm) des poissons capturés dans la pêche commerciale aux filets maillants par sexe (Mâle, Femelle et Total) et division OPANO.

Année	4RST				4R			4S			4T	_
•	М	F	Т	М	F	Т	М	F	Т	М	F	Т
1987	42,2	44,5	43,5	43,0	45,3	44,2	43,0	45,3	44,2	41,5	44,1	43,1
1988	42,5	45,1	44,0	43,3	45,5	44,6	43,2	45,6	44,6	42,2	44,8	43,7
1989	44,0	47,8	46,4	43,2	46,4	44,5	43,3	46,1	44,7	45,9	48,8	48,2
1990	44,6	48,5	46,2	44,9	49,7	46,9	44,5	48,9	46,3	44,6	47,9	46,0
1991	43,9	47,0	45,3	43,5	45,8	44,5	43,5	45,8	44,4	45,2	48,9	47,4
1992	43,4	44,8	44,3	48,2	49,2	48,7	41,2	44,3	43,1	42,2	44,2	43,5
1993	42,2	44,0	43,3	46,1	48,0	47,0	42,4	44,6	43,9	41,0	43,1	42,4
1994	40,2	43,9	43,1	43,2	44,2	43,9	40,8	44,0	43,4	40,0	43,8	43,0
1995	41,8	44,9	44,0	41,9	43,1	42,6	42,1	44,8	43,9	41,7	45,2	44,3
1996	45,1	48,2	47,6	45,0	47,6	46,6	45,6	48,5	48,0	44,7	48,3	47,9
1997	44,5	48,9	48,1	44,5	48,4	47,5	44,7	48,7	47,8	44,5	49,1	48,4
1998	44,5	49,0	47,3	44,4	49,2	47,9	44,6	48,3	46,7	44,5	49,1	47,4
1999	44,7	47,4	46,8	43,7	46,1	45,5	44,6	48,0	47,4	44,9	47,6	46,9
2000	43,7	47,1	46,4	43,0	46,4	45,7	44,3	48,3	47,3	43,7	47,1	46,4
2001	43,6	46,9	46,2	44,6	46,4	46,0	43,5	49,2	48,5	42,8	46,4	45,6
2002	42,6	45,2	44,8	43,2	46,0	45,6	41,5	47,2	46,4	42,5	44,2	43,9
2003	43,9	46,1	45,7	46,4	48,0	47,5	41,3	46,1	45,5	41,2	45,4	44,9
2004	42,6	46,6	46,1	45,4	48,4	47,9	41,9	46,5	45,8	41,2	45,8	45,3
2005	43,6	46,7	46,1	46,0	48,1	47,5	42,7	47,2	46,5	40,8	45,7	45,1
2006	44,2	47,4	46,9	45,7	48,8	48,0	44,0	47,7	47,2	42,6	45,9	45,4
2007	43,6	47,8	47,0	45,9	50,0	48,6	42,0	47,7	46,6	43,1	46,8	46,4
2008	43,9	47,4	46,8	45,3	48,6	47,9	44,0	47,5	46,8	42,4	46,8	46,1
2009	44,4	47,7	47,2	46,8	49,7	49,0	43,0	47,4	46,8	42,9	46,5	46,0
2010	45,5	48,8	48,2	47,1	50,0	49,2	45,0	48,9	48,1	43,0	47,5	46,9
2011	46,3	49,1	48,4	47,4	50,8	49,6	45,1	48,5	47,9	44,3	46,8	46,3
2012	46,6	49,5	48,8	47,9	51,7	50,3	45,8	49,4	48,7	42,7	47,3	46,7
2013	45,6	48,4	47,8	47,4	50,3	49,4	44,4	48,0	47,4	44,4	47,0	46,5
2014	44,4	47,3	46,7	46,2	48,6	47,9	43,8	47,1	46,4	44,4	47,2	46,7
2015	45,1	48,8	48,3	47,3	50,8	50,3	45,1	48,9	48,3	43,9	48,2	47,8
2016	45,0	49,6	48,7	45,1	49,8	48,9	45,5	50,2	49,0	44,2	49,0	48,3
2017*	44,1	48,4	47,4	43,8	47,1	46,2	44,4	48,7	47,7	43,7	48,4	47,6
2018*	44,4	48,4	47,8	44,9	48,4	47,5	43,9	48,6	48,1	43,6	48,4	47,9

^{*}Données préliminaires

Tableau 8. Nombre (millier) de mâles et femelles capturés et proportion de femelles dans la pêche aux filets maillants par division OPANO.

Année		4RST			4R			4S			4T	
	М	F	Prop.	М	F	Prop.	М	F	Prop.	М	F	Prop.
1987	6250	8127	0,565	144	141	0,495	2776	2718	0,495	3329	5268	0,613
1988	4023	5473	0,576	181	259	0,588	1151	1681	0,594	2691	3533	0,568
1989	1992	3317	0,625	277	195	0,413	1143	1104	0,491	572	2018	0,779
1990	1550	1065	0,407	183	123	0,403	527	347	0,397	840	595	0,414
1991	1405	1223	0,465	446	324	0,421	639	443	0,410	321	457	0,587
1992	1636	2725	0,625	396	329	0,454	457	716	0,610	782	1679	0,682
1993	1216	2241	0,648	206	201	0,494	301	613	0,671	710	1426	0,668
1994	902	3472	0,794	7	15	0,666	222	873	0,797	673	2584	0,793
1995	851	2163	0,718	189	247	0,566	176	361	0,673	486	1555	0,762
1996	351	1533	0,814	149	223	0,600	87	413	0,826	115	897	0,887
1997	440	1952	0,816	117	402	0,775	95	313	0,767	227	1237	0,845
1998	1375	2383	0,634	181	450	0,713	377	495	0,567	817	1438	0,638
1999	881	2823	0,762	144	494	0,774	160	654	0,803	577	1676	0,744
2000	505	1866	0,787	120	473	0,797	117	385	0,766	267	1007	0,790
2001	297	1117	0,790	110	350	0,761	30	189	0,863	158	578	0,786
2002	301	1661	0,847	95	549	0,853	39	269	0,873	167	843	0,835
2003	691	3285	0,826	347	697	0,668	120	790	0,868	224	1798	0,889
2004	560	3700	0,869	165	835	0,835	165	1029	0,862	229	1836	0,889
2005	799	3571	0,817	366	810	0,689	194	1054	0,844	239	1706	0,877
2006	672	3142	0,824	243	740	0,753	238	1414	0,856	190	989	0,838
2007	779	3237	0,806	285	590	0,674	379	1743	0,821	114	903	0,888
2008	709	3108	0,814	171	547	0,762	351	1414	0,801	187	1147	0,860
2009	756	3657	0,829	283	919	0,765	304	1700	0,849	170	1038	0,859
2010	748	3000	0,800	292	757	0,721	347	1477	0,810	108	766	0,876
2011	842	2577	0,754	488	917	0,653	288	1351	0,824	66	308	0,825
2012	785	2455	0,758	443	758	0,631	252	1038	0,805	91	659	0,879
2013	531	1889	0,781	211	493	0,700	218	972	0,817	101	425	0,807
2014	767	2771	0,783	121	330	0,732	371	1344	0,784	275	1096	0,800
2015	427	2761	0,866	54	326	0,857	274	1384	0,835	99	1051	0,914
2016	585	2395	0,804	88	367	0,807	321	972	0,752	176	1056	0,857
2017*	388	1386	0,781	60	175	0,744	194	629	0,765	134	583	0,813
2018*	237	1276	0,843	125	419	0,771	59	466	0,887	53	391	0,880

^{*}Données préliminaires

Tableau 9. Pourcentage des captures de flétan du Groenland couvert par les observateurs en mer pour la pêche dirigée au flétan du Groenland avec filets maillants par combinaisons de zones unitaires de l'OPANO. Facteur de pondération utilisé pour mettre à l'échelle les résultats des observateurs en mer à l'effort de pêche total de la flotte.

Secteur		Ouest du g	jolfe		Nord	Esquiman
					Anticosti	
	4Tp	4Sz	4Si	4Tk	4Ss	4R
	4Tq		4Ss	4Tn	4Sv	4Rb
			4Sy	4To	4Sx	4Rc
					4Sy	4Sv
2000	18,33	8,83	3,41	11,52	-	2,62
2001	14,26	4,01	1,35	5,75	1,98	1,11
2002	17,50	5,46	3,31	14,81	-	1,75
2003	16,75	14,53	10,04	10,73	-	2,52
2004	3,47	7,23	4,79	5,53	-	0,39
2005	3,28	5,80	3,75	4,48	-	3,03
2006	4,60	4,90	3,19	4,20	5,26	3,99
2007	5,78	3,32	5,28	6,55	-	2,89
2008	5,23	1,32	4,97	6,80	25,16	5,84
2009	3,45	7,07	4,93	4,20	3,18	1,38
2010	3,66	4,02	6,32	4,54	4,75	4,78
2011	1,67	4,42	3,09	6,38	5,56	5,52
2012	2,71	3,69	4,28	7,46	13,79	10,80
2013	6,34	5,43	6,66	4,54	11,43	2,88
2014	5,84	13,07	8,04	5,78	13,54	3,12
2015	4,94	11,60	10,33	4,45	-	3,91
2016	5,93	7,75	9,44	4,13	-	1,4
2017*	5,38	9,28	7,21	5,03	-	2,04
2018*	7,35	9,11	4,49	6,01	10,87	3,94

^{*}Données préliminaires

Tableau 10. Distribution cumulée des captures de flétan du Groenland (centile) lors du relevé nGSL selon la profondeur et la température.

Centile	Profondeur (m)	Température (°C)
5	208	4,0
10	229	4,4
25	256	4,9
50	301	5,3
75	332	5,5
90	366	5,7
95	387	5,8

Tableau 11. Prise accessoire (t) et ratio (%) de la prise accessoire sur la capture totale de flétan du Groenland par année et secteur pour toutes les espèces confondues.

Secteur		Prise acc	cessoire (t)			Rati	o (%)	
	Ouest	Nord	Esquiman	4RST	Ouest	Nord	Esquiman	4RST
	du	Anticosti	•		du	Anticosti	•	
	Golfe				Golfe			
2000	210	-	71	281	37,2	-	13,1	25,4
2001	176	19	37	232	63,8	44,2	8,7	31,1
2002	143	-	18	161	29,8	-	3,1	15,1
2003	176	-	65	241	13,5	-	5,2	9,5
2004	488	-	107	595	18,9	-	8,4	15,4
2005	423	-	20	442	15,4	-		15,4
2006	317	29	67	414	13,7	11,1	6,2	11,3
2007	310	-	191	500	11,7	-	17,4	13,4
2008	252	62	322	637	10,2	37,7	29,2	17,0
2009	280	46	21	346	11,5	8,6	1,5	7,9
2010	275	113	84	472	13,6	16,76	6,2	11,7
2011	247	86	74	408	17,6	17,9	3,7	10,5
2012	234	101	274	609	17,3	19,4	15,0	16,5
2013	299	155	231	685	23,2	32,4	25,4	25,6
2014	325	23	177	525	10,8	21,0	32,0	14,3
2015	239	0	185	425	7,5	-	36,5	11,5
2016	258	0	242	500	8,5	-	30,8	13,1
2017*	604	0	234	837	35,2	-	85,8	42,1
2018*	347	73	104	523	38,3	32,5	16,6	29,8
Moyenne								
2000-2017	292	35	133	461	20,0	23,2	19,3	18

^{*}Donnée préliminaires

Tableau 12. Occurrence et prise accessoire moyennes pour la période 2000 à 2016 et pour les années 2017 et 2018.

	Occurrence (%)			Prise accessoire (kg)			
Taxon	2000-2016	2017	2018	2000-2016	2017	2018	
Flétan du Groenland	99,75	99,19	99,72	3121339	1988758	1754773	
Plie canadienne	76,95	69,98	81,84	36595	88677	72214	
Crabe des neiges	62,02	45,03	29,89	66061	18582	15052	
Sébastes	55,88	87,02	92,46	22861	64894	50682	
Raie épineuse	49,90	66,13	42,18	57526	89559	21827	
Crabe épineux du nord	48,97	50,71	41,34	24906	17346	8713	
Flétan atlantique	45,90	65,31	74,30	92277	149552	118462	
Raies	39,52	43,41	54,75	42646	110737	45736	
Plie grise	33,75	86,82	52,24	5669	41380	18554	
Anthozoaires	22,64	59,84	30,17	5915	10529	3769	
Morue franche	19,53	26,17	19,83	14627	33742	63905	
Baudroie d'Amérique	18,17	18,05	24,30	6290	6682	7658	
Merluche blanche	14,99	34,69	46,65	5011	39860	23565	
Raie lisse	14,73	23,94	9,78	9340	8951	2001	
Aiguillat noir	12,23	25,76	13,13	17196	124432	36032	
Étoiles de mer	7,94	10,14	15,36	1061	794	838	
Aiguillat commun	6,30	0,00	3,63	3293	0	514	
Myxine du nord	5,62	29,41	20,11	574	2915	1065	
Scyphozoaires	4,79	18,26	32,12	915	2697	5471	
Merlu argenté	3,14	17,85	13,69	571	1995	1026	
Pennatula borealis	3,03	29,01	21,23	395	3088	1147	
Étoile de mer	2,67	7,51	2,79	294	954	155	
Oeufs de raie	2,62	5,48	13,69	237	426	610	
Terrassier tacheté	2,07	0,00	1,68	567	0	147	
Plie rouge	2,00	1,42	0,00	928	339	0	
Hareng atlantique	1,95	0,20	0,28	792	14	9	
Cottidés	1,89	0,41	4,47	446	25	416	
Merluche à longues nageoires	1,05	0,00	0,00	581	0	0	
Buccins	1,05	6,69	6,43	92	619	320	
Porifères	0,89	1,42	5,59	89	172	485	
Hémitriptère atlantique	0,88	1,01	0,84	130	72	42	
Crevette nordique	0,68	1,22	0,28	154	65	9	
Plies	0,67	0,00	6,70	591	0	1060	
Requins	0,67	0,81	1,12	8201	12076	19040	
Homard américain	0,59	2,84	2,79	92	400	189	
Ophiures	0,52	1,22	0,00	43	118	0	
Lompénies	0,51	1,22	0,56	459	216	127	
Crabes lyre	0,49	0,41	0,28	105	25	17	
Grosse poule de mer	0,45	0,81	3,35	58	46	253	

	Occurre	ence (%)	Prise ac	cessoire (kg)
Taxon	2000-2016	2017	2018	2000-2016	2017	2018
Limande à queue jaune	0,43	0,00	0,00	202	0	0
Grenadiers	0,42	0,61	0,56	52	112	27
Crabes	0,41	0,20	0,28	65	139	14
Pêche de mer	0,35	1,62	0,28	73	131	17
Loliginidae et	0.21	0.00	0.00	24	0	0
ommastrephidae	0,31	0,00	0,00	21 35	0	0 0
Maquereau bleu	0,30	0,00	0,00		0 0	128
Goberge Concombres de mer	0,29	0,00	1,12 0,00	105 31	0	0
	0,29	•				283
Poissons à nageoires	0,29	0,41	1,96	337	28	
Requin-taupe commun	0,24	0,20	0,00	2418 86	1185 0	0 0
Loup tacheté	0,24	0,00	0,00	64		17
Anguilles Marsouin commun	0,23 0,22	0,00	0,28 0,00	64 1079	0 0	0
Grenadier du Grand Banc		•		21	125	18
	0,20	1,83	0,56	38	0	0
Ogac Moule bleue	0,15 0,14	0,00	0,00	50 5	14	0
		0,20	0,00	5 16	0	17
Pycnogonidés Étoile de mer	0,14	0,00 0,20	0,28	59	20	9
	0,13	•	0,28	22	327	9 95
Aiglefin Oursins	0,12 0,12	2,43 1,01	1,12 0,00	6	32 <i>1</i> 85	95
Aloses	0,12	0,00	0,00	21	0	0
Saida	0,11	0,00	0,00	25	0	0
Requin bleu	0,11	0,00	0,00	901	0	0
Fou de Bassan	0,10	0,00	0,00	19	125	83
Décapodes	0,09	0,41	0,28	8	0	0
Gaspareau	0,08	0,00	0,00	12	0	0
Étoile de mer	0,08	0,00	0,00	9	0	0
Loup atlantique	0,08	0,41	0,00	14	1569	0
Capelan	0,07	0,00	0,00	6	0	0
Gorgonocéphales	0,06	0,41	0,00	9	79	0
Motelle à quatre barbillons	0,05	0,00	0,00	4	0	0
Laimargue	0,05	0,00	0,00	3442	0	0
Poulpe boréal	0,05	0,61	0,00	5	53	0
Aiguillats	0,03	0,00	0,00	15	0	0
Patate de mer	0,04	0,00	0,00	17	31	0
Mollusques	0,04	0,41	0,00	3	0	0
Astérie soleil	0,04	0,00	0,00	5	0	9
Goélands	0,04	0,00	0,28	2	0	0
Phoque du Groenland	0,04	0,00	0,00	186	0	0
Pinnipèdes	0,03	0,00	0,00	259	0	0
i iiiiipeues	0,03	0,00	0,00	208	U	U

	Occurre	ence (%)	Prise accessoire (kg)			
Taxon	2000-2016	2017	2018	2000-2016	2017	2018	
Cténophores	0,03	0,00	4,19	2	0	138	
Syngnathe brun	0,03	0,00	0,00	15	0	0	
Grande argentine	0,03	0,00	0,00	1	0	0	
Requin pèlerin	0,03	0,00	0,00	773	0	0	
Étoile de mer	0,02	0,00	0,00	1	0	0	
Fulmar boréal	0,02	0,00	0,00	3	0	0	
Dauphins	0,02	0,00	0,00	95	0	0	
Poutassou	0,02	0,00	0,00	3	0	0	
Oeufs de buccin	0,02	0,20	0,28	2	19	14	
Crevette	0,02	0,00	0,00	2	0	0	
Pieuvres (incirrata)	0,02	0,00	0,28	1	0	14	
Mouette tridactyle	0,02	0,00	0,00	2	0	0	
Alcidés	0,02	0,00	0,00	16	0	0	
Saumon atlantique	0,01	0,00	0,00	2	0	0	
Alose d'été	0,01	0,00	0,00	2	0	0	
Goéland argenté	0,01	0,00	0,00	1	0	0	
Esturgeon noir	0,01	0,00	0,00	29	0	0	
Limace à longues nageoires	0,01	0,00	0,00	2	0	0	
Crustacés	0,01	0,00	0,00	2	0	0	
Isopodes	0,01	0,00	0,00	0	0	0	
Balanidés	0,01	0,00	0,00	1	0	0	
Loup à tête large	0,01	0,00	0,00	9	0	0	
Dauphin à flanc blanc	0,01	0,00	0,00	70	0	0	
Cirripèdes	0,01	0,00	0,00	1	0	0	
Polychètes	0,01	0,00	0,00	1	0	0	
Lunatie	0,01	0,00	0,00	1	0	0	
Oursins	0,01	0,00	0,00	1	0	0	
Turbot de sable	0,01	0,00	0,00	1	0	0	
Cétacés	0,01	0,00	0,00	79	0	0	
Moules	0,01	0,00	0,00	1	0	0	
Mactre de Stimpson	0,01	0,00	0,00	1	0	0	
Bar d'Amérique	0,01	0,00	0,00	1	0	0	
Alose savoureuse	0,01	0,00	0,00	1	0	0	
Pandalidés	0,01	0,00	0,00	2	0	0	

Tableau 13. Estimation de la prise accessoire de flétan du Groenland (Prise acc.) en nombre et en poids par les crevettiers dans le GSL, abondance et biomasse (Relevé) de flétan du Groenland de moins de 31 cm estimées lors du relevé du MPO, et ratio (Ratio %) de la prise accessoire sur l'estimation du relevé.

Année	Nombre	(x1000)	Poid	s (t)	Rati	o (%)
	Prise acc.	Relevé	Prise acc.	Relevé	N	Poids
2000	2281	422 177	123	42 439	0,54	0,29
2001	831	267 550	87	31 954	0,31	0,27
2002	1577	203 433	104	19 048	0,78	0,55
2003	1099	457 484	92	55 438	0,24	0,17
2004	642	152 257	62	21 968	0,42	0,28
2005	1241	211 082	41	13 699	0,59	0,30
2006	1135	271 862	83	35 617	0,42	0,23
2007	1275	210 047	83	19 560	0,61	0,42
2008	2130	270 492	122	25 755	0,79	0,47
2009	834	187 252	66	20 672	0,45	0,32
2010	841	163 592	72	20 005	0,51	0,36
2011	2323	300 873	84	20 365	0,77	0,41
2012	508	266 470	51	34 176	0,19	0,15
2013	2750	199 356	95	12 317	1,37	0,77
2014	3812	415 041	117	28 787	0,92	0,41
2015	2552	461 880	132	39 432	0,56	0,34
2016	2339	237 130	133	30 755	1,01	0,43
2017	1403	160 799	109	22 336	0,87	0,49
2018*	2148	197 051	76	13 750	1,09	0,55

^{*}Les données du programme des observateurs en mer sont préliminaires

Tableau 14a. Nombres moyens et poids moyens par trait de 15 minutes observés lors du relevé nGSL du MPO pour le flétan du Groenland et l'intervalle de confiance à 95 %.

Année	Noml	ore / trait	Poid	s / trait
	Moyenne	I.C. 95 %	Moyenne	I.C. 95 %
1990	18,9	(14,2 - 23,6)	4,3	(3,6 - 5)
1991	31,4	(25,7 - 37,1)	7,6	(6,1 - 9,1)
1992	31,1	(25 - 37,2)	7,9	(6,4 - 9,4)
1993	12,1	(8,5 - 15,7)	4,0	(3 - 4,9)
1994	20,7	(15,9 - 25,6)	7,2	(5,6 - 8,9)
1995	18,8	(15,1 - 22,5)	8,6	(6,8 - 10,4)
1996	31,4	(23,7 - 39,1)	10,8	(6,9 - 14,7)
1997	38,3	(29,1 - 47,5)	11,8	(10,2 - 13,4)
1998	61,7	(50,7 - 72,7)	11,3	(9,8 - 12,7)
1999	68,4	(60,6 - 76,1)	17,0	(15,2 - 18,7)
2000	136,7	(118,3 - 155,1)	30,0	(25,4 - 34,6)
2001	113,7	(89,5 - 137,8)	27,4	(21,7 - 33)
2002	77,3	(66,3 - 88,4)	21,6	(18,1 - 25,1)
2003	162,7	(137,1 - 188,3)	49,8	(42,1 - 57,5)
2004	75,5	(61,6 - 89,5)	30,9	(24,6 - 37,2)
2005	90,4	(81,5 - 99,4)	29,3	(26,8 - 31,8)
2006	93,0	(78,9 - 107,1)	31,8	(28 - 35,6)
2007	95,5	(79,7 - 111,4)	33,0	(26,9 - 39,2)
2008	101,7	(87,4 - 116,1)	31,2	(25,5 - 36,9)
2009	67,6	(55,1 - 80,1)	21,3	(18 - 24,6)
2010	73,1	(61,5 - 84,7)	26,7	(22,6 - 30,9)
2011	97,7	(82,2 - 113,3)	25,5	(22,3 - 28,7)
2012	89,5	(74,3 - 104,7)	25,3	(22,3 - 28,3)
2013	74,2	(63,1 - 85,4)	20,0	(16,2 - 23,8)
2014	110,1	(93,8 - 126,3)	24,2	(20,1 - 28,4)
2015	120,6	(94,1 - 147,2)	24,7	(21,4 - 27,9)
2016	77,6	(62 - 93,2)	23,1	(18,5 - 27,7)
2017	59,5	(47,3 - 71,7)	17,1	(14,4 - 19,8)
2018	62,4	(45,6-79,1)	15,0	(12,7-17,3)

Tableau 14b. Nombres moyens et poids moyens par trait de 30 minutes observés lors du relevé sGSL du MPO pour le flétan du Groenland et l'intervalle de confiance à 95 %.

Année	Nomb	Nombre / trait		Poids / trait	
	Moyenne	I.C. 95 %	Moyenne	I.C. 95 %	
1971	0,1	(0 - 0,1)	0,1	(0 - 0,2)	
1972	0,0	(0 - 0,1)	0,0	(0 - 0,1)	
1973	0,1	(0 - 0,1)	0,1	(0 - 0,2)	
1974	0,3	(0,2 - 0,3)	0,0	(0 - 0)	
1975	0,3	(0,2 - 0,4)	0,2	(0,1 - 0,3)	
1976	0,5	(0,3 - 0,7)	0,3	(0,1 - 0,4)	
1977	0,4	(0,3 - 0,5)	0,5	(0,4 - 0,7)	
1978	0,3	(0,2 - 0,4)	0,6	(0,3 - 0,8)	
1979	0,2	(0,1 - 0,2)	0,3	(0,2 - 0,4)	
1980	0,1	(0,1 - 0,1)	0,2	(0,1 - 0,2)	
1981	0,0	(0 - 0)	0,1	(0 - 0,1)	
1982	0,3	(0,2 - 0,4)	0,3	(0,2 - 0,4)	
1983	0,7	(0,4 - 1,1)	0,2	(0,1 - 0,3)	
1984	0,3	(0,2 - 0,5)	0,2	(0,2 - 0,2)	
1985	1,5	(1 - 2)	0,9	(0,7 - 1,2)	
1986	2,4	(1,7 - 3,1)	2,0	(1,4 - 2,5)	
1987	1,9	(1,3 - 2,4)	1,4	(1 - 1,8)	
1988	0,7	(0,5 - 0,8)	0,7	(0,6 - 0,7)	
1989	0,2	(0,1 - 0,3)	0,2	(0,1 - 0,2)	
1990	1,1	(0,8 - 1,4)	0,6	(0,4 - 0,9)	
1991	1,2	(0,8 - 1,6)	0,5	(0,3 - 0,6)	
1992	2,0	(1,6 - 2,5)	1,0	(0,9 - 1,2)	
1993	2,9	(2,1 - 3,8)	1,6	(1,1 - 2)	
1994	2,6	(2 - 3,3)	1,2	(0,8 - 1,5)	
1995	2,8	(1,9 - 3,8)	1,9	(1,3 - 2,5)	
1996	2,9	(2,1 - 3,7)	1,8	(1,3 - 2,3)	
1997	2,6	(2,1 - 3,1)	1,9	(1,6 - 2,3)	
1998	13,3	(11,5 - 15,2)	4,1	(3,3 - 4,9)	
1999	10,5	(8,3 - 12,8)	3,4	(2,7 - 4,1)	
2000	20,1	(16,4 - 23,9)	7,4	(6,1 - 8,7)	
2001	18,8	(13,6 - 24)	7,5	(5,4 - 9,6)	
2002	16,2	(12,4 - 20)	6,1	(4,3 - 7,9)	
2003	19,2	(13,9 - 24,5)	11,5	(7,6 - 15,3	

Année	Nomb	re / trait	Poids	s / trait
	Moyenne	I.C. 95 %	Moyenne	I.C. 95 %
2004	10,9	(8,8 - 13,1)	6,5	(5,2 - 7,8)
2005	23,3	(17,6 - 28,9)	13,0	(9,5 - 16,6)
2006	12,9	(10,8 - 14,9)	6,3	(5,1 - 7,5)
2007	19,2	(14,8 - 23,6)	10,2	(7,4 - 13)
2008	22,3	(17,8 - 26,8)	10,7	(8,5 - 12,9)
2009	10,9	(8,4 - 13,4)	4,9	(3,7 - 6,2)
2010	15,4	(12,7 - 18,1)	7,8	(6,3 - 9,4)
2011	17,5	(14,1 - 20,9)	9,1	(6,6 - 11,6)
2012	10,7	(8,3 - 13,2)	5,1	(3,6 - 6,7)
2013	11,0	(9,1 - 12,8)	4,5	(3,3 - 5,7)
2014	7,0	(4,9 - 9,1)	3,5	(2,2 - 4,8)
2015	7,1	(5,7 - 8,5)	3,4	(2,6 - 4,1)
2016	7,5	(6 - 9,1)	3,1	(2,4 - 3,7)
2017	7,0	(5,7 - 8,2)	3,0	(2,4 - 3,5)
2018	5,0	(3,7 - 6,3)	1,9	(1,4 - 2,4)

Tableau 15. Nombres moyens et poids moyens par trait de 30 minutes observés lors du relevé mobile des pêches sentinelles de juillet pour le flétan du Groenland et l'intervalle de confiance à 95 %.

Année	Nomi	ore/trait	Poid	ds/trait
	Moyenne	I.C. 95 %	Moyenne	I.C. 95 %
1995	4,2	(3 - 5,3)	2,3	(1,7 - 2,9)
1996	7,3	(5,4 - 9,1)	4,8	(3,5 - 6,1)
1997	7,9	(6,5 - 9,3)	4,6	(3,8 - 5,4)
1998	10,7	(8,8 - 12,5)	6,2	(5,1 - 7,2)
1999	17,3	(14,2 - 20,4)	7,2	(6 - 8,4)
2000	22,9	(13,9 - 32)	7,3	(3,3 - 11,3)
2001	16,2	(12,5 - 19,8)	6,3	(5,1 - 7,5)
2002	12,0	(8,3 - 15,8)	6,0	(4,2 - 7,7)
2003	17,2	(14,8 - 19,6)	8,0	(6,9 - 9,1)
2004	16,8	(14,4 - 19,3)	9,3	(7,8 - 10,7)
2005	23,5	(16,6 - 30,3)	13,2	(9,7 - 16,7)
2006	21,6	(18,2 - 25)	11,4	(9,9 - 12,8)
2007	24,2	(20 - 28,4)	13,5	(11,1 - 15,9)
2008	23,3	(19,4 - 27,1)	12,1	(10,6 - 13,5)
2009	12,4	(10,5 - 14,2)	7,3	(6,3 - 8,3)
2010	15,4	(13,4 - 17,4)	9,1	(8 - 10,3)
2011	8,7	(6,8 - 10,5)	5,4	(4,3 - 6,5)
2012	9,5	(7,6 - 11,3)	5,3	(4,4 - 6,3)
2013	7,6	(5,9 - 9,3)	4,2	(3,2 - 5,2)
2014	13,3	(10,8 - 15,9)	8,6	(7,2 - 10)
2015	10,0	(8,2 - 11,7)	5,3	(4,5 - 6,1)
2016	6,2	(4,3 - 8)	4,0	(3,2 - 4,8)
2017	7,6	(5,8 - 9,3)	3,6	(2,9 - 4,3)
2018	4,7	(3,6 - 5,8)	2,8	(2,8 - 3,4)

Tableau 16. Nombres moyens par trait de 15 minutes observés lors du relevé nGSL du MPO pour différentes catégories de taille de flétan du Groenland.

Année		Nombr	e / trait	
	0 – 20 cm	20 – 30 cm	30 - 40 cm	> 40 cm
1990	11,04	4,00	1,94	1,89
1991	6,89	16,79	4,90	2,75
1992	5,69	9,94	13,60	1,88
1993	0,41	4,41	5,56	1,73
1994	3,19	2,59	10,08	3,31
1995	3,08	3,76	5,16	6,73
1996	13,65	3,96	5,79	7,94
1997	8,78	15,34	6,53	7,57
1998	42,13	4,83	9,38	5,34
1999	7,18	43,84	9,32	8,45
2000	47,50	24,78	56,07	8,43
2001	16,12	35,64	51,93	8,54
2002	24,77	12,68	32,12	7,75
2003	31,79	54,07	54,55	22,32
2004	5,52	20,20	33,78	16,08
2005	33,15	8,23	30,93	18,15
2006	12,90	39,23	21,89	18,96
2007	21,11	17,24	37,52	18,76
2008	26,78	25,59	31,34	18,02
2009	11,36	24,27	20,57	11,36
2010	9,35	19,18	30,25	14,27
2011	42,00	16,29	25,61	13,83
2012	3,90	46,66	23,21	15,75
2013	32,61	5,11	26,49	10,02
2014	54,01	28,78	11,20	16,07
2015	32,40	56,97	19,16	12,10
2016	6,04	37,36	24,23	9,95
2017	6,87	21,18	25,15	5,95
2018	27,26	9,81	18,86	6,34

Tableau 17. Nombres moyens par trait de 30 minutes observés lors du relevé mobile des pêches sentinelles de juillet pour différentes catégories de taille de flétan du Groenland.

Année		Nombr	e / trait	
	0 – 20 cm	20 – 30 cm	30 - 40 cm	> 40 cm
1995	0,38	1,04	0,99	1,74
1996	0,75	0,93	2,09	3,47
1997	0,03	2,66	1,44	3,75
1998	1,46	0,90	4,16	4,11
1999	0,64	7,71	3,61	5,32
2000	4,67	4,87	10,03	3,38
2001	1,11	4,84	7,61	2,51
2002	1,02	2,14	5,66	3,23
2003	0,24	4,64	6,88	5,42
2004	0,37	2,50	8,35	5,65
2005	2,18	1,82	11,62	7,73
2006	1,07	7,24	4,95	8,30
2007	0,60	2,81	11,98	8,80
2008	1,89	4,19	8,69	8,49
2009	0,45	2,27	4,43	5,19
2010	0,25	2,29	6,86	5,95
2011	0,66	1,03	3,25	3,73
2012	0,03	2,19	3,59	3,64
2013	1,14	0,55	3,12	2,82
2014	0,99	2,79	2,93	6,64
2015	0,73	3,25	2,09	3,90
2016	0,07	1,42	2,23	2,45
2017	0,38	2,04	3,16	1,97
2018	0,20	0,58	2,39	1,53

Tableau 18. Débarquement, biomasse de flétan du Groenland de plus de 40 cm et taux d'exploitation relatif par secteur de pêche et par année.

4RST

Année	Débarquement (t)	Biomasse (t)	Taux d'exploitation (%)
1996	1811	34994	5,18
1997	2456	34239	7,17
1998	3765	23462	16,05
1999	3254	33852	9,61
2000	1973	33869	5,83
2001	1175	28804	4,08
2002	1450	30522	4,75
2003	3462	87143	3,97
2004	3775	65736	5,74
2005	3871	71870	5,39
2006	3573	76437	4,67
2007	3762	74926	5,02
2008	3518	68668	5,12
2009	4244	46960	9,04
2010	3970	58836	6,75
2011	3650	55939	6,53
2012	3504	56109	6,24
2013	2474	39192	6,31
2014	3454	66308	5,21
2015	3425	54935	6,23
2016	3286	45559	7,21
2017*	1719	25445	6,76
2018*	1572	27509	5,71

Ouest du golfe

Année	Débarquement (t)	Biomasse (t)	Taux d'exploitation (%)
1996	1488	23651	6,29
1997	1905	22448	8,49
1998	2893	14845	19,49
1999	2555	19467	13,13
2000	1360	20788	6,54
2001	727	14724	4,94
2002	793	18031	4,40
2003	2167	49939	4,34
2004	2526	35177	7,18
2005	2562	38380	6,67
2006	2225	38231	5,82
2007	2538	35592	7,13
2008	2371	39057	6,07
2009	2282	21909	10,42
2010	1927	27214	7,08
2011	1290	22430	5,75
2012	1262	30014	4,20
2013	1144	18065	6,33
2014	2851	44458	6,41
2015	2937	39159	7,50
2016	2723	29233	9,32
2017*	1500	14542	10,31
2018*	804	15978	5,03

Nord Anticosti

Année	Débarquement (t)	Biomasse (t)	Taux d'exploitation (%)
1997	2	3073	0,07
1998	52	1482	3,48
1999	113	3031	3,71
2000	74	2941	2,51
2001	45	619	7,26
2002	90	4186	2,14
2003	67	3359	2,01
2004	13	3329	0,40
2005	6	6636	0,09
2006	259	9553	2,71
2007	133	7188	1,85
2008	162	4658	3,48
2009	527	5203	10,13
2010	672	10650	6,31
2011	475	7765	6,12
2012	499	7155	6,97
2013	436	7117	6,12
2014	106	4427	2,39
2015	0	3982	0,00
2016	5 5	2721	0,20
2017*	5	3744	0,13
2018*	210	3673	5,71

Esquiman

Année	Débarquement (t)	Biomasse (t)	Taux d'exploitation (%)
1996	315	2835	11,11
1997	546	2847	19,18
1998	746	2313	32,24
1999	581	4554	12,75
2000	537	2622	20,47
2001	397	5598	7,10
2002	562	2508	22,42
2003	1226	13101	9,36
2004	1234	11279	10,94
2005	1297	16023	8,09
2006	1083	15898	6,81
2007	1091	13022	8,38
2008	980	9964	9,84
2009	1435	11246	12,76
2010	1360	11914	11,41
2011	1879	16823	11,17
2012	1741	10243	17,00
2013	893	4158	21,47
2014	495	6546	7,56
2015	488	4338	11,25
2016	557	2598	21,42
2017*	211	2213	9,52
2018*	554	3274	16,91

^{*}Les données de débarquements sont préliminaires

Tableau 19. Indice annuel de condition de Fulton pour des flétan du Groenland de 15, 25, 35 et 45 cm estimé avec les données du relevé nGSL du MPO.

Annáa		Indice de	condition	
Année	15 cm	25 cm	35 cm	45 cm
1990	0,775	0,782	0,853	0,911
1991	0,768	0,777	0,816	0,881
1992	0,800	0,780	0,820	0,881
1993	0,756	0,764	0,837	0,907
1994	0,776	0,760	0,814	0,881
1995	0,712	0,750	0,836	0,926
1996	0,770	0,779	0,852	0,933
1997	0,763	0,784	0,845	0,930
1998	0,736	0,780	0,867	0,938
1999	0,728	0,752	0,812	0,890
2000	0,704	0,751	0,819	0,886
2001	0,742	0,761	0,826	0,887
2002	0,738	0,783	0,847	0,903
2003	0,750	0,783	0,837	0,917
2004	0,756	0,784	0,839	0,908
2005	0,751	0,777	0,846	0,916
2006	0,721	0,769	0,837	0,905
2007	0,751	0,761	0,830	0,895
2008	0,723	0,757	0,832	0,894
2009	0,710	0,762	0,829	0,897
2010	0,738	0,780	0,836	0,897
2011	0,703	0,767	0,842	0,902
2012	0,739	0,765	0,821	0,885
2013	0,721	0,765	0,839	0,900
2014	0,702	0,770	0,850	0,926
2015	0,693	0,743	0,818	0,909
2016	0,707	0,747	0,815	0,898
2017	0,761	0,745	0,803	0,868
2018	0,736	0,769	0,823	0,893

Tableau 20. Nombre d'estomacs de flétan du Groenland selon les différentes périodes investiguées. Des informations sur la taille des poissons d'où proviennent les estomacs ainsi que des informations sur le contenu stomacal total après l'élimination des déchets, parasites et estomacs vides sont fournies.

Paramè	Paramètre		2015-17	2018	Total
	Nb. d'estomacs		1 454	559	7 233
	Nb. estomacs vides	2 517	878	251	3 646
	% d'estomacs vides	48	60	45	50
	IRT	0,14	0,15	0,35	0,16
Longueur (mm)	Min.	56	64	63	56
3 3 4 4 7	Méd.	356	316	311	347
	Moy.	346	328	312	340
	Max.	688	725	696	725
Contenu stomacal total (g)	Min.	0,002	0,001	0,001	0,001
(5)	Méd.	1,56	1,45	1,94	1,56
	Moy.	5,3	6,3	9,9	5,9
	Max.	363	109	176	363

^{*}IRT = indice de remplissage total

Tableau 21. Résumé de l'effort d'échantillonnage en estomacs de flétan du Groenland selon les différentes classes de longueur considérées dans l'étude. Une description de la longueur des poissons d'où proviennent les estomacs est fournie ainsi que le poids du contenu stomacal total après l'élimination des déchets, parasites et estomacs vides.

Paramè	tre	<20	[20-30[[30-40]	>40
	Nb. d'estomacs	1135	1567	2208	2323
	Nb. d'estomacs vides	425	898	1178	1145
	% d'estomacs vides	37,4	57,3	53,4	49,3
	IRT	0,32	0,18	0,10	0,12
Longueur (mm)	Min.	56	200	300	401
	Méd.	169	265	355	452
	Moy.	167	261	353	465
	Max.	199	299	400	725
Contenu stomacal total (g)	Min.	0,001	0,002	0,001	0,003
(6)	Méd.	0,54	1,26	1,62	5,14
	Moy.	0,85	2,86	3,95	12,23
	Max.	9,2	185,3	61,8	363,2

^{*}IRT = indice de remplissage total

Tableau 22. Résumé de l'effort d'échantillonnage en estomacs de flétan du Groenland selon les différentes régions considérées dans l'étude. Une description de la longueur des poissons d'où proviennent les estomacs est fournie. Il en va de même pour le contenu stomacal total après l'élimination des déchets, parasites et estomacs vides.

Paramètre		Estuaire	Golfe	
Nb. d'esto	omacs	1105	6127	
Nb. d'estomacs	vides	451	3194	
% d'estomacs	vides	40,8	52,1	
	IRT*	0,17	0,16	
Longueur (mm)	Min.	121	56	
	Méd.	295	356	
	Moy.	300,9	346,7	
	Max.	612	725	
Contenu stomacal total (g)	Min.	0,001	0,001	
	Méd.	0,75	1,94	
	Moy.	2,88	6,52	
	Max.	113	363	

^{*}IRT = indice de remplissage total

Tableau 23. Régime alimentaire du flétan du Groenland de l'estuaire et du nGSL pour les périodes 2004-09, 2015-17, 2018 et 2004-18. Pour chaque taxon retrouvé dans les contenus stomacaux, la fréquence d'occurrence (FO), les contributions en masse (C_M , en % de la masse de tous les taxons) et en indice de remplissage (C_{IR} , en % de l'IRT de tous les taxons) ont été calculées. Les taxons représentés à plus de 1 % au cours de l'année 2018 sont en caractères gras.

		F)			C	М		C _{IR}			
Proies	2004-09	2015-17	2018	2004-18	2004-09	2015-17	2018	2004-18	2004-09	2015-17	2018	2004-18
Raie tachetée (Leucoraja ocellata)	<1	-	-	<1	0,05	-	-	0,03	0,11	-	-	0,07
Myxine du nord (Myxine glutinosa)	-	<1	<1	<1	-	0,93	2,03	0,45	-	0,23	0,49	0,13
Poisson osseux (Actinopterygii)	<1	-	-	<1	0,07	-	-	0,05	0,06	-	-	0,04
Hareng atlantique (Clupea harengus)	<1	<1	-	<1	10,29	1,43	-	7,28	2,66	0,93	-	1,89
Capelan (Mallotus villosus)	2,8	2,1	9,7	3,2	15,32	7,55	36,39	17,02	19,47	20,32	35,5	22,35
Lussion blanc (Arctozenus risso)	<1	<1	<1	<1	0,35	1,52	4,1	1,1	0,16	0,83	1,63	0,53
Épinoche à trois épines (Gasterosteus aculeatus)	-	<1	-	<1	-	0,03	-	<0,01	-	0,11	-	0,02
Gade (Gadidae)	<1	-	<1	<1	0,1	-	<0,01	0,07	0,04	-	<0,01	0,03
Morue franche (Gadus morhua)	<1	-	-	<1	0,23	-	-	0,15	0,1	-	-	0,06
Mustèle argentée (Gaidropsarus argentatus)	<1	-	-	<1	0,03	-	-	0,02	0,02	-	-	0,02
Motelle à quatre barbillons (Enchelyopus cimbrius)	<1	<1	2,1	<1	2,24	4,03	6,61	3,18	1,36	1,63	3,28	1,74
Grenadier du Grand Banc (Nezumia bairdii)	<1	<1	<1	<1	2,14	0,24	1,07	1,66	1,09	0,07	0,31	0,77
Lançon (Ammodytidae)	<1	-	-	<1	0,02	-	-	0,02	0,27	-	-	0,17
Lançon (Ammodytes sp.)	-	<1	3	<1	-	0,22	1,21	0,21	-	0,2	7,93	1,38
Lompénie serpent (Lumpenus lampretaeformis)	<1	-	-	<1	0,08	-	-	0,06	0,05	-	-	0,03
Lycode (Zoarcidae)	<1	-	-	<1	0,15	-	-	0,1	0,12	-	-	0,07
Lycode (Lycodes sp.)	<1	-	-	<1	0,04	-	-	0,03	0,04	-	-	0,03
Mollasse atlantique (Melanostigma atlanticum)	3,2	1,8	2	2,8	1,27	0,97	0,58	1,12	2,01	0,91	0,91	1,62

		F	0			C	М		C _{IR}			
Proies	2004-09	2015-17	2018	2004-18	2004-09	2015-17	2018	2004-18	2004-09	2015-17	2018	2004-18
Sébaste (Sebastes spp.)	<1	7,2	2,5	2,3	4,42	54,57	24,4	15,95	1,65	16,43	4,06	4,82
Chaboisseau (Cottidae)	-	-	<1	<1	-	-	<0,01	<0,01	-	-	<0,01	<0,01
Hameçon atlantique (Artediellus atlanticus)	<1	-	-	<1	0,03	-	-	0,02	<0,01	-	-	<0,01
Petite limace de mer (Careproctus reinhardti)	<1	-	-	<1	<0,01	-	-	<0,01	<0,01	-	-	<0,01
Raie (Rajidae)	-	<1	-	<1	-	0,17	-	0,03	-	0,1	-	0,02
Poisson-plat (Pleuronectiformes)	<1	-	<1	<1	0,64	-	0,15	0,46	0,23	-	0,05	0,15
Plie (<i>Pleuronectidae</i>)	<1	-	-	<1	<0,01	-	-	<0,01	<0,01	-	-	<0,01
Plie grise (Glyptocephalus cynoglossus)	-	-	<1	<1	-	-	1,24	0,18	-	-	0,42	0,07
Flétan du Groenland (Reinhardtius hippoglossoides)	-	<1	<1	<1	-	0,02	2,19	0,32	-	0,27	0,93	0,21
Raie épineuse (Amblyraja radiata)	-	<1	-	<1	-	0,35	-	0,06	-	0,11	-	0,02
Poisson rond digéré	2,7	2,4	11,1	3,3	8,33	5,28	7,56	7,69	8,39	4,78	14,05	8,68
Oeuf de poisson	<1	-	2,1	<1	0,04	-	0,91	0,16	0,03	-	2,04	0,36
Poisson digéré	8,5	3,2	<1	6,8	10,38	1,93	0,02	7,43	10,15	2,65	0,19	7,06
Poissons, total	17,4	17,5	31,5	18,5	56,22	79,26	88,45	64,85	48,03	49,56	71,79	52,34
Crevette digérée	10,7	2,1	2	8,3	12,1	0,95	0,98	8,57	10,57	1,12	0,69	7,13
Sergestidé écarlate (Sergia robusta)	-	<1	-	<1	-	0,1	-	0,02	-	0,11	-	0,02
Sivade (Pasiphaeidae)	<1	-	-	<1	0,43	-	-	0,29	0,41	-	-	0,27
Sivade rose (Pasiphaea multidentata)	3,2	2,8	2,9	3,1	3,75	2,67	1	3,17	4,25	5,88	1,38	4,07
Bouc (Eualus sp.)	<1	-	-	<1	<0,01	-	-	<0,01	0,02	-	-	0,01
Bouc circumpolaire (Eualus gaimardii)	<1	-	-	<1	<0,01	-	-	<0,01	0,03	-	-	0,02
Bouc épineux (Spirontocaris liljeborgii)	-	<1	-	<1	-	0,01	-	<0,01	-	0,02	-	<0,01
Bouc (Lebbeus sp.)	<1	-	-	<1	<0,01	-	-	<0,01	0,01	-	-	<0,01

		F)			C	М		C _{IR}				
Proies	2004-09	2015-17	2018	2004-18	2004-09	2015-17	2018	2004-18	2004-09	2015-17	2018	2004-18	
Crevette polaire (Lebbeus polaris)	<1	-	-	<1	0,02	-	-	0,01	<0,01	-	-	<0,01	
Crevette (Pandalus sp.)	<1	<1	<1	<1	0,44	0,88	0,37	0,51	0,41	1,26	0,28	0,55	
Crevette nordique (Pandalus borealis)	5,5	5	4,1	5,3	14,28	10,77	4,82	12,3	9,56	10,81	3,19	8,71	
Crevette ésope (Pandalus montagui)	<1	<1	-	<1	0,42	0,15	-	0,31	0,37	0,19	-	0,28	
Crevette crangonidée (Crangonidae)	<1	-	-	<1	0,02	-	-	0,01	<0,01	-	-	<0,01	
Crevette de Sars (Sabinea sarsii)	<1	-	-	<1	<0,01	-	-	<0,01	<0,01	-	-	<0,01	
Crevette de Norvège (Pontophilus norvegicus)	-	<1	<1	<1	-	0,08	0,08	0,03	-	0,03	0,05	0,01	
Crevettes, total	18,4	10,5	9,1	16,1	31,46	15,62	7,25	25,23	25,66	19,42	5,6	21,1	
Copépode calanoide (Temora longicornis)	-	-	<1	<1	-	-	<0,01	<0,01	-	-	<0,01	<0,01	
Copépode calanoide (Paraeuchaeta norvegica)	-	<1	-	<1	-	<0,01	-	<0,01	-	<0,01	-	<0,01	
Copépode calanoide (Metridia lucens)	-	-	<1	<1	-	-	<0,01	<0,01	-	-	<0,01	<0,01	
Hypéride (<i>Hyperiidae</i>)	1,7	<1	-	1,3	0,8	<0,01	-	0,54	1,57	0,06	-	1,02	
Hypéride (Themisto sp.)	1,3	3,6	6,8	2,2	0,48	0,28	0,56	0,46	1,31	2,79	5,76	2,34	
Hypéride (Themisto abyssorum)	<1	<1	<1	<1	<0,01	<0,01	<0,01	<0,01	<0,01	<0,01	0,02	<0,01	
Hypéride (Themisto compressa)	<1	1,3	-	<1	<0,01	0,12	-	0,02	<0,01	1,94	-	0,36	
Hypéride (Themisto libellula)	2	<1	4,5	1,9	1,22	0,09	0,41	0,91	3,48	0,63	3,57	2,96	
Hypéride (Scina borealis)	-	<1	-	<1	-	<0,01	-	<0,01	-	<0,01	-	<0,01	
Gammaride (Gammaridea)	<1	<1	-	<1	<0,01	0,01	-	<0,01	0,01	0,25	-	0,05	
Gammaride (Byblis gaimardi)	-	<1	-	<1	-	0,02	-	<0,01	-	0,17	-	0,03	
Gammaride (Maera loveni)	-	<1	-	<1	-	<0,01	-	<0,01	-	<0,01	-	<0,01	
Gammaride (Tmetonyx cicada)	-	<1		<1	-	<0,01	-	<0,01	-	<0,01	-	<0,01	
Gammaride (Oedicerotidae)	-	<1	-	<1	-	<0,01	-	<0,01	-	<0,01	-	<0,01	

		F	0			С	M		C _{IR}			
Proies	2004-09	2015-17	2018	2004-18	2004-09	2015-17	2018	2004-18	2004-09	2015-17	2018	2004-18
Gammaride (Wimvadocus torelli)	-	<1	-	<1	-	0,01	-	<0,01	-	0,01	-	<0,01
Gammaride (Stegocephalus inflatus)	-	<1	-	<1	-	<0,01	-	<0,01	-	<0,01	-	<0,01
Mysidacé (Mysidae)	1,8	-	-	1,3	0,14	-	-	0,09	0,36	-	-	0,23
Mysidacé (Boreomysis sp.)	<1	1	<1	<1	0,05	0,06	0,02	0,05	0,08	0,08	0,06	0,07
Mysidacé (Boreomysis tridens)	<1	-	-	<1	0,04	-	-	0,03	0,04	-	-	0,02
Mysidacé (Boreomysis arctica)	2,4	<1	-	1,7	0,18	<0,01	-	0,12	0,4	<0,01	-	0,26
Mysidacé (Boreomysis nobilis)	<1	-	-	<1	<0,01	-	-	<0,01	<0,01	-	-	<0,01
Mysidacé (Mysis mixta)	<1	-	-	<1	<0,01	-	-	<0,01	0,04	-	-	0,03
Euphauside (Euphausiacea)	<1	-	-	<1	<0,01	-	-	<0,01	0,1	-	-	0,06
Euphauside (Euphausiidae)	1,5	4,3	3,2	2,2	0,38	0,82	0,29	0,44	3,41	10,1	3,39	4,65
Krill nordique (Meganyctiphanes norvegica)	<1	1,5	5	1,3	0,14	0,16	0,41	0,18	0,7	1,96	4,13	1,52
Euphauside (Thysanoessa sp.)	<1	1,2	1,6	<1	0,02	0,77	0,19	0,17	0,15	5,54	1,67	1,41
Euphauside (Thysanoessa inermis)	<1	-	-	<1	0,02	-	-	0,01	0,18	-	-	0,11
Krill arctique (Thysanoessa raschii)	<1	-	<1	<1	<0,01	-	0,02	<0,01	0,05	-	0,19	0,06
Zooplancton, total	10	11,5	18,2	11	3,48	2,37	1,91	3,06	11,87	23,55	18,78	15,22
Platyhelminthe (Platyhelminthes)	<1	-	-	<1	<0,01	-	-	<0,01	<0,01	-	-	<0,01
Mollusque (Mollusca)	-	-	<1	<1	-	-	0,06	<0,01	-	-	0,56	0,1
Gastéropode (Gastropoda)	<1	-	-	<1	0,06	-	-	0,04	0,01	-	-	<0,01
Bivalve (Bivalvia)	<1	-	-	<1	<0,01	-	-	<0,01	<0,01	-	-	<0,01
Céphalopode (Cephalopoda)	<1	-	-	<1	0,17	-	-	0,11	0,06	-	-	0,04
Sépiole (Rossia sp.)	-	-	<1	<1	-	-	0,62	0,09	-	-	0,5	0,08
Sépiole calamarette (Semirossia tenera)	<1	-	-	<1	0,17	-	-	0,12	0,08	-	-	0,05

		F	0			C	М		C _{IR}				
Proies	2004-09	2015-17	2018	2004-18	2004-09	2015-17	2018	2004-18	2004-09	2015-17	2018	2004-18	
Calmar (Teuthida)	<1	-	-	<1	0,27	-	-	0,19	0,09	-	-	0,06	
Encornet rouge nordique (Illex illecebrosus)	<1	-	<1	<1	1,2	-	1,33	1,01	0,44	-	0,44	0,35	
Polychète (<i>Polychaeta</i>)	<1	<1	-	<1	0,04	<0,01	-	0,03	<0,01	0,05	-	0,01	
Crustacé (Crustacea)	13,6	2,7	2,1	10,5	3,31	0,45	0,19	2,37	8,59	2,46	1,37	6,22	
Cumacé (Cumacea)	-	<1	-	<1	-	<0,01	-	<0,01	-	<0,01	-	<0,01	
Isopode (Isopoda)	<1	-	-	<1	0,02	-	-	0,01	<0,01	-	-	<0,01	
Isopode (Syscenus infelix)	<1	-	-	<1	0,04	-	-	0,03	0,03	-	-	0,02	
Amphipode (Amphipoda)	<1	-	-	<1	0,09	-	-	0,06	0,65	-	-	0,42	
Crustacé decapode (Decapoda)	-	<1	-	<1	-	<0,01	-	<0,01	-	<0,01	-	<0,01	
Crabe (Brachyura)	-	<1	<1	<1	-	0,02	<0,01	<0,01	-	0,3	0,01	0,06	
Crabe des neiges (Chionoecetes opilio)	<1	<1	-	<1	<0,01	0,12	-	0,02	<0,01	0,59	-	0,11	
Échinoderme (Echinodermata)	<1	-	-	<1	<0,01	-	-	<0,01	<0,01	-	-	<0,01	
Oursin (Echinoidea)	<1	-	-	<1	<0,01	-	-	<0,01	<0,01	-	-	<0,01	
Oursin coeur de vase (Brisaster fragilis)	-	<1	-	<1	-	0,34	-	0,06	-	0,08	-	0,01	
Ophiure (Ophiuroidea)	<1	-	-	<1	<0,01	-	-	<0,01	<0,01	-	-	<0,01	
Autres invertébrés, total	14,5	3,2	2,9	11,3	5,38	0,94	2,21	4,15	9,97	3,48	2,88	7,56	
Invertébrés, total	36,7	23,7	28,6	33,5	40,31	18,93	11,36	32,44	47,5	46,45	27,27	43,88	
Matériel digéré non identifié	10,2	4,3	1,8	8,4	3,46	1,81	0,19	2,7	4,46	3,99	0,94	3,77	
Oeuf non identifié	<1	<1	-	<1	<0,01	<0,01	-	<0,01	0,01	<0,01	-	<0,01	
Proies non identifiables, total	10,3	4,5	1,8	8,5	3,47	1,81	0,19	2,71	4,47	3,99	0,94	3,78	
Total	-	-	-	-	100	100	100	100	100	100	100	100	

Tableau 24. Régime alimentaire du flétan du Groenland de l'estuaire et du nGSL selon les différentes classes de longueur considérées dans l'étude et pour toute la période investiguée (2004-2018). Pour chaque taxon retrouvé dans les contenus stomacaux, la fréquence d'occurrence (FO), les contributions en masse (C_M, en % de la masse de tous les taxons) et en indice de remplissage (C_{IR}, en % de l'IRT de tous les taxons) ont été calculées.

		F)			С	М		C _{IR}			
Proies	<20	[20-30[[30-40]	>40	<20	[20-30[[30-40]	>40	<20	[20-30[[30-40]	>40
Raie tachetée (Leucoraja ocellata)	-	<1	-	-	-	0,35	-	-	-	0,29	-	-
Myxine du nord (Myxine glutinosa)	-	-	-	<1	-	-	-	0,66	-	-	-	0,52
Poisson osseux (Actinopterygii)	-	<1	<1	<1	-	<0,01	0,17	0,02	-	<0,01	0,17	0,03
Hareng atlantique (Clupea harengus)	-	-	<1	<1	-	-	1,27	10,25	-	-	0,87	7,08
Capelan (Mallotus villosus)	3,1	3,8	3,2	2,9	21,86	27,65	27,37	12,49	18,66	29,63	28,64	14,59
Lussion blanc (Arctozenus risso)	-	-	<1	<1	-	-	0,7	1,4	-	-	0,93	1,44
Épinoche à trois épines (Gasterosteus aculeatus)	-	<1	-	-	-	0,06	-	-	-	0,09	-	-
Gade (Gadidae)	-	-	<1	<1	-	-	<0,01	0,1	-	-	<0,01	0,1
Morue franche (Gadus morhua)	-	-	-	<1	-	-	-	0,22	-	-	-	0,26
Mustèle argentée (Gaidropsarus argentatus)	-	<1	-	<1	-	0,03	-	0,03	-	0,02	-	0,04
Motelle à quatre barbillons (Enchelyopus cimbrius)	-	<1	<1	1,3	-	2,64	1,18	3,95	-	1,75	1,13	4,47
Grenadier du Grand Banc (Nezumia bairdii)	-	-	<1	<1	-	-	1,25	2,06	-	-	0,97	2,38
Lançon (Ammodytidae)	<1	-	-	-	0,56	-	-	-	0,55	-	-	-
Lançon (Ammodytes sp.)	1,3	<1	<1	<1	3,06	0,96	0,18	<0,01	3,38	1,16	0,18	<0,01
Lompénie serpent (Lumpenus lampretaeformis)	-	-	-	<1	-	-	-	0,08	-	-	-	0,13
Lycode (Zoarcidae)	-	-	<1	<1	-	-	0,41	0,03	-	-	0,33	0,04
Lycode (Lycodes sp.)	-	-	<1	-	-	-	0,14	-	-	-	0,14	-
Mollasse atlantique (Melanostigma atlanticum)	<1	2,7	3,8	3	1,22	2,54	2,14	0,63	0,83	2,79	2,28	0,91
Sébaste (Sebastes spp.)	-	<1	<1	6	-	0,65	2,61	22,42	-	0,63	2,48	17,19

		F	0			С	М		C _{IR}			
Proies	<20	[20-30[[30-40]	>40	<20	[20-30[[30-40]	×40	<20	[20-30]	[30-40]	×40
Chaboisseau (Cottidae)	-	-	<1	-	-	-	<0,01	-	-	-	<0,01	-
Hameçon atlantique (Artediellus atlanticus)	-	-	-	<1	-	-	-	0,03	-	-	-	0,03
Petite limace de mer (Careproctus reinhardti)	-	-	-	<1	-	-	-	<0,01	-	-	-	0,01
Raie (Rajidae)	-	-	-	<1	-	-	-	0,04	-	-	-	0,08
Poisson-plat (Pleuronectiformes)	-	-	<1	<1	-	-	0,14	0,62	-	-	0,13	0,53
Plie (Pleuronectidae)	-	-	<1	-	-	-	<0,01	-	-	-	<0,01	-
Plie grise (Glyptocephalus cynoglossus)	-	-	-	<1	-	-	-	0,26	-	-	-	0,3
Flétan du Groenland (Reinhardtius hippoglossoides)	<1	-	-	<1	0,15	-	-	0,46	0,16	-	-	0,65
Raie épineuse (Amblyraja radiata)	-	-	-	<1	-	-	-	0,09	-	-	-	0,08
Poisson rond digéré	3	3	2,9	3,9	7,81	15,8	6,4	6,98	7,54	13,9	6,71	6,49
Oeuf de poisson	<1	<1	<1	<1	0,83	0,02	0,58	0,04	0,78	0,02	0,51	0,05
Poisson digéré	4,1	7,7	7,3	7,2	5,44	10,37	7,03	7,23	4,97	9,2	7,05	7,61
Poissons, total	12.3	16.6	17.8	23.4	40.92	61.06	51.58	70.11	36.86	59.49	52.51	65.01
Crevette digérée	3	5,9	8,8	11,9	3,55	6,78	12,21	7,99	3,13	6,29	11,27	9,75
Sergestidé écarlate (Sergia robusta)	-	-	<1	-	-	-	0,09	-	-	-	0,1	-
Sivade (Pasiphaeidae)	-	<1	<1	<1	-	0,51	0,45	0,23	-	0,4	0,49	0,28
Sivade rose (Pasiphaea multidentata)	1,2	3,1	3,5	3,5	2,75	6,56	4,9	2,24	2,18	7,16	5,12	2,53
Bouc (Eualus sp.)	<1	-	-	-	0,06	-	-	-	0,05	-	-	-
Bouc circumpolaire (Eualus gaimardii)	<1	-	-	-	0,07	-	-	-	0,05	-	-	-
Bouc épineux (Spirontocaris liljeborgii)	-	<1	-	-	-	0,02	-	-	-	0,02	-	-
Bouc (Lebbeus sp.)	<1	-	-	-	0,03	-	-	-	0,03	-	-	-
Crevette polaire (Lebbeus polaris)	-	-	-	<1	-	-	-	0,02	-	-	-	0,03

		F	0			С	М			С	İR	
Proies	<20	[20-30]	[30-40]	٧40	<20	[20-30[[30-40]	×40	<20	[20-30]	[30-40]	٧40
Crevette (Pandalus sp.)	-	<1	<1	<1	-	1,31	0,61	0,39	-	1,26	0,71	0,41
Crevette nordique (Pandalus borealis)	<1	2,2	5,1	9,9	0,41	7,84	17,01	12,06	0,53	7,65	15,89	14,46
Crevette ésope (Pandalus montagui)	-	<1	<1	<1	-	0,27	0,28	0,34	-	0,33	0,34	0,53
Crevette crangonidée (Crangonidae)	-	-	-	<1	-	-	-	0,02	-	-	-	0,02
Crevette de Sars (Sabinea sarsii)	-	-	-	<1	-	-	-	<0,01	-	-	-	0,01
Crevette de Norvège (Pontophilus norvegicus)	-	-	<1	<1	-	-	0,06	0,02	-	-	0,05	0,02
Crevettes, total	4,6	11,9	17,1	23,5	6,88	23,3	35,6	23,32	5,97	23,12	33,97	28,04
Copépode calanoide (Temora longicornis)	<1	-	-		<0,01	-	-	-	<0,01	-	-	-
Copépode calanoide (Paraeuchaeta norvegica)	<1	<1	-	-	<0,01	<0,01	-	-	<0,01	<0,01	-	-
Copépode calanoide (Metridia lucens)	<1	-	-	-	<0,01	-	-	-	<0,01	-	-	-
Hypéride (<i>Hyperiidae</i>)	1,8	1,9	1,6	<1	0,7	1,75	1,48	0,11	0,72	1,78	1,64	0,13
Hypéride (<i>Themisto sp.</i>)	8,8	2	<1	<1	4,91	1,14	0,76	0,09	5,67	1,52	0,83	0,11
Hypéride (Themisto abyssorum)	<1	-	-	-	0,02	-	-	-	0,02	-	-	-
Hypéride (Themisto compressa)	1,7	<1	-	-	0,74	<0,01	-	-	1,16	<0,01	-	-
Hypéride (Themisto libellula)	5,1	2,4	1,5	<1	5,06	2,94	2,37	0,05	5,42	3,02	2,55	0,07
Hypéride (Scina borealis)	-	<1	-	-	-	<0,01	-	-	-	<0,01	-	-
Gammaride (Gammaridea)	<1	<1	-	<1	0,08	0,04	-	<0,01	0,15	0,02	-	<0,01
Gammaride (Byblis gaimardi)	<1	-	-	-	0,12	-	-	-	0,1	-	-	-
Gammaride (Maera loveni)	<1	-	-	-	<0,01	-	-	-	<0,01	-	-	-
Gammaride (Tmetonyx cicada)	-	-	-	<1	-	-	-	<0,01	-	-	-	<0,01
Gammaride (Oedicerotidae)	<1	-	-	-	<0,01	-	-	-	<0,01	-	-	-
Gammaride (Wimvadocus torelli)	-	-	<1	-	_	-	<0,01	-	-	-	<0,01	-

		F)			С	М		C _{IR}			
Proies	<20	[20-30[[30-40]	>40	<20	[20-30]	[30-40]	>40	<20	[20-30[[30-40]	×40
Gammaride (Stegocephalus inflatus)	-	<1	-	-	-	<0,01	-	-	-	<0,01	-	-
Mysidacé (Mysiidae)	<1	1,7	1,9	<1	0,32	0,22	0,23	0,03	0,38	0,25	0,21	0,05
Mysidacé (Boreomysis sp.)	<1	<1	1,1	<1	0,07	0,1	0,12	0,02	0,05	0,11	0,11	0,03
Mysidacé (Boreomysis tridens)	-	<1	<1	<1	-	0,02	0,06	0,02	-	0,02	0,06	0,03
Mysidacé (Boreomysis arctica)	1,1	1,2	2,8	1,3	0,39	0,18	0,32	0,05	0,43	0,18	0,29	0,07
Mysidacé (Boreomysis nobilis)	-	-	<1	<1	-	-	0,01	<0,01	-	-	<0,01	<0,01
Mysidacé (Mysis mixta)	<1	<1	-	-	0,03	<0,01	-	-	0,08	<0,01	-	-
Euphauside (Euphausiacea)	<1	-	-	-	0,15	-	-	-	0,21	-	-	-
Euphauside (Euphausiidae)	10,6	<1	<1	<1	11,91	0,65	0,12	0,03	14,07	0,85	0,12	0,04
Krill nordique (Meganyctiphanes norvegica)	4,5	1,1	<1	<1	3,34	0,36	0,12	0,04	4,35	0,43	0,15	0,06
Euphauside (Thysanoessa sp.)	2	<1	-	-	4,01	0,63	-	-	3,5	1,29	-	-
Euphauside (Thysanoessa inermis)	<1	-	<1	-	0,38	-	0,01	-	0,36	-	0,01	-
Krill arctique (Thysanoessa raschii)	<1	-	-	-	0,22	-	-	-	0,2	-	-	-
Zooplancton, total	30,4	9,5	8,9	4,4	32,46	8,05	5,61	0,45	36,86	9,5	5,99	0,61
Platyhelminthe (Platyhelminthes)	-	<1	-	-	-	<0,01	-	-	-	<0,01	-	-
Mollusque (Mollusca)	<1	-	-	-	0,3	-	-	-	0,3	-	-	-
Gastéropode (Gastropoda)	-	-	-	<1	-	-	-	0,06	-	-	-	0,03
Bivalve (Bivalvia)	-	-	<1	-	-	-	<0,01	-	-	-	<0,01	-
Céphalopode (Cephalopoda)	-	-	-	<1	-	-	-	0,17	-	-	-	0,17
Sépiole (Rossia sp.)	-	-	<1	-	-	-	0,46	-	-	-	0,42	-
Sépiole calamarette (Semirossia tenera)	-	-	-	<1	-	-	-	0,17	-	-	-	0,21
Calmar (Teuthida)	-	-	-	<1	_	-	-	0,27	-	-	-	0,23

		F	0			C	М			С	ÎR	
Proies	<20	[20-30]	[30-40]	× 0	<20	[20-30[[30-40]	٧40	<20	[20-30[[30-40]	×40
Encornet rouge nordique (Illex illecebrosus)	-	-	-	<1	-	-	-	1,48	-	-	-	1,46
Polychète (<i>Polychaeta</i>)	<1	-	<1	<1	0,03	-	<0,01	0,04	0,03	-	<0,01	0,02
Crustacé (Crustacea)	19,3	9,1	10,1	7,6	12,54	3,34	4,03	1,34	13,17	3,54	4,2	1,6
Cumacé (Cumacea)	<1	-	-	-	<0,01	-	-	-	<0,01	-	-	-
Isopode (Isopoda)	-	-	<1	<1	-	-	<0,01	0,02	-	-	<0,01	0,02
Isopode (Syscenus infelix)	-	-	<1	<1	-	-	0,1	0,01	-	-	0,08	0,02
Amphipode (Amphipoda)	1,5	<1	<1	<1	1,1	0,22	0,03	<0,01	1,17	0,18	0,04	<0,01
Crustacé decapode (Decapoda)	-	-	-	<1	-	-	-	<0,01	-	-	-	<0,01
Crabe (Brachyura)	<1	-	-	-	0,15	-	-	-	0,19	-	-	-
Crabe des neiges (Chionoecetes opilio)	<1	-	<1	<1	0,39	-	0,05	<0,01	0,33	-	0,03	<0,01
Échinoderme (Echinodermata)	-	-	<1	<1	-	-	<0,01	<0,01	-	-	<0,01	<0,01
Oursin (Echinoidea)	-	<1	<1	-	-	<0,01	<0,01	-	-	<0,01	<0,01	-
Oursin coeur de vase (Brisaster fragilis)	-	-	-	<1	-	-	-	0,09	-	-	-	0,06
Ophiure (Ophiuroidea)	-	-	<1	-	-	-	<0,01	-	-	-	<0,01	-
Autres invertébrés, total	21,3	9,4	10,7	8,3	14,52	3,57	4,68	3,65	15,19	3,72	4,79	3,83
Invertébrés, total	50	26,9	31,6	31,6	53,86	34,91	45,89	27,42	58,01	36,34	44,75	32,48
Matériel digéré non identifié	8,9	8,8	8,5	7,7	5,22	4,01	2,52	2,47	5,12	4,15	2,73	2,5
Oeuf non identifié	<1	<1	<1	<1	<0,01	0,02	0,01	<0,01	<0,01	0,02	<0,01	<0,01
Proies non identifiables, total	8,9	9	8,6	7,7	5,22	4,03	2,53	2,48	5,13	4,17	2,74	2,51
Total	-	-	-	-	100	100	100	100	100	100	100	100

Tableau 25. Régime alimentaire du Flétan du Groenland de l'estuaire et du nGSL selon les différentes régions considérées dans l'étude et pour toute la période investiguée (2004-2018). Pour chaque taxon retrouvé dans les contenus stomacaux, la fréquence d'occurrence (FO), les contributions en masse (C_{M} , en % de la masse de tous les taxons) et en indice de remplissage (C_{IR} , en % de l'IRT de tous les taxons) ont été calculées.

	FO		См		C _{IR}	
Proies	Estuair e	nGS L	Estuair e	nGS L	Estuair e	nGS L
Myxine du nord (Myxine glutinosa)	-	<1	-	0,5	-	0,15
Raie (Rajidae)	-	<1	-	0,03	-	0,02
Raie épineuse (Amblyraja radiata)	-	<1	-	0,07	-	0,02
Raie tachetée (Leucoraja ocellata)	<1	-	0,35	-	0,45	-
Poisson osseux (Actinopterygii)	<1	<1	0,36	0,02	0,21	<0,01
Hareng atlantique (Clupea harengus)	-	<1	-	8	-	2,25
Capelan (Mallotus villosus)	1,7	3,5	25,04	16,23	20,07	22,78
Lussion blanc (Arctozenus risso)	<1	<1	1,33	1,07	0,3	0,58
Épinoche à trois épines (Gasterosteus aculeatus)	-	<1	-	<0,01	-	0,03
Gade (Gadidae)	<1	<1	<0,01	0,07	<0,01	0,03
Morue franche (Gadus morhua)	-	<1	-	0,17	-	0,08
Mustèle argentée (Gaidropsarus argentatus)	<1	<1	0,21	<0,01	0,06	<0,01
Motelle à quatre barbillons (Enchelyopus cimbrius)	<1	<1	1,34	3,36	0,45	1,98
Grenadier du Grand Banc (Nezumia bairdii)	<1	<1	1,34	1,69	0,45	0,83
Lançon (Ammodytidae)	<1	<1	0,11	<0,01	0,61	0,09
Lançon (Ammodytes sp.)	<1	<1	0,39	0,2	0,22	1,6
Lompénie serpent (Lumpenus lampretaeformis)	<1	-	0,64	-	0,2	-
Lycode (Zoarcidae)	<1	<1	0,88	0,02	0,41	0,01
Lycode (Lycodes sp.)	<1	<1	0,02	0,03	0,01	0,03
Mollasse atlantique (Melanostigma atlanticum)	7,1	2,1	4,71	0,76	4,34	1,1
Sébaste (Sebastes spp.)	1,1	2,5	7,72	16,76	2,69	5,22
Chaboisseau (Cottidae)	-	<1	-	<0,01	-	<0,01
Hameçon atlantique (Artediellus atlanticus)	-	<1	-	0,03	-	<0,01
Petite limace de mer (Careproctus reinhardti)	<1	-	0,06	-	0,02	-
Poisson-plat (Pleuronectiformes)	-	<1	-	0,5	-	0,18
Plie (Pleuronectidae)	-	<1	-	<0,01	-	<0,01
Plie grise (Glyptocephalus cynoglossus)	-	<1	-	0,2	-	0,09
Flétan du Groenland (<i>Reinhardtius</i> hippoglossoides)	_	<1	-	0,35	-	0,25
Poisson rond digéré	1,3	3,6	3,7	8,09	2	9,94

	FO		См		C _{IR}	
Proies	Estuair	nGS L	Estuair e	nGS L	Estuair	nGS
Oeuf de poisson	<u>e</u> <1		0,09	0,17	0,04	0,43
Poisson digéré	10,9	6,1	4,49	7,71	4,73	7,5
Poissons, total	21,2	18	52,79		37,27	55,2
Crevette digérée	4,4	9	6,17	8,81	4,54	7,62
Sergestidé écarlate (Sergia robusta)	-	<1	-	0,02	-	0,02
Sivade (Pasiphaeidae)	<1	<1	0,05	0,32	0,02	0,31
Sivade rose (Pasiphaea multidentata)	<1	3,5	1,35	3,35	1,36	4,59
Bouc (Eualus sp.)	-	<1	-	<0,01	-	0,02
Bouc circumpolaire (Eualus gaimardii)	-	<1	-	<0,01	-	0,02
Bouc épineux (Spirontocaris liljeborgii)	-	<1	-	<0,01	-	<0,01
Bouc (Lebbeus sp.)	-	<1	-	<0,01	-	0,01
Crevette polaire (Lebbeus polaris)	-	<1	-	0,01	-	<0,01
Crevette (Pandalus sp.)	<1	<1	0,2	0,54	0,26	0,6
Crevette nordique (Pandalus borealis)	2,4	5,8	11,35	12,4	5,01	9,41
Crevette ésope (Pandalus montagui)	<1	<1	1,78	0,17	1,03	0,13
Crevette crangonidée (Crangonidae)	-	<1	-	0,01	-	<0,01
Crevette de Sars (Sabinea sarsii)	-	<1	-	<0,01	-	<0,01
Crevette de Norvège (Pontophilus norvegicus)	-	<1	-	0,03	-	0,02
Crevettes, total	7,9	17,6	20,88	25,65	12,23	22,78
Copépode calanoide (Temora longicornis)	-	<1	-	<0,01	-	<0,01
Copépode calanoide (Paraeuchaeta norvegica)	-	<1	-	<0,01	-	<0,01
Copépode calanoide (Metridia lucens)	-	<1	-	<0,01	-	<0,01
Hypéride (<i>Hyperiidae</i>)	4,3	<1	4,17	0,19	3,76	0,5
Hypéride (<i>Themisto sp.</i>)	<1	2,4	0,82	0,42	0,64	2,66
Hypéride (Themisto abyssorum)	<1	<1	<0,01	<0,01	0,02	<0,01
Hypéride (Themisto compressa)	-	<1	-	0,02	-	0,43
Hypéride (Themisto libellula)	4,5	1,4	5,96	0,41	7,07	2,18
Hypéride (Scina borealis)	<1	-	<0,01	-	<0,01	-
Gammaride (Gammaridea)	<1	<1	0,03	<0,01	0,29	<0,01
Gammaride (Byblis gaimardi)	-	<1	-	<0,01	-	0,04
Gammaride (<i>Maera loveni</i>)	-	<1	-	<0,01	-	<0,01
Gammaride (<i>Tmetonyx cicada</i>)	<1	-	0,02	-	<0,01	-
Gammaride (Oedicerotidae)	-	<1	-	<0,01	-	<0,01
Gammaride (Wimvadocus torelli)	_	<1	-	<0,01	-	<0,01

	FO		См		C _{IR}	
Proies	Estuair e	nGS L	Estuair e	nGS L	Estuair e	nGS
Gammaride (Stegocephalus inflatus)	<u> </u>		<u>-</u>	2 2 4	<u>-</u>	<0,01
Mysidacé (<i>Mysidae</i>)	3,5	<1	0,35	0,07	0,84	0,12
Mysidacé (<i>Boreomysis sp.</i>)	<1	<1	0,03	0,05	0,01	0,08
Mysidacé (Boreomysis tridens)	<1	<1	0,02	0,03	<0,01	0,03
Mysidacé (Boreomysis arctica)	4,4	1,2	0,48	0,09	0,75	0,16
Mysidacé (Boreomysis nobilis)	-	<1	-	<0,01	-	<0,01
Mysidacé (Mysis mixta)	-	<1	-	<0,01	-	0,03
Euphauside (Euphausiacea)	-	<1	-	<0,01	-	0,08
Euphauside (Euphausiidae)	4,7	1,8	1,83	0,31	10,23	3,6
Krill nordique (Meganyctiphanes norvegica)	2,3	1,1	0,69	0,13	4,03	1,04
Euphauside (Thysanoessa sp.)	<1	<1	0,7	0,12	3,49	1,02
Euphauside (Thysanoessa inermis)	<1	<1	0,02	0,01	0,02	0,13
Krill arctique (Thysanoessa raschii)	<1	<1	0,06	<0,01	0,35	<0,01
Zooplancton, total	20	9,3	15,19	1,87	31,51	12,14
Platyhelminthe (Platyhelminthes)	-	<1	-	<0,01	-	<0,01
Mollusque (Mollusca)	-	<1	-	<0,01	-	0,11
Gastéropode (Gastropoda)	<1	-	0,48	-	0,05	-
Bivalve (Bivalvia)	<1	-	<0,01	-	<0,01	-
Céphalopode (Cephalopoda)	-	<1	-	0,13	-	0,05
Sépiole (Rossia sp.)	-	<1	-	0,1	-	0,1
Sépiole calamarette (Semirossia tenera)	-	<1	-	0,13	-	0,06
Calmar (Teuthida)	-	<1	-	0,21	-	0,07
Encornet rouge nordique (Illex illecebrosus)	-	<1	-	1,11	-	0,42
Polychète (Polychaeta)	<1	<1	0,29	<0,01	0,03	0,01
Crustacé (Crustacea)	16,5	9,4	5,19	2,09	13,08	4,92
Cumacé (Cumacea)	-	<1	-	<0,01	-	<0,01
Isopode (Isopoda)	<1	<1	<0,01	0,01	<0,01	<0,01
Isopode (Syscenus infelix)	-	<1	-	0,03	-	0,02
Amphipode (Amphipoda)	<1	<1	0,01	0,06	<0,01	0,5
Crustacé decapode (Decapoda)	-	<1	-	<0,01	-	<0,01
Crabe (Brachyura)	-	<1	-	<0,01	-	0,07
Crabe des neiges (Chionoecetes opilio)	-	<1	-	0,03	-	0,13
Échinoderme (<i>Echinodermata</i>)	-	<1	-	<0,01	-	<0,01
Oursin (Echinoidea)	<1	-	<0,01	-	<0,01	-

	FO		См		C _{IR}		
Proies	Estuair e	nGS L	Estuair e	nGS L	Estuair e	nGS L	
Oursin coeur de vase (Brisaster fragilis)	<1	-	0,66	-	0,09	-	
Ophiure (Ophiuroidea)	<1	-	0,01	-	<0,01	-	
Autres invertébrés, total	17,2	10,2	6,65	3,91	13,27	6,47	
Invertébrés, total	38,3	32,6	42,72	31,43	57,01	41,39	
Matériel digéré non identifié	18	6,6	4,43	2,53	5,67	3,41	
Oeuf non identifié	<1	<1	0,05	<0,01	0,05	<0,01	
Proies non identifiables, total	18,5	6,7	4,49	2,53	5,72	3,41	
Total	-	-	100	100	100	100	

Tableau 26. Résumé de l'effort d'échantillonnage en estomacs de flétan du Groenland et de sébaste pour la période 2015-17, selon la classe de longueur. Des statistiques de longueur, de contenu stomacal total (une fois les déchets/parasites/estomacs vides éliminés) et de diversité taxonomique sont fournies.

_ ,,,				Sébaste				Flétai	n du Gro	enland	
Paramètre		<20	[20-30[[30-40]	>40	Total	<20	[20-30[[30-40]	>40	Total
	Nb. d'estomacs	1182	394	452	118	2146	247	412	371	424	1454
	Nb. d'estomacs vides	390	177	183	32	782	89	288	258	243	878
	% d'estomacs vides	33	45	41	27	36	36	70	70	57	60
	IRT	0,14	0,09	0,12	0,27	0,14	0,33	0,13	0,08	0,1	0,14
Longueur (mm)	min	66	200	300	401	66	64	200	300	401	64
	med	155	249	352	415,5	190	165	255	350	470	316
	moy	149	247	351	422	225	161	253	348	481	328
	max	199	299	400	484	484	199	299	400	725	725
Contenu	min	0,001	0,001	0,002	0,066	0,001	0,006	0,003	0,001	0,008	0,001
stomacal total (g)	med	0,09	0,2	1,31	4,6	0,17	0,45	1,26	2,12	8,21	1,45
(9)	moy	0,21	1,11	3,91	11,97	1,83	0,89	2,38	4,57	14,73	6,28
	max	2,97	19,77	46,46	71,80	71,795	8,72	15,96	51,90	108,69	108,69
Nb. de taxons	Poissons	2	5	9	7	10	5	6	9	12	15
	Crevettes	7	5	6	4	8	3	6	5	6	8
	Zooplancton	34	21	17	8	38	14	11	5	5	19
	Autres invertébrés	12	3	6	2	14	5	1	2	3	7
	Proies non identifiables	2	1	1	1	2	1	1	2	2	2

FIGURES

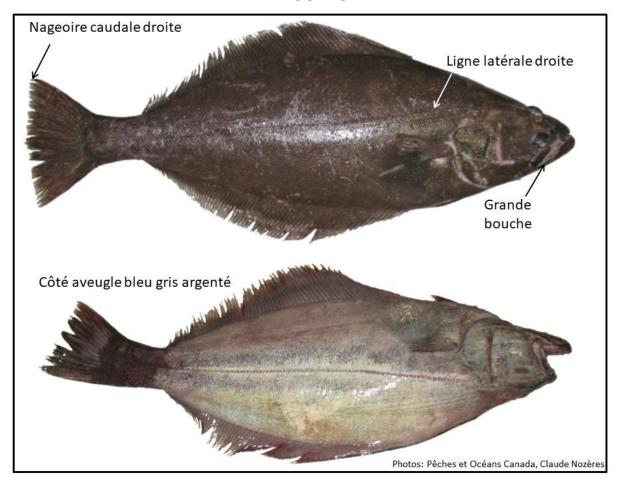


Figure 1. Flétan du Groenland.

Figure 2. Zones unitaires de l'OPANO du golfe du Saint-Laurent (carte du haut). Carte des sous-zones de pêche au poisson de fond du golfe du Saint-Laurent (carte du bas).

Figure 3. Indices de biomasse (kg / trait) estimés lors du relevé du MPO dans le nGSL pour les principaux poissons de fond et les invertébrés (gauche) et indices de biomasse pour le flétan du Groenland et la crevette nordique (droite).

Figure 4. Carte illustrant le schéma de stratification du relevé de recherche sur les poissons de fond et la crevette dans l'estuaire maritime et le nord du golfe du Saint-Laurent (bleue) et celle du relevé du sud du golfe du Saint-Laurent (jaune, 4T). Les zones de chevauchement partiel (vert pâle) et total (vert foncé) à la frontière entre ces deux relevés sont également identifiées.

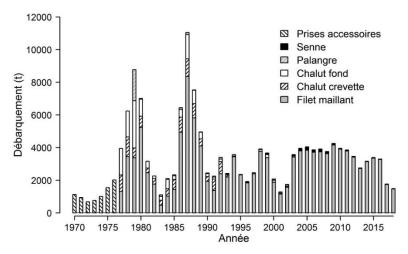


Figure 5. Débarquements (t) de flétan du Groenland par engin et par année de gestion de pêche.

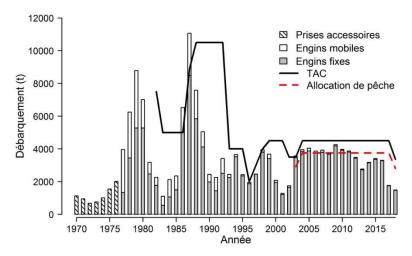


Figure 6. Débarquements (t) de flétan du Groenland pour les engins fixes et mobiles par année de gestion de pêche. Le total autorisé des captures (TAC) et l'allocation de pêche (ALL-P) sont indiqués.

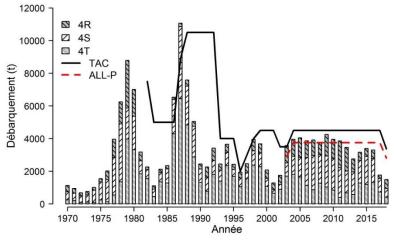


Figure 7. Débarquements (t) de flétan du Groenland par division OPANO et par année de gestion de pêche. Le total autorisé des captures (TAC) et l'allocation de pêche (ALL-P) sont indiqués.

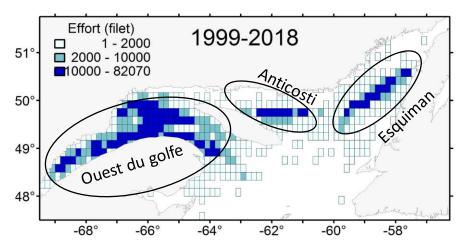


Figure 8. Effort de pêche déployé en nombre total de filets par quadrilatère de pêche de 1999 à 2018. Les concentrations d'effort de pêche permettent de définir trois secteurs soit ouest du golfe, Anticosti et Esquiman.

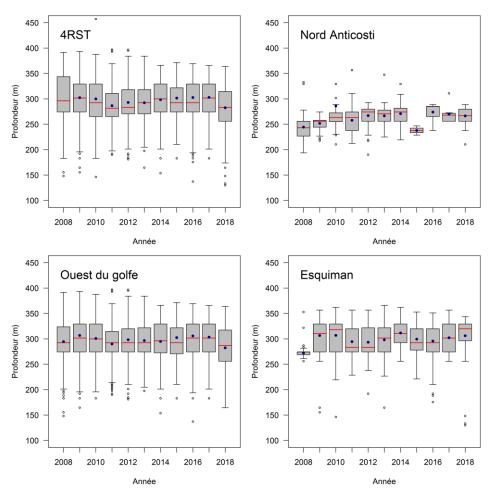


Figure 9. Profondeur de déploiement annuelle des filets maillants dans la pêche dirigée au flétan du Groenland pour l'ensemble du golfe (4RST) et par secteur de pêche. Représentation graphique en boîte à moustache; la boîte s'étend du percentile 25 à 75, la ligne dans la boîte représente la médiane, le cercle plein la moyenne, les moustaches s'étendent des percentiles 5 à 95 et les cercles ouverts représentent les valeurs extrêmes.

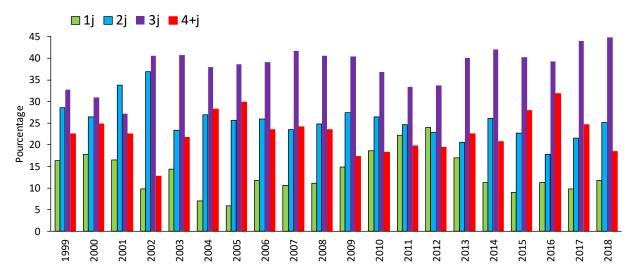


Figure 10. Proportion (%) annuelle des durées d'immersion (de 1 à 4 jours et plus) des filets maillants dans la pêche commerciale dirigée au flétan du Groenland de 1999 à 2018.

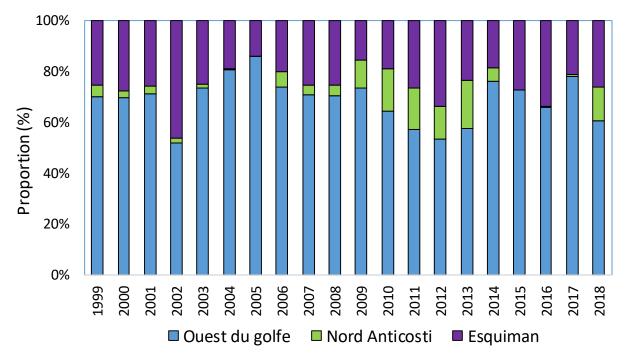


Figure 11. Proportion de l'effort de pêche déployé par secteur de pêche dans la pêche aux filets maillants dirigée au flétan du Groenland de 1999 à 2018.

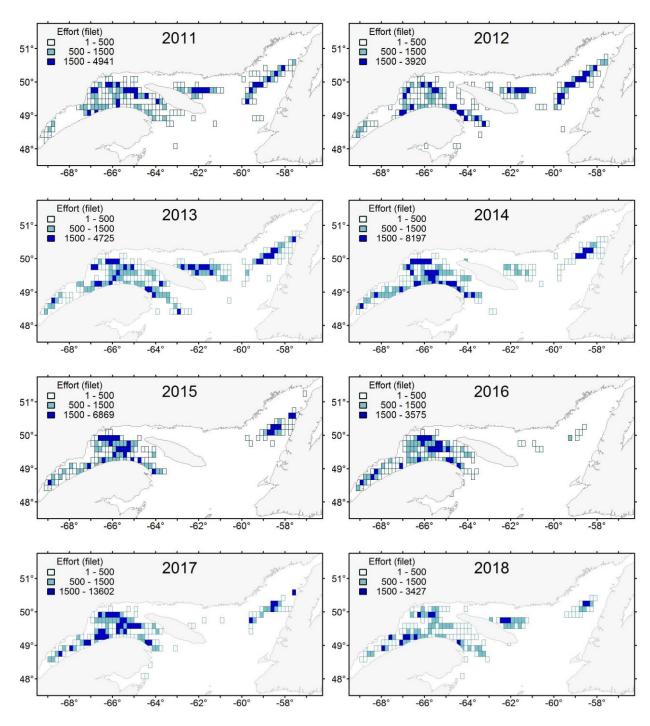


Figure 12a. Effort de pêche (nombre de filets maillants) annuel par quadrilatère, de 2011 à 2018. Les information proviennent des fichiers ZIFF et les données de 2018 sont préliminaires.

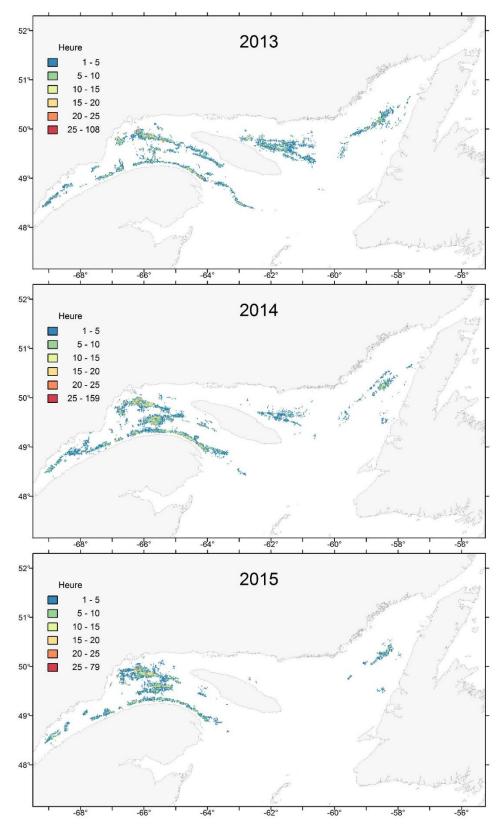


Figure 12b. Distribution de l'effort de pêche dirigée au flétan du Groenland dans le golfe du Saint-Laurent de 2013 à 2018 selon les données du système de surveillance des navires (SSN), nombre d'heures par carré de 1 minute.

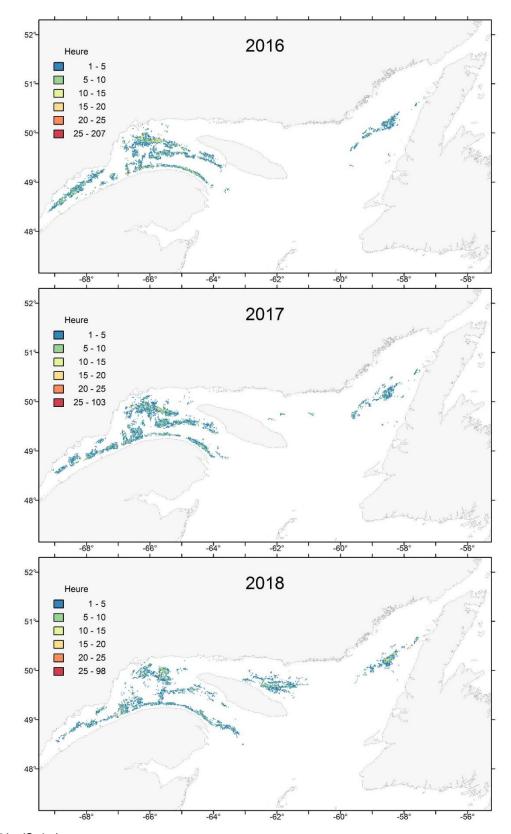


Figure 12b. (Suite).

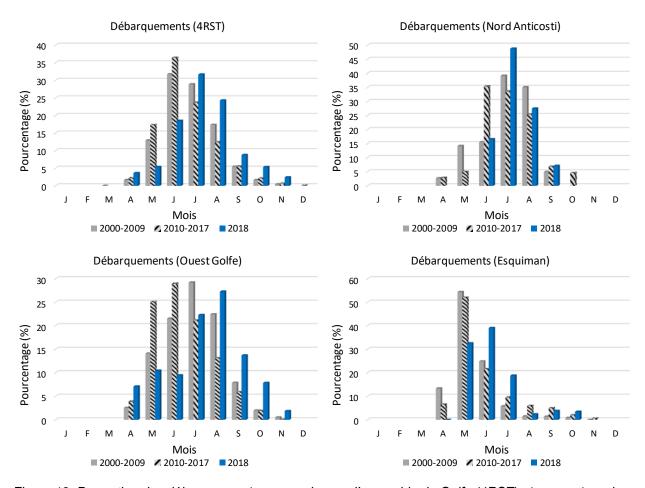


Figure 13. Proportion des débarquements mensuels pour l'ensemble du Golfe (4RST) et par secteur de pêche. Moyenne pour les périodes 2000-2009, 2010-2017 et pour l'année 2018.

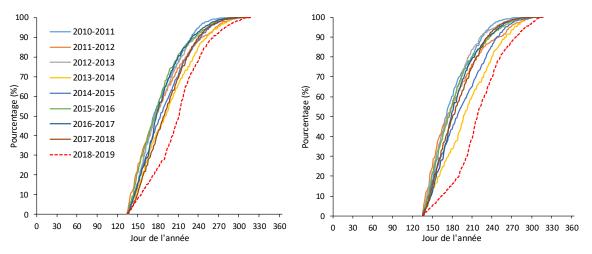


Figure 14. Effort de pêche cumulé (%) (gauche) et débarquements cumulés (%) (droite) en fonction du jour de l'année pour le secteur ouest du golfe pour les saisons de pêche 2010-2011 à 2018-2019. Le jour de l'année 135 correspond au 15 mai, soit la date du début de l'année de gestion.

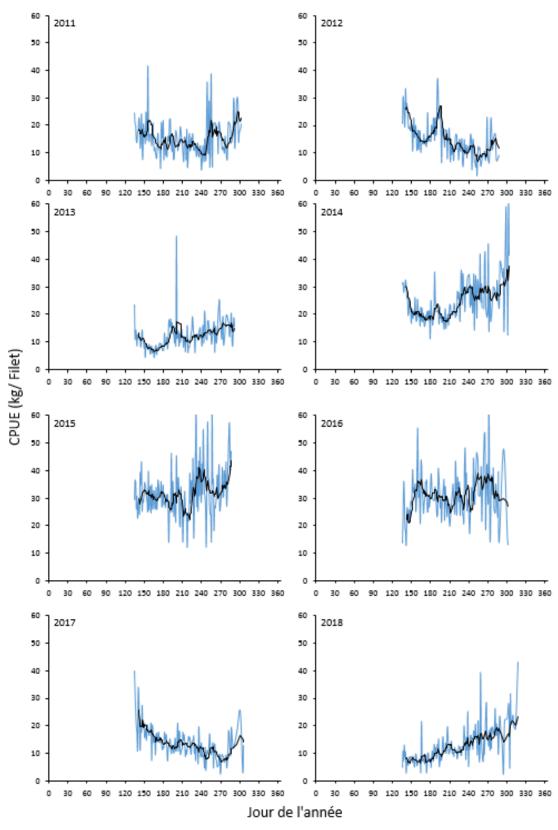


Figure 15. Capture par unité d'effort (CPUE kg/filet) journalière pour le secteur ouest du golfe pour les années 2011 à 2018.

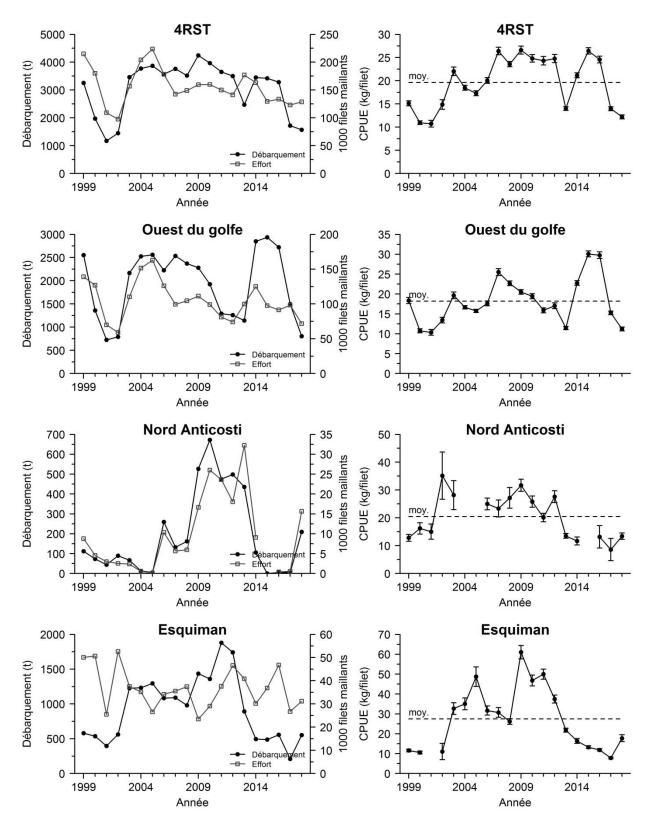


Figure 16. Débarquement, effort nominal et capture par unité d'effort (CPUE) ± intervalle de confiance (95 %), par année et secteur de pêche.

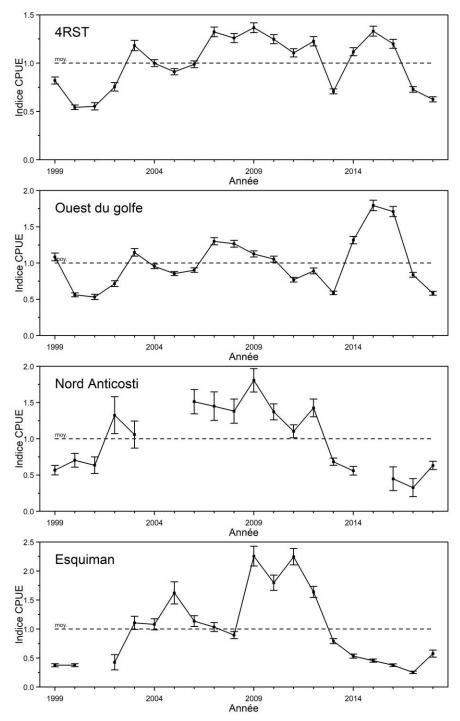


Figure 17. Indice annuel de performance de la pêche (CPUE standardisée) \pm intervalle de confiance (95 %) pour l'ensemble du golfe (4RST) et par secteur de pêche.

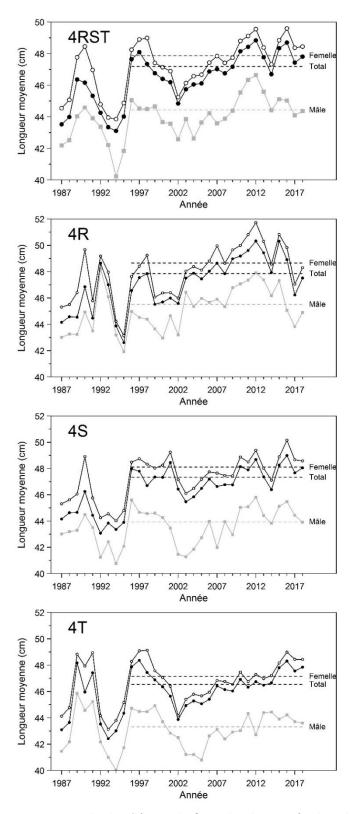


Figure 18. Longueur moyenne annuelle des flétans du Groenland capturés dans la pêche commerciale au filet maillant par sexe et division OPANO de 1987 à 2018. La ligne pointillée représente la moyenne pour chacune des séries depuis le changement de maillage en 1996.

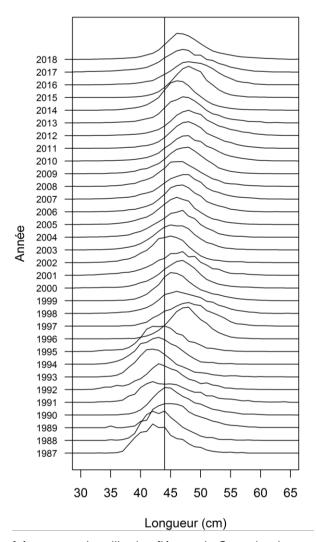


Figure 19. Distribution des fréquences de taille des flétans du Groenland capturés dans la pêche commerciale au filet maillant de 1987 à 2018. En 1996, le maillage est passé de 5,5 à 6 pouces. La ligne verticale coupe le graphique à 44 cm soit la taille minimale du protocole des petits poissons.

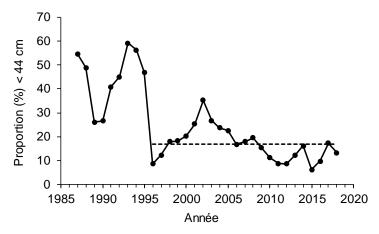


Figure 20. Proportion annuelle des flétans du Groenland qui ont moins de 44 cm dans la capture commerciale. La ligne pointillée représente la moyenne 1996-2017, soit après le changement de maillage.

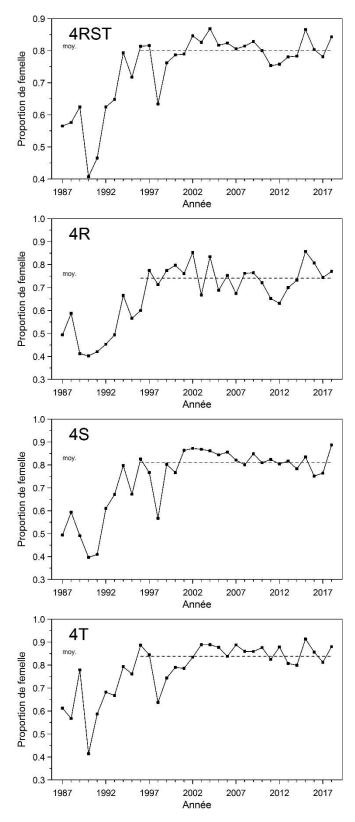


Figure 21. Proportion de femelles dans les captures au filet maillant par division OPANO. La ligne pointillée représente la moyenne commençant en 1996, année du changement de maillage de 5,5 à 6 pouces.

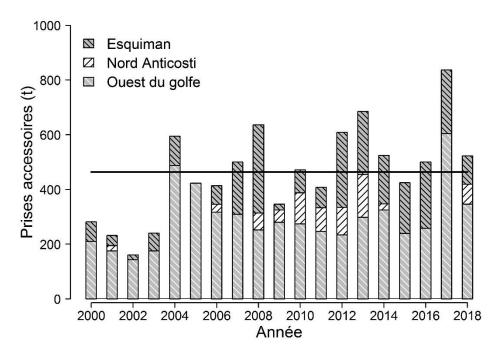


Figure 22. Prises accessoires totales (t) de toutes les espèces dans la pêche aux filets maillants dirigée au flétan du Groenland par année et secteur de pêche estimées avec les données du programme des observateurs en mer. La ligne pleine indique la moyenne des années 2000-2018

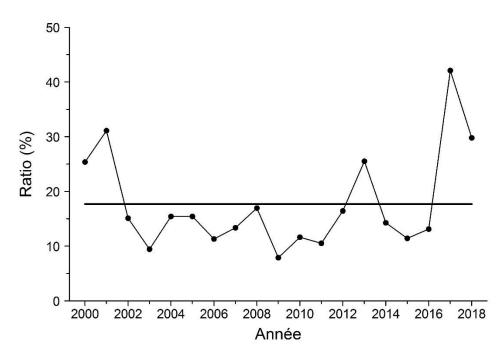


Figure 23. Ratio (%) de la prise accessoire pour toutes les espèces combinées sur la capture totale de flétan du Groenland. La ligne pleine indique la moyenne des années 2000-2018

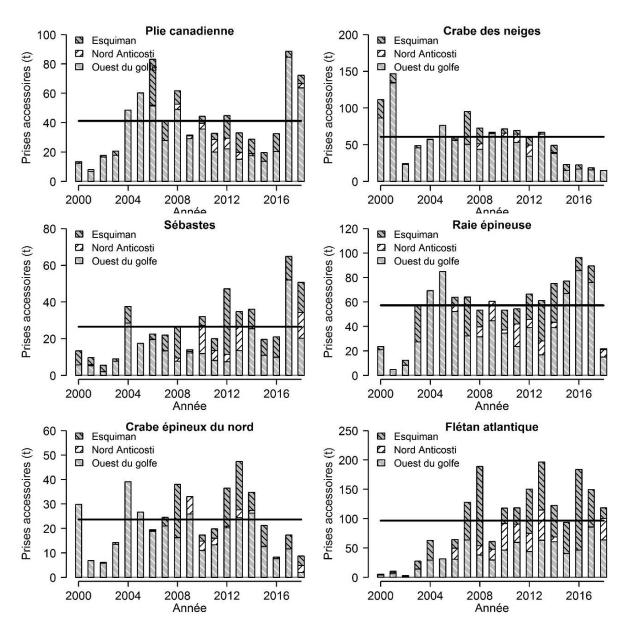


Figure 24. Prises accessoires annuelles, dans la pêche aux filets maillants dirigée au flétan du Groenland, estimées pour six espèces par secteur de pêche à partir des données du programme des observateurs en mer. La ligne pleine indique la moyenne des années 2000-2018.

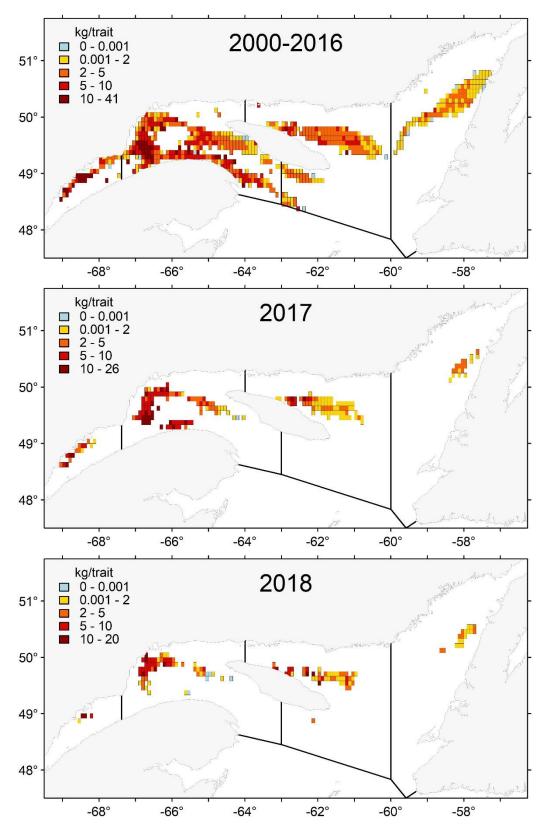


Figure 25. Distribution spatiale des prises accessoires de flétan du Groenland moyennées par carré de 5 minutes lors d'activités de pêche dirigée à la crevette en présence d'un observateur en mer.

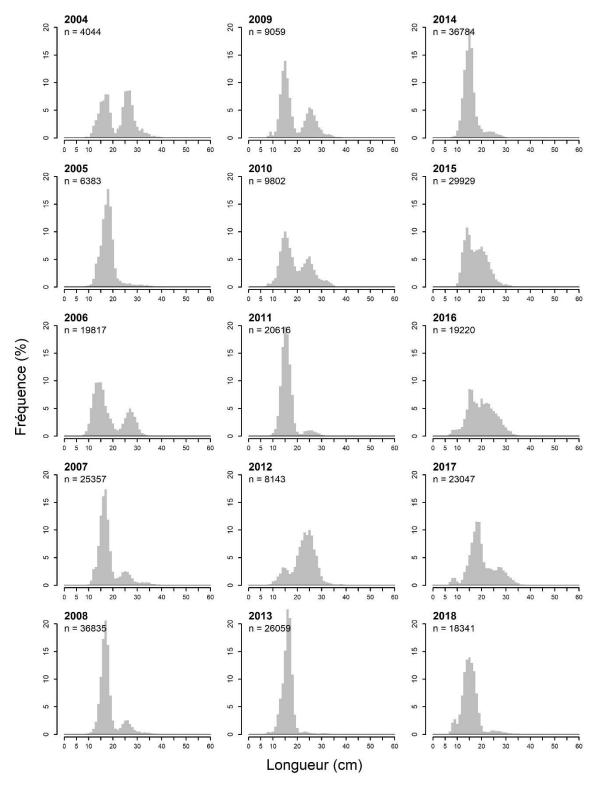


Figure 26. Distribution des fréquences de longueur du flétan du Groenland échantillonné par les observateurs en mer de 2002 à 2017 lors des activités de pêche dirigée à la crevette. Le nombre (n) de spécimens mesurés est indiqué.

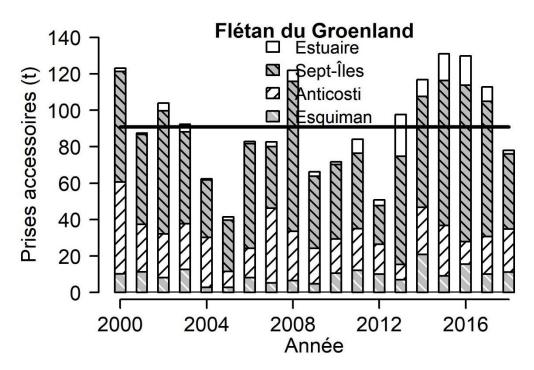


Figure 27. Prises accessoires, lors des activités de pêche dirigée à la crevette, estimées par année par les observateurs en mer pour le flétan du Groenland selon les zones de pêche à la crevette. La ligne pleine indique la moyenne des années 2000-2017.

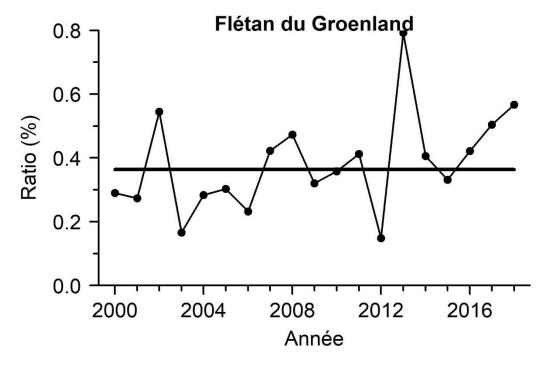


Figure 28. Ratio (%) de la prise accessoire des crevettiers sur l'estimation de la biomasse du flétan du Groenland estimée par les données du relevé aux poissons du fond du nord du golfe Saint-Laurent. La ligne pleine indique la moyenne des années 2000-2018.

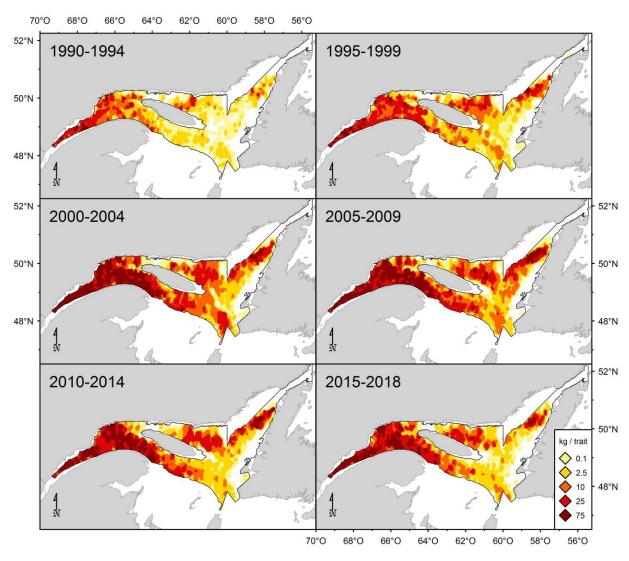


Figure 29. Distribution spatiale des taux de capture (kg / trait de 15 minutes) de flétan du Groenland lors du relevé du MPO dans le nord du golfe du Saint-Laurent par période de quatre ou cinq années.

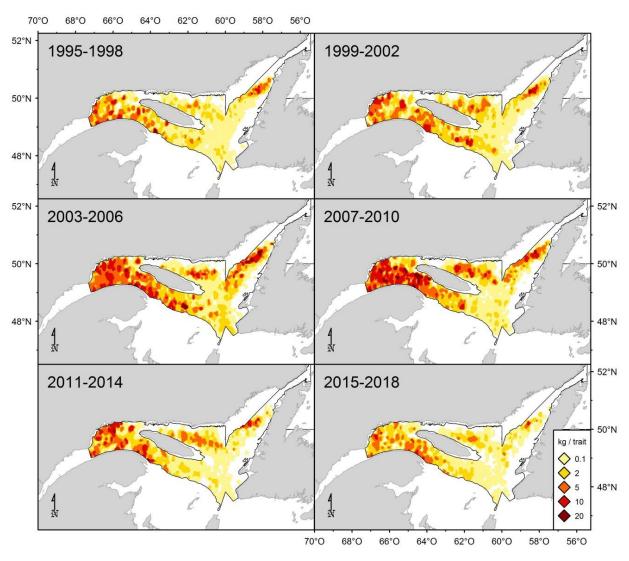


Figure 30. Distribution spatiale des taux de capture (kg / trait de 30 minutes) de flétan du Groenland lors des pêches sentinelles par période de trois ou quatre années.

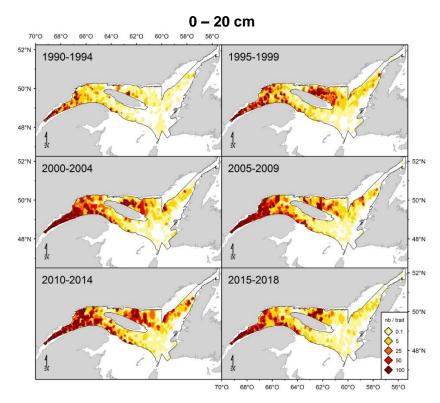


Figure 31. Distribution spatiale des taux de capture (nombre / trait de 15 minutes) de flétan du Groenland de moins de 20 cm lors du relevé du MPO dans le nGSL par période de quatre ou cinq années.

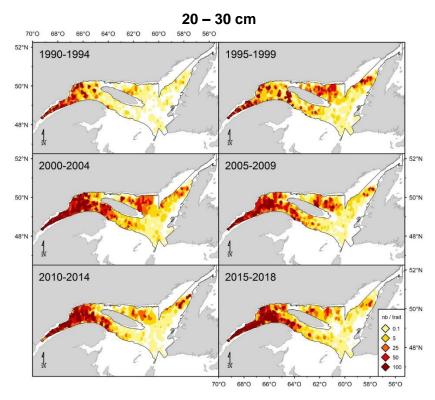


Figure 32. Distribution spatiale des taux de capture (nombre / trait de 15 minutes) de flétan du Groenland de 20 à 30 cm lors du relevé du MPO dans le nGSL par période de quatre ou cinq années.

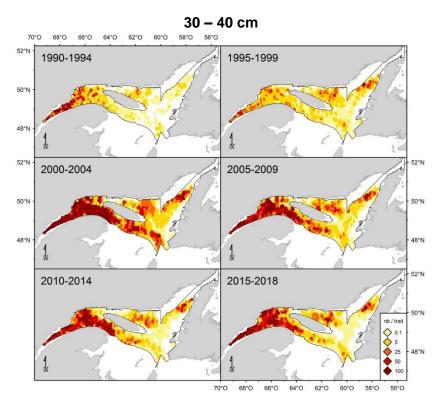


Figure 33. Distribution spatiale des taux de capture (nombre / trait de 15 minutes) de flétan du Groenland de 30 à 40 cm lors du relevé du MPO dans le nGSL par période de quatre ou cinq années.

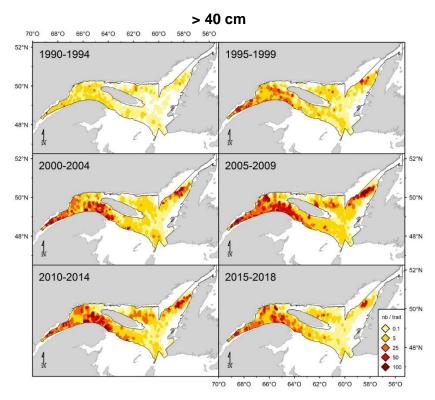


Figure 34. Distribution spatiale des taux de capture (nombre / trait de 15 minutes) de flétan du Groenland de 40 cm et plus lors du relevé du MPO dans le NGSL par période de quatre ou cinq années.

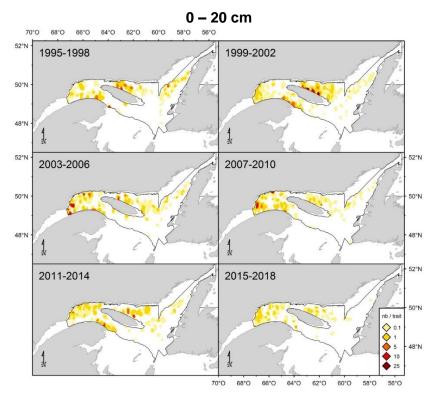


Figure 35. Distribution spatiale des taux de capture (nombre / trait de 30 minutes) de flétan du Groenland de moins de 20 cm lors des pêches sentinelles par période de trois ou quatre années.

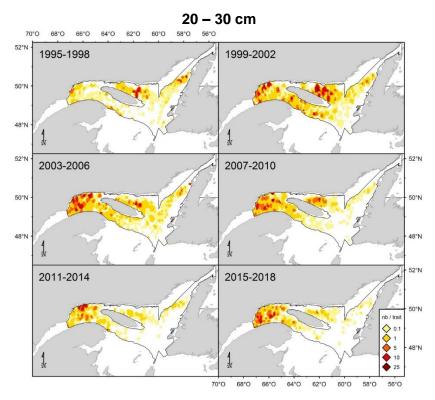


Figure 36. Distribution spatiale des taux de capture (nombre / trait de 30 minutes) de flétan du Groenland de 20 à 30 cm lors des pêches sentinelles par période de trois ou quatre années.

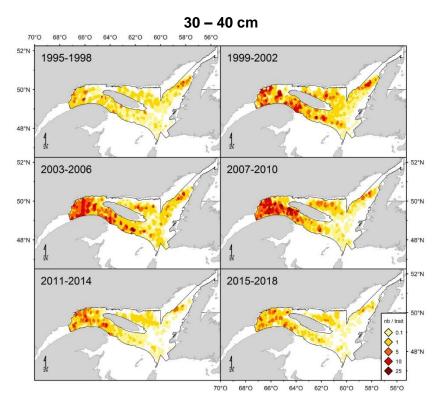


Figure 37. Distribution spatiale des taux de capture (nombre / trait de 30 minutes) de flétan du Groenland de 30 à 40 cm lors des pêches sentinelles par période de trois ou quatre années.

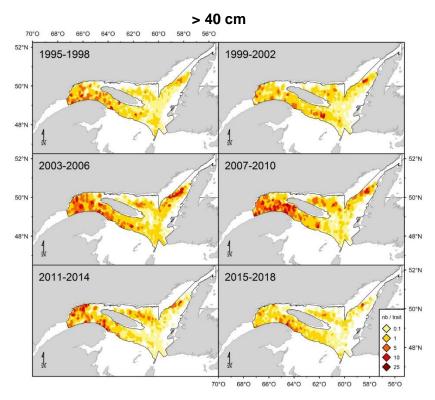


Figure 38. Distribution spatiale des taux de capture (nombre / trait de 30 minutes) de flétan du Groenland de 40 cm et plus lors des pêches sentinelles par période de trois ou quatre années.

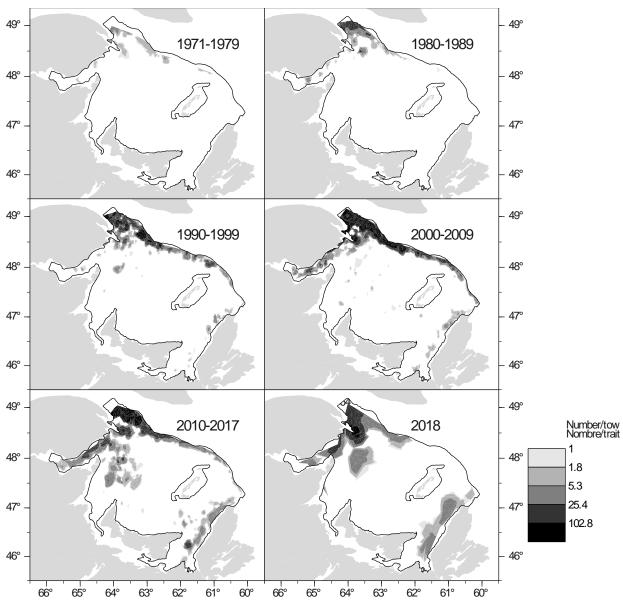


Figure 39. Distribution spatiale des captures de flétan du Groenland (toutes tailles) dans le relevé sGSL du MPO. Les courbes de niveau sont basées sur les 10ième, 25ième, 50ième, 75ième et 90ième centiles des captures non nulles sur la période 1971-2018. Notez que le panneau pour 2018 est basé sur moins de données et que les contours impliquent donc plus de lissage que dans les autres panneaux.

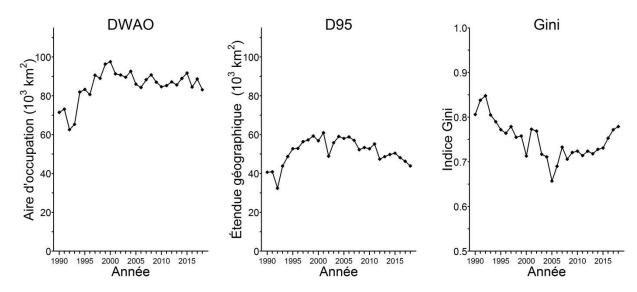


Figure 40. Indices de répartition spatiale : 1) DWAO, aire d'occupation pondérée, 2) D₉₅, surface minimale où se concentrent 95 % de la biomasse et 3) indice de Gini. La surface totale de l'aire d'étude est de 116 115 km².

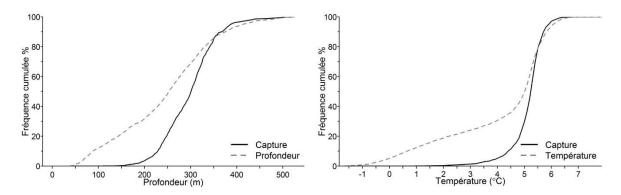


Figure 41. Fréquence cumulée des captures de flétan du Groenland (poids par trait) et du nombre de stations échantillonnées en fonction de la profondeur (graphique de gauche) et de la température de fond (graphique de droite) dans le relevé nGSL du MPO de 1990 à 2018.

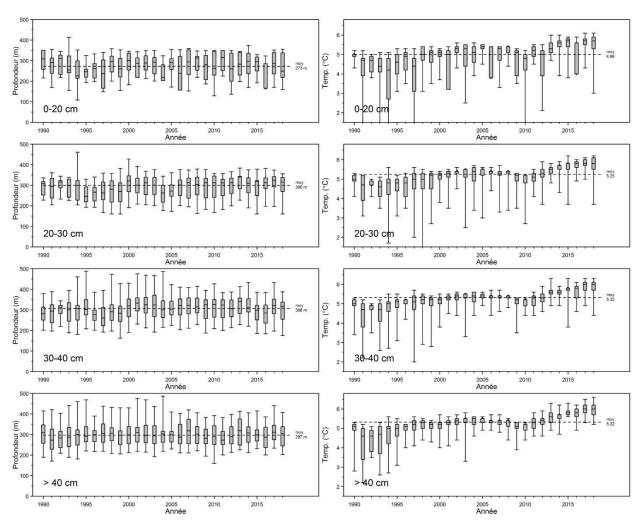


Figure 42. Distribution de la biomasse du flétan du Groenland en fonction de la profondeur (gauche) et de la température (droite) pour différentes catégories de tailles observée lors du relevé nGSL du MPO. Représentation graphique en boîtes à moustaches : la ligne à l'intérieur de la boîte représente la médiane, la boîte s'étend des percentiles 25 à 75 et les moustaches (lignes verticales de part et d'autre de la boîte) s'étendent des percentiles 5 à 95.

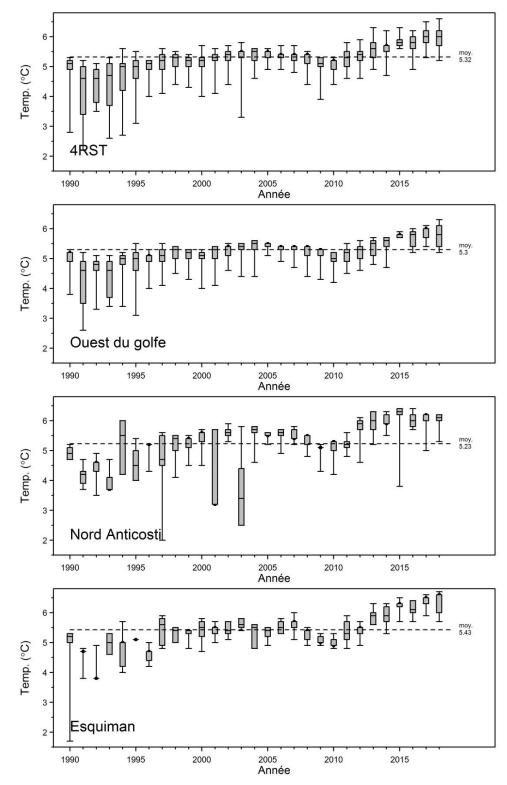


Figure 43. Distribution de la biomasse du flétan du Groenland en fonction de la température de fond par secteur pour des poissons de plus de 40 cm observée lors du relevé nGSL du MPO. Représentation graphique en boîtes à moustaches : la ligne à l'intérieur de la boîte représente la médiane, la boîte s'étend des percentiles 25 à 75 et les moustaches (lignes verticales de part et d'autre de la boîte) s'étendent des percentiles 5 à 95.

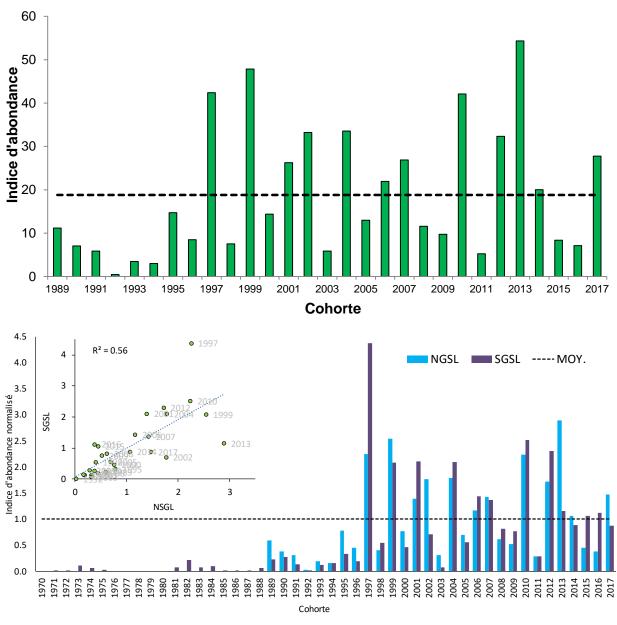


Figure 44. Indices de recrutement du flétan du Groenland estimé par l'abondance annuelle des poissons de 12-21 cm (âge 1) sur le relevé nGSL du MPO (haut). Comparaison des indices de recrutement du flétan du Groenland des relevés nGSL et sGSL du MPO (bas). L'encadré montre la relation entre l'abondance annuelle des cohortes estimée par chacun des relevés.

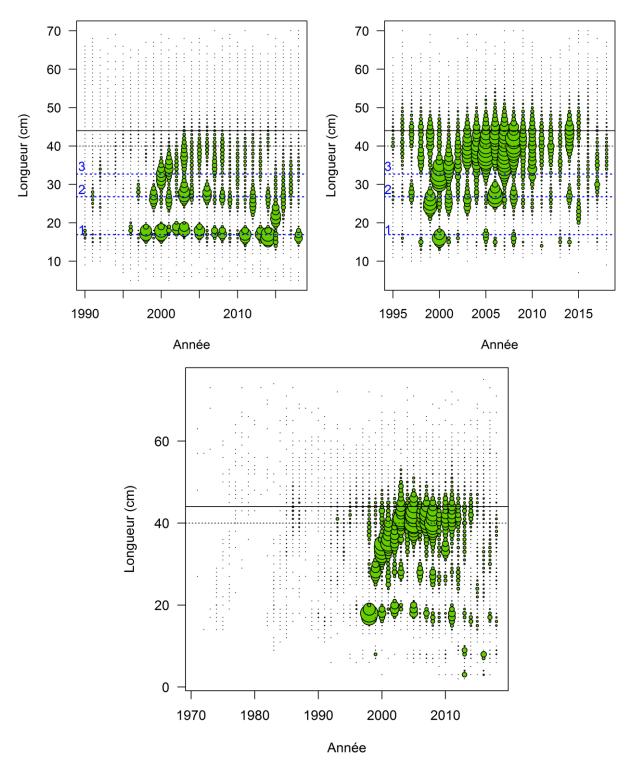


Figure 45. Distributions des fréquences de longueur observées lors des relevés nGSL (en haut à gauche) PSM (en haut à droite) et sGSL (en bas). La dimension des bulles est proportionnelle à l'abondance dans un relevé donné. Les lignes pointillées bleues indiquent les tailles moyennes pour des poissons de 1, 2 et 3 ans. Les lignes pointillées noires situées à 40 cm indiquent la limite pour les indices de biomasse des poisons de plus de 40 cm. Les lignes pleines noires à 44 cm indiquent la taille minimale du protocole des petits poissons.

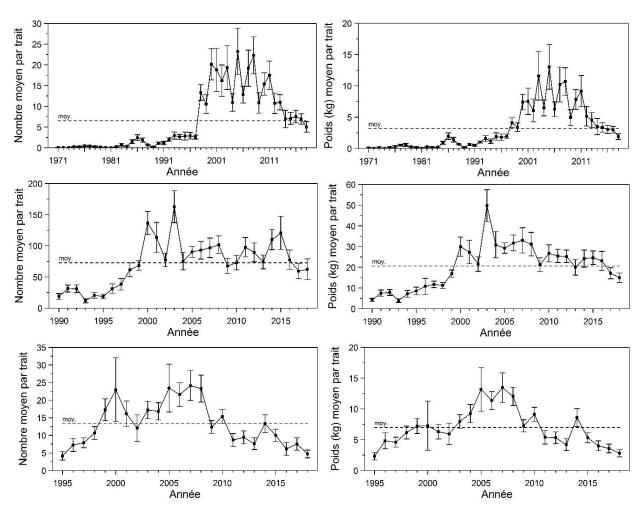


Figure 46. Nombre et poids moyens par trait observés lors des relevés sGSL (1971-2018, haut), nGSL (1990-2018, centre) et PSM (1995-2018, bas) pour le flétan du Groenland. Les barres d'erreur indiquent l'intervalle de confiance à 95 %.

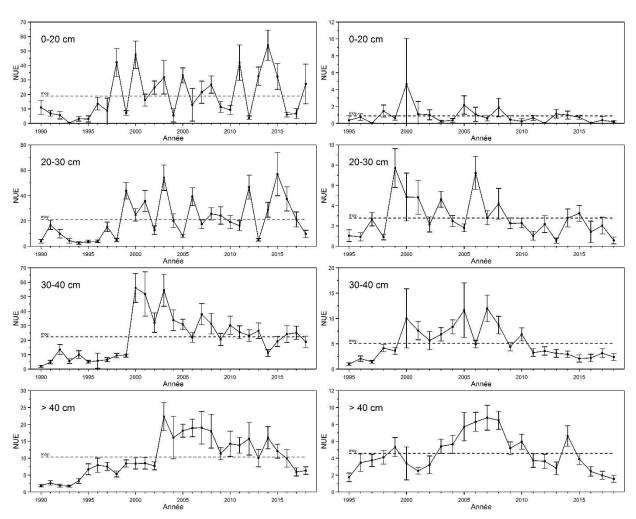


Figure 47. Indices d'abondance (nombre moyen par trait) du flétan du Groenland pour différentes catégories de taille observées lors des relevés nGSL (gauche) et PSM (droite).

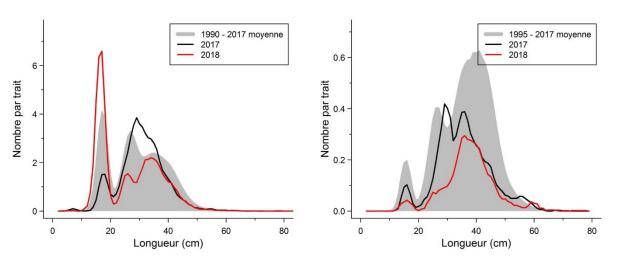


Figure 48. Distributions des fréquences de longueur (nombre moyen par trait) observées lors du relevé nGSL (gauche) et PSM (droite) pour le flétan Groenland.

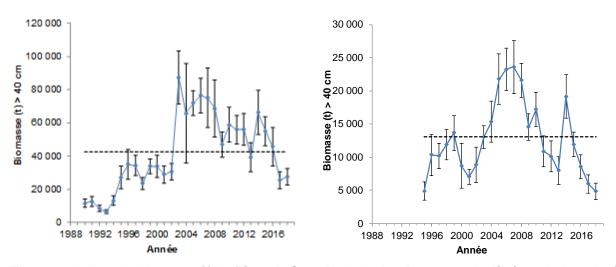


Figure 49. Indices de biomasse (t) du flétan du Groenland de plus de 40 cm calculés à partir des relevés nGSL du MPO (gauche) et de PSM (droite). Les lignes pointillées indiquent la moyenne pour chacune des séries.

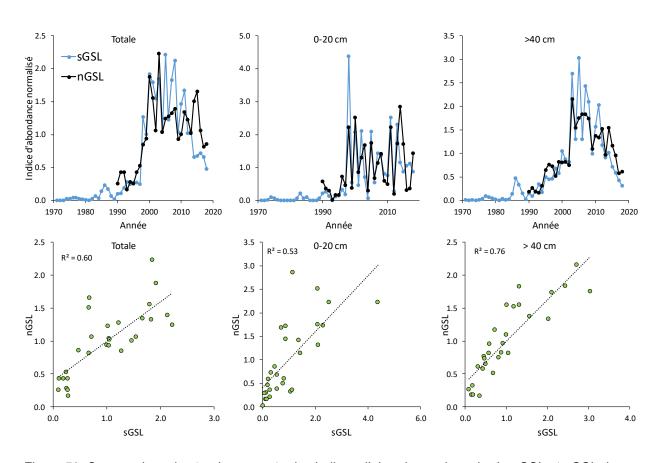


Figure 50. Comparaison des tendances entre les indices d'abondance des relevés sGSL et nGSL du MPO. Les indices ont été normalisés pour les mettre sur une même échelle. L'indice de nombre moyen par trait pour la population totale (haut à gauche), les recrues (haut au centre) et les poissons de plus de 40 cm (haut à droite) sont présentés. Les panneaux du bas montrent la relation entre l' indice du relevé nGSL et celui du relevé sGSL.

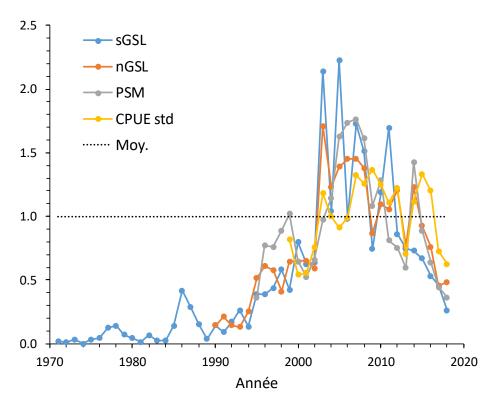


Figure 51. Comparaison des indices normalisés des relevés nGSL, sGSL et PSM pour les flétans du Groenland de plus de 40 cm avec l'indice de performance de la pêche commerciale (CPUE standardisée).

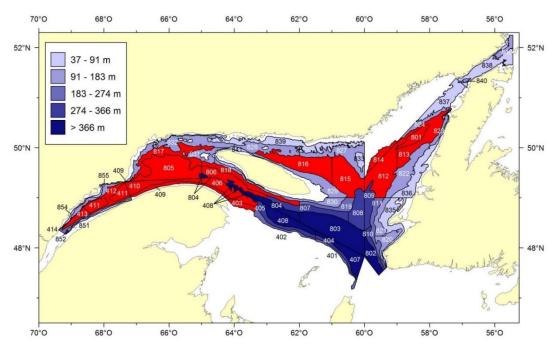


Figure 52. Identification des strates du relevé du MPO correspondant aux secteurs de pêche commerciale (ouest du golfe (403,406,409,410,411,412,413,805,806,817,818), nord Anticosti (815,816) et Esquiman (801,812,813,814).

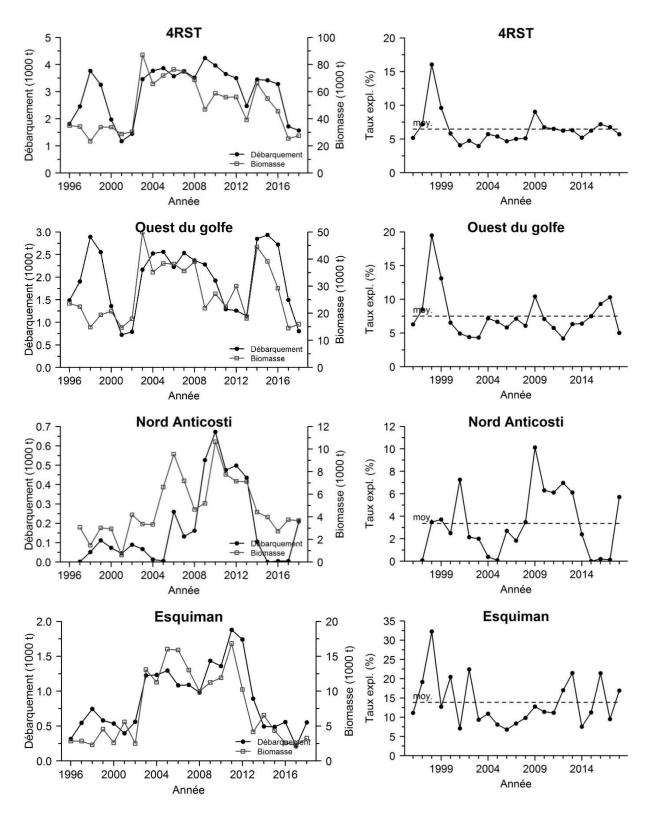


Figure 53. Débarquement, biomasse de flétan du Groenland de plus de 40 cm et taux d'exploitation relatif pour l'ensemble du golfe (4RST) et par secteur de pêche et par année.

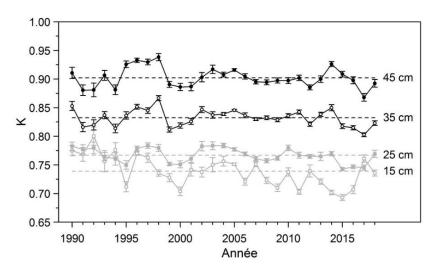


Figure 54. Indice de condition de Fulton par année pour des flétans du Groenland de 15, 25, 35 et 45 cm mesurés lors du relevé du MPO. Les lignes pointillées représentent les moyennes des séries chronologiques.

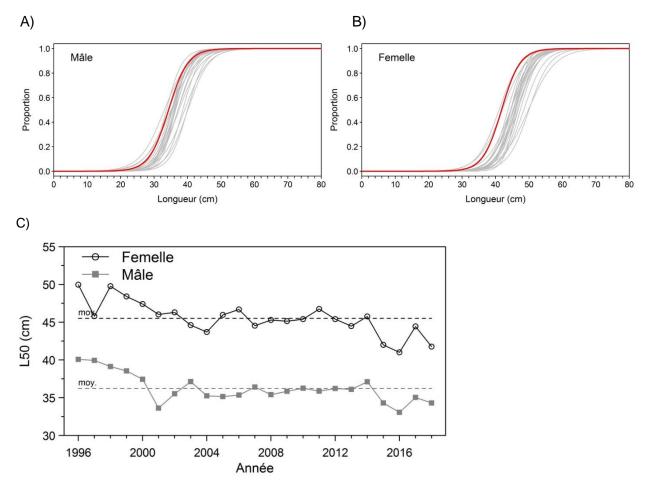


Figure 55. Ogive de maturité des flétans du Groenland mâles (A) et femelles (B), la ligne rouge représente l'année 2018 et les lignes grises les années 1996 à 2017. Longueur à laquelle 50 % des poissons mâles et femelles sont sexuellement matures (L50) (C). Ces informations sont récoltées lors du relevé nGSL du MPO.

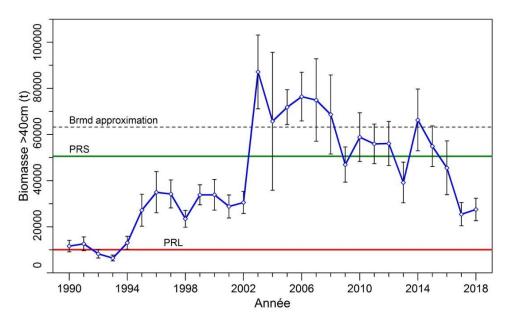


Figure 56. Points de référence pour le stock de flétan du Groenland de 4RST basés sur l'indice de biomasse des poissons de plus de 40 cm du relevé du nord du golfe du Saint-Laurent. PRL : point de référence limite, PRS : point de référence supérieur, Brmd : Biomasse du rendement maximal durable.

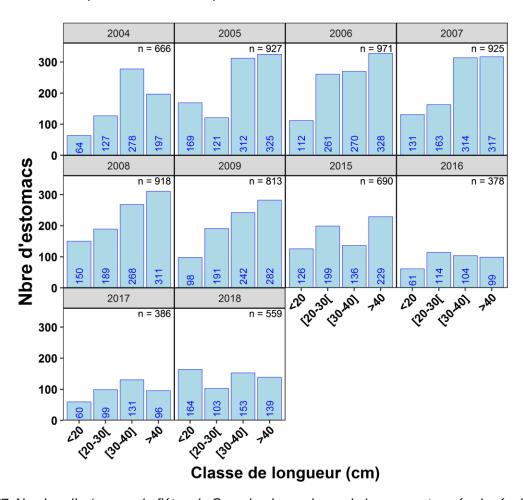


Figure 57. Nombre d'estomacs de flétan du Groenland, par classe de longueur et année de récolte.

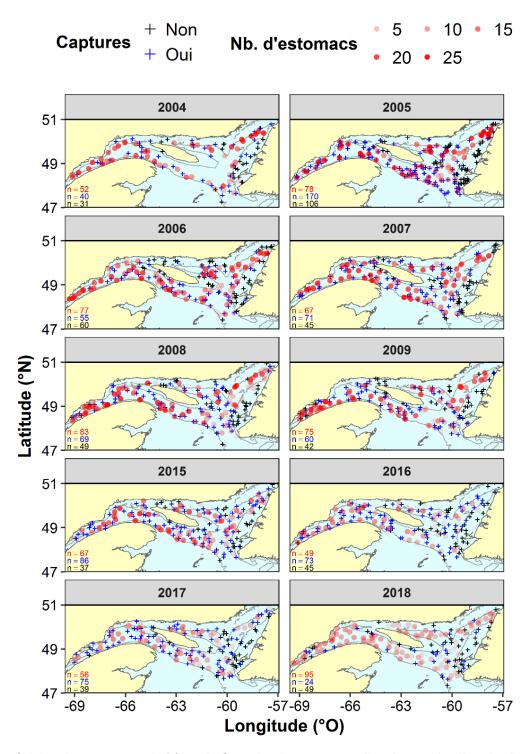


Figure 58. Origine des estomacs de flétan du Groenland retenus pour l'analyse, selon l'année de capture. La transparence des points sur la carte reflète l'effectif disponible en estomacs pour les analyses. Les croix noires et bleues sont respectivement les traits où aucun flétan du Groenland n'a été capturé et où aucun estomac n'a été récolté en dépit de captures. Les effectifs pour chaque type de trait sont fournis dans les coins inférieurs gauche de chaque année.

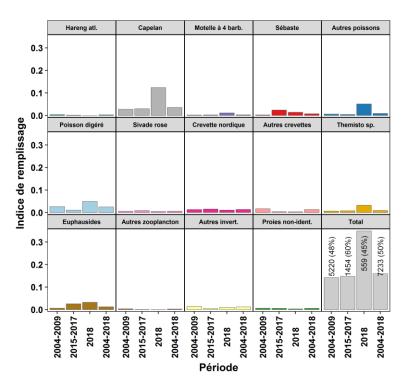


Figure 59. Indice de remplissage des estomacs de flétan du Groenland selon la période considérée, ventilé par groupe de proie. Aucun estomac n'est disponible pour la période 2010-2014. Les valeurs audessus des barres sont l'effectif et le pourcentage d'estomacs vides.

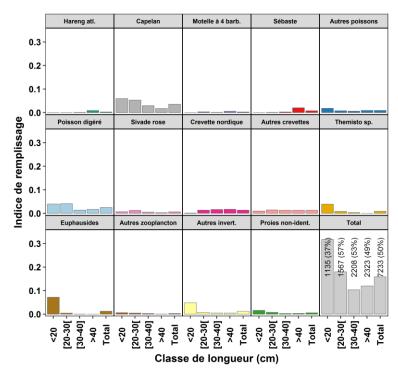


Figure 60. Indice de remplissage des estomacs de flétan du Groenland selon la classe de longueur, ventilé par groupe de proie et pour toutes les années retenues (2004-2018). Le panneau identifié Total montre l'indice de remplissage total pour chaque classe de longueur. Les valeurs au-dessus des barres sont l'effectif et le pourcentage d'estomacs vides.

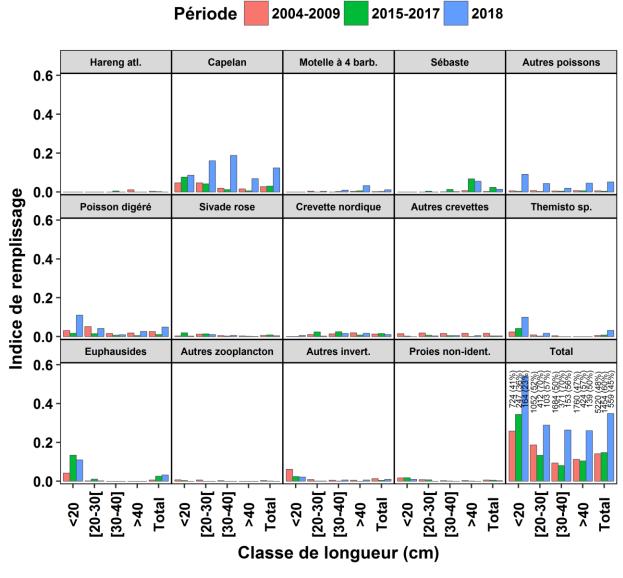


Figure 61. Indice de remplissage des estomacs de flétan du Groenland selon la classe de longueur, ventilé par groupe de proie et période. Le panneau identifié Total montre l'indice de remplissage total pour chaque classe de longueur. Les valeurs au-dessus des barres sont l'effectif et le pourcentage d'estomacs vides.

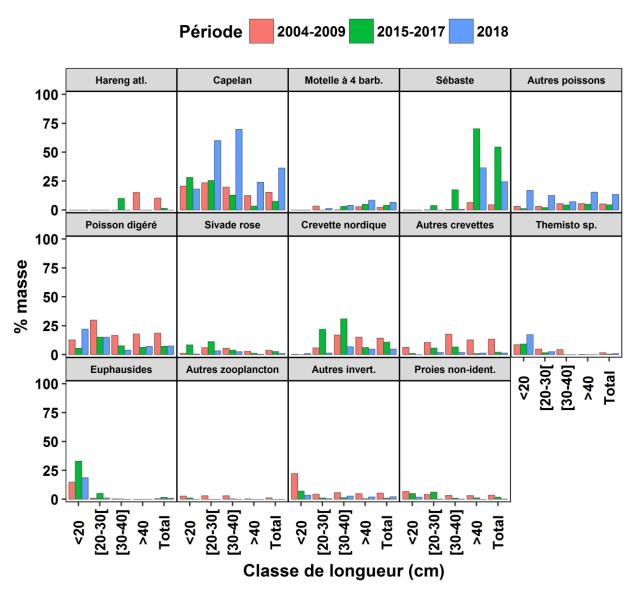


Figure 62. Pourcentage de masse du contenu stomacal du flétan du Groenland selon la classe de longueur, ventilé par groupe de proie et période de temps.

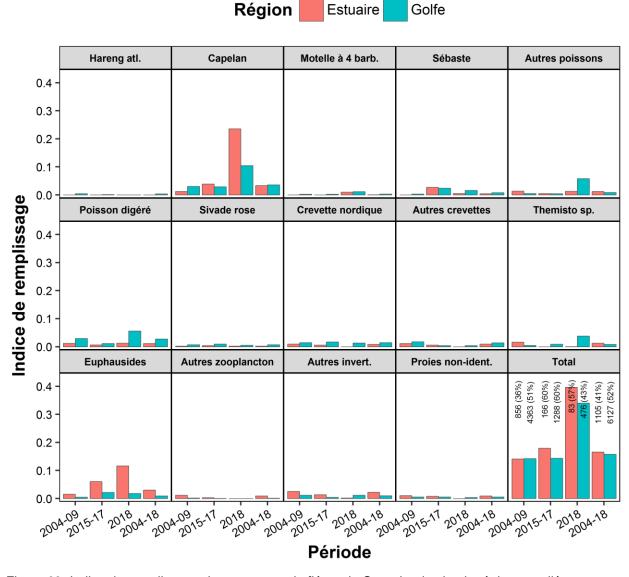


Figure 63. Indice de remplissage des estomacs de flétan du Groenland selon la région, ventilé par groupe de proie et période. Le panneau inférieur droit montre l'indice de remplissage total pour chaque période. Les valeurs au-dessus des barres sont l'effectif en estomacs et le pourcentage d'estomacs vides.

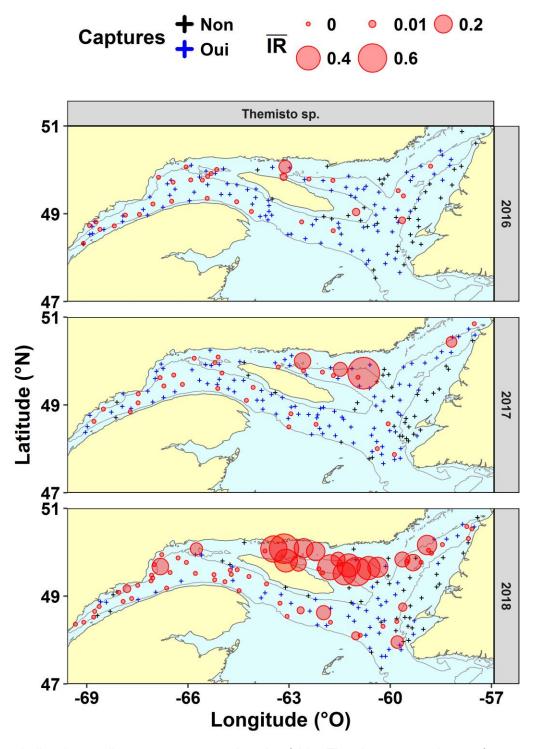


Figure 64. Indice de remplissage moyen par trait en hypérides Themisto sp. pour les années 2016-2018. Seulement les estomacs provenant de flétan du Groenland <30 cm ont été retenus. Les croix noires et bleues sont respectivement les traits où aucun flétan du Groenland n'a été capturé et où aucun estomac n'a été récolté en dépit de captures.

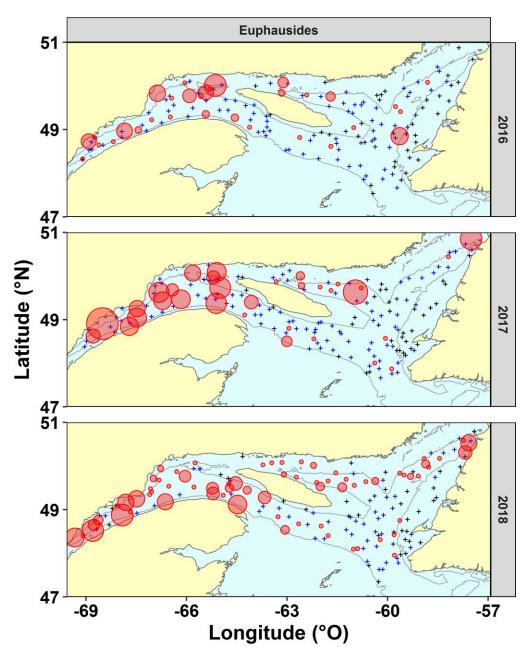


Figure 65. Indice de remplissage moyen par trait en euphausides pour les années 2016-2018. Seulement les estomacs provenant de flétan du Groenland <30 cm ont été retenus. Les croix noires et bleues sont respectivement les traits où aucun flétan du Groenland n'a été capturé et où aucun estomac n'a été récolté en dépit de captures.

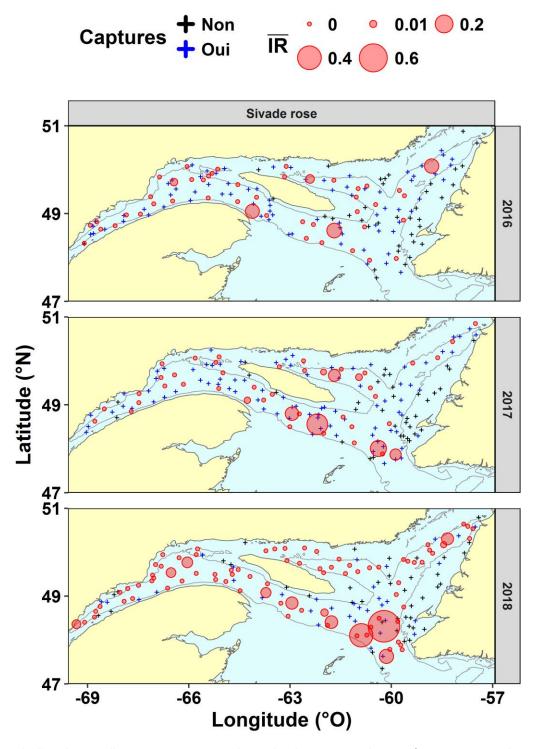


Figure 66. Indice de remplissage moyen par trait en sivade rose pour les années 2016-2018. Les estomacs provenant de flétan du Groenland de toutes les gammes de longueur ont été retenus. Les croix noires et bleues sont respectivement les traits où aucun flétan du Groenland n'a été capturé et où aucun estomac n'a été récolté en dépit de captures.

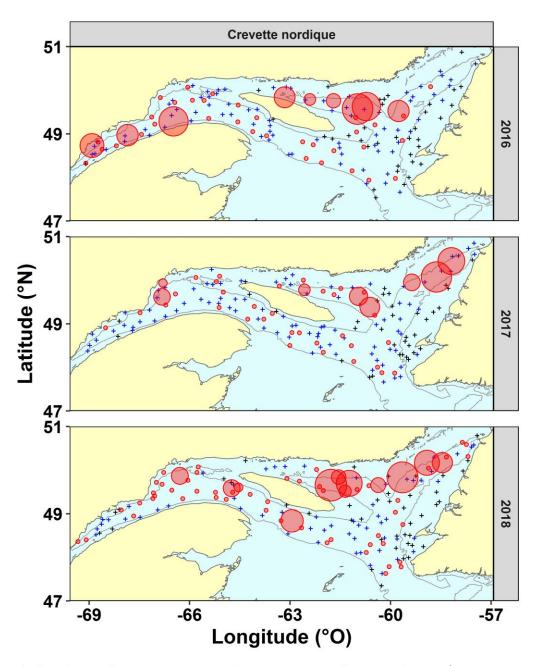


Figure 67. Indice de remplissage moyen par trait en crevette nordique pour les années 2016-2018. Seulement les estomacs provenant de flétan du Groenland ≥20 cm ont été retenus. Les croix noires et bleues sont respectivement les traits où aucun flétan du Groenland n'a été capturé et où aucun estomac n'a été récolté en dépit de captures.

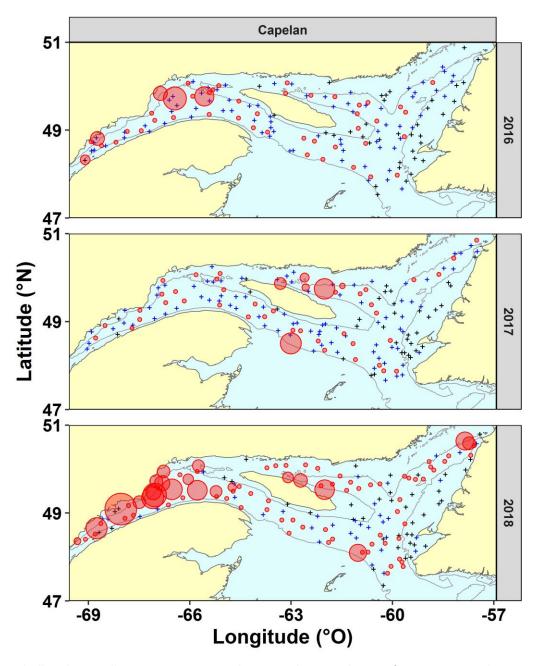


Figure 68. Indice de remplissage moyen par trait en capelan pour les années 2016-2018. Les estomacs provenant de flétan du Groenland de toutes les gammes de longueur ont été retenus. Les croix noires et bleues sont respectivement les traits où aucun flétan du Groenland n'a été capturé et où aucun estomac n'a été récolté en dépit de captures.

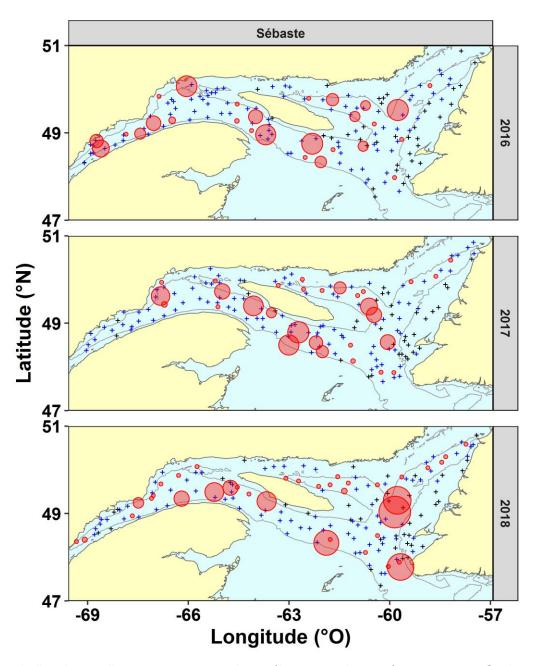


Figure 69. Indice de remplissage moyen par trait en sébaste pour les années 2016-2018. Seulement les estomacs provenant de flétan du Groenland >40 cm ont été retenus. Les croix noires et bleues sont respectivement les traits où aucun flétan du Groenland n'a été capturé et où aucun estomac n'a été récolté en dépit de captures.

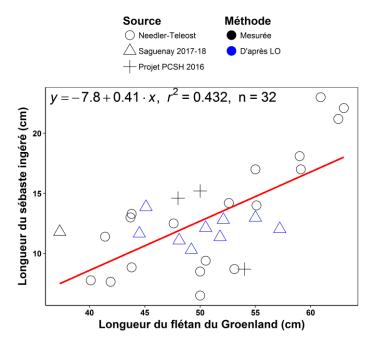


Figure 70. Relation entre la taille du prédateur (flétan du Groenland) et celle des proies de sébastes ingérées. Les méthodes utilisées pour calculer les longueurs des sébastes et les sources des données sont fournies dans la section méthodologie description du régime alimentaire.

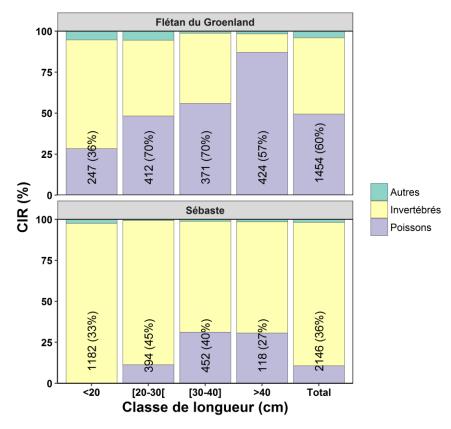


Figure 71. Contribution à l'indice de remplissage des grandes classes de proies pour la période 2015-2017, selon le prédateur, flétan du Groenland et sébaste, et la classe de longueur. Les valeurs dans les barres sont l'effectif et le pourcentage d'estomacs vides.

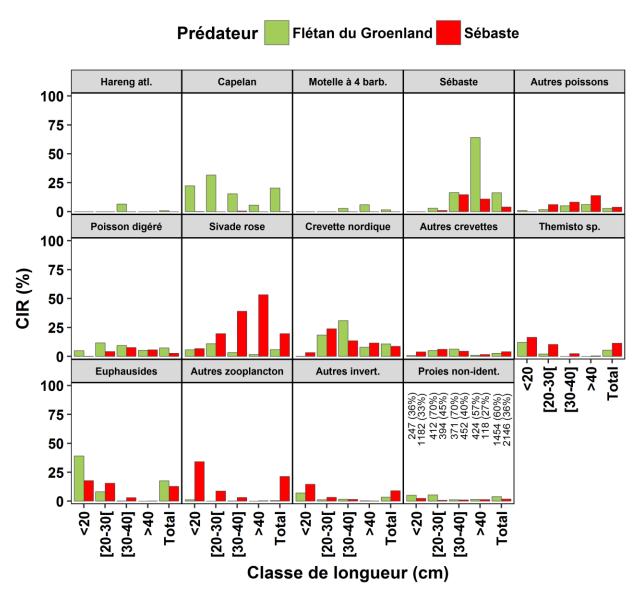


Figure 72. Contribution à l'indice de remplissage (CIR) des prédateurs, flétan du Groenland et sébaste, pour la période 2015-2017, ventilé par regroupement taxonomique et classe de longueur.