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ABSTRACT 

Species distribution models (SDMs) have become increasingly valuable as a tool for the 
management and conservation of marine resources and places. However, despite their utility 
and prevalence, critical aspects of SDM development and uncertainty assessment are routinely 
overlooked. Best practices are therefore warranted and their application is increasingly required. 
This framework, implemented with purpose-built scripts written in the R statistical programming 
language, has been prepared as both a tool and a set of guidelines and methods for the 
development of consistent, interpretable, and defensible SDMs to support DFO’s contribution to 
Canada's ocean policies. SDMs were built for twelve benthic species to illustrate the application 
of the framework, and guide emergency oil spill response planning as part of the Regional 
Response Plan for the Northern Shelf Bioregion. Three model building methods of increasing 
complexity were applied using a suite of the best available environmental predictors. 
Knowledge-based envelope models were produced for all species, and emphasized for those 
found to be data deficient. These envelope models provided guidance for the development of 
the subsequent data-driven models, and can be used to help evaluate uncertainty in model 
predictions. They also provide an avenue for engaging species experts in the process. Data-
driven generalized linear (GLM) and boosted regression tree (BRT) models were generated, 
along with a corresponding ensemble model, for the eight species found to have adequate 
observational data. The highest quality predictions were generated for those species for which 
sample sizes were high, and observational data were well-distributed across the study area. All 
ensemble models performed moderately well (AUC > 0.7) when evaluated using a spatial block 
cross-validation approach. Thirteen recommendations were conceived as part of the 
development of the framework and its application. They provide guidance on the application of 
SDM methods related to data selection and preparation, model development and evaluation, 
and highlight ways to improve modelling outcomes by applying best-practices where possible. 
Future development of SDMs for additional species in Pacific Canada will be greatly facilitated 
by the set of common predictors, methods, and evaluation tools assembled here. 
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1 INTRODUCTION 

Informed decisions about the management and conservation of marine species and their 
habitats increasingly rely on understanding their potential distributions. Since few marine 
species are inventoried, species distribution models (SDMs) have become a common approach 
to estimating distributions of valued species. SDMs are defined here as models that relate 
occurrence data with environmental conditions at the known occurrence locations (Elith and 
Graham 2009). By predicting a species' distribution based on correlations between observations 
and environmental predictors, SDMs provide a rapid, cost-effective way of estimating where 
species of interest are likely to occur. Understanding potential species’ distributions can inform a 
variety of management activities including marine spatial planning, assessing fishing impacts, 
and invasive species control. Emerging applications include changes in species distribution in 
response to climate change, impacts of commercial fishing, stock assessment, regional harvest 
planning, and emergency pollution response. SDMs can also identify gaps in ecological 
knowledge, helping to target future survey and research efforts. 

However, there are several challenges to building SDMs. These include the increasing 
accessibility of both sophisticated statistical methods and environmental data, the variety of 
species occurrence data, and the diversity of sampling methods. There are also numerous 
considerations related to model objectives, data preparation, variable selection, and analytical 
methods that influence the selection of appropriate methods and model interpretation. These 
considerations make identifying the best method for any particular application challenging 
(Gregr and Chan 2014; Yates et al. 2018). 

The goals of this document are to standardize and facilitate the SDM development process by 
presenting a framework to guide data preparation, model fitting, model evaluation, and the 
interpretation of results and uncertainties. The framework is focused on SDMs built from species 
occurrence (presence-absence) data. Estimates of abundance are not considered. The 
framework is informed by current best practices, and its application is illustrated with a diverse 
suite of benthic species from Canada’s Pacific coast. It is implemented with purpose-built 
scripts, written in the R statistical programming language. To reduce the need for definitions of 
terms within the document, a glossary of relevant terminology is included. 

1.1 OVERVIEW OF SPECIES DISTRIBUTION MODELLING 

Over the years, work on understanding how species are distributed across space and time has 
developed independently in a variety of disciplines, and various terms have been applied (Hirzel 
and Le Lay 2008). While this framework focuses on data-driven SDMs, it also considers the 
utility of envelope models, which provide a way of bounding species' distributions using 
presence-only data, or simply hypothesized environmental constraints. They are used here to 
describe the current ecological understanding of how species are related to their environment, 
and to evaluate how well this ecological understanding is reflected in the data-driven SDMs. 

It is generally accepted that species distributions are a function of biotic interactions and barriers 
to dispersion in addition to environmental factors (Soberón and Peterson 2005). However, the 
literature remains equivocal on whether predictions based on the relationships between species 
observations and the environment reflect only suitable habitat or can be extended to the 
distribution of species. For example, Guisan et al. (2002) argue that all such models are SDMs 
because species observations are necessarily constrained by these three factors. Others (e.g., 
Araújo and Peterson 2012) have argued that despite the constraints on the observational data, 
important processes remain unaccounted for if only environmental predictors are used. Recent 
work (Dallas and Hastings 2018) has found that the abundance-suitability assumptions 
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underlying SDMs seem to depend on study area extent and resolution. Thus, the reality is likely 
that models based on environmental correlations likely fall somewhere on a continuum between 
habitat suitability and species distribution, depending on the ecology of the species, its 
exploitation history, the quality of the available data, and the scale of analysis. 

Before building an SDM, it is useful to consider the overarching context of the desired model. 
Aspects of model context include the management need, what is understood about the species 
and its habitat, and the available data (Figure 1.1). A clear understanding of model context, in 
addition to the consideration of assumptions required at each stage in the model-development 
process, will help inform both the most appropriate modelling methods, and facilitate the 
interpretation of the model results. 

Best practice includes the definition of an ecological model describing the context for the 
analysis, a data model describing the occurrence and predictor data, and a statistical model 
relating the two. As described by Austin (2002), the ecological model is comprised of the 
ecological knowledge and the model objective, which should reflect the management need. The 
data model includes how the occurrence and predictor data were collected, measured, and 
organized. The statistical model describes the relationships between the occurrence and 
predictor data. Accepted modelling practice begins with the ecological model, which aids in the 
construction of the data model. Together, these two then inform the data preparation steps 
(Figure 1.1), and thereby the selection, application, and interpretation of the statistical model. 
For example, understanding how occurrence data were sampled can constrain the life stage 
being modelled, which has implications for the data used, and what can be inferred from the 
model predictions. 

SDMs can vary greatly in terms of complexity but are generally developed using a combination 
of ecological understanding and correlation analysis. Envelope models based entirely on 
ecological understanding can provide useful information at broad spatial extents (e.g., Kaschner 
et al. 2006), while more complex SDMs based primarily on correlations can provide reliable 
predictions over short time scales at local extents (e.g., Maxwell et al. 2015). Selecting 
appropriate statistical models will depend on what is known about the species ecology, the 
management objective, and the availability and applicability of the occurrence and predictor 
data. 

It has generally been assumed that model predictions will be more transferable (i.e., provide 
reliable predictions in places or at times beyond the study area) if the models are less complex 
(Levins 1966; Yates et al. 2018). While there is some evidence to support this view (e.g., Gregr 
et al. 2018; Randin et al. 2006; Tuanmu et al. 2011), others have argued that complexity is not 
the problem so much as relationships fitted to biased data (Evans et al. 2013; García-Callejas 
and Araújo 2016). Nevertheless, there is agreement that models which emphasise ecological 
processes will transfer better to other times and places (e.g., Bell and Schlaepfer 2016; Yates et 
al. 2018). When model objectives require models to be transferable (e.g., potential range 
expansion or shift), validation with additional data collected at different times or locations should 
be attempted (Figure 1.1). Model evaluation with independently collected, well-sampled data is 
considered best practice for assessing a model's transferability (Araújo et al. 2019). 

Modelling species and their distributions has come far from its systems ecology roots where 
mathematical descriptions of ecological systems were first developed (e.g., MacArthur 1955; 
Ord 1979; Wilson and MacArthur 1967). However, the practice of systematic, explicit, deliberate 
model design that has long been advocated (e.g., Levins 1966; Silvert 1981) remains best 
practice today. Fundamentally, good model design means understanding and explicitly resolving 
trade-offs between model accuracy, generality, and precision. 
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Due to increasing computing power, data availability, and on-going advances in modelling 
methods, SDMs can now be developed relatively simply. However there are many steps to 
model implementation (i.e., Figure 1.1), and each step (choice of methodology, data collection, 
data preparation, variable selection, and model selection) will introduce error and uncertainty 
into the final model predictions. Model reviews (Gregr and Chan 2014; Planque et al. 2011; 
Robinson et al. 2017) show that critical aspects of model design and development, and 
uncertainty assessment are routinely overlooked. 

Given the ease with which models can now be developed, they are commonly built despite the 
potential unsuitability of available data to model objectives. Best practices are therefore 
warranted and their application is increasingly called for (Araújo et al. 2019; Grimm et al. 2014). 
Araújo et al. (2019) offer a comprehensive set of best practices addressing occurrence data, 
predictor data, model development, and model evaluation, and suggest a sliding scale ranging 
from deficient to (largely aspirational) gold standards. While not adhering strictly to these 
guidelines, this work pays close attention to each category, avoiding deficient practices, and 
excelling at others. 
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Figure 1.1. Overview of the complete modelling process from developing the model context 
(Contextualization) to the assessment of the model predictions. The Framework developed here for 
species distribution modelling includes a series of prescribed steps that automate best practices. 
Generalized linear models (GLMs) are an example of a data-driven modelling method, while habitat 
suitability index (HSI) models are an example of a knowledge-based envelope modelling approach. 
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1.1.1 The ecological model 

The management of a species or its habitat is inseparable from its ecology. Consequently, the 
ecological model describes both the ecological context and the relevant management aspects. 
Existing understanding of the species’ life history, environment, movement patterns, and 
exploitation levels provides the ecological context within which the model will be developed, and 
the assumptions that will need to underpin it. Management aspects provide the rationale for the 
modelling exercise (e.g., conservation, restoration, spatial planning), thereby informing the 
relevant extents and resolution. A well-defined ecological model allows for a clear modelling 
objective to be defined, and informs the selection of model extents and resolution. The context 
provided by the ecological model is thus important for defining the data model. 

Species characteristics will also influence the accuracy of the resulting predictions (e.g., Elith et 
al. 2002; Garrison and Lupo 2002; Hepinstall et al. 2002). Such characteristics may include 
conservation status, habitat distinctiveness, local movement and migratory behaviour, range 
size, and trophic level. Studies exploring the impacts of these traits have had differing results 
(see McPherson and Jetz 2007), emphasizing that potential life history and biological 
interactions can influence model results. Understanding the assumptions necessary to 
represent such species characteristics, and the associated biases in the observational data is 
essential to defensible and reasonable inference. 

1.1.2 The data model 

The data model consists of species observations and environmental predictors (the variables 
that characterise the habitat of the species). Observations (i.e., the occurrence data) come with 
an entire context that describes how, when, why, and where they were collected. Similarly, the 
context for predictor variables (the independent data) includes their resolution, whether they are 
static (e.g., elevation) or assumed so (long term averages of observations), and any presumed 
interactions between them. Different questions will often require dynamic predictor variables to 
be scaled differently. 

Occurrence data can range from presence-only observations with no information on where the 
species was absent, to abundance or density data obtained through systematic surveys. While 
systematic surveys are considered best practice (Araújo et al. 2019), they are rarely 
implemented because of limited resources. Therefore, to increase sample size, SDMs are often 
developed using assemblages of data from a diversity of observers, platforms, times, and 
places, often collected using different sampling methods. Other important metadata includes 
their temporal and spatial accuracy, and whether they are tied to particular life history stages 
(e.g., larval vs. adult) or associated with important seasonal events (e.g., maximal growing or 
spawning periods). This ecological information is critical to model interpretation, as observations 
are often aggregated across such ecological dimensions. 

The availability of predictor variables and their resolution (both spatial and temporal) is the next 
practical consideration. This is a key determinant of the spatial extents, resolution, and 
ecological richness (sensu Gregr and Chan 2014) of the model. Environmental predictors fall on 
a spectrum of proximal to distal, depending on their position in the chain of ecological processes 
that link them to the species’ distribution (Austin 2002). The use of proximate predictors tends to 
produce models that are more robust and generalizable, but such predictors can be difficult to 
collect (Austin 2002). Distal variables rely more on assumptions about process, making the 
validity of such assumptions central to the effectiveness of the model when forecasting in space 
and time. 

Variable selection is a critical aspect of the data model, and is ideally informed by the 
intersection of model objectives and data availability. However, data availability is often the 
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single most important criterion. This makes it important to ensure that the available predictors 
are representative of both the area of interest and the presumed ecological processes. 
Understanding assumptions about representativity is critical for model interpretation and 
uncertainty assessment. 

1.1.3 The statistical model 

There are many ways to relate species to their environment. Methods are available for species 
with little or no data, presence-only data, presence-absence data, and abundance or density 
data. They range in complexity from simple envelope approaches that focus on the 
physiological limits of species, to an array of regression-based, and machine learning methods. 
One of the simplest approaches (habitat suitability index modelling, e.g., Kaschner et al. 2006) 
is based entirely on existing knowledge. Ecological niche factor analysis (Hirzel et al. 2002) and 
BIOCLIM (reviewed in Elith et al. 2006) are other envelope-type methods, most of which use 
presence-only data. When observations of presence or abundance (e.g., counts) and absence 
are available, a range of increasingly data hungry approaches are available. Classic regression 
methods (i.,e., generalized linear models, generalized additive models, generalized additive 
mixed models) can be used to predict functional forms of increasing complexity, while machine 
learning methods (e.g., classification and regression trees, neural networks, maximum entropy) 
can generate more complex relationships. The more complex the model, the more data are 
required to parameterise it. Given the diversity of methods and complexities, the principal 
consideration in selecting modelling methods is how well they meet the management objective 
of the ecological model. In practice, the availability and relevance of the observational and 
predictor data (i.e., the data model) are also primary considerations. 

Studies comparing the relative performance of the various methods appear regularly (e.g., Elith 
et al. 2006; Guisan and Zimmermann 2000; Pearson et al. 2006; Segurado and Araújo 2004). 
While the studies differ in detail, flexible regression methods and some machine learning 
approaches tend to be best at explaining the observational data. However, simpler approaches 
(e.g., niche or envelope models) can be sufficient for some applications such as predicting 
potential range or range shifts across large spatial extents (Cheung et al. 2009), or supporting 
data poor contexts (Gregr et al. 2018). 

1.1.4 Incorporation of local ecological knowledge 

Descriptions of species distributions can benefit from the integration of local ecological 
knowledge (LEK) arising from regular, long-term contact with the species and its environment, 
including traditional ecological knowledge (TEK) passed down through generations. Ericksen 
and Woodley (2005) find that the relevance, credibility, and legitimacy of ecosystem models 
increase when the knowledge, needs, and concerns of those primarily affected by the modelling 
outcomes are taken into account. While methodological guidelines for the integration of LEK in 
models are still being developed, there are a growing number of studies attempting this 
integration (Belisle et al. 2018). To incorporate LEK, Belisle et al. (2018) recommend a 
reproducible and multidisciplinary approach that incorporates concepts from the social sciences 
and ecology to process empirical data and knowledge which may take the form of myths, 
legends, or rituals (e.g., Colding and Folke 2001). 

While this framework and its application do not incorporate LEK into the SDMs, any future 
applications of the framework would benefit from its inclusion, when available. LEK can support 
the model development process at several stages, from the development of the ecological, data, 
and statistical models, to independent model validation. LEK can be directly incorporated into a 
knowledge-based envelope model during the expert elicitation process, and could be combined 
with empirical methods in a Bayesian framework (Belisle et al. 2018). 
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2 DATA SELECTION 

This section describes the characteristics of species occurrence and predictor data that can 
lead to bias and the resulting introduction of prediction errors leading to poor model 
performance and interpretation. All data come with biases, and all models rely on assumptions 
about the appropriateness of the data for the model purpose. For example, observations are 
often collected along well-travelled routes or only within a portion of the true range or habitat of 
the species. The resulting spatial sampling bias can lead to the model describing the patterns at 
the sampled sites rather than across the species’ range (Barry and Elith 2006). There can also 
be bias or error in the predictors from averaging, artefacts in the source data, or interpolation 
methods that can all lead to local prediction errors (Barry and Elith 2006). Best practice includes 
the consideration of such biases in occurrence data during model development and 
interpretation, a practice applied herein. 

Occurrence data are typically obtained as points or polygons while predictor data are commonly 
represented as point grids or rasters. The relationships between occurrence and predictor data 
will depend on the extents and the spatial and temporal resolution of the analysis (which 
determines how the observations and predictors are averaged). 

2.1 OCCURRENCE DATA 

Data on species observations come in many forms, and are collected in different ways. The 
most common, and least powerful, observations are non-randomly collected observations of 
presence, with no credible absence data. Nevertheless, the abundance of such data sets has 
led to methods developed to facilitate the use of presence-only data in SDM development (e.g., 
Elith et al. 2006; Phillips and Elith 2010). This SDM framework focuses on observations 
collected via surveys designed for monitoring, stock assessment, or fisheries catch reporting. All 
these data sources contain (or allow the estimation of) absence observations, adding important 
information to the modelling process. 

Often, observations will also record abundance in the form of counts, density estimates, or catch 
per unit effort (CPUE). While abundance data are essential to calibrate density models, they are 
also less widely available, and require more advanced model treatment. This advice therefore 
focuses on binary, presence-absence data to allow a broader array of data and species to be 
considered. Large parts of this advice are nevertheless relevant for abundance data. 

In addition to the type of data collected, there are other characteristics of the occurrence data 
that can influence a model's ability to describe the species' spatial distribution, and discern the 
influence of predictors. 

2.1.1 Sample size 

The number of observations used for modelling will depend on a variety of factors because 
there is a trade-off between data quality and quantity. Data quality depends on the survey 
methods, the extents to which they were applied, and the length of the time series. While 
models can be constructed with fewer than 100 observations (Hernandez et al. 2006; Stockwell 
and Peterson 2002), a sample size of several hundred is more typical to effectively explore 
statistical modelling. Quality absence data, and consideration of the number of presence and 
absence observations (i.e., prevalence) will lead to better model outcomes (Barry and Elith 
2006; Lobo et al. 2010). 

Combining observations from multiple surveys to increase sample size should be considered 
when sample sizes of presence or absence observations are low or when one survey does not 
cover the modelling extent. However, combining surveys with different species detectabilities 
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may increase model uncertainty by introducing multiple sampling biases arising from these 
differences which may be difficult to disentangle. 

2.1.2 Extents 

The most powerful observational data will span the full spatial extent of the species’ distribution 
and include a range of differently suitable habitats. This is equivalent to spanning the entire 
range of suitable environmental conditions. This informs the spatial and environmental extent to 
which model results can be applied. The temporal extents of the observations are also relevant 
to understanding the ecological context, including whether the data were collected over one or 
multiple years, or during different seasons. This informs how well the results generalise to other 
years, and the degree to which they reflect a particular time of year (Gregr 2011; Gregr et al. 
2018). Accordingly, the temporal extents of occurrence data will influence the relationships with 
dynamic predictors (e.g., temperature, salinity), and may lead to a model fit to an anomalous set 
of observations. Further, if observations do not span the full extent of the species’ range, 
important habitat descriptions may be missed (due to missing true presence data), or incorrectly 
discriminated (because of missing true absence data). 

2.1.3 Sampling bias 

Best practices require observations from surveys with designs that are statistically robust and 
unbiased, with observations distributed across the species’ range. Non-systematic surveys can 
lead to predictions of patterns in the data collection methods rather than the habitat 
associations, especially if the sampling is spatially or environmentally structured (Araújo et al. 
2019). For example, fisheries catch data typically occur in areas of high habitat suitability, since 
fishers have a strong incentive to avoid areas of low species’ density, often leading to the 
assumption that avoided areas represent true absences. Observations can also have a 
temporal component with seasonal and annual changes in behaviour, mobility, or life history 
stages. If observations are limited to a particular life history stage (e.g., spawning) or time of 
year (e.g., migration), these limitations need to be explicitly considered in the model 
interpretation. 

Lastly, the potential bias of local extirpation is an important consideration for exploited species. 
If a species has been removed from a particular part of their habitat, like shallow waters, or a 
particular region because of ease of harvest, and no observations exist for those areas, the 
habitat relationships may not be correctly captured using correlative models. This is particularly 
true if the extirpated range has unique habitat characteristics. In such cases, any resulting 
models will likely under-represent the species’ potential habitat. 

2.1.4 Precision 

The precision with which observations are made and recorded includes spatial, temporal, and 
taxonomic dimensions. The spatial precision of the occurrence data should inform the spatial 
resolution of predictor variables, while their taxonomic precision is relevant to what can be 
inferred from the resulting SDM. Similarly, temporal precision is important when the 
management objective relates to particular life history stages or seasonal differences in habitat 
suitability. 

Ignoring the precision of occurrence data and using all available data blindly is considered a 
deficient practice (Araújo et al. 2019). This is particularly true if observations are pooled from 
different collection methods, which can have variable precision across space, time, or 
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taxonomy. Observations can be made from vessels or underwater, remotely or directly, and all 
have consequences for how precisely an observation can be described. 

2.2 PREDICTOR DATA 

Habitat models rely on environmental predictors to describe the abiotic world. Relevant 
predictors of the marine environment are available from a variety of sources and can be 
represented as either continuous or categorical data. Remote sensing technologies (e.g., 
satellite imagery, drones and acoustics) and ocean models (including elevation, bottom type, 
and ocean dynamics) provide a source of increasingly detailed data for a growing number of 
environmental variables. 

Satellite imagery produces models of sea surface temperature, chlorophyll-a concentration, 
euphotic depth, and wind speed and direction. Ocean circulation models estimate temperature, 
salinity, mixed layer depth, and current speed and direction at a range of depths. When coupled 
with a biogeochemical model, circulation models may also predict biological and chemical 
properties such as concentrations of dissolved oxygen, aragonite, and plankton. These dynamic 
predictors can be represented at different temporal scales (e.g., seasonal, annual, decadal). 
Bottom type, an important determinant of habitat for many species, can be interpolated from 
observations (Gregr et al. 2013) or predicted with models (Li et al. 2011). Finally, topography 
represents an important class of commonly used predictors that includes depth and a variety of 
derivatives such as slope, curvature, bathymetric position index (Walbridge et al. 2018) and 
measures of rugosity (e.g., Du Preez 2015; Sappington et al. 2007). 

Spatial variables, such as distance to important physical or biotic features (e.g., shoreline, reefs, 
or kelp forests) can also be included. Some models have included latitude and longitude as 
proxies for unknown, unrepresented, or unrepresentable predictors, however the interpretation 
of such geographic variables is problematic. Additionally, fishing effort can be an important 
predictor of species distributions in impacted ecosystems (e.g., Foster et al. 2015; Tien et al. 
2017). 

2.2.1 Extents and resolution 

The range of values in the predictor variables used will typically change in response to the size 
of the study area (e.g., consider the depth range covered in a coastal vs. a regional model). 
Such differences in extents can affect the measured relationships with species observations 
(Austin 2007). At smaller extents (i.e., within a species’ range) a species’ preferences may be 
uncovered, while larger extents may identify the biological limits of a species. When the range of 
a predictor far exceeds the species' habitat suitability and absence data are unavailable, the 
biological relevance of the relationships can be compromised (Austin 2007; Fourcade et al. 
2018). 

The resolution of available marine predictors can span orders of magnitude. Remotely sensed 
data and circulation models can range from the kilometre to the metre scale, while acoustically-
derived topographic predictors can be resolved to sub-metre scale. For computational reasons, 
resolution is invariably tied to extents (larger study areas will require reduced resolution), and 
reduced resolution leads to reduced precision as predictor variables are averaged over space. 
To best predict a species’ habitat, the resolution should be relevant to how the species interacts 
with its environment (Wiens 1989). For example, the spatial resolution of relevant predictors will 
be very different for an intertidal snail compared to a highly migratory cetacean. Similarly, 
because habitat processes operate at multiple resolutions (Levin 1992), predictors aggregated 
at daily, monthly or seasonal resolutions may help capture additional important information 
compared to long-term climatologies. It is therefore important to consider how well predictors 
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match the resolution of the observations both spatially and temporally (Wiens 1989). For 
example, rugosity derived from a 100 metre resolution depth layer may not be meaningful for 
species with a known relationship with rugosity at a sub-metre scale. 

Resolution also influences how data are prepared, and the interpretation of results at local 
scales. For example, if a grid cell is not sufficiently sampled, a false absence may result. 
Similarly, while a global study may predict high suitability for a 10 km x 10 km region of the 
coast, real-world heterogeneity suggests it is unlikely the suitability of such a large area will be 
uniform. This has implications for model testing and interpretation. 

2.2.2 Accuracy 

While physical predictor data collected concurrently with observations would be the most 
reliable, modelled predictors allow SDM predictions to be interpolated across the entire area of 
interest. Modelled predictors inevitably misrepresent some aspects of the real features leading 
to relative (e.g., tidal fronts where freshwater inputs are not included, or features smaller than 
the model resolution), and absolute (e.g., sandy sediment predicted instead of mud) 
representational errors. If such misrepresentation is systematic, it can be identified by 
examining the predictor’s derivative (e.g., curvature can highlight artefacts in the slope 
predictor). Temporal averaging or scaling can cause similar misrepresentations (see following 
section). However, all models will have error, and even with strong validation tests, the spatial 
distribution of these errors is difficult to find. While best practices recommend assessing how 
uncertainties in the predictors influence model results (Araújo et al. 2019), this is acknowledged 
to be a significant challenge requiring sophisticated simulation methods. Such simulations are 
beyond the scope of this work. Instead, the uncertainties in the accuracy of predictor variables 
are acknowledged and their possible effects on model interpretation considered. 

2.2.3 Scaling 

Predictor variables are available at a variety of spatial resolutions, requiring some to be scaled 
to the chosen model resolution. Standard practice is to average those at a finer resolution than 
the model resolution, while coarser predictors can be interpolated, resampled, or downscaled 
(i.e., the same value is applied to all cells within the each coarser study unit). These spatial 
scaling considerations are sufficient for static predictors (i.e., those assumed to not vary over 
time such as bathymetry and its derivatives). 

Most SDMs in the literature continue to be presented as a single static, average-conditions map. 
This means that any predictors with a temporal dimension (e.g., dynamic predictors such as 
temperature, salinity, and chlorophyll-a) need to be averaged across time. Best practice 
requires these averaged values to reflect the biological response being modelled (Araújo et al. 
2019), because how a predictor is averaged may influence its relationship with the species 
observations (Eger et al. 2016; Levin 1992; Wiens 1989). 

Thus, predictors are often averaged across a time series for a period or duration relevant to (the 
ecological or management aspects of) the ecological context. Ideally the duration will also 
overlap with when the species observations were collected. The temporal resolution and extent 
of the model can be important to management either seasonally (e.g., spawning habitat may be 
of interest, or summer occupancy for migrating species) or across years (e.g., protected area 
design, response planning, or fisheries management). Dynamic ocean management (Maxwell et 
al. 2015) provides an example of distributions models with high temporal resolution. Higher 
resolution models could benefit from the inclusion of temporally stochastic events such as 
oxygen dead zones, salinity dips, or lethal events such as ship strikes or contamination events. 
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The inevitable mismatch in resolution between observations and predictors (and often among 
predictors) means that some correlations will represent an ecological process well, while others 
will serve as proxies for other variables or other resolutions. Austin (2002) characterized this as 
a distinction between proximate and distal variables, although in reality this is likely more of a 
spectrum of association between observations and predictors. How important this distinction is 
will depend on the model objectives. If the objectives relate to understanding process, or model 
transfer, proximate variables are desirable. If explaining the observed pattern within the study 
area is the primary objective, then distal variables may be equally suitable, even though they 
may be proxies for other variables or processes. 

2.2.4 Spatial predictors 

Spatial autocorrelation (SAC) can play an important role in species distributions. Positive SAC is 
often observed in species data whether observations are binary (presence/absence) or 
continuous (abundance). The spatial dependence among observations can stem from different 
sources, for example, biotic factors such as dispersal or the presence of SAC in the physical 
conditions such as temperature (Bahn and McGill 2013). Including a measure of spatial 
structure has been shown to improve model performance (Augustin et al. 1996; Bahn and 
McGill 2007; Martin et al. 2014). There are several approaches for incorporating information on 
spatial structure into SDMs (see Dormann et al. 2007; Elith and Leathwick 2009); however, the 
merits of the different approaches remain a topic of debate (Bini et al. 2009; Hawkins 2012; 
Kühn and Dormann 2012). They range in complexity from simple approaches such as including 
geographic coordinates or an auto-covariate as predictor variables to more complex methods 
using covariance functions to approximate spatial random fields. With any approach, it is 
important to consider the scale of SAC relative to the spacing of your samples if using spatial 
models for prediction as gaps between samples larger than the scale of SAC will lead to poor 
predictions from spatial models. 

3 A SPECIES DISTRIBUTION MODELLING FRAMEWORK 

This section describes the SDM framework, developed in consideration of best practices for 
model building, and refined through experience obtained during the framework application 
process. The framework (Figure 1.1) is comprised of six components: data preparation, cross-
validation, model fitting and evaluation, prediction, uncertainty and interpretation. It was 
developed in conjunction with purpose-built scripts written in the R statistical programming 
language (R Core Team 2018). The framework workflow (Figure 3.1) can be repeated multiple 
times with different model fitting methods to create an ensemble model prediction (described in 
Section 3.5). Multi-model ensembles produce robust model predictions (Oppel et al. 2011) and 
provide insight into model uncertainty (see Section 3.6). 

https://gitlab.com/dfo-msea/sdm
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Figure 3.1. Diagram of the framework workflow implemented with purpose-built scripts. The workflow 
includes the processing of observations (dependent data) and predictor layers as well as model fitting, 
evaluation and prediction using a cross-validation approach. The model fitting approach varies with the 
choice of modelling method. Generalized linear models (GLM) and boosted regression tree (BRT) models 
are two examples of model fitting methods. Blue filled boxes represent outputs from the modelling 
process. 

https://gitlab.com/dfo-msea/sdm
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3.1 DATA PREPARATION 

Once occurrence data and predictor layers have been obtained and a spatial resolution 
selected, there are several steps to preparing the data (given the considerations detailed in 
Section 2) prior to model fitting. First, observations and predictors must be represented spatially 
with the same coordinate reference system. Occurrence data are projected to match the 
geographic projection of the predictors. The observations are then checked for any erroneous 
(e.g., presence-absence values outside of 0 or 1) or missing values, which are removed. 

Generally, observations are available as point locations (e.g., grabs) or line segments (e.g., 
trawl path). Predictor values are extracted from raster layers at the location of the observations, 
but the process varies slightly for point and line data. For point data, if more than one 
observation falls within a predictor raster cell, the points are aggregated to the raster grid. This 
standardizes the observations and predictors to the same spatial resolution. Additionally, by 
integrating observations from the same space over a number of years, observations are better 
aligned temporally with predictor layers that represent long-term average environmental 
conditions. For presence-absence observations, aggregation is completed by assigning 
presence to the cell if there is at least one presence observation within the cell (following 
Guinotte and Davies 2014). With presence/absence data, this step can lead to data biased 
towards presence. It is therefore important to consider whether modelling probability of 
occurrence using this aggregation method aligns with models objectives (e.g., modelling the 
probability of presence occurring at any time in the past). After observations are aggregated, the 
resulting change in sample size is calculated. If the number of observations has markedly 
changed (e.g., 50% reduction), a mismatch between the resolution of the observations and the 
environmental variables is evident, indicating the chosen resolution may not be appropriate for 
modelling. 

For observations represented as lines, mean values are calculated for each raster cell that 
intersects the line segments (following Carrasquilla-Henao et al. 2018). For categorical predictor 
variables, the most dominant category occurring in the intersected raster cells is used. This 
approach integrates the predictor values for the entire line segment rather than just extracting a 
single value from the start, midpoint, or end of the line segment. Once observations are 
prepared for modelling they are mapped and can be visually examined for georeferencing errors 
(Figure 3.2). 

Once the predictor values have been extracted to the observation locations from the raster 
layers, several data quality checks are required. Missing values in the predictor dataset, which 
can occur when observations fall outside the extent of any of the raster layers, are removed. 
The final number of records in the datasets now represents the sample size of the complete set 
of observations and predictors used for modelling. The predictors are then examined for model 
suitability by comparing the distribution of all values in the raster layers to the extracted 
predictor values. Ideally, the range of the extracted values should match that of the source 
raster that will later be used for prediction. If the range is truncated, model predictions in some 
areas will be extrapolated. Maps are produced for each predictor layer to allow for a visual 
check for any apparent artefacts on unexpected values. Variance inflation factor (VIF) and 
Spearman’s correlation are used to assess collinearity among the extracted predictor variables. 
VIF values greater than 10 can indicate a predictor is highly correlated with at least one other 
predictor and should be considered for removal (Dormann et al. 2013). However it may not 
always be required or advisable to remove correlated predictors. Even if a highly correlated 
predictor is removed prior to modelling, determining the influence of its correlated predictors in 
the model is a challenge because one cannot disentangle their relative effects on the dependent 
variable. 
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Figure 3.2. Distribution of presence and absence observations of an example species within a study area. 

3.2 CROSS-VALIDATION 

After the data model has been prepared, it is partitioned into training and testing datasets, used 
for model fitting and validation, respectively. Separating testing from training data is essential for 
evaluating model predictive performance (Hijmans 2012). Cross-validation (CV) is a widely used 
procedure (Roberts et al. 2016) that separates training and testing data in a way that allows all 
the data to be used in the model fitting process (Wenger and Olden 2012). CV works by dividing 
the available data into k folds. For each CV run, a different fold is reserved for testing and the 
remaining folds are used for training. The process is repeated k times until each fold has been 
used once for testing. Thus, for five-fold CV, five models are built, each with a different 4/5th of 
the data and tested against the remaining 1/5th. Folds can be partitioned randomly or by 
blocking. Blocking can be spatial or according to other factors known to limit the independence 
of the data (see Roberts et al. 2016 for examples). Random CV continues to be used to 
evaluate SDMs despite being known to inflate performance scores because the partitions do not 
increase independence (Roberts et al. 2016). Independence of the training and testing data is a 
fundamental assumption underlying statistical tests of model performance (Legendre 1993). 
Spatial blocking (recommended and implemented in this framework) improves the spatial 
independence of the training and testing data, allowing for more accurate estimates of model 
performance and transferability (Fourcade et al. 2018; Hijmans 2012; Merow et al. 2014; 
Roberts et al. 2016; Trachsel and Telford 2016). 

Using spatial block CV to increase the independence between folds is considered best practice 
when sub-sampling observations for model fitting and evaluation. This framework applies the 
spatial blocking procedure developed by Valavi et al. (2018) where the optimal block size is 
informed by the range of spatial autocorrelation in the predictor layers. The blocks are randomly 
assigned to folds, with several blocks within each fold. The process is repeated for 250 
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iterations and the folds with the most evenly dispersed sample size of presence and absence 
observations are used (Figure 3.3). 

Model fitting and validation are performed multiple times, once for each CV run. There is no 
resulting single best model; rather, multiple best models are selected, each fit to the training 
data from their respective CV runs. Thus, the results (i.e., predictions, validation metrics, relative 
influence of predictors and marginal effects) are averaged and the standard deviation or range 
is calculated to illustrate the variation among CV models. 

 

Figure 3.3. Spatial orientation of five-fold spatial block cross-validation of an example species within a 
study area. Each fold would be used once as testing data to evaluate models build with the training data 
made up of the remaining folds. 

3.3 MODEL FITTING 

Fitting a model to relate environmental predictors to species observations is the central 
technical exercise in SDM development. Model fitting can range from simple knowledge-based 
envelope model approaches (e.g., HSI) that do not require species occurrence data and rely on 
published relationships and expert consultation, to complex statistical algorithms (e.g., BRT) 
that discern correlations between predictors and species data. This framework considers fitting 
to include both model structure (selecting the appropriate predictors and their form) and model 
parameterization (identifying the parameters that allow the model structure to best explain the 
pattern in the observations). For knowledge-based approaches, model structure can take the 
form of linear, threshold, optima, exponential or logistic forms (Figure 3.4) and parameterization 
can be stepwise and iterative. When using data-driven, correlative methods (e.g., GLMs or 
BRTs), the structure and parameterization occur simultaneously. 
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Figure 3.4. Examples of possible relationships between environmental predictor variables and habitat 
suitability used to develop habitat suitability index models. 

The goal of model fitting is to explain as much of the variance in the observations as possible, 
without over-fitting the model. A model is overfit when its complexity (e.g., number of 
parameters) is greater than needed to accurately represent the relationship between the 
observations and predictors. Such a model will correspond too closely to the training 
observations and will perform poorly when applied to testing observations. This is understood to 
result in a loss of generality, leading to potentially poor model transferability (Wenger and Olden 
2012). Knowledge-based envelope models cannot technically be overfit, as they use no data. 
They can, however, be over-specified for a particular area given locally derived expert opinion. 

Modelling approaches use various statistics to balance under and over-fitting (Elith and 
Leathwick 2009; Merow et al. 2014). For regression type models (e.g., GLMs), Akaike 
information criterion (AIC) is commonly used as a quantitative, non-subjective method for 
selecting the best model from a number of candidate models by penalizing complexity in model 
fitting (Burnham and Anderson 2004). In this framework we use the Bayesian information 
criterion (BIC) to select the best model because BIC has a greater penalty for complexity than 
AIC (Galipaud et al. 2014; Link and Barker 2006; Schwarz 1978), resulting in simpler models. 
Another method of model fitting (not used in this framework) is regularization. Like BIC, 
regularization penalizes complexity but does so by reducing coefficient values, resulting in the 
coefficients of less influential predictors falling close to zero (Elith et al. 2011). For machine 
learning methods (e.g., BRTs), a portion of the data can be held out from model fitting to be 
used to calculate a stopping condition (Hastie et al. 2009). For BRTs this is achieved by 
iteratively evaluating the performance of the model using the holdout data at regular intervals 
during model fitting. As model complexity increases, performance measured against the holdout 
data will begin to decrease and a stopping condition will be triggered. 

It is crucial that testing data remain independent of model fitting to obtain accurate model 
performance metrics (Araújo et al. 2019; Hawkins et al. 2003; Roberts et al. 2016). Therefore, 
this framework does not recommend investigating univariate relationships between the 
observations and each predictor prior to the separation of testing from training data. That step is 
often undertaken to help decide which predictors to include in the model; however, it violates the 
assumption of independence between the testing data and model fitting and can lead to inflated 
model performance measures (Hastie et al. 2009; Hawkins et al. 2003) and overfit models 
(Burnham and Anderson 2004). Instead, this framework applies variable selection in two stages. 
First, predictors without a known or theorized ecological relationship to the species being 
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modelled are filtered out prior to modelling. Secondly for correlative models, predictors that 
poorly describe the distribution of the observations are filtered out during the model fitting 
procedure. Predictors can be filtered out either by being removed from the model structure 
completely (e.g., during GLM model selection with BIC) or by remaining in the model structure 
but contributing little to the overall variance explained (e.g., BRT). 

3.4 MODEL EVALUATION 

SDMs can be evaluated for model fit and predictive performance. Model fit is assessed by 
measuring the variance remaining in the data used to build the model, while predictive 
performance is measured by examining the agreement between model predictions and 
observations not used in model fitting. Comparing statistics measuring model fit and predictive 
performance can provide a qualitative estimate of over-fitting. Higher performance values for the 
training over the testing data are indicative of an overfit model (Rooper et al. 2017; Wenger and 
Olden 2012). Evaluating model performance with data independent of model fitting is a 
necessary and important step in any SDM exercise, whether the goal is prediction or of an 
explanatory nature (e.g., building hypotheses regarding the environmental drivers of species 
distributions). 

A variety of metrics exist to measure performance, including threshold independent and 
dependent statistics. Threshold-independent statistics compute the relationship between the 
observations and continuous predictions (e.g., probability of occurrence) and are recommended 
as the primary model performance metric for evaluating continuous model predictions (Lawson 
et al. 2014). Threshold-dependent statistics require continuous predictions be converted into 
presence-absence predictions using a specified threshold value. These statistics are 
recommended when presence-absence predictions are the end goal. 

This framework adopts the popular area under the receiver operator characteristic curve (AUC) 
metric as a threshold-independent performance measure (Elith et al. 2006). The AUC ranges 
from 0 to 1. Values less than 0.5 indicate models that are worse than random, values of 0.5 
indicate that the model is no better than random, and values of 1 indicate that the model 
perfectly predicts the occurrence data (Freeman and Moisen 2008; Merckx et al. 2011). 
According to Pearce and Ferrier (2000) and Jones et al. (2010) values of AUC greater than 0.9 
are considered good, between 0.7 and 0.9 moderate, and less than 0.7 poor. 

For comparison, because the utility of the AUC statistic has been questioned in the literature 
(Lobo et al. 2008), several threshold-dependent metrics are also calculated: sensitivity, 
specificity, true skill statistic (TSS), kappa and accuracy. TSS balances sensitivity (proportion of 
presence observations that are correctly classified) and specificity (proportion of absence 
observations that are correctly classified) and is independent of the prevalence of the 
observations (Allouche et al. 2006). Kappa is a measure of agreement between observed and 
predicted values that accounts for chance agreements and is dependent on prevalence of the 
observations. TSS and Kappa range from -1 to 1 with values less than 0 representing models 
that are no better than random and values of 1 indicating perfect agreement (Allouche et al. 
2006). Values of TSS greater than 0.6 are considered good, between 0.2 and 0.6 moderate, 
and less than 0.2 poor (Jones et al. 2010; Landis and Koch 1977). Accuracy is the percent of 
predictions which are correctly classified and varies from values of 0 to 1 where 1 is the highest 
accuracy. 

To calculate threshold-dependent metrics, this framework uses recommended best practice and 
determines an optimal threshold by evaluating model performance using a statistic such as TSS 
across multiple thresholds, rather than using a default of 0.5 (Freeman and Moisen 2008). The 
ideal statistic (e.g., TSS, Kappa or Accuracy) for threshold optimization will depend on the 
purpose for modelling, for example, a statistic that favours specificity over sensitivity may be 
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appropriate for certain management applications that require a low false positive rate (Freeman 
and Moisen 2008). 

Several validation plots are produced using both threshold-dependent and threshold-
independent statistics. These include receiver operator characteristic (ROC) curves on which 
the AUC is based (Figure 3.5), curves that show threshold-dependent statistics calculated 
across a range of threshold values (Figure 3.6), and a graphical contingency matrix showing the 
density distribution of true and false positive predictions, and true and false negative predictions 
(Figure 3.7). Examining such plots, though qualitative, is an important aspect of model 
evaluation. Validation plots can be more informative than a single statistic because statistics can 
be examined across a range of thresholds, and the density of observations that fall above and 
below presence-absence thresholds can be visualized. Validation plots can also be used to 
perform quality checks by ensuring curves match their related statistics (e.g., ROC curve 
matches the AUC statistic). 

Lastly, residual validation plots are produced as a scatter plot of the residuals against each 
predictor variable. These plots can help inform how appropriate the model structure is for the 
data: if a strong residual pattern is observed, unexplained variation remains that may be better 
resolved with a different model structure. 

 

Figure 3.5. Receiver operator characteristic (ROC) curve. Grey lines represent ROC curves from five-fold 
cross-validation models and the black line represents the mean of the ROC curves. Curves are built from 
testing data. AUC is the area under the ROC curve. The black point denotes the false positive and true 
positive rate at the optimized threshold. 



 

19 

 

Figure 3.6. Curves representing threshold-dependent model accuracy measures across a range of 
thresholds. Curves are built from testing data. Grey ribbons represent one standard deviation around the 
mean calculated from five-fold CV models. TSS is the true skill statistic. 

 

Figure 3.7. Visual representation of a contingency matrix showing the density of true and false positive 
predictions above the threshold and true and false negative predictions below the threshold. The 
threshold is represented by a grey dashed line. Black polygons are kernel density estimations which 
illustrate the density of predictions corresponding with present and absent observations. 



 

20 

3.5 PREDICTION 

Once a model has been evaluated, the goal of SDMs is typically to predict to unsampled areas 
within the study area where predictor values are known. Within this framework, predictions are 
produced from models built from each CV run (following the workflow detailed in Figure 3.1). 
This workflow can then be repeated with different model fitting methods allowing an ensemble 
model prediction to be built for each CV run (Figure 3.8). Predictions are combined via a 
weighted mean using AUC for weighting (Anderson et al. 2016; Oppel et al. 2011). Prior to 
weighting, AUC values between 0.5 and 1 are rescaled to range from 0 to 1, with AUC values 
less than 0.5 set to 0. The modified AUC weights ensure that a model performing worse or no 
better than random (AUC <= 0.5) does not contribute to the ensemble prediction. This criteria 
for model entry into the ensemble was selected since any greater value (e.g., 0.7) would be 
arbitrary. Subsequently, the mean of the ensemble predictions is calculated and used as the 
final ensemble prediction (Figure 3.8). 

 

Figure 3.8. Diagram of the ensemble model workflow showing how predictions from multiple modelling 
methods can be combined into an ensemble within the cross-validation structure. Each model, including 
the ensemble, is validated with an identical set of testing data for each cross-validation procedure. 
Generalized linear models (GLM), boosted regression tree (BRT), random forest (RF) and generalized 
additive models (GAM) are four examples of model fitting methods. 

In addition to the ensemble prediction, this framework recommends producing a knowledge-
based model from available expert knowledge on the relationships between a species and 
environmental conditions. Such envelope models serve to illustrate how well expert knowledge 
around process can be represented, and provide a benchmark against which the data-driven 
ensemble model prediction can be compared (Figure 3.9). 

Whether it is suitable to integrate envelope models into the ensemble, as opposed to using it as 
a comparative benchmark, depends on the considerations discussed in Section 1.1 such as 
whether model objectives align. An important best practice here is to ensure that when model 
predictions are combined into an ensemble, they represent the same units. For example, it 
would not be appropriate to combine predictions of abundance with predictions of probability of 
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occurrence. This framework does not include envelope models in the ensemble, but does 
support their use to explore aspects of model uncertainty (see Section 3.6). 

 

Figure 3.9. Probability of occurrence predictions from a knowledge-based envelope model (e.g., HSI, left) 
and a data-driven ensemble model (right). The ensemble prediction is the mean of the predictions from 
five-fold cross-validation models developed from multiple methods (e.g., GLM and BRT). 

3.6 UNCERTAINTY 

Once models have been used to predict to unsampled areas in the study area, the next step is 
to consider how uncertain those predictions are. Model uncertainty can stem from many sources 
such as the quality and availability of expert-knowledge, occurrence and environmental data, 
spatial and temporal sampling biases, parameter and model structure estimation, the statistical 
methods used, and natural variability in the system (Barry and Elith 2006; Dormann et al. 2008; 
Iturbide et al. 2018; Link et al. 2012). Estimating prediction uncertainty is essential to effectively 
inform policy decisions such as fisheries closures or marine spatial planning (Jones-Farrand et 
al. 2011; Jones and Cheung 2015), although uncertainty in model predictions is rarely assessed 
in marine applications of SDMs (Robinson et al. 2017). This framework presents four methods 
for reducing or describing uncertainty spatially across the study area. 

First, uncertainty is constrained by identifying or removing areas of extrapolation (Figure 3.10). 
Extrapolation should be avoided in both predictor and geographic space (Austin 2007; Merow et 
al. 2014). Extrapolation in predictor space occurs when predictions are made in areas outside 
the range of predictor values used for model fitting for influential predictor variables (i.e., those 
that represent 95% of the cumulative relative influence, see Section 3.7). Extrapolation in 
geographic space occurs when predictions are made in areas outside the area covered by 
observations which can be represented by a minimum convex hull polygon around the 
observations. A well-performing model, developed using a spatial block CV approach, is 
appropriate for interpolation (i.e., predictions not extrapolated in geographic or predictor space). 
When predictions are extrapolated the performance of those predictions are unknown. The 
suitability of a model for extrapolation purposes can depend on the modelling method used. For 
example, GLMs produce functional predictor-response relationships that extend past the range 
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of predictor values in the training data while regression tree models extrapolate in predictor 
space using a constant value –the prediction at the minimum or maximum of the range (Elith 
and Graham 2009). 

 

Figure 3.10. Extrapolated areas where predictors were outside the range of values used for model fitting 
(left). Mean probability of occurrence predictions from five-fold cross-validation models excluding the 
extrapolated areas in predictor space (right). The black line represents a minimum convex polygon 
around the observations. 

Second, uncertainty is explored by contrasting the predictions from a knowledge-based 
envelope model with a data-driven ensemble model (Figure 3.11). Areas where the envelope 
and ensemble model predictions differ greatly represent areas where the probability of 
occurrence predictions are most uncertain. Without additional model validation and ground-
truthing it is impossible to ascertain which prediction is more accurate in any given area. 
However, one can hypothesize what drives the differences between our current understanding 
of a species-environment relationship and relationships derived from correlative models. 

Third, uncertainty in the ensemble model can be estimated by calculating the variation across 
the individual, component model predictions (e.g., those built with different model fitting 
methods). As recommended best practice is to incorporate multiple sources of error into a single 
estimate (Araújo et al. 2019), this framework incorporates both CV uncertainty and 
methodological uncertainty across the component models into a single estimate, but does not 
include parameter uncertainty. To estimate methodological uncertainty, the variance across the 
multiple model predictions that make up the ensemble (those built with different model fitting 
methods e.g., GLM, BRT) is calculated for each CV run and averaged (Araújo and New 2007; 
Jones-Farrand et al. 2011). To estimate CV uncertainty, the variance across the ensemble 
models from each CV run is calculated. The two variance estimates are incorporated into a 
single uncertainty metric by averaging the methodological and CV variance estimates and 
returning the square root to convert variance into standard deviation (Figure 3.12). Standard 
deviation was chosen instead of the coefficient of variation because it better highlights areas of 
high uncertainty where the probability of occurrence is also high and was considered more 
easily interpretable. This approach to uncertainty estimation can be applied to any modelling 
method where multiple model predictions are produced. For knowledge-based envelope 
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models, this would require building multiple model predictions from a variety of experts or 
knowledge sources. 

 

Figure 3.11. The difference between predictions from a knowledge-based envelope model and a data-
driven ensemble model. Positive values represent areas where the ensemble model were predicting 
greater probability of occurrence than the envelope model. 

Lastly, uncertainty is examined by mapping the mean residuals from the CV models for each 
model fitting method (Figure 3.13). Mean residuals from CV models are aggregated to a coarser 
scale (100 times the resolution of the predictor raster layers) and mapped to visualize any 
spatial pattern remaining in observations after model fitting. Areas with higher residuals indicate 
areas where predictions deviate further from the observations on average and thus are more 
uncertain than areas with residuals close to zero. 

These assessments provide qualitative and quantitative estimates of confidence in model 
predictions as well as insights into aspects of data quality and sampling bias (through the 
comparison of knowledge-based and data-driven model predictions). The mapping of residuals 
also provides some insight into the variability (i.e., non-stationarity) of the species' habitat 
relationships. Uncertainty stemming from a lack of spatial precision in the observations, errors in 
the predictor layers, missing predictors, or scale mismatches between the predictors and 
observations are not addressed in this assessment, but are considered during the data 
preparation phase prior to application of the framework. 
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Figure 3.12. Standard deviation of probability of occurrence predictions from five-fold cross-validation 
models. 

 

Figure 3.13. Mean model residuals (aggregated to 10 km) from five-fold cross-validation models. 
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3.7 MODEL INTERPRETATION 

Once the models have been fit, hypotheses can be made about the relative strengths and 
interactions of the many processes that may drive the species' distributions. Such hypotheses 
are based on examining the relative influence of predictor variables (Figure 3.14) and the 
marginal effects of each predictor on the observations (Figure 3.15). These graphs can also 
help formulate a qualitative measure of model performance. For example, unexpected 
relationships in marginal effects (e.g., a positive slope when a negative slope was expected) 
signal potential data quality issues (see Section 2 for examples) in the observations or 
predictors. Additionally, when using spatial blocking, large deviations in either the relative 
influence or marginal effects across CV models can be indicative of non-stationarity. 
Importantly, these are only informative measures of stationarity at the scale of model predictions 
when observations are distributed across the study area. 

 

Figure 3.14. Mean relative influence of predictors from five-fold cross-validation models. Error bars 
represent the minimum and maximum relative influence across the five CV models. 

How the relative influence of predictor variables in a model are estimated depends on the 
modelling method. Regression methods often use standardized coefficients but some have 
found these unreliable (Bini et al. 2009; Hawkins 2012). An alternative method, used in this 
framework, is the drop one procedure, where the residual deviance is calculated by dropping 
each predictor from the model one at a time (Grömping 2015). The increase in residual 
deviance when a predictor is dropped is an estimate of its relative importance in the model. With 
machine learning models, approaches for estimating relative influence vary. For example with 
BRTs, the relative influence of each predictor is estimated by the number of times the predictor 
splits a branch, weighted by the contribution of each split (Friedman and Meulman 2003). 

Marginal effects represent the change in probability of occurrence predictions due to a single 
predictor. It is estimated by varying a single predictor while keeping the others at their mean 
values derived from the training data used to fit the models. The framework calculates marginal 
effects for each predictor using Elith et al.’s (2005) evaluation strip method, a robust and 
consistent approach to calculating marginal effects suitable to any model fitting method. 
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Figure 3.15. Mean, minimum and maximum marginal effects between each predictor variable and the 
predicted response from five-fold cross-validation models. Marginal effects were calculated from 
generalized linear models. The black solid line represents the mean, and the grey shaded area 
represents the minimum and maximum marginal effects across the five models. Marginal effects are 
presented across the entire range of environmental predictor layers. The dotted line denotes extrapolation 
in predict space where the predictor variable is outside the range of values used for model fitting 
indicating there were no species observations in this space. Tick marks along the x-axis indicate the 
density of observations across the range of predictor values. 

3.8 THE ROLE OF SPATIAL STRUCTURE 

Understanding the SAC pattern in the observations and model residuals can also contribute to 
model interpretation. Significant SAC in residuals suggests that the spatial structure in the 
observations was not fully explained by the predictors (Elith and Leathwick 2009). This may 
occur when important predictors are missing, when available predictors are poorly scaled to the 
observations, or when the spatial pattern is influenced by other factors such as biological 
interactions or barriers to movement (Bahn and McGill 2007; Dormann et al. 2007; Elith and 
Leathwick 2009; Soberón and Nakamura 2009). 
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This framework employs variogram plots and the Geary’s C statistic to test for positive SAC 
(Figure 3.16). Variograms illustrate the structure and range of influence of SAC (Legendre and 
Fortin 1989), where the range of positive SAC is the distance at which semivariance reaches an 
asymptote. Geary’s C is a related metric used to test for the statistical significance of SAC within 
a defined neighbourhood. The statistic ranges from 0 to greater than 1 with values less than 1 
representing positive SAC and values near 1 representing minimal SAC. Geary’s C is similar to 
the often used Moran’s I statistic but is less sensitive to extreme values (Legendre and Fortin 
1989). 

 

Figure 3.16. Variogram of species presence-absence observations and model residuals. 

When model residuals retain spatial pattern, one way to account for the unexplained variation is 
to include an explicit spatial term in the model (Dormann et al. 2007; Merow et al. 2014). 
Including a measure of spatial structure can aid model interpretation by providing a better 
understanding of the relative influence of purely spatial versus environmental predictors 
(Hothorn et al. 2011; Keitt et al. 2002; Legendre 1993; Lichstein et al. 2002). This framework 
examines spatial structure in the observations using the auto-covariate method, where a spatial 
auto-covariate predictor term is derived a priori from the observations and included in the model 
(Hughes et al. 2011). Following Bardos et al. (2015), the auto-covariate term is calculated as the 
sum of nearby observations within a predefined neighbourhood weighted by symmetrical 
inverse distance weights (Figure 3.17). In this framework, the neighbourhood is defined as the 
maximum nearest neighbour distance between observations. 

Secondary models built with an auto-covariate term are produced to support model 
interpretation if significant positive SAC is found in the residuals of the initial models (see 
workflow in Figure 3.1). Interpreting these auto-covariate models can help improve 
understanding by illustrating how relationships between observations and environmental 
predictors as well as the relative importance of predictors can vary when local spatial structure 
is accounted for (Figure 3.18). This framework does not recommend the use of auto-covariate 
models for prediction when the sampling distribution of the observations do not support the 
derivation of a spatially comprehensive auto-covariate predictor. 
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Figure 3.17. Distribution of a spatial auto-covariate predictor that represents the distance weighted sum of 
nearby observations. 

 

Figure 3.18. Mean relative influence of predictors from five-fold cross-validation models including the 
auto-covariate. Error bars represent the minimum and maximum relative influence across the five models. 
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4 AN APPLICATION OF THE SPECIES DISTRIBUTION MODELLING 
FRAMEWORK 

4.1 INTRODUCTION 

In 2017, the Canadian Coast Guard began leading the development of a Regional Response 
Plan for the Northern Shelf Bioregion. This plan is being developed collaboratively with federal, 
provincial and First Nation partners and is intended to guide emergency response to a marine 
oil spill incident. In support of this plan, DFO Science has been tasked with filling in data gaps to 
help identify locations of species of concern. 

To address the management need for a well-resolved description of species presence during an 
oil spill incident, the SDM framework (Section 3) was used to develop habitat models for a 
diverse set of species in both the Northern and Southern Shelf Bioregions. To maximize 
management relevance, species were selected from a larger group previously identified as 
conservation priorities (Gale et al. 2019) or highly vulnerable to oil (Hannah et al. 2017). Benthic 
species were selected as they are the most susceptible to fouling from oil as it settles. Species 
were also chosen to represent a diversity of life history characteristics, habitats, and ecological 
communities, with different levels of data availability and quality, to assess how the framework 
performed with different combinations of ecological and data models. 

This application of the framework uses three model approaches: habitat suitability index (HSI) 
models; generalized linear models (GLMs); and boosted regression trees (BRTs). These 
methods span the range of model complexity, and each comes with different strengths and 
weaknesses. All three methods have been used to model the distribution of aquatic organisms 
(HSI: Brooks 1997; Raleigh et al. 1986); (GLM: Beger and Possingham 2008; Santoul et al. 
2005); (BRT: Leathwick et al. 2006; Leathwick et al. 2008). 

HSIs are simple, knowledge-based envelope models that depend on a clear statement of the 
evidence supporting the processes believed to be responsible for creating suitable habitat 
(Brooks 1997; USFWS 1981). They draw on published relationships and expert consultation, 
and are built manually. While they do not require any observational data for development, best 
practices recommend a calibration process with occurrence data when available (Brooks 1997). 
In the absence of occurrence data, HSIs can serve both as an ecological baseline, an initial 
model against which data-driven models can be compared, or can be combined with more 
complex models in an ensemble (Jones-Farrand et al. 2011). 

GLMs represent the class of widely used and well-developed regression methods used to relate 
species observations to environmental predictors. GLMs require functional forms to be 
specified, support optimum (using quadratic functions) or threshold values, and can include 
interactions in an intuitive manner. GLMs were chosen over the more complex generalized 
additive models as these models can approach the complexity of machine learning methods, 
and a goal here was to allow models of different complexities to be compared. 

Boosted Regression Trees (BRTs) are a powerful tree-based machine learning method for SDM 
development. Regression trees recursively divide the response data into homogenous groups, 
with each tree split based on a single predictor variable (De'Ath and Fabricius 2000). Boosting is 
a stepwise process that builds several trees at each step to model the residuals of the previous 
iteration (Elith et al. 2008). Each step uses a random fraction of the training data (bag fraction) 
to build the new trees, improving model performance at each step (Elith et al. 2008). 
Interactions are represented implicitly, based on the structure of the branches in the trees. 
However, this can make them more difficult to interpret. BRTs have a variety of settings that 
influence the complexity of the final model (e.g., tree complexity, learning rate, number of 
starting trees, maximum trees to build and stopping condition). 
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Each of these methods represents a different approach to SDM development, and allows 
different types of inferences to be drawn. This application of the SDM framework, using different 
ecological, data, and statistical model approaches, illustrates how the framework performs in 
different model contexts, providing guidance for the development of other SDMs in Canadian 
waters. The species models developed in this application of the SDM framework are intended 
for oil spill response purposes and would require further review (see Figure 1.1) for use in other 
management applications. 

4.2 METHODS 

This section describes the application of each of the steps in the framework (i.e., data 
preparation, model fitting, evaluation, and prediction; Figure 1.1) to the species of interest. 
Methodological details are included on the study area, species modelled, occurrence and 
predictor data used, and modelling methods applied. 

4.2.1 Study areas 

The framework was applied to the shelf waters of Canada’s Pacific Coast at two resolutions 
(Figure 4.1). The shelf study area (modelled at a spatial resolution of 100 m) is bounded by 
47°57' - 55°58'N and 123°6' - 134°19'W. It covers the Northern Shelf and Southern Shelf marine 
Bioregions (DFO 2009), with the western boundary following the base of the shelf slope (roughly 
the 2000 m isobath). The Strait of Georgia marine bioregion was excluded because the shelf 
environmental predictors used in this analysis do not adequately resolve the oceanographic 
features in this bioregion, and higher resolution predictors have been built specifically for that 
area. Future work will apply this framework to the Strait of Georgia using these higher resolution 
data. 

The nearshore North Central Coast study area (modelled at a spatial resolution of 20 m) is 
located within the Northern Shelf Bioregion and is restricted to the nearshore subtidal region 
from the high water line to 50 m depth, and within 5 km from shore (Gregr et al. 2013). The 
nearshore area extends from Portland Canal in the north, south to Queen Charlotte Strait, and 
covers over 17,500 km of coastline with many islands, channels, and fjords. This area was 
selected as the pilot study area for this work because of a higher density of species occurrence 
data collected as part of earlier proposed industrial developments in the region. 
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Figure 4.1. The two study areas used in this analysis. The nearshore (20 m resolution) North Central 
Coast study area covers approximately 5,620 km2. The shelf study area (100 m resolution) includes the 
Northern Shelf and the Southern Shelf marine bioregions and covers approximately 127,840 km2. 

4.2.2 Environmental predictors 

Bathymetry and derivatives 

A total of six layers were derived from various bathymetric data sources (Carignan et al. 2013; 
Davies et al. 2019; Gregr 2012) with different spatial resolutions (Table 4.1). Using ArcGIS 10.4, 
the bathymetry layers were resampled and mosaicked to produce depth rasters for each of the 
two study areas. All environmental predictors were projected in the B.C. Albers projection 
(EPSG:3005). 

Slope, rugosity, and bathymetric position index (BPI) variables were derived from the depth 
rasters at 20 m and 100 m spatial resolutions. Slope (the maximum rate of change in depth 
across each cell) was calculated in degrees. Rugosity (an index of surface roughness used as a 
measure of structural complexity) was calculated according to Du Preez (2015). Various 
methods exist to calculate complexity. We chose the arc-chord ratio (ACR) rugosity method (Du 
Preez 2015) because it decouples rugosity from slope, making it a superior measure of surface 
roughness (Du Preez et al. 2016). BPI values represent a cell’s topographic position relative to 
a neighbourhood of cells and may be positive (e.g., ridges or crests) or negative (e.g., valley 
bottoms). To capture local and broader-scale topographic features within the data, BPI layers 
were created at fine, medium, and broad scales using varying neighbourhoods (Walbridge et al. 
2018). Nearshore fine BPI was calculated with a neighbourhood distance from 60-500 m, and 
the shelf used a range from 300 - 2,500 m. The neighbourhoods for the nearshore and shelf 
medium BPI layers were 200 - 2,000 m and 1,000 - 10,500 m respectively. The neighbourhoods 
for the nearshore and shelf broad BPI layers were 500 - 5,000 m and 2,500 - 25,000 m 
respectively. 
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Oceanographic layers 

A total of six layers describing bottom temperature (in degrees Celsius), salinity (in practical 
salinity unit, or PSU), and current speeds (tidal and circulation in metres per second) were 
derived from a Regional Ocean Modelling System (ROMS) circulation model of Canada’s 
Pacific coast (Table 4.1, Masson and Fine 2012). The ROMS model has a spatial resolution of 
approximately three km and its domain extends from the Columbia River to southeastern 
Alaska. ROMS model output variables were sourced from a hindcast for the period of 1998 – 
2007. The bottom layer was represented by the deepest of 30 sigma levels, which followed 
bottom depth. 

Current speed was calculated from mean zonal (u) and meridional (v) velocities using a root 
mean square method after the velocities were spatially aligned by shifting them horizontally with 
linear interpolation. Temperature, salinity, and circulation current speed were sourced from 15 
day means while average monthly tidal current speed was calculated from three hour means. 
The finer three-hour temporal resolution of the component velocities allowed tidal current to be 
resolved, while the coarser 15-day means effectively resolve non-tidal ocean circulation current. 

Temperature, salinity, and current speeds (tidal and circulation) were then averaged temporally 
for the spring/summer season, from April to September, over the ten-year time period. The 
spring/summer season was chosen to align with when the majority of species observations were 
collected. Minimum and maximum values were calculated over the ten years to represent the 
temporal range for temperature and salinity. 

Chlorophyll 

Mean surface chlorophyll-a data, a proxy for primary productivity, was derived from the one km 
resolution MODIS L2 product. NASA-derived chlorophyll a concentration (mg/m3) were 
calculated from reflectance using the OC4 and CI algorithms (for more details see Hu et al. 
2012). Daily swath data between March and October from 2012 to 2015 were downloaded and 
mosaicked by month. Months from November to February were excluded as cloud cover is 
persistent during that period. The monthly data were interpolated spatially using Spline with 
Barriers (ESRI 2019) with the coastal high water line as a barrier to fill in any gaps that 
remained after mosaicking. These gaps were typically located nearshore and in coastal inlets. 
Mean chlorophyll-a concentration (mg/m3) was calculated by averaging the interpolated monthly 
mosaics across the four-year period. 

 

https://oceandata.sci.gsfc.nasa.gov/
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Table 4.1. Sources of environmental predictor variables used to model habitat suitability for 12 species at 2 spatial resolutions (20 m for the 
nearshore and 100 m for the shelf). See section 4.2.2 for a description of the units for each predictor layer. 

Environmental 
data type 

Predictor layer(s) Source(s) Native  
resolution(s) 

Years Study  
area(s) 

Layers 
(N) 

Bathymetry Bathymetry 

Slope 

Rugosity 

Broad BPI 

Medium BPI 

Fine BPI 

British Columbia 3 arc-second 
Bathymetric DEM (Carignan et 
al. 2013) 

3 arc-seconds 1930-
2012 

shelf 6 

100 m DEM (Gregr 2012) 100 m  shelf 

Bathymetric elevation models 
(Davies et al. 2019) 

20 m  nearshore 

Oceanographic 

 

Mean summer bottom salinity 

Bottom salinity range 

Mean summer bottom 
temperature 

Bottom temperature range 

Mean summer tidal speed 

Mean summer circulation 

Regional circulation model of BC 
(Masson and Fine 2012) 

3 km 1998–
2007 

nearshore 

shelf 

6 

Chlorophyll-a Mean NASA Ocean Color 1 km 2012-
2015 

shelf 1 

Fetch Sum fetch 

Minimum fetch 

Python script (Gregr 2014) 50 m  nearshore 2 

Substrate Rocky  

Mixed  

Sandy  

Muddy 

Background Substrate (Gregr 
and Haggarty 2017) 

20 m, 100 m  nearshore 

shelf 

4 

 

https://oceandata.sci.gsfc.nasa.gov/
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Fetch 

Fetch is the distance over which wind-driven waves can build and provides a proxy measure of 
exposure to wave action (Burrows 2012). Westerbrom and Jattu (2006) claim that wave 
exposure is an important factor for determining the distribution of marine species along rocky 
shores, and Lessard and Campbell (2007) demonstrated the importance of fetch to abalone 
distributions. It was therefore critical to include a measure of exposure in the nearshore models. 

Fetch values were calculated for 1,171,638 points (one every 50 m grid cell) covering the 
nearshore North Central Coast study area using a custom Python script (Gregr 2014). For each 
point, 72 bearing lines were generated and extended to a maximum of 200 km at every 5 
degree bearing. Fetch lines were then clipped by land using the coastal high water line. Sum of 
fetch (a proxy for wind-wave exposure) was then defined as the cumulative fetch line length (in 
m) for each point. 

The sum of fetch values were converted to rasters with 50 m cell size. To prepare the final 
raster layer, the 50 m layer was resampled to 20 m using the bilinear method and aligned with 
the other predictor layers. A similar procedure was used for calculating minimum fetch (a proxy 
for distance to land), using the smallest fetch value (in m) for each point. 

Categorical substrate and neighbourhood substrate layers 

Following on the work of Gregr and Haggarty (2017), categorical substrate models were built for 
both study areas. The models predict four categories: rock, mixed, sand, and mud. The models 
were built using the Random Forest approach, a classification method that uses training data 
and predictor layers (Breiman 2001). Substrate observation data were obtained from various 
sources and coded into the substrate categories. To prepare the observations for modelling, 
they were randomly split (while preserving prevalence) into training and testing data. 
Bathymetry and its derivatives, along with fetch, and ocean circulation were used as predictors. 
Model fitting and prediction were carried out using the training data, while the withheld testing 
data (one third of the observations) were used to evaluate the model and generate performance 
statistics. Code for model fitting, prediction, and evaluation was written in the R statistical 
language (R Core Team 2018) and used the randomForest package (Liaw and Wiener 2002). 

We derived continuous neighbourhood substrate predictors from the categorical substrate 
models to reflect uncertainty in the categorical models, and better characterise substrate in the 
general locale rather than in a single cell - an attribute that may be more relevant (i.e., 
proximate) to more mobile target species. Rockfish habitat, for example, may be more 
effectively represented using a local rockiness index rather than a categorical layer. Continuous, 
neighbourhood index layers were created for each category (rocky, mixed, sandy, muddy) at 
both spatial resolutions (20 m and 100 m) using the following steps. First, a binary layer was 
created for each of the substrate categories (rock, mixed, sand, mud). For each of the binary 
layers, the focal sum was then calculated using a circular neighbourhood with a 10-cell radius. 
Finally, the focal sum layers were converted to index layers by rescaling them onto [0, 1]. The 
resulting index layers provide a measure of substrate density within the neighbourhood of cells. 

Spatial predictors 

All models presented in this application were produced with environmental predictors only. 
Spatial predictors layers (e.g., auto-covariates) discussed in the framework were not explored in 
this application. 
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4.2.3 Species observations 

Data selection 

Twelve benthic species were selected for this application. Eight species were modelled in the 
nearshore study area (20 m resolution): Northern Abalone (Haliotis kamtschatkana), Pacific 
Geoduck (Panopea generosa), Red Sea Urchin (Mesocentrotus franciscanus), Eelgrass 
(Zostera spp.), Pterygophora Kelp (Pterygophora californica), Ochre Sea Star (Pisaster 
ochraceus), Blue Mussel complex (Mytilus edulis, M. trossulus, and M. galloprovincialis) and 
Littleneck Clam (Leukoma staminea) and four species were modelled in the shelf study area 
(100 m resolution): Dungeness Crab (Metacarcinus magister), Quillback Rockfish (Sebastes 
maliger), Yelloweye Rockfish (Sebastes ruberrimus) and Orange Sea Pen (Ptilosarcus gurneyi). 

When selecting species occurrence data, sample size, extent, sampling bias and precision were 
considered as discussed in Section 2.1. The same general approach was applied to each 
species. First DFO shellfish and groundfish data holdings were searched for targeted or 
systematic synoptic surveys that adequately sampled the species of interest. For a species to 
be deemed adequately sampled, the survey method and gear type were required to sample the 
species so that the assumption of absence given a lack of presence holds true. This 
determination was based on species expert’s knowledge of the detectability of the species given 
the survey gear, and the prevalence of the species in the survey observations. Once a survey 
was deemed appropriate, sample size was evaluated to determine whether additional data were 
needed. 

Additional survey data were deemed necessary when sample sizes for either presence or 
absence observations were low (e.g., < 100 absence observations) or when the spatial 
coverage of observations across the study area was limited in either geographic (e.g., no 
observations in the southern portion) or predictor space (e.g., all observations occurred on rocky 
habitat). Although best practice is to use a single survey to source species occurrence data, in 
many cases a single survey alone is insufficient to represent species occurrences across the 
desired study area (Table 4.2). When supplementing species occurrence data with additional 
surveys, attempts were made to find surveys with similar detectability rates. For all species, 
occurrence data were sourced from surveys using the same gear type (e.g., dive surveys for 
nearshore species, longlines for Rockfish species and baited trap for Dungeness Crab). While 
the goal was to maximize coverage across the study area and habitat types, not all species 
were sampled comprehensively across their range and the study area (e.g., Dungeness Crab 
observations were mainly restricted to muddy, sandy nearshore and shallow areas, see Figure 
A.13). 

Once a species occurrence dataset was determined to be sufficient, additional data were not 
included, even if they were available. For example, Rockfish trawl data were available in 
addition to the longline survey data. However, including the trawl data would introduce bias 
stemming from differences in catchability and area sampled. Such differences in gear types 
(e.g., trap vs. trawl) influence the detectability of species (e.g., Wells et al. 2008), effectively 
leading to an observation bias. While the significance of this effect could be tested for a priori, 
and may give an estimate of gear type effect, the result would be confounded because of its 
correlation with habitat (e.g., trawls are used over deeper, softer sediments while longlines are 
used over shallower, hard bottoms). Disentangling the gear effect from the habitat effect would 
require a separate analysis and significant spatial overlap between the surveys, an unlikely 
situation given the underlying reasons (i.e., gear loss) for the use of different gear in the first 
place. Further, predicting to new areas with a species distribution model that included a gear 
type predictor would require an associated (and unavailable) layer describing the distribution of 
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gear types or alternatively require the modeller to choose which gear type would be more 
appropriate for prediction. 

Four of the twelve species selected (Ochre Sea Star, Blue Mussel, Littleneck Clam and Orange 
Sea Pen) did not have adequate occurrence data for modelling within our study areas. While 
data were available for all four species, they were determined inappropriate because of low 
sample sizes (e.g., < 100 presence observations), low precision in the spatial location of the 
observations (e.g., site versus quadrat) or low taxonomic resolution (e.g., observations at the 
order level). 

Spatial data preparation 

The spatial precision of species observations varied by survey (e.g., only the start location of 
sampling versus the start and end location). When deciding how best to represent such 
observations spatially, we considered the precision of the spatial location of the observations 
relative to the resolution of predictor data. Thus, to make the best use of the 20 m resolution 
predictor data, the nearshore species data needed higher precision in spatial information than 
the shelf species data. 

All nearshore species occurrence data were sourced from SCUBA dive surveys (Table 4.2). All 
dive surveys followed a transect-based protocol with transects perpendicular to the shoreline, 
with the exception of the Abalone survey. Observations were recorded for quadrats placed 
along a transect, running from deep to shallow, however only transect start and end points were 
recorded. To represent nearshore species at the 20 m resolution, quadrat positions along the 
transects were needed. To estimate the position of quadrat observations, points were created 
every 20 m along the transect, and depth values were extracted from the bathymetry layer for 
each point. Quadrat observations were then assigned to the points that most closely matched 
the observed (corrected for tide) quadrat depth. If multiple quadrats were assigned to the same 
point, the observations were aggregated. If the difference between recorded quadrat depth and 
the 20 m bathymetry was greater than 10 m, the observation was removed from the dataset. 

DFO dive surveys for Abalone follow a grid-based survey protocol (Breen and Adkins 1979) 
rather than a transect-based protocol. Observations are recorded per quadrat, with quadrats 
placed in a 4 x 4 grid pattern (covering an area of 16 by 7 m) in habitat considered to be suitable 
for Abalone. The start position of the sampling is recorded. For this survey, individual quadrats 
were aggregated by site and the starting position was used to represent their spatial location. 
Presence-absence observations were aggregated by assigning presence when at least one 
presence observation occurred within a quadrat. 

Species occurrence data for the shelf study area were sourced from surveys using longline and 
baited trap sampling methods (Table 4.2). For longline fishing events, spatial locations were 
represented by line segments between the start and end position of the fishing event. For 
Dungeness Crab surveys, spatial locations of the baited trap lines were represented by the start 
position as this was the best available spatial information. 
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Table 4.2. Summary of the occurrence data selected to model the twelve species in this study. Generalized linear regression and 
boosted regression trees were used to build models for the eight species not found data deficient (DD). Surveys listed under data 
sources (ABL = Abalone; RSU = Red Sea Urchin; BHM = benthic habitat mapping; Cuke = Sea Cucumber; HBLL=hard bottom long 
line; IPHC=International Pacific Halibut Commission) represent scientific surveys for stock assessment or monitoring lead by DFO 
Pacific and industry partners. 

Species Nearshore 
or Shelf 

(N/S) 

Sample 
size 

Prevalence 
(%) 

Years Data sources 
(presence-
absence) 

Data sources 
(absence 

only) 

Spatial 
data type 

Spatial data precision 

Northern Abalone 

(Haliotis kamtschatkana) 

N 2,293 22 2011-2016 ABL, RSU, 
BHM 

- Points Site location (ABL) or 
estimated location along 
transect (RSU, BHM) 

Pacific Geoduck 

(Panopea generosa) 

N 9,350 58 2010-2017 GDK, BHM RSU, Cuke Points Estimated location along 
transect 

Pterygophora Kelp 

(Pterygophora californica) 

N 6,607 3 2010-2017 ABL, Cuke, 
RSU, BHM 

- Points Estimated location along 
transect 

Red Sea Urchin 

(Mesocentrotus franciscanus) 

N 3,300 26 2010-2016 RSU, BHM GDK, Cuke Points Estimated location along 
transect 

Eelgrass 

(Zostera spp.) 

N 12,567 4 2010-2017 GDK, Cuke, 
RSU, BHM 

- Points Estimated location along 
transect 

Dungeness Crab 

(Metacarcinus magister) 

S 391 49 1982-2009 Dungeness 
Crab surveys 

- Points Start position of gear 
deployment 

Quillback Rockfish 

(Sebastes maliger) 

S 4,937 41 2003-2018 HBLL, IPHC - Lines Start and end position of 
longline gear 

Yelloweye Rockfish 

(Sebastes ruberrimus) 

S 4,937 51 2003-2018 HBLL, IPHC - Lines Start and end position of 
longline gear 

Orange Sea Pen 

(Ptilosarcus gurneyi) 

S DD - - - - - - 

Pacific Littleneck Clam 

(Leukoma staminea) 

N DD - - - - - - 

Ochre Sea Star 

(Pisaster ochraceus) 

N DD - - - - - - 

Blue Mussel complex 

(Mytilus edulis, M. trossulus, 

M. galloprovincialis) 

N DD - - - - - - 
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Dive survey assumptions 

Several assumptions were made when selecting species occurrence data sourced from dive 
surveys. In many dive survey protocols only dominant algal species are recorded in each 
quadrat, potentially creating false absences. Expert consultation indicated that when both Kelp 
and Eelgrass are present, they are likely to be dominant. Therefore we made the assumption 
that the lack of a Kelp or Eelgrass presence represented a true absence of that species. 

Non-target species in some dive survey protocols are only recorded at the site or transect level, 
not the quadrat level. However, we required more precise observations (at the quadrat level) for 
our nearshore models. Consequently, absences at the transect level were assumed to indicate 
an absence for that species in all quadrats, but presences at the transect level were not used to 
indicate presence at all quadrats. 

4.2.4 Data preparation 

The preparation of the species observations and predictor data for modelling were completed 
following the methods outlined in Section 3.1. Here we highlight additional details that are 
specific to this application. 

Mean summer temperature and salinity were correlated, falling slightly outside the variance 
inflation factor (VIF) threshold of ten. However, both temperature and salinity were retained for 
consistency across species models. Not all substrate predictors were included for every species 
because the sandy and rocky predictors were highly inversely correlated. Thus, for species 
known to inhabit rocky areas, the rockiness index was used, while for species known to inhabit 
soft sediments, the sandy and muddy predictors were used. The mixed substrate predictor was 
used in all species models. 

Five-fold spatial block CV was used to build GLM and BRT models and validate all models, 
except those for species with insufficient occurrence data. For each species, identical CV folds 
were used for training and testing of these models. Using identical testing data allows a direct 
comparison of model validation metrics from models build with different methods. The size of 
spatial blocks was based on the median range of SAC across all the environmental predictor 
layers. Shelf spatial blocks were approximately 75 km by 75 km and nearshore spatial blocks 
were 35 km by 35 km. 

4.2.5 Habitat suitability index models 

HSI models were built for each of the twelve species based on literature review and consultation 
with species experts. In contrast to the correlative models (GLM and BRT), HSI models did not 
use species observations (described in Section 4.2.3) to develop relationships with 
environmental predictors. Rather, for each relevant environmental predictor, its contribution to 
habitat suitability was selected from a set of common relationships (e.g., Figure 3.4). Each 
relationship was then applied to the corresponding environmental predictor producing a 
univariate habitat suitability prediction ranging from 0 to 1 (unsuitable to fully suitable). Predictor 
relationships were developed for the environmental predictor layers described in Section 4.2.2. 
For species (i.e., Red Sea Urchin) known to shift habitat to deeper waters in areas of higher 
exposure (due to wind-wave action), this interaction was represented by dividing coastal 
habitats into low and high exposure areas using a cut-off of 20 (100s of km), and defining 
slightly different depth preference curves for each of the two areas (see Appendix B for details). 

The collection of univariate predicted suitabilities were then combined using the limiting factor 
method (USFWS 1981). This method uses the predictor with the lowest suitability as the overall 
suitability for each cell. Unlike compensatory relationships, high suitability in one predictor 



 

39 

cannot compensate for the low suitability in others. To calculate the relative influence of each 
environmental predictor in HSI models, the number of cells where each predictor was limiting 
was divided by the total number of cells in the study area. 

Building the HSI models was an iterative process, where preliminary models were built based 
on ecological relationships in the literature and then refined through expert consultation. 
Documents for expert consultation were prepared, describing the preliminary HSI models and 
the ecological rationale behind them, to facilitate the consultation process and maintain 
consistency in the advice being sought. There were varying levels of information available for 
each species. For some species, experts drew on their general understanding of the species 
distribution and its relationships with environmental predictors. For other species, more specific 
information was available to the experts, who refined environmental predictor relationships 
using environmental ranges from survey data and verified final model outputs using known 
areas of occurrence or density estimates. As such, the role of species observations in the HSI 
models varied, with some models being entirely independent of species observations (e.g., 
Abalone and Eelgrass), while in others, species observations supported the development of the 
univariate relationships (e.g., Quillback Rockfish and Geoduck). 

The HSI model development process differed from that of the data-driven models (GLM and 
BRT) in that only one HSI model was built for each species. Consequently, no estimate of 
variation across model predictions could be made. Once the models were finalized, eight of the 
twelve HSI models were evaluated with testing data from five-fold spatial block CV, allowing 
means and standard deviations of model validation metrics to be calculated. There were no 
suitable data available for evaluating the remaining four models (Table 4.2). 

4.2.6 Generalized linear models 

Five GLMs, one for each CV run, were built for each species. A binomial error distribution and 
logit link function were used as is recommended for binary observations (Guisan et al. 2017; 
Tabachnick et al. 2007). Selecting the best model for each CV dataset was automated with the 
dredge function (Barton 2018). Dredge performs model selection by fitting every possible 
combination of predictors given a global model and ranking the models based on an information 
criterion. In this case Bayesian information criterion (BIC) was used. The global model included 
every predictor from the predictor dataset as well as specific quadratic or interaction terms that 
were believed to be ecologically important for a specific species, as determined by the expert-
derived information from HSI models. For example, Northern Abalone are known to exhibit a 
quadratic relationship with exposure where habitat suitability peaks at medium exposure levels 
(Lessard and Campbell 2007). Quadratic and interaction terms were restricted in this way 
because of computational limitations to dredging with a full suite of higher order and interaction 
terms. The best models from each of the five CV runs, each with a potentially different model 
structure, were evaluated using the testing fold, and then used to predict the probability of 
occurrence within the study area. The mean and standard deviation of evaluation metrics and 
prediction surfaces were calculated across the five models. 

4.2.7 Boosted regression trees 

Five BRT models, one for each CV run, were built for each species. BRT models were built with 
functions from gbm (Greenwell et al. 2018) and dismo (Hijmans et al. 2017) R packages, using 
a Bernoulli distribution for the loss function (Ridgeway 2007). BRT models require a number of 
initial parameters that control how the model is structured (Table 4.3). Parameter values were 
based on Elith et al. (2008), except that the bag fraction was not tuned because initial tests 
showed that varying the bag fraction did not affect the BRT performance. 
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Table 4.3. Initial parameters for boosted regression tree models. 

Parameter description Initial value 

Maximum number of trees to fit 20,000 

Number of initial trees 50 

Number of trees per step 50 

Optimal number of trees Calculated during tuning  

Number of cross-validation folds for tuning 5 

Tolerance for stopping condition during model tuning 0.001 

Learning rate (contribution of each tree) 0.05, 0.01, 0.005, 0.001 

Tree complexity (number of splits or nodes) 2,4,6,8 

Bag fraction (proportion of training data selected at each step) 0.5 

The total number of trees to build, the learning rate and tree composition all required tuning to 
determine their optimal values. The tuning procedure fit 16 preliminary models, one for each 
unique combination of learning rate and tree complexity values (Table 4.3), for each CV run. 
Within the model tuning procedure the training data was split using five-fold random CV into 
internal training and holdout data to evaluate the stopping criterion that determines when the 
optimal number of trees has been reached. Excluding a portion of the training data to use for the 
stopping condition, as opposed to using the testing fold, keeps the testing data independent of 
model fitting. The tuning procedure built models iteratively, starting with 50 trees and increasing 
by 50 trees with each iteration until the 20,000 tree maximum or the stopping condition was 
reached. The stopping criterion, set by the tolerance parameter, controls the allowable relative 
increase in holdout deviance from the previous iteration with 50 fewer trees to the most recent 
iteration. 

To select the best model from the 16 tuning models, predictive performance was estimated 
using mean percent deviance explained from the holdout data. The best model and thus the 
optimal model parameters were determined for each five-fold spatial block CV run. Following 
the rule of thumb recommended by Elith et al.(2008), models with fewer than 1,000 trees were 
not considered. Subsequently, five final models were built, one for each of the training CV 
datasets using the optimal parameters tuned for each dataset. Models were evaluated with 
testing fold, then used to predict the probability of occurrence within the study area. The mean 
and standard deviation of the evaluation metrics and prediction surfaces were calculated across 
the five models. 

4.2.8 Ensemble models 

Ensemble model predictions were created by averaging the GLM and BRT model predictions, 
weighted by their performance (see Section 3.5). Five ensemble models, one for each CV run, 
were created for each species. Creating an ensemble model for each CV run was necessary to 
ensure accurate model validation: if only a single ensemble model was calculated from the 
mean predictions of GLM and BRT models, no testing data would remain for evaluating the 
ensembles. This method ensured that the ensemble models could be evaluated with the same 
testing data as HSI, GLM and BRT models. As with the GLM and BRT models, the mean and 
standard deviation of the evaluation metrics and prediction surfaces were calculated across the 
five ensemble models. 
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4.2.9 Model evaluation 

Models were evaluated using the metrics presented in Section 3.4. Threshold-dependent 
statistics were based on thresholds derived by maximizing the TSS using the testing data. 

4.3 RESULTS AND DISCUSSION 

4.3.1 Model performance by species 

The best performing models were for Quillback Rockfish (ensemble AUC = 0.91) and Abalone 
(ensemble AUC = 0.85) (Figure 4.2). Geoduck, Kelp, Urchin and Eelgrass models all preformed 
moderately well with ensemble model AUC values greater than or equal to 0.8. The poorest 
performing models were for Dungeness Crab and Yelloweye Rockfish, although both had 
adequate ensemble model AUC values between 0.71 and 0.78, respectively. Collectively, the 
HSI models performed poorly with the majority yielding AUC values less than 0.7. The poorest 
performing HSI model was Eelgrass with an AUC value less than 0.5 indicating the model was 
no better than random. 

These differences in performance are not solely driven by sample size since both rockfish 
species have identical sample sizes but different performance metrics. While small sample size 
likely contributed to the poor performance of the Dungeness Crab model, a more significant 
factor may have been the limited distribution of observations across geographic and predictor 
space (Figure A.13). Differences in performance may also be related to aspects of the 
underlying ecological models, in that stronger and more direct relationships between the 
occurrence data and a few relatively important predictors tends to lead to higher performing 
models. For example, the best performing HSI models (Abalone and Quillback Rockfish) both 
have a strong relationship with a single predictor (see Figure 4.3 and Figure A.18, respectively). 
These predictors also meet the important criteria of extending past the range of suitable values 
for these species. In contrast, while the Kelp HSI is also strongly reliant on a single predictor 
(depth), this relationship is more distal (as depth is likely a proxy for light availability). 

Comparing the marginal effects and relative influence plots across the different model methods 
provides insights into why the HSI models for Eelgrass and Crab performed so poorly (i.e., 
Figure A.12 and Figure A.15). For Eelgrass, depth and slope were important in the data-driven 
models (GLM and BRT), while depth and substrate were the main contributors to the HSI 
(Figure A.12). Although depth was important in both the HSI and data-driven models, the 
structure of the relationship between Eelgrass and depth differed. Additionally, slope was 
notably absent from the HSI; it was not included because no related expert guidance was 
available. This highlights a potential shortcoming of HSI: there can be limited or no knowledge 
from literature or experts to articulate a functional relationship. For Dungeness Crab, depth and 
salinity were important drivers in both the HSI and data-driven models (Figure A.15) and, similar 
to the Eelgrass example, these predictors differed in their functional relationships between the 
two models. Specifically, the data-driven models showed a decreasing probability of occurrence 
at high salinities (> 30) and deeper depths (> 100), whereas the HSI identified salinities and 
depths past those values as highly suitable. These discrepancies may be due to a difference in 
the scale at which the ecological understanding and correlations are developed. For Dungeness 
Crab, ecological understanding comes from local, fine resolution observations, at the low end of 
the salinity range, while the salinity predictors are comparatively coarse spatially (3 km 
resolution) and temporally (10 year means). While both scales may represent relevant 
processes, the coarse resolution predictors cannot capture the fine scale ecological 
understanding, leading to a scaling mismatch as described by Wiens (1989). 
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These species-specific examples illustrate the diagnostic utility of the performance metrics 
presented in this framework. A lack of coherence in the relative influence and marginal effects 
between knowledge-based (e.g., HSI) and data-driven (e.g., GLM) models provides information 
on potential uncertainties in model structure and the appropriate resolution (either spatial or 
temporal) of the environmental predictors. 

4.3.2 Comparisons of model predictions across methods 

As illustrated above, model confidence is increased by consistency in the relative influence of 
predictors and the shapes of their marginal effects across different methods (e.g., Figure 4.3; 
and see Appendix A). Species exhibiting such consistency are likely to be well represented (i.e., 
have higher realism, sensu Araújo et al. 2019) by the predictors. A notable difference between 
the marginal effects obtained from the GLM and BRT models, despite their similar shapes, is 
the larger error bounds on the BRT curves (Figure 4.3), representing a larger difference in 
marginal effects across CV models. This pattern is consistent with our understanding that BRT 
models fit closer to the training data than GLMs and thus will have higher variation in marginal 
effects for models built with different training data sets. 

Comparisons across models can also help assess the performance of the different methods. 
The BRT models fit the training data more closely than GLM models for all species (Figure 4.2), 
but, the two models performed similarly when evaluated with testing data, although for different 
reasons. The GLMs describe more general patterns (less flexible relationships) so they miss 
finer scale patterns which BRTs can resolve. In contrast, the BRTs, because they are so 
flexible, fit too close to the training data, thereby generating patterns less relevant to the testing 
data. Both methods thus fail to explain some variation in the testing data. 

This comparison of the performance of the less flexible GLMs to the more complex BRTs 
confirms observations in the literature that more complex models (e.g., those fit with machine 
learning methods) tend to overfit to the training data. However, it also shows that when 
evaluated using spatially independent data (as obtained through spatial blocking), the measured 
performance of the BRT models are in line with the less complex GLMs. This both emphasizes 
the importance of correct model evaluation, and implies that model complexity, in and of itself, is 
not a barrier to model transferability. This agrees with the literature (e.g., Evans et al. 2013; 
García-Callejas and Araújo 2016) that suggests over-fitting to biased data can be a bigger 
problem for model transferability than model complexity. 
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Figure 4.2. Performance of the eight distribution models for species with sufficient occurrence data. Mean 
area under the receiver operator characteristic curve (AUC) is based on five-fold spatial cross-block 
validation tests and are shown for each of the four model types: habitat suitability index (HSI), generalized 
linear model (GLM), boosted regression tree (BRT), and ensemble. Error bars represent one standard 
deviation. Prevalence and sample size are reported in the upper left corner. Bars not shown have AUC 
values less than 0.5. HSI and ensemble models were not evaluated with training data. 
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Figure 4.3. Relative influence of predictors and marginal effects of the eight most influential environmental 
predictors of Abalone distribution from the HSI, GLM and BRT models. For GLM and BRT models, the 
bars in the relative influence plots represent the mean and the error lines show the minimum and 
maximum relative influence across the five-fold CV models. In the marginal effects plots, black solid lines 
represent the mean and the grey shaded area represents the minimum and maximum marginal effects 
across the five-fold CV models. To represent substrate a categorical substrate layer was used for the HSI 
model and a continuous rockiness index was used for GLM and BRT models. 
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In all but three cases (Abalone, Quillback and Kelp) the ensemble models performed equally 
well or better than any of the individual models when evaluated using spatial block CV. And in 
those three cases, the ensemble models were still well within one standard deviation of the 
better performing models. While built using weighted means, the results of the ensembles is 
nevertheless in line with expectations that an equally weighted ensemble will be more accurate 
than at least half of the individual models (Araújo and New 2007). 

We found similar patterns in the distributions of model performance statistics among GLM, BRT 
and ensemble models from all 8 species for which testing data was available (Figure 4.4). When 
compared across species, the HSI models had greater variation in performance metrics and 
scored lowest for all metrics except specificity (the correct prediction of absences), where the 
median was in line with the other modelling methods. Therefore, the HSI models performed 
similarly to GLM, BRT and ensemble models when predicting species absence, but performed 
relatively poorly when predicting species presence. 

Spatially, at a broad scale, there is a high degree of agreement in the prediction of probability of 
occurrence between model types (Figure 4.5). However, differences are evident upon close 
examination where a patchiness in the predictions is seen to increase with model complexity 
from HSI to BRT. This pattern was evident across all species. 

 

Figure 4.4. Boxplots showing the distribution of model performance metrics from the habitat suitability 
index (HSI), generalized linear (GLM), boosted regression tree (BRT), and ensemble models across all 
species models tested. AUC is the area under the receiver operator characteristic curve and TSS is the 
true skill statistic. 
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Figure 4.5. Species probability of occurrence predictions within the shelf study area from Quillback 
Rockfish habitat suitability index (HSI) model, generalized linear model (GLM), boosted regression tree 
(BRT) model, and ensemble model. With the exception of the HSI prediction, probability of occurrence is 
the mean prediction from five-fold cross-validation models. GLM, BRT and ensemble predictions are 
truncated to exclude areas of extrapolation in predictor space. 

4.3.3 Model uncertainty 

Following the methods outlined in the framework, four methods were used to examine model 
uncertainty for each species with ensemble models. For species for which only an HSI model 
was developed, we were not able to examine model uncertainty. In this application, we present 
model uncertainty as measured by standard deviation across model predictions (see Section 
3.6, Figure 3.12), and, in Appendix A, as the difference between HSI model predictions and 
ensemble model predictions for each species. 
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Collectively, the BRT model predictions had slightly higher median uncertainty (standard 
deviation calculated from the eight species models with testing data) when compared to GLM 
model predictions (Figure 4.6). This is expected as BRT models are more flexible and fit closer 
to the training data than GLMs resulting in greater variation among prediction from CV models. 
The median uncertainty of the ensemble predictions is notably higher. This is the result of 
pooling the variance from both the CV models and the GLM and BRT models to incorporate 
both CV uncertainty and methodological uncertainty into a single estimate. 

Overall ensemble model uncertainty, as measured by mean standard deviation across 
predictions, also varied among species models (Figure 4.7). Species models with higher AUC 
values, also tended to have lower mean uncertainty. Quillback Rockfish, the best performing 
ensemble model, had relatively low mean uncertainty while Dungeness Crab, the poorest 
performing ensemble model, had the highest mean uncertainty. Some species have relatively 
higher or lower mean uncertainty given their performance statistics (e.g., Abalone and 
Eelgrass). Eelgrass may have very low uncertainty because the predictions tend to be low on 
average due to relatively little potential Eelgrass habitat within the study area. Conversely, mean 
uncertainty may be higher than expected given model performance (e.g., Abalone) when non-
stationarity exists within the study area. Although evidence of non-stationarity can be revealed 
by examining performance metrics calculated using test data created with spatial blocking, 
prediction uncertainty measured in this way can reveal additional variation between CV model 
predictions outside of sampled areas not capture in performance metrics. 

 

Figure 4.6. Distribution of uncertainty (as mean standard deviation across species predictions) for three 
modelling methods. Mean standard deviation of predictions is based on five-fold cross-validated model 
predictions from all species. Model methods included generalized linear model (GLM), boosted 
regression tree (BRT), and ensemble methods. Standard deviation of the ensemble models incorporates 
variance across GLM and BRT methods, as well as the individual CV models. 
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Figure 4.7. Uncertainty (as mean standard deviation from ensemble model predictions) for the eight 
species with sufficient occurrence data, ranked from highest to lowest. 

4.3.4 Comparison of performance statistics 

While AUC is a commonly used statistic, there is a diversity of literature examining different 
performance metrics (e.g., Lawson et al. 2014; Lobo et al. 2008). It is therefore desirable to 
compare the most common performance statistics used in the literature to determine whether 
any particular metric is a more reliable measure of performance. 

A comparison of how the three threshold-dependent metrics (Kappa, TSS, and Accuracy) 
change across the range of threshold values from one example species (Figure 3.6) shows that 
Kappa and TSS track quite closely, staying within one standard deviation of each other. In 
contrast, Accuracy tended to have higher values and reached a plateau at higher threshold 
values. When threshold-dependent statistics from all species models were compared with the 
threshold-independent AUC statistic, a near perfect correlation (Spearman's rho = 0.98) was 
evident between TSS and AUC (Figure 4.8). In contrast, Accuracy and Kappa measures had a 
lower correlation with AUC (Spearman's rho = 0.77 and 0.60, respectively). On inspection, 
outliers (on the left side of the panel comparing AUC and Kappa, Figure 4.8) correspond to the 
models for two species with the lowest prevalence (Kelp and Eelgrass). This well documented 
effect of prevalence on Kappa (Allouche et al. 2006; Manel et al. 2001) is further illustrated by 
comparing Kappa to TSS for a representative low and high prevalence species (Figure 4.9). The 
effect is dramatic when prevalence is < 5%, and persists at prevalence levels of 25% indicating 
that a prevalence close to 50% is necessary to make Kappa comparable to TSS and AUC. 

This comparison clearly shows how some performance statistics (i.e., AUC, TSS) performed 
more consistently then others (Accuracy, Kappa). 
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Figure 4.8. Correlation between the threshold-based predictors, Accuracy, Kappa, and TSS (true skill 
statistic), and the area under the receiver operator characteristic curve (AUC). All species and modelling 
methods were used for the comparison. 

 

Figure 4.9. Mean performance for Kappa and TSS (true skill statistic) from five-fold cross-validation for 
example species with high and low prevalence. Validation metrics are shown separately for generalized 
linear (GLM) and boosted regression tree (BRT) models. Prevalence is reported in the upper left corner 
for each species. Error bars represent one standard deviation. 

4.4 CONCLUSIONS 

The twelve species distribution models presented here demonstrate how the framework 
presented in Section 3 can be effectively applied to create credible predictions. The resulting 
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probability of occurrence predictions will be used to inform emergency response in the event of 
a marine oil spill incident. For the eight species with adequate occurrence observations, model 
performance metrics and spatially explicit uncertainty measures provide managers with tools to 
assess confidence in the model predictions in a given area of interest. For the four species 
found to be data deficient, the preliminary envelope models provide a baseline from which data-
driven models of distribution can be developed once observational data are available. By 
following a standardized model development process, the distribution models were produced 
efficiently while ensuring consistency across species. The use of a single, suite of predictor data 
(i.e., a consistent data model) was central to the ability of the framework to handle multiple 
species models in an efficient way. Additionally, during the process, the framework (along with 
the associated R scripts) facilitated updates when new occurrence data or improved predictors 
became available. The iterative approach to re-assessing model inputs for their suitability during 
the model interpretation phase and subsequently refining the models (see Figure 1.1) led to 
improved model performance in many cases and is a valuable feature of the framework. 

This application also demonstrated the utility of a multiple model approach to SDM 
development. Building knowledge-based envelope models helped define the current ecological 
understanding of the twelve species and served as a benchmark against which the data-driven 
ensemble model predictions could be compared. Building ensemble model predictions allowed 
for uncertainty to be estimated by examining the variation across component models. The 
relative influence and marginal effects of predictors (see Appendix A) also helped inform 
reliability assessments for models of individual species. 

This application was particularly successful for species of commercial or conservation interest, 
for which a large sample of suitable observations was available, although some species (e.g., 
Dungeness Crab), had observational data that was spatially biased toward more suitable 
habitat. For those species, additional observations obtained through a well-designed sampling 
program would improve the model predictions. For species with high-quality observational data 
(i.e., abundance data at appropriate resolution and extents with limited spatial sampling bias) 
and good association with the predictor variables developed here, models of species density are 
likely within reach and would provide additional information for oil spill response and other 
management needs. 

5 RECOMMENDATIONS 

The following recommendations were conceived during the development of the framework and 
the resulting application. 

 Follow established modelling practice by clearly identifying model objectives. They inform 
the development of the data and statistical models and are central to interpreting model 
results, in part by allowing clear distinctions to be made between what is technically wrong 
(e.g., a poorly scaled predictor), and what is out of scope (e.g., juvenile life history stages), 
thereby reducing model misinterpretation. 

 Build knowledge-based envelope models, regardless of the availability of observation data. 
Such models clarify the current ecological understanding the species, help identify 
predictors that are essential to effective habitat characterisation, and provide a means of 
calculating model uncertainty by comparing the knowledge-based to data-driven model 
predictions. 

 Incorporate LEK wherever possible, to compliment scientific ecological knowledge. Such 
knowledge would be especially valuable in data poor situations, could be included in 
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envelope models, and combined as prior knowledge with data-driven approaches in a 
Bayesian framework. 

 Examine the spatial and temporal coherence in resolution between the predictor and 
species occurrence data to assess the appropriateness of the data model and identify scale 
mismatches prior to model fitting. 

 Consider how the quality of occurrence data influences model performance metrics. If 
confidence in the quality of the species data is low, high performance scores alone will not 
be indicative of a good model, as these metrics also reflect the quality of the occurrence 
data (i.e., if the input data is biased so will the evaluation). Different observational datasets 
can produce models with very similar performance metrics yet very different predictions of 
probability of occurrence across the study area. 

 Consider reducing the sample size if a portion of the occurrence data (e.g., a particular 
survey or sampling method) lowers the overall data quality. There is often a trade-off 
between sample size and data quality, particularly if occurrence data are compiled from 
multiple sources. Fewer high quality data can produce a better model than more, low quality 
data. 

 Employ spatial block CV to build models and evaluate performance. Effective blocking of 
observational data reduces the dependence between testing data and training data and 
produces model evaluation scores that are a more accurate measure of model 
transferability. To develop the broadest perspective on model performance, calculate 
metrics from both training and testing data to evaluate model fit and predictive performance. 

 Examine validation plots such as those included in this framework (i.e., threshold plots, 
graphical contingency matrix and ROC curve) in addition to individual statistics to assess 
model performance. Graphical representations provide more information than single 
numbers, and are thus more informative, especially when comparing across multiple 
models. 

 The threshold-independent AUC and threshold-dependent TSS statistics are recommended 
over the prevalence-sensitive Kappa and the less descriptive Accuracy statistics. 

 If spatial autocorrelation remains in the residuals after model fitting, consider a spatial 
predictor such as an auto-covariate term to aid in model interpretation and understanding. 
Models with spatial predictors are not always appropriate for prediction, however comparing 
them to environmental-only models reveals the relative importance of environmental 
variables once spatial structure is accounted for and may help indicate missing processes 
by estimating unexplained spatial structure. 

 Diagnose possible errors in the data and statistical models by looking for unexpected 
relationships in marginal effects and relative influence of predictors. Such plots can provide 
important insight into the structural uncertainty of the model and unaccounted for bias in the 
occurrence data. 

 Create ensemble predictions from multiple models (e.g., from different model fitting 
methods) and calculate variation across source models to provide a spatially explicit 
measure of model uncertainty. 

 Consider using independently collected data for additional model validation where practical. 
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6 GLOSSARY 

This section contains a collection of terms whose definition is critical to understanding the 
contents of this document. We have included this glossary to provide readers a centralized 
reference to the technical terminology. 

AUC: The Area Under the receiver-operator Curve. A common metric for estimating the 
performance of habitat suitability models. 

AIC: The Akaike Information Criterion is a widely used measure of relative model performance 
intended to balance the trade-off between model fit to data, and parsimony. Given a particular 
correlative method and a set of observations and predictor data, it is used to select from a finite 
set of models, where the model with the lowest AIC is preferred. For statistical models, it is a 
function of degrees of freedom in the observational data. 

Bias: The effect of non-random sampling of a variable. Biased data can obscure the pattern of 
interest and lead to incorrect inference. 

BIC: Similar to the AIC, the Bayesian Information Criterion is also used to select among 
alternative models. Based in part on the likelihood function, it has somewhat larger penalty term 
than AIC, and is consequently more likely to select less complex models. 

Coefficient of variation: The ratio of standard deviation to the mean. 

Complexity: Managing complexity is a key part of model building. It has been variously 
described in the literature. Here, unless otherwise qualified, it refers to the complexity of model 
structure, and is equivalent to degrees of freedom used by the model. 

Cross-validation (CV): Process of partitioning data into multiple (K) folds and repeatedly using 
K-1 folds as training data subsets for model fitting, and using the remaining fold for evaluation. 

Deviance: Is a goodness-of-fit measure calculated from the residuals of a statistical model. 

Ecosystem models: A broad class of models used to represent a particular aspect of an 
ecological system, usually in mathematical terms. 

Habitat suitability index (HSI) model: A knowledge-based envelope model drawing on 
literature and expert consultation to describe species relationships with the environment. 

Independent samples: A sample or collection of data is independent from another if there is no 
relationship between them that would allow inferences to be made about one from the other. 

Local ecological knowledge (LEK): Place-based ecological knowledge held by a specific 
group of people related to living organisms and their relationship with the environment, including 
traditional ecological knowledge passed down through generations. 

Model extents: The geographic space over which the model is constructed. 

Presence-Absence model: These models rely on relatively certain absence data, obtained via 
monitoring or repeated visits. The reliability of absence data depends on the species’ 
characteristics (e.g., biology, behaviour, history), their local abundance and ease of detection, 
and the survey design (Hirzel et al. 2006). 

Presence-only model: A model that uses observations of presence only, making it difficult to 
assess a model's specificity. This challenge has been addressed in two ways: 1) use of pseudo-
absences to allow the use of presence-absence frameworks; and 2) evaluation of predictions 
based on their deviance from random (Hirzel et al. 2006). 
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Prevalence: The proportion of presence or abundance values in dependent data set (requires 
absence data to be included in the data). 

Sensitivity: The proportion of presence observations that are correctly predicted as presence 

Spatial autocorrelation (SAC): Observations close in space are more likely to be similar than 
those further apart. 

Species distribution model (SDM): A predictive model of the probability of species occurrence 
across space. While typically based on correlations between observations of species and 
habitat characteristics, species interactions are increasingly being considered. 

Specificity: The proportion of absence observations that are correctly predicted as absence 

Stationarity: A key assumption about the processes that underlie the relationships between 
species and their habitat. These processes are termed stationary when they do not vary across 
the study area, spatially and temporally. The likelihood of this assumption being false increases 
with model extents. 

Threshold: The cut-off used to convert predictions from continuous (probability of occurrence) 
to binary (presence/absence). 

Variance: A measure of the spread of a set of values around their mean. 
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APPENDIX A. PREDICTIONS OF TWELVE SPECIES DISTRIBUTIONS FROM THE 
APPLICATION OF THE FRAMEWORK 

This appendix presents the results from applying the framework presented in Section 4 to 
twelve species. For each species, we present figures showing: 

1. the distribution of the presence and absence observations used for modelling, 

2. predictions of species distribution and their related uncertainty, and 

3. the relative influence and marginal effects of the environmental predictor variables. 

Uncertainty is presented spatially by showing the difference between the knowledge-based 
habitat suitability index (HSI) model prediction and the ensemble model prediction and by 
showing the variation across multiple ensemble predictions using standard deviation (see 
Section 3.6). Each ensemble model combined predictions from a generalized linear model 
(GLM) and a boosted regression tree (BRT) model. 

For species without appropriate data for building correlative models, ochre sea star (Pisaster 
ochraceus), blue mussel complex (Mytilus edulis, M. trossulus, and M. galloprovincialis), 
littleneck clam (Leukoma staminea), and orange sea pen (Ptilosarcus gurneyi), a single HSI 
model is presented with no uncertainty measure. 

We cannot display presence observations or predicted distributions for Northern Abalone due to 
its Species at Risk (SARA) status. Restrictions around sharing information on known Abalone 
habitat are in place to help protect recovering Abalone populations. See Figure 4.3 for the 
relative influence and marginal effects relationships. 
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Pacific Geoduck 

Panopea generosa 

 

Figure A.1. Geoduck presence and absence observations within the nearshore study area. Dashed box 
shows the area displayed in Figure A.2. 
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Figure A.2. Predictions of Geoduck distribution and the related uncertainty. Probability of occurrence 
predictions from A) the habitat suitability index model (HSI) and B) the ensemble model based on 
generalized linear and boosted regression tree models. Model uncertainty is represented by C) the 
difference between the HSI and the ensemble model predictions and D) the standard deviation across 
multiple ensemble model predictions. The area represented here is denoted in figure A.1 by the dashed 
box. 
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Figure A.3. Relative influence of predictors (top) and marginal effects (bottom, multi-panel) for the eight 
most influential environmental predictors from each of the HSI, GLM and BRT Geoduck models. For GLM 
and BRT models, the bars in the relative influence plots represent the mean and the lines show the 
minimum and maximum relative influence across the five-fold CV models. In the marginal effects plots, 
solid lines represent the mean marginal effects by method, and the shaded areas represents the 
minimum and maximum marginal effects across the five-fold CV models. Substrate was represented as a 
categorical variable for the HSI model and as a continuous sandiness index for GLM and BRT models. 
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Red Sea Urchin 

Mesocentrotus franciscanus 

 

Figure A.4. Red Sea Urchin presence and absence observations within the nearshore study area. 
Dashed box shows the area displayed in figure A.5. 
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Figure A.5. Predictions of Red Sea Urchin distribution and the related uncertainty. Probability of 
occurrence predictions from A) the habitat suitability index model (HSI) and B) the ensemble model based 
on generalized linear and boosted regression tree models. Model uncertainty is represented by C) the 
difference between the HSI and the ensemble model predictions and D) the standard deviation across 
multiple ensemble model predictions. The area represented here is denoted in figure A.4 by the dashed 
box. 
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Figure A.6. Relative influence of predictors (top) and marginal effects (bottom, multi-panel) for the eight 
most influential environmental predictors from each of the HSI, GLM and BRT Red Sea Urchin models. 
For GLM and BRT models, the bars in the relative influence plots represent the mean and the lines show 
the minimum and maximum relative influence across the five-fold CV models. In the marginal effects 
plots, solid lines represent the mean marginal effects by method, and the shaded areas represents the 
minimum and maximum marginal effects across the five-fold CV models. Substrate was represented as a 
categorical variable for the HSI model and as a continuous rockiness index for GLM and BRT models. 
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Pterygophora Kelp 

Pterygophora californica 

 

Figure A.7. Pterygophora Kelp presence and absence observations within the nearshore study area. 
Dashed box shows the area displayed in figure A.8. 
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Figure A.8. Predictions of Pterygophora Kelp distribution and the related uncertainty. Probability of 
occurrence predictions from A) the habitat suitability index model (HSI) and B) the ensemble model based 
on generalized linear and boosted regression tree models. Model uncertainty is represented by C) the 
difference between the HSI and the ensemble model predictions and D) the standard deviation across 
multiple ensemble model predictions. The area represented here is denoted in figure A.7 by the dashed 
box. 
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Figure A.9. Relative influence of predictors (top) and marginal effects (bottom, multi-panel) for the eight 
most influential environmental predictors from each of the HSI, GLM and BRT Pterygophora Kelp models. 
For GLM and BRT models, the bars in the relative influence plots represent the mean and the lines show 
the minimum and maximum relative influence across the five-fold CV models. In the marginal effects 
plots, solid lines represent the mean marginal effects by method, and the shaded areas represents the 
minimum and maximum marginal effects across the five-fold CV models. Substrate was represented as a 
categorical variable for the HSI model and as a continuous rockiness index for GLM and BRT models. 
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Eelgrass 

Zostera spp. 

 

Figure A.10. Eelgrass presence and absence observations within the nearshore study area. Dashed box 
shows the area displayed in figure A.11. 
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Figure A.11. Predictions of Eelgrass distribution and the related uncertainty. Probability of occurrence 
predictions from A) the habitat suitability index model (HSI) and B) the ensemble model based on 
generalized linear and boosted regression tree models. Model uncertainty is represented by C) the 
difference between the HSI and the ensemble model predictions and D) the standard deviation across 
multiple ensemble model predictions. The area represented here is denoted in figure A.10 by the dashed 
box. 
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Figure A.12. Relative influence of predictors (top) and marginal effects (bottom, multi-panel) for the eight 
most influential environmental predictors from each of the HSI, GLM and BRT Eelgrass models. For GLM 
and BRT models, the bars in the relative influence plots represent the mean and the lines show the 
minimum and maximum relative influence across the five-fold CV models. In the marginal effects plots, 
solid lines represent the mean marginal effects by method, and the shaded areas represents the 
minimum and maximum marginal effects across the five-fold CV models. Substrate was represented as a 
categorical variable for the HSI model and as a continuous sandiness index for GLM and BRT models. 
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Dungeness Crab 

Metacarcinus magister 

 

Figure A.13. Dungeness Crab presence and absence observations within the shelf study area. 
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Figure A.14. Predictions of Dungeness Crab distribution and the related uncertainty. Probability of 
occurrence predictions from A) the habitat suitability index model (HSI) and B) the ensemble model based 
on generalized linear and boosted regression tree models. Model uncertainty is represented by C) the 
difference between the HSI and the ensemble model predictions and D) the standard deviation across 
multiple ensemble model predictions. 
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Figure A.15. Relative influence of predictors (top) and marginal effects (bottom, multi-panel) for the eight 
most influential environmental predictors from each of the HSI, GLM and BRT Dungeness Crab models. 
For GLM and BRT models, the bars in the relative influence plots represent the mean and the lines show 
the minimum and maximum relative influence across the five-fold CV models. In the marginal effects 
plots, solid lines represent the mean marginal effects by method, and the shaded areas represents the 
minimum and maximum marginal effects across the five-fold CV models. Substrate was represented as a 
categorical variable for the HSI model and as a continuous sandiness index for GLM and BRT models. 
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Quillback Rockfish 

Sebastes maliger 

 

Figure A.16 Quillback Rockfish presence and absence observations within the shelf study area. 
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Figure A.17. Predictions of Quillback Rockfish distribution and the related uncertainty. Probability of 
occurrence predictions from A) the habitat suitability index model (HSI) and B) the ensemble model based 
on generalized linear and boosted regression tree models. Model uncertainty is represented by C) the 
difference between the HSI and the ensemble model predictions and D) the standard deviation across 
multiple ensemble model predictions. 
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Figure A.18. Relative influence of predictors (top) and marginal effects (bottom, multi-panel) for the eight 
most influential environmental predictors from each of the HSI, GLM and BRT Quillback Rockfish models. 
For GLM and BRT models, the bars in the relative influence plots represent the mean and the lines show 
the minimum and maximum relative influence across the five-fold CV models. In the marginal effects 
plots, solid lines represent the mean marginal effects by method, and the shaded areas represents the 
minimum and maximum marginal effects across the five-fold CV models. Substrate was represented as a 
categorical variable for the HSI model and as a continuous rockiness index for GLM and BRT models. 
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Yelloweye Rockfish 

Sebastes ruberrimus 

 

Figure A.19 Yelloweye Rockfish presence and absence observations within the shelf study area. 
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Figure A.20. Predictions of Yelloweye Rockfish distribution and the related uncertainty. Probability of 
occurrence predictions from A) the habitat suitability index model (HSI) and B) the ensemble model based 
on generalized linear and boosted regression tree models. Model uncertainty is represented by C) the 
difference between the HSI and the ensemble model predictions and D) the standard deviation across 
multiple ensemble model predictions. 
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Figure A.21. Relative influence of predictors (top) and marginal effects (bottom, multi-panel) for the eight 
most influential environmental predictors from each of the HSI, GLM and BRT Yelloweye Rockfish 
models. For GLM and BRT models, the bars in the relative influence plots represent the mean and the 
lines show the minimum and maximum relative influence across the five-fold CV models. In the marginal 
effects plots, solid lines represent the mean marginal effects by method, and the shaded areas represents 
the minimum and maximum marginal effects across the five-fold CV models. Substrate was represented 
as a categorical variable for the HSI model and as a continuous rockiness index for GLM and BRT 
models. 
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Ochre Sea Star 

Pisaster ochraceus 

 

Figure A.22. Predictions of Ochre Sea Star distribution from a habitat suitability index model. The area 
represented here is denoted in figure A.1 by the dashed box. 

 

Figure A.23. Relative influence of predictors (top) and marginal effects (bottom, multi-panel) from the 
Ochre Sea Star habitat suitability index model. 
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Blue Mussel complex 

Mytilus edulis, M. trossulus, and M. galloprovincialis 

 

Figure A.24. Predictions of Blue Mussel distribution from a habitat suitability index model. The area 
represented here is denoted in figure A.1 by the dashed box. 

 

Figure A.25. Relative influence of predictors (top) and marginal effects (bottom, multi-panel) from the Blue 
Mussel habitat suitability index model. 



 

87 

Littleneck Clam 

Leukoma staminea 

 

Figure A.26. Predictions of Littleneck Clam distribution from a habitat suitability index model. The area 
represented here is denoted in figure A.1 by the dashed box. 



 

88 

 

Figure A.27. Relative influence of predictors (top) and marginal effects (bottom, multi-panel) from the 
Littleneck Clam habitat suitability index model. 
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Orange Sea Pen 

Ptilosarcus gurneyi 

 

Figure A.28. Predictions of Orange Sea Pen distribution from a habitat suitability index model. 

 

Figure A.29. Relative influence of predictors (top) and marginal effects (bottom, multi-panel) from the 
Orange Sea Pen habitat suitability index model. 
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APPENDIX B. HABITAT SUITABILITY INDEX DESCRIPTIONS 

Habitat suitability index (HSI) models are envelope models that rely on expert opinion to derive 
hypotheses to relate habitat suitability to abiotic factors. The methods for building HSI models 
are detailed in Section 4.2.5. Here we outline the relevant ecology and assumptions made 
describing the environmental (abiotic) predictor relationships considered for each species. 
Knowledge related specifically to British Columbia (BC) was treated preferentially. In its 
absence, knowledge from the broader eastern North Pacific was used. All predictors are 
assumed to be limiting, making the suitability index at any particular location equal to the lowest 
occurring predictor value. 

Predictor relationships were developed specifically for the following environmental predictor 
layers (described in Section 4.2.2) where appropriate: substrate (1 = rock, 2 = mixed, 3 = sand, 
4 = mud); depth (m); mean summer bottom salinity (PSU); mean summer bottom temperature 
(°C); mean summer tidal current speed (m·s-1); and exposure (100s of km). The relationship 
between environmental variables and habitat suitability can change based on the temporal and 
spatial scales of those predictors. Thus, when building expert-derived habitat envelopes, fine 
scale ecological processes are not always captured. As higher resolution predictor layers 
become available, the relationships described herein should be reassessed and modified as 
appropriate. 

During the modelling process we found the substrate layer biased towards rocky substrate (i.e., 
experts noted that rock was often reported in areas of known soft substrate). To a lesser 
degree, there are also predictions of soft substrate in known areas of rock. To manage this 
uncertainty, we assigned marginal suitability to unsuitable substrate categories (0.05 to 0.25 
instead of 0) so that potentially suitable (but mischaracterised) habitat would not be designated 
as completely unsuitable. 
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Northern Abalone 

Haliotis kamtschatkana 

Based on the ecological knowledge outlined below, we included substrate, depth, salinity, tidal 
current speed, and exposure in the HSI model for Northern Abalone. Species distribution model 
predictions for Northern Abalone cannot be displayed due to its Species at Risk status. 
However, the relative influence of predictors for all three model types (HSI, GLM, BRT; Figure 
4.3) shows that exposure and depth had the greatest influence on the HSI model prediction. 

Northern Abalone generally occur from the low intertidal to around 100 m depth, with most 
occurring at depths of less than 10 m in BC waters (Sloan and Breen 1988). We assigned 
suitability as increasing from 0 to 1 between -6 m depth (high water line) and -3 m (mid-
intertidal) to allow for a transition between unsuitable and fully suitable habitat. Suitability 
remained at 1 until 10 m, where we assigned an accelerated decrease in suitability to capture 
the fact that most of the population occurs above 10 m depth. We assigned 0 suitability after 
100 m, the reported limit of the Northern Abalone depth distribution. 

Northern Abalone are typically found on firm substrates such as rocks, boulders, and bedrock 
(DFO 2007), and optimum habitat consists of various combinations of ledges, cutbacks, 
depressions in stones, and boulder piles (Emmett and Jamieson 1988). Juvenile Northern 
Abalone (10 to 70 mm shell length) are found under and on exposed areas of rocks (DFO 2007) 
and are usually associated with crustose algae (Sloan and Breen 1988). Adults (> 70 mm shell 
length) are found on exposed rock surfaces (DFO 2007) and often colonize kelp beds (Williams 
1989). We assigned a full suitability of 1 for rock, 0.5 for mixed, and 0.1 for sand and mud 
substrates. 

Northern Abalone require full salinity (>30 ppt) seawater (COSEWIC 2009). We assigned 
salinity as unsuitable at values < 28 PSU (equivalent to ppt), then a linear increase in suitability 
between 28 and 30 PSU to allow for a transition between unsuitable and fully suitable salinities, 
with a full suitability of 1 thereafter. 

When exposed to temperatures between 2 °C and 24 °C in the laboratory, Northern Abalone 
experienced no mortality or evidence of respiratory stress (Paul and Paul 1998). The range of 
average summer bottom temperatures within our study area fall entirely within the reported 
suitability range. Thus we did not include temperature as an explanatory variable. 

Northern Abalone occur in a wide range of habitats from fairly sheltered bays to exposed 
coastlines (COSEWIC 2009), and are usually found in areas of moderate to high sea water 
exchange, such as in exposed or semi-exposed coastlines (DFO 2007). Growth is more rapid in 
moderately exposed than highly exposed areas, as strong wave action and water currents 
reduce the opportunities for abalone to catch and feed on drift algae (Sloan and Breen 1988). 
Studies in Barkley Sound and the Queen Charlotte Islands have found that translocating 
Northern Abalone from exposed to more sheltered habitat increases growth rates (Breen 1986; 
Emmett and Jamieson 1988), while several studies in BC have determined that Northern 
Abalone density increases with relative wave exposure, but mean shell length decreases (Breen 
and Adkins 1979; Lessard and Campbell 2007; Tomascik and Holmes 2003). Given that growth 
rates increase in more sheltered areas, the lower densities may be a result of historical fishers 
and poachers targeting areas that are easier to reach, and not decreased habitat suitability, 
however we were unable to find evidence to support this. We assumed that exposure was at 
least somewhat suitable over the entire range of values in the study area (0.005 to 84.9 *100 
km) and assigned an optimum suitability of 1 for moderate to high exposure values between 30 
to 70 (100s of km). We assigned an increasing relationship between 0 and 30, and a decreasing 
relationship between 70 and 84.9, to capture the fact that the ability to feed on drift kelp is likely 
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reduced in both low and high wave action. It should, however, be noted that the relationship at 
lower exposures is ambiguous. 

While the influence of tidal currents on Northern Abalone is not well studied, Lessard and 
Campbell (2007) report that the species requires good water exchange, with tidal current or 
wave action present. We assumed that opportunities to capture and feed on drift algae would 
increase with higher current speeds, and assigned an increasing linear relationship with tidal 
current speed across the full range found in the study area. It is likely that drift algae capture 
would be reduced at higher current speeds, however the range of values within the study area 
for mean tidal current speed has a maximum value of 0.81 m·s-1 (1.57 knots), which is still 
relatively low and we assumed that feeding is not inhibited at this speed. 

Given the preference for habitat with some structural complexity, especially for juveniles that 
shelter under rocks, we attempted to include a predictor for habitat complexity, first creating a 
suitability index for rugosity, and then one for slope. The resulting indices were highly restrictive, 
producing HSI models with very little suitable habitat. We presumed that the resolution of the 
predictor data were not high enough to capture the processes acting on Northern Abalone 
distribution. Therefore, we did not include habitat complexity in the model. 
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Pacific Geoduck 

Panopea generosa 

Based on the ecological knowledge outlined below, we included substrate, depth, salinity, tidal 
current speed, and exposure in the HSI envelope model for Pacific Geoduck (Figure A.2). The 
relative influence of predictors for all three model types (HSI, GLM, BRT) shows that substrate, 
depth, and exposure had the greatest influence on the HSI model prediction (Figure A.3). 

We based the preferred depth distribution on Campbell et al. (1998) and dive density survey 
data collected within the study area. Campbell et al. (1998) report geoduck densities increase 
from 1 m depth to between 20 and 24 m depth, and then decrease to 110 m. This corresponds 
to data from the study area, which shows a peak in density at between 10 and 17 m, although 
data are limited at depths below 20 m (Bureau1). However geoduck beds are also found in 
intertidal areas in suitable substrate and conditions. Thus, we constructed an optimum depth 
preference with suitability increasing linearly from 0 to 1 between -2 and 0 m depth, full 
suitability until 25 m, and then a linear decrease in suitability to 0 at 110 m (this gives a value of 
0.7 at 50 m depth, the limit of the study area). 

As infaunal organisms, geoducks are primarily associated with soft bottom habitats, may occur 
on mixed substrate, and are absent on hard bottom (Goodwin and Pease 1989). We assigned a 
suitability of 1 to sand and mud substrates, 0.5 for mixed, and 0.25 for rock. Though geoduck 
are absent on hard bottom, the assigned value of 0.25 for rock accounts for an over-prediction 
of rock in the substrate layer, where some areas known to be soft substrate are predicted as 
rock. 

Goodwin (1973) identified optimum bottom salinity and temperature ranges for larval survival. 
We used these values to define an optimum suitability curve, however the observed average 
summer bottom temperature in the study area was almost entirely within the optimal values thus 
this predictor was not included in the model. 

High wind wave energy can result in poor substrate stability, reducing habitat suitability for 
geoducks. However, geoducks do seem to prefer some water movement as they are not found 
in highly sheltered areas, such as the heads of inlets (Bureau1). We therefore excluded very low 
and moderate to high exposure areas by assigning a linear increase in suitability from 0 to 1 
between exposure values of 0 and 1 (100s of km), an optimum suitability of 1 until 25, then a 
linear decrease to 0 suitability at 50. We also ensured some water movement due to tides, 
excluding areas with a maximum tidal current speed < 3 cm·s-1, and then increasing habitat 
suitability to a maximum at 5 cm·s-1. The exposure and tidal values were developed in 
consultation with D. Bureau based on the position of known geoduck beds. 

  

                                                

1 Bureau, D. Research Biologist, Shellfish, Aquatic Resources, Research and Assessment Division 
(ARRAD), Science, Fisheries and Oceans Canada. March 2015 and December 2018, personal 
communication. 
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Red Sea Urchin 

Mesocentrotus franciscanus 

Based on the ecological knowledge outlined below, we included substrate, depth (conditioned 
on exposure), and salinity in the HSI envelope model for Red Sea Urchin (Figure A.5). The 
relative influence of predictors for all three model types (HSI, GLM, BRT) shows that depth had 
the greatest influence on the HSI model prediction (Figure A.6). 

Urchins inhabit primarily rocky substrate, though can occur on mixed or soft substrate in low 
energy areas. We assumed a full suitability of 1 on rock substrate, 0.5 on mixed, 0.1 on sand, 
and 0.05 on mud. 

Red Sea urchins are typically distributed from the intertidal to 50 m depth (DFO 2018), though 
individuals can be found to 284 m (Galloway2). Dan Leus3 emphasized the importance of energy 
interacting with depth. This led to the separation of depth preference based on energy regime. 
To create the depth-exposure interaction, we assigned a low exposure depth relationship in 
areas where exposure values were 20 (100s of km) or less and a high exposure depth 
relationship in areas where exposure values were greater than 20 (100s of km). These 
relationships were combined into one predictor for depth, conditioned on exposure. For the low 
exposure depth relationship, we assigned depth as suitable across the range of -6 to 284 m, 
with a linear increase from 0 to 1 between -6 and -4 m depth, an optimum suitability of 1 from -4 
to 9 m depth, and then a linear decrease to a marginal suitability of 0.1 by 14 m depth. For the 
high exposure depth relationship, we assigned depth as suitable across the range of -3 to 284 
m, with a linear increase from 0 to 1 between 0 and 2 m depth, an optimum suitability of 1 from 
2 to 15 m depth, and then a linear decrease to a marginal suitability of 0.1 by 20 m depth. For 
the high exposure depth relationship, the upper values of the range were shifted down, as the 
urchins will move deeper to avoid being washed away in high exposure areas. We assumed 
that this effect would not be seen below 20 m depth. In both high and low exposure depth 
relationships, there is a linear increase in suitability from 0 to 1 at the top of the depth range to 
capture the transition from unsuitable to suitable depths. Similarly, there is a transition from fully 
to marginally suitable just below the optimum depth range in both relationships. 

Salinity was assigned as unsuitable below 28 PSU, with a linear increase in suitability between 
28 and 31 PSU, and full suitability thereafter. 

These urchins prefer moderate to strong currents (DFO 2018), as there will be increased food 
availability in these conditions, but avoid high-exposure areas where water pressure could turn 
them over and expose them to predation (Leus3). We included exposure as a condition for 
depth, where high exposure causes urchins to move deeper to avoid high wave action. Tidal 
current speed was not included in the model, as the predictors were not on an appropriate scale 
to resolve the ecological processes occurring. 

  

                                                

2 Galloway, A. Assistant Professor, University of Oregon, Oregon Institute of Marine Biology. October 
2018, personal communication. 

3 Leus, D. Urchin Biologist, Marine Invertebrate Section, Stock Assessment & Research Division (StAR), 
Science, Fisheries and Oceans Canada. 2015 and December 2018, personal communication. 
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Pterygophora Kelp 

Pterygophora californica 

Based on the ecological knowledge outlined below, we included substrate, depth, salinity, tidal 
current speed, and exposure in the HSI envelope model for Pterygophora Kelp (Figure A.8). 
The relative influence of predictors for all three model types (HSI, GLM, BRT) shows that depth 
had the greatest influence on the HSI model prediction (Figure A.9). 

Pterygophora is abundant on rocks and cobble (Druehl and Clarkston 2016; Hawkes et al. 
1979) and we assumed a full suitability of 1 on rock substrate, 0.5 on mixed, and 0.1 on both 
sand and mud. 

This species is found subtidally from 2 to 20 m depth (Mondragon and Mondragon 2003). We 
assigned depth as suitable over the range of 0 m (low water line) to 20 m, with a linear increase 
in suitability from 0 to 1 between 0 and 2 m depth, full suitability of 1 between 2 and 10 m, and 
then a delayed decrease to 0 suitability at 20 m. The linear increase from 0 to 2 m was included 
to give a transition between fully suitable and unsuitable, or marginally suitable habitat. 

During preliminary review, it was suggested to use salinity tolerance values from Northern 
Abalone, as they are found in similar habitat as Pterygophora Kelp. Northern Abalone prefer full 
salinity seawater (>30 PSU) (COSEWIC 2009). We assigned salinity as unsuitable below 28 
PSU, with increasing suitability between 28 and 30 PSU, and full suitability thereafter. The 
increasing suitability between 28 and 30 PSU was included to create a transition from 
unsuitable to fully suitable habitat. 

This species typically becomes established on rocks in wave exposed areas (Druehl and 
Clarkston 2016) and is adapted for surf-swept and high current habitat (Lamb and Hanby 2006). 
Exposure was assigned as suitable over the range of 0 to 84.9 (100s of km), with a linear 
increase in suitability from 0 to 1 between 0 and 0.3, full suitability of 1 between 0.3 and 30, and 
then a linear decrease to 0 suitability at 84.9 (100s of km). 

Tidal current speed was assigned as suitable over the range of 0 to 0.81 m·s-1, with a normal 
distribution across this range, giving a full suitability of 1 at 0.4 m·s-1. 
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Eelgrass 

Zostera spp. 

Based on the ecological knowledge outlined below, we included substrate, depth, salinity, 
temperature, tidal current speed, and exposure in the HSI model for Eelgrass (Figure A.11). The 
relative influence of predictors for all three model types (HSI, GLM, BRT) shows that depth and 
substrate had the greatest influence on the HSI model prediction (Figure A.12). 

Eelgrass occurs from the mid-intertidal down to 30 m depth (Phillips and Lewis 1983). In 
consultation with experts, depth was assigned as suitable over the range of -6 m (high water 
line) to 30 m, with a linear increase in suitability from 0 to 1 between -6 and -3.3 m depth, full 
suitability of 1 between -3.3 and 10 m, and a linear decrease to a marginal suitability of 0.1 at 20 
m, and then 0 suitability after 30 m depth. The linear increase and decrease in suitability from -6 
to 3.3 m and 10 to 20 m (respectively) were included to give transitions between fully suitable 
and unsuitable, or marginally suitable habitat. 

This species is found rooted in sandy or muddy sediments (Vandermeulen 2005) with an 
optimum habitat of mixed sand and mud (Phillips and Lewis 1983). For substrate, we assumed 
a full suitability of 1 on sand substrate, 0.75 on mud, 0.5 on mixed, and 0.25 on rock. 

Eelgrass can tolerate a large range of temperatures from -6 to 40.5 °C, with an optimum 
temperature range of 10 to 20 °C (Phillips and Lewis 1983). Eelgrass can also tolerate a large 
range of salinities from freshwater to 42 PSU, with an optimum salinity range of 10 to 30 PSU 
(Phillips and Lewis 1983). We used the ranges and optima reported in the literature for both 
temperature and salinity. A full suitability of 1 was assigned across the optimum range, with a 
linear decrease in suitability down to 0 at the edges of the full range for each predictor. 

Optimum habitat has light wave action (Phillips and Lewis 1983), and Eelgrass is common in the 
protected waters of bays and estuaries (Mondragon and Mondragon 2003). For exposure 
suitability, we assigned a decreasing linear relationship from 0 to 60 (100s of km), with a 
suitability of 0 thereafter. This relationship designated high exposure areas as unsuitable, as the 
optimum habitat for Eelgrass has light wave action. 

Tidal current speed was assigned as suitable over the range of 0 to 0.81 m·s-1, with a normal 
distribution across this range, giving a full suitability of 1 at 0.4 m·s-1. This relationship ensures 
that both stagnant and high-current habitat were assigned marginal suitability. 
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Dungeness Crab 

Metacarcinus magister 

Based on the ecological knowledge outlined below, we included substrate, depth, salinity, and 
temperature in the HSI model for Dungeness Crab (Figure A.14). The relative influence of 
predictors for all three model types (HSI, GLM, BRT) shows that depth had the greatest 
influence on the HSI model prediction (Figure A.15), but influence of the other predictors was 
also quite high. This occurred because much of the study area had an overlap of full suitability 
for all predictors. 

Dungeness crab occur from the low intertidal to 230 m depth (DFO 2017). A study by Stone and 
O’Clair (2001) from an Alaskan estuary reports variable depth preferences by gender and 
season ranging from less than 10 m to over 70 m, we thus assume a suitability of 1 across the 
full depth range for Dungeness (-2 to 230 m depth). 

Dungeness crab typically inhabit substrates comprised of sand, mud, or silt (DFO 2017), 
although they have been observed on hard substrate (J. Lessard, personal observation). Given 
these preferences, we assign a suitability of 1 to soft bottom, 0.5 to mixed bottom, and 0.1 to 
hard bottom. 

Despite having a large portion of their habitat in estuarine areas exposed to frequent episodes 
of low salinity, Dungeness crab are considered weak osmoregulators (Engelhardt and Dehnel 
1973). They show behavioural and physiological signs of stress at salinities below 24 ppt (Curtis 
and McGaw 2012; McGaw et al. 1999) and are unable to tolerate prolonged exposure below 12 
ppt (Cleaver 1949). Considering field data where Dungeness were rarely observed in salinities 
below 10 ppt (Curtis and McGaw 2008), we assign suitability increasing from 0 to 1 between 10 
and 24 PSU (equivalent to ppt) and a full suitability of 1 thereafter. 

In terms of water temperature, growth and survival are limited above 15°C due to increased 
energy expenditure associated with respiration (Kondzela and Shirley 1993). The upper lethal 
temperature limit for Dungeness crab ranges from 20 to 25 °C, depending on the season 
(Pauley et al. 1989). In a lab experiment, where Curtis and McGaw (2012) challenged 
Dungeness crab with starvation and temperature and salinity stresses, crabs tolerated 
temperatures as high as 15°C. We assign an optimum suitability of 1 for temperatures up to 15 
°C, with suitability decreasing to 0 by 25 °C. 

Dungeness crab are active predators of shellfish, typically clams, and may also catch fish. They 
have a strong preference for fresh food but will scavenge dead prey (Curtis 20194). Dungeness 
crab predation in estuaries is a balancing act between physiological challenges and the 
availability of clam prey that typically occur in shallower, less saline waters. This implies that on 
a more regional scale, estuaries of the kind preferred by clams would be important Dungeness 
habitat. For crab, their estuarine habitat is a function of salinity, temperature, and exposure, as 
accessibility of the clam prey depends on stratified waters that allow the formation of a saline 
wedge during a rising tide (Curtis 20194). There is currently no exposure dataset available at 
the correct spatial resolution for the shelf study area, so we attempted to use tidal current speed 
to highlight areas of low water movement where this saline wedge may form. We found that the 
100 m by 100 m resolution used in this study area was too coarse to resolve fine scale 
processes such as salinity wedge formation. Thus, tidal current speed was not included in the 
model.  

                                                

4 Curtis, D. Research Biologist, Shellfish Section, Stock Assessment and Research Division, Fisheries 
and Oceans Canada. January 2019, personal communication. 
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Quillback Rockfish 

Sebastes maliger 

Based on the ecological knowledge outlined below, we included substrate, depth, salinity, and 
temperature in the HSI model for Quillback Rockfish (Figure A.17). The relative influence of 
predictors for all three model types (HSI, GLM, BRT) shows that substrate had the greatest 
influence on the HSI model prediction (Figure A.18), but influence of the other predictors was 
also quite high. This occurred because much of the study area had an overlap of full suitability 
for all predictors. 

During review of the preliminary model, one suggestion was to create separate models for 
juveniles and adults. Given time constraints, however, we have modeled juveniles and adults 
together and will create separate models at a later date. 

Quillback Rockfish are distributed from the Kenai Peninsula in the Gulf of Alaska to the Anacapa 
Passage in southern California (Love et al. 2002), and depth is generally reported to be the 
most important determinant of distribution (National Marine Fisheries Service 2014). Across its 
range, this species has been reported subtidally to 274 m depth (Love et al. 2002). In BC, 
Quillback observations range from 9 to 186 m depth (98% of all survey data in Ground Fish Bio 
database – top and bottom 1% excluded) and newly settled juveniles have likely been observed 
in Eelgrass beds and other intertidal areas (Copper, Quillback, and Brown Rockfish juveniles 
are indistinguishable; Haggarty5). Considering all of these reported ranges, we assigned a full 
depth suitability of 1 from 0 to 168 m depth, with suitability decreasing to 0 by 274 m. 

Quillback aggregate over hard, complex substrates with some vertical relief, such as broken 
rock, rock reefs, ridges, and crevices (Richards 1986) and juveniles may also be seen over 
cobble and soft substrates, such as in eelgrass beds (Richards and Hand 1987). We thus 
assign a full suitability of 1 for rock and mixed substrates, 0.5 suitability for sand, and a marginal 
suitability of 0.1 for mud. 

Within BC, temperatures from Quillback observations in bottom trawl surveys range from 5.78 to 
23 °C and salinities from Quillback observations in bottom trawl (2013 to 2018) and longline 
surveys (2018) range from 28.2 to 33.9 PSU (Keppel6). Temperature and salinity ranges 
reported for Quillback and Yelloweye Rockfish in southeastern Alaska (Johnson et al. 2003) 
near the northern end of their distribution fall within the temperature ranges observed in BC, and 
we were unable to find reported temperature or salinity ranges near the southern portion of their 
distribution. Given a lack of information on preferences and optima, we assign a full suitability of 
1 across the temperature mean and salinity mean ranges observed for BC. 

Quillback prefer complex habitats such as fractured bedrock and boulder complexes (e.g., 
National Marine Fisheries Service 2014; Yamanaka et al. 2006). To capture this habitat 
complexity, we first created a suitability index for rugosity, and then one for slope. The resulting 
indices were highly restrictive, producing HSI models with very little suitable habitat, as data 
were not on a fine enough scale to capture the processes acting on Quillback distribution. We 
therefore chose not to include rugosity and slope indices in the model. 

  

                                                

5 Haggarty, D. Inshore Rockfish and Lingcod Program Head, Groundfish Section, Stock Assessment and 
Research Division, Fisheries and Oceans Canada. December 2018, personal communication. 

6Keppel, E. Biologist, Groundfish Section, Stock Assessment and Research Division, Fisheries and 
Oceans Canada. December 2018, personal communication.  
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Yelloweye Rockfish 

Sebastes ruberrimus 

Based on the ecological knowledge outlined below, we included substrate, depth, salinity, and 
temperature in the HSI model for Yelloweye Rockfish (Figure A.20). The relative influence of 
predictors for all three model types (HSI, GLM, BRT) shows that substrate had the greatest 
influence on the HSI model prediction (Figure A.21), but influence of the other predictors was 
also quite high. This occurred because much of the study area had an overlap of full suitability 
for all predictors. 

During review of the preliminary model, one suggestion was to create separate models for 
juveniles and adults. Given time constraints, however, we have modeled juveniles and adults 
together and will create separate models at a later date. 

Yelloweye are generally distributed from Umnak and Unalaska Islands in the Aleutian Islands to 
Ensenada in northern Baja California and have been reported from 15 to 549 m depth (Love et 
al. 2002). In BC waters, inshore Yelloweye observations range from 31 to 250 m depth (98% of 
all survey data in Ground Fish Bio database – top and bottom 1% excluded). Considering these 
reported ranges, we assigned depth suitability as increasing from 0 to 1 between 15 and 31 m 
to give a transition from unsuitable to fully suitable depth. Suitability remains at 1 from 31 to 250 
m, then decreases to 0.1 by 300 m. Suitability remains marginal at 0.1 until 549 m depth, after 
which suitability is 0. The decrease between 250 and 300 m allows for a transition between fully 
and marginally suitable depth, and fits with feedback from preliminary review that depth 
suitability likely decreases faster than a linear decrease between 250 and 549 m. 

Yelloweye prefer rocky habitat, but may occupy benthic substrates such as sand and mud 
(National Marine Fisheries Service 2014). We thus assign a full suitability of 1 for rock and 
mixed substrates, 0.25 suitability for sand (Haggarty), and a marginal suitability of 0.1 for mud. 

Within BC, temperatures observed from Yelloweye observations in bottom trawl surveys range 
from 4.56 to 16.8 °C and salinities from Yelloweye observations in bottom trawl (2013 to 2018) 
and longline surveys (2018) range from 28.3 to 34 PSU (Keppel6). Temperature and salinity 
ranges reported Yelloweye in southeastern Alaska (Johnson et al. 2003) near the northern end 
of their distribution fall within the temperature ranges observed in BC, and we were unable to 
find reported temperature or salinity ranges near the southern portion of their distribution. Given 
a lack of information on preferences and optima, we assign a full suitability of 1 across the 
temperature and salinity ranges observed for BC. 

Yelloweye prefer complex habitats such as fractured bedrock and boulder complexes (e.g., 
National Marine Fisheries Service 2014; Yamanaka et al. 2006). To capture this habitat 
complexity, we first created a suitability index for rugosity, and then one for slope. The resulting 
indices were highly restrictive, producing HSI models with very little suitable habitat, as data 
were not on a fine enough scale to capture the processes acting on Yelloweye distribution. We 
therefore chose not to include rugosity and slope indices in the model. 
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Ochre Sea Star 

Pisaster ochraceus 

Based on the ecological knowledge outlined below, we included substrate and depth in the HSI 
model for the Ochre Sea Star (Figure A.22). The relative influence of predictors shows that 
depth had the greatest influence on the model prediction (Figure A.23). 

Ochre sea stars occur from the mid-intertidal down to 87 m depth (Harbo 2011), with an 
optimum range from -3 m (mid-intertidal) to 2 m (Harley7). We assigned depth as suitable across 
the range of -5 to 87 m, with a linear increase from 0 to 1 between -5 and -3 m depth, an 
optimum suitability of 1 from -3 to 2 m depth, and then a linear decrease to a marginal suitability 
of 0.1 by 10 m depth. There is a linear increase in suitability from 0 to 1 at the top of the depth 
range to capture the transition from unsuitable to suitable depths. Similarly, there is a transition 
from fully to marginally suitable just below the optimum depth range. 

These sea stars inhabit rocky coastline and are ecologically significant predators in a broad 
range of environments, from sheltered lagoons to the most wave-exposed shorelines (Dayton 
1971; Levin and Paine 1974). For substrate, we assigned a full suitability of 1 for rock, moderate 
suitability of 0.5 for mixed, and marginal suitabilities of 0.1 for sand and 0.05 for mud substrates. 
Given that ochre sea stars can tolerate a wide range of wave and tidal energies, tidal current 
speed and exposure were not included in the model. 

Ochre Sea Stars can also be found in a wide range of salinities and temperatures. In a study 
investigating the effect of salinity changes on low- and high-salinity populations, Held and 
Harley (2009) used populations found naturally occurring at 20 PSU (Vancouver, BC) and 30 
PSU (Bamfield, BC). The authors found that the low salinity populations were able to survive for 
extended periods at 15 PSU, the lowest salinity tested, and that each of the populations had the 
highest feeding rates at their in situ salinity. In a study investigating the effects of temperature, 
Gooding et al. (2009) found that growth rates increased linearly over temperatures from 5 to 21 
°C. However, Sanford (2002) also found greater growth per gram of mussel tissue consumed at 
9 °C than at 12 °C, suggesting that reduced consumption under colder conditions was balanced 
by reduced metabolic costs. The lethal limit for body temperature is 35.8 °C (Pincebourde et al. 
2008). Given that the reported ranges are within those found in the study area, temperature and 
salinity were not included in the model. Even though growth rates are reported to increase 
linearly over temperatures from 5 to 16 °C, it is unclear what the optimum range is, and we 
assume all of these temperatures are suitable for survival. 

  

                                                

7 Harley, C. Professor, UBC Department of Zoology and Institute for the Oceans and Fisheries. April 
2019, personal communication. 
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Blue Mussel complex 

Mytilus edulis, M. trossulus, and M. galloprovincialis 

Based on the ecological knowledge outlined below, we included substrate, depth, and tidal 
current speed in the HSI model for the Blue Mussel complex (Figure A.24). The relative 
influence of predictors shows that depth had the greatest influence on the model prediction 
(Figure A.25). 

In the Pacific, there are three species or sub-species considered to be part of the Mytilus edulis 
complex, M. edulis, M. galloprovincialis, and M. trossulus. These species cannot be 
distinguished based on shell features alone, and are able to hybridize (Harbo 2011). We 
modeled these species together. 

Harbo (2011) reports that these mussels occur from the intertidal to 5 m depth and Williams 
(1989) reports a maximum depth of 45 m, with dense colonization between -3.7 (high mid-
intertidal) and -1.5 m (low intertidal) depth. Depth was assigned as suitable across the range 
from -6 to 45 m, with a linear increase in suitability from 0 to 1 between -6 and -5 m depth, full 
suitability of 1 from -5 to -1.5 m (low intertidal) depth, and then a linear decrease to a marginal 
suitability of 0.1 by 5 m depth. The increase in suitability at the top of the depth range and the 
decrease in suitability between -1.5 and 5 m depth were included to capture transitions between 
fully and marginally suitable habitat. During preliminary review of the predictors, reviewers 
suggested that the optimal depth range for blue mussels would be where the small acorn 
barnacle, Chthamalus dalli, occurs (Norgard and Bigg8). Klinkenberg (2017) reports that C. dalli 
occurs high in the intertidal zone, and Morris et al. (1980) report high to mid-intertidal 
occurrence. To capture this range, we extended the optimum depth range for blue mussel 
reported by Williams (1989; -3.7 to -1.5 m depth) to include the upper intertidal (up to -5 m 
depth). 

Blue mussels form dense aggregations on hard surfaces (Harbo 2011) and can be found on 
rocks, pier pilings, floats, gravel, compact mud, and hard-shelled organisms (Carlton 2007; 
Morris et al. 1980; Williams 1989). For substrate, we assigned a full suitability of 1 for rock, 
moderate suitability of 0.5 for mixed, and a marginal suitability of 0.1 for sand and mud 
substrates. 

The mussels can tolerate a wide range of salinities and temperatures, from 15 to 40 PSU 
(Williams 1989) and 10 to 25 °C (Brenko and Calabrese 1969), respectively. Salinity and 
temperature were not included in the model because values in the study area were within the 
reported ranges. 

Blue Mussels can also tolerate a wide range of wave and tidal energies, occurring from 
sheltered estuaries to exposed coastline (Williams 1989). However, reviewers indicated that 
some locations within the study area are too stagnant for survival (Norgard and Bigg8). We used 
tidal current speed to exclude stagnant habitat, and assigned increasing suitability from 0 to 1 
between 0.03 and 0.05 m·s-1, with a full suitability of 1 thereafter. Exposure was not included in 
the model, as blue mussels are found in a wide range of wave energies and we were able to 
exclude the lowest energy regimes using the tidal current speed predictor relationship. 

  

                                                

8 Norgard, T., and Bigg, M. Marine Spatial Ecology and Analysis (MSEA) section, Science, Fisheries and 
Oceans Canada. December 2018, personal communication. 
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Littleneck Clam 

Leukoma staminea 

Based on the ecological knowledge outlined below, we included substrate, depth, tidal current 
speed, and exposure in the HSI model for Littleneck Clam (Figure A.26). The relative influence 
of predictors shows that depth had the greatest influence on the model prediction (Figure A.27). 

Littleneck Clam inhabits areas with stable sand, packed mud, or gravel clay mixtures, and is 
sometimes found in gravelly sediments among rocks (Williams 1989). We assigned a full 
suitability of 1 for sand and mud substrates, moderate suitability of 0.5 for mixed substrate, and 
a marginal suitability 0.1 for rock. 

Harbo (2011) reports that this clam inhabits the mid intertidal down to 10.5 m depth, and 
Williams (1989) reports a depth range of slightly above mid-intertidal to 12 m. For depth, we 
used a delayed decreasing relationship, assuming that these clams occur preferentially at the 
shallow end of their depth range, where nutrients and dissolved oxygen are available in higher 
concentrations. We assigned suitability as increasing from 0 to 1 between -6 m (high water line) 
and -3 m (mid-intertidal) depth, and then a delayed decrease, reaching 0 suitability at 12 m 
depth. 

Adult Littleneck Clams can survive in temperatures ranging from 0 to 25 °C (Chew and Ma 
1987) and salinities from 20 to 35 PSU (Glude 1978; Quayle and Bourne 1972). The range of 
temperature mean and salinity mean values in our study are were entirely within the reported 
temperature and salinity ranges, thus no temperature or salinity suitability index was required in 
the model. 

The Littleneck Clam is common on protected beaches in bays and estuaries where exposure is 
low and wave and current energy are low to moderate (Williams 1990). For exposure values, we 
created a threshold relationship, with a full suitability of 1 across low exposure values up to 30 
(100s of km) then a linear decrease to 0 suitability at the moderate exposure value of 50. This 
excluded high exposure areas where soft substrates would likely be washed away. Similarly, we 
kept tidal current speed values low to moderate, with a suitability of 1 up to 0.4 m·s-1 then a 
linear decrease to 0 suitability at 0.81 m·s-1. 
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Orange Sea Pen 

Ptilosarcus gurneyi 

Based on the ecological knowledge outlined below, we included substrate, depth, and tidal 
current speed in the HSI model for the Orange Sea Pen (Figure A.28). The relative influence of 
predictors shows that depth had the greatest influence on the model prediction (Figure A.29). 

The Orange Sea Pen is a sessile colonial anthozoan found in dense aggregations in soft 
sediment habitat (Lamb and Hanby 2006). Given this preference, we assign a suitability of 1 for 
sand and mud substrates and 0.5 for mixed substrate. In the substrate predictor layers for the 
shelf study area there are several areas where rock is predicted in areas known to be primarily 
sand or mud. To account for this, we assign a suitability of 0.25 for rock substrate so that these 
areas are not predicted as completely unsuitable. 

Orange Sea Pens are reported to occur from the intertidal to 100 m depth or more by Harbo 
(2011) and subtidally to 135 m depth by Lamb and Hanby (2006). Combining these reports, and 
in the absence of information on depth preferences, we assume a suitability of 1 across their full 
reported depth range from the low intertidal (-1 m) to 135 m depth. 

Orange Sea Pens are passive suspension feeders and rely on ambient currents to deliver food 
to a network of polyps on leaf-like branches on the upper part of the organism. In a series of 
laboratory and field experiments near Friday Harbour, Washington, Best (1988) examined the 
relationship between ambient (tidal) velocity and feeding efficiency in the Orange Sea Pen. 
They estimated feeding efficiencies increased to maxima between 8 and 20 cm·s-1, depending 
on the size of the individual, outside of which efficiency decreased. Based on these estimates, 
we assign a parabolic relationship for velocity with an optimum suitability of 1 occurring at 14 
cm·s-1. 

We do not include salinity or temperature predictors, as there is a lack of information on 
thresholds and preferences for these two environmental variables for this species. 
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