Observations of Size-at-Age for Sockeye Salmon (Oncorhynchus nerka) Smolts from Sproat Lake, British Columbia (1977-2016)

Kim D. Hyatt, Howard W. Stiff and D. Paul Rankin

Biological Sciences Branch
Department of Fisheries and Oceans
Pacific Biological Station
Nanaimo, British Columbia V9R 5K6

2019

Canadian Manuscript Report of Fisheries and Aquatic Sciences 3186

Canadian Manuscript Report of Fisheries and Aquatic Sciences

Manuscript reports contain scientific and technical information that contributes to existing knowledge but which deals with national or regional problems. Distribution is restricted to institutions or individuals located in particular regions of Canada. However, no restriction is placed on subject matter, and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely, fisheries and aquatic sciences.

Manuscript reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base Aquatic Sciences and Fisheries Abstracts.

Manuscript reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page.

Numbers 1-900 in this series were issued as Manuscript Reports (Biological Series) of the Biological Board of Canada, and subsequent to 1937 when the name of the Board was changed by Act of Parliament, as Manuscript Reports (Biological Series) of the Fisheries Research Board of Canada. Numbers 1426-1550 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Manuscript Reports. The current series name was changed with report number 1551.

Rapport manuscrit canadien des sciences halieutiques et aquatiques

Les rapports statistiques servent de base à la compilation des données de classement et d'archives pour lesquelles il y a Les rapports manuscrits contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles, mais qui traitent de problèmes nationaux ou régionaux. La distribution en est limitée aux organismes et aux personnes de régions particulières du Canada. II n'y a aucune restriction quant au sujet; de fait, la série reflète la vaste gamme des intérêts et des politiques de Pêches et Océans Canada, c'est-à-dire les sciences halieutiques et aquatiques.

Les rapports manuscrits peuvent être cités comme des publications à part entière. Le titre exact figure au-dessus du résumé de chaque rapport. Les rapports manuscrits sont résumés dans la base de données Résumés des sciences aquatiques et halieutiques.

Les rapports manuscrits sont produits à l'échelon régional, mais numérotés à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page du titre.

Les numéros 1 à 900 de cette série ont été publiés à titre de Manuscrits (série biologique) de l'Office de biologie du Canada, et après le changement de la désignation de cet organisme par décret du Parlement, en 1937, ont été classés comme Manuscrits (série biologique) de l'Office des recherches sur les pêcheries du Canada. Les numéros 901 à 1425 ont été publiés à titre de Rapports manuscrits de l'Office des recherches sur les pêcheries du Canada. Les numéros 1426 à 1550 sont parus à titre de Rapports manuscrits du Service des pêches et de la mer, ministère des Pêches et de l'Environnement. Le nom actuel de la série a été établi lors de la parution du numéro 1551.

Observations of Size-at-Age for Sockeye Salmon (Oncorhynchus nerka) Smolts from Sproat Lake, British Columbia (1977-2016)

by

Kim D. Hyatt ${ }^{1}$, Howard W. Stiff ${ }^{1}$ and D. Paul Rankin ${ }^{2}$

[^0]© Her Majesty the Queen in Right of Canada, 2019
Cat. No. Fs97-4/3186E-PDF ISBN 978-0-660-32318-3 ISSN 1488-5387

Correct citation for this publication:
Hyatt, K. D., Stiff, H. W. and Rankin, D. P. 2019. Observations of Size-at-Age for Sockeye Salmon (Oncorhynchus nerka) Smolts from Sproat Lake, British Columbia (19772016). Can. Manu. Rep. Fish. Aquat. Sci. 3186: v + 77 p.

Table of Contents

ABSTRACT iv
RÉSUMÉ v
INTRODUCTION 1
STUDY AREA 1
METHODS 2
RESULTS 3
DISCUSSION 5
Sampling Effort 5
Smolt Migration 5
Smolt Size and Condition 6
Seasonal Trends in Smolt Size 7
Best Estimates of Annual Smolt Size 7
ACKNOWLEDGEMENTS 8
LITERATURE CITED 9
MAPS 12
FIGURES 14
TABLES 21
APPENDIX I - Size Statistics by Sample Date 28
APPENDIX II - Seasonal Sample Size 36
APPENDIX III - Seasonal Trends in Size 42
APPENDIX IV - Annual Size Frequency Distributions 50
APPENDIX V - Annual Length/Weight Relations 61
APPENDIX VI - Annual Pre-Smolt \& Smolt Statistics 69
APPENDIX VII - Annual Size-at-Age Correlation 71
APPENDIX VIII - Mean Annual Size Statistics by Age Class 72
APPENDIX IX - Sample Meta-Data 73
APPENDIX X - Data Issues 75

Abstract

Hyatt, K. D., Stiff, H. W. and Rankin, D. P. 2019. Observations of Size-at-Age for Sockeye Salmon (Oncorhynchus nerka) Smolts from Sproat Lake, British Columbia (19772016). Can. Manu. Rep. Fish. Aquat. Sci. 3186: v +77 p.

Personnel from the Salmon in Regional Ecosystems Program (SIRE-P) and its predecessors have conducted annual sampling of juvenile salmon (Oncorhynchus nerka) migrating seaward from Sproat Lake in most years between 1977 and 2016. Observations of biological traits of smolts (e.g. size at sea entry) help inform ongoing research into the likely origins of large variations in production exhibited by Sockeye Salmon populations in freshwater and marine ecosystems in Canada's Pacific region. For Sproat Lake, smolts were collected from a fyke net set on one to several dates during the spring migration period (April to early June) at the outlet of the lake (Sproat River). Individual fish from sample collections were processed and measured for fork length and weight, and scales were taken. Fish weight (wet weight in grams) and length (fork length in mm) were obtained from either fresh, frozen or preserved samples but all observations here are expressed as fresh measure equivalents. Summary statistics of size-at-age of Sockeye Salmon smolts are tabulated in this report by survey date and age. A consistent annual index of Sproat Lake Sockeye smolt size was identified for the predominant age-1 class of migrants, based on a subset of the sample observations collected between April $14^{\text {th }}\left(10^{\text {th }}\right.$ percentile) and May $22^{\text {nd }}$ ($90^{\text {th }}$ percentile) of each year. The all-year averages for fork length and wet weights of age 1.0 Sockeye smolts exiting Sproat Lake were 7.4 cm and 3.7 grams respectively. The allyear averages for fork length and wet weights of age 2.0 Sockeye smolts were 8.7 cm and 5.8 grams respectively. Missing years of mean annual age 1 smolt size (2004, 2005, 2007, 20132016) were estimated based on a multi-variate relationship for average smolt length as a function of the average length of fry from trawl samples obtained in Sproat Lake during the previous fall/winter and the timing of the in-lake surveys.

RÉSUMÉ

Hyatt, K. D., Stiff, H. W. and Rankin, D. P. 2019. Observations of Size-at-Age for Sockeye Salmon (Oncorhynchus nerka) Smolts from Sproat Lake, British Columbia (19772016). Can. Manu. Rep. Fish. Aquat. Sci. 3186: v +77 p.

Les employés du Programme du saumon dans les écosystèmes régionaux et leurs prédécesseurs ont effectué des échantillonnages annuels de saumons juvéniles (Oncorhynchus nerka) qui dévalaient du lac Sproat la plupart des années entre 1977 et 2016. L'observation des caractéristiques biologiques des saumoneaux (p. ex. la taille à l'entrée en mer) aide à orienter les recherches en cours sur les origines probables des grandes variations de la production des populations de saumon rouge dans les écosystèmes d'eau douce et marins de la région du Pacifique du Canada. Dans le cas du lac Sproat, les saumoneaux ont été capturés à l'aide d'un verveux à une ou plusieurs dates durant la migration printanière (d'avril à début juin) à la sortie du lac (rivière Sproat). Les poissons individuels ont été traités; on a mesuré leur longueur à la fourche et leur poids, et prélevé des écailles. Le poids (poids humide en grammes) et la longueur (longueur à la fourche en mm) du poisson ont été obtenus à partir d'échantillons frais, congelés ou conservés, mais toutes les observations sont exprimées ici en équivalents de mesures fraîches. Des statistiques sommaires sur la taille selon l'âge des saumoneaux rouges sont présentées dans le présent rapport par date de relevé et par âge. Un indice annuel uniforme de la taille des saumoneaux rouges du lac Sproat a été établi pour la classe d'âge 1 prédominante des migrateurs, d'après un sous-ensemble des observations des échantillons recueillies entre le 14 avril (10 e centile) et le 22 mai (90 e centile) de chaque année. Les moyennes sur toute l'année pour la longueur à la fourche et le poids humide des saumoneaux rouges d'âge 1 quittant le lac Sproat étaient de $7,4 \mathrm{~cm}$ et 3,7 grammes respectivement. Les moyennes sur toute l'année pour la longueur à la fourche et le poids humide des saumoneaux rouges d'âge 2 étaient de $8,7 \mathrm{~cm}$ et de 5,8 grammes respectivement. Pour les années où les données étaient manquantes (2004, 2005, 2007, 2013-2016), on a estimé la longueur moyenne annuelle des saumoneaux d'âge 1 à partir d'une relation à plusieurs variables exprimée sous la forme d'une fonction de la longueur moyenne des alevins des échantillons prélevés au chalut dans le lac Sproat l'automne et l'hiver précédents et du moment des relevés dans le lac.

INTRODUCTION

The Salmon in Regional Ecosystems Program (SIRE-P), and its predecessors, have been involved in a series of short- to medium-term studies spanning a roughly forty-year interval focused on more than thirty Sockeye Salmon conservation units (CUs) in Canada's Pacific region. Funding of short-term studies has been received from a variety of federal, provincial and industry sources with interests in salmon enhancement (Hyatt et al. 1984, 2004, 2005a; Hyatt and Stockner 1985), stock assessment (Hyatt and Steer 1987; Hyatt et al. 1994, 2000; McCreight 1994; Hyatt and Rankin 1999), habitat and stock restoration (Johannes et al. 1999, 2002; Hyatt et al. 2003; Hyatt and Stockwell 2019), climate change (Hyatt et al. 2005b, 2015b, 2016, 2018a; Stiff et al. 2018) and food-web research (McQueen et al. 2007; Hyatt et al. 2005b, 2011, 2018). Although most of these programs, focused on individual Sockeye CUs, have been completed and terminated within less than five years, a few of these Sockeye CUs, associated with each of several distinctive freshwater and marine adaptive zones (Holtby and Ciruna 2007), have been subjects of sufficient interest to permit assembly of longer term (>25 years) data sets on lifestage specific biological traits and abundance. Multidecadal patterns of annual production variations exhibited as total returns of adults (i.e. catch plus escapement) by these CUs have been documented by Hyatt et al. (2005b, 2016a, 2018a) in DFO's State of the Pacific Ocean reports, but assembly and documentation of associated abundance and biological trait observations by life-stage (Hyatt et al. 2015b; Stiff et al. 2018), to make these data more widely available to the scientific community, remains a work in progress.

In this report we summarize observational data collected to assess biological traits (size and age) of Sockeye Salmon smolts sampled during spring seaward migrations from Sproat Lake from 1977-2012. Smolt catch and effort data are analyzed to derive a consistent, representative estimate of mean annual Sproat Lake Sockeye smolt size by age class. Estimates of smolt size, based principally on statistical relations with pre-smolt (fry) size biosamples in the rearing lake, were used to infill missing years $(2004,2005,2007)$ and extend the time-series for the years 2013-2016.

This report includes:
(1) a general map of sampling locations;
(2) smolt catch and effort summary tables and plots;
(3) plots of length/weight regressions and frequency distributions; and
(4) plots and tables of observed and "best" estimates of smolt size by year and age.

The results reported here are derived from projects designed to deliver on a variety of objectives but now comprise a sufficiently long time series of obervations to have utility as a basis for analysis of lake carrying capacity (Hyatt et al. 2011) and identification of the factors operating to control salmon production variations in either freshwater (Hyatt and Rankin 1999) or marine ecosystems (Hyatt et al 2015b).

STUDY AREA

Sproat Lake, located in central Vancouver Island ($49^{\circ} 14^{\prime} \mathrm{N}$ x $126^{\circ} 06^{\prime} \mathrm{W}$; elev. 29 m), is a moderately deep, oligotrophic waterbody (mean depth 59 m ; max depth 195 m) with a surface area of approximately 4,000 hectares, draining a 35,000 hectare watershed (Hyatt et al. 2011, 2016; Rutherford et al. 1986; Stockner and Shortreed 1985). The lake drains from the northeast
arm (Klehkoot Arm) via Sproat River, which combines with the Stamp River 13 km downstream to form the Somass River flowing into Alberni Inlet (Figure 1, Figure 2).

Smolt populations were sampled in Sproat River near the lake outlet (Hyatt et al. 1984; Rankin et al. 1994). Smolts captured during these surveys include: large numbers of Sockeye (Oncorhynchus nerka), smaller numbers of Coho (O. kisutch), Chinook (O. tshawytsha), and in some cases, Pink (O. gorbuscha) and Chum (O. keta) fry. The results presented here are limited to Sockeye smolts as samples of other species collected were not processed.

METHODS

Readers are encouraged to review Hyatt et al. (1984) and Rankin et al. (1994) for details regarding smolt sample acquisition and processing methods. However, the general methodology for the Sproat Lake system is outlined briefly here.
Smolt surveys were conducted during April through June. Survey timing was designed to encompass the period of peak smolt migrations (Rankin et al. 1994). Migrating smolts were captured via a variable mesh fyke net ($2 \times 2 \times 7 \mathrm{~m}$ length; Gjernes 1979) set at the lake outlet, in Sproat River above Sproat Falls, where the river narrows and flows are restricted. On any given sampling date, the net was set one hour before sunset for a duration of 3 to 4 hours and checked at half-hour intervals as per the guidelines outlined in Hyatt et al. (1984). This period includes the time of peak diel smolt migration activity (Wood et al. 1993).

A sample size of 100-200 Sockeye smolts per sample night was recommended for each date sampled. If fewer than 100 smolts were caught during the first 4 hours of sampling, the net was left for the remainder of the night (about 6 hours) and retrieved in the morning. All fish captured were classified by species and preserved with labels identifying system, date, start and stop time, set number, species counts, initials of collection crew and total number of collections obtained during each survey date.
Sampled fish were generally preserved in buffered 3.7% formaldehyde for at least five weeks prior to laboratory processing for species, length, weight and scales. Alternatively, fish were preserved in 70% ethyl alcohol, and, in some cases, frozen prior to chemical preservation. Subsequently, in the laboratory at the Pacific Biological Station (PBS), fish were identified to species, and Sockeye smolts were weighed to 0.01 g and measured to 1 mm .

Between 1981 and 2012 smolt samples were processed in the PBS laboratory using a metric measuring board and electronic balance to determine fork lengths and preserved weights. Preserved smolt weights were converted to standardized fresh weights (Rankin et al. 1994) and are reported as such here. Age of fish was determined from scale analysis in the PBS Aging Lab. Scales were obtained for complete samples in some years (1977-1986), or for a subsample of fish $>75 \mathrm{~mm}$ after 1986.

Too few scales were examined ($\mathrm{N}<25$) in some years to assign scale-based ages to mixed-age samples of smolts. In the absence of scale age data for a given year, monthly length-frequency distributions were reviewed for evidence of bi-modality to identify likely forklength threshold values to distinguish age classes. These were used in conjunction with multi-year age proportions by 5 mm forklength size class to assign a corresponding proportion of unaged fish in that size class to age.

Processed smolt data were compiled and analyzed using SAS ${ }^{\circledR}$ statistical software to tabulate summary statistics for fork length, preserved and standardized fresh weights, and smolt condition factor ${ }^{1}$ by year, sample date and age class. Sample dates were converted to Julian day-of-year ${ }^{2}$ for inter-annual comparisons. Univariate statistical procedures were used to detect and correct or exclude erroneous data from summary analyses.

Summary plots include:
(1) Weekly sample size, as an indicator of outmigration run-timing (ages pooled);
(2) Length and weight frequency distributions and regressions (by age class); and
(3) Trends in mean length (cm) and standardized fresh weight (g) over time (by age). ${ }^{3}$

Years for which Sockeye smolt size data were insufficient or unavailable (2004, 2005, 2007, 2013-2016) were infilled with estimates based on multi-year linear regression analysis of smolt length as a function of standardized estimates $\left(\mu \sim 0, \sigma^{2}\right)$ of winter fry size (forklength) and abundance from representative acoustic trawl surveys (ATS) during the previous winter or fall ${ }^{4}$, where available. Within- and between-year temporal effects were assessed by including terms for ocean entry year and week of fall/winter ATS sample date (shifted to increment from the previous July). Ocean entry year was forced into the regression model to address annual autocorrelation in the time-series.

The above analyses were used to identify a defensible and reproducible annual indicator of Sproat Lake Sockeye smolt size for covariation analyses (e.g. Hyatt et al. 2011).

Non-parametric test statistics were calculated over the resulting annual 40-year time-series for detection of trends (Mann-Kendall (MK)) and step changes in the mean (rank sum) (Kundzewicz and Robson 2000). Regime shift detection using sequential t-test analysis was applied after prewhitening using a target $\mathrm{P}=0.05$, cutoff length $=10$ years, tuning constant $=2$ and a subsample size $=6$ years (STARS 6.2 software: Rodionov 2004).

RESULTS

The total annual number of Sockeye smolts sampled, with associated statistics for size are summarized in Table 1 by year and age, and tabulated by sample date and sample location in Appendix I. The annual frequency of fyke-net sampling dates in Sproat River is listed in Table 2. Sample meta-data, including total catch (where available) and total fish sampled by date, sample site, gear type, sampling agency and fish preservative type, are listed in Appendix IX ${ }^{5,6}$. Smolt

[^1]biosample observations were not available for 2004, 2005, or 2007, and were limited to <50 fish in 2003, 2008, 2010, 2012 and 2013 (Table 2).

In some years, few ($0-30$) scale-based age observations were available (1988, 2002, 2003, 2006, $2009,2010,2012,2013$) to rigorously characterize age composition. To obtain sufficient aged fish for mean size estimation, unaged fish were assigned to age as described above. Most (99\%) of age assignments were to age 1; data changes are listed in Appendix X. Within-year summary statistics of fork length and standardized weight by sample date and age are tabulated in Appendix I.
As an indicator of seasonal smolt catch and relative abundance, sample size (count of Sockeye smolts retained by age) and percent of total annual retained catch are charted by year and sample date in Appendix II. Within-year seasonal trends in mean length and weight at age are presented in Appendix III.

Figure 3 summarizes the annual range of dates sampled (see Table 1 for actual sample sizes), with overlays of mean fork length and standard weight, by age class.
Annual size-at-age frequency distributions for fork length, standard weight, and fish condition (K) are organized in Appendix IV. These indicators are graphically summarized across all years in Figure 4. The annual absolute deviations from the multi-year averages displays significant differences in mean size and fish condition between years (Figure 5).
Statistical relations and corresponding regression and correlation coefficients for Sockeye lengthweight relationships (by year and age) can be found in Appendix V. The multi-year lengthweight at age relationships are presented in Figure 6.

The trend in within-season smolt size at age is plotted for length and weight observations by Julian day-of-year in Figure 7 (all years combined).
The multi-year seasonal distribution of smolt sample catch retained is plotted in Figure 8. Statistical quantiles of migration timing - based on Julian day-of-year - are compared in Table 3 for all available years versus "well-sampled" years where the number of sample dates exceed 3 and 5 days. Note that these observations represent only a coarse-grained indicator of timing because of the practice of retaining a maximum sample size of around two hundred individual fish for a given date. The actual catch on any date-specific sampling trip was often far higher than two hundred fish even though only two hundred were retained. Consequently, the observations here will generally conceal the timing of peak migration which tends to occur over a much shorter period than suggested by the annual plots in Appendix II.
The $10^{\text {th }}$ and $90^{\text {th }}$ day-of-year percentiles (April $14^{\text {th }}$ to May $22^{\text {nd }}$), representing 80% of the smolt sample observations, were used as cutoff dates to subset the sample data to obtain statistical measures associated with a consistent inter-annual indicator for Age 1 smolt size (Table 4).
Estimates of age 1 mean smolt size for missing years (2004, 2005, 2007, 2013-2016) were obtained from a linear regression analysis based on pre-smolt length, as well as ocean entry year, an annual estimate of juvenile abundance, and the time-of-year of pre-smolt sample date (week number) plus interactions (Appendix VI). Step-wise selection retained only pre-smolt length as significant at the $\alpha=0.05$ level ($\mathrm{r}=0.78, \mathrm{~N}=29, \mathrm{P}<0.001$; Figure 9). However, an interaction term for pre-smolt forklength and week of ATS sample date was weakly significant $(\mathrm{P}=0.07)$. Forcing year into the regression to account for annual temporal dependencies (autocorrelation) did not substantially change the explained variance $\left(r^{2} \sim 0.6\right)$ or regression coefficient $(b \sim 0.6)$.

The model incorporating year, pre-smolt fork length and the interaction term between pre-smolt size and week of year yielded the highest coefficient of variation ($\mathrm{r}^{2}=0.66$; Appendix VI), and was used to infill missing mean annual forklength. Estimated smolt lengths were converted to estimated standard weight based on the multi-year length/weight relation for age 1 smolts (Figure 6).
Final age 2 smolt size was not correlated with pre-smolt factors for the current or previous year. Best estimates for missing years (1980, 1985, 2003-2005, 2007, 2010, 2012, 2014-2016) ${ }^{7}$ were based on the all-year linear relationship for mean age 2 fork length as a function of mean age 1 fork length ($\mathrm{r}=0.75, \mathrm{P}<0.001, \mathrm{~N}=28$; Appendix VII, Appendix VIII).
Best estimates of mean annual Sockeye smolt size, including predictive values for missing years, were plotted in Figure 10, by age class (Table 4, Table 5). No linear parametric or nonparametric trends, autocorrelation, or regime step changes were detected in mean annual fork length or standard weight estimates.

DISCUSSION

Sampling Effort

Over the 30-plus years of available data for ocean entry (1977-2013), Sproat Lake Sockeye smolts were sampled on average 4.9 ± 3.0 dates across the months of April, May and June. The mode and median number of sample dates was 5 . Sampling frequency was highest during the 1990s, when the frequency ranged from 7-12 dates per year. As of 2003, most years were sampled two times or less (Table 2). For years of low sampling frequency, survey dates may not have always occurred at representative periods of smolt outmigration (e.g. 2013, for which the sole biosample survey occurred on April $2^{\text {nd }}$).

Smolt Migration

Tallying the frequency of sample dates (Julian day-of-year) across all ocean entry years, weighted by sample size, yields a coarse indicator of smolt migration abundance (assuming catch is proportional to abundance, and effort is roughly equivalent across dates). This indicator can be restricted to years where the number of sample dates exceeds a certain annual minimum (e.g. 3-5 dates; see Table 2). The resultant "smolt migration timing" statistics indicate that, over the range of well-sampled years (1977-2002), Sproat smolt migration peaks in late April to early May (median date: May $1^{\text {st }}$), with 90% of migrants tallied between April $10^{\text {th }}$ and May $25^{\text {th }}$ (Figure 8). Mean, median and variance statistics did not vary significantly when included years were restricted to those with a minimum of 3,4 or 5 sample dates (Table 3).

Migration timing varied between years, exhibiting - where sampling occurred weekly potentially bimodal abundance patterns in some years (e.g. 1990-1992, 1995, 1998, 2002), characterized by a pulse of smolts migrating in early-to-mid-April, followed by another pulse in late April and May (Appendix I and Appendix II). Overall, age 1 fish represented approximately 96% of migrants, and age 2 fish comprised 4% (Table 1). However, age 2's often contributed a higher proportion (5-10 \%) of the early April pulse of migrants, while the migrants in May were predominantly composed of age 1 fish ($>98 \%$).

[^2]
Smolt Size and Condition

The mean length and standard weight of age 1 fish for all available years (1977-2012 ${ }^{8}$) were 7.4 $\pm 0.8 \mathrm{~cm}$ and $3.7 \pm 1.1 \mathrm{~g}$, respectively $(\mathrm{N}=17,027$; Table 1$)$. Ninety-five percent of age 1 fish were less than 8.6 cm in fork length.

Age 2 fish averaged slightly larger, at $8.7 \pm 0.9 \mathrm{~cm}$ and $5.8 \pm 1.8 \mathrm{~g}(\mathrm{~N}=565)$. However, maximum length/weight of age 1's ranged from $9-11 \mathrm{~cm} / 4-9 \mathrm{~g}$, resulting in a wide overlap in the age-specific size distributions which precludes a simple size-based assignment of unaged fish to age class. Laboratory personnel attempted to take this overlap into account by focusing scale collection on the upper end of age 1 fish sizes ($>75 \mathrm{~mm}$).

This may have been complicated by significant variation in mean smolt size between years. Ignoring years of limited sampling effort and/or small sample size (2003, 2008, 2010, 2012, 2013), age 1 fish averaged < 3 g in weight in 1977, 1979, 1985, 1998, 2001 and 2002 (Figure 3 (top); Table 1), which was >1 standard deviation below the all-year average (3.7 g). Large age 1 smolts, averaging > 4.5 g occurred in 1978, 1981, 1986, 1992, and 1994 (Figure 5, Appendix IV).

The largest smolts were evident in 2008-2009, when age 1 smolt weights averaged $>5 \mathrm{~g}$. Though sampling effort was low (1-2 sample dates per year) and exhibited limited sample size (<100 fish), samples were generally drawn from late-April to mid-May, and are therefore considered to be representative of the typical second pulse of principally age 1 migrants (Appendix II).
Therefore, it appears that Sproat Sockeye smolt size improved $+1-2 \mathrm{~g}$ some time between 2003 and 2006, and persisted at a significantly larger average size for several years (2008-2011) before falling below the long-term average in 2012. The subsequent increase in mean length evident in 2013 (weights were not available) may not be representative due to small sample size ($\mathrm{N}=17$; Table 1) and early sample timing (Appendix II, Appendix III).

Summary data in Table 4 reasonably replicate previous analyses for ocean entry years 2008-2012 (Hyatt et al. 2016b). The 2013 sample observations (17 smolts sampled on April 2, 2013; 10 age 1s, 7 age 2s) were included in Table 1 and Appendix I, but excluded from Best Estimates (Table 4) as outside of the mid- $80^{\text {th }}$ percentile for the migratory date range and characterized by poor smolt preservation condition.

Fulton's fish condition factor (K) - which expresses the relationship between fish length and weight - may provide more insight into fish health and survival than either size factor alone. Mean fish condition for age 1 and age 2 fish was $\mathrm{K}=0.9$ (Figure 4), which is likely typical for freshwater stages of juvenile salmonids. Maximum age 1 fish condition occurred in 1998 and 2011 (Figure 5, Table 1). Fulton's K largely reflected inter-annual length and weight variation, with several exceptions (e.g. 1978, 1981, 1984, 1986, 1992, 2008), where larger weights were not characterized by a high K-factor due to associated large fork lengths; and 1998, where low weights were associated with a high K-factor because mean fork lengths were low as well (Figure 5, Table 1). The K-factor suggests significantly lower mean fish condition for most years between 1977-1986 and 1992-2002, despite significantly positive differences in length and/or weight from the multi-year mean during those years (Figure 5).
It should be noted that Sproat Lake fertilization efforts occurred in 1985 (Hyatt et al. 2016). This appeared to have no beneficial size effect on Sockeye smolts entering the ocean in the year of

[^3]treatment (i.e. the Sockeye smolts actually exhibited below-average mean length and weight at $6.4 \mathrm{~cm} / 2.2 \mathrm{~g}$ respectively; $\mathrm{N}=313$). However, in 1986, age $1 \mathrm{~s}(8.3 \mathrm{~cm} / 4.7 \mathrm{~g} ; \mathrm{N}=211)$ and age $2 \mathrm{~s}(10.8 \mathrm{~cm} / 10.5 \mathrm{~g} ; \mathrm{N}=5)$ that had experienced the effects of the 1985 lake treatment were both larger than average (Figure 3, Figure 5, Appendix IV).
The length/weight curves for both age classes of Sproat Lake Sockeye are nearly identical despite the mean size differences: fresh standard weight (g) is approximately equivalent to 0.01 times the fork length (cm) cubed (Figure 6).
Mean annual length and weight statistics were correlated between age classes ($\mathrm{r}=0.75, \mathrm{P}<$ $0.001, \mathrm{~N}=29$; Appendix VII, VIII).

Seasonal Trends in Smolt Size

Smolt size in biosamples appeared to decrease in both age 1 and age 2 classes as the season progressed ($\mathrm{P}<0.01$; Figure 7), as evidenced when sampling effort involved >3 dates (e.g. 1979-2002). This multi-year trend is driven, however, by a subset of years of strong withinseason decline in the 1990s (e.g. 1989, 1993, 1995, 1996, 2000: P < 0.001; Appendix III), which may potentially mark an apparent shift from neutral or weakly positive changes in size in-season (perhaps related to spring growth) prior to 1989, to mainly negative trends in within-season fish size through to 2000. Diminishing size at age over the season potentially signifies a tendency towards earlier seaward migration of larger smolts (Wood et al. 2003). Due to lower sampling effort in recent decades, it is not clear if this trend has continued.

Best Estimates of Annual Smolt Size

Thirty years of data indicate that biosamples collected between mid-April and late May (weeks 14-20) are most representative of the size of fish of the dominant age 1 class. Sproat smolt migration peaks between late April and early May (median date: May ${ }^{1}{ }^{\text {st }}$), with 90% of migrants tallied between April $5^{\text {th }}$ and May $25^{\text {th }}$ (Figure 8). As mean, median and variance statistics did not vary significantly when years were restricted to those with a minimum of 3,4 or 5 sample dates (Table 3), and within-year seasonal trends in size were generally weak for age 1 Sockeye (Appendix III), it may be surmised that one or more sample dates between mid-April and late May are likely sufficient to characterize Sockeye smolt size, at least for the predominant age 1 class, provided it is based on a reasonable aggregate sample size (e.g. 50-100 fish).

As noted above, age 2 smolts make up a larger proportion of early April migrants (Table 1, Appendix III). To reduce the influence of unaged age 2's on the annual smolt size indicator, a later, narrower date-range based on the $10^{\text {th }}$ and $90^{\text {th }}$ percentiles (i.e. April $14^{\text {th }}$ to May $22^{\text {nd }}-$ encompassing 80% of migration observations) was used to subset the data. These thresholds yield a consistent, representative estimate of annual Sproat Lake Sockeye smolt size (age 1), given sufficient sample size (Figure 10, top; Table 4).
For years in which age 1 Sockeye smolt size observations were insufficient or unavailable (2004, 2005, 2007, 2013-2016), mean annual age 1 smolt size estimates were infilled based on the allyear multivariate linear relationship based on winter pre-smolt length, time-of-year (week) and ocean entry year ($\mathrm{r}^{2}=0.66 ; \mathrm{N}=24$). Observed means and predictive estimates (represented by hollow squares) in the length and weight time-series in Figure 10 (top).
Mean annual age 2 smolt sizes are based on all available samples (Figure 10, bottom; Table 5). Age 2 size estimates should be considered highly uncertain, due to low frequency of occurrence in biosamples, especially since 2000. However, mean annual age 2 fork lengths and weights
appear to co-vary reasonably well with age 1 size data, enabling missing annual age 2 fork lengths to be estimated based on the age 1 to age 2 regression relation (Appendix VII). It should be noted that, in some well-sampled years (e.g. 1980, 1985), no age 2 fish were represented in the samples, thus age 2 size estimates are completely hypothetical in those years. In other years, the age 2 size estimate may be based on fewer than 10 fish (Table 1; Appendix VIII). Thus, the age 2 time series should be used with caution.

Given the above qualifications, the resulting time-series represent the best estimates of Sproat Lake Sockeye smolt size, and may provide a basis for further analysis and identification of the factors operating to control salmon production variations in freshwater (e.g. Hyatt and Rankin 1999; Hyatt et al. 2011) or marine ecosystems (e.g. Hyatt et al. 2015b).

ACKNOWLEDGEMENTS

Many individuals have been involved over the several decades of field sample acquisition, laboratory processing or data assembly on abundance and biological traits of juvenile Sockeye Salmon. The authors wish to thank, in alphabetical order, S. Baillie, K. Cooke, C. Cooper, B. Cousens, J. Candy, T. Cone, I. Cuthbert, R. Ferguson, T. Gjernes, B. Hanslit, M. Johannes, A. Keitla, J. Manzer, C. McConnell, I. Miki, S. Murdoch, A. Phillips, J. Radziul, D. Rutherford, T. Shardlow, K. Simpson, G. Steer, R. Traber, P. Tschaplinski, V. Walker and M. C. Wright for their efforts in supporting one or more phases of this work. T. Gjernes, in particular, counselled Dr. Hyatt in 1980 on the need for DFO Science to expand time series observations of abundance and biological traits of Sockeye Salmon populations and associated environmental conditions in areas outside of the Fraser basin as a source of information to improve our understanding of the role of factors, other than harvest, in driving annual variations in total returns of adult salmon.

LITERATURE CITED

Barnham, C. and A. Baxter. 1998. Condition Factor K, for Salmonid Fish. State of Victoria Department of Primary Industries Fisheries Notes FN0005, March 1998. ISSN 1440-2254.
Gjernes, T. 1979. A portable midwater trawling system for use in remote lakes. Fish. Mar. Serv. Tech. Rep. No. 888.13 pp.
Holtby, L., \& Ciruna, K. (2007). Conservation units for Pacific salmon under the wild salmon policy. 2007/070. Retrieved from http://www.dfo-mpo.gc.ca/csassccs/publications/resdocs-docrech/2007/2007_070-eng.htm.
Hyatt, K.D., D. Rutherford, T. Gjernes, P. Rankin, and T. Cone. 1984. Lake Enrichment Program: Juvenile Sockeye Unit survey guidelines. Can. Man. Rep. Fish. and Aquat. Sci. No. 1796. 84 pp.
Hyatt, K. D. and J. G. Stockner. 1985. Responses of sockeye salmon (Oncorhynchus nerka) to fertilization of British Columbia coastal lakes. Can. J. Fish. Aquat. Sci. 42:320-331.
Hyatt, K. D. and G. J. Steer. 1987. Barkley Sound sockeye (Oncorhynchus nerka): Evidence for over a century of successful stock development, fisheries management, and enhancement effort. Pp. 435-457 in H. D. Smith, L. Margolis and C. Wood. Eds. Spec. Publ. Can. Fish. Aquat. Sci. 96.
Hyatt, K. D., D. P. Rankin and E. Rome. 1989. Acoustic census of limnetic fish in a glacially turbid lake. Proceedings of the Institute of Acoustics. Vol. 11, Part 3, pp. 236-247.
Hyatt, K. D., W. Luedke, D. P. Rankin and L. Gordon. 1994. Review of 1988-1994 pre-season forecast performance, stock status and 1995 forecasts of barkley Sound sockeye. PSARC Working Paper S94-21.

Hyatt, K. D. and D. P. Rankin. 1999. A habitat based evaluation of Okanagan sockeye salmon escapement objectives. Canadian Stock Assessment Secretariat Research Document 99/191. www.dfo-mpo.gc.ca/csas/.
Hyatt, K. D., D. P. Rankin and B. Hanslit. 2000. Acoustic and trawl based estimates of juvenile sockeye salmon (Oncorhynchus nerka) production from 1976-1996 brood year adults returning to Smith Inlet and Long Lake, British Columbia. PSARC Working Paper S2000-21.

Hyatt, K. D., D. P. Rankin, P. J. Tschaplinski and I. Miki. 2003. Assembly of standardized estimates of juvenile and adult sockeye salmon (Oncorhynchus nerka) abundance associated with the 1976-2001 brood years in Henderson Lake and Clemens Creek, British Columbia. PSARC Working Paper S2003-08.

Hyatt, K. D., D. J. McQueen, K. S. Shortreed and D. P. Rankin. 2004. Sockeye salmon (Oncorhynchus nerka) nursery lake fertilization: Review and summary of results. Environ. Rev. 12: 133-162.

Hyatt, K. D., K. Mathias, D. P. Rankin, D. McQueen, B. Mercer and P. Milligan. 2005a. Evaluation of hatchery versus wild sockeye salmon fry growth and survival in two British Columbia lakes. N. Am. J. Fish. Mgmt. 25: 745-762.

Hyatt, Kim D., Charles Ramcharan, Donald J. McQueen and Karen L. Cooper. 2005b. Trophic triangles and competition among vertebrate (Oncorhynchus nerka, Gasterosteus aculeatus) and invertebrate (Neomysis mercedis) planktivores in Muriel Lake, British Columbia, Canada. Ecoscience 12(1): 11-26.

Hyatt, K. D. 2005c. Barkley Sound sockeye recruitment: Variations, ocean state changes and year 2004 performance. Pp 34-35 in Crawford et al. 2005. Pacific Region State of the Ocean 2004. DFO Science Ocean Status Report.

Hyatt, K. D., D. J. McQueen, D. P. Rankin and E. Demers. 2011. Density-dependent growth in juvenile sockeye salmon (Oncorhynchus nerka). The Open Fish Science Journal 4: 53-65.

Hyatt, K. D., C. A. D. Alexander and M. M. Stockwell. 2015a. Testing the utility of a decisionsupport system for improving compliance with 'fish friendly' flows in the regulated Okanagan Lake and River System of British Columbia. Canadian Water Resources Journal 40: 87110.

Hyatt, K. D., H. W. Stiff, M. M. Stockwell, W. Luedke, D. P. Rankin, J. Till and D. Dobson. 2015b. A synthesis of adult sockeye salmon migration and environmental observations for the Somass Watershed, 1974-2012. Can. Tech. Rep. Fish. Aquat. Sci. No. 3115: vii + 199 p.

Hyatt, K. D., H. Stiff, M. M. Stockwell, and R. Ferguson. 2016a. Sockeye salmon indicator stocks - Regional overview of trends, 2015 returns and 2016-2018 outlook, in Chandler, P.C., King, S.A., and Perry, R.I. (Eds.). 2016. State of the physical, biological and selected fishery resources of Pacific Canadian marine ecosystems in 2015. Can. Tech. Rep. Fish. Aquat. Sci. 3179: vii + 230 p.

Hyatt, K.D., McQueen, D.J., Rankin, D.P., Stockwell, M.M., and Ferguson, J.R. 2016 b. Summary data on limnology and food-web structure of Great Central, Sproat, and Henderson lakes, B.C. (2008-2013). Can. Manu. Rep. Fish. Aquat. Sci. 1262: ix + 94p.

Hyatt, K.D., McQueen, D.J., Rankin, D.P., and Stockwell, M.M. 2016c. A Comparative Bioenergetics Analysis of Seasonal Growth of Juvenile Sockeye Salmon and Their Consumption of Zooplankton in Great Central Lake and Sproat Lake, B.C., During 1999. Can. Tech. Rep. Fish. Aquat. Sci. 3159: vii + 50p.

Hyatt, K. D., H. Stiff and M. M. Stockwell and A. Ogden. 2018a. Sockeye salmon indicator stocks - Regional overview of trends, 2017 returns and 2018-2019 outlook, pp.116-120 in Chandler, P.C., King, S.A., and Boldt, J. (Eds.). 2018. State of the physical, biological and selected fishery resources of Pacific Canadian marine ecosystems in 2017. Can. Tech. Rep. Fish. Aquat. Sci. 3266: viii + 245 p.
Hyatt, K. D., D. J. McQueen and A. D. Ogden. 2018b. Have invasive mysids (Mysis diluviana) altered the capacity of Osoyoos Lake, British Columbia to produce Sockeye Salmon (Oncorhynchus nerka)? Open Fish Science Journal [Online Serial] 11: 3-28.

Hyatt, K. D. amd M. M. Stockwell. 2019. In press, Chasing an Illusion? Successful restoration of Okanagan River Sockeye Salmon in a sea of uncertainty pp. xx-xx in C. Krueger et al. (eds.) From Catastrophe to Recovery: Stories of Fish Management Success. American Fisheries Society, Bethesda, Md.

Johannes, M. R. S., C. L. K. Robinson and K. D. Hyatt. 1999. Kennedy Watershed Atlas Series - Volume I: Watershed Overview, A Working Atlas. The integration of forest, salmon and water resource information to encourage sustainable use and development. Northwest Ecosystem Institute, Lantzville, BC. 35p. ISBN 1-894630-09-2 (11X17 format).
Johannes, M. R. S., K. D. Hyatt, J. K. Cleland, L. Hanslit and M. M. Stockwell. 2002. Assembly of map-based stream narratives to facilitate stakeholder involvement in watershed management. J. Amer. Wat. Res. Assoc. 38: 555-562.

Kundzewicz, Z. W. and A. Robson. (Ed.) 2000. Detecting Trend and Other Changes in Hydrological Data. World Climate Program - Water, WMO/UNESCO, WCDMP-45, WMO/TD 1013, Geneva, 157 pp.

MacLellan, S.G., and Hume, J.M.B. 2010. An evaluation of methods used by the freshwater ecosystems section for pelagic fish surveys of sockeye rearing lakes in British Columbia. Can. Tech. Rep. Fish. Aquat. Sci. 2886: v+68 p.

McCreight, D. K., M. R. S. Johannes, S. P. Murdoch and K. D. Hyatt. 1994. Fish catch statistics in salmonid nursery lakes of the Nass River system under study by the Interim Measures Fisheries Program. Can. Manu. Rep. Fish. Aquat. Sci. 904: 55p.

McQueen, D. J., K. D. Hyatt, D. Paul Rankin and C. Ramcharan. 2007. Changes in algal species composition affected juvenile sockeye salmon production at Woss Lake, British Columbia: a lake fertilization and food web analysis. North Am. J. Fish. Management 27: 369-386.

Rankin, D. P., K. D. Hyatt, M. R. S. Johannes and I. D. Cuthbert. 1994. Smolt catch statistics (1977) in salmonid nursery lakes under study by the Salmon Recruitment Assessment Program (S-RAP). Can. Manu. Rep. Fish. Aquat. Sci. No. 935: 33p.

Rodionov, S. N. 2004. A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett. 31: L09204 doi:10.1029/2004GL019448.

Rutherford, D. T., K. D. Hyatt, J. E. Radziul, and G. J. Steer. 1986. Physical parameters of sockeye salmon (Oncorhynchus nerka) rearing lakes under study by the Enhancement Assessment Unit. Can. Man. Rep. Fish. Aquat. Sci. 1878: 114 p.

Stiff, H. W., K. D. Hyatt, M. M. Stockwell and A. J. Cannon. 2018. Downscaled GCM trends in projected air and water temperature to 2100 due to climate variation in six Sockeye Salmon watersheds. Can. Tech. Rep. Fish. Aquat. Sci. 3259.

Wood, C.C., N.B. Hargreaves, D.T. Rutherford, and B.T. Emmett. 1993. Downstream and early migratory behavior of Sockeye salmon (Oncorhynchus nerka) smolts entering Barkley Sound, Vancouver Island. Can. J. Fish. Aquat. Sci. 50: 1329-1337.

MAPS

Figure 1. Location of Barkley Sound study lakes (including Sproat Lake) on the west coast of Vancouver Island, B.C.

Figure 2. Sproat Lake bathymetric contours (in metres). Adapted from Hyatt et al. (2016b). Vector file from http://www.bcfisheries.gov.bc.ca/fishinv/basemaps-maps.html (Source: Province of B. C., Fisheries Branch, Inventory Operations, April 1985).

FIGURES

Age 1 Sproat Lk Sockeye Sampling Period, Forklength (cm) and Std Wt (g)

Age 2 Sproat Lk Sockeye Sampling Period, Forklength (cm) and Std Wt (g)

Figure 3. Sproat Lake Sockeye annual smolt sampling range (blue boxes; sample dates indicated by +-symbol), mean fork length ± 1 standard deviation (cm; green), mean standard fresh weight ± 1 standard deviation (grams; red), Top: Age 1; bottom: Age 2.

Sproat Lk Sockeye Smolt Size Distribution

Figure 4. Sproat Lake Sockeye smolt size distribution, all years. Standard fork length (cm, top), standard fresh weight (g, middle), Fulford fish condition factor (K, bottom).

Figure 5. Absolute deviation of annual mean length (top), standard weight (middle), and fish condition factor (bottom) from the overall multi-year averages for Age 1 Sproat Lake Sockeye smolts.

	Age							
	1				2			
	a	b	Rsq	N	a	b	Rsq	N
Stock								
Sproat Lk	0.0107	2.957	0.90	514	0.6872	2.201	0.87	18

Figure 6. Sproat Lake Sockeye smolt length/weight relationship, all years.
Model: Std Weight $=\mathrm{a} \cdot$ Fork Length ${ }^{\mathrm{b}}$

Figure 7. Decreasing trends in within-season smolt length (top) and weight (bottom), by age class, all years ($\mathrm{r}<0$; Adj. $\mathrm{r}^{2}<0.03 ; \mathrm{N}>500$).

Figure 8. Sproat Lake Sockeye smolt "abundance distribution" (frequency of sample dates (Julian day of year), weighted by sample size), across all years where the minimum number of sample dates >=5 (see Table 2, Table 3).

Figure 9. Simple linear relationship for age 1 fork length as a function of winter pre-smolt fork length, 1980-2011 ($\mathrm{r}=0.78 ; \mathrm{N}=29$).

Sproat Lk Sockeye Sampling Period, Age 1 - Forklength (cm) and Std Wt (g)

Figure 10. Best estimates of Sproat Lake Sockeye annual mean smolt size (solid lines) based on sampling effort (blue boxes) between April $14^{\text {th }}$ and May $22^{\text {nd }}$ each year for age 1 smolts (top), with predictive estimates for ocean entry years 2004, 2005, 2007, 2013$2016{ }^{9}$ (empty squares). Age 2 (bottom) based on all available samples; age 2 smolt size for missing years estimated based on age 1 to age 2 mean annual fork length.

[^4]
TABLES

	Age																			
	1										2									
	N	Length (cm)				Fresh Std Wt (g)			K	$\begin{gathered} \mathrm{Pct} \\ \% \end{gathered}$	N	Length (cm)				Fresh Std Wt (9)			K	$\begin{gathered} \mathrm{Pct} \\ \% \end{gathered}$
		AUG	P10	P95	MAX	AUG	P95	SD				AUG	P10	P95	MAX	AUG	P95	SD		
$\begin{array}{\|l\|} \hline \text { Year } \\ \hline 1977 \\ \hline \end{array}$	243	7.0	6.3	7.8	8.6	2.7	3.7	0.6	0.78	95	13	7.0	6.4	7.7	7.7	2.7	3.5	0.5	0.78	5
1978	168	8.1	6.9	9.4	10.0	4.6	6.9	1.4	0.85	99	2	8.8	8.5	9.0	9.0	5.5	5.8	0.4	0.81	1
1979	638	7.0	6.3	8.0	8.9	2.9	4.2	0.7	0.81	100	1	7.2	7.2	7.2	7.2	3.2	3.2		0.86	0
1980	439	7.7	7.1	8.7	10.1	4.1	5.9	0.9	0.88	100										
1981	549	8.1	7.3	9.1	10.0	4.6	6.5	1.1	0.85	98	14	9.3	8.3	11.6	11.6	7.1	14.1	2.7	0.83	2
1982	382	7.3	6.7	8.0	8.6	3.5	4.9	0.8	0.88	96	16	7.9	7.5	8.6	8.6	4.1	5.2	0.7	0.83	4
1983	394	7.4	6.8	8.3	9.0	3.5	5.0	0.8	0.84	98	7	8.7	7.5	9.4	9.4	5.6	7.1	1.4	0.83	2
1984	483	7.9	7.2	8.7	9.7	4.3	5.8	0.9	0.87	97	14	9.2	8.6	10.1	10.1	6.5	8.3	1.2	0.84	3
1985	313	6.4	5.9	7.1	8.0	2.2	3.0	0.5	0.83	100										
1986	211	8.3	7.3	9.6	9.8	4.7	7.3	1.2	0.81	98	5	10.8	9.4	11.7	11.7	10.5	13.4	2.5	0.81	2
1987	518	7.7	6.9	8.6	9.5	4.2	6.0	1.0	0.91	92	48	8.6	7.8	9.9	10.2	5.9	8.9	1.4	0.92	8
1988	1,135	7.3	6.5	8.1	9.9	3.5	4.8	0.8	0.89	99	15	8.0	7.5	8.9	8.9	4.6	6.0	0.7	0.89	1
1989	1,099	7.5	6.9	8.3	9.1	3.8	5.1	0.7	0.89	98	27	9.6	8.6	10.8	11.1	7.7	10.8	2.0	0.84	2
1990	581	7.7	7.0	8.6	9.2	4.2	5.7	0.9	0.90	95	28	8.4	7.6	9.3	9.8	5.3	6.9	1.1	0.89	5
1991	969	7.2	6.5	8.1	9.0	3.4	4.7	0.8	0.88	90	106	8.8	8.0	9.9	10.6	6.0	8.4	1.3	0.87	10
1992	412	8.2	7.4	9.2	9.9	4.8	6.8	1.1	0.86	95	21	9.3	8.7	10.1	10.2	6.6	7.6	1.0	0.81	5
1993	909	7.6	6.5	8.6	9.8	3.9	5.6	1.1	0.88	98	14	8.8	8.0	9.3	9.3	5.9	7.2	1.0	0.85	2
1994	989	7.8	6.6	9.0	10.8	4.4	6.3	1.3	0.88	97	34	8.9	8.0	10.1	11.2	6.4	9.2	1.8	0.89	3
1995	1,005	7.2	6.2	8.5	9.9	3.3	5.3	1.1	0.85	97	30	7.8	7.3	9.3	9.8	4.1	6.5	1.1	0.87	3
1996	1,293	7.4	6.3	8.5	9.3	3.7	5.5	1.1	0.88	96	52	8.7	8.0	9.6	10.5	5.9	7.8	1.3	0.88	4
1997	850	7.7	6.7	8.9	10.2	4.0	5.9	1.1	0.84	98	21	9.1	8.2	11.2	11.8	6.4	10.5	2.1	0.84	2
1998	814	6.7	5.8	7.7	8.7	2.9	4.4	0.9	0.96	100	1	8.8	8.8	8.8	8.8	6.6	6.6		0.97	0
1999	988	7.2	6.5	8.3	9.5	3.3	4.8	0.9	0.84	95	54	8.4	7.4	10.0	10.8	5.1	8.7	1.6	0.84	5
2000	320	7.3	6.5	8.2	9.0	3.4	4.9	0.9	0.87	100	1	7.3	7.3	7.3	7.3	4.1	4.1		1.04	0
2001	537	6.5	5.7	7.5	8.3	2.4	3.6	0.7	0.84	99	6	8.0	7.4	8.8	8.8	4.3	5.4	0.7	0.84	1
2002	230	6.9	6.2	7.7	8.3	2.8	3.9	0.7	0.83	100	1	7.3	7.3	7.3	7.3	3.9	3.9		1.01	0
2003	10	7.4	6.5	8.7	8.7	3.5	6.4	1.5	0.84	100										
2006	83	7.9	7.2	8.6	9.1	4.5	6.0	1.0	0.91	95	4	8.5	8.0	9.1	9.1	6.4	7.7	0.9	1.05	5
2008	32	8.4	7.9	9.0	9.3	5.2	6.8	0.8	0.89	91	3	9.9	8.6	12.0	12.0	7.5	9.1	1.5	0.83	9
2009	90	8.3	7.7	9.0	9.4	5.0	6.3	0.8	0.88	87	14	9.3	8.6	11.8	11.8	7.4	14.1	2.1	0.92	13
2010	12	8.1	7.5	9.4	9.4	4.8	6.8	1.0	0.87	100										
2011	295	7.8	7.0	8.7	9.0	4.3	5.7	0.8	0.92	98	7	8.4	8.0	9.3	9.3	6.1	8.1	1.0	1.05	2
2012	24	7.2	6.5	8.2	8.2	2.9	3.8	0.6	0.76	100										
2013	10	8.7	8.3	9.5	9.5					59	7	10.7	10.0	11.2	11.2					41
All	17025	7.4	6.4	8.6	10.8	3.7	5.6	1.1	0.87	3E3	566	8.7	7.5	10.3	12.0	5.8	9.1	1.8	0.87	143

Table 1. Sproat Lake Sockeye annual smolt size statistics (standard fork length (cm), standard fresh weight (g)), by age.

Table 2. Sproat Lake Sockeye annual smolt sampling frequency (dates per year).

Sproat Lk Smolt Abundance Density (Years 1977-2013)

Sample Dates (Day of Year, Weighted by \#Fish)															
Min	Mean	Max	Std	P05	P10	Med	P90	P95	\#Fish						
90	122	164	14	101	104	121	142	146	17,371						

Sproat Lk Smolt Abundance Density (Years 1977-2002)

Sample Dates (Day of Year, Weighted by \#Fish)									
Min	Mean	Max	Std	P05	P10	Med	P90	P95	\#Fish
90	122	164	14	101	104	121	142	146	16,779

Sproat Lk Smolt Abundance Density (Years Where \#Dates >= 5)

Sample Dates (Day of Year, Weighted by \#Fish)									
Min	Mean	Max	Std	P05	P10	Med	P90	P95	\#Fish
90	122	164	14	100	104	121	142	145	14,432

Table 3. Sproat Lake Sockeye smolt "migration timing" statistics, including minimum, mean, maximum (Julian) day of year, standard deviation (days), and $5^{\text {th }}, 10^{\text {th }}, 50^{\text {th }}$ (median), $90^{\text {th }}$ and $95^{\text {th }}$ percentiles, weighted by sample size. Top: all available years; all years where number of sample dates $>=3$; bottom: all years where number of sample dates $>=5$ dates. (Note: Mar $31^{\text {st }}=90 ;$ May $1^{\text {st }}=121 ;$ May $26^{\text {th }}=146$; Jun $13^{\text {th }}=164$)

Sproat Lk

	Age									
	1									
	N	Length (cm)				Fresh Std Wt (g)			K	$\left\lvert\, \begin{gathered} \text { Pct } \\ \% \end{gathered}\right.$
		AUG	P10	P95	MAX	AUG	P95	SD		
Year										
1977	226	6.9	6.3	7.8	8.6	2.7	3.7	0.6	0.78	88
1978	168	8.1	6.9	9.4	10.0	4.6	6.9	1.4	0.85	99
1979	526	7.0	6.3	8.0	8.9	2.8	4.1	0.7	0.80	82
1980	368	7.7	7.1	8.6	10.1	4.1	5.8	0.9	0.88	84
1981	397	8.1	7.2	9.2	10.0	4.4	6.4	1.1	0.83	71
1982	191	7.2	6.5	8.0	8.5	2.9	4.0	0.6	0.77	48
1983	359	7.4	6.8	8.3	9.0	3.5	5.0	0.8	0.84	90
1984	384	7.9	7.2	8.7	9.7	4.3	5.8	0.9	0.86	77
1985	313	6.4	5.9	7.1	8.0	2.2	3.0	0.5	0.83	100
1986	211	8.3	7.3	9.6	9.8	4.7	7.3	1.2	0.81	98
1987	518	7.7	6.9	8.6	9.5	4.2	6.0	1.0	0.91	92
1988	891	7.2	6.5	8.1	9.5	3.4	4.7	0.8	0.89	77
1989	958	7.5	6.9	8.2	9.1	3.7	4.9	0.7	0.89	85
1990	493	7.7	7.0	8.6	9.2	4.3	5.7	0.9	0.91	81
1991	823	7.2	6.5	8.1	9.0	3.4	4.6	0.8	0.88	77
1992	409	8.2	7.4	9.2	9.9	4.8	6.7	1.1	0.86	94
1993	821	7.7	6.7	8.6	9.8	4.0	5.6	1.0	0.88	89
1994	792	7.9	6.7	9.0	10.8	4.5	6.4	1.3	0.88	77
1995	737	7.3	6.4	8.5	9.9	3.5	5.4	1.1	0.86	71
1996	899	7.4	6.2	8.5	9.3	3.7	5.6	1.2	0.89	67
1997	596	7.7	6.7	8.9	10.2	3.9	5.9	1.2	0.85	68
1998	738	6.6	5.8	7.8	8.7	2.9	4.4	0.9	0.96	91
1999	888	7.3	6.5	8.4	9.5	3.3	4.9	0.9	0.83	85

(Continued)
Table 4. Statistics associated with best estimates of Sproat Lake Sockeye annual (ocean entry year) Age 1 mean smolt size (standard fork length (cm), standard fresh weight (g)), based on sampling effort between April $14^{\text {th }}$ and May $22^{\text {nd }}$ each year. Note: Values for 2004, 2005, 2007, 2013-2016 are estimated (Appendix VI).

	Age									
	1									
	N	Length (cm)				Fresh Std Wt (9)			K	$\begin{gathered} \text { Pct } \\ \% \end{gathered}$
		AUG	P10	P95	MAX	AUG	P95	SD		
Year	300	7.3	6.5	8.2	9.0	3.4	4.9	0.9	0.87	93
2000										
2001	465	6.7	6.1	7.5	8.1	2.5	3.6	0.6	0.84	86
2002	155	6.8	6.2	7.6	7.9	2.7	3.8	0.6	0.85	67
2003	10	7.4	6.5	8.7	8.7	3.5	6.4	1.5	0.84	100
2004	1	7.5	7.5	7.5	7.5	4.2	4.2			
2005	1	7.8	7.8	7.8	7.8	4.6	4.6			
2006	83	7.9	7.2	8.6	9.1	4.5	6.0	1.0	0.91	95
2007	1	7.5	7.5	7.5	7.5	4.2	4.2			
2008	32	8.4	7.9	9.0	9.3	5.2	6.8	0.8	0.89	91
2009	90	8.3	7.7	9.0	9.4	5.0	6.3	0.8	0.88	87
2010	12	8.1	7.5	9.4	9.4	4.8	6.8	1.0	0.87	100
2011	295	7.8	7.0	8.7	9.0	4.3	5.7	0.8	0.92	98
2012	24	7.2	6.5	8.2	8.2	2.9	3.8	0.6	0.76	100
2013	1	7.4				3.9				
2014	1	7.7				4.4				
2015	1	7.7				4.5				
2016	1	7.7				4.4				
All	14179	7.4	6.4	8.7	10.8	3.7	5.7	1.1	0.87	3E3

Table 4, continued. Statistics associated with best estimates of Sproat Lake Sockeye annual (ocean entry year) Age 1 mean smolt size (standard fork length (cm), standard fresh weight (g)), based on sampling effort between April 14th and May 22nd each year. Note: Values for 2004, 2005, 2007, 2013-2016 are estimated (Appendix VI).

	Age									
	2									
	N	Length (cm)				Fresh Sta Wt (9)			K	$\begin{gathered} \mathrm{Pc} t \\ \% \end{gathered}$
		AUG	P10	P95	MAX	AUG	P95	SD		
Year		7.0	6.4	7.7	7.7	2.7	3.5	0.5	0.78	5
1977	13									
1978	2	8.8	8.5	9.0	9.0	5.5	5.8	0.4	0.81	1
1979	1	7.2	7.2	7.2	7.2	3.2	3.2		0.86	0
1980		8.7	.			6.4				
1981	14	9.3	8.3	11.6	11.6	7.1	14.1	2.7	0.83	2
1982	16	7.9	7.5	8.6	8.6	4.1	5.2	0.7	0.83	4
1983	7	8.7	7.5	9.4	9.4	5.6	7.1	1.4	0.83	2
1984	14	9.2	8.6	10.1	10.1	6.5	8.3	1.2	0.84	3
1985		7.1	.			3.5				
1986	5	10.8	9.4	11.7	11.7	10.5	13.4	2.5	0.81	2
1987	48	8.6	7.8	9.9	10.2	5.9	8.9	1.4	0.92	8
1988	15	8.0	7.5	8.9	8.9	4.6	6.0	0.7	0.89	1
1989	27	9.6	8.6	10.8	11.1	7.7	10.8	2.0	0.84	2
1990	28	8.4	7.6	9.3	9.8	5.3	6.9	1.1	0.89	5
1991	106	8.8	8.0	9.9	10.6	6.0	8.4	1.3	0.87	10
1992	21	9.3	8.7	10.1	10.2	6.6	7.6	1.0	0.81	5
1993	14	8.8	8.0	9.3	9.3	5.9	7.2	1.0	0.85	2
1994	34	8.9	8.0	10.1	11.2	6.4	9.2	1.8	0.89	3
1995	30	7.8	7.3	9.3	9.8	4.1	6.5	1.1	0.87	3
1996	52	8.7	8.0	9.6	10.5	5.9	7.8	1.3	0.88	4
1997	21	9.1	8.2	11.2	11.8	6.4	10.5	2.1	0.84	2
1998	1	8.8	8.8	8.8	8.8	6.6	6.6		0.97	0
1999	54	8.4	7.4	10.0	10.8	5.1	8.7	1.6	0.84	5
2000	1	7.3	7.3	7.3	7.3	4.1	4.1		1.04	0
2001	6	8.0	7.4	8.8	8.8	4.3	5.4	0.7	0.84	1
2002	1	7.3	7.3	7.3	7.3	3.9	3.9		1.01	0
2003		8.3			-	5.6				
2004		8.5				6.0				
2005		8.8	.			6.6				
2006	4	8.5	8.0	9.1	9.1	6.4	7.7	0.9	1.05	5
2007		7.5				4.1				
2008	3	9.9	8.6	12.0	12.0	7.5	9.1	1.5	0.83	9
2009	14	9.3	8.6	11.8	11.8	7.4	14.1	2.1	0.92	13
2010		8.3				5.6				
2011	7	8.4	8.0	9.3	9.3	6.1	8.1	1.0	1.05	2

(Continued)
Table 5. Statistics associated with best estimates of Sproat Lake Sockeye annual (ocean entry year) Age 2 mean smolt size (standard fork length (cm), standard fresh weight (g)), based on sampling effort between April $14^{\text {th }}$ and May $22^{\text {nd }}$ each year. Note: Values for 1980, 1985, 2003-2005, 2007, 2010, 2013-2016 are estimated (Appendix VI).

	Age									
	2									
	N	Length (cm)				Fresh Std Wt (9)			K	Pct
		aug	P10	P95	Max	aug	P95	SD		
Year		8.1	.	.		5.2				
2012										
2013	8	10.3	8.1	11.2	11.2	9.8	9.8			41
2014		8.7				6.4				
2015		8.7				6.4				
2016		8.7				6.3				
AII	578	8.7	7.5	10.3	12.0	5.8	9.1	1.8	0.87	143

APPENDIX I - Size Statistics by Sample Date

Appendix I. Annual Sockeye smolt size statistics by stock (lake), age class, and sample date.

(Continued)

(Continued)

(Continued)

(Continued)

(Continued)

(Continued)

(Continued)

APPENDIX II - Seasonal Sample Size

Appendix II. Smolt sample size (number of fish) and percent of total retained catch, by sample date (ages 1 and 2).
1977 Sproat Lk Sample Size by Week

1979 Sproat Lk Sample Size by Week
\%

1996 Sproat Lk Sample Size by Week

1997 Sproat Lk Sample Size by Week

1998 Sproat Lk Sample Size by Week

1999 Sproat Lk Sample Size by Week

2000 Sproat Lk Sample Size by Week

2001 Sproat Lk Sample Size by Week

2002 Sproat Lk Sample Size by Week

2006 Sproat Lk Sample Size by Week

2008 Sproat Lk Sample Size by Week

2009 Sproat Lk Sample Size by Week
\%

2010 Sproat Lk Sample Size by Week

2011 Sproat Lk Sample Size by Week

2012 Sproat Lk Sample Size by Week

2013 Sproat Lk Sample Size by Week

APPENDIX III - Seasonal Trends in Size

Appendix III. Seasonal time-trends in smolt size (Fork Length, left; Std Weight, right) by sample date and age class. Box and whiskers represent quartiles and extrema, joined at median.

1980 Sproat Lk Smolt Length

| Age | - | - | $\cdots \cdots \cdots$ | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |

1977 Sproat Lk Smolt Weight

Age - 1 - $\quad \cdots \cdots \cdots 2$

Age	-	-	$\cdots \cdots$	2

| Age | - | $-\cdots \cdots$ | 2 |
| :--- | :--- | :--- | :--- | :--- |

$$
\begin{array}{|lllll|}
\hline \text { Age } & - & -\cdots \cdots & 2 \\
\hline
\end{array}
$$

1987 Sproat Lk Smolt Weight

1988 Sproat Lk Smolt Weight
 1989 Sproat Lk Smolt Weight

$$
\begin{array}{|lllll|}
\hline \text { Age } & - & - & \cdots & \cdots
\end{array}
$$

1992 Sproat Lk Smolt Length

Age - 1 - $\begin{array}{llll} & 2\end{array}$

2008 Sproat Lk Smolt Length

2009 Sproat Lk Smolt Length

2010 Sproat Lk Smolt Length

2011 Sproat Lk Smolt Length

Age \quad - $1 \begin{array}{llll} & \cdots & \cdots \cdots & 2\end{array}$

2008 Sproat Lk Smolt Weight

2009 Sproat Lk Smolt Weight

2010 Sproat Lk Smolt Weight

2011 Sproat Lk Smolt Weight

$$
\begin{array}{|lllll|}
\hline \text { Age } & - & - & \cdots & \cdots \cdots
\end{array}
$$

2012 Sproat Lk Smolt Length

2013 Sproat Lk Smolt Length

$$
\text { Age } \quad \square \quad \cdots-\cdots \quad 2
$$

Age

APPENDIX IV - Annual Size Frequency Distributions

Appendix IV. Sproat Lake Sockeye smolt size frequency distributions (Fork Length (cm), left;
Std Weight (g), middle; Condition Factor (k), right) by year and age class.

1977 Sproat Lk

\%

1978 Sproat Lk

1979 Sproat Lk

Age $\quad 1 \quad \square 2$

1977 Sproat Lk

1978 Sproat Lk

1979 Sproat Lk

1977 Sproat Lk

1978 Sproat Lk

1979 Sproat Lk
\%

1980 Sproat Lk

\%

\%

1980 Sproat Lk

\%

\%

Age $\quad 1 \quad 2$

1980 Sproat Lk

\%

\%

Age $\quad 1 \quad \square 2$

1983 Sproat Lk
\%

1984 Sproat Lk

1985 Sproat Lk

1983 Sproat Lk

1984 Sproat Lk
\%

1985 Sproat Lk
\%

1983 Sproat Lk

1984 Sproat Lk

1985 Sproat Lk

1986 Sproat Lk

1987 Sproat Lk
\%

1988 Sproat Lk
\%

Standard Fork Length (cm)
Age $\quad 1 \quad \square 2$

1986 Sproat Lk

1987 Sproat Lk

1988 Sproat Lk
\%

Standard Fresh Weight (g)
Age $\quad 1 \quad 2$

1986 Sproat Lk

1987 Sproat Lk

1988 Sproat Lk
\%

Condition Factor (k)
Age $\quad \square 2$

1989 Sproat Lk
\%

1990 Sproat Lk
\%

1991 Sproat Lk
\%

Age $\quad 1 \quad \square 2$

1989 Sproat Lk
\%

1990 Sproat Lk
\%

1991 Sproat Lk
\%

| Age $\quad \square$ | \square | \square |
| :--- | :--- | :--- | :--- |

1989 Sproat Lk

1990 Sproat Lk
\%

1991 Sproat Lk
\%

Condition Factor (k)
Age $\quad 1 \quad \square 2$

1992 Sproat Lk

1993 Sproat Lk

1994 Sproat Lk

Age $\quad 1 \quad \square 2$

1992 Sproat Lk

1993 Sproat Lk

1994 Sproat Lk
\%

| Age $\quad 1 \quad \square$ |
| :--- | :--- |

1992 Sproat Lk

1993 Sproat Lk

1994 Sproat Lk

1995 Sproat Lk
\%

1996 Sproat Lk

1997 Sproat Lk

Age $\quad 1 \quad \square 2$

1995 Sproat Lk
\%

1996 Sproat Lk
\%

1997 Sproat Lk

Age	\square	\square

1995 Sproat Lk

1996 Sproat Lk

1997 Sproat Lk

Age $\quad 1 \quad 2$

2001 Sproat Lk

2002 Sproat Lk

2003 Sproat Lk
\%

Age $\quad 1$

2001 Sproat Lk

2002 Sproat Lk

2003 Sproat Lk
\%

Age $\quad 1$

2001 Sproat Lk

2002 Sproat Lk

2003 Sproat Lk

2006 Sproat Lk
\%

2008 Sproat Lk

2009 Sproat Lk

Age $\quad 1 \quad 2$

2006 Sproat Lk
\%

2008 Sproat Lk
\%

2009 Sproat Lk

Age

2006 Sproat Lk
\%

2008 Sproat Lk

2009 Sproat Lk

2010 Sproat Lk

2011 Sproat Lk

2012 Sproat Lk

2013 Sproat Lk

2010 Sproat Lk

2011 Sproat Lk

2012 Sproat Lk

2013 Sproat Lk

2010 Sproat Lk
\%

2011 Sproat Lk

2012 Sproat Lk

2013 Sproat Lk

APPENDIX V - Annual Length/Weight Relations

Appendix V. Sproat Lake Sockeye smolt length-to-weight relationships
(model: Std Weight $=\mathrm{a} \cdot$ ForkLength $^{\mathrm{b}}$) by ocean entry year and age class.

Stock Sproat Lk

	Age							
	1				2			
	a	b	Rsq	N	a	b	Rsq	N
Year	0.0076	3.013	0.97	241	0.0089	2.935	0.95	11
1977								
1978	0.0091	2.967	0.96	166	0.0778	1.959	1.00	0
1979	0.0099	2.892	0.86	636	3.2000	0.000		0
1980	0.0096	2.958	0.92	437				
1981	0.0086	2.991	0.84	547	0.0046	3.260	0.90	11
1982	0.0076	3.069	0.68	380	0.0187	2.602	0.58	14
1983	0.0096	2.931	0.91	392	0.0025	3.549	0.99	5
1984	0.0097	2.944	0.88	481	0.0097	2.933	0.90	12
1985	0.0095	2.929	0.91	311				
1986	0.0083	2.991	0.93	209	0.0344	2.364	1.00	0
1987	0.0077	3.079	0.95	516	0.0179	2.690	0.96	46
1988	0.0098	2.947	0.93	1133	0.0218	2.568	0.96	13
1989	0.0132	2.801	0.91	1097	0.0121	2.838	0.95	22
1990	0.0082	3.046	0.93	579	0.0209	2.596	0.89	26
1991	0.0132	2.794	0.92	967	0.0125	2.831	0.90	104
1992	0.0079	3.038	0.95	410	0.0550	2.140	0.51	19
1993	0.0078	3.062	0.95	907	0.0112	2.874	0.73	12
1994	0.0074	3.086	0.97	986	0.0087	3.011	0.95	31

(Continued)

Stock Sproat Lk

	Age							
	1				2			
	a	b	Rsq	N	a	b	Rsq	N
Year	0.0057	3.205	0.95	1003	0.0104	2.914	0.96	28
1995								
1996	0.0051	3.271	0.95	1291	0.0081	3.039	0.89	50
1997	0.0112	2.861	0.91	847	0.0233	2.535	0.89	17
1998	0.0120	2.878	0.83	812	6.6182	0.000		0
1999	0.0065	3.129	0.93	986	0.0186	2.624	0.93	51
2000	0.0075	3.074	0.95	318	4.0624	0.000		0
2001	0.0078	3.035	0.95	534	0.0535	2.110	0.99	4
2002	0.0080	3.018	0.85	228	3.9151	0.000		0
2003	0.0019	3.749	0.91	8				
2006	0.0072	3.109	0.82	81	0.0476	2.294	0.98	2
2008	0.0188	2.649	0.86	30	0.6923	1.040	0.97	1
2009	0.0326	2.376	0.75	91	0.0342	2.417	0.89	8
2010	0.0140	2.773	0.91	10				
2011	0.0271	2.471	0.88	292	0.2410	1.508	0.28	6
2012	0.0228	2.439	0.88	22				
Auerage	0.0107	2.957	0.90	514	0.6872	2.201	0.87	18

1977 Sproat Lk Sockeye

1980 Sproat Lk Sockeye

1995 Sproat Lk Sockeye

1998 Sproat Lk Sockeye

2001 Sproat Lk Sockeye

2006 Sproat Lk Sockeye

APPENDIX VI - Annual Pre-Smolt \& Smolt Statistics

Appendix VI. Annual Sockeye smolt size statistics and pre-smolt size and abundance (K. D. Hyatt and D. P. Rankin unpub. data). Stepwise regression analysis retains only presmolt length $(\mathrm{P}=0.001)$ and an interaction term for pre-smolt forklength x week of ATS sample date $(P=0.07)$.

Smolt Year	ATS Date	Week Since July	Juvenile Sockeye Abundance	Juvenile Sockeye Density	PreSmolt Forklength	Smolt Forklength	Smolt Weight (9)
1980	26FEB80	35	4,624,000	1,220	69	77	4.1
1981	20JAN8 1	30	5,684,000	1,550	70	81	4.6
1982	03DEC8 1	23	8,336,000	2,210		72	3.5
1983	02MAR83	36	$8,427,000$	2,230	63	74	3.5
1984	28NOU83	23	9,639,000	2,550	64	79	4.3
1985	$010 \mathrm{CT84}$	14	19,564,000	5,180	52	64	2.2
1986	27SEP85	13	6,970,000	1,850		83	4.7
1987	3000 T86	18	5,037,000	1,320	64	77	4.3
1988	27JAN88	31	8,890,000	2,350	66	72	3.5
1989	01 N0U88	19	9,187,000	2,430	67	75	3.8
1990	180CT89	16	11,183,000	2,960		77	4.2
1991	06FEB9 1	32	8,541,000	2,260		72	3.4
1992	160CT91	16	5,883,000	1,560	73	82	4.8
1993	260CT92	18	3,373,000	890	68	77	3.9
1994	27JUL93	5	5,990,000	2,700		79	4.4
1995	31 J AN95	31	5,895,000	1,560	67	73	3.3
1996	30JAN96	31	9,780,000	1,720	58	74	3.7
1997	26FEB97	35	4,761,000	1,270	73	77	4.0
1998	19NOU97	21	18,123,000	4,970	51	66	2.9
1999	01 DEC98	23	8,233,000	2,180	64	73	3.6
2000	$30 \mathrm{NOU99}$	23	8,462,000	2,240	67	73	3.4
2001	28NOVOO	23	9,679,000	2,560	55	67	2.4
2002	05DEC01	23	7,478,000	2,070	68	68	2.8
2003	16JAN03	29	4,773,000	1,264	74	74	3.5
2004	19JANO4	30	8,637,000	2,290	67	.	.
2005	26JAN05	31	6,703,000	1,775	74		
2006	OYJAN06	27	3,525,000	934	74	79	4.6
2007	07FEB07	32	3,660,000	970	67		
2008	09NOUOT	19	5,048,000	1,351	73	84	5.4
2009	01 DEC08	23	6,017,000	1,594	72	83	5.3
2010	$30 \mathrm{NOVO9}$	23	4,980,000	600		81	5.5
2011	$30 \mathrm{NOU10}$	23	14,526,189	3,848	66	78	5.0
2012	21 NOU11	22	13,444,391	3,561	62	72	2.9
2013	26FEB13	35	14,526,189	3,848	60	.	.
2014	19NOU13	21	3,687,000	1,000	70		
2015	17FEB15	34	1,210,000	321	76	.	.
2016	17FEB16	34	4,150,000	1,099	75	.	.

(Continued)
Annual Smolt and Pre-Smolt Size Data
The REG Procedure
Model MODELI
Dependent Uariable: SmoltForklength SmoltForklength

Number of Observations Read	37
Number of Observations Used	24

Analysis of Variance						
Source		DF	Sum of Squares	Mean Square	F Ualue	$\operatorname{Pr}>\mathrm{F}$
Model Error Corrected	Total	1	372.50708	$\begin{array}{r} 372.50708 \\ 11.92960 \end{array}$	31.23	$<.0001$
		22	262.45126			
		23	634.95833			
	Root MSE		3.45393	R-Square	0.5867	
	Dependent	Mean	74.95833	Adj R-Sq	0.5679	
	Coeff Var		4.60779			

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	$\operatorname{Pr}>\|t\|$
```Intercept PreSmoltForklength```	```Intercept PreSmoltForklength```	1	$\begin{array}{r} 34.59493 \\ 0.61304 \end{array}$	$\begin{aligned} & 7.25759 \\ & 0.10971 \end{aligned}$	$\begin{aligned} & 4.77 \\ & 5.59 \end{aligned}$	$\begin{aligned} & <.0001 \\ & <.0001 \end{aligned}$

Annual Smolt and Pre-Smolt Size Data
The REG Procedure
Model: MODEL4
Dependent Variable: Smoltforklength Smoltforklength
Number of Observations Read
Number of Observations Used
13
Number of Observations with Missing Ualues

Analysis of Variance					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	417.91714	139.30571	12.84	<. 0001
Error	20	217.04119	10.85206		
Corrected Total	23	634.95833			


Root MSE	3.29425	R-Square	0.6582
Dependent Mean	74.95833	AdjR-Sq	0.6069
Coeff Var	4.39477		

Parameter Estimates

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	$\operatorname{Pr}>\|t\|$
Intercept	Intercept	1	181.72125	143.86638	1.26	0.2211
Year	Smolt Year	1	-0.05310	0.07207	-0.74	0.4698
STD_PreSmoltForklength	PreSmoltForklength	1	3.47 .	0.75856	4.58	0.0002
STD_Presmolt_Inter_Time	Presmolt $\times$ Week	1	-1.647Ч3	0.83956	-1.96	0.0638

## APPENDIX VII - Annual Size-at-Age Correlation

Appendix VII. Correlation of mean annual age 2 versus age 1 smolt forklength (cm; top) and standard weight (grams; bottom), 1977-2012. For use in estimating missing mean annual age 2 size (see Appendix VIII).

Sproat Lake Sockeye - Mean Annual Forklength


Regression Equation:
FL_Age2 $=-0.773883+1.241411$ *FL_Age 1


## APPENDIX VIII - Mean Annual Size Statistics by Age Class

Appendix VIII. Observed mean annual smolt forklength (cm; top) and standard weight (grams; bottom), 1977 - 2012, with sample sizes, by age class. For use in estimating missing mean annual age 2 size (see Appendix VII). Note years where $\mathrm{N}<10$ for age 2 fish.

Sproat Lake Sockeye - Mean Annual Forklength


Sproat Lake Sockeye - Mean Annual Std Weight


## APPENDIX IX - Sample Meta-Data

Appendix IX. Sample meta-data, including total catch (where available) and total fish sampled by sample date, sample site, gear type, agency (sampling crews: PBS-DFO, consultants) and fish preservative code and type.

				FYKE	
				Catch	Sampled
Year   1977	Date	Agency	Preservative		
	$05 M A Y T 7$	PBS	99 Formalin		10
	0 OMAYT7	PBS	99 Formalin		87
	11 MAYTT	PBS	99 Formalin		141
	25MAY7	PBS	99 Formalin		8
	26MAY77	PBS	99 Formalin		10
1978	25APR78	PBS	99 Formalin		99
	$10 \mathrm{MAY} \mathrm{C}^{1}$	PBS	99 Formalin		16
	17 MAY 78	PBS	99 Formalin		55
1979	$18 \mathrm{APR79}$	PBS	01 Formalin		108
	25APRT9	PBS	01 Formalin		115
	01 MAY79	PBS	01 Formalin		100
	$09 M A Y 79$	PBS	01 Formalin		100
	15 MAY 79	PBS	01 Formalin		104
	23MAY79	PBS	01 Formalin		106
	30 MAY 9	PBS	01 Formalin		7
1980	21 APR80	PBS	01 Formalin		108
	28APR80	PBS	01 Formalin		85
	05 MAY 80	PBS	01 Formalin		100
	15 MAY80	PBS	01 Formalin		75
	26MAY80	PBS	01 Formalin		71
1981	28APR81		01 Formalin		140
	$05 \mathrm{MAY81}$	PBS	01 Formalin		58
	11 MAY81	PBS	01 Formalin		148
	$19 \mathrm{MAYB1}$	PBS	01 Formalin		62
	25MAY81	PBS	01 Formalin		100
	O2JUNS 1	PBS	01 Formalin		55
1982	$30 \mathrm{APR82}$	PBS	01 Formalin		100
	$13 \mathrm{MAY8Z}$	PBS	01 Formalin		100
	$26 \mathrm{MAY82}$	PBS	01 Formalin		198
1983	$19 \mathrm{APR83}$	PBS	01 Formalin		100
	26APR83	PBS	01 Formalin		99
	$10 \mathrm{MAY83}$	PBS	01 Formalin		100
	$17 \mathrm{MAY83}$	PBS	01 Formalin		67
	25MAY83	PBS	01 Formal in		35
1984	16APR84	PBS	01 Formalin		100
	25APR84	PBS	01 Formalin		100
	$07 \mathrm{MAY84}$	PBS	01 Formalin		99
	$16 \mathrm{MAY84}$	PBS	01 Formalin		98
	28MAY84	PBS	01 Formalin		100
1985	24 APR85	PBS	01 Formal in		152
	01 MAY85 15 MAY85	PBS	01 Formal in		13 148 1
1986	15MAY85	PBS	01 Formalin		148 113
	13 MAY 86	PBS	01 Formalin		103
1987	14 APRET	PBS	01 Formalin	23	29
	21 APR87	PBS	01 Formalin	180	191
	29APR87	PBS	01 Formalin	85	119
	$05 \mathrm{MAY87}$	PBS	01 Formalin	95	100
1987	$12 \mathrm{MAY87}$		01 Formalin	87	98
	$20 \mathrm{MAYB7}$	PBS	01 Formalin	25	27
	28MAY87	PBS	01 Formalin	1	1
	$04 J$ UN87	PBS	01 Formalin	1	1
1988	05 APR88	PBS	01 Formalin		4
	$13 \mathrm{APR88}$	PBS	01 Formalin		200
	20 APR88	PBS	01 Formalin		200
	28APR88	PBS	01 Formalin		200
	$04 \mathrm{MAY88}$	PBS	01 Formalin		200
	11 MAY88	PBS	01 Formalin		123
	18MAY88	PBS	01 Formal in		168
	25MAY88	PBS	01 Formalin		47
	$02 \mathrm{JUN88}$	PBS	01 Formal in		8
1989	06APR89	PBS	01 Formalin		20
	13 APR89	PBS	01 Formalin		102
	19 APR89	PBS	01 Formalin		69
	27 APR89	PBS	01 Formalin		288
	$03 \mathrm{MAY89}$	PBS	01 Formal in		223
	$10 \mathrm{MAY89}$	PBS	01 Formalin		199
	$17 \mathrm{MAY89}$	PBS	01 Formal in		179
	25MAY89	PBS	01 Formalin		13
	$04 \mathrm{APR9} 0$	PBS	01 Formalin		4
1990	$10 \mathrm{APR9} 0$	PBS	01 Formalin		69
	$18 \mathrm{APR90}$	PBS	01 Formalin		136
	25APR90	PBS	01 Formalin		164
	$02 \mathrm{MAY90}$	PBS	01 Formal in		15
	$03 \mathrm{MAY90}$ $10 \mathrm{MAY90}$	PBS	01 Formalin		145
	$10 \mathrm{MAY90}$	PBS	01 Formal in		145 45
	24 MAYGO	PBS	01 Formalin		13
	31 MAY90	PBS	01 Formal in		9
	O6JUN90	PBS	01 Formalin		1
	13 JUNG 0	PBS	01 Formalin		3
1991	$10 \mathrm{APR9} 1$	PBS	01 Formalin	238	200
	$17 \mathrm{APR9} 1$	PBS	01 Formalin	108	106
	24APR91	PBS	01 Formalin	177	166
	01 MAY91	PBS	01 Formal in	228	200
	08 MAY 1	PBS	01 Formalin	563	200
	$15 \mathrm{MAY9} 1$	PBS	01 Formalin	169	170
	22MAY91	PBS	01 Formalin	8	7
1992	31 MAR92	PBS	01 Formal in	27	26 3
	07 PrR92	PBS	01 Formalin		4
	$14 \mathrm{APR92}$	PBS	01 Formalin		7
	21 APR92	PBS	01 Formalin		152

(Continued)

				FYKE	
				Catch	Sampled
Year 1992	Date	Agency	Preservative		
	$28 \mathrm{APR92}$	PBS	01 Formalin		174
	$05 \mathrm{MAY92}$	PBS	01 Formalin		86
	$12 \mathrm{MAY92}$	PBS	01 Formalin		7
1993	$30 \mathrm{MAR93}$	PBS	01 Formalin		0
	06 APR93	PBS	01 Formalin	2	2
	14 APR93	PBS	01 Formalin	141	135
	21 APR93	PBS	01 Formalin	428	195
	28APR93	PBS	01 Formalin	618	198
	$05 \mathrm{MAY93}$	PBS	01 Formalin	108	106
	$12 \mathrm{MAY93}$	PBS	01 Formalin	160	162
	$19 \mathrm{MAY93}$	PBS	01 Formalin	29	25
	$27 \mathrm{MAY93}$	PBS	01 Formalin	70	72
	02JUN93	PBS	01 Formal in	11	11
	08JUN93	PBS	01 Formalin	3	3
	$16 \mathrm{JUN93}$ $31 \mathrm{MAR94}$	PBS	01 Formalin	0	0 99
1994	$07 \mathrm{APR94}$	PBS	01 Formalin		89
	$14 \mathrm{APR94}$	PBS	01 Formalin		200
	$20 \mathrm{APR94}$	PBS	01 Formalin		72
	$27 \mathrm{APR94}$	PBS	01 Formalin		200
	05 MAY 94	PBS	01 Formalin		200
	$12 \mathrm{MAY94}$	PBS	01 Formalin		132
	$18 \mathrm{MAY94}$	PBS	01 Formalin		12
	26MAY94	PBS	01 Formalin		14
	$02 \mathrm{JUN94}$	PBS	01 Formalin		5
1995	05 APR95	PBS	01 Formalin		33
	12 APR95	PBS	01 Formalin		20
	$19 \mathrm{APR95}$	PBS	01 Formalin		200
	27 APR95	PBS	01 Formalin		200
	$04 \mathrm{MAY95}$	PBS	01 Formalin	214	214
	$10 \mathrm{MAY95}$	PBS	01 Formalin		33
	$18 \mathrm{MAY95}$	PBS	01 Formalin		115
	$25 \mathrm{MAY95}$	PBS	01 Formalin		200
	01 JUNS5	PBS	01 Formalin		20
1996	02APR96	PBS	01 Formal in		181
	11 APR96	PBS	01 Formalin		181
	18 APRGG	PBS	01 Formalin		200
	25APR96	PBS	01 Formalin		125
	$30 \mathrm{APR96}$	PBS	01 Formalin		200
	$09 \mathrm{MAY96}$	PBS	01 Formalin		180
	$16 \mathrm{MAY96}$	PBS	01 Formalin		217
	23MAY96 $30 \mathrm{MAY96}$	PBS	01 Formalin		200 41
	$10 \mathrm{APR97}$	PBS	01 Formalin	364	41 260
1997	15APR97	PBS	01 Formalin		60
	17 APR97	PBS	01 Formalin	11	10
1997		PBS	01 Formalin		
	$01 \text { MAY97 }$	PBS	01 Formalin	143	138
	$08 \mathrm{MAY97}$	PBS	01 Formalin	100	59
	$16 \mathrm{MAYg7}$	PBS	01 Formalin	25 175	18
	22MAY97	PBS	01 Formalin	175	126
1998	16APR98	PBS	01 Formalin		158
	23APR98	PBS	01 Formalin		50
	$30 \mathrm{APR98}$	PBS	01 Formalin		210
	$07 \mathrm{MAY98}$	PBS	01 Formalin		350
	$13 \mathrm{MAY98}$	PBS	01 Formalin		85
	28MAY98	PBS	01 Formalin		104 250
1999	14 APR99	PBS	01 Formalin	200	200
	22APR99	PBS	01 Formalin	160	160
	28APRg9	PBS	01 Formalin	400	230
	$05 \mathrm{MAY99}$	PBS	01 Formalin	190	190
	12 MAYg	PBS	01 Formalin	130	130
	$19 \mathrm{MAY99}$	PBS	01 Formalin	183	183 104
	02JUNS9	PBS	01 Formalin	104 6	104
2000	27 APR00	Consultant	01 Formalin	62	55
	03 MAY 0	Consultant	01 Formalin	340	132
	10 MAYOO	Consultant	01 Formalin	100	100
	18 MAY00	Consultant	01 Formalin	14	14
	31 MAY00	Consultant	01 Formalin	20 120	20
2001	11 APRO1 18 APRO	PBS	01 Formalin	120 400 400	$\begin{array}{r}75 \\ 200 \\ \hline\end{array}$
	26APR01	PBS	01 Formalin	400	200
	13 MAYO 1	PBS	01 Formalin	100	69
2002	$02 \mathrm{MAY0Z}$	PBS	02 Ethanol		113
	$07 \mathrm{MAY02}$	PBS	01 Formalin		38
	$14 \mathrm{MAY02}$	PBS	01 Formalin		5
	23MAY02 $30 \mathrm{MAY02}$	PBS	01 Formalin		22 53
	07 MAY 03	PBS	12 Frozen		10
2006	O8MAY0G	PBS	12 Ethanol	87	87
2008	28APR08	PBS	02 Ethanol		35
2009	15APR09	PBS	02 Ethanol	146	92
	$05 M A Y 09$	PBS	02 Ethanol	10	12
2010	19APR10	PBS	02 Ethanol	2	2
2011	05MAY10	PBS	02 Ethanol		10 204
	08 MAY 11	PBS	02 Ethanol		99
$\begin{aligned} & 2012 \\ & 2013 \\ & \text { A11 } \end{aligned}$	23APR12	PBS	02 Ethanol		24
	02APR13	PBS	02 Ethanol		17
				8,097	18,100

## APPENDIX X - Data Issues

Smolt data collected over the years have been managed in a variety of ways, but data storage is divided into two basic formats:

1. SAS Database - For the years 1977-1996, smolt size, age and meta-data were keypunched and uploaded into structured SAS datasets. Subsequently, SAS programming procedures for smolt data management was replaced with unstructured spreadsheet workbook files.
2. Excel Workbooks - As of 1997, smolt size and age data were managed in Microsoft Excel spreadsheets, in different formats and data structures. Field trip meta-data were usually stored in separate Excel spreadsheets (Survey Trip Reports, or STRs) and/or in data spreadsheets specific to stock-year-sample-date. File naming conventions and data structures were not always adhered to.
To collate all datasets into one location for compilation and analysis, a spreadsheet-based inventory was created to track the file locations and contents of the Excel workbook files.
Smolt Data Inventory.xlsx is a meta-data inventory spreadsheet documenting the existence of smolt survey datasets based on information collated from STRs and known smolt sample spreadsheets. The Inventory spreadsheet data is organized by smolt ocean entry year, lake/stock (GCL/Sproat/Henderson only), sample site and sample date. For each record, the following variables are listed (where available): Trip, Sample Number, Sample Type ( $1=$ Smolt, 2=ATS (excluded from smolt analyses)), \#Sets, SoakTime, Total Catch, Total Retained (sample), Crew or Agency, fish Preservation Code and Preservative Type (used to identify appropriate conversion to "standard" fresh weight), Gear Code and Gear Type, Size Data Resolution (individual Fish, or summarized by Date or Year), Comments, and Data Source (filename and location).

This assisted in the compilation of the smolt survey observations, i.e. the individual fish meristics, standard weights, and age data. The raw data were organized in Smolt Size Data 1997-2018.xlsx. The individual fish size and age data, where available, have been retrieved from the data sources identified in Smolt Data Inventory.xlsx and consolidated into stock-specific tabs (GCL, SPR, etc) to structure the data by Stock, Sample Date, Sample Number and Fish Number. Meta-data include Species Code, Gear Code, Site Code, Lab Processor, and Notes. Size data include ForkLength (fresh only), and may include either Preserved Wet Weight or Fresh Standard Weight, or both. Age data include (where available) Scale Book Number, Scale Number, Scale Quality and Scale Age. In the absence of scale age data, an Assigned Age may be applied. The Final Age value is set to the Scale Age or Assigned Age, and is used as the fish's age class in analyses.

Age Data - Between 1977 and 1986, all fish captured and retained were scale-sampled for age analysis. After 1986, scale sampling was reduced in scope, and focused on fish in the overlapping age range of $75-90 \mathrm{~mm}$, with few fish $<70 \mathrm{~mm}$ (assumed age 1) or $>90$ mm (assumed age 2) in fork length scale-sampled. In many cases, scale sampling did not occur at all, or was limited by sample size, or did occur but the scales were never aged. In-season analyses by sampling crews often assumed all unaged fish were age 1 (not unreasonable for Henderson Lake Sockeye, or perhaps Sproat Lake Sockeye, but potentially problematic for Great Central Lake Sockeye with its larger proportion of age

2 fish in the population), or assigned to age based on a conventional threshold that varied between years and stocks from $70-90 \mathrm{~mm}$. The misclassification of fish age may lead to directional biases in annual smolt size summaries. If many average-sized fish are left unaged, while all small and big fish are assigned, then the mean size of age 1 s will be biased downward, and age 2 mean size would be biased upward. To reduce the potential bias in age classification, the following procedures were applied to smolt survey data with missing ages (1987-2018):

1. Where Scale Age exists and is not ambiguous or erroneous, the Final Age was set to the Scale Age.
2. An Assigned Age can be used to overrule Scale Age (if erroneous or ambiguous).
3. In the absence of Scale Age or Assigned Age, Final Age is set for very small and very large fish based on unambiguous size rules associated with fork length (e.g. If Forklength $<70 \mathrm{~mm}$, Final Age $=1$; If ForkLength $>100 \mathrm{~mm}$, Final Age $=2$, etc).
4. For mid-range sizes ( $70-100 \mathrm{~mm}$ ), bimodality in the size distributions can be used to classify unaged fish to age in some years. However, high overlap in size distributions between age classes, plus a general trend for larger fish emigrating earlier in the season, required some attention to sample timing and proportions by age at specific size classes. Thus:
a. Year-specific age proportions from scale data by year, month (April versus May/June) and 5 mm length class were used to classify unaged fish to age class. For example, if scale analysis indicated $80 \%$ of aged fish $90-95 \mathrm{~mm}$ in length in April 1999 were age 1, then the smallest (by weight) 8 of 10 unaged fish in that size class in 1999 were assigned age 1, and the largest 2 of 10 fish were assigned age 2. Age proportions for May-June would be applied to classify unaged fish in subsequent months. For very low sample sizes of unaged fish (e.g. <10 fish), the default age assignment was age 1 since age 1 fish are predominant in the population. In the absence of age data from scale samples for a given year, the multi-year age proportions by forklength size class were used to assign age.
b. Fish-specific age assignments were entered into the Assigned Age column in the spreadsheet, and thereby incorporated into the Final Age value.
c. Assigned ages for the Excel spreadsheet data (1997-2018) are recorded and annotated in Smolt Size Data 1997-2018.xlsx.
d. Unassigned age classes in mid-sized length range the SAS database data (1986-1996) were programmatically defaulted to age 1, with individual fish re-assignments to age 2 as tabulated below.

Data Omissions - Outliers and anomalies that were omitted from analyses included:

1. Rare ages - fish aged 0 omitted.

## 2. Outliers

a. 08-May-11 - Fish\# 1, forklength 170 mm , std weight 39 g

Other - In 1992 and 1994, smolt surveys occurred on March 31st. For plotting purposes, the survey date was reassigned to April 1st of the year for these samples.

Age Re-assignments - The following unaged fish were assigned to age 2 programmatically based on forklength, month, and available age proportion data, by sample date and fish number.

				Fork Length	$\begin{aligned} & \text { Final } \\ & \text { Age } \end{aligned}$
Year   1987	Date	Fish	Metric Size Class		
	21 APR87	185	forklength 76-80	78	2
	29APR87	2	forklength 76-80	78	2
	$05 M A Y 87$	64	forklength 76-80	79	2
	$12 \mathrm{MAY87}$	1	forklength 76-80	79	2
	$20 M A Y 87$	14	forklength 76-80	78	2
		26	forklength 76-80	78	2
	28MAY87	1	forklength 76-80	79	2
	$04 J$ UN8 7	1	forklength 76-80	78	2
1988	13 APR88	3	forklength 81-83	83	2
		17	forklength 76-80	80	2
		33	forklength 84-89	89	2
		34	forklength 76-80	80	2
		53	forklength 70-75	75	2
		78	forklength 70-75	75	2
		99	forklength 81-83	83	2
		103	forklength 76-80	80	2
		119	forklength 70-75	75	2
		134	forklength 84-89	86	2
		170	forklength 76-80	80	2
		179	forklength 81-83	83	2
		188	forklength 70-75	75	2
		189	forklength 70-75	75	2
		200	forklength 76-80	80	2
1991	10 APR9 1	20	forklength 70-75	74	2
		80	forklength 70-75	74	2
		90	forklength 70-75	75	2
$\begin{aligned} & 1994 \\ & 1995 \end{aligned}$	$14 \mathrm{APR9} 4$	68	forklength 81-83	83	2
	05APR95	22	forklength 76-83	79	2
		27	forklength 76-83	82	2
	$19 \mathrm{APR95}$	28	forklength 70-75	74	2
		31	forklength 70-75	74	2
		51	forklength 70-75	74	2
		55	forklength 70-75	74	2
		56	forklength 70-75	73	2
		57	forklength 70-75	73	2
		65	forklength 70-75	73	2
		67	forklength 70-75	74	2
		86	forklength 70-75	74	2
		94	forklength 70-75	73	2
		96	forklength 70-75	73	2
		108	forklength 70-75	74	2
		118	forklength 70-75	73	2
		180	forklength 70-75	73	2
	27 APR95	19	forklength 70-75	73	2
		181	forklength 70-75	73	2
1996	11 APR96	7	forklength 76-83	92	2
		8	forklength 76-83	87	2
		72	forklength 76-83	80	2
		128	forklength 76-83	81	2
		154	forklength 76-83	80	2
1996	11 APR96	181	forklength 76-83	81	
	$18 \mathrm{APR96}$	62	forklength 87-97	92	2
		73	forklength 87-97	89	2


[^0]:    ${ }^{1}$ Salmon in Regional Ecosystems Program, and
    ${ }^{2}$ Retired, Science Branch, Department of Fisheries and Oceans Pacific Biological Station, British Columbia, V9R 5K6

[^1]:    ${ }^{1}$ Fulton fish condition factor $(\mathrm{K})$ is an index of fish 'health' that relates fish weight to length, and is influenced by age of fish, sex, season, maturation stage, fullness of gut, type of food consumed, amount of fat reserve, and degree of muscular development (Fulton 1902; in Barnham and Baxter 1998). $\mathrm{K}=10^{5} \mathrm{x} \mathrm{W} / \mathrm{L}^{3}$, where $\mathrm{W}=$ Standard weight $(\mathrm{g})$ and $\mathrm{L}=$ forklength (cm). K generally ranges from 0.5 ("poor condition") to 2.0 ("good condition"), with $\mathrm{K}<=1$ for long, thin fish such as salmonid fry and smolts.
    ${ }^{2}$ For leap years, day-of-year was advanced by one day beginning in March to account for February 29th.
    ${ }^{3}$ For some figures, the Fulton fish condition factor (K) is multiplied by 10 for plotting purposes.
    ${ }^{4}$ Winter pre-smolt (fry) size and abundance estimates from Hyatt et al. (2016) and K. Hyatt, DFO Pacific Biological Station (unpub. data).
    ${ }^{5}$ Data issues are listed in Appendix X.
    ${ }^{6}$ Smolt data are available upon request. Contact Kim.Hyatt @dfo-mpo.gc.ca.

[^2]:    ${ }^{7}$ Note that in 1980, 1985, 2003, 2010, and 2012, no age 2 smolts were found in sampled fish, therefore the predicted age 2 fork length is hypothetical for those years.

[^3]:    ${ }^{8}$ Weight data were not available for fish sampled in 2013 due to poor quality of fish preservation.

[^4]:    ${ }^{9}$ Smolt size data are insufficient or N/A.

