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ABSTRACT 
Many monitoring programs are employed across the numerous and diverse fisheries in Canada 
to estimate parameters that are used directly in fishery management or are used to produce 
scientific advice for the sustainable management of fisheries. These parameters include catch 
amounts or catch rates for targeted and incidentally captured species, catch composition (e.g., 
size composition, percentage of soft-shelled crustaceans) and fishing effort. Fisheries and 
Oceans Canada (DFO) is currently finalizing a national fishery monitoring policy to ensure that it 
has dependable, timely and accessible information on fisheries to manage them sustainably and 
to ensure a unified approach for setting the type and degree of monitoring employed across 
fisheries nationwide. This report presents an important component for the implementation of the 
new policy: a unified framework to evaluate the quality (how close a parameter estimate is to the 
true value) and dependability (ability of an estimation process to achieve its intended objectives) 
of DFO’s fishery monitoring programs. Quality and dependability are affected by statistical 
characteristics of the monitoring program design and by operational characteristics which result 
in deliberate or unintentional differences between the implementation of the program and the 
program design, or which contribute data errors (e.g., measurement, data handling and 
modelling errors). The proposed assessment framework accounts for statistical and operational 
characteristics of a program and can be implemented using quantitative data and expert 
opinion. It is structured and founded on statistical concepts which are used heuristically to 
ensure consistent application and rigor. Furthermore, the framework is applicable to parameter 
estimations that are used directly (e.g., catch amounts for stock assessment purposes) or that 
are used to gauge compliance with respect to some limit (e.g., fulfillment of a quota or 
achievement of a bycatch limit). The goal for this report is to provide the details of and relevant 
justifications for the proposed assessment framework. Technical details are provided only where 
they are required; however, this report is not meant to be a user’s guide and a separate 
document will therefore be required for the implementation of the proposed assessment 
framework.
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1. INTRODUCTION 
Fisheries and Oceans Canada (DFO) is currently drafting a national fishery monitoring policy to 
ensure that it has dependable, timely and accessible information for fisheries to manage them 
sustainably and to ensure a unified approach for setting the type and degree of monitoring 
employed across fisheries nationwide. As part of this project, a unified framework and a 
corresponding tool to evaluate the statistical quality and dependability of DFO’s fishery 
monitoring programs are required.  The purpose of the present report is to propose such a 
framework, from which an assessment tool will be concurrently developed and documented 
separately.  

DFO’s fishery catch monitoring programs include data reported by resource users such as fisher 
questionnaires, purchase slips and logbooks, and data reported by independent monitors such 
as dockside monitoring, at-sea observers and video monitoring systems. Beauchamp et al. 
(2019) provide a review of these methods, including their strengths and weaknesses in 
providing dependable catch data. 

The number of catch monitoring programs for all captured species in all Canadian fisheries 
managed by DFO is very large.  In many cases, detailed information will be very difficult to 
obtain, only qualitative in nature or unobtainable.  Consequently, the assessment framework 
must be scalable, allow for incomplete information and real-life limitations, while aiming for 
consistency in application and rigor. The proposed assessment methodology was developed 
based on these considerations. 

The proposed assessment methodology is structured: it requires that the impact of each factor 
contributing to the statistical quality of the monitoring program be assessed separately.  The 
structured approach increases the ease and reliability of the assessment by, for example, 
allowing factors that do not impact a particular monitoring program to be ignored. It also 
facilitates consistency by ensuring that each evaluation of statistical quality considers all 
relevant identified factors. 

The proposed assessment methodology is semi-quantitative: it accepts available information, 
whether it is obtained from data or from expert opinions.  The impact of some factors on quality 
can be quantified, possibly based on some quality control procedures or studies of other, 
similar, monitoring programs.  For example, errors resulting from observers visually estimating 
catch weight may have been studied in quality control experiments in a particular fishery and the 
results can be applied to assessments in other fisheries.   The impact of other factors may be 
difficult to assess and, in some cases, must be based on expert knowledge (“expert” referring 
here to a person with detailed knowledge about how the fishery operates and is monitored, 
including possible cheating by resource users).  For example, changes in fisher fishing patterns 
when an at-sea observer is aboard are difficult to observe and their impact on the amount and 
species composition of discards would usually have to be assessed from expert knowledge. 

The proposed assessment methodology is applicable to the various monitoring tools, either 
singly or in combination.  For example, the estimate of total catch of a species targeted by 
several fisheries (fixed gears, mobile gears, for example), involves assessing several monitoring 
programs separately and then considering their combined statistical quality. Similarly, an 
evaluation of the statistical quality of catch estimators derived from separate monitoring of effort 
and catch-per-unit-effort (CPUE), requires an evaluation of each monitoring programs and their 
joint effect. 

Finally, the proposed methodology requires thorough documentation for each relevant element 
of the assessment. 
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The methodology is inspired by statistical concepts which are used heuristically to guide the 
development of the assessment framework.  Complete understanding of the underlying 
statistical concepts is not required to understand and apply the framework and technical details 
are presented in this report only where they are required. Furthermore, a case study is provided 
to demonstrate the use of this framework. The goal for this report is to provide the details of and 
relevant justifications for the proposed assessment framework. This report is not meant to be a 
user’s guide and is likely to be too detailed for some users. A separate user’s guide to facilitate 
the use of the framework and to further ensure consistency in its application is being produced. 

 

2. PRESENTATION 
The following text styles are used throughout the text: 

• Term that is defined in the text and/or in the glossary (upon first use). 
• An EXAMPLE follows. 
• An impact on quality is described. 
• This point is important. 

• Parameters that should be set before deployment of the framework (example: scoring 
scales). 

Warnings, limitations, etc. 

Furthermore, instances in which a measurement scale is described are explicitly labelled as 
such (e.g., ‘Measurement: …’). 

3. FISHERY MONITORING PROGRAM AND PARAMETER ESTIMATION 
The objective of a fishery monitoring program is to estimate one or several parameters for that 
fishery, including, for example, the total target species catch, total bycatch for each incidentally 
captured species, total effort and average catch per unit of effort (CPUE), and the composition 
of the catch with respect to sex, age, size or condition.  

A monitoring program is generally oriented towards a single fishery, typically defined by target 
species, location, time period, gear and sector (commercial, recreational or food, social and 
ceremonial).  In many cases, a fishery will target one or a few species but also capture other 
species or components of the target species (e.g., sizes, condition) incidentally, as ‘bycatch’.  A 
single monitoring program can involve several monitoring tools (e.g., at-sea observers on a 
random sample of trips, mandatory logbooks and dockside monitoring of all trips).   

Similarly, the estimation of some parameters depends on several monitoring programs.  For 
example, some species are harvested by several fisheries and the estimation of total catch may 
involve monitoring programs specific to each fishery.  Also, the fishery parameter may be 
estimated from the results of two or more monitoring tools. For example, estimating the total 
recreational fishery catch of Atlantic salmon could require a telephone census of licenced 
fishers to estimate the total fishing effort and a creel sampling survey to estimate the CPUE. 
Understanding the quality of the estimator of the parameter (total salmon catch) requires 
evaluating the quality of the estimators of the components, total fishing effort and CPUE, and 
their joint effect on quality. 
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There are two principal uses for parameter estimations. First, as part of fishery management, 
the parameter estimates may be used for the application of established quotas, limits on the 
bycatch, etc. That is, to determine whether and when a limit is reached. Second, for stock 
management and for the protection of species of conservation concern (SCC), the parameter 
estimates may be used to estimate stock composition and size, which in turn can be used to 
determine appropriate quotas and other management measures.  

Figure 1 illustrates the complexity of assessing DFO’s monitoring programs. Species 1 may be 
the target species of the Fishery A.  Species 2 may be a bycatch in Fishery A but a target 
species in Fishery B.  Therefore, the results of several monitoring programs must be combined 
for stock management or for the protection of SCC. Consequently, an assessment of the quality 
of the data used for management purposes must integrate quality across monitoring programs. 
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Figure 1. A single monitoring program can involve several species and therefore several parameters of 
interest (species 1 and 2 and parameters of interest X and Y).  A species (species 2, in the figure) may be 
captured in several fisheries and observed in several monitoring programs.  Parameter X could be total 
catch of Species 2 in each fishery and Parameter Y could be the ratio of bycatch to total catch in Fishery 
A. 

The smallest unit of assessment will be a single parameter measured or estimated in a specific 
monitoring program from a single fishery (e.g., total catch of a given species estimated from 
data obtained by at-sea observers), which we call a parameter estimation process or, briefly, an 
estimation process. The estimation process includes all steps required to produce the estimate 
of the parameter, including the acquisition of the data, transcription, correction, and 
mathematical computations. 

Each monitoring program must be assessed separately for each parameter estimated in that 
monitoring program.  A monitoring program can be found dependable for a certain parameter 
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(e.g. total target species catch) but not for another parameter (e.g. total bycatch and discard 
estimates of a specific SCC).   

To understand the need to assess estimation processes separately, consider the following 
examples.  An at-sea observer monitoring program is used to estimate the catch of a target 
species and the catch of a rare, incidentally captured SCC (bycatch).  The observers may very 
easily identify fish from the target species, producing high quality data for the target species, but 
may have difficulty correctly and consistently identifying rare species, producing low quality data 
for those species.  Similarly, consider a catch monitoring program with mandatory logbooks and 
dockside monitoring, used to measure total catch of target species and discards.  The logbook 
entries for retained catch of the target species are likely to be accurate, given that they may also 
be verified at dock-side by an independent observer, while the entries for catches of discarded 
species may be much less reliable, given that they cannot be verified. Furthermore, logbook 
entries in such a case may be particularly biased if there are incentives for the fisher to under-
report bycatch, such as bycatch quotas that result in fishery closures once they are reached. 

Each monitoring program will consist of one or several estimation processes.  Overall 
assessment of the monitoring program will be constructed from these elemental assessments. 

For the application of fishery regulations in a single fishery, the assessment of a single 
monitoring tool for one or more parameters may be sufficient, i.e. the assessment of one or 
more (related) estimation processes.  For parameters that require the results of several 
monitoring programs, some modifications to the assessment methodology are required.  For 
example, when a species is caught by several fisheries, a joint assessment of several 
estimation processes must be carried out to assess the dependability of these programs with 
respect to the management of this species.  This will be accomplished by combining the 
outcomes of the individual estimation processes. 

4. APPROACH 
A monitoring program targets a specific fishery.  The target population consists of all units of 
interest.  Relevant examples of target populations include the set of all fishing trips in a fishery, 
the set of all recreational fishers during a season, and the set of all possible daily effort counts in 
a fishery.  A monitoring program can be based on a sample survey, where a sample of units is 
selected for observation, or on a census, where all units are to be observed.  The term survey 
refers to either a sample survey or a census. 

Note: The available list of units of interest is called the frame.  It may differ from the list of all 
units of interest.  The frame will be further defined below. 

4.1. Quality 
In assessing an estimation process, we use the term quality to describe the validity of the 
estimate of the parameter, i.e. how close to the true value it is likely to be. 

The characteristics affecting the quality of an estimate based on the results of a sample survey 
or a census can be separated into two classes: 

• “Statistical characteristics” describe the impact of the randomness in the random sampling 
protocol and the impact of the properties of the estimator (the mathematical computations) 
used to obtain the estimate.  Statistical characteristics of an estimator are mathematical 
properties: they can be established through mathematical proofs and assessed using 
statistical computations. The random sampling protocol presumed to have been used (e.g., 
simple random sampling, stratified sampling) determines the statistical methods that are 
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applied. Statistical characteristics, as defined above, are not present in censuses unless the 
non-response rate is high. 

 

Assessment of the statistical characteristics affecting the quality of a sample survey 
must include an assessment of the standard error and of the estimator bias based on 
statistical analysis of actual or, possibly, similar or historical data, or based on theory. 

 

• “Operational characteristics” are related to the implementation of the sampling protocol and 
properties of the estimator or of model-derived estimates.  They include either deliberate or 
unintentional differences between the actual sampling protocol and the sampling protocol 
assumed in the statistical analysis, i.e., departures from the sampling protocol and other 
sources of errors due to the implementation of the program. They also include 
characteristics such as measurement errors and errors associated with calculating the 
estimates (e.g., calculating total catch weight from gutted-weight observations and a gutted-
weight conversion factor). Operational characteristics can impact both sample surveys and 
censuses. 

In the proposed assessment methodology, the assessment of the quality of the estimation 
process can, in many cases, be broken down into assessing the prevalence and the impact of 
each operational characteristic potentially affecting the quality of the estimates.  

4.2. Dependability 
In assessing an estimation process, we use the term dependability to describe the ability of the 
estimation process to help reach the objectives for which it is to be used.  

We separate the statistical objectives of fishery monitoring programs into two classes: 
measurement and compliance. Measurements are important for administrative purposes (e.g., 
reporting the total economic value of given fishery) or scientific purposes (e.g., stock 
assessment). Compliance is important when some limit has been set (e.g., total allowable catch, 
total allowable bycatch as a function of the target species catch) and the estimate of the 
parameter is used to determine if the limit has been respected or not.   

Measurement and compliance are inherently different types of objectives requiring different 
assessment approaches.  The assessment of dependability for measurement objectives will be 
based on comparing the quality of the estimate with the scientific or administrative 
requirements. For example, this may involve requirements for the precision (defined below) of 
the estimate.  The assessment of dependability for compliance objectives will be based on a 
hypothesis testing framework, e.g., the probability the estimation process leads to a correct 
conclusion that the limit has been respected or not respected.  This approach allows for the 
establishment of a uniform measure of dependability and for a risk-based assessment. 

There are other, non-statistical, objectives of fishery monitoring. These include deterrence (e.g., 
by placing at-sea observers on vessels that are likely to violate regulations or conditions of 
licence) and regulatory enforcement (e.g., at-sea boardings by fisheries officers). The present 
report does not address non-statistical objectives. 
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5. MAIN DEFINITIONS 
We define the most important concepts used in this report.  Other terms are defined in the 
Glossary. 

5.1. Preliminary: what does “on average” mean? 
Throughout this section of the report the expression “on average” is used several times and 
warrants some attention. 

Suppose that one desires to estimate the total fishing effort (fisher days) for Miramichi River 
recreational salmon fishers using a telephone sample survey.  At the end of the season, a 
random sample of recreational fishers holding a license is called and asked how many days 
they fished.   The total effort will be estimated by multiplying the average effort reported by 
fishers in the telephone sample survey, by the total number of fishers holding a license. 

Now, consider the following “thought experiment”.  Suppose that we can repeat this process a 
very large number of times in identical conditions.  Due to difference between random samples, 
differences between cases of non-response, difference between momentary memory lapses, 
etc., we would get a different estimate each time. “On average” means taking an average of 
the estimates obtained from these impossible-to-carry-out, theoretical repetitions. 
Mathematical theorems give information about the impact of randomness on these estimates.  
However, it is not possible to say something specific about, for example, the error in a single 
estimate (e.g., how different it is from the population “true” value) because the true value is 
unknown. 

Note that we use “on average” to refer to any kind of mean, including the quadratic mean used 
in the computation of the standard error.  Furthermore, if only sampling randomness was 
considered, in statistics this would be termed the “expected value”. 

Technical note: The central limit theorem 
In classical statistics, computation of the sampling error relies on mathematical theorems and, 
most often, on the central limit theorem proven by the French mathematician Pierre-Simon 
Laplace (Laplace, 1812).   

The central limit theorem states that the means of random samples drawn from a population 
with mean µ and variance σ2 will have an approximately normal distribution with a mean equal 
to µ and a variance equal to σ2/n, if n, the sample size, is “large” and the population size is 
much larger than n.  It is the central limit theorem that gives the usual formula for the 
confidence interval: 𝑋𝑋�± zα/2×s/n½ where 𝑋𝑋� and 𝑠𝑠2 are respectively the sample mean and 
variance used to estimate the population mean µ and variance σ2. 

Under restrictive assumptions, the central limit theorem can be used in other sampling 
situations (e.g. to estimate the parameters of a regression). 

5.2. Estimator vs estimation process 
Obtaining a parameter estimate from data involves mathematical computations.  For example, 
given a simple random sample, the population mean is usually estimated by computing the 
usual (“arithmetic”) mean of the observations.  The term “estimator” will be used to refer to this 
mathematical step.  Another estimator of the population mean is the truncated mean: it involves 
computing the mean of the observations remaining after removing, say, the 5% smallest and the 
5% largest observations.  This is a different estimator of the mean (in some situations, it is a 
better estimator than the usual mean). 
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The estimator refers only to the mathematical computations.  The estimation process involves 
an estimator but also includes all the other steps leading to the estimate. 

5.3. Quality of an estimation process 
The quality of an estimation process describes the quality of the estimation, i.e. how close to the 
true value the estimate is expected to be.  The quality of the estimation will depend on its 
accuracy (converse: inaccuracy or bias) and its precision (converse: imprecision or variability). 

5.3.1. Accuracy/bias 

When an estimation process tends, on average, to under- or over-estimate the true value of the 
parameter, it is said to be negatively or positively biased.  The estimation process bias, or, in 
this document, simply, the bias, is the average of the differences between the estimated values 
and the true value, if the estimation process was repeated many times. The term bias will also 
be used in another context. “Estimator bias” is a statistical concept defined mathematically and 
is unrelated to factors such as measurement errors and unintended deviations from planned 
sampling protocols. The term estimator bias will be reserved for this specific case. 

Bias has a sign: it is either positive (a tendency to over-estimate the true value) or negative (a 
tendency to under estimate the true value). Bias may not decrease as the sample size 
increases.  For example, a bias due to underreporting of discards in logbooks will remain the 
same for any sampling proportion, including for a census. 

The converse of bias is accuracy.  On occasion, we will use “inaccuracy” as a synonym of bias.  

5.3.2. Precision/variability 

If the same estimation process is carried out many times, the estimates may differ from each 
other due to the randomness of the sampling protocol or to some other characteristic.  We use 
the term variability to describe this variation: it is a measure of how much estimates from an 
estimation process vary, on average.  Variability does not have sign (it is a positive number): it 
only describes how much the estimates would differ from each other if one repeated the same 
estimation process many times.   

The standard error of an estimator (see § 6.1.2) is a measure of its variability: it measures the 
variability due randomness of the sampling protocol. 

We reserve the term variance for the variability due to a random sampling protocol as usually 
measured in statistics.  In this case, “on average” refers to a quadratic mean. 

Variability typically decreases as sample size increases.  In a true census, there is no error due 
to randomness of the sampling, but variability may still exist due to other error sources such as 
measurement error, transcription error, and recall error.  

The converse of variability is precision.  On occasion, we will use “imprecision” as a synonym of 
variability.  

5.3.3. Quality of an estimation process 

The quality of an estimation process is determined by the combination of accuracy and 
precision for the process. 

Figure 2 and Figure 3 illustrate the four possible combinations of accuracy and precision, the 
components of quality. 
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Figure 2. Classic illustration of accuracy (converse: bias) and precision (converse: variability), the 
components of quality. The middle of the bullseye represents the true value of the parameter and the dots 
represent examples of estimated values from (theoretical) repetitions of the estimation process. 
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Figure 3. A one-dimensional illustration of accuracy (converse: bias) and precision (converse: variability), 
the two components of quality. The solid dot represents the true value of the parameter and the grey dots 
represent examples of estimated values from (theoretical) repetitions of the estimation process. 

Technical note: Bias and variability are non-intersecting, “orthogonal” concepts 
Bias and variability are non-intersecting, “orthogonal” concepts: they measure entirely 
different aspects of an estimation process. For example, consider a sample survey with a 
large sample size to estimate discards.  Suppose that large discard values are systematically 
under-reported. The estimate would have small, correctly estimated, variability (statistically 
measured by the standard error) due to the large sample size but would have a large negative 
bias due to the under-reporting of large values. The assessment should reflect this 
situation: low variability and large negative bias. 
If the under-reporting was corrected, the variability of the estimation process, and therefore 
the standard error, would increase but the bias of the estimation process would decrease. 
The assessment should not suggest that the under-reporting contributes (negatively) to the 
variability of the estimation process.  It should only indicate that it contributes to the bias of 
the estimation process. 

In statistics, the root mean square error (RMSE) summarizes how well an estimator estimates 
a parameter. The equality 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅2 =  𝜎𝜎2 + 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠2, essentially expressing Pythagoras’ theorem, 
describes the orthogonality of the statistical concepts of variability and bias. 

5.4. Characteristics influencing quality, with examples 
Several characteristics of an estimation process influence its quality.  These characteristics can 
influence the accuracy and the precision of the process in different ways. In this report, 
characteristics influencing quality are divided into two groups: statistical characteristics and 
operational characteristics (see § 6). 
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The impact of statistical and operational characteristics on bias and variability differs (Table 1).  
In sample surveys, statistical characteristics have a central impact on variability but, in most 
cases, they will have a small or correctible impact on bias.  In censuses, they have no impact.  
Operational characteristics can have an important impact on bias in both sample surveys and 
censuses but will often have a small or negligible impact on variability. 

For this report, the definition and evaluation of operational characteristics affecting sample 
surveys draws heavily on Groves et al. (2009). This book, while oriented toward human 
population sample surveys, gives an extensive overview of operational difficulties present in 
sample surveys of all types. For a discussion of operational sources of bias and variability in 
fishery monitoring programs, specifically at-sea observer programs, see Babcock and Pikitch 
(2003). 

Table 1. Overview of the impact of the characteristics of an estimation process on its quality. 

 Characteristic 
Statistical Operational 

Quality 

Bias 

Usually quantifiable; correction 
sometimes possible; often, 
small impact; in most cases, 
does not apply to censuses. 

Often present, documented in the 
survey literature; difficult to identify 
and/or quantify in a specific sample 
survey or census; typically, 
important impact including in 
censuses. 

Variability 

Very important impact. 
Always quantifiable; in sample 
surveys based on a 
probabilistic sampling protocol; 
this is the core of classical 
statistical inference; does not 
apply to censuses. 

For some operational 
characteristics, a small impact, 
including in censuses (example: 
measurement errors).  For others, 
an important impact (example: 
differences between the actual 
sampling protocol and the protocol 
assumed in the computation). 

Examples of estimation process characteristics and their potential impact on quality are 
provided to illustrate the concepts presented above, however specific details on the full suite of 
operational characteristics are only provided later. 

5.4.1. Impact of statistical characteristics on bias/accuracy 

Some estimators, under specific sampling protocols, are biased.  This is a statistical 
characteristic of the sampling protocol and the estimator.  In some cases, there are statistical 
methods to estimate this estimator bias (analytical methods, bootstrapping) and to correct the 
estimate for the estimator bias.  Whether or not such methods were applied should be part of 
the monitoring program documentation. 

The (mathematical) bias of the estimator used, if any, in an estimation process contributes to 
the bias of the estimation process if no correction has been applied. 

In most cases, the impact of statistical characteristics on bias/accuracy of the estimation 
process (i.e. of the estimator bias) will be small. 
EXAMPLE: Under simple random sampling, the sample mean as an estimator of the population 
mean is not biased: on average, it gives the population mean.  The estimator bias is 0. 

EXAMPLE: Suppose that, in a given fishery, effort is known for each trip and that catch is 
observed at sea for a simple random sample of the trips.  Total catch can be estimated using a 
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ratio estimator, i.e. multiplying the effort by the estimated catch per unit of effort for the observed 
trips.  The ratio estimator is known to be biased and formulae have been developed to estimate 
and correct for this bias (Adbola and Oshungade, 2012). 

 

Technical note: statistical bias and censuses 
The statistical bias of most common estimators decreases as the sample size increases 
(example: the biased of the ratio estimator – see Lohr § 4.1.2).  Exceptions may be mostly 
academic (example: using a trimmed mean to estimate the mean of a skewed distribution). 

The bias due to operational characteristics does not decrease as the sample size increases.  
For example, an incorrect scale tare will lead to a biased estimate of the mean weight even in 
a census. 

5.4.2. Impact of statistical characteristics on variability/precision 

In random sampling, the variability of an estimate due to the randomness of the sampling is 
referred to as “sampling error”.  This is a statistical characteristic of the sampling protocol and 
the estimator. 

The sampling error is often described by the standard error (SE) of the estimator, the relative 
standard error (RSE; the SE divided by the estimate) or by the confidence interval (CI) of the 
estimate for a specified confidence level (typically 95%).  The relative standard error (RSE) is 
the main measure of variability used in the remainder of the report. 

The method of computation of the standard error (or of other measures of sampling error) 
depends on the sampling protocol presumed to have been used and the estimator.  For 
example, computations required for simple random sampling and for stratified sampling are 
different. 

The sampling error decreases as sample size increases and is 0 for a census with 100% 
response. The sample size has a direct impact on standard error.  However, the sampling 
proportion (i.e. the sample size relative to the total number units in the target population) can 
also be important if the proportion is large (e.g. 40%).  For further details, see § 13.1. 

In sample surveys, the impact of statistical characteristics on variability/precision should 
be at the core of an assessment. 
EXAMPLE: Under simple random sampling, the standard error of the sample mean as an 
estimator of the population mean is approximately s/n½ where s is the sample standard 
deviation and n is the sample size.   

EXAMPLE: The population standard deviation can be “guesstimated” by (97.5th centile – 2.5th 
centile)/4.  The SE of the mean can then be obtained by dividing the result by n½.  A similar 
heuristic approach can be applied to some more complex estimators.  

5.4.3. Impact of operational characteristics on bias/accuracy 

At implementation, there may be differences between the actual sampling protocol and that 
presumed in the statistical computation, and departures from planned protocol. Hereafter, we 
will use the terms unintended and unintentional when referring to these departures, which were 
neither planned nor assumed by the analyst during data processing (i.e., not accounted for). 
These unintended departures can cause biases in the estimation process. The presence of 
such biases has been documented in the general literature on surveys and in fishery-specific 
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literature (e.g., observer effects: Benoît and Allard, 2009; Faunce and Barbeaux, 2011).  
However, it may be difficult to demonstrate and to quantify bias in a specific survey. 

Here, the estimated contribution of operational characteristics to bias will be added 
arithmetically (taking into account the sign of the estimated impact) to the computed estimator 
bias to adjust the assessed quality of the estimation process.   

The potential impact of operational characteristics on bias/accuracy should be 
considered important in the assessment of both sample surveys and censuses. 
EXAMPLE: If the sample is taken in such a manner that it is not representative of the whole 
population, then bias can occur.  For example, at-sea observers may be excluded from trips 
where high bycatches are likely, leading to a negative bias on bycatch estimates. 

EXAMPLE: Misreporting in logbooks may follow a specific pattern.  Most often, logbook 
misreporting will tend to under report incidental catches, in which cases the estimates of these 
catches will be negatively biased.  However, in some situations, it may tend to over report 
catches and, therefore, be positively biased. 

EXAMPLE: A continuous video monitoring program is intended as a census.  However, 
inclement weather may interrupt data availability.  If weather and the quantity measured (for 
example, catch per tow) are correlated, the impact of this operational characteristic can create a 
bias. 

5.4.4. Impact of operational characteristics on variability/precision 

The RSE obtained from statistical analysis reflects mostly the variability of the estimator due to 
the randomness of the sampling protocol.  The RSE computation formulae depend on the 
sampling protocol that is assumed. Unintended departures from the sampling protocol may 
result in a mischaracterization of the estimation process variability, which would otherwise be 
estimated from the RSE. 

The impact of departures from the sampling protocol on variability will be best described by a 
correction factor to be applied to the RSE to adjust the assessed quality of the estimation 
process. For example, a 20% increase will mean that the computed standard error must be 
multiplied by 1.2 to assess the true variability of the estimation process; similarly, a 20% 
decrease will mean that standard error must be multiplied by 0.8.  Methods based on sampling 
theory to estimate the required correction factor are proposed in the text (see § 13.3, 13.4, 
13.5). 

The impact of various operational sources of random error will be best described as a quadratic 
addition to the RSE, i.e. taking the squared root of the sum of squares.  For example, for the 
estimation a mean under the simple random sampling protocol, if the error of measurement tool 
has a standard deviation of 𝜎𝜎𝜀𝜀, then the corrected relative error of the estimation process will be 
�𝑅𝑅𝑅𝑅𝑅𝑅2 + (𝜎𝜎𝜀𝜀 𝜇𝜇⁄ )2 𝑛𝑛⁄   where 𝜇𝜇 is the anticipated mean and 𝑛𝑛 is the sample size (see § 13.6). 

The following examples illustrate the impact of operational characteristics on variability. 

EXAMPLE: In a census, unintentional (random) non-response will create variability like that of 
sample survey.  The statistical analysis yields RSE = 0, since it is a census.  However, the 
actual variability is positive. If the rate of unintentional non-response is very high (say, above 
20%), the RSE should be computed using the actual number of observations.   In the sampling 
case, the RSE will naturally be computed using actual number of responses, i.e. considering the 
number of non-responses. 
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EXAMPLE: Consider an observer monitoring program that assumes a simple random sampling 
protocol.  Suppose that, for practical reasons, the sampling is clustered: an observer travels to a 
randomly chosen location, samples the fishery occurring at that location, moves to another 
randomly chosen location, samples, and so on. The sampling protocol actually applied is called 
“cluster sampling”. Unwittingly analyzing the resulting data assuming simple random sampling 
could cause the RSE to incorrectly estimate the true sampling variability. If the locations are 
similar to each other relative to the parameter of interest (i.e. there is little variation between 
locations), the RSE computed assuming simple random sampling will correctly represent the 
true estimator variability. If the locations are not similar to each other, the RSE computed 
assuming simple random sampling will underestimate the true variability (see a more technical 
explanation in § 13.3). 

EXAMPLE:  More generally, in a sample survey based on random sampling, the actual 
sampling protocol may be different from that determined by the sampling protocol: a subset of 
the target population will be excluded from the sampling protocol or subjected to a sampling 
probability different than that determined by the sampling protocol.  If this subset is like the 
entire population, the variability of the estimation will not be impacted.  However, if this subset is 
different (e.g. for estimating a mean or a total, more homogeneous or more heterogeneous; for 
estimating a ratio, closer or farther from the regression line) from the entire population, the 
estimated variability (estimated RSE) will be different than the true variability of the estimator 
(see more technical explanations in § 13.2). 

EXAMPLE: A continuous video monitoring program is a census.  However, inclement weather 
may interrupt data availability.  If weather and the parameter (for example, catch per tow) are 
uncorrelated, the impact of this operational characteristic will create variability: the planned 
census will have become a sample survey. 

EXAMPLE: Variation between observers in their visual estimation of catch amounts may 
increase the variability of the catch estimation in an observer program.  However, unless the 
variation is very large, variability will not be meaningfully impacted. 

In sample surveys, we expect that the impact of many operational characteristics on 
variability/precision will tend to be small and negligible.  However, the impact of irregular 
sample selection (for example: targeted sampling) that is unaccounted for may be 
important.  

5.5. Dependability 
We will use the term dependability to describe the overall adequacy of a monitoring tool relative 
to the objective of the monitoring program.  Dependability is a function of the accuracy and the 
precision of the estimation process (jointly, the quality) and the objective for the estimate. As 
indicated above, the estimates obtained from monitoring programs address one of two types of 
objectives: measurement and/or compliance.   

For scientific research, stock assessment, administrative purposes or environmental reporting 
and protection, the quality of the estimate (measurement) must be sufficient to accomplish the 
objective.   

EXAMPLE: To monitor the removals from a population of a long-lived, at-risk marine mammal 
species, scientists may require that the annual estimate be within ±10% of the true value (with a 
95% probability to account for the sampling randomness).  In contrast, to monitor removals from 
a large, lightly exploited and productive population, an annual estimate within ±50% of the true 
value (again with 95% probability) might be sufficient. 
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For compliance application, the objective is to determine if the parameter satisfies or not some 
regulatory limit.  In this situation, the quality of the estimate should be sufficient to ensure that 
the correct decision is reached with a given probability. If exceeding the limit results in a high 
risk to conservation of the population, then a high probability of making the correct decision 
would be required; conversely if the risk to conservation is low, a lower probability could be 
acceptable.  

EXAMPLE: For a given probability of making a correct decision for a fishery, if the typical catch 
is close to the total allowed catch, a high-quality estimate will be required to reach the correct 
conclusion.  If the typical catch is far from the limit, a much lower quality estimate will be 
sufficient. 

Terminology 

The choice of terms (accuracy, bias, precision, variability, quality, dependability, etc.) used in 
this report is not universal.  Statisticians, biologists, social scientists, medical researchers, etc. 
have adopted certain terms with discipline-specific definitions.  For example, the term 
“validity” may be interpreted differently by different people. The choice of terms used here is 
not necessarily better then other choices but was felt to be reasonable and is largely 
consistent with the use of these terms in fisheries science. 

6. CHARACTERISTICS OF AN ESTIMATION PROCESS IMPACTING ITS QUALITY 
We now describe the main characteristics impacting the quality of a monitoring tool.  
Assessment of these characteristics will form the basis of the assessment of an 
estimation process.  The list is detailed but not exhaustive and other characteristics could be 
added to suit the needs of particular monitoring programs. 

Following the description of each characteristic, we present the anticipated contribution to the 
bias and the variability of the estimation process and some examples. 

Note that the following list of characteristics is appropriate for parameters referring to both 
common and rare events.  However, the measurement methods and the anticipated impact will 
generally differ between the two.  For example, intentional non-response or misidentification 
may have a very large impact on the estimate of the bycatch of a rare, possibly little-known, 
species. 

6.1. Statistical characteristics 

6.1.1. Estimator bias 

By estimator bias, we mean the expected value of the difference between the estimate and the 
true value.  For true censuses, the estimator bias is 0.  The relative estimator bias is the 
quotient of estimator bias over the true value, typically expressed in percentage. 

The estimator bias can be computed using statistical methods, theoretical considerations (e.g. 
central limit theorem) or numerically (e.g. by bootstrapping). It is sometimes possible to correct 
for estimator bias using established statistical methods. In the assessment, if such a correction 
is applied, only the estimator bias after correction is important. 

Measurement: The estimator bias should be reported with the estimate unless a reliable bias 
correction has been applied, in which case it should be reported as 0. 
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Impact: In most cases, the impact of the estimator bias, after correction, on the bias of the 
estimation process, will be small. 

EXAMPLE: Under simple random sampling, the estimator bias of the sample mean as an 
estimator of the population mean is 0 and the relative estimator bias is 0%. 

EXAMPLE: Biases inherent in ratio estimators, such as used in the analysis of creel sample 
surveys, are well known and quantitative correction methods exist. Once applied, the relative 
estimator bias should be 0%. 

6.1.2. Standard error 

The standard error measures the variability of the estimates due to the randomness of the 
sampling.  For censuses, the standard error is 0.  

The standard error will reflect the impact of some operational characteristics (as described in 
§ 6.2).  To understand this impact, consider the following “thought experiment”: suppose that, 
using a simple random sampling protocol with sample size 𝑛𝑛, we are estimating the mean of a 
variable that has a very small standard deviation 𝜎𝜎.  If the measurement error is negligible, the 
standard error of the sample mean, 𝜎𝜎 √𝑛𝑛⁄ , will be small.  If measurement error is very large, the 
standard error of the sample mean will be large, not due to the randomness of the sampling but 
to the measurement errors.  See §13.6 for a detailed explanation. 

Measurement:  The standard error of an estimator is a common measure of the variability of an 
estimate due to the randomness of the sampling.  The relative standard error (RSE) is the 
quotient of the standard error over the true value, typically expressed in percentage.  For 
assessment of estimation processes, we retain the RSE.  The RSE is akin to the coefficient of 
variation for the population mean. 

The RSE of an estimator can be computed analytically, based on theoretical considerations 
(e.g. central limit theorem), or numerically (e.g. bootstrap).  It would normally be computed and 
shown with estimated values. 

If the RSE has not been reported, it can be approximated, for the estimation process 
assessment, by borrowing from other similar sample surveys, by carrying out some simulations 
or by heuristic computations. 

Impact: In sample surveys, the standard error will be the basic source of the variability of 
an estimation process.  When a well-designed random sampling protocol is implemented 
nearly perfectly, the standard error will represent most of the variability.  
EXAMPLE: Under simple random sampling, the standard error of the sample mean as an 
estimator of the population mean is approximately �1 − 𝑛𝑛 𝑁𝑁⁄ 𝑠𝑠/√𝑛𝑛 where 𝑠𝑠 is the sample 
standard deviation, 𝑛𝑛 is the sample size and 𝑁𝑁 is the population size.  Therefore, the RSE can 
be estimated as ��1− 𝑛𝑛 𝑁𝑁⁄ 𝑠𝑠/√𝑛𝑛� 𝑋𝑋�⁄  where 𝑋𝑋� is the sample mean.  When the sample size is 

small relative to the population size, the factor �1 − 𝑛𝑛 𝑁𝑁⁄  is close to 1 and can be ignored.  

EXAMPLE: Often, the population standard deviation s can be approximated by 𝑠𝑠∗ =
97.5th centile –  2.5th centile)/4.  Then, the RSE can be “guesstimated” as ��1− 𝑛𝑛 𝑁𝑁⁄ 𝑠𝑠∗/√𝑛𝑛� 𝑋𝑋�⁄ .  
Similar heuristic approaches can be applied to more complex estimators. 
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Technical note: What is the bootstrap? 
Mathematical theorems to estimate estimator bias and standard error exist only for a limited 
number of sampling situations and estimators.  Bootstrapping allows for the estimation of 
estimator bias and standard error in many or, even, most situations (Efron, 1979).   

Bootstrapping is “computer intensive”; it relies on resampling the observations thousands of 
times and computing the estimator on these new samples.  In effect, bootstrapping assumes 
that the sample of observations reflects the population so that resampling simulates the 
original sampling protocol. 

Bootstrapping is now routinely applied to estimate bias and standard error. 

6.2. Operational characteristics 
Statistical computations depend on the sampling protocol.  In many cases, the implementation 
of a monitoring program will depart from the planned sampling protocol.  When the actual 
sampling does not correspond to the planned sampling protocol, the bias and standard error of 
the estimator may not describe correctly the variability and the bias of the complete estimation 
process. The following is a list of most likely departures and their respective potential 
consequences on the quality (precision and accuracy) of the estimation process. 

The impact of some of the following operational characteristics will already be reflected, 
at least partly, in the calculated RSE and bias. Measurement error is one such 
characteristic. These characteristics are nonetheless discussed below, and their impact 
should be quantified as they present opportunities for improving the quality of estimates. 
For example, using a motion-compensated balance to measure catch weight, rather than 
a visual estimate, will lead to a smaller RSE and reduce the estimation process 
variability.  Unbiased response errors are another example of such a characteristic.  
The following definitions apply hereafter. 

“Independent observer data” refers to measurements collected by a person or a technology 
specifically tasked with observing and reporting on fishery activities and at arm’s length from the 
fishing industry or community, such as at-sea and dockside observers and on-board cameras 
and vessel monitoring systems. 

“Resource user data” refers to measurements made and/or reported by the fishing industry or 
community, including fishers, plant personnel and buyers.  Logbook records, purchase slips and 
answers to recreational fisher surveys are examples of resource user data. 

We separate operational characteristics related to these two cases for the following reasons. 
Independent observers are presumed not to be in conflict of interest and in many instances are 
certified as such.  They can be required to undergo training to carry out specific measurements 
or observations, a potential remedy for, say, misidentification of species of conservation concern 
(SCC). In contrast, resource users can be in conflict of interest (for example, when reporting of 
discards if high discard levels lead to a fishery closure).  Furthermore, it is difficult to require that 
resource users undergo training on reporting. 

Thus, independent observer data are expected to be relatively unbiased under normal operating 
conditions, whereas resource user data may be subject to bias given conflicts of interest and 
incentives. Nonetheless, while independent observers are meant to be arm’s length and without 
conflict of interest, voluntary or involuntary (e.g., resulting from intimidation) collusion with 
resource users would likely violate the assumption of unbiasedness. 
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6.2.1. Undercoverage 

In this document, we use the term “frame” to mean the available list of units of the target 
population.  This is the simplest case of “frame”.  The document points out situations where a 
more general definition of “frame” is required.  In a census, the census frame is the list of all 
units to be observed.  In a sample survey, the sampling frame is the list of all units from which 
the sample will be drawn.  Ideally, the frame and the target population would be identical.  The 
frame may be created before the survey (e.g. the holders of a recreational fishery license for the 
current season) or during the survey (e.g. the herring gillnet fishing trip in Herring Fishing Area 
5). 

Coverage refers to the relationship between the target population and the frame.   

Undercoverage occurs when a subset of the target population is not included in the sample 
survey sampling frame or in the census frame. In a census, the excluded units will not be 
observed.  In a sample survey, the excluded units cannot be part of the sample. 

Contribution to estimation process bias: If the excluded subset is like the target population, the 
undercoverage will have only a small to nil impact on the bias. If the excluded subset is different 
from the target population, the impact will depend on the difference, as follows for the estimation 
of a mean or a total: 

• Excluded subset associated with large values: the under-coverage will result in a negative 
bias (sample surveys and censuses); 

• Excluded subset associated with small values: the under-coverage will result in a positive 
bias (sample surveys and censuses); 

• Excluded subset associated equally with small and large values: no impact on bias; 

• Excluded subset associated with middle values: no impact on bias. 

Statistically speaking, the third case above is similar to using a truncated mean. For symmetrical 
distributions with heavy tails, this type of undercoverage may in fact represent a more efficient 
sampling scheme. 

Contribution to estimation process variability: None anticipated.  

EXAMPLE: Incomplete list of recreational fishers targeted for a post-season interview. 

EXAMPLE: Vessels occasionally forget to hail-out prior to departure, causing trips to be 
randomly excluded from the on-board observer program. 

EXAMPLE: Observers avoiding uncomfortable vessels that otherwise have fishing patterns like 
other vessels in the fleet, resulting in no impact on bias. 

EXAMPLE: Suppose that vessels prone to illegally discarding avoid timely pre-departure hail-
outs, causing trips with large bycatch to be excluded from an at-sea observer program.  In a 
sample survey or a census, the estimate of the total bycatch will be negatively biased. 

EXAMPLE: In a sport fishery, occasional, less skilled fishers who happen to have lower catch 
rates may be underrepresented, leading to a positive bias in estimated catch. 

6.2.2. Overcoverage 

See the definition of frame in § 6.2.1. 

Overcoverage occurs when units outside the target population are incorrectly included in the 
sampling frame or census frame.  In a census, the outside units will be incorrectly included in 
the observations.  In a sample survey, the outside units may be selected as part of the sample. 
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Contribution to estimation process bias: The impact will be generally opposite to that of 
undercoverage (see 6.2.1 Undercoverage). For example, if the incorrectly included subset is 
associated with large values the over-coverage will result in a positive bias. 

Contribution to estimation process variability:  None anticipated. 

EXAMPLE: Incorrect allocation of a trip to a target species.   

EXAMPLE: Fishing trip outside the target fishing zone of the monitoring program incorrectly 
recorded within the monitoring program. 

6.2.3. Unintended clustering of samples (sample surveys only) 

In a sample survey, cluster sampling occurs when subsets are selected (stage 1) and units are 
selected from these subsets (stage 2).  Cluster sampling is unintentional if the sampling protocol 
did not call for this sampling protocol. 

Cluster sampling consists of partitioning the population into subsets called clusters, taking a 
random sample of clusters, and then, taking a census from each selected cluster (one-stage 
cluster sampling) or a sample from each selected cluster (two-stage cluster sampling).  Using 
appropriate computations, cluster sampling may yield a lower total cost than simple random 
sampling, especially if the cost of reaching each statistical individual or unit is high.  A basic 
assumption of cluster sampling is that all clusters are similar to each other and to the whole 
population. A key distinction here is that the clusters to sample are chosen randomly. The case 
where some clusters have a sampling probability of zero is treated in 6.2.5 below. 

If cluster sampling is occurring unintentionally while formulae for simple random sampling are 
used, and clusters are more homogeneous than the population, the computed standard error 
will be smaller than the true standard error, and the variability of the estimation process will be 
underestimated. 

In practice, it can be very difficult to detect whether cluster sampling has occurred simply by 
examining the data because even apparent clustering in the data may have resulted from a 
broader random process. Understanding the sampling protocol, such as how observers are 
deployed, relative to how the fishery operates, is a more reliable manner of inferring whether 
cluster sampling is likely to have occurred. For example, if observers must travel long distances 
to reach certain ports, fishing trips from more proximate ports may be sampled preferentially 
and some very distant ports may only be sampled in some years. 

Contribution to estimation process bias:  None expected.  

Contribution to estimation process variability:  Variability will be underestimated if clusters are 
more homogeneous than the population.  

EXAMPLE: Allocation of monitoring resources to wharfs, where vessels at different wharfs have 
different catch characteristics (e.g. each week, 3 wharfs are randomly selected for monitoring); 
allocation of monitoring to time periods, where the catch increases toward a peak season and 
then decreases (e.g. monitoring will occur in randomly selected weeks 2, 7, 9 and 12 of the 
fishing season). 

Technical note: Computing the impact of unintended clustering on variability of the 
estimation process 
The impact of unintended clustering on the variability, and therefore the correction factor that 
could be applied to the standard deviation, can be estimated using the following formula in the 
case where the number of units sampled within each cluster is close to the total number of 
units in the cluster, i.e. close to one-stage clustering: 
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𝑁𝑁: anticipated number of clusters 

𝑛𝑛: anticipated number of clusters sampled 

𝑅𝑅: anticipated average number of units within each cluster 

𝑚𝑚: anticipated average number of units sampled within each cluster 

𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏2 : estimated or anticipated variance between cluster means 

𝑠𝑠𝑏𝑏𝑤𝑤𝑏𝑏ℎ𝑤𝑤𝑏𝑏2 : estimated or anticipated variance within each cluster 

𝑠𝑠2: estimated or anticipated population variance 
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𝑚𝑚
 is often negligible if 𝑁𝑁 is large. 

For the assessment of monitoring programs, the variances can be estimated from heuristic 
rules (e.g. [0.25×range]2), historical data, outside sources, etc. 

In more complex cases of unintended clustering, more elaborate computational approaches 
are required. 

6.2.4. Unintended sampling stratification (sample surveys only) 

In a sample survey, stratified sampling occurs when the target population has been partitioned 
into subsets (strata) and a sample is drawn separately from each stratum.   

Strata differ from clusters (6.2.3 above): in stratified sampling, a sample must be drawn from 
each stratum; in cluster sampling, a sample or a census is taken from a sample of clusters.  

Stratified sampling is unintentional if the sampling protocol did not call for this sampling protocol.  
For example, unintended stratification could be temporal (e.g. equal number of observations 
each week of the season or a number of observations proportional to the weekly number of 
units) or spatial (e.g. one observer assigned to each dock). 

Correctly planned and implemented stratified sampling can be efficient from a sampling 
perspective. Using appropriate computations, stratified sampling will yield lower standard error 
for a given total sample size if the strata are more homogeneous than the population. 

If stratified sampling is occurring unintentionally while formulae for simple random sampling are 
used and strata are more homogeneous than the population, the computed standard error will 
be larger than the true standard error, and the variability of the estimation process will be 
overestimated.  

Of course, the statistician could compute the true RSE of the estimator using the formulae for 
stratified sampling if he was aware of the stratification and if the stratum information had been 
included in the dataset.  See §13.4.  

Contribution to estimation process bias: Bias may result if strata are more homogeneous than 
the population and the sample allocation is not proportional to stratum size. 

EXAMPLE: In a river salmon recreational fishery, separate allocation of the sampling effort to all 
pools, where the pools have different characteristics. 
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EXAMPLE: In an at-sea observer program where one observer is deployed to each port and 
some ports have more vessels which also have a greater propensity for large catches. 

Contribution to estimation process variability: The variability of the estimation process will be 
smaller than that described by the standard error if strata are more homogeneous than the 
population.   

6.2.5. Other irregular selection probabilities or exclusions 

Besides unintended cluster or stratified sampling, several other situations may cause the 
sample selection probabilities to be incongruent with those determined by the sampling protocol.   

Note: Irregular selection probabilities or exclusions refer to events after the frame has been 
established.  Exclusions that occurred when the frame was established are addressed in 6.2.1    

A. Some units may be unexpectedly excluded from the frame.  In a census, they are not 
observed.  In a sample survey, they are excluded from the sample. 

EXAMPLE: The sole observer a certain dock is sick for 2 weeks and cannot be replaced.  In a 
sample survey, the probability of any trips leaving during these two weeks being sampled 
becomes 0.  In census, they are not included. 

B. In a sample survey, some units not selected within the sampling protocol may be included in 
the sample for external reasons.  Their probability of inclusion in the sample is 1. 

EXAMPLE: Targeted sampling, where given units (a specific fishing trip, the activities a of 
specific fisher, etc.) are included in the sample independently from the sampling protocol, is an 
important example of such a situation.  The probability of selection of the targeted samples is 1. 

Targeted sampling of repeat offending fishers is common in enforcement and compliance 
contexts. Due to the private nature of these investigations, analysts will often not be able to 
distinguish which samples were targeted and which were selected based on the sampling 
protocol when analyzing the resulting catch data. It can therefore be very difficult to accurately 
account for targeted sampling in these contexts. 

C. In a sample survey, the probability of a unit being included in the sample may be different 
from the probability determined by the sampling protocol.   

EXAMPLE:  At-sea observers preferring particular vessels because of comfort or attitude of the 
crew. 

EXAMPLE: Weather events reducing at-sea observer coverage. 

Contribution to estimation process bias:  Likely to create bias. 

Contribution to estimation process variability:  Increase or decrease variability, depending on the 
details. 

EXAMPLE:  At-sea observers tend to avoid particular vessels due to the poor quality of the food 
or cleanliness.  May not impact bias or variability if these vessel characteristics are unrelated to 
the characteristics of the catch. 

EXAMPLE:  At-sea observers tend to avoid specific vessels due to frequent harassment by the 
captain.  May impact bias if the harassment behaviour is associated with an aversion to follow 
responsible fishing practices that have an impact on catch composition (e.g., voluntary fisher 
agreement to avoid fishing in certain areas). 

EXAMPLE:  Statistical analysis conducted assuming simple random sampling of fishing trips 
while actual sampling includes trips that were specifically targeted by at-sea observers for 
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enforcement purposes.  If the targeting due to repeated breach of catch regulation, the targeting 
is likely to contribute to the bias of the estimation process.  The impact may be extremely 
difficult to assess since the targeted fishers are likely to change behaviour when an observer is 
on board. See observer effect in § 6.2.6. 

Technical note: Computing the impact of targeted sampling 

It may be possible to roughly estimate the impact of targeted sampling on the estimation of a 
mean or population total based on the following statistical considerations. 

Let 

𝑁𝑁: population size 

𝑛𝑛𝑟𝑟: size of the random sample 

𝑛𝑛𝑏𝑏: size of the targeted sample 

𝑛𝑛 = 𝑛𝑛𝑟𝑟 + 𝑛𝑛𝑏𝑏: total sample size 

𝑋𝑋�𝑟𝑟: mean of the random sample 

𝑋𝑋�𝑏𝑏: mean of the targeted sample 

𝑠𝑠𝑟𝑟: standard deviation of the complete sample 

𝑠𝑠𝑟𝑟: standard deviation of the random sample 

𝑠𝑠𝑏𝑏 = 0: standard deviation of the targeted sample 

𝑇𝑇�: Estimate of the population total 𝑇𝑇 

�̂�𝜇: Estimate of the population mean 𝜇𝜇 

Then, the computation of the estimates and their standard error is as follows: 

𝑇𝑇� = (𝑁𝑁 − 𝑛𝑛𝑏𝑏)𝑋𝑋�𝑟𝑟 + 𝑛𝑛𝑏𝑏𝑋𝑋�𝑏𝑏  

𝜎𝜎𝑇𝑇�� =  
𝑠𝑠𝑟𝑟
√𝑛𝑛𝑟𝑟

(𝑁𝑁 − 𝑛𝑛𝑏𝑏) 

�̂�𝜇 =  𝑇𝑇� 𝑁𝑁⁄ = �1 −
𝑛𝑛𝑏𝑏
𝑁𝑁
�𝑋𝑋�𝑟𝑟 +

𝑛𝑛𝑏𝑏
𝑁𝑁
𝑋𝑋�𝑏𝑏 

𝜎𝜎𝜇𝜇�� =
𝜎𝜎𝑇𝑇��
𝑁𝑁

=  
𝑠𝑠𝑟𝑟
√𝑛𝑛𝑟𝑟

�1 −
𝑛𝑛𝑏𝑏
𝑁𝑁
� 

Not considering the targeting, the 𝜎𝜎𝜇𝜇�� would be estimated by 𝑠𝑠
√𝑏𝑏
�1 − 𝑏𝑏

𝑁𝑁
�.  The quotient 

𝑠𝑠𝑟𝑟
√𝑏𝑏𝑟𝑟

�1 − 𝑏𝑏𝑤𝑤
𝑁𝑁
� 𝑠𝑠

√𝑏𝑏
�1 − 𝑏𝑏

𝑁𝑁
��   is the correction factor that must be applied to the RSE to obtain the 

variability of the estimation process. 

For the assessment of the estimation process, the various values must be estimated from 
historical data or other sources. 

6.2.6. Observer effect 

An observer effect occurs when the presence or anticipated presence of a human observer or of 
a technological surveillance tool causes a change in the fishing activity. There can be no impact 
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of an observer effect if the entire population is observed, meaning, for example, that at-sea 
observers are present on all trips and observe continuously each trip. 

Contribution to estimation process bias: Likely to create a bias. The magnitude of bias will 
depend on the degree to which the alteration in fishing activity results in a change in the 
property being measured (e.g., catch amount) and on the prevalence of observer effects. 

Contribution to estimation process variability: None.    

EXAMPLE: Selection of a different fishing zone or a more general change in fishing patterns 
when an observer is on board. 

EXAMPLE: Fishing behavior changed if the vessel knows that it will be monitored when it 
returns to port, such as the release of a non-retainable species that it would otherwise have 
illegally been kept. 

EXAMPLE: Logbook entries may be accurate mainly when an observer or enforcement officer is 
aboard ensuring compliance.  In this case, the observer effect is to eliminate biased reporting of 
resource user data only for the monitored trips. 

EXAMPLE: An at-sea observer is present on all trips.  However, he/she observes only 25% of 
the fishing activity on each trip.  The vessel may change its discarding process when the fishing 
activity is not observed. 

6.2.7. Missing values due to unintentional factors, including unintentional non-
response 

In a sample survey, units are selected from the sampling frame in the sampling protocol; in a 
census, all units of the target population are selected.  A missing value is data from any 
selected units that cannot be obtained. 

An unintentional missing value occurs when an observation cannot be made due to event(s) 
outside the control of the people (fishers, plant personnel, observers) or technology involved in 
the monitoring.  

Contribution to estimation process bias: If the missing values are random, no impact.  If the 
missing values due to unintentional factors are larger or smaller, on average, than the typical 
population values they will impact the bias. 

Contribution to estimation process variability: In sample surveys, increases variability since the 
actual sample size will decrease; this contribution will be included in the computed standard 
error.  Therefore, a reduction of the number of missing values due to unintentional factors will 
lead to a smaller standard error and, therefore, a lower variability of the estimation process.  In 
censuses, this may create variability that should be accounted for if the number of missing 
values is large, i.e., the census should be then analyzed as a sample survey. 

EXAMPLE:  In a post-season telephone sample survey, some selected recreational fishers are 
not reached within the indicated time frame; possibly unintentional, random non-responses. 

EXAMPLE:  In a in-season telephone sample survey of recreational fishers targeting effort, the 
most active recreational fishers are reached less often because they are often out fishing. This 
will contribute a negative bias to the estimate. 

6.2.8. Missing values due to intentional factors, including intentional non-
response 

A missing value due to an intentional factor occurs when an observation is not made due to an 
intentional action, most often a refusal to provide information.  
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Contribution to estimation process bias:  Missing values due to intentional action are likely to be 
biased and therefore to contribute to bias. 

Contribution to estimation process variability:  None anticipated. 

EXAMPLE:  In a pre-departure hail-out monitoring program used to plan at-sea observer 
activities, fishers intentionally do not send the hail-out or send it too late to allow the deployment 
of an at-sea observer. 

EXAMPLE:  In a log-book monitoring program, fishers intentionally do not supply some log-
books. 

Technical Note: Impact differences between missing values due to intentional and non-
intentional factors. 

Consider the following thought experiment.  Suppose that we can repeat a post-season 
telephone survey of recreational salmon fishers many times in identical conditions. 

Consider missing values due to intentional factors, whereby some respondents have decided 
not to supply information.  If one virtually repeats the survey, the same respondents will again 
refuse to supply the information and the missing values will always be the same.  Therefore, 
these missing values will not contribute to the variability of the estimation process (the SE will 
correctly account for the variability of the responses of the other respondents) but may well 
contribute to its bias (the reasons for the refusal are likely related to the respondent’s fishing 
activity).  

Consider missing values due to unintentional factors where some respondents are 
unavailable due to reason which are not their own and which are unrelated to the fishery.  If 
one virtually repeats the survey, similar reasons may apply but to different respondents.  
Therefore, these missing values will contribute to the variability of the estimation process (the 
SE will correctly account for the variability of the responses and for the smaller sample size) 
but are unlikely to contribution to its bias. 

Consider missing values may be due to unintentional factors related to the fishery.  In the 
example above, the most active fishers may be more involved in the fishers’ association and, 
therefore, more difficult to reach in the post-season survey.  These missing values contribute 
to the variability of the estimation process and, possibly, also to its bias. This case also 
illustrates the issue of irregular selection probabilities. 

Finally, notice that the above thought experiment applies to a census. 

6.2.9. Errors in data reported by resource users 

In this section, we consider recurring errors related to the implementation of the program 
including, for example unintentional errors due lack of training, carelessness, etc. and 
intentional errors aiming to mislead fishery managers.   

Errors are biased when their average is not 0, i.e. the reported values are more likely to be 
above and more likely to be below the true values. Errors will typically be biased when they are 
intentional, but biased unintentional error are also possible. 

Errors will usually have some variability which will contribute to the variability of the estimation 
process.  For non-census, this contribution will be partially accounted for in the SE.  See § 13.6 
for details. 



 

25 

Contribution to estimation process bias:   Biased errors will to contribute to the bias of the 
estimation process. 

Contribution to estimation process variability:  Variability of the errors in resource user’s data 
contributes to the variability of the estimation process.  However, in sample surveys, the SE 
partly accounts for this contribution. 

EXAMPLE: In an end-of-season mail-out survey of recreational harvesters for catch, poor recall 
leads to unintentional, unbiased error. 

EXAMPLE: Recreational fishers under-report their effort due to forgetfulness leading to 
unintentional biased errors, in turn resulting in a negative bias.   

EXAMPLE: Vessel logbooks underreport discards to avoid reaching or exceeding bycatch limits 
or to avoid stigma by environmental organizations or consumer groups, leading to intentional 
biased errors. 

EXAMPLE: Commercial sales slips incorrectly reported to hide or to inflate catch, leading to 
intentional biased errors. 

6.2.10. Errors in data reported by independent observers 

In this section, we consider recurring errors related to the implementation of the program 
including, for example, unintentional errors due lack of training, carelessness, etc. and 
intentional errors aiming to mislead fishery managers. 

Intentional errors by independent observers are anticipated to be less prevalent than those by 
resource users.  However, they may occur in cases of collusion, harassment, etc. 

Auditing of independent observers is advisable to assess the prevalence their errors. 

Errors are biased when their average is not 0, i.e. the reported values are more likely to be 
above and more likely to be below the true values. Intentional errors will typically be biased. 

Errors will usually have some variability which will contribute to the variability of the estimation 
process.  For sample surveys, this contribution will be partially accounted for in the SE.  
See § 13.6 for details. 

Contribution to estimation process bias:  Biased errors will to contribute to the bias of the 
estimation process. 

Contribution to estimation process variability: Variability of the errors in independent observer’s 
data contributes to the variability of the estimation process.  However, the SE partly accounts for 
this contribution, except for censuses. 

EXAMPLE: At-sea observers misjudge quantities that are assessed visually, leading to 
unintentional, possibly unbiased, errors. 

EXAMPLE: Systematic misidentification of a species in video monitoring, leading to 
unintentional, possibly biased, errors. 

EXAMPLE: Recreational fishing effort measured using aerial counts may unintentionally 
misclassify larger pleasure vessels as recreational fishing vessels resulting in an overestimate 
of fishing effort for larger vessels. 

EXAMPLE: Collusion between an at-sea observer and fishers may involve under-reporting of 
catches of protected species that may trigger a fishery closure, resulting in intentional bias in the 
bycatch estimates.   
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Note: Errors from resource users vs errors from independent observers 

Errors in data reported by resource users and in data reported by independent observers 
have similar impacts on the estimation process.  However, we separate them in the 
assessment because correcting these errors will depend on their sources.  For example, DFO 
can easily impose further training to independent observers but not to resource users; 
independent observers committing intentional errors can be more easily penalized than 
resource users.   

6.2.11. Equipment error 

Error due to a measuring tool inaccuracy and/or imprecision. 

Errors are biased when their average is not 0, i.e. the values reported by the equipment are 
more likely to be above and more likely to be below the true values. 

Contribution to estimation process bias:  Biased errors will to contribute to the bias of the 
estimation process. 

Contribution to estimation process variability:  In sample surveys, the contribution is included in 
the computed standard error.  Reduction of the measuring tool error will lead to a smaller 
standard error and, therefore, a lower variability of the estimation process.  In censuses, the 
contribution may create variability if the measurement errors are numerous and large. 

EXAMPLE: Recurring weigh-scale calibration error leading to a bias. 

EXAMPLE: Measurement errors because scales only measure to nearest kg results in an 
unbiased equipment error. 

6.2.12. Data handling error 

Data handling refers to all data manipulation steps occurring after the initial recording of the 
observations.  A data handling error occurs when a data manipulation creates an error. 

Auditing can be used to assess the prevalence of data handling errors. 

Contribution to estimation process bias: Biased errors will to contribute to the bias of the 
estimation process. 

Contribution to estimation process variability:  In a sample survey, the contribution is included in 
the computed standard error.  Reduction of the data handling errors will lead to a smaller 
standard error and, therefore, a lower variability of the estimation process.  In censuses, it may 
create variability if the response errors are numerous and large. 

EXAMPLE: Data entry error; data copy error. 

6.2.13. Adjustment error 

Adjustments are required when observations are obtained using different methods.  Such 
adjustments may depend on models, experimental results, etc. 

An adjustment error occurs when an adjustment yields incorrect values. 

Contribution to estimation process bias: May lead to bias if the equation or routine used to 
adjust the data is not accurate. 

Contribution to estimation process variability:  None expected. 
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EXAMPLE: Incorrect weight adjustment for landings where catch weight is corrected due to 
presence of ice or for cleaned vs whole fish. 

Technical note: Adjustment error and variability 

Adjustments are anticipated to be have been carried using tables or formulae.  The SE will 
typically be computed after the adjustment.  A mistake in the tables or formulae will not 
contribute to further variability. 

6.2.14. Imputation error 

An imputation is the replacement of a missing value by a value obtained (imputed) from other 
information available, including the values for spatially and temporally adjacent or otherwise 
similar observed units.  Imputation is a valuable tool in sample surveys and censuses but it 
depends on the availability of auxiliary data and on a statistical model to compute the imputed 
values.  If a large number of values are imputed, in a sample survey, the computation of the SE 
will normally take into account the uncertainty due to the imputation; in a census, this 
uncertainty should be computed. 

Imputation error occurs when an imputation yields a value different from the true value. 

Contribution to estimation process bias: If imputed values are, on average, smaller/greater than 
the true values that would otherwise have been observed, the imputation will lead to a 
negative/positive bias. 

Contribution to estimation process variability:  The imputation itself may introduce errors in the 
estimation process.  These errors may or may not have been integrated in the computation of 
the SE. 

EXAMPLE: Using CPUE from neighboring rivers or from similar time periods to estimate catch 
from effort for a river for which CPUE values are not available. 

EXAMPLE: In a census of landings, missing values are imputed by the mean of the observed 
landings.   

EXAMPLE: In a census of landings where the durations of the trips are known, missing values 
are imputed by computing the CPUE of the observed landings and applying it to the other trips. 

6.2.15. Modelling error 

Some statistical estimators are based on a statistical model, which can fit the data more or less 
well.   

Diagnostic tools are available to verify a model’s goodness of fit (e.g., cross-validation).  Such 
diagnostic tools should be applied each time the model is reused.  If lack of fit is present, 
simulations can be carried out to measure the impact of the lack of fit on the estimation process. 

A modelling error occurs when the assumed statistical model does not fit the data well.   

Contribution to estimation process bias: Possible impact on bias. 

Contribution to estimation process variability: Possible impact on variability. 

EXAMPLE:  Estimating the CPUE by the ratio estimator (i.e. [total sample catch]/[total sample 
effort]) assumes that the catch is proportional to effort (i.e. the model is catch = CPUE × effort + 
residual).  If the CPUE depends on effort (e.g. if very active recreational fishers are more skilled 
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and have higher individual CPUE), the ratio estimator will give a biased estimate due to an 
incorrect model. 

EXAMPLE: (Technical) If a linear regression model is applied, the quotient of the sum of 
squared residuals of a locally weighted smoothing (LOESS) over the sum of squared residuals 
of the linear model can be used as measure of goodness of fit and of non-random departures 
from the model. 

7. ASSESSING OVERALL QUALITY  
The assessment of the overall combined impact of operational characteristics will be obtained in 
the following way. 

7.1. Assessing the impact of operational characteristics on bias 
Given that individual biases are additive, we propose to compute the impact of each 
characteristic on the estimation process bias by combining the prevalence (proportion of 
observations affected) and impact (magnitude of bias when an observation is affected) in the 
following way: 

• Let 𝑝𝑝 be the proportion of targeted observations impacted for an operational 
characteristic that affects bias (e.g. biased response, missing value, etc.). 

• Let 𝛿𝛿 be the anticipated relative difference between the average of the values for the 
impacted observations and the average of the unimpacted values. For example, in the 
case of characteristics affecting under- or over- coverage it is the difference between the 
average of impacted observations and the average of the observed values. 

Then, the impact on relative bias is 𝑝𝑝 × (1 + 𝛿𝛿) + (1 − 𝑝𝑝) × 1 − 1 = 𝑝𝑝𝛿𝛿.   

In the case that there are individual proportions 𝑝𝑝𝑤𝑤 associated with different anticipated biases 𝛿𝛿𝑤𝑤 
the impact on relative bias for the characteristic will be ∑ 𝑝𝑝𝑤𝑤𝛿𝛿𝑤𝑤𝑤𝑤 . 

Knowledge of the proportion of targeted observations impacted is useful.  However, if the overall 
impact has already been computed in an external study, the above formula applies with 𝑝𝑝 = 1, 
i.e. the impact is 𝛿𝛿.   

7.2. Assessing the impact of operational characteristics on variability 
The impact of operational characteristics on variability will be assessed using computations 
specific to the situation.  The result is a measure of variability that reduces to the standard error 
if there are no impacts from operational characteristics.  We sometimes refer to this measure as 
a “heuristic standard error”. 

7.3. Estimation process bias 
We sometimes refer to the estimation process bias as the “pseudo-bias”. 

The estimator bias and the contribution of the 15 operational characteristics to relative bias will 
be added, taking into account the sign of the bias. 

𝑏𝑏𝑏𝑏𝑒𝑒 = estimator bias + sum of contribution to bias from the operational characteristics. 

7.4. Estimation process variability 
We sometimes refer to the estimation process variability as the “pseudo-SE”. 
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7.4.1. Sample surveys: Impacts on variability unaccounted for in the computed 
SE 

Impacts of operational characteristics representing departures from the sampling protocol will 
typically be expressed as a proportion of the SE.  The corresponding correction to the SE will be 
multiplicative.  If no other contribution is present, for a single operational characteristic, the 
computation will be as follows: 

𝑠𝑠𝑏𝑏𝑒𝑒 =  SE ×  [multiplicative contribution to variability]. 

Computation of the multiplicative factors will depend on the departure. 

Impacts of operational characteristics representing added variability in the data will be added 
quadratically to the SE.  If no other contribution is present, for a single operational characteristic, 
the computation will be as follows: 

𝑠𝑠𝑏𝑏𝑒𝑒 =  �SE2 + [additive contribution to variability]2. 

However, care must be taken since the SE may already take into account some of the added 
variability (see § 7.4.2). 

7.4.2. Sample surveys: Impacts on variability already accounted for in the 
computed SE 

In general, these impacts will be due to random errors.  The combined contribution of these 
characteristics to the overall variability will be the quadratic sum of each contribution: 

��[𝑟𝑟𝑟𝑟𝑟𝑟𝐵𝐵𝑟𝑟𝐵𝐵𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟𝑟𝑟𝐵𝐵𝑏𝑏𝑐𝑐𝑟𝑟𝐵𝐵𝑐𝑐𝑛𝑛 𝑟𝑟𝑐𝑐 𝑟𝑟ℎ𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟]2) 

See § 13.6 for further details. 

7.4.3. Censuses: Impacts on variability unaccounted for in the computed SE 

In general, these impacts will be due to random errors.  The combined contribution of these 
characteristics to the overall variability will be the quadratic sum of each contribution: 

��[𝑟𝑟𝑟𝑟𝑟𝑟𝐵𝐵𝑟𝑟𝐵𝐵𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑛𝑛𝑟𝑟𝑟𝑟𝐵𝐵𝑏𝑏𝑐𝑐𝑟𝑟𝐵𝐵𝑐𝑐𝑛𝑛 𝑟𝑟𝑐𝑐 𝑟𝑟ℎ𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟]2) 

See § 13.6 for further details. 

7.5. Estimation process error 
We sometimes refer to the Estimation process error as the “pseudo-RMSE”. 

The estimation process error will be obtained by the following formula, corresponding to the 
relationship between the root mean square error and the estimation process variability and the 
estimation process bias: 

𝑟𝑟𝑏𝑏𝑒𝑒  = �(𝑟𝑟𝑠𝑠𝑟𝑟𝐵𝐵𝑚𝑚𝐵𝐵𝑟𝑟𝐵𝐵𝑐𝑐𝑛𝑛 𝑝𝑝𝑟𝑟𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠 𝑏𝑏𝐵𝐵𝐵𝐵𝑠𝑠)2 + (𝑟𝑟𝑠𝑠𝑟𝑟𝐵𝐵𝑚𝑚𝐵𝐵𝑟𝑟𝐵𝐵𝑐𝑐𝑛𝑛 𝑝𝑝𝑟𝑟𝑐𝑐𝑐𝑐𝑟𝑟𝑠𝑠𝑠𝑠 𝑟𝑟𝐵𝐵𝑟𝑟𝐵𝐵𝐵𝐵𝑏𝑏𝐵𝐵𝑟𝑟𝐵𝐵𝑟𝑟𝑣𝑣)2  

7.6. Anticipated true value 
We use the following symbols: 

𝜃𝜃 : True value of the parameter 

𝜃𝜃𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 : Anticipated true value of the estimator 



 

30 

𝜃𝜃� : An estimate of the parameter obtained from the monitoring program (most recent value or 
median observed catch over the last 3, 5 or 10 years) 
The anticipated true value is obtained from an estimation value by subtracting the bias: 

𝜃𝜃𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 =  𝜃𝜃� − 𝑏𝑏𝑏𝑏𝑒𝑒 

7.7. Summaries of the quality of an estimation process 
The relative estimation process bias, variability and error are obtained by taking the quotient by 
the anticipated true value: 

𝑟𝑟𝑏𝑏𝑏𝑏𝑒𝑒 =
𝑏𝑏𝑏𝑏𝑒𝑒

𝜃𝜃𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎
 

𝑟𝑟𝑠𝑠𝑏𝑏𝑒𝑒 =
𝑠𝑠𝑏𝑏𝑒𝑒

𝜃𝜃𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎
 

𝑟𝑟𝑟𝑟𝑏𝑏𝑒𝑒 =
𝑟𝑟𝑏𝑏𝑒𝑒

𝜃𝜃𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎
 

The relative values will usually be reported as percentages. 

The last value summarizes the quality of an estimation process.  However, given the different 
nature of bias and variability, all 3 values should be reported.   

7.8. Assessment based on several monitoring programs 
There are two general cases in which several monitoring programs may be involved in deriving 
a final parameter of interest. 

When parameters from several estimation processes are summed to estimate a final parameter 
of interest such as total catch, effort, etc., the assessment of the estimation process for the 
parameter of interest is obtained as follows: 

Assuming that the total is obtained as a weighted sum of the individual estimates: 

• The bias of the overall estimation process for the total is the sum of individual estimation 
process biases. 

• The variability of the overall estimation process for the total is the square root of the sum 
of the squared variability of the individual estimation process variability. 

Weights may be required to reflect the relative contribution of each estimation process to 
estimating the parameter of interest. For example, if total catch is estimated from landings, 
which are estimated from dock-side observations, and discards, estimated from an at-sea 
observer survey, the proportion of total catch represented by each source could be a weight. 

The values 𝑟𝑟𝑏𝑏𝑒𝑒, 𝑟𝑟𝑏𝑏𝑏𝑏𝑒𝑒, 𝑟𝑟𝑠𝑠𝑏𝑏𝑒𝑒, and 𝑟𝑟𝑟𝑟𝑏𝑏𝑒𝑒 are then computed. 

In contrast, when a final parameter of interest is a product of two or more estimation processes, 
such as the estimation of catch from separate monitoring programs that estimate the fishing 
effort and the CPUE, then the assessment of the estimation process for the parameter of 
interest can be obtained heuristically by applying the formulae for the bias and variance of a 
product of two independent random variables: 

If 𝑅𝑅(𝑋𝑋) =  𝜇𝜇𝑋𝑋 + 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑋𝑋 and 𝑅𝑅(𝑌𝑌) =  𝜇𝜇𝑌𝑌 + 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑌𝑌, then 
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𝑅𝑅(𝑋𝑋𝑌𝑌) = 𝑅𝑅(𝑌𝑌)𝑅𝑅(𝑌𝑌) = (𝜇𝜇𝑋𝑋 + 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑋𝑋)(𝜇𝜇𝑌𝑌 + 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑌𝑌)
=  𝜇𝜇𝑋𝑋𝜇𝜇𝑌𝑌 + 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑋𝑋𝜇𝜇𝑌𝑌 + 𝜇𝜇𝑋𝑋𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑌𝑌 + 𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑋𝑋𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠𝑌𝑌) 

𝑉𝑉𝐵𝐵𝑟𝑟(𝑋𝑋𝑌𝑌) = 𝑉𝑉𝐵𝐵𝑟𝑟(𝑋𝑋)𝑉𝑉𝐵𝐵𝑟𝑟(𝑌𝑌) + 𝑉𝑉𝐵𝐵𝑟𝑟(𝑋𝑋)𝑅𝑅(𝑌𝑌)2 + 𝑉𝑉𝐵𝐵𝑟𝑟(𝑌𝑌)𝑅𝑅(𝑋𝑋)2 

 

8. ASSESSING DEPENDABILITY 

8.1. Common events, rare events, special cases 
By common events, we mean events that will occur on most or all sampling occasions.  This 
includes weights or counts of target catch, common bycatch, etc., where the parameter of 
interest is the total weight or the total number of units.  In these cases, we can presume that the 
central limit theorem applies to the estimation process.  These are the most frequent cases.  We 
describe a detailed approach to assessing dependability in these cases. 

By rare events, we mean events that will occur only infrequently and that will typically involve 
small counts or amounts.  In these cases, we cannot presume that the central limit theorem 
applies to the estimation process.  We describe an approach to assessing dependability in rare-
events cases where the objective is estimating a small count and a Poisson distribution is 
applicable (i.e. without large under- or over-dispersion). 

Special cases include, for example, situations where the slope of a linear regression must be 
estimated.  This would be the case if the compliance limit is a limit on the ratio of total catch 
weight of a particular bycatch species and the target total catch weight.  While the principles 
presented for common events and rare events apply to these situations, the mathematical 
details will depend on each situation. 

8.2. Assessment of an estimation process for estimation applications: 
common event case 

For an estimation application, the user should determine a required quality level.  We propose 
that the user set this quality level using the largest acceptable relative root mean square error of 
the estimate, which we denote 𝑟𝑟𝑟𝑟𝑚𝑚𝑠𝑠𝑟𝑟𝑚𝑚𝑎𝑎𝑚𝑚.  Then, the dependability of the estimation process will 
be the quotient: 

𝑟𝑟𝑟𝑟𝑚𝑚𝑠𝑠𝑟𝑟𝑚𝑚𝑎𝑎𝑚𝑚
𝑟𝑟𝑟𝑟𝑏𝑏𝑒𝑒

 

A score ≥1.0 clearly indicates that a program meets its dependability requirements. However, in 
some applications, managers may choose to accept values that are below 1 if, for example, 
fishing activities pose little risk of harm to resources. In such instance it might be instructive to 
derive categories of quotient scores that might scale with risk tolerance, for example. The 
following scoring scale is selected in such a way that the square of the threshold is 
approximately halved at each step, i.e. the MSE as oppose to the RMSE approximately halved 
at each step.  

 

Score A B C D E 
Quotient ≥ 1.000 1.00 to ≥ 0.700 0.700 to ≥ 0.500 0.500 to ≥ 0.350 Less than 0.350 
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8.3. Assessment of an estimation process for estimation applications: A rare 
event case 

Consider an event (for example, catch of a large mammal) that is anticipated to occur randomly 
at a small rate 𝑝𝑝 occurrence(s)/observation (for example, on average, one large mammal is 
caught every 1/𝑝𝑝 trips).  The user requires an estimate �̂�𝑝 of 𝑝𝑝.  In the rare event case, the 
sampling distribution of �̂�𝑝 may be highly asymmetrical and, therefore, the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is not a suitable 
description of the error.  

In such a situation, we recommend that the user should determine a precision level by setting 
the largest acceptable relative bias 𝑟𝑟𝑏𝑏𝑚𝑚𝑎𝑎𝑚𝑚 and left-side and right-side length, 𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑙𝑙𝑟𝑟ℎ𝑙𝑙𝑏𝑏𝑙𝑙𝑏𝑏,𝑚𝑚𝑎𝑎𝑚𝑚 and 
𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑙𝑙𝑟𝑟ℎ𝑟𝑟𝑤𝑤𝑟𝑟ℎ𝑏𝑏,𝑚𝑚𝑎𝑎𝑚𝑚, for the confidence interval for 𝑝𝑝 with a confidence level 0.683.   The choice of 
0.683 insures compatibility with the common event case described in § 8.2 (see technical note 
below).   

The left- and right- side largest acceptable estimation process error (pseudo-RMSE) is 
calculated as:8.2 

𝑟𝑟𝑟𝑟𝑚𝑚𝑠𝑠𝑟𝑟𝑚𝑚𝑎𝑎𝑚𝑚,𝑙𝑙𝑏𝑏𝑙𝑙𝑏𝑏 = �𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑙𝑙𝑟𝑟ℎ𝑙𝑙𝑏𝑏𝑙𝑙𝑏𝑏,𝑚𝑚𝑎𝑎𝑚𝑚
2 + 𝑟𝑟𝑏𝑏𝑚𝑚𝑎𝑎𝑚𝑚

2  and  𝑟𝑟𝑟𝑟𝑚𝑚𝑠𝑠𝑟𝑟𝑚𝑚𝑎𝑎𝑚𝑚,𝑟𝑟𝑤𝑤𝑟𝑟ℎ𝑏𝑏 = �𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑙𝑙𝑟𝑟ℎ𝑟𝑟𝑤𝑤𝑟𝑟ℎ𝑏𝑏,𝑚𝑚𝑎𝑎𝑚𝑚
2 + 𝑟𝑟𝑏𝑏𝑚𝑚𝑎𝑎𝑚𝑚

2 

Supposing that the anticipated value of the parameter is 𝑝𝑝𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 and that the sample size is 
𝑛𝑛𝑏𝑏𝑟𝑟𝑤𝑤𝑒𝑒𝑠𝑠 trips, then, the total number 𝑥𝑥 of events observed will follow a Poisson distribution with 
parameter 𝜆𝜆𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 = 𝑛𝑛𝑏𝑏𝑟𝑟𝑤𝑤𝑒𝑒𝑠𝑠 × 𝑝𝑝𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎.  Let [𝑐𝑐𝐵𝐵𝑙𝑙𝑏𝑏𝑙𝑙𝑏𝑏 ;  𝑐𝑐𝐵𝐵𝑟𝑟𝑤𝑤𝑟𝑟ℎ𝑏𝑏] be the confidence interval for 𝜆𝜆 
with confidence level 0.683, if 𝜆𝜆𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 occurrences are observed.  The relative left-side and 
right-side confidence interval lengths are   (𝜆𝜆𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 − 𝑐𝑐𝐵𝐵𝑙𝑙𝑏𝑏𝑙𝑙𝑏𝑏)/𝜆𝜆𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 and 
(𝑐𝑐𝐵𝐵𝑟𝑟𝑤𝑤𝑟𝑟ℎ𝑏𝑏 − 𝜆𝜆𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎)/𝜆𝜆𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎, respectively.  Let 

𝑟𝑟𝑟𝑟𝑝𝑝𝑙𝑙𝑏𝑏𝑙𝑙𝑏𝑏 =  �[(𝜆𝜆𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 − 𝑐𝑐𝐵𝐵𝑙𝑙𝑏𝑏𝑙𝑙𝑏𝑏)/𝜆𝜆𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎]2 + �𝑟𝑟𝑏𝑏𝑏𝑏𝑒𝑒�
2 

 

𝑟𝑟𝑟𝑟𝑝𝑝𝑟𝑟𝑤𝑤𝑟𝑟ℎ𝑏𝑏 =  �[(𝜆𝜆𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 − 𝑐𝑐𝐵𝐵𝑟𝑟𝑤𝑤𝑟𝑟ℎ𝑏𝑏)/𝜆𝜆𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎]2 + �𝑟𝑟𝑏𝑏𝑏𝑏𝑒𝑒�
2 

Then, the dependability of the estimation process will be the smallest quotient: 

𝑚𝑚𝐵𝐵𝑛𝑛 �
𝑟𝑟𝑟𝑟𝑚𝑚𝑠𝑠𝑟𝑟𝑚𝑚𝑎𝑎𝑚𝑚,𝑙𝑙𝑏𝑏𝑙𝑙𝑏𝑏

𝑟𝑟𝑟𝑟𝑝𝑝𝑙𝑙𝑏𝑏𝑙𝑙𝑏𝑏
,
𝑟𝑟𝑟𝑟𝑚𝑚𝑠𝑠𝑟𝑟𝑚𝑚𝑎𝑎𝑚𝑚,𝑟𝑟𝑤𝑤𝑟𝑟ℎ𝑏𝑏

𝑟𝑟𝑟𝑟𝑝𝑝𝑟𝑟𝑤𝑤𝑟𝑟ℎ𝑏𝑏
� 

We propose the same scoring scale as in § 8.2.  

 

Score A B C D E 
Quotient ≥ 1.000 1.00 to ≥ 0.700 0.700 to ≥ 0.500 0.500 to ≥ 0.350 Less than 0.350 

Example 
Suppose that scientists require that the rate of occurrence of an event be estimated using the 
largest acceptable absolute relative bias 𝑟𝑟𝑏𝑏𝑚𝑚𝑎𝑎𝑚𝑚 = 0.1 and left-side and right-side length, 
𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑙𝑙𝑟𝑟ℎ𝑙𝑙𝑏𝑏𝑙𝑙𝑏𝑏,𝑚𝑚𝑎𝑎𝑚𝑚 = 0.5 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑙𝑙𝑟𝑟ℎ𝑟𝑟𝑤𝑤𝑟𝑟ℎ𝑏𝑏,𝑚𝑚𝑎𝑎𝑚𝑚 = 0.5, for the confidence interval for 𝑝𝑝 with a 
confidence level 1 − 𝛼𝛼 = 0.683.  Then, 𝑟𝑟𝑟𝑟𝑚𝑚𝑠𝑠𝑟𝑟𝑚𝑚𝑎𝑎𝑚𝑚,𝑙𝑙𝑏𝑏𝑙𝑙𝑏𝑏 = 𝑟𝑟𝑟𝑟𝑚𝑚𝑠𝑠𝑟𝑟𝑚𝑚𝑎𝑎𝑚𝑚,𝑟𝑟𝑤𝑤𝑟𝑟ℎ𝑏𝑏 = 0.510 
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Suppose that 𝑝𝑝𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 = 0.2, 𝑏𝑏𝑏𝑏𝑒𝑒 = −0.05 (i.e. 25% of the occurrences are anticipated to be 
unreported).  Suppose also that a sample size of 𝑛𝑛𝑏𝑏𝑟𝑟𝑤𝑤𝑒𝑒𝑠𝑠 = 15 is planned.   

Then the anticipated number of occurrences is 𝜆𝜆𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 = 3 and the confidence interval for 𝜆𝜆 
with confidence level 0.683, if 𝜆𝜆𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 = 3 occurrences are observed, is [1.37 ;  5.92] and we 
obtain 𝑟𝑟𝑟𝑟𝑝𝑝𝑙𝑙𝑏𝑏𝑙𝑙𝑏𝑏 = 0.60 and 𝑟𝑟𝑟𝑟𝑝𝑝𝑟𝑟𝑤𝑤𝑟𝑟ℎ𝑏𝑏 = 1.00. 

Then, the dependability of the estimation process is 𝑚𝑚𝐵𝐵𝑛𝑛 �0.51
0.60

, 0.51
1.00

� = 𝑚𝑚𝐵𝐵𝑛𝑛(0.85 , 0.51) = 0.51 
and the dependability score is “B”. 

In this example, a sample size of 𝑛𝑛𝑏𝑏𝑟𝑟𝑤𝑤𝑒𝑒𝑠𝑠 = 48 would be required to obtain a dependability score 
of “A”. 

Technical note 

Confidence intervals for the parameter of a Poisson distribution can only be computed for 
integer observations.  Therefore, [𝑐𝑐𝐵𝐵𝑙𝑙𝑏𝑏𝑙𝑙𝑏𝑏  ;  𝑐𝑐𝐵𝐵𝑟𝑟𝑤𝑤𝑟𝑟ℎ𝑏𝑏] must be obtained by interpolation if the 
anticipated value is not an integer. 

The user may prefer to set the non-relative 𝑟𝑟𝑟𝑟𝑛𝑛𝑙𝑙𝑟𝑟ℎ𝑙𝑙𝑏𝑏𝑙𝑙𝑏𝑏,𝑚𝑚𝑎𝑎𝑚𝑚 and 𝑟𝑟𝑟𝑟𝑛𝑛𝑙𝑙𝑟𝑟ℎ𝑟𝑟𝑤𝑤𝑟𝑟ℎ𝑏𝑏,𝑚𝑚𝑎𝑎𝑚𝑚 first. Setting 
these two values equal ensures that the procedures for this rare event case converges to the 
procedure for common events described in § 8.2, when 𝑝𝑝𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 and/or 𝑛𝑛𝑏𝑏𝑟𝑟𝑤𝑤𝑒𝑒𝑠𝑠 become 
large. 

Because the sum of independent Poisson random variables is also a Poisson random 
variable, the above procedure applies to more complex cases including, for example, a 
situation where several fleets with different values of 𝑝𝑝𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 are involved.  
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Technical note: the choice of 0.683 

The following explains the choice of the 0.683 confidence level. 

In the common event case (§ 8.2), if we neglect bias, the dependability of an estimation 
process for estimation application is measured by the quotient 𝑠𝑠𝑏𝑏𝑒𝑒,𝑚𝑚𝑎𝑎𝑚𝑚 𝑠𝑠𝑏𝑏𝑒𝑒⁄  of the required 
error over the assessed estimation process error (using the relative values gives the same 
quotient). 

For a parameter 𝜃𝜃 where the normal distribution is an acceptable model (for example, the 
estimation of the mean with 30 observations from a symmetrical distribution), the confidence 
interval with confidence level 0.683 is given by 𝜃𝜃� ± 𝑧𝑧𝛼𝛼 2⁄ 𝜎𝜎𝜃𝜃� = 𝜃𝜃� ± 𝜎𝜎𝜃𝜃� , since 𝑧𝑧0.683 2⁄ = 1.  
Therefore, the left-side or the right-side length of the confidence interval are each equal to 𝜎𝜎𝜃𝜃� . 
This shows that the procedure above generalizes that of § 8.2 if we use the confidence 
interval with confidence level 0.683. 

Example (continued) 

In the example above, 𝜎𝜎𝜆𝜆� = 1.73, suggesting incorrectly that the variability of the estimator 
spreads equally below and above the true value 𝜆𝜆 = 3, while the confidence interval if �̂�𝜆 = 3 is 
observed, [1.37 ;  5.92] is approximately twice larger above 𝜆𝜆 than below. 

8.4. Assessment of an estimation process used to verify compliance with a 
limit: common event case 

We propose to assess the dependability of an estimation process for compliance applications by 
examining the ability of the estimation process to prove that an upper limit has not been reached 
or breached. (As indicated previously, the inequalities in the equations that follow would 
have to be reversed in the case of a lower limit). An objective of this approach is that 
fisheries for which the catch is expected to be close to the total allowable catch will require 
better quality estimates (e.g. larger sample sizes) than fisheries for which the catch is expected 
to be far below this limit. 

Figure 4 illustrates several combinations of accuracy, precision and relationships between the 
true value and the compliance limit.  Since monitoring programs must be assessed for their 
value over time, when assessing an estimation process, the “true value” will be replaced by the 
“anticipated” value of the parameter. 
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Figure 4. Dependability of an estimation process depends on its accuracy and precision and on how close 
the true value of the parameter (solid dot) is to the limit (vertical line).  The open dots represent examples 
of estimated values from theoretical repetitions of the estimation process.  The graphics illustrates an 
upper compliance limit, e.g. a fishery’s Total Allowable Catch (TAC).  If the true value is far below the 
limit, a low accuracy, low precision (A) estimation process is dependable. If the true value is close to the 
TAC, a low precision (B, C) or low accuracy (D) estimation process is not dependable but a high 
accuracy, high precision (E) estimation process is dependable.  If the true value is far from the 
compliance limit, a high quality (F) estimation process suggests that cost savings are possible. 

In the following, we suppose that the limit is an upper limit on a quantity (e.g. a total allowable 
catch).  The case for a limit based on a proportion is similar for limits that are away from 0% or 
100%.  Different formulae are required for limits on proportions close to 0% or 100% or for limits 
on rare events.  See § 8.5 for a computation on a case of rare events. 

Heuristically, this approach is based on a statistical test to reject the hypothesis that the limit 
has been reached or breached, assuming that the error on the estimate follows normal 
distributions.  The concepts of statistical tests of significance are only used as a guide. The 
development does depend on verifying the assumption required to apply the significance tests 
(e.g. normality of the estimator). Special cases for other distributions, such as the Poisson, 
could be equivalently elaborated, as discussed below for rare event cases. 
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Note: Terminology 

On occasion, we use the following vocabulary based on detection of non-compliance: 

A “false positive” refers to concluding that the limit has been exceed when in fact it was not. 

A “false negative” refers to concluding that the limit has been respected (not exceeded) when 
in fact it was exceeded. 

The terminology is similar to the terminology used in medical diagnostics. 

We use the following notation: 

L  : Upper limit (e.g. TAC) 

𝜃𝜃 : True value of the parameter 

𝜃𝜃𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 : Anticipated true value of the estimator (defined in § 7.6). 

𝜃𝜃� : Estimate of the parameter, obtained from the estimation process 

𝜎𝜎𝜃𝜃�  : The standard error of the estimator 

𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑅𝑅𝑅𝑅𝑅𝑅𝜃𝜃� = 𝜎𝜎𝜃𝜃� 𝜃𝜃⁄    : Relative standard error of the estimator 

 𝜑𝜑 : Cumulative distribution function of the standard normal distribution 

0 < 𝛼𝛼 < 1 :  A pre-selected value to be thought of as a significance level 

𝑧𝑧𝛼𝛼 = 𝜑𝜑−1(𝛼𝛼) 

Consider the one-sided statistical hypothesis test H0: θ ≥ L vs H1: θ < L with a predetermined 
significance level 𝛼𝛼.  The limit will be considered satisfied if the null hypothesis H0 is rejected, 
i.e. if 𝜃𝜃� < 𝐿𝐿 + 𝑧𝑧𝛼𝛼𝜎𝜎𝜃𝜃� .  Under normality assumption, the power of the test at 𝜃𝜃 is 𝜑𝜑 �𝐿𝐿−𝜃𝜃

𝜎𝜎𝜃𝜃�
+ 𝑧𝑧𝛼𝛼� =

𝜑𝜑 �𝐿𝐿 𝜃𝜃⁄ −1
𝜎𝜎𝜃𝜃� 𝜃𝜃⁄

+ 𝑧𝑧𝛼𝛼�. 

The predetermined significance level of the test, 𝛼𝛼, is the probability of concluding, incorrectly, 
that the limit was not reached when it was reached exactly.  If 𝛼𝛼 = 0.50, 𝑧𝑧𝛼𝛼 = 0 and the 
conclusion is based on the simple comparison between 𝜃𝜃� and 𝐿𝐿, the usual approach to 
monitoring for compliance.  Choosing a small value for 𝛼𝛼 (e.g. 𝛼𝛼 = 0.05) corresponds to a 
precautionary or risk-averse approach. 

Technical notes 

1. The “false negative” and “false positive” defined above are opposite to the same notions 
typically associated to the test H0: θ ≥ L.  “False negative” and “false positive” for the non-
compliance application corresponds to a Type I error and Type II error, respectively, for the 
statistical test H0: θ ≥ L.  Because the heuristic approach is based on a test of the null 
hypothesis of non-compliance, the association is reversed. 

2. The equality is included in the null hypothesis H0: θ ≥ L for technical reasons related to the 
theory of statistical test.  The mathematical probability that the limit L be reached exactly is 
zero.  Therefore, the fact that θ = L is mathematically considered unacceptable is immaterial 
in practice. 
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We propose the following measure of dependability of an estimation process for compliance 
applications: 

The probability that the statistical test H0: θ ≥ L yields the correct conclusion, if 𝜃𝜃 = 𝜃𝜃𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 =
𝜃𝜃� − 𝑏𝑏𝑏𝑏𝑒𝑒 and 𝜎𝜎𝜃𝜃� = 𝑠𝑠𝑏𝑏𝑒𝑒  . 

If 𝜃𝜃𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 < 𝐿𝐿, the measure of dependability equals  

[𝑟𝑟ℎ𝑟𝑟 𝑝𝑝𝑐𝑐𝑝𝑝𝑟𝑟𝑟𝑟 𝑐𝑐𝑜𝑜 𝑟𝑟ℎ𝑟𝑟 𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟 𝐵𝐵𝑟𝑟 𝜃𝜃 =  𝜃𝜃𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎] = 𝜑𝜑 �𝐿𝐿−𝜃𝜃
𝜎𝜎𝜃𝜃�

+ 𝑧𝑧𝛼𝛼�.  

If 𝜃𝜃𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 ≥ 𝐿𝐿, the measure of dependability equals 

1 – �𝑟𝑟ℎ𝑟𝑟 𝑝𝑝𝑐𝑐𝑝𝑝𝑟𝑟𝑟𝑟 𝑐𝑐𝑜𝑜 𝑟𝑟ℎ𝑟𝑟 𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟 𝐵𝐵𝑟𝑟 𝜃𝜃 =  𝜃𝜃𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎� = 1 −  𝜑𝜑 �𝐿𝐿−𝜃𝜃
𝜎𝜎𝜃𝜃�

+ 𝑧𝑧𝛼𝛼�. 

The probability will usually be reported as a percentage. 

At this point in time, 𝛼𝛼 = 0.50 and, therefore 𝑧𝑧𝛼𝛼 = 0, the current practice, should be retained.  If 
a more precautionary approach is desired, a smaller value of 𝛼𝛼 should be adopted. 

The behaviour of the proposed dependability measure relative to the true value of the parameter 
is illustrated in Figure 5.  In all cases, the estimation process is considered dependable if the 
true value is far from the limit.  If the bias of the estimation process is 0, the quality of the 
estimator varies symmetrically for true values on either side of the limit.  A lower precision 
corresponds to a wider band of low dependability around the limit.  If the bias of the estimation 
process is negative, the dependability of the estimation process will be low for true values just 
above the limit: the negative bias will hide the breach of the compliance limit. 
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Figure 5. Dependence of the dependability score on the true value of a parameter, the limit, the accuracy 
and the precision of the estimation process for α= 0.50, the choice corresponding to the usual practice.  
The thick vertical line shows the limit.  The thin lines show the probability of drawing the correct 
conclusion: that the limit has been respected (green dashed) or not (red solid).  (A) Without bias and with 
low variability, the probability of a correct conclusion is high except if the true value is very close to the 
limit. (B) Without bias but with high variability, the probability of a correct conclusion is low further away 
from the limit.  (C) With a negative bias and low variability, there is an extremely low probability of drawing 
an incorrect conclusion for true values just above the limit. (D) A negative bias combined with high 
variability worsens the situation. 

To be consistent with the use of precaution when managing fishery removals, we discuss briefly 
the impact of using a smaller value of α, illustrated in Figure 6, which is directly comparable to 
Figure 5.  In the context presented, α represents the probability of incorrectly concluding that the 
limit is respected when it is not.  Therefore, choosing a smaller value for α reduces this 
probability.  However, it also increases the probability of incorrectly concluding that the limit is 
not respected when in fact it is. 
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Figure 6. Dependence of the dependability score on the true value of a parameter, the limit, the accuracy 
and the precision of the estimation process for α= 0.05, a precautionary choice.  Comparing with the 
previous figure (Figure 5), a smaller value for α reduces this probability of incorrectly concluding that the 
limit is respected if it is not in all cases (unless it was already 100%).  Correspondingly, it increases the 
probability of incorrectly concluding that the limit is not respected when it is. 

We propose the following scoring scale.   

Score A B C D E 

Dependability ≥ 90% 75% to < 90% 60% to < 75% 50% to < 60% < 50% 
 

Figure 7 illustrates the scoring scale for various combination of the true value of a parameter, 
the limit, the accuracy and the precision of the estimation process for α = 0.50, the current 
practice. 
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Figure 7. Dependability score for several combinations of the true value of the parameter (solid dot), limit 
(vertical line), accuracy and precision of the estimation process.  The open dots represent examples of 
estimated values from theoretical repetitions of the estimation process, illustrating the accuracy and the 
precision of the estimation process.  The graphics illustrates an upper limit, e.g. a fishery’s Total 
Allowable Catch (TAC).  If the true value is very far from the limit, a low accuracy, low precision (A) 
estimation process is dependable (dependability score A). If the true value is close to the TAC, a high 
precision (B) estimation process is dependable (score A).  Low precision (C, D) or low accuracy (E) 
estimation processes are not dependable if the true value is close to the limit (scores C, D and E, 
respectively).Assessment of an estimation process used to verify compliance with a limit: A rare event 
case 

8.5. Assessment of an estimation process used to verify compliance with a 
limit: A rare event case 

Consider a compliance limit stating that an event (e.g. catch of a large mammal) should occur at 
no more than a certain rate 𝐿𝐿𝑒𝑒 (e.g. the event can occur no more than once every x trips).   

The relevant statistical hypotheses are now 𝐻𝐻0: 𝑝𝑝 ≥  𝐿𝐿𝑒𝑒 vs 𝐻𝐻1: 𝑝𝑝 <  𝐿𝐿𝑒𝑒.   

Supposing that the events occur randomly, the total number of events observed over 𝑛𝑛𝑏𝑏𝑟𝑟𝑤𝑤𝑒𝑒𝑠𝑠 trips 
would follow a Poisson distribution with parameter 𝜆𝜆 = 𝑛𝑛𝑏𝑏𝑟𝑟𝑤𝑤𝑒𝑒𝑠𝑠 × 𝑝𝑝.  The test above becomes the 
test 𝐻𝐻0: 𝜆𝜆 ≥ 𝜆𝜆0 =  𝑛𝑛𝑏𝑏𝑟𝑟𝑤𝑤𝑒𝑒𝑠𝑠 × 𝐿𝐿𝑒𝑒 vs 𝐻𝐻0: 𝜆𝜆 < 𝜆𝜆0 =  𝑛𝑛𝑏𝑏𝑟𝑟𝑤𝑤𝑒𝑒𝑠𝑠 × 𝐿𝐿𝑒𝑒 on the parameter 𝜆𝜆 of the Poisson 
distribution.  For small values of 𝜆𝜆 = 𝑛𝑛𝑏𝑏𝑟𝑟𝑤𝑤𝑒𝑒𝑠𝑠 × 𝐿𝐿𝑒𝑒 and a fixed 𝛼𝛼, a Poisson exact test exists and 
can be used to determine the rejection limit 𝑅𝑅𝑚𝑚 = 𝑅𝑅𝑚𝑚,𝛼𝛼. 

Suppose that the typical number of trips is 𝑛𝑛𝑏𝑏𝑟𝑟𝑤𝑤𝑒𝑒𝑠𝑠 and the anticipated rate 𝑝𝑝𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 = �̂�𝑝 −  𝑏𝑏𝑏𝑏𝑒𝑒.  
Then, the anticipated number of occurrences is 𝑛𝑛𝑏𝑏𝑟𝑟𝑤𝑤𝑒𝑒𝑠𝑠 × 𝑝𝑝𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎  and the power of the test is 
Pr (𝑋𝑋 ≤ 𝑅𝑅𝑚𝑚|𝑋𝑋~𝑃𝑃𝑐𝑐𝐵𝐵𝑠𝑠𝑠𝑠𝑐𝑐𝑛𝑛�𝑛𝑛𝑏𝑏𝑟𝑟𝑤𝑤𝑒𝑒𝑠𝑠 × 𝑝𝑝𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎�).  Then, the dependability of the estimation process 
is given by: 
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If 𝑝𝑝𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 < 𝐿𝐿𝑒𝑒, the measure of dependability equals [𝑟𝑟ℎ𝑟𝑟 𝑝𝑝𝑐𝑐𝑝𝑝𝑟𝑟𝑟𝑟 𝑐𝑐𝑜𝑜 𝑟𝑟ℎ𝑟𝑟 𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟 𝐵𝐵𝑟𝑟 𝑝𝑝 =
 𝑝𝑝𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎] 

If 𝑝𝑝𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎 ≥ 𝐿𝐿𝑒𝑒, the measure of dependability equals [1 − 𝑟𝑟ℎ𝑟𝑟 𝑝𝑝𝑐𝑐𝑝𝑝𝑟𝑟𝑟𝑟 𝑐𝑐𝑜𝑜 𝑟𝑟ℎ𝑟𝑟 𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟 𝐵𝐵𝑟𝑟 𝑝𝑝 =
 𝑝𝑝𝑎𝑎𝑏𝑏𝑏𝑏𝑤𝑤𝑎𝑎𝑤𝑤𝑒𝑒𝑎𝑎𝑏𝑏𝑏𝑏𝑎𝑎]. 

Since a sum of Poisson distribution is again a Poisson distribution, the proposed method applies 
to a situation where the limit is proportional to effort, for example. 

EXAMPLE 

Consider a compliance limit stated as “at most 1 occurrence every 5 trips”, i.e. 𝐿𝐿𝑒𝑒 = 1 5⁄ = 0.2  

Suppose that: 

 The anticipated sample size is 50 trips 

 25% of the occurrences are anticipated to be unreported (i.e. 𝑏𝑏𝑏𝑏𝑒𝑒 = −0.05) 

 𝛼𝛼 = 0.25, a mildly precautionary value has been retained 

The compliance limit applied to the sample trips is 50 ×  0.2 = 10. 

The dependability of the estimation process for selected anticipated true values is shown in 
Figure 8. 

The low dependability for anticipated values immediately above the compliance limit is due to 
the small sample size, the negative bias and the precautionary choice of 𝛼𝛼. 

 
Figure 8. Dependability for a rare event where the estimation process is negatively biased and a mildly 
precautionary value of 𝛼𝛼 has been selected.  The compliance limit states that “at most 1 occurrence every 
5 trips” are allowed. 
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8.6. Assessment of an estimation process used to verify compliance with a 
limit: uncertainty on the limit 

Uncertainty around a compliance limit can come from several sources.  For example, if a catch 
upper limit is a function of stock biomass (e.g. the F0.1 rule), the uncertainty on the biomass 
estimate will create uncertainty on the catch upper limit.  When several models or only expert 
opinions are available to set a limit, meta-analysis techniques can be applied to quantify 
uncertainty on the limit.   

While compliance limits should be fixed values for enforcement practicalities, in environmental 
or biological risk management, the uncertainty on the limits will have an impact on decision 
making.  

We note that the methodology proposed to assess the dependability of an estimation process 
can be easily modified to take into account uncertainty about a limit. 

It suffices to consider heuristically the one-sided statistical hypothesis test H0: θ ≥ L vs H1: θ < L 
under the assumption that the estimator 𝜃𝜃� of 𝜃𝜃 has standard error 𝜎𝜎𝜃𝜃� ≈ 𝑠𝑠𝜃𝜃�  and that the 
estimator 𝐿𝐿� of 𝐿𝐿 has standard error 𝜎𝜎𝐿𝐿� ≈ 𝑠𝑠𝐿𝐿� , where the standard error on 𝐿𝐿� may be obtained, for 
example, from a combining of opinion method.  Then, the standard error 𝜎𝜎𝜃𝜃�−𝐿𝐿�  of 𝜃𝜃� − 𝐿𝐿� can be 

estimated as  𝑠𝑠𝜃𝜃�−𝐿𝐿� = �𝑠𝑠𝑏𝑏𝑒𝑒2 + 𝑠𝑠𝐿𝐿�2.   

The definition of dependability presented in § 8.4 holds after replacing 𝜑𝜑 �𝐿𝐿−𝜃𝜃
𝜎𝜎𝜃𝜃�

+ 𝑧𝑧𝛼𝛼� by 

𝜑𝜑 �𝐿𝐿−𝜃𝜃
𝜎𝜎𝜃𝜃�−𝐿𝐿�

+ 𝑧𝑧𝛼𝛼�. 

Figure 9 illustrates the impact of uncertainty on the limit.  In this example, the relative standard 
error on the parameter is 4% (precise case) or 10% (imprecise case) if the parameter equals the 
limit and the relative error on the limit is 25%.  Comparing Figure 8 to Figure 5, we observe that 
the dependability is lower when there is uncertainty on the limit, for most true values of the 
parameter. 
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Figure 9. Dependence of the dependability score on the true value of a parameter, the limit, the accuracy 
and the precision of the estimation process for α= 0.50, the choice corresponding to the usual practice, 
without (left hand side) and with (right hand side) uncertainty on the limit.  The grey bands show the 
uncertainty (68% and 95% C.I.) on the limit. See text for details. 

9. CASE STUDY: SKATE DISCARDS IN THE SOUTHERN GULF OF ST. LAWRENCE 

9.1. Description 
Benoît (2013) estimated the landings and discards of three skate species in southern Gulf of St. 
Lawrence fisheries for the period 1991-2011. Here we consider only the total discards of skate 
over that period.  

Total annual skate discards were estimated using a ratio estimator (Benoît 2013). First, the 
mean catch ratio of skates (kg skate/kg targeted species) was estimated for each fishery, 
defined by the target species and the gear class used (fixed or mobile gear), and year using the 
data collected by at-sea observers. Second, the catch ratios were multiplied by the total target 
species landings in each fishery and year, which were obtained from dockside monitoring for the 
majority of cases and from purchase slips for the remainder.   

Therefore, assessing the quality and dependability of the annual skate discard estimates 
required consideration of operational characteristics affecting the at-sea observer program and 
those affecting the dockside monitoring program for the southern Gulf of St. Lawrence. (For 
simplicity, the contribution of characteristics affecting purchase slips was not considered).  

Observations of skate discards are only available from the at-sea observer program which 
covers the groundfish and shrimp fisheries in the area. While target observer coverage levels 
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differed among fisheries and ranged from 5% to 25% of trips annually, actual coverage levels 
were lower, ranging from 1% to 8% (Benoît and Allard, 2009).  

Previous analyses of the observer records indicated that deployments of observers to vessels 
were not random (Benoît and Allard, 2009). The reasons underlying the irregular selection 
probabilities were not known but likely stem from two sources. First, observers may have 
avoided vessels that were perceived not to meet safety standards or were considered 
unfriendly. Second, there is known to have been targeted coverage of some vessels for 
enforcement purposes, but the targeted trips were not divulged to the analyst for privacy 
concerns. Evidence for observer effects was also found in the observer data, notably lower 
landings of commercially important species in the presence of observers (Benoît and Allard, 
2009). Information was not available to directly consider whether the observer effects also 
resulted in changes in the ratio of skate discards to retained commercial catches. However, 
indirect evidence suggests that observer effects on skate discard ratios were small if present at 
all. Specifically, Benoît (2013) estimated skate landings based on observer records of retained 
catch (skates and commercial species) and compared these to estimates of landings based on 
dockside monitoring which were assumed to not be subjected to observer effects or other major 
sources of bias. The two compared favorably suggesting no observer effect on bycatch ratios 
for retained skate catch, and by inference on bycatch ratios for discarded skate catches. 

The dockside monitoring program to measure target species landings is a census with close to 
100% actual coverage, mandatory pre-arrival hails and mandatory dockside catch weighing.  
Therefore, it is not subject to impact from the statistical characteristics and it is subject to the 
impact of fewer operational characteristics. 

The contributions of statistical and operational characteristics are described below, followed by 
a summary of the assessment for the case study. For simplicity, the contributions of monitoring 
programs for the different fisheries are considered jointly, rather than evaluating them 
separately and then summing the contribution. 

The assessment covers the period from 1991-01-01 to 2011-12-31. The anticipated value for kg 
of discarded skates per kg of commercial species was taken as the average of annual estimates 
in Benoît (2013) and set at 0.041.  

Acceptable errors were not set by fisheries managers; therefore, we used an acceptable relative 
estimation process error (pseudo-RMSE) of 30%, following the recommendations of 20% to 
30% CV by National Marine Fisheries Service (NMFS) of the US National Oceanic and 
Atmospheric Administration in NMFS (2004).  We note that the NMFS recommendation 
concerns only the variability (SE or pseudo-SE) while our selection is a combined limit on bias 
and variability. 

9.2. At-sea monitoring skate discard ratio estimation process 

9.2.1. Statistical characteristics 

The anticipated statistically computed bias was assumed to be zero and the standard error was 
computed based on the average CV in Benoît (2013) and set at 0.010. 

9.2.2. Operational characteristics 

The assessment of operational characteristics is presented as follows: 

Prevalence: Relative number of units included in the sampling or census frame impacted by the 
operational characteristic 
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Contribution to the estimation process bias (pseudo-bias):  In most case, average difference 
between the values observed for these units and the true values due to the characteristic. 

Contribution to the estimation process variability (pseudo-SE) expressed either as a 
(quadratically) additive term or as a multiplicative factor. 

1 -  Undercoverage 
The sampling frame for the at-sea observer program is considered to include all population units 
(trips) for the fisheries, though there may be a very small number excluded.  Therefore, very 
little impact from undercoverage expected. 

 Prevalence: 0% to 5% 

 Contribution to the estimation process bias: ~0% 

 Contribution to estimation process variability: ~0% 

2 -  Overcoverage 
The sampling frame for the at-sea observer program does not extend beyond the fisheries it 
targets.  Therefore, no impact from overcoverage. 

 Prevalence: 0%  

 Contribution to the estimation process bias: ~0% 

 Contribution to estimation process variability: ~0% 

3 -  Unintended clustering of samples 
Due to the impossibility of separating the effect of unintended clustering, unintended 
stratification and other irregular selection probabilities, these effects are reported under “Other 
irregular selection probabilities”. 

4 -  Unintended sampling stratification 
Due to the impossibility to separate the effect of unintended clustering, unintended stratification 
and other irregular selection probabilities, these effects are reported under “Other irregular 
selection probabilities”. 

5 -  Other irregular selection probabilities 
Modified selection probabilities: In two of the main fisheries that catch skates (Greenland 
halibut fixed gear and offshore flatfish [plaice and witch flounder]) there is evidence of 
deployment effects: non-randomness among landing port districts, and vessels that tended to 
have higher average landings were disproportionately sampled (Benoît and Allard, 2009).  

Based on the results of Benoît and Allard (2009), some vessels appear to be avoided perhaps 
for perceived safety reasons or perhaps unfriendly crew. 

Deployment appeared random in the other major fishery, coastal flatfish mobile gear.  

Forced inclusions: Furthermore, an unknown, variable, but likely small proportion of observer 
trips (5% to 20%), are targeted for enforcement or deterrence purposes. Targeted and randomly 
sampled trips are not distinguished in the at-sea observation database. 

From simulations in Benoît and Allard (2009), we expect a relative bias of -15 to -10% overall 
due to the irregular sampling probabilities. However, landings of skate predicted using at-sea 
observation of skate discards match observed landings reasonably well, suggesting that bias is 
small if present (Benoît 2013). 
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From simulations in Benoît and Allard (2009) we expect that relative error will be 
underestimated requiring a correction of about 1.1 in fixed gear fisheries (which capture ~50% 
of skates) and ~1.6 in mobile gear fisheries (~50%), leading to a mean correction of ~1.35 

 Prevalence: 100% — The following contributions were assessed in Benoît and Allard 
(2009) for the whole population.  

 Contribution to the estimation process bias: −30% to −10%  

 Contribution to estimation process variability: +35%  

6 -  Observer effect 
The results of Benoît and Allard (2009) suggest that an observer effect is likely for targeted 
catch and probably involves many vessels. It is not known if the observer effect extends to 
discarded catch; however, landings of skates predicted using at-sea observation of skate 
discards match observed landings reasonably well, suggesting that bias is small if present 
(Benoît 2013). 

Anticipated prevalence, approximately 30-50% of observations; Average contribution to bias 
assumed to be approximately −10%. No contribution to variability expected. 

 Prevalence: 30% to 50% 

 Contribution to the estimation process bias: −10% 

 Contribution to estimation process variability: 0% 

7 -  Missing values due to unintentional factors 
None observed or anticipated.  Therefore, no impact anticipated. However, in some instances 
the observer may be imputing values for other sets during the trip, which is accounted in 
imputation error. 

 Prevalence: 0%  

 Contribution to the estimation process bias: ~0% 

 Contribution to estimation process variability: ~0% 

8 -  Missing values dues to intentional action 
Independent at-sea observers are not expected to produce missing values intentionally, except 
perhaps in cases of strong coercion, which we assumed would be dealt with by fishery officers. 

 Prevalence: 0%  

 Contribution to the estimation process bias: ~0% 

 Contribution to estimation process variability: ~0% 

9 -  Errors in data reported by resource users 
 Independent observer program: not applicable. 

10 -  Errors in data reported by independent observers 
Catch amounts are estimated visually by observers and therefore expect a small amount of 
unbiased error in nearly all observations. Observers can distinguish skates from other taxa 
therefore misidentification is assumed nil.  

At-sea observers are certified and use standardized methodology. No biased observer error has 
been documented or is anticipated. 
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 Prevalence: 100% 

 Contribution to the estimation process bias: ~0% 

 Contribution to estimation process variability: 5% to 15% 

11 -  Measuring tool error 
Spring scales are used in conjunction with visual assessment to determine skate catch 
amounts.  Moderate errors are anticipated, but no bias.   

 Prevalence: 100% 

 Contribution to the estimation process bias: ~0% 

 Contribution to estimation process variability: 5% to 15% 

12 -  Data handling error 
Processing error may occur when observations are transcribed to data sheets and when data 
sheets are entered into the respective databases. There are some quality assurance and quality 
control procedures in place, particularly in the electronic data capture phase. The error 
associated with data handling is anticipated to be small to moderate. 

 Prevalence: 0% to 5%  

 Contribution to the estimation process bias: 0% 

 Contribution to estimation process variability: 5% to 15% 

13 -  Adjustment error 
No adjustment applied.  Therefore, no impact anticipated. 

14 -  Imputation error 
In some fisheries in certain years there are too few observations to derive a valid estimate of 
bycatch rate for skates. In these cases (about 15% to 20% of fishery-year combinations), 
estimates are imputed using an average of data from adjoining years to minimize differences in 
relative catch rates resulting from changes in relative abundance and in fishing pattern (Benoît 
2013). The expected bias is therefore small or nil. The error associated with imputation is also 
expected to be small. 

In addition, observers are likely imputing some values for sets that are not (fully) observed. 
Some variability may be generated. 

 Prevalence: 75% to 100% 

 Contribution to the estimation process bias: 0% 

 Contribution to estimation process variability: 15% to 30% 

Note 

This imputation method is a smoothing procedure.  As a rule, the imputed values will suffer 
from a larger bias if the smoothing “window” (here, the number of adjoining years) is larger or 
a larger variance if the smoothing window is narrow.  This is sometimes called the “bias-
variance trade-off”.  The direction of the bias may vary with each imputation.  While it may be 
possible to assess statistically the bias and the variance, it may not be sufficiently important 
to warrant the effort. 
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15 -  Modelling error 
No modelling involved for this component specifically. However, modelling is involved when 
using landings to pro-rate discard amounts recorded by observers. No bias is expected, 
however variability is certainly generated, though it is at least partly included in the computed 
SE via a bootstrap (Benoît 2013). 

 Prevalence: 100% 

 Contribution to the estimation process bias: 0% 

 Contribution to estimation process variability: 15% to 30% 

9.2.3. Overall assessment 

After computations, we obtain the following summaries for the estimation process: 

Estimation process bias (pseudo-bias): −26.3%  

Estimation process variability (pseudo-SE): 33.1% (Statistical SE: 24.5%) 

Estimation process error (pseudo-RMSE): 42.2% 

The most important operational impacts are from “Irregular selection probability” (OC05) and 
“Observer effect” (OC06). 

The impact of applicable operational characteristics OC09 to OC15 on variability is small 
because the sample size is large. 

Potentially reducible error due to operational characteristics accounted for in the computed 
standard error: 0.4%. 

We note that the variability of the estimation process is higher than that predicted by the 
statistical standard error and the bias is negative and important. 

9.3. Dockside monitoring target species landing estimation process 

9.3.1. Statistical characteristics 

This is a census with actual coverage very near 100%: Bias and standard error are 0. 

9.3.2. Operational characteristics 

Prevalence: Relative number of units included in the sampling or census frame impacted by the 
operational characteristic 

Contribution to the estimation process bias (pseudo-bias):  In most case, average difference 
between the values observed for these units and the true values due to the characteristic. 

Contribution to the estimation process variability (pseudo-SE) expressed either as a 
(quadratically) additive term or as a multiplicative factor. 

1 -  Undercoverage 
Due to mandatory dockside monitoring of target species landing, the sampling frame is 
considered to include all population units (trips) for most years included in the study.  Therefore, 
no impact from undercoverage. 

 Prevalence: 0% 

 Contribution to the estimation process bias: 0% 
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 Contribution to estimation process variability: 0% 

2 -  Overcoverage 
The sampling frame for the dockside monitoring of target species landing program does not 
extend beyond the fisheries it targets.  Therefore, no impact from overcoverage. 

 Prevalence: 0% 

 Contribution to the estimation process bias: 0% 

 Contribution to estimation process variability: 0% 

3 -  Unintended clustering of samples 
 Not applicable (census). 

4 -  Unintended sampling stratification 
 Not applicable (census). 

5 -  Other irregular selection probabilities 
 Not applicable (census). 

6 -  Observer effect 
 Not applicable (census). 

7 -  Missing values due to unintentional factors 
Given QA/QC procedures in place there should be very few missing values.  Very little impact 
anticipated. 

 Prevalence: 0% to 5% 

 Contribution to the estimation process bias: ~ 0% 

 Contribution to estimation process variability: ~ 0% 

8 -  Missing values dues to intentional action 
Given the checks and balances in place there should be very few instances and little impact. 

 Prevalence: 0% to 5% 

 Contribution to the estimation process bias: ~ 0% 

 Contribution to estimation process variability: ~ 0% 

9 -  Errors in data reported by resource users 
 Independent observer program: not applicable. 

10 -  Errors in data reported by independent observers 
Retained catch amounts are almost all obtained from weigh-scales. Unbiased error is expected 
to be small. 

Dockside observers are certified and use standardized methodology. No biased observer error 
has been documented or is anticipated. 

Retained catch amounts are almost all obtained from weigh-scales. Dockside observers are 
certified and use standardized methodology.  Transcription errors are possible, though there are 
no quantitative estimates of their prevalence or magnitude, though they should be small 
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 Prevalence: 100% 

 Contribution to the estimation process bias: ~ 0% 

 Contribution to estimation process variability: 5% to 15% 

11 -  Measuring tool error 
The data are obtained using weigh-scales. These are presumably calibrated regularly (so no 
bias); however, the authors don`t know the frequency and whether this is independently verified 
by DFO. The variability introduced is not known but expected to be small.   

 Prevalence: 100% 

 Contribution to the estimation process bias: 0% 

 Contribution to estimation process variability: 0% to 5% 

12 -  Data handling error 
Processing error may occur when observations are transcribed to data sheets and when data 
sheets are entered into the respective databases. There are some quality assurance and quality 
control procedures in place, particularly in the electronic data capture phase. The error 
associated with data handling is anticipated to be small to moderate. 

 Prevalence: 0% to 5% 

 Contribution to the estimation process bias: 0% 

 Contribution to estimation process variability: 5% to 15% 

13 -  Adjustment error 
Adjustments are made for the landing condition of fish. Corrections for dressing and icing of fish 
to whole fresh weight equivalents are made using empirical formulae. These adjustments are 
not anticipated to produce a bias.  The error associated with adjustments is anticipated to be 
small to moderate. 

 Prevalence: 100% 

 Contribution to the estimation process bias: 0% 

 Contribution to estimation process variability: 0% to 5% 

14 -  Imputation error 
Little imputation applied.  Therefore, little impact anticipated. 

 Prevalence: 0% to 5% 

 Contribution to the estimation process bias: 0% 

 Contribution to estimation process variability: 5% to 15% 

15 -  Modelling error 
Not applicable (census). 

9.3.3. Overall assessment 

After computations, we obtain the following summaries for the estimation process: 

Estimation process bias (pseudo-bias): 0.0%  

Estimation process variability (pseudo-SE): 0.0% 
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Estimation process error (pseudo-RMSE): 0.0% 

Under- or over-coverage was not reported.  Therefore, these operational characteristics do not 
impact bias. 

While some operational characteristics create some variability, their impact on the estimation 
process variability is extremely small due to the large population size in this census situation. 

9.4. Overall assessment of the total skate discard estimation process 
The total skate discards are estimated using a ratio estimator based on the at-sea observation 
of skate discard ratios and the dockside monitoring of target species landings: the skate/target 
species catch weight ratio obtained from the at-sea observations is multiplied by total catch 
obtained from the dockside monitoring of the target species landings.   

The result of the computation gives the following accuracy and precision for the total skate 
landings. 

Estimation process bias (pseudo-bias): −26.3%  

Estimation process variability (pseudo-SE): 33.1% 

Estimation process error (pseudo-RMSE): 42.2% 

Since no scientific or administrative quality requirements and no compliance limits have been 
set for this parameter, computation of the overall quality and dependability is presently not 
possible. 

The using the NMFS-inspired 30% target relative RMSE, the dependability score is 0.71.  On 
the proposed A-to-E assessment scale, the letter score is “B”.  

While the estimation process variability is somewhat large, the errors due to the variability will 
vary between negative and positive values year-to-year.  For example, if a time trend exists, it 
can be discovered by smoothing the time series (the relative residuals from the smoothing are 
anticipated to have a standard deviation around 33.1%).  The estimation process variability is 
also useful to establish the year-to-year variations that are not due to the estimation process 
variability. For example, on a single-year basis, given a 33.1% pseudo-SE, only a change in the 
estimated skate discards of at least 50% can be considered meaningful. 

On the contrary, the errors due to the estimation process bias will remain constantly negative.  
There is no statistical process similar to the above smoothing that allows the user to recognize 
or confirm the bias from the time series.  

10. DISCUSSION 
The framework presented here was designed to provide a thorough, reproducible and ideally 
consistent manner of evaluating the reliability of catch monitoring programs and the quality of 
the data they produce. While we have striven for completeness in the assessment framework, 
experience gained in applying it may further identify operational characteristics that should be 
considered. Likewise, some operational characteristics may turn out to be trivial or to contribute 
equally to all assessments, in which case they could be dropped to streamline the process. A 
review of this framework after a few years of application is therefore recommended. 

Documenting the basis for the scores or values used when completing the framework will be 
key to ensuring reproducibility and the defensibility of decisions made as a result of an 
assessment. Documentation will, in time, also contribute to enhancing the consistency of 
application of the framework to other monitoring programs and fisheries, serving as a reference 
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base from which future assessments can draw information for completing the framework. A 
user’s guide for the framework will be completed concurrently with the publication of this report 
and will further help to ensure consistency. 

The assessment framework was designed to accommodate inputs from both quantitative 
measurements and expert opinion. While the use of quantitative inputs is highly desirable, in 
many instances the use of expert opinion will be unavoidable because the data will not be 
available for a particular case or the calculation for a given operational characteristic will simply 
not be possible (e.g., the quantification of an observer effect on bycatch quantities). The use of 
expert opinion runs the risk of biasing the assessment depending on how practitioners qualify 
cases where there is little or no information on which to base a score for a given operational 
characteristic. An overly cautionary approach may lead to an unduly pessimistic assessment, 
while a neutral response may fail to flag potential problem areas. This report presents some 
heuristics than can be used to inform expert opinion. Similarly, Beauchamp et al. (2019) present 
examples of the effects of certain operational characteristics from the scientific literature, which 
can further inform decisions. With the accumulation of experience in applying the framework, 
further guidance will become available. This experience will also likely flag areas requiring 
targeted research aimed at understanding the consequences of operational factors affecting 
monitoring programs.     

Completing an assessment effectively will require bringing together information sources that 
may not be considered jointly on a regular basis. For example, information from DFO 
Conservation and Protection surveillance flights can, within the confines of information privacy 
rules, provide information on operational characteristics such as observer effects and variable 
selection probabilities when combined with other sources of information (e.g., at-sea observer 
data, vessel monitoring, hails). Similarly, information from DFO licensing can aid in defining the 
target populations for assessment and potential structure in these populations (e.g., home ports 
and vessel classes) that can constitute clusters or strata in fishery monitoring. When combined 
with other monitoring, this can help inform the effects of operational characteristics related to 
coverage and unintentional structure in sampling. It will therefore be critical that assessment 
teams be cross-sectorial and multi-disciplinary to ensure high quality evaluations.  
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13. ANNEX I - TECHNICAL NOTES 

13.1. Sample sizes 
Sample sizes are often described as a proportion of the target population.  For example, an 
observer program will typically specify the fraction of trips that are required to carry an observer. 
In this case, the sampling unit is a trip and the population is the ensemble of trips. 

Statistically, for simple random sampling, the relation between the standard error of the 
estimator of the population mean is given by the following formula:  

�1 −
𝑛𝑛
𝑁𝑁
𝜎𝜎
√𝑛𝑛

 

where n is the sample size, N is the population size and σ is the population standard deviation. 

The factor �1 − 𝑏𝑏
𝑁𝑁

, called the “finite population correction factor”, is negligible as soon as the 

sampling ratio or sampling portion 𝑛𝑛/𝑁𝑁 is smaller than 20% or, even, 40% (Figure 10).   

Consequently, for small sampling fractions, the absolute sample size is the appropriate 
measure of sample size when discussing the variability of an estimator.  The sampling fraction, 
i.e. the relative sample size, is only important when the sampling fraction is large. In a census, 
n=N, and SE is zero as can be seen in the equation above. 

 
Figure 10. Relationship between the finite population correction factor and the sampling proportion. 

13.2. Understanding the impact of operational characteristics on variability 
We expect the impacts of operational characteristics on bias to be more important than those on 
variability.  Furthermore, they are easier to understand.   

The impact of operational characteristics on variability are less obvious.  By variability, we mean 
the differences, on average, between estimates if we were to repeat the same estimation 
process many times.  The variability must be first estimated using the relative standard error of 
the estimate (RSE), which represents the variability due to the randomness of the sampling 
process but may also include variability due to operational characteristics such as measurement 



 

55 

errors.  By “impact of operational characteristics on variability”, we mean effects that make true 
variability of the estimate smaller or (more often) larger than that reported by the RSE. 

The following gives further details for censuses and sample surveys. 

13.2.1. For censuses 

For a census, the statistical variability is null: since the protocol requires that all units of the 
target population be observed, under ideal circumstances, the estimated value will be the true 
value. 

In practice, some units of the population will not be observed.  For example, in a telephone 
census of recreational fishers, a random subset of these fishers will not have been reached after 
the pre-set number of repeated calls due to unplanned circumstances (shopping habits, work 
schedules, etc. – as opposed to intentional avoidance).  If the census was repeated many times 
in a thought experiment, different fishers may not be reached, creating variability in the estimate 

Other operational characteristics such as measurement errors and data entry errors will also 
create some variability in the estimate. 

13.2.2. For sample surveys 

For sample surveys, the contribution of operational characteristics to variability may be difficult 
to assess and is likely to be case specific. 

For example, consider the case of a short fishing season during which the CPUE increases and 
then decreases.  Suppose also that this fishing season usually includes a vacation period during 
which the lone observer is not available.  In this situation, the standard error of the estimator will 
be underestimated since it will not take into account the extra randomness of the vacation 
period relative to the CPUE temporal variation. 

13.3. Impact of unintended cluster sampling 
Cluster sampling and stratified sampling are two well established sampling methods.  When 
implemented correctly and specialized statistical formulae are applied, they can give either a 
smaller standard error of the estimate for a fixed cost or a desired standard error for a lower 
cost. 

When sampling is clustered and/or stratified unintentionally and statistical formulae appropriate 
for simpler sampling schemes (e.g., simple random sampling) are applied, for example because 
the analyst is unaware of the actual sampling scheme, the estimator can be biased and the 
standard error can be assessed incorrectly.  In this section, we illustrate the impact of 
unintentional cluster sampling on standard error computations. 

Clustering occurs when observations are taken from specific subsets of the population.  For 
example, in a salmon recreational fishery, an observer can observe the fishers at several pools, 
possibly chosen at random.  The pools present natural cluster of fishers.  Another example 
concerns estimation of catch per unit of effort (CPUE) in seine fishing, with hauls as the unit of 
effort.  If the sampling is carried out over several trips, each trip provides a cluster of hauls. 

To illustrate the potential impact of unintentional clustering, suppose that a population of 1,000 
is subdivided into 100 potential clusters of 10 individuals.   

Suppose that the sample size is 100, taken from 20 of 100 clusters, with 5 individuals observed 
in each cluster. 



 

56 

We carried out simulation for 3 such populations, denoted A, B and C, illustrated in Figure 11.  
From A to C, the clusters were simulated to be progressively less similar to the whole 
population, as shown by adjusted R-square coefficients of 0.13, 0.30 and 0.70, respectively. 

Correspondingly, the relative standard error of the estimate, computed on the incorrect 
assumption of simple random sampling, underestimates the true relative standard error by 10%, 
25% and 47%, respectively. 

In general, unintentional clustering will lead to a larger underestimation of the true relative 
standard error when the clusters are less similar to the whole population (and to each other). 

 

Population Adjusted R-
square (𝑅𝑅𝑎𝑎2) 

Impact factor on the SE SE Correction factor 

A 0.13 0.90 1.11 
B 0.30 0.75 1.33 
C 0.70 0.53 1.89 

 

The result of these simulations is consistent with theoretical results relating to cluster sampling 
(see Lohr, 2010) 

Note: In the simulations, the estimators were found to be unbiased, a result consistent with 
properties of cluster sampling. 
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13.4. Impact of unintentional stratification on the RSE 
Unaccounted for stratification can impact the RSE when the strata are very different from each 
other.  To illustrate the impact of unintentional stratification we considered a simulation with 10 
strata such that the adjusted R-square (𝑅𝑅𝑎𝑎2) of the ANOVA of the variable on strata is 0.93, i.e. 

 
Figure 11. Box and whiskers plot of the values for simulated populations A, B and C, each of size N = 
1,000, grouped into 100 unintentional subpopulations. The subpopulations (i.e. the potential clusters) are 
ordered in such a way as to illustrate the differences among them. The adjusted R-squared coefficient is 
0.13, 0.30 and 0.70, respectively. 
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the strata are well separated (Figure 12).  In this example, the RSE estimated by the simple 
random sampling formula is 3.1 times the true RSE. 

 

 
Figure 12. Population well stratified relative to the parameter of interest (R_a^2=0.93). 

13.5. Impact of targeted sampling on the bias and the RSE 
The following table shows the impact of targeting on the bias and RSE.  The impact is largest 
when the targeted observations are at the extremes of the observations and smallest when they 
are around the mean of the observations.  The impact is largest when the proportion of the 
sample targeted is highest. 

This example is based on a population with a normal distribution.  Results would be different if 
the population had an asymmetric distribution.  For the RSE, the impact factors must be 
inversed to obtain the correction required: for example, if the impact factor is 0.80, the true RSE 
will be 1.25 times the computed RSE. 
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  Approximate location of the targets 
within the population (centile) 

  0th 10th 25th 50th 

  Impact on the bias (%) 

Pr
op

or
tio

n 
of

 th
e 

sa
m

pl
e 

ta
rg

et
ed

 (%
) 0 0 0 0 0 

5 -2 -1 -1 0 
10 -4 -2 -1 0 
20 -7 -5 -2 0 
30 -10 -7 -4 0 
40 -13 -9 -5 0 
50 -16 -12 -6 0 

 

  Approximate location of the targets 
within the population (centile) 

  0th 10th 25th 50th 

  Impact Factor on the RSE (%) 

Pr
op

or
tio

n 
of

 th
e 

sa
m

pl
e 

ta
rg

et
ed

 (%
) 0 1 1 1 1 

5 0.87 0.97 0.97 1 
10 0.80 0.91 0.96 1 
20 0.72 0.85 0.95 1 
30 0.64 0.8 0.98 1 
40 0.59 0.73 0.95 1 
50 0.55 0.70 0.92 1 

13.6. Impact of data errors on the estimation process 
In the following, we illustrate the impact of data errors on the bias and variability of the 
estimation process in the case of the estimation of a population mean. 

Definitions: 

𝑁𝑁: Number of units in the population 

𝑛𝑛: Number of units in the sample 

𝑥𝑥: True values 

𝜇𝜇𝑚𝑚: Population mean 

𝜎𝜎𝑚𝑚: Standard deviation of the population 

𝜀𝜀: Observation error 

𝜎𝜎𝜀𝜀: Standard deviation of the errors 

𝜇𝜇𝜀𝜀: Expected value of the errors 

𝑣𝑣: Observed values 

𝑣𝑣 =  𝑥𝑥 +  𝜀𝜀 

𝑠𝑠: Standard deviation of the observed sample 
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𝑌𝑌�: Mean of the observations in the sample 

𝑋𝑋�: Mean of the true values of observations in the sample 

𝜀𝜀:̅ Mean of the observation errors 

We assume that the data errors and the error due to the randomness of the sampling are 
independent. 

 

For the bias, we have: 

𝑅𝑅(𝑌𝑌�) = 𝑅𝑅(𝑋𝑋� + 𝜀𝜀)̅ = 𝑅𝑅(𝑋𝑋�) + 𝑅𝑅(𝜀𝜀)̅  

𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠(𝑌𝑌�) = 𝑅𝑅(𝑌𝑌�) − 𝜇𝜇𝑚𝑚 = 𝑅𝑅(𝑋𝑋�) − 𝜇𝜇𝑚𝑚 + 𝑅𝑅(𝜀𝜀)̅ = 𝑅𝑅(𝜀𝜀)̅  

given 𝑅𝑅(𝑋𝑋�) − 𝜇𝜇𝑚𝑚 = 0 since 𝑋𝑋� is an unbiased estimator of 𝜇𝜇𝑚𝑚. 

We conclude that biased errors contribute additively to the bias of the estimation process.  The 
contribution is independent of the sample and the population size. 

 

For the variability, we have: 

Given the assumption of independence, we can write the statistical standard deviation as: 

𝜎𝜎𝑌𝑌�
2 = 𝜎𝜎𝑋𝑋�+𝜀𝜀�

2 = 𝜎𝜎𝑋𝑋�
2 + 𝜎𝜎𝜀𝜀�2 = �1 −

𝑛𝑛
𝑁𝑁
�
𝜎𝜎𝑚𝑚2

𝑛𝑛
+
𝜎𝜎𝜀𝜀2

𝑛𝑛
 

Therefore 

𝜎𝜎𝑌𝑌�
2� = �1 −

𝑛𝑛
𝑁𝑁
�
𝑠𝑠𝑚𝑚2

𝑛𝑛
+
𝜎𝜎𝜀𝜀2�

𝑛𝑛
 

Given that 

𝑠𝑠𝑌𝑌�
2 = �1 −

𝑛𝑛
𝑁𝑁
�
𝑠𝑠2

𝑛𝑛
=
𝑠𝑠𝑚𝑚2 + 𝑠𝑠𝜀𝜀2

𝑛𝑛
−
𝑠𝑠𝑚𝑚2 + 𝑠𝑠𝜀𝜀2

𝑁𝑁
= �1 −

𝑛𝑛
𝑁𝑁
�
𝑠𝑠𝑚𝑚2

𝑛𝑛
+
𝑠𝑠𝜀𝜀2

𝑛𝑛
−
𝑠𝑠𝜀𝜀2

𝑁𝑁
  

We obtain 

𝜎𝜎𝑌𝑌�
2� = �1 −

𝑛𝑛
𝑁𝑁
�
𝑠𝑠𝑚𝑚2

𝑛𝑛
+
𝜎𝜎𝜀𝜀2�

𝑛𝑛
=  𝑠𝑠𝑌𝑌�

2 +
𝜎𝜎𝜀𝜀2�

𝑁𝑁
 

We conclude that the contribution of the variability of the errors to the variability of the 
estimation process is partially accounted for in the statistical standard deviation as shown by the 
term 𝜎𝜎𝜀𝜀2� 𝑛𝑛⁄  in the equation for 𝜎𝜎𝑌𝑌�

2�.  This part of the contribution will be negligible if the sample 
size, 𝑛𝑛, is large. 

The part not accounted-for is the term 𝜎𝜎𝜀𝜀2� 𝑁𝑁⁄ .  For a census, 𝑛𝑛 = 𝑁𝑁 and 𝑠𝑠𝑌𝑌�
2 = 0. Therefore, 𝜎𝜎𝑌𝑌�

2� =
𝜎𝜎𝜀𝜀2� 𝑁𝑁⁄ .  This part of the contribution will be negligible if the population size, 𝑁𝑁, is large.  

The accounted for contribution is dependent on the sample size.  The unaccounted-for 
contribution is dependant on the population size. 

In the assessment, when necessary, 𝜎𝜎𝜀𝜀2 must be assessed from studies of the specific errors 
anticipated.  For example, visual estimation of catch weight can be compared to scale 
measurements in a quality control exercise. 
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14. ANNEX II - GLOSSARY 
Accuracy refers to the absence of a systematic error, i.e. an error which has either a positive or 
a negative expected value.  Accuracy is the converse of bias. 

Anticipated (cf expected): We reserve the word “expected” for statistical application as in 
“expected value”.  We use “anticipated” to refer to the act of foreseeing or predicting a value or 
an event. 

Bias (operational): A systematic difference between the expected value of an estimator and the 
true value of the parameter estimated due to operational characteristics of the protocol.  
Applicable to random samples and to censuses.   

Bias (statistical): The difference between the expected value of an estimator and the true value 
of the parameter estimated due to mathematical properties of the estimator.  Bias is a signed 
value: a negative bias corresponds to underestimation, a positive bias to overestimation.  
Applicable only to random samples.   

Bootstrap: When an estimate is obtained from a random sample, the probability distribution of 
the estimate often cannot be obtained from mathematical theorems.  In most cases, the 
probability distribution of the estimate can be obtained, at least approximately, through a 
computer intensive method called the “bootstrap” in which the data are resampled as if their 
ensemble constituted the population.  Once the probability distribution of an estimate is 
obtained, one can obtain its standard error and its bias. 

Census: A survey where the complete population is targeted for observation. 

Central Limit Theorem: When an estimate is obtained from a random sample, the probability 
distribution of an estimator can sometimes be obtained from mathematical theorems.  In the 
simplest case, the mean of a simple random sample is used to estimate the population mean: in 
this case, the central limit theorem states that the probability distribution of the sample mean is 
a normal (also called Gaussian) distribution, at least if the sample size is large.  It has been 
proven mathematically that the probability distribution of many other estimates is a normal 
distribution.  Once the probability distribution of an estimator is obtained, one can compute its 
standard error and its bias. 

Coverage: In sampling, the subset of the population that is included in the sample selection 
process.  In a census, the subset of the population for which an observation is made or 
measurement taken.  Fishery management EXAMPLE: Random samples or censuses of sport 
fishers may include only licensed fishers, excluding non-licensed fishers. 

Dependability:  Term used here to express the quality of an estimation process as a tool to fulfill 
fisheries management’s objectives.   Quality of the estimators is an important determinant of 
dependability. 

Error (operational): Anticipated difference between an estimate and the value estimated in either 
a positive or a negative direction.  EXAMPLE: Error due to mislabeling of a catch. 

Error (statistical): Expected difference between an estimate and the value estimated in either a 
positive or a negative direction due to the randomness of a sampling protocol, most often 
described by the standard error.  Applies only to random sampling. 

Estimate: A quantity derived from a sample or a census used as an approximation of the 
parameter.  Fishery management EXAMPLE: Using the product [CPUE (from sampling)] times 
[effort (from log books)] to estimate total catch.  Typical notation: 𝜃𝜃�  for the parameter 𝜃𝜃.   

Estimation: Process of obtaining an estimate. 
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Estimator: A method to obtain an estimate from a sample based on data from a sampling 
protocol or a census.  EXAMPLES: The sample mean of a sample obtained by simple random 
sampling is an estimator of the population mean.  A 5%-truncated mean (whereby the smallest 
and largest 5% of the observations are removed before computing the mean) is also an 
estimator of the population mean. 

Expected (cf anticipated): Used here in the statistical sense as in “expected value”.   

Frame: In a census, list of all units to be observed.  In a sample survey, the list of all units from 
which the sample will be drawn (sampling frame).  In this document, we use the term “frame” to 
mean the available list of units of the target population.  The frame may or may not coincide with 
the list of all units in the population.  This is the simplest case of “frame”.  The document points 
out situations where a more general definition of “frame” is required.  Ideally, the frame and the 
target population would be identical.  The frame may be created before the survey (e.g. the 
holders of a recreational fishery license for the current season) or during the survey (e.g. the 
herring gillnet fishing trip in Herring Fishing Area 5.) 

Imputation: A process by which a missing value is replaced by a value assumed to be close to 
the missing value.  There are several statistical methods to carry out imputation.  Fisheries 
EXAMPLE: Using CPUE from neighboring rivers to estimate catch from effort for a river for 
which CPUE values are not available. 

Independent observer data: Measurements collected by a person or a technology specifically 
tasked with observing and reporting on fishery activities and at arm’s length from the fishing 
industry or community, such as at-sea and dockside observers and on-board cameras and 
vessel monitoring systems. 

Parameter: The quantity to be estimated.  Fishery management examples: total catch of a target 
species, proportion of white crab in the catch, Lingcod catch per unit of effort.  Typical notation: 
θ. 

Parameter estimation process or estimation process: A complete process starting with the 
selection of units to be observed, the observations, the data entry, various computations, etc., 
and ending with the computation of the estimate. 

Post-processing: Adjustments to data to compensate for variation in collection.  Examples: 
gutted vs not-gutted catch weight; pound to kilogram conversion. 

Precision refers to the repeatability/reproducibility of a measurement, i.e. an error which has an 
expected value of zero.  Precision is the converse of variability or, in statistics, standard error 
and variance. 

Quality: The measure of how close an estimate is to the true value: it summarizes accuracy and 
precision. 

Resource user data:  Measurements made and/or reported by the fishing industry or 
community, including fishers, plant personnel and buyers.  Logbook records, purchase slips and 
answers to recreational fisher surveys are examples of resource user data. 

Sample survey: A survey where only a sample from a population is observed.  Opposed to 
census, where information is gathered from all individuals from a population. 

Sampling protocol: The process used to obtain a sample.  Fishery management example: The 
procedure used to decide when an at-sea observer should be deployed and which 
characteristics of the fishing trip they are meant to monitor and record. 
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Sampling variation (of an estimator):  The variation of an estimator due to randomness of a 
sampling protocol. 

Standard error (of an estimator):  The most popular description of the variation of an estimator 
due to randomness of a sampling protocol.  Typical notation: SE, 𝜎𝜎𝜃𝜃� . 

Standard error (SE): The standard of an estimator is a measure of the error due only to the 
randomness of the sampling protocol. 

Target population: The set of all individual units that should be observed (census) or sampled 
(sample survey).  Ideally, the frame and the target population would be identical. If they are not 
identical then there is either undercoverage (frame is smaller than the target population) or 
overcoverage (frame is larger than the target population).  Examples: All fishing trips of a given 
fishery, all Atlantic salmon recreational fishers. 

Variance (of an estimator):  The square of the standard error.  Statisticians prefer computing 
with the variance because some formulae become simpler and because “analysis of variance” 
allows a partitioning of the variance by source (but not of the standard error). 
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