Fisheries and Oceans Canada

Canadian Science Advisory Secretariat (CSAS)

Research Document 2018/057

Quebec region

Assessment of northern shrimp stocks in the Estuary and Gulf of St. Lawrence in 2017: data from the research survey

Hugo Bourdages, Marie-Claude Marquis, Claude Nozères and Jordan Ouellette-Plante

Fisheries and Oceans Canada
Maurice Lamontagne Institut 850 route de la Mer Mont-Joli, Québec

G5H 3Z4

Foreword

This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Published by:
Fisheries and Oceans Canada
Canadian Science Advisory Secretariat
200 Kent Street
Ottawa ON K1A 0E6
http://www.dfo-mpo.gc.ca/csas-sccs/
csas-sccs@dfo-mpo.gc.ca

© Her Majesty the Queen in Right of Canada, 2018
ISSN 1919-5044

Correct citation for this publication:

Bourdages, H., Marquis, M.C., Nozères, C. and Ouellette-Plante, J. 2018. Assessment of northern shrimp stocks in the Estuary and Gulf of St. Lawrence in 2017: data from the research survey. DFO Can. Sci. Advis. Sec. Res. Doc. 2018/057. iv + 67 p.

Aussi disponible en français :

Bourdages, H., Marquis, M.C., Nozères, C. et Ouellette-Plante, J. 2018. Évaluation des stocks de crevette nordique de l'estuaire et du golfe du Saint-Laurent en 2017 : données du relevé de recherche. Secr. can. de consult. sci. du MPO. Doc. de rech. 2018/057. iv + 68 p.

TABLE OF CONTENTS

ABSTRACT IV
INTRODUCTION 1
BIOLOGY 1
LIFE CYCLE 1
METHOD 2
DESCRIPTION OF THE SURVEY 2
PROCESSING OF SHRIMP CATCHES 2
DISTRIBUTION 2
Geographic distribution of catches 2
Distribution of catches by depth and temperature 2
Area of occupancy 3
BIOMASS ESTIMATION BY GEOSTATISTICS 3
ABUNDANCE ESTIMATION 4
PREDATOR DIETS 5
RESULTS 6
SPATIAL DISTRIBUTION 6
ABUNDANCE INDEX 6
ECOSYSTEM 7
PREDATOR DIETS 7
CONCLUSION 8
ACKNOWLEDGEMENTS 9
REFERENCES 9
TABLES 11
FIGURES 26
APPENDIX 64

Abstract

The Estuary and Gulf of St. Lawrence northern shrimp (Pandalus borealis) stock status is determined every year by examining a main indicator from the commercial fishery and the research survey. This document presents the data and methods that were used to produce the 2017 survey indicators. The estimates of northern shrimp biomass and abundance are presented for each of the four fishing areas and for each sex. In addition, this document describes how some of the environmental and ecosystem characteristics of the Gulf of St. Lawrence potentially impact the northern shrimp stock dynamic through their effects on such factors as spatial distribution, growth, reproduction and trophic relationships.

INTRODUCTION

Every year since 1990, a trawl research survey is conducted in the Estuary and northern Gulf of St. Lawrence from a Department of Fisheries and Oceans (DFO) vessel to assess the abundance of several species, including shrimp. This multidisciplinary survey aims to describe the biodiversity of Gulf species and the physical and biological oceanographic conditions.

It is the main source of fishery-independent data for the stock assessment of northern shrimp (Pandalus borealis) in the Estuary and Gulf of St. Lawrence. It also describes northern shrimp distribution, estimates its stock abundance and biomass, and reveals its population dynamics. The survey is deemed to effectively cover the entire distribution range of P. borealis in the Estuary and northern Gulf of St. Lawrence. Northern shrimp is typically confined to bottoms lying below the cold intermediate water layer at depths greater than 150 m .

The stock status is evaluated by examining a number of indicators from the commercial fishery and the DFO research survey for each of the 4 shrimp fishing areas (SFAs): the Estuary (SFA 12), Sept-Iles (SFA 10), Anticosti (SFA 9) and Esquiman (SFA 8) (Figure 1). This document updates the data and methods that are used to produce the survey indicators and that are described in Bourdages and Marquis (2014). The estimates of male and female shrimp abundance are used as such: to calculate the main indicator of stock status; and, to project harvests based on the precautionary approach guidelines (Savard, 2012). What's more, this document describes how some of the environment and ecosystem characteristics of the Gulf of St. Lawrence potentially impact the northern shrimp stock dynamic through such factors as spatial distribution, growth, reproduction and trophic relationships.

BIOLOGY

Out of the 27 shrimp species listed in the Estuary and northern Gulf of St. Lawrence, the northern shrimp is by far the most abundant (Savard and Nozères 2012).

LIFE CYCLE

The northern shrimp, Pandalus borealis, is a protandrous hermaphrodite species. In other words, individuals first reach sexual maturity as males, then change sex and become females (Figure 2). This feature of the life cycle is very important for the development of harvest strategies since larger individuals targeted by the fishery are almost exclusively female.
In the Estuary and Gulf of St. Lawrence, shrimp larvae hatch in the spring, in April or May and remain pelagic for several months. At the end of the summer, larvae increasingly resemble adults and adopt suprabenthic (bottom-based) behaviour. These postlarvae and juveniles are too small to be caught by commercial fishing trawls. Juveniles reach male sexual maturity during their second year. Spawning occurs in the fall and males may spawn 2 or 3 years prior to changing sex, which occurs in winter at age 4 or 5 , at around 21 mm carapace length. Newly transformed females are easily recognized in spring and summer commercial catches as they have retained some male sexual traits. These females are called primiparous females and spawn the very next fall (September or October) after the sex change. Females carry their fertilized eggs under their abdomen during the incubation period which lasts about 8 months. The larvae hatch the following spring. Spawning females that survive reproduction are recognizable to those who have never spawned and are called multiparous females. In fact, primiparous and multiparous females can be distinguished by morphological characteristics (sternal spines) that disappear in the prenuptial moult. Females can spawn at least twice and the estimated longevity of Estuary and Gulf shrimp is about 7 years.

METHOD

DESCRIPTION OF THE SURVEY

A multidisciplinary research survey has been conducted annually in the Estuary and the northern Gulf of St. Lawrence since 1990 to estimate the abundance of northern shrimp and groundfish species. The survey is conducted with a shrimp trawl following a stratified random sampling plan. Fishing operations take place 24 hours a day. A description of the 2017 survey and sampling protocols is presented in Bourdages et al. (2018).

The stratification used for the allocation of fishing stations is presented in figure 3. In the Gulf, the grounds located at depths greater than 37 m (20 fathoms) are covered by the survey. In the Estuary, the survey covered the grounds at depths greater than 183 m (100 fathoms) from 1990 to 2007. In 2008, it was decided to add strata to cover depths from 37 to 183 m in this sector to obtain a better coverage of the northern shrimp spatial distribution. The surface of the study area has increased from $116,115 \mathrm{~km}^{2}$ to $118,391 \mathrm{~km}^{2}$.

In 2017, 170 fishing stations were successful, 47 in $4 R, 83$ in 4 S and 40 in 4T (Figure 4). Coverage of the study area was very good; only two strata were not covered with a minimum of two stations. On average, 187 fishing stations are sampled per year (Table 1).

PROCESSING OF SHRIMP CATCHES

For each fishing tow, the trawl catch is sorted by species or by taxon. The total catch of shrimp is weighted and a sample of about 2 kg is collected to determine the proportion of Pandalus borealis compared to other shrimp species and its biological characteristics as well. The maturity stage (male, primiparous or mutiparous female with or without gonads in maturation and egg bearing female) is identified for each individual. The cephalothorax length is measured with an electronic calliper with a precision of 0.1 mm . The individual weight is recorded with a precision of 0.1 g following a stratified sampling design (about ten individuals per sex per 1 mm length class) for each fishing area.
The area swept by the trawl is estimated from the duration of the tow, the speed of the vessel and the wingspread of the trawl. The P. borealis catch for each tow is estimated from its proportion in the sample and is standardized to an area of $1 \mathrm{~km}^{2}$ taking into account the swept surface (Table 2 and Figure 5).

DISTRIBUTION

Geographic distribution of catches

The geographical distribution of catches by weight per tow ($\mathrm{kg} / 15$ minutes tow) was made for periods of four or five years. The interpolation of catches was performed on a grid covering the study area using a ponderation inversely proportional to the distance (R version 2.13.0, Rgeos library; R Development Core Team 2011). The isoline contours were then plotted for four biomass levels which approximate the $20^{\text {th }}, 40^{\text {th }}, 60^{\text {th }}$ and $80^{\text {th }}$ percentiles of the non-zero values. The catch rates distribution of males and females for 2014 to is also presented in a bubbles type map.

Distribution of catches by depth and temperature

The relative cumulative frequency of catches (in weight) was compiled according to depth and temperature, all years combined. This relationship was depicted in graph form, in combination with the relative cumulative frequency of the number of stations sampled by depth in the study
area. This figure illustrates the depth windows in which the shrimp is likely to be caught in August in the study area. The $5^{\text {th }}, 25^{\text {th }}, 50^{\text {th }}, 75^{\text {th }}$, and $95^{\text {th }}$ percentiles of this distribution are also presented in an adjacent table.

The distributions of biomass in terms of depth and temperature are presented by year and fishing area for males and females with a box-plot.

Area of occupancy

Three spatial indices were selected: the design-weighted area of occupancy, the D95 and the Gini index.

Design-weighted area of occupancy
The design-weighted area of occupancy (DWAO) (Smedbol et al. 2002) is the area of the study zone in which the shrimp is found.

D95

The D95 index describes geographic concentration. This descriptor corresponds to the minimum area containing 95% of the shrimp biomass. Calculation details are described in Swain and Sinclair (1994).

Gini index

The Gini index quantifies the homogeneity of shrimp distribution. This index is calculated using the Lorenz curve (Myers and Cadigan 1995). The index goes from 0 to 1 , where 0 corresponds to a perfectly homogenous distribution and 1 corresponds to a very concentrated distribution.

BIOMASS ESTIMATION BY GEOSTATISTICS

The biomass (kg/km²) calculated at all stations of the study area is kriged separately for males and females. First, the positions of sampling stations, expressed in latitude and longitude, are transformed into a Cartesian coordinate system according to the Lambert Conformal Conic projection using parallels $48^{\circ} \mathrm{N}$ and $50^{\circ} \mathrm{N}$ as a reference and $46.5^{\circ} \mathrm{N}$ and $70^{\circ} \mathrm{O}$ as point of origin. This conversion is carried out using libraries "sp" and "rgdal" (2013a Pebesma, Bivand 2013) of $R(R$ Development Core Team 2011).

As a first step, a variogram is calculated for each survey. To highlight the spatial structure of the data, it is sometimes necessary to remove outliers. The values of cuts are shown in the table below. Likewise, values lower than $5 \mathrm{~kg} / \mathrm{km}^{2}$ are not used for estimating the variogram. From 1990 to 2012, annual variograms were estimated with the procedure "VARIO" of SAS software (SAS 1996). From 2013, the variograms were performed with the library "gstat" of R (Pebesma 2013b). The semivariances were calculated between all pairs of stations. The distance (h) between them was discrete and semivariances were averaged for different distance classes with intervals of 15 km and a maximum distance of 225 km .

Catches ($\mathrm{kg} / \mathrm{km}^{2}$) above which the data were removed from the variogram estimation.

	2015	2016	2017
Male	4,000	2,500	8,000
Female	4,000	3,000	5,000
Total	8,000	5,000	-

In a second step, the annual variogram is standardized, that is to say that semivariances are divided by the observed variance of the data used to construct the variogram. Subsequently, a pluriannual variogram is constructed from the average of the last three variograms, that of the
current year and the two preceding years. The pluriannual variogram corresponds to the mean of the semivariances for each distance h of the annual variograms, weighted by the number of pairs associated with these distances. The use of a pluriannual variogram reduces the variability of the spatial structure which is observed in some years, allowing a better fit of the model.

From 1990 to 2012, the parameters of pluriannual variograms (nugget, sill and range) were fitted manually to obtain the best possible adjustment (Table 3). Although other variogram models were examined but the exponential model was selected because it produced the best fit. Since 2013, the parameters of the exponential variogram were fitted with the function "fit.variogram" from the library "gstat" of R (Pebesma 2013a). To minimize the least squares, the adjustment was performed by weighting the data by N_{j} / h_{j}^{2} order to give more weight to the adjustment of the first points of the variogram (Figure 6).
Thereafter, the values of catches were spatially interpolated in the study area using kriging. To do this, all survey observations were used including low and extreme values. The pluriannual variogram was adjusted to represent the variance of the observations of the study area. The nugget $\left(\mathrm{C}_{0}\right)$ and sill parameters (C) were multiplied by the variance of all observations in the study area. The interpolation was performed on a regular grid with nodes separated by distances of 5 km in both directions (Figure 7). The local estimations were made using the catches of the eight nearest stations that are present within a maximum search radius of 200 km.

From 1990 to 2012, the kriging, the estimates of the mean and variance estimation were performed using the toolbox "Kriging" of MATLAB (Lafleur and Gratton 1998). Since 2013, the kriging was performed with the function "krige" of the library "gstat" of R (Pebesma 2013a) and the estimates of the kriging mean and variance estimation were calculated using a function developed by Sébastien Durand (DFO, Mont-Joli, pers. comm.).

The mean biomass $\left(\mathrm{kg} / \mathrm{km}^{2}\right)$ of each fishing area is then calculated by doing the mean of the local estimations in the area. The total biomass of a given fishing area is obtained by multiplying the mean biomass by the surface of the area. The surfaces of the fishing areas are as followed: Estuary, $4,000 \mathrm{~km}^{2}$ from 1990 to 2007 and $6,325 \mathrm{~km}^{2}$ from 2008 to 2017; Sept-lles, 29,775 km² from 1990 to 2007 and 29,975 km^{2} from 2008 to 2017; Anticosti, $46,400 \mathrm{~km}^{2}$; Esquiman, 32,350 km^{2}.

ABUNDANCE ESTIMATION

Biomasses estimated by kriging are converted into abundance from the weight-length relationships and from the length frequency distributions. Length frequencies of each sample are first bumped to the total catch of the station and then, standardized to a $1 \mathrm{~km}^{2}$ swept area. The frequencies ($\mathrm{n} / \mathrm{km}^{2}$) are regrouped into 0.5 mm size class.
The mean distribution of frequencies (in $\mathrm{n} / \mathrm{km}^{2}$) per size class is estimated for each fishing area, for males and females. The mean distribution is estimated from all stations that were sampled in the fishing area. The mean distribution is then converted into weight by applying a weight-length relationship that is estimated for each area (Table 4, Figure 8). The weight-length relationship estimated in 1993 is used for the 1990-2004 period. Since 2005, the relationship estimated annually is used for the current year. The same relationship is used for both sexes.
The stock biomass estimated by kriging is distributed among the size classes following the proportions in weight of the mean distribution of the stock. The abundance of each size class is obtained by dividing the biomass by the mean weight of the class. The total stock abundance is then obtained by adding the abundance of all size classes. The exercise is done separately for males and females. Given that the numbers are not kriged, it is not possible to obtain an
estimate of the variance of the abundance by kriging. Therefore, the coefficient of variation of the biomass is used to estimate the 95% confidence interval of the abundance.
The female abundance could be separated into maturity stages for the years when the identification of the stage was done for each individual. The abundance of primiparous and multiparous females was calculated from 1990 to 2000 and then from 2009 to 2017.
It is possible to obtain an index of recruitment by estimating the abundance of juveniles for which the cephalothorax length is smaller than 12.5 mm . The individuals of these sizes are aged of about fifteen months (Daoud et al. 2010). The estimation of abundance of the juveniles is obtained by adding the abundance of the size classes that are included in the first mode.

PREDATOR DIETS

Depending on the year, allocated resources and research objectives, the stomachs of redfish and Greenland halibut were collected during various missions aboard DFO vessels. Each time, the stomachs were brought back to the laboratory and dissected according to a protocol. In summary, each prey detected in a stomach was identified to the highest taxonomic level possible and its mass, recorded based on its state of digestion. Given dissection protocols, which have greatly evolved since the early 1990s, and procedures for validating and importing new data, data first had to be standardized. Subsequently, prey considered overly digested (e.g., digested fish, shellfish, etc.) was eliminated from the analysis: only prey allowing a better interpretation of predator diets was kept. Although this decision did not affect the number of stomachs selected, it changed some stomachs' empty or non-empty status. For example, a stomach filled only with digested fish was considered empty since its content precluded any inference as to the specific diet of redfish. A similar approach was taken to eliminate prey that was waste (e.g., rocks, sand, liquid) or parasites. Stomachs that were unexamined, evaginated, lacking a length value or collected in months other than August and September were eliminated from the analysis.
The remaining prey were subsequently classified according to their level of importance with regard to mass percentage and the partial fullness index (PFI) that they represented in predator diets. It is vital to use PFI as a standardization variable when classifying prey groups: doing so reduces the effect of predator length and better represents important prey rather than simply prey mass. As a result, the prey of small redfish are not underrepresented as compared with large redfish prey, which could be larger in relation to their predator's capacity. Following the creation of these different taxonomic groups, various redfish diets were compared.
Data on the redfish diet were then attributed either to an area where northern shrimp is actively fished, or to the rest of the Estuary and northern Gulf of St. Lawrence (eNGSL). Areas where shrimp is commercially fished were defined using the Vessel Monitoring System (VMS). This allowed for a spatial comparison of the redfish diet.
These various comparisons also helped quantify northern shrimp proportions (P) in different situations (e.g., redfish length class, spatial and temporal distributions, etc.). These proportions were used with estimated redfish biomasses (B) to provide an annual northern shrimp consumption estimate (Q) for redfish. Consumption was calculated with the following equation:

$$
Q=B * P * \frac{Q}{B}
$$

where the ratio Q / B is a theoretical value. The ratio values Q / B stem from ecosystem models for the northern Gulf of St. Lawrence at different periods (Savenkoff et al. 2004, Savenkoff and Rioual (DFO, unpublished data)). Redfish biomass estimates were based on the results of groundfish and shrimp multidisciplinary surveys conducted annually in August. Finally,
consumption estimates were divided according to the various length classes for redfish and grouped under the periods 1995 to 1997 and 2015 to 2017, by using all the stomachs collected during both periods, respectively.

RESULTS

SPATIAL DISTRIBUTION

The survey is deemed to effectively cover the entire distribution range of northern shrimp in the Estuary and northern Gulf of St. Lawrence. The spatial distribution of northern shrimp shows that the best catch rates were observed along the Esquiman, Anticosti, and Laurentian channels, as well as west of Anticosti Island through the Estuary (Figure 9). Typically, young shrimp are found in shallower areas, often at the heads of channels, whereas older individuals, females, are found in deeper waters (Figure 10). Northern shrimp occurs only rarely in the southern Gulf.

In 2017, northern shrimp was distributed over more than $98000 \mathrm{~km}^{2}$ in the Estuary and northern Gulf of St. Lawrence: the study area was $116115 \mathrm{~km}^{2}$ (Figure 11). While there was a slight uptrend in the area of occupancy, there was a decrease in the highest shrimp concentration areas, where more than 95% of the biomass is distributed. Since 2000, the minimum area went from $54,000 \mathrm{~km}^{2}$ to $33,000 \mathrm{~km}^{2}$.

The research survey data shows that more than 80% of the cumulative northern shrimp biomass is found at depths between 193 and 331 m (Figure 12) with a bottom temperature from 3.7 to $5.8^{\circ} \mathrm{C}$ (Figure 13). The median depth of northern shrimp distribution is 259 m and the median temperature is $5.3^{\circ} \mathrm{C}$. Generally, the northern shrimp is associated with deep water mass and found mainly in channels at depths of 200 to 300 m , where sediment is fine and consolidated.

Galbraith et al. (2017) have observed that since the beginning of the 1990s, there has been an uptrend in the Gulf's deep water temperatures at 150, 200 and 300 m . These intrusions of warm waters from the Atlantic Ocean calmly flow upstream in the deep channels of the Gulf of St. Lawrence from Cabot Strait. In 2017, male and female shrimp were found in temperatures that were $1^{\circ} \mathrm{C}$ warmer as compared with the historical average (Figure 14). The most notable temperature changes in bottom water where shrimp occurs was observed 5 years ago in Esquiman and Anticosti, and 3 years ago in Sept-lles and the Estuary. Despite this water temperature increase in shrimp habitat, no depth-related shrimp movement was observed (Figure 15).

ABUNDANCE INDEX

The variations in shrimp sizes follow an east-west gradient, the smallest being observed in the Esquiman Channel and the largest, in the Estuary. The average size of male shrimp in 2017 was comparable to the historical average for the 4 fishing areas whereas the size of females decreased below the average in the Estuary, Sept-lles and Anticosti. It remained stable and comparable to the average in Esquiman) (Figure 16). The survey has collected individual weight data since 2006. Shrimp weight estimates for males of 14 and 20 mm and females of 22 and 26 mm seem to increase over the years (Figure 17). Shrimp are heavier than average since 2010 in Esquiman and Anticosti, since 2012 in Sept-lles, and since 2015 in the Estuary, based on a gradient that began earlier in the east.

The mean biomass and the variance estimation are presented for males and females and, for each fishing area, in tables 5 and 6 . In general, the coefficient of variation is about 20 to 25% for
males and 10 to 20\% for females for the fishing areas Sept-lles, Anticosti and Esquiman (Table 7). The coefficient of variation id higher in the Estuary area.

The total biomass distribution is presented by year (Figure 18) for males and females (figures 19 and 20). The total biomass estimate for each fishing area is shown in Figure 21, and for males and females, in Table 8 and Figure 22. The DFO survey biomass index indicates a downtrend for several years in all areas. The biomasses observed in 2017 are close to the values of the early 1990s.

Abundance indices for males and females have shown a downtrend for more than 10 years in the 4 fishing areas (Table 9 and Figure 23). Since 2015, this decline has been very marked in the Estuary and Sept-Iles, where decreases of more than 55% have been observed in 2 years. The Estuary and Sept-Îles indices are close to the values observed in the early 1990s. In Anticosti, the abundances of recent years show a slight downtrend, although the abundances since 2011 are lower than the values observed in the early 2000s. There has been a 25% decline since 2015. The downtrend in Esquiman has continued since 2003 and the decrease in the last 2 years was 29% for males and 8% for females.

The demographic structures by area obtained in 2017 from the DFO survey show that male and female abundances are decreasing and are below the series average (1990 to 2016) (Figures 24 and 25). In addition, juvenile abundance (carapace length between 8 and 12 mm) was low in 2016 and 2017 (Table 10).

The allocation of additional stations in the shallow area of the St. Lawrence Estuary since 2008 has had a very significant impact on the number of males and females surveyed in the Estuary fishing area and to a lesser extent in the Sept-Îles area. After 8 surveys with this increased coverage, the inter-annual coherence between the shrimp abundance measured according to the original area and the extended survey area indicates that the biomass was largely underestimated and the exploitation rate index significantly overestimated for the Estuary area. In the short term, shallow strata should be integrated into estimates of the main indicator of stock status.

ECOSYSTEM

The ecosystem dominated by groundfish in the early 1990s has progressed to an ecosystem dominated by forage species. Shrimp population increased following the period during which the population of large groundfish species declined. There is a current increase in the abundance of redfish, Atlantic halibut and cod in the northern Gulf, whereas a recent decrease of Greenland halibut has been observed (Figure 26). Trophic changes may be observed in the coming years because shrimp is a part of numerous species' diets.

PREDATOR DIETS

Of the 5,563 redfish stomachs available in the database, 4,640 were selected for analysis. Approximately 60 scarcely-digested or undigested prey were identified and classified into 13 taxonomic groups. The proportion of empty stomachs was higher in the 1990s data than in the 2015 to 2017 data, but still significant for both compared periods (Figure 27). Large redfish ($>35 \mathrm{~cm}$) had a higher fullness index from 2015 to 2017 than in the 1990s. The invertebrate/fish proportion is comparable for both periods.
The arrival of fish as prey is observed when redfish reaches approximately 25 cm in length, redfish and capelin being the main species (Figure 28). Prior to this size, virtually all of the identified prey is zooplankton. Northern shrimp and white shrimp are prey found in the entire length range of redfish whose stomachs were collected.

A global analysis (i.e., including all digestion stages and length classes) of the contents of stomachs collected during the multidisciplinary surveys conducted each August from 2015 to 2017, shows that northern shrimp is present in 5.05% of the stomachs of Greenland halibut compared with 2.59% for redfish. The mass contributed by northern shrimp in the stomachs of Greenland halibut $\geq 20 \mathrm{~cm}$ and $<20 \mathrm{~cm}$ was 11.46% and 0.08% respectively; it was 13.51% and 2.18% for these same length ranges among redfish (Appendix 1).

Boundary surveys of the 6 areas of commercially-fished northern shrimp (Figure 29) made it possible to attribute the redfish stomachs collected from 1993 to 2017 (Figure 30) either to one of these 6 areas or to the rest of the eNGSL. Hence, northern shrimp represents more than 50\% of the stomach content mass of redfish from the fishing areas and measuring 25 to 35 cm ; in the rest of the eNGSL, this value is less than 25%, regardless of the period. In the rest of the eNGSL, northern shrimp is the prey of fewer redfish length classes and represents lower percentages of stomach content mass from 2015 to 2017 compared with the 1990s. White shrimp, which was not very important to the redfish diet during the 1990s, is now confirmed in almost all of the length classes of redfish captured from 2015 to 2017. In addition, it is still more important in the diet of redfish in fishing areas than in the rest of the eNGSL. What's more, from 2015 to 2017, capelin disappeared from the diet of redfish >30 cm and, in recent years, redfish has appeared as prey for capelin outside of the shrimp fishing areas (Figure 31).

Dividing the 2015 to 2017 stomach contents by area where northern shrimp is commercially fished and by redfish size class (Figure 32) shows that the 25 to 35 cm length range has a greater proportion of northern shrimp in most of the areas of commercially-fished shrimp. This is not observed in the rest of the eNGSL. This interpretation must remain cautious, however, given the low number of stomach contents by area and length class.

Based on the very high redfish biomasses observed in recent years (Figure 33), the estimated consumption values for northern shrimp are beginning to increase strongly as juveniles lengthen (Figure 34). Indeed, based on the calculated values for biomass and the proportion of northern shrimp in redfish's annual consumption, it has been estimated that about 28000 t of shrimp were consumed annually from 1995 to 1997 compared with 86000 t from 2015 to 2017-which is 3 times more. A review of the last few years reveals that this consumption doubled each year between 2015 and 2017: this seems to reflect the lengthening of strong redfish cohorts and the increased use of northern shrimp as important prey.
Abundance and biomass estimates of redfish in areas where northern shrimp is commercially fished show an increased presence of redfish in the DFO multidisciplinary survey since 2013 (figures 35 and 36). Anticosti, Esquiman and Sept-lles are the areas where abundance seems to be highest. However, the estimated biomass for the Sept-Iles area is lower, but could increase in the coming years as the redfish stock grows. This suggests that this area will see a much higher shrimp consumption in the future than at present (Figure 37).

CONCLUSION

Northern shrimp is typically widespread in the Estuary and northern Gulf of St. Lawrence at depths of 150 to 350 metres. Since the beginning of the 2000s, however, the distribution range with the highest shrimp abundances has been shrinking.

The DFO survey biomass index indicates a downtrend for several years in all areas. The biomasses observed in 2017 are close to the values of the early 1990s.

The demographic structures by area obtained in 2017 from the DFO survey show that male and female abundances are decreasing and are below the series average (1990 to 2016). In addition, juvenile abundance was low in 2016 and 2017.

Changes in environmental and ecosystem conditions were observed in the Gulf of St. Lawrence. The bottom temperature of channels and redfish abundance are increasing. The water temperature in shrimp habitat has risen by $1^{\circ} \mathrm{C}$ in recent years. Predation by redfish on northern shrimp has increased significantly over the last 3 years and may contribute to the decreased abundance of this shrimp species. These changes may have an impact on the northern Shrimp population dynamic through their effects on such factors as spatial distribution, growth, reproduction and trophic relationships.

ACKNOWLEDGEMENTS

Sincere thanks to the numerous biologists and technicians who have collected the survey data. As well as Claude Brassard and Jean-Martin Chamberland for reviewing this document.

REFERENCES

Bivand, R. 2013. Rgdal: Bindings for the Geospatial Data Abstraction Library. R package version 0.8-14. 48 p. [consulted on December 2, 2013].

Bourdages, H., and Marquis, M.-C. 2014. Assessment of northern shrimp stocks in the Estuary and Gulf of St. Lawrence in 2013: data from the research survey. DFO Can. Sci. Advis. Sec. Res. Doc. 2014/050. iv + 39 p.

Bourdages, H., Brassard, C., Desgagnés, M., Galbraith, P., Gauthier, J., Nozères, C., Senay, C., Scallon-Chouinard, P.-M. and Smith, A. 2018. Preliminary results from the groundfish and shrimp multidisciplinary survey in August 2017 in the Estuary and northern Gulf of St. Lawrence. DFO Can. Sci. Advis. Sec. Res. Doc. 2018/036. iv + 90 p.

Daoud, D., Lambert, Y., Chabot, D., and Audet, C. 2010. Size and temperature-dependent variations in intermolt duration and size increment at molt of northern shrimp, Pandalus borealis. Mar. Biol. 157:2655-2666

Galbraith, P.S., Chassé, J., Caverhill, C., Nicot, P., Gilbert, D., Pettigrew, B., Lefaivre, D., Brickman, D., Devine, L., and Lafleur, C. 2017. Physical Oceanographic Conditions in the Gulf of St. Lawrence in 2016. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/044. v+91 p.
Lafleur, C., et Gratton, Y. 1998. MATLAB Kriging Toolbox.
Myers, R.A., and Cadigan, N.G. 1995. Was an increase in natural mortality responsible for the collapse of northern cod? Can. J. Fish. Aquat. Sci. 52: 1274-1285.
Pebesma, E. 2013a. Sp: classes and methods for spatial data. R package version 1.0-14. 104 p. [cconsulted on December 2, 2013]

Pebesma, E. 2013b. Gstat: spatial and spatio-temporal geostatistical modelling, prediction and simulation. R package version 1.0-18. 75 p. [conculted on December 2, 2013].
R Development Core Team. 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. (Consulted on November 18, 2015).
SAS. 1996. Spatial Prediction Using the SAS System. SAS/STAT Technical Report, SAS Institute Inc., Cary, NC, 80 pp.
Savard, L. 2012. Stock status indicators and reference points consistent with a precautionary approach for northern shrimp in the Gulf of St. Lawrence. DFO Can. Sci. Advis. Sec. Res. Doc. 2012/006. ii + 29 p.

Savard, L. and Nozères, C. 2012. Atlas of shrimp species of the Estuary and northern Gulf of St. Lawrence. Can. Tech. Rep. Fish. Aquat. Sci. 3007: vi + 67 p.
Savenkoff, C., H. Bourdages, M. Castonguay, L. Morissette, D. Chabot, and M. O. Hammill. 2004. Input data and parameter estimates for ecosystem models of the northern Gulf of St. Lawrence (mid-1990s). Can. Tech. Rep. Fish. Aquat. Sci. No. 2531.
Smedbol, R.K., Shelton, P.A., Swain, D.P., Fréchet, A., and Chouinard G.A. 2002. Review of population structure, distribution and abundance of cod (Gadus morhua) in Atlantic Canada in a species-at-risk context. DFO Can. Sci. Advis. Sec. Res. Doc. 2002/082.

Swain, D.P., and Sinclair, A.F. 1994. Fish distribution and catchability: what is the appropriate measure of distribution? Can. J. Fish. Aquat. Sci. 51: 1046-1054.

TABLES

Table 1. Mean catch ($\mathrm{kg} / \mathrm{km}^{2}$) and standard error by year, for males and females for the whole studied area (n : number of stations).

Year	n	Males		Females	
		Mean	Standard error	Mean	Standard error
1990	219	349.17	54.36	482.36	52.28
1991	250	265.82	50.53	412.06	50.09
1992	239	155.81	26.40	243.78	29.20
1993	214	203.54	32.87	184.91	22.54
1994	176	201.97	33.29	302.52	38.02
1995	182	339.35	47.62	408.28	44.58
1996	217	439.20	61.95	680.02	57.96
1997	185	602.86	92.43	715.33	82.08
1998	206	352.77	40.84	722.97	73.51
1999	224	472.82	64.43	659.18	62.95
2000	209	527.95	64.46	971.07	82.90
2001	183	572.65	100.28	631.87	67.30
2002	171	470.10	88.08	797.65	88.41
2003	164	1429.82	303.30	1339.34	135.13
2004	133	726.31	136.25	1177.82	144.64
2005	354	536.26	72.52	931.05	68.46
2006	192	477.51	73.83	942.67	111.71
2007	183	610.36	101.27	1141.59	158.19
2008	189	489.42	84.41	762.88	82.69
2009	164	586.99	89.54	686.90	78.53
2010	154	484.47	70.62	750.55	88.77
2011	156	357.29	54.43	637.67	74.19
2012	178	506.20	114.22	533.69	75.38
2013	141	390.40	80.87	661.56	99.84
2014	177	475.57	86.94	688.79	88.40
2015	182	415.61	66.81	611.87	77.04
2016	159	305.16	65.30	456.09	75.91
2017	163	198.28	36.84	297.75	51.08
2008+	201	488.34	80.51	842.41	90.62
2009+	177	594.42	83.94	758.18	83.23
2010+	166	518.46	79.86	778.54	89.04
2011+	166	408.66	59.41	669.28	77.29
2012+	188	517.62	109.33	550.83	74.19
2013+	152	384.16	75.31	722.18	103.66
2014+	185	490.24	84.08	706.65	87.51
2015+	190	414.4	65.07	604.02	74.68
2016+	167	351.33	68.84	517.99	82.87
2017+	170	203.19	35.72	301.18	49.65

[^0]Table 2a. Mean catch ($\mathrm{kg}_{\mathrm{g}} / \mathrm{km}^{2}$) and standard error by year, for males and females for the Estuary fishing area (n: number of stations).

Year	n	Males		Females	
		Mean	Standard error	Mean	Standard error
1990	12	156.25	77.65	233.61	82.82
1991	11	31.24	15.15	308.55	140.68
1992	11	83.54	64.96	187.46	120.92
1993	12	102.41	77.20	229.50	142.70
1994	8	119.91	83.71	398.97	271.60
1995	18	33.17	15.68	44.57	18.74
1996	17	134.76	53.69	663.28	244.99
1997	16	31.88	13.05	146.68	94.02
1998	16	34.63	18.54	158.71	62.10
1999	21	124.25	90.37	595.89	201.85
2000	17	54.87	20.71	440.12	129.51
2001	19	13.15	3.83	271.47	99.18
2002	12	10.37	6.37	125.36	81.22
2003	11	30.04	12.65	346.47	251.44
2004	9	140.28	109.56	722.38	367.21
2005	24	35.03	17.05	466.44	138.59
2006	12	5.88	2.02	208.70	76.78
2007	12	18.39	14.15	144.45	62.56
2008	10	17.15	6.47	379.29	159.29
2009	10	43.51	24.17	405.86	193.34
2010	12	77.14	42.62	240.66	137.05
2011	12	200.40	89.92	459.64	168.07
2012	11	168.99	104.58	541.06	296.08
2013	10	85.86	56.47	236.72	121.54
2014	8	119.40	54.11	890.30	385.24
2015	7	125.22	87.82	384.42	216.65
2016	8	36.36	15.19	172.74	70.07
2017	7	12.08	8.71	76.32	36.47
2008+	21	276.83	141.95	1377.73	446.43
2009+	23	407.83	121.58	1113.27	320.00
2010+	24	515.89	328.56	689.18	259.33
2011+	22	659.27	231.84	779.10	272.71
2012+	20	439.15	174.31	715.64	248.12
2013+	20	209.10	63.28	939.43	368.62
2014+	15	497.78	171.42	1057.50	334.67
2015+	14	283.77	174.33	435.04	185.95
2016+	15	696.15	329.79	1024.49	447.92
2017+	14	164.73	75.91	228.77	111.45

+: From 2008, the sampling was increased with the addition of strata in shallow waters (37 to 183 m) in the Estuary.

Table 2b. Mean catch ($\mathrm{kg} / \mathrm{km}^{2}$) and standard error by year, for males and females for the Sept-lles fishing area (n: number of stations).

Year	n	Males		Females	
		Mean	Standard error	Mean	Standard error
1990	73	368.74	93.59	651.33	98.58
1991	71	556.17	162.63	828.80	150.54
1992	60	205.76	56.56	366.15	78.75
1993	47	376.53	94.10	378.57	73.66
1994	49	360.66	97.71	605.40	103.66
1995	56	466.30	96.10	576.97	95.30
1996	74	580.37	108.36	998.29	93.68
1997	53	827.35	159.76	1096.30	125.72
1998	48	533.44	86.71	1478.68	219.66
1999	62	715.15	119.52	989.22	102.19
2000	51	1011.01	164.56	1854.23	159.49
2001	58	1148.13	272.57	1132.31	155.61
2002	56	871.07	228.82	1693.13	194.24
2003	48	3127.78	919.28	2586.03	228.81
2004	43	1248.81	289.40	2115.14	274.29
2005	65	1216.63	286.98	1907.67	135.04
2006	50	655.37	157.80	1878.57	259.06
2007	50	1063.62	313.79	2293.54	339.10
2008	44	1015.41	288.14	2035.73	203.68
2009	44	823.43	240.35	1186.57	194.23
2010	40	644.76	150.85	1410.73	191.62
2011	40	416.78	86.94	1003.53	145.39
2012	42	1156.22	382.07	936.69	113.12
2013	41	548.73	212.81	995.85	251.10
2014	40	815.56	259.68	1549.82	245.80
2015	41	780.17	175.09	1327.24	166.93
2016	45	502.34	163.93	884.77	207.47
2017	45	235.67	58.65	386.31	96.26
2008+	45	993.14	282.54	1990.49	204.18
2009+	44	823.43	240.35	1186.57	194.23
2010+	40	644.76	150.85	1410.73	191.62
2011+	40	416.78	86.94	1003.53	145.39
2012+	43	1135.94	373.63	919.52	111.79
2013+	42	536.20	208.06	973.82	246.03
2014+	41	795.84	254.03	1513.84	242.41
2015+	42	761.60	171.87	1295.72	165.93
2016+	46	491.44	160.70	865.56	203.82
2017+	45	235.67	58.65	386.31	96.26

+: From 2008, the sampling was increased with the addition of strata in shallow waters (37 to 183 m) in the Estuary.

Table 2c. Mean catch (kg/km²) and standard error by year, for males and females for the Anticosti fishing area (n: number of stations).

Year	Males	Females			
		Mean	Standard error	Mean	Standard error
1990		418.56	105.94	390.75	86.97
1991	82	185.46	37.18	257.11	41.09
1992	82	211.64	59.86	232.16	43.47
1993	76	207.97	64.32	141.47	25.94
1994	64	161.65	36.65	184.99	33.22
1995	57	378.61	87.89	470.25	71.13
1996	63	494.88	135.38	729.94	125.45
1997	60	489.24	105.34	608.32	86.48
1998	78	338.21	56.43	608.26	76.82
1999	78	381.33	67.30	566.39	68.19
2000	77	394.01	73.62	850.58	104.51
2001	36	203.38	60.44	373.76	59.71
2002	49	473.84	119.72	630.48	110.74
2003	46	802.28	297.96	852.30	205.04
2004	32	603.73	293.42	754.31	230.89
2005	134	515.13	96.85	972.22	112.60
2006	64	390.93	113.07	665.50	135.86
2007	66	581.38	106.72	1072.18	308.50
2008	66	287.94	59.28	392.16	72.02
2009	60	560.53	125.19	496.13	91.53
2010	54	522.60	121.99	564.85	114.99
2011	52	202.74	59.32	338.23	84.79
2012	59	190.57	45.90	338.13	62.69
2013	49	229.97	58.75	464.64	112.20
2014	62	341.98	101.97	398.96	94.07
2015	74	339.59	106.39	435.86	116.17
2016	56	139.59	57.20	253.35	71.04
2017	62	204.87	72.09	289.98	94.90

Table 2d. Mean catch (kg/km²) and standard error by year, for males and females for the Esquiman fishing area (n : number of stations).

Year	n	Males		Females	
		Mean	Standard error	Mean	Standard error
1990	49	246.89	73.44	450.48	94.34
1991	86	132.72	36.35	229.00	41.98
1992	86	76.95	20.47	176.71	38.87
1993	79	111.73	23.94	104.72	20.01
1994	55	119.45	37.17	155.42	36.81
1995	51	264.14	85.29	282.15	79.76
1996	63	299.84	100.71	260.78	58.81
1997	56	675.28	236.46	631.91	215.63
1998	64	314.53	87.65	437.06	104.71
1999	63	463.80	172.20	470.35	162.91
2000	64	429.80	124.03	553.29	164.08
2001	70	437.61	105.14	447.79	92.32
2002	54	153.06	68.92	170.08	53.91
2003	59	798.67	221.02	889.93	221.41
2004	49	455.49	171.87	715.51	219.18
2005	131	312.11	78.31	489.47	102.90
2006	66	512.48	138.68	635.87	191.06
2007	55	362.25	106.21	395.21	106.46
2008	69	415.18	116.38	361.40	100.03
2009	50	519.38	133.70	532.32	135.96
2010	48	409.84	126.00	536.80	167.72
2011	52	502.29	132.68	696.77	158.63
2012	66	430.91	171.38	450.81	170.26
2013	41	498.07	161.40	666.24	181.72
2014	67	438.73	137.78	418.88	123.42
2015	60	294.12	88.82	366.66	116.09
2016	50	356.13	127.48	342.68	114.00
2017	49	182.21	62.05	257.86	81.58

Table 3a. Parameters of the variograms used for kriging the male biomass. An exponential model* was used each year.

	Period	Parameters		
Year	Nugget $\left(\mathrm{c}_{0}\right)$	Sill $\left(\mathrm{c}_{0}+\mathrm{c}\right)$	Range $\left(\mathrm{a}_{0}\right)$	
1990	$1990-1991-1992$	0.50	1.05	35
1991	$1990-1991-1992$	0.50	1.05	35
1992	$1990-1991-1992$	0.50	1.05	35
1993	$1991-1992-1993$	0.20	1.05	30
1994	$1992-1993-1994$	0.20	1.05	30
1995	$1993-1994-1995$	0.20	1.00	20
1996	$1994-1995-1996$	0.20	1.00	20
1997	$1995-1996-1997$	0.20	0.95	18
1998	$1996-1997-1998$	0.20	0.90	20
1999	$1997-1998-1999$	0.40	0.90	20
2000	$1998-1999-2000$	0.40	0.90	20
2001	$1999-2000-2001$	0.40	0.90	17
2002	$2000-2001-2002$	0.30	1.00	25
2003	$2001-2002-2003$	0.20	1.00	25
2004	$2002-2003-2004$	0.20	1.00	25
2005	$2003-2004-2005$	0.30	1.00	30
2006	$2004-2005-2006$	0.30	1.00	25
2007	$2005-2006-2007$	0.30	1.00	25
2008	$2006-2007-2008$	0.30	1.00	20
2009	$2007-2008-2009$	0.25	1.00	25
2010	$2008-2009-2010$	0.30	1.00	25
2011	$2009-2010-2011$	0.40	1.00	30
2012	$2010-2011-2012$	0.30	1.00	22
2013	$2011-2012-2013$	0.00	0.96	15.68
2014	$2012-2013-2014$	0.00	0.96	15.65
2015	$2013-2014-2015$	0.00	0.92	15.09
2016	$2014-2015-2016$	0.00	0.92	12.25
2017	$2015-2016-2017$	0.00	0.92	11.21

[^1]Table 3b. Parameters of the variograms used for kriging the female biomass. An exponential model* was used each year.

	Period	Parameters		
Year	Nugget $\left(\mathrm{c}_{0}\right)$	Sill $\left(\mathrm{c}_{0}+\mathrm{c}\right)$	Range $\left(\mathrm{a}_{0}\right)$	
1990	$1990-1991-1992$	0.45	0.95	30
1991	$1990-1991-1992$	0.45	0.95	30
1992	$1990-1991-1992$	0.45	0.95	30
1993	$1991-1992-1993$	0.25	0.85	20
1994	$1992-1993-1994$	0.30	0.85	25
1995	$1993-1994-1995$	0.30	0.80	20
1996	$1994-1995-1996$	0.15	0.95	17
1997	$1995-1996-1997$	0.15	0.95	17
1998	$1996-1997-1998$	0.20	0.95	20
1999	$1997-1998-1999$	0.35	0.90	25
2000	$1998-1999-2000$	0.35	0.90	30
2001	$1999-2000-2001$	0.40	0.90	35
2002	$2000-2001-2002$	0.30	0.90	30
2003	$2001-2002-2003$	0.20	0.85	35
2004	$2002-2003-2004$	0.15	0.95	35
2005	$2003-2004-2005$	0.20	1.05	60
2006	$2004-2005-2006$	0.20	1.05	50
2007	$2005-2006-2007$	0.20	1.05	60
2008	$2006-2007-2008$	0.20	1.00	60
2009	$2007-2008-2009$	0.20	0.90	40
2010	$2008-2009-2010$	0.25	0.90	45
2011	$2009-2010-2011$	0.15	0.90	28
2012	$2010-2011-2012$	0.15	0.90	27
2013	$2011-2012-2013$	0.60	1.52	441.11
2014	$2012-2013-2014$	0.51	0.80	53.25
2015	$2013-2014-2015$	0.48	1.10	175.07
2016	$2014-2015-2016$	0.41	0.82	42.47
2017	$2015-2016-2017$	0.58	26.57	13249
				0

[^2]Table 3c. Parameters of the variograms used for kriging the total biomass. An exponential model* was used each year.

	Period	Parameters		
Year	Nugget $\left(\mathrm{c}_{0}\right)$	Sill $\left(\mathrm{c}_{0}+\mathrm{c}\right)$	Range $\left(\mathrm{a}_{0}\right)$	
1990	$1990-1991-1992$	0.40	1.00	35
1991	$1990-1991-1992$	0.40	1.00	35
1992	$1990-1991-1992$	0.40	1.00	35
1993	$1991-1992-1993$	0.30	0.95	40
1994	$1992-1993-1994$	0.30	0.95	32
1995	$1993-1994-1995$	0.30	0.95	25
1996	$1994-1995-1996$	0.20	1.05	20
1997	$1995-1996-1997$	0.20	1.00	20
1998	$1996-1997-1998$	0.20	1.00	25
1999	$1997-1998-1999$	0.30	0.90	25
2000	$1998-1999-2000$	0.35	0.90	30
2001	$1999-2000-2001$	0.50	1.00	80
2002	$2000-2001-2002$	0.45	1.00	70
2003	$2001-2002-2003$	0.40	1.00	70
2004	$2002-2003-2004$	0.20	1.00	40
2005	$2003-2004-2005$	0.25	1.05	60
2006	$2004-2005-2006$	0.30	1.05	60
2007	$2005-2006-2007$	0.30	1.05	60
2008	$2006-2007-2008$	0.30	1.05	55
2009	$2007-2008-2009$	0.30	1.05	55
2010	$2008-2009-2010$	0.35	1.00	40
2011	$2009-2010-2011$	0.25	1.00	30
2012	$2010-2011-2012$	0.20	0.95	20
2013	$2011-2012-2013$	0.00	0.87	11.49
2014	$2012-2013-2014$	0.00	0.86	11.46
2015	$2013-2014-2015$	0.00	0.82	12.13
2016	$2014-2015-2016$	0.00	0.84	12.07
2017	$2015-2016-2017$	0.61	1.24	153.34
			0	05

[^3]Table 4. Parameters for the weight-length relationships* by fishing area and by year. Length in mm and weight in g.

| Year | Estuary | | Sept-lles | | Anticosti | | Esquiman | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | a | b | a | b | a | b | a | b |
| 1993 | 0.000713 | 2.945 | 0.000658 | 2.978 | 0.000593 | 3.018 | 0.000939 | 2.864 |
| 2005 | 0.001175 | 2.777 | 0.000654 | 2.960 | 0.000659 | 2.957 | 0.000754 | 2.904 |
| 2006 | 0.000682 | 2.945 | 0.000694 | 2.934 | 0.000527 | 3.040 | 0.000933 | 2.849 |
| 2007 | 0.001071 | 2.800 | 0.000724 | 2.930 | 0.000735 | 2.918 | 0.000767 | 2.904 |
| 2008 | 0.000561 | 3.016 | 0.000704 | 2.934 | 0.000769 | 2.908 | 0.000820 | 2.887 |
| 2009 | 0.000628 | 2.977 | 0.000897 | 2.864 | 0.000800 | 2.893 | 0.000767 | 2.911 |
| 2010 | 0.000759 | 2.920 | 0.000716 | 2.931 | 0.000585 | 3.011 | 0.000706 | 2.953 |
| 2011 | 0.000760 | 2.911 | 0.000685 | 2.942 | 0.000616 | 3.001 | 0.000544 | 3.036 |
| 2012 | 0.000733 | 2.931 | 0.000725 | 2.936 | 0.000771 | 2.923 | 0.000814 | 2.908 |
| 2013 | 0.000624 | 2.979 | 0.000643 | 2.976 | 0.000561 | 3.028 | 0.000672 | 2.967 |
| 2014 | 0.000657 | 2.962 | 0.000854 | 2.880 | 0.000741 | 2.933 | 0.000663 | 2.969 |
| 2015 | 0.000804 | 2.914 | 0.000894 | 2.870 | 0.000651 | 2.975 | 0.000763 | 2.924 |
| 2016 | 0.000699 | 2.963 | 0.001016 | 2.831 | 0.000750 | 2.945 | 0.000991 | 2.832 |
| 2017 | 0.000897 | 2.884 | 0.000951 | 2.862 | 0.000687 | 2.986 | 0.000614 | 2.985 |

* Model: Weight = a Length ${ }^{\text {b }}$

Table 5. Mean biomass ($\mathrm{kg} / \mathrm{km}^{2}$) estimated by kriging, by fishing area and by year, for males (M) and females (F).

Year	Estuary		Sept-Iles		Anticosti		Esquiman	
	M	F	M	F	M	F	M	F
1990	188.6	310.4	390.5	652.2	402.4	404.3	234.2	402.2
1991	44.3	514.4	566.7	774.9	207.0	300.6	185.5	285.3
1992	100.1	365.0	219.6	358.7	264.7	276.9	92.4	202.5
1993	88.9	274.7	336.2	442.0	207.7	150.0	114.3	107.1
1994	102.6	426.1	376.1	598.4	165.3	179.5	175.6	196.0
1995	33.1	52.9	426.2	559.7	392.7	509.3	334.5	327.7
1996	116.6	598.7	467.0	880.3	659.8	931.3	329.5	299.2
1997	69.7	375.4	777.1	999.6	456.7	552.9	747.2	693.7
1998	28.5	159.8	551.5	1547.1	269.5	566.0	366.8	481.2
1999	136.2	575.2	788.0	1098.1	345.9	551.8	455.2	457.9
2000	141.1	702.3	1005.3	1777.0	403.7	832.1	439.2	536.7
2001	22.2	439.9	1273.0	1141.8	331.2	508.2	452.4	452.5
2002	22.0	312.8	980.1	1713.4	594.6	739.3	197.3	217.5
2003	105.8	691.4	2952.5	2767.2	966.3	1232.6	873.0	998.5
2004	92.5	626.6	1444.4	2312.4	564.3	905.2	434.7	767.7
2005	44.5	554.1	925.6	1978.1	655.3	1141.8	596.3	853.3
2006	45.8	419.7	631.4	1872.6	385.9	685.5	713.6	847.1
2007	221.4	592.0	945.0	2363.8	623.5	1223.2	517.6	462.7
2008	23.6	617.7	835.7	2112.6	361.7	481.1	492.9	426.4
2009	49.0	356.0	1031.0	1336.2	593.7	532.2	547.0	536.9
2010	98.7	341.0	715.6	1527.8	534.5	570.9	447.7	568.0
2011	185.9	496.6	488.8	1024.7	218.0	432.3	624.7	831.8
2012	160.7	658.3	1223.6	1015.0	268.4	473.3	452.8	507.7
2013	110.2	367.9	669.0	1037.5	236.1	508.9	435.1	659.9
2014	149.8	1139.1	942.1	1709.5	380.6	478.7	482.0	479.9
2015	169.3	711.5	848.9	1382.2	333.2	483.5	298.7	395.5
2016	65.4	276.9	532.3	914.9	172.0	298.7	397.6	382.2
2017	15.2	89.3	267.8	444.3	239.9	347.2	247.4	349.7
2008+	284.6	1405.4	833.4	2103.8	-	-	-	-
2009+	421.3	1157.2	1028.8	1334.6	-	-	-	-
2010+	540.0	709.0	714.2	1526.1	-	-	-	-
2011+	557.9	588.7	490.2	1014.4	-	-	-	-
2012+	490.8	779.4	1220.6	1007.8	-	-	-	-
2013+	226.7	795.7	666.2	1029.1	-	-	-	-
2014+	534.4	1098.0	937.3	1693.6	-	-	-	-
2015+	261.6	589.7	843.7	1369.0	-	-	-	-
2016+	449.0	708.4	529.4	908.4	-	-	-	-
2017+	159.6	223.4	267.1	443.2	-	-	-	-

+: From 2008, the sampling was increased with the addition of strata in shallow waters (37 to 183 m) in the Estuary.

Table 6. Variance of the estimation of the kriged biomass, by fishing area and by year, for males (M) and females (F).

Year	Estuary		Sept-Iles		Anticosti		Esquiman	
	M	F	M	F	M	F	M	F
1990	4593	4834	8401	8656	10171	6348	4803	7277
1991	190	15114	22197	17747	1265	1436	1228	1519
1992	3381	10859	2757	4974	3327	1636	343	1145
1993	3482	12624	5229	3335	3118	497	367	267
1994	4252	44887	6502	7158	1106	856	1031	987
1995	135	191	6029	5480	6483	3642	6979	5122
1996	1724	35077	9532	6893	17463	14585	7608	2547
1997	91	4508	18807	11438	12013	8093	44216	36384
1998	218	1728	5003	33605	2811	5478	4864	7254
1999	6043	27056	13218	9064	4150	4019	24527	20394
2000	292	9848	21632	17931	4676	8496	11177	16974
2001	11	6582	58555	16209	3886	4715	8744	5870
2002	28	4021	36174	22907	13616	10274	4047	2162
2003	126	39123	671578	32617	77033	28572	41275	32368
2004	7524	65553	72132	50945	93148	55313	21248	27467
2005	207	8972	84841	13234	11480	11319	6845	8114
2006	3	2762	16012	29251	12705	14893	15130	20125
2007	186	2686	72080	54547	8341	45769	9290	6329
2008	33	12784	69789	21424	2994	2624	12120	5643
2009	372	17218	42898	21100	15001	6168	14323	10689
2010	1352	10110	17455	20606	13020	8386	11540	14446
2011	5748	14016	6343	14156	2980	4768	14629	16123
2012	9148	55186	110879	7274	2112	3311	24943	18554
2013	2024	10692	34933	46665	3019	9645	20207	24445
2014	2597	103695	41220	37862	6935	6131	11651	10530
2015	4503	27811	18633	16393	6844	8083	4709	8565
2016	198	3195	17970	26068	2219	2993	11044	8236
2017	40	846	2180	6049	3598	6012	2818	4846
2008+	16392	102556	67828	21841	-			
2009+	8170	40838	42864	21071	-	-	-	
2010+	70574	31642	17444	20582	-	-	-	
2011+	39732	39001	6354	14200	-	-	-	
2012+	24374	36177	106422	7136	-	-	-	-
2013+	2488	103622	33892	45328	-	-	-	-
2014+	18242	72156	39639	37108	-	-	-	-
2015+	14305	19969	18156	16386	-	-	-	-
2016+	100643	153438	17312	25310	-	-	-	-
2017+	2915	7895	2182	6045	-	-	-	-

+: From 2008, the sampling was increased with the addition of strata in shallow waters (37 to 183 m) in the Estuary.

Table 7. Coefficient of variation of the kriged biomass, by fishing area and by year, for males (M) and females (F).

Year	Estuary		Sept-Iles		Anticosti		Esquiman	
	M	F	M	F	M	F	M	F
1990	35.9	22.4	23.5	14.3	25.1	19.7	29.6	21.2
1991	31.1	23.9	26.3	17.2	17.2	12.6	18.9	13.7
1992	58.1	28.5	23.9	19.7	21.8	14.6	20.1	16.7
1993	66.4	40.9	21.5	13.1	26.9	14.9	16.8	15.2
1994	63.5	49.7	21.4	14.1	20.1	16.3	18.3	16.0
1995	35.1	26.1	18.2	13.2	20.5	11.9	25.0	21.8
1996	35.6	31.3	20.9	9.4	20.0	13.0	26.5	16.9
1997	13.7	17.9	17.6	10.7	24.0	16.3	28.1	27.5
1998	51.8	26.0	12.8	11.8	19.7	13.1	19.0	17.7
1999	57.1	28.6	14.6	8.7	18.6	11.5	34.4	31.2
2000	12.1	14.1	14.6	7.5	16.9	11.1	24.1	24.3
2001	15.1	18.4	19.0	11.2	18.8	13.5	20.7	16.9
2002	24.0	20.3	19.4	8.8	19.6	13.7	32.2	21.4
2003	10.6	28.6	27.8	6.5	28.7	13.7	23.3	18.0
2004	93.7	40.9	18.6	9.8	54.1	26.0	33.5	21.6
2005	32.3	17.1	31.5	5.8	16.4	9.3	13.9	10.6
2006	3.6	12.5	20.0	9.1	29.2	17.8	17.2	16.7
2007	6.2	8.8	28.4	9.9	14.6	17.5	18.6	17.2
2008	24.4	18.3	31.6	6.9	15.1	10.6	22.3	17.6
2009	39.4	36.9	20.1	10.9	20.6	14.8	21.9	19.3
2010	37.3	29.5	18.5	9.4	21.3	16.0	24.0	21.2
2011	40.8	23.8	16.3	11.6	25.0	16.0	19.4	15.3
2012	59.5	35.7	27.2	8.4	17.1	12.2	34.9	26.8
2013	40.8	28.1	27.9	20.8	23.3	19.3	32.7	23.7
2014	34.0	28.3	21.6	11.4	21.9	16.4	22.4	21.4
2015	39.6	23.4	16.1	9.3	24.8	18.6	23.0	23.4
2016	21.5	20.4	25.2	17.6	27.4	18.3	26.4	23.7
2017	41.7	32.6	17.4	17.5	25.0	22.3	21.5	19.9
2008+	45.0	22.8	31.2	7.0	-	-	-	-
2009+	21.5	17.5	20.1	10.9	-	-	-	-
2010+	49.2	25.1	18.5	9.4	-	-	-	-
2011+	35.7	33.5	16.3	11.7	-	-	-	-
2012+	31.8	24.4	26.7	8.4	-	-	-	-
2013+	22.0	40.5	27.6	20.7	-	-	-	-
2014+	25.3	24.5	21.2	11.4	-	-	-	-
2015+	45.7	24.0	16.0	9.4	-	-	-	-
2016+	70.7	55.3	24.9	17.5	-	-	-	-
2017+	33.8	39.8	17.5	17.5	-	-	-	-

+: From 2008, the sampling was increased with the addition of strata in shallow waters (37 to 183 m) in the Estuary.

Table 8. Stock biomass (ton) estimated by kriging by fishing area and by year, for males (M) and females (F).

Year	Estuary		Sept-Iles		Anticosti		Esquiman	
	M	F	M	F	M	F	M	F
1990	755	1241	11627	19418	18670	18758	7577	13011
1991	177	2057	16874	23073	9606	13948	6000	9228
1992	400	1460	6538	10681	12284	12850	2989	6551
1993	356	1099	10011	13161	9636	6962	3698	3465
1994	410	1704	11198	17818	7670	8331	5681	6340
1995	133	212	12689	16667	18222	23630	10822	10602
1996	466	2395	13906	26212	30616	43214	10658	9680
1997	279	1501	23139	29763	21191	25653	24171	22443
1998	114	639	16421	46063	12503	26263	11867	15566
1999	545	2301	23464	32695	16051	25605	14724	14812
2000	564	2809	29934	52910	18732	38608	14207	17364
2001	89	1760	37905	33996	15366	23580	14635	14640
2002	88	1251	29184	51016	27590	34304	6382	7036
2003	423	2766	87909	82392	44836	57195	28242	32301
2004	370	2506	43008	68852	26182	42000	14062	24836
2005	178	2216	27558	58899	30406	52977	19292	27603
2006	183	1679	18800	55756	17905	31806	23086	27404
2007	885	2368	28137	70382	28931	56758	16745	14969
2008	94	2471	24883	62904	16781	22321	15944	13794
2009	196	1424	30697	39786	27549	24693	17697	17369
2010	395	1364	21308	45490	24802	26489	14483	18374
2011	744	1987	14555	30511	10115	20060	20209	26907
2012	643	2633	36433	30222	12456	21963	14648	16425
2013	441	1471	19919	30891	10956	23614	14077	21349
2014	599	4556	28050	50902	17662	22212	15592	15526
2015	677	2846	25277	41155	15461	22435	9662	12794
2016	262	1107	15849	27242	7981	13857	12863	12365
2017	61	357	7974	13230	11131	16108	8005	11313
2008+	1800	8889	24898	62852		-	-	-
2009+	2665	7319	30734	39873	-	-	-	-
2010+	3415	4484	21337	45591	-	-	-	-
2011+	3529	3724	14644	30305	-	-	-	-
2012+	3104	4930	36466	30108	-	-	-	-
2013+	1434	5033	19902	30745	-	-	-	-
2014+	3380	6945	28002	50595	-	-	-	-
2015+	1654	3730	25206	40899	-	-	-	-
2016+	2840	4481	15817	27137	-	-	-	-
2017+	1010	1413	7980	13239	-	-	-	-

+: From 2008, the sampling was increased with the addition of strata in shallow waters (37 to 183 m) in the Estuary.

Table 9. Stock abundance (in million) by fishing area and by year, for males (M) and females (F).

Year	Estuary		Sept-Iles		Anticosti		Esquiman	
	M	F	M	F	M	F	M	F
1990	156	115	2266	1822	4686	2077	1661	1394
1991	26	196	3871	2278	1948	1458	1210	972
1992	87	128	2113	961	2928	1252	630	660
1993	85	92	2894	1264	2648	671	866	358
1994	87	163	3292	1918	1888	919	1471	716
1995	40	20	2920	1707	4854	2682	2681	1368
1996	86	226	3017	2667	7387	4769	3197	1207
1997	48	132	4939	2830	5852	2603	6497	2791
1998	30	54	3447	4212	2605	2563	3099	1808
1999	118	205	5797	3112	3910	2560	4112	1846
2000	114	257	6531	5329	4957	4008	4020	2137
2001	18	162	8559	3503	3604	2424	4610	1921
2002	20	125	6661	5543	7995	3898	1741	907
2003	219	271	17561	8982	12628	6741	8046	4298
2004	62	238	8521	7715	7070	5149	3740	3421
2005	29	222	6280	6498	6319	6441	4885	3913
2006	28	164	3806	6132	4322	3781	7165	3669
2007	141	226	6171	7251	8128	7224	5890	2243
2008	19	222	5613	6530	4809	2839	4938	2199
2009	43	133	7937	4311	9970	3258	5374	2529
2010	79	129	5942	5273	6481	3254	3634	2470
2011	178	231	3753	3639	2629	2421	5916	3404
2012	131	306	8345	3632	2961	2558	4310	2083
2013	143	158	4251	3513	2556	2787	3670	2741
2014	109	456	6422	5444	4907	2474	4067	1892
2015	138	274	5644	4362	4548	2799	2831	1619
2016	55	116	3698	3347	2277	1866	3245	1729
2017	12	40	1917	1650	3402	2074	1999	1488
2008+	456	831	5626	6525	-	-	-	-
2009+	1253	732	7946	4321	-	-	-	-
2010+	1073	467	5950	5284	-	-	-	-
2011+	1070	433	3776	3614	-	-	-	-
2012+	822	586	8355	3619	-	-	-	-
2013+	455	611	4249	3497	-	-	-	-
2014+	992	744	6413	5412	-	-	-	-
2015+	658	378	5628	4335	-	-	-	-
2016+	631	486	3690	3334	-	-	-	-
2017+	303	167	1918	1651	-	-	-	-

+: From 2008, the sampling was increased with the addition of strata in shallow waters (37 to 183 m) in the Estuary.

Table 10. Abundance (in million) for juveniles (J), primiparous (Fp) and mutiparous (Fm) females, by fishing area and by year.

Year	Estuary			Sept-Iles			Anticosti			Esquiman		
	J	Fp	Fm	J	Fp	Fm	J	Fp	Fm	J	Fp	Fm
1990	11	48	67	123	965	858	73	1486	590	4	1157	237
1991	0	57	138	349	773	1505	87	837	621	70	535	437
1992	0	43	85	342	556	404	394	843	408	50	554	106
1993	1	78	14	113	1031	234	29	580	92	23	234	124
1994	0	130	33	172	1600	318	19	802	118	98	627	90
1995	12	14	5	188	1496	211	493	2408	273	30	1182	185
1996	1	132	94	166	2011	656	1249	4048	721	637	881	327
1997	0	110	22	45	2294	535	609	2377	226	76	2063	728
1998	8	32	22	705	3498	714	204	2171	392	553	1567	241
1999	1	158	47	14	2707	405	26	2067	492	128	1284	563
2000	1	181	76	234	4544	785	688	3457	551	654	1612	525
2001	0	-	-	82	-	-	20	-	-	268	-	-
2002	0	-	-	77	-	-	444	-	-	25	-	-
2003	114	-	-	222	-	-	553	-	-	193	-	-
2004	0	-	-	84	-	-	64	-	-	17	-	-
2005	0	-	-	85	-	-	103	-	-	366	-	-
2006	0	-	-	54	-	-	248	-	-	101	-	-
2007	2	-	-	505	-	-	478	-	-	443	-	-
2008	2	-	-	127	-	-	349	-	-	58	-	-
2009	2	27	105	125	2022	2289	1258	2115	1144	127	1811	717
2010	0	60	69	64	3392	1880	83	1836	1418	146	1077	1393
2011	1	118	113	22	2058	1581	126	1709	712	533	2516	887
2012	2	258	48	203	2611	1022	35	1997	561	87	1591	492
2013	39	119	39	392	2735	779	138	2331	456	123	2331	410
2014	0	417	39	507	5141	303	444	2131	343	302	1613	279
2015	1	235	39	102	3996	366	172	2566	233	236	1172	447
2016	6	72	44	74	2274	1073	42	1463	403	11	1259	469
2017	0	26	13	39	1255	395	271	1550	524	65	922	566
2008+	136	-	-	136	-	-	-	-	-	-	-	-
2009+	519	347	385	125	2026	2294	-	-	-	-	-	-
2010+	17	321	146	64	3400	1884	-	-	-	-	-	-
2011+	82	237	196	22	2044	1571	-	-	-	-	-	-
2012+	78	442	144	206	2600	1019	-	-	-	-	-	-
2013+	94	504	107	392	2722	775	-	-	-	-	-	-
2014+	20	708	36	508	5109	303	-	-	-	-	-	-
2015+	39	345	33	102	3972	363	-	-	-	-	-	-
2016+	13	366	120	74	2265	1069	-	-	-	-	-	-
2017+	30	115	51	39	1256	395	-	-	-	-	-	-

+: From 2008, the sampling was increased with the addition of strata in shallow waters (37 to 183 m) in the Estuary.

FIGURES

Figure 1. Shrimp fishing areas (SFA) in the northern Gulf of St. Lawrence: Estuary (SFA 12); Sept-Iles (SFA 10); Anticosti (SFA 9); Esquiman (SFA 8).

Figure 2. Life cycle of northern shrimp in the Gulf of St. Lawrence.

Figure 3. Stratification used for the allocation of fishing stations of the survey in the northern Gulf of St. Lawrence. The strata 851, 852, 854 and 855 were added in 2008.

Figure 4. Locations of successful sampling stations (trawl and oceanography) and additional oceanographic stations for the 2017 survey.

Figure 5. Boxplot of male and female shrimp catches ($\mathrm{kg}_{\mathrm{k}} / \mathrm{km}^{2}$) obtained from the surveys conducted from 1990 to 2017.

 year. Open circles: mean over three years. Curve: variogram adjusted on the 3 year mean.

Figure 7. Studied area for the kriging of the shrimp biomass in the northern Gulf of St. Lawrence. The limits of the fishing areas are indicated as well.

Figure 8. Weight-length relationships by fishing area. The left panels represent the data for 2017 and in the right panels, the red line represents 2017 and the gray lines 1993 and 2005 to 2016.

Figure 9. Northern shrimp catch rates (kg/15 minutes tow) distribution.

Figure 10. Northern shrimp catch rates (kg/15 minutes tow) distribution for male and female from 2014 to 2017.

Figure 11. Spatial distribution indices: 1) DWAO, design-weighted area of occupation; 2) D95, minimum area containing 95\% of individuals; and 3) Gini's index. The total area of the study zone is of $116,115 \mathrm{~km}^{2}$.

Centile	Depth (m)
5	160
10	193
25	228
50	259
75	296
90	331
95	361

Figure 12. Cumulative relative frequency distribution of catches (weight per tow) and number of sampled stations as a function of depth in the DFO survey from 1990 to 2017.

Figure 13. Cumulative relative frequency distribution of catches (weight per tow) and number of sampled stations as a function of temperature in the DFO survey from 1990 to 2017.

Female

Figure 14. Northern shrimp catch rates (kg/15 minutes tow) distribution for male and female as function of the bottom temperature per fishing area observed in the DFO survey.

Figure 15. Northern shrimp catch rates (kg/15 minutes tow) distribution for male and female as function of the depth per fishing area observed in the DFO survey

Figure 16. Mean carapace length of male and female shrimp by fishing area in the DFO survey.

Estuary

Sept-Iles

Anticosti

Male	14 mm	1.59	1.65	1.63	1.64	1.64	1.69	1.74	1.76	1.67	1.67	1.64	1.77	1.81	$\begin{aligned} & 1.685 \pm 0.065 \\ & 4.839 \pm 0.207 \end{aligned}$
Male	20 mm	4.43	4.81	4.62	4.71	4.71	4.90	4.96	4.94	4.83	4.85	4.81	5.09	5.26	
Female	22 mm	6.12	6.55	6.16	6.17	6.28	6.42	6.55	6.55	6.66	6.70	6.55	6.86	7.14	6.516 ± 0.295
Female	26 mm	9.87	10.15	9.54	9.71	9.62	10.32	10.51	10.28	10.64	10.26	10.37	10.74	11.00	10.232 ± 0.445
		గ్రిగ్ర					응					$\stackrel{1}{\infty}$			

Esquiman

Figure 17. Weights of male (14 and 22 mm) and female (22 and 26 mm) shrimp observed during the DFO survey in August. The color code represents the value of the anomaly, which is the difference between the weight of a shrimp and the average of the time series divided by the standard deviation of that average for each category.

Figure 18. Distribution of the biomass (kg/km²) obtained by kriging for years 1990, 1995, 2000, 2005, 2010 and from 2015 to 2017.

Figure 19. Distribution of the biomass ($\mathrm{kg}_{\mathrm{k}}^{\mathrm{km}}{ }^{2}$) obtained by kriging from 2014 to 2017 for males and females.

Figure 20. Distribution of the biomass (kg/km²) obtained by kriging in 2017 for males and females. The dots represent the sampled tows.

Figure 21. Biomass (in ton) by fishing area and by year. The open circles from 2008 to 2017 show the results obtained when adding strata in shallow waters (37-183 m) of the estuary. Error bars indicate the 95\% confidence interval.

Figure 22. Biomass (in ton) by fishing area and by year, for males and females. The open circles from 2008 to 2017 show the results obtained when adding strata in shallow waters ($37-183 \mathrm{~m}$) of the estuary. Error bars indicate the 95\% confidence interval.

Figure 23. Abundance (in million) by fishing area and by year, for males and females. The open circles from 2008 to 2017 show the results obtained when adding strata in shallow waters ($37-183 \mathrm{~m}$) of the estuary.

Figure 24. Abundance (in million) by carapace length class (classes of 0.5 mm) by fishing area from 2012 to 2017 for males (in blue) and females (in red). The + placed beside the area shows the results obtained when adding strata in shallow waters ($37-183 \mathrm{~m}$) of the estuary.

Figure 25. Abundance (in million) by carapace length class (classes of 0.5 mm) by fishing area for males (in blue), primiparous females (in red), multiparous females (in green) and females (in pink, 2001 to 2008 period). The straight line indicates the average for 1990-2016 or 2008-2016 if a + is placed beside the area. The + placed beside the area shows the results obtained when adding strata in shallow waters (37183 m) of the estuary.

Figure 25. Continued.

Figure 25. Continued.

Figure 25. Continued.

Figure 25. Continued.

Figure 26. Biomass (kg per tow) of the main predators of northern shrimp in the northern Gulf of St. Lawrence. The color code represents the value of the anomaly, which is the difference between the weight the CPUE and the average of the time series divided by the standard deviation of that average for each species.

invertébrés / invertebrates \square poissons / fishes \square autres / others
Figure 27. Partial fullness index by length class and prey type, for the 1990s and 2015 to 2017. Bar height corresponds to the total fullness index. The numbers above the bars correspond to the number of stomachs selected for analysis and the percentage empty stomachs.

Figure 28. Average percentage of various taxonomic groups in the redfish diet with regard to total stomach content mass, by period and length class.

Figure 29. Boundary surveys of the 6 areas of commercially-fished northern shrimp, based on Vessel Monitoring System (VMS) data. It includes the terminology of the areas used in the following figures.

Figure 30. Fishing tows from which redfish stomachs were collected from 1993 to 2017. A total of 4,640 stomachs were analyzed. The geographical location of each stomach-except 4 of them-allowed a spatial analysis of redfish diet trends. Red polygons represent the boundaries of areas of commercially-fished northern shrimp, calculated based on VMS data (see Figure 29).

Figure 31. Average percentage of various taxonomic groups in the redfish diet with regard to total stomach content mass, by period, area type (areas fished for northern shrimp compared with the rest of the Estuary and northern Gulf of St. Lawrence) and length class.

crevette nordique / northern shrimp	crevette blanche / pink glass shrimp
autres crevettes / other shrimps	krill nordique / northern krill
hypérides / hyperids	mysidacés / opossum shrimps
cop. calanoides / calanoid cop.	autres invert. / other invert.
autres proies / other preys	autres poissons / other fishes
lussion blanc / white barracudina	sébaste / redfish
capelan / capelin	

Figure 32. Average percentage of various taxonomic groups in the redfish diet with regard to total stomach content mass, from 2015 to 2017, area (areas fished for northern shrimp compared with the rest of the eNGSL) and length class.

Figure 33. Annual biomass estimate for redfish from 1995 to 1997 and 2015 to 2017, by length class and for the entire eNGSL. The values in the upper part of the panels represent the total biomass estimated for a given year.

Figure 34. Annual consumption estimate of northern shrimp by redfish, from 1995 to 1997 and 2015 to 2017, by length class and for the entire eNGSL. The values in the upper part of the panels represent the total estimated consumption for a given year. An X symbol indicates that no stomachs were collected for a given length class or less than 20 stomachs. The annual consumption estimated for these length classes is therefore impossible or considered non-representative.

Figure 35. Estimated number of redfish found in each of the 6 areas actively fished for northern shrimp, from 2010 to 2017. The n values represent the number of tows conducted in an area, for a given year. These estimates are based on the results of groundfish and shrimp multidisciplinary surveys conducted annually in August.

Figure 36. Biomass estimate for redfish found in each of the 6 areas actively fished for northern shrimp, from 2010 to 2017. The n values represent the number of tows conducted in an area, for a given year. These estimates are based on the results of groundfish and shrimp multidisciplinary surveys conducted annually in August.

Figure 37. Annual consumption estimate of northern shrimp by redfish, from 1995 to1997 and 2015 to 2017, by length class and areas actively fished for shrimp. The n values represent the number of tows conducted in an area, for a given year. An X symbol indicates that no stomachs were collected for a given length class or less than 20 stomachs. The annual consumption estimated for these length classes is therefore impossible or considered non-representative. Stomach data for the 3 years were combined to obtain the diet proportion attributed to northern shrimp, by length class.

APPENDIX

Appendix 1. Diet of Greenland halibut and redfish in the Estuary and Gulf of St. Lawrence from the Teleost missions conducted each August from 2015 to 2017. For each prey, the frequency of occurrence (Focc), mass contribution (MC in terms of \% of the mass of all prey) and the fullness index rank (PFI) are provided. The species of prey were identified when the digestion level allowed.

Prey of Greenland halibut (length $\geq 20 \mathrm{~cm}$)

Latin name	English name	$\begin{gathered} \mathrm{F}_{\text {occ }} \\ (\%) \end{gathered}$	$\begin{aligned} & \mathrm{MC} \\ & (\%) \end{aligned}$	Rank PFI
Sebastes sp.	Redfish	8.84	55.32	1
Pandalus borealis	Northern shrimp	6.01	11.46	2
Mallotus villosus	Capelin	2	6.93	3
-	Digested fish (except flat fish)	2.67	5.6	4
Pasiphaea multidentata	Pink glass shrimp	2.92	2.67	5
-	Unidentified digested material	4.09	1.74	6
Enchelyopus cimbrius	Fourbeard rockling	0.75	4.33	7
Thysanoessa sp.	Euphausid	0.33	0.35	8
digested fish	Digested fish	3.25	1.88	9
Pandalus sp.	Shrimp	1.08	0.95	10
Clupea harengus	Atlantic herring	0.08	1.54	11
Arctozenus risso	Spotted barracudina (sand eel)	0.42	1.63	12
Dendrobranchiata / Caridea	Shrimps (generic)	2.42	0.99	13
Melanostigma atlanticum	Atlantic soft pout	2.09	1.02	14
Crustacea	Crustacean	1.75	0.31	15
Themisto sp.	Hyperiid	1.08	0.1	16
Euphausiidae	Euphausid	0.67	0.12	17
Myxine glutinosa	Atlantic hagfish	0.08	1	18
Ammodytes sp.	Sand lance	0.17	0.23	19
Pandalus montagui	Striped shrimp	0.25	0.16	20
Amblyraja radiata	Thorny skate	0.08	0.38	21
Gasterosteus aculeatus	Threespine stickleback	0.08	0.03	22
Sergia robusta	Shrimp	0.08	0.11	23
Rajidae	Skates	0.08	0.18	24
Brisaster fragilis	Urchin	0.08	0.37	25
Themisto libellula	Hyperiid	0.33	0.04	26
Nezumia bairdii	Marlin-spike	0.08	0.26	27
Boreomysis sp.	Mysid	1.17	0.06	28
Meganyctiphanes norvegica	Nordic krill	0.42	0.04	29
Chionoecetes opilio	Snow crab	0.08	0.06	30
Pontophilus norvegicus	Shrimp	0.25	0.09	31
Spirontocaris lilljeborgii	Friendly blade shrimp	0.08	0.01	32
Wimvadocus torelli	gammaride	0.08	0.01	33
Stegocephalus inflatus	gammaride	0.08	0	34
Themisto compressa	Hyperid	0.08	0	35
Tmetonyx cicada	Gammarid	0.08	0.01	36
Boreomysis arctica	Mysid	0.08	0	37
-	Unidentified eggs	0.17	0	38
Paraeuchaeta norvegica	Calanoid copepod	0.08	0	39
Scina borealis	Hyperid	0.08	0	40
Decapoda	Decapod crustaceans	0.08	0	41
Hyperiidae	Hyperiidae	0.08	0	42
Percentage of empty stomachs		65.30	-	-
Number of stomachs		1199	-	-

Appendix 1. Continued.
Prey of Greenland halibut (length $<20 \mathrm{~cm}$)

Latin name	English name	$\mathrm{F}_{\text {occ }}$ (\%)	$\begin{aligned} & \mathrm{MC} \\ & (\%) \end{aligned}$	Rank PFI
Euphausiidae	Euphausid	22.45	19.2	1
Mallotus villosus	Capelin	3.27	29.41	2
Thysanoessa sp.	Euphausid	5.71	11.87	3
Pasiphaea multidentata	Pink glass shrimp	3.27	8.76	4
Themisto sp.	Hyperiid	16.73	4.85	5
Crustacea	Crustacean	7.76	4.9	6
Themisto compressa	Hyperid	7.35	3.26	7
Meganyctiphanes norvegica	Nordic krill	6.94	3.29	8
-	Unidentified digested material	6.12	3.7	9
poisson digéré	Digested fish	3.67	4.44	10
	Digested fish (except flat fish)	1.22	1.46	11
Themisto libellula	Hyperiid	2.04	1.47	12
Dendrobranchiata / Caridea	Shrimps (generic)	0.82	1.18	13
Reinhardtius hippoglossoides	Greenland halibut	0.41	0.66	14
Gammaridea	Gammaridea	0.41	0.37	15
Brachyura	Crabs	1.22	0.28	16
Melanostigma atlanticum	Atlantic soft pout	0.41	0.63	17
Pandalus borealis	Northern shrimp	0.41	0.08	18
Hyperiidae	Hyperiidae	0.82	0.09	19
Boreomysis sp.	Mysid	0.41	0.1	20
Themisto abyssorum	Hyperid	0.82	0.01	21
Percentage of empty stomachs		35.92	-	-
Number of stomachs		245	-	-

Appendix 1. Continued

Redfish preys (length $\geq 20 \mathrm{~cm}$)

Latin name	English name	$\mathrm{F}_{\text {occ }}$ (\%)	$\begin{aligned} & \mathrm{MC} \\ & (\%) \end{aligned}$	Rank PFI
Pasiphaea multidentata	Pink glass shrimp	26.58	45.18	1
Pandalus borealis	Northern shrimp	5.84	13.51	2
Sebastes sp.	Redfish	2.06	12.77	3
Arctozenus risso	Spotted barracudina (sand eel)	1.15	7.3	4
-	Digested fish (except flat fish)	1.83	3.22	5
-	Digested fish	2.75	3.3	6
Meganyctiphanes norvegica	Nordic krill	6.3	1.09	7
Dendrobranchiata / Caridea	Shrimps (generic)	6.19	1.97	8
Pandalus sp.	Shrimp	1.49	1.03	9
Crustacea	Crustacean	11.91	0.85	10
Boreomysis sp.	Mysid	9.97	1.1	11
Notoscopelus elongatus kroyeri	Krøyer's lanternfish	0.23	2.3	12
-	Unidentified digested material	2.52	1.39	13
Euphausiidae	Euphausid	4.12	0.46	14
Calanus sp.	Calanoid copepod	6.3	0.3	15
Themisto sp.	Hyperiid	8.48	0.32	16
Myctophidae	Lanternfishes	0.11	0.92	17
Melanostigma atlanticum	Atlantic soft pout	1.49	0.43	18
Calanoida	Calanoid copepod	6.3	0.18	19
Calanus hyperboreus	Calanoid copepod	4.47	0.23	20
Themisto compressa	Hyperid	3.09	0.37	21
Pandalus montagui	Striped shrimp	0.46	0.19	22
Thysanoessa sp.	Euphausid	0.57	0.3	23
Boreomysis arctica	Mysid	1.15	0.26	24
Themisto libellula	Hyperiid	0.23	0.15	25
-	Unidentified fish eggs	0.11	0.29	26
Paraeuchaeta norvegica	Calanoid copepod	2.06	0.09	27
Pleuronectiformes	Flat fish	0.23	0.23	28
Mallotus villosus	Capelin	0.11	0.09	29
Rossia sp.	Cuttle fish	0.11	0.04	30
Copepoda	Copepod	1.03	0.03	31
Themisto abyssorum	Hyperiid	1.83	0.02	32
-	Digested invertebrates	0.69	0.05	33
Pasiphaea sp.	Shrimp	0.23	0.02	34
Mysidae	Mysidae	0.23	0.01	35
Gammaridea	Gammaridea	0.23	0	36
Hyperia galba	Big-eye amphipod	0.23	0	37
Polychaeta	Polychaete	0.11	0	38
Metridia sp.	Calanoid copepod	0.34	0	39
Cumacea	Cumacean shrimp	0.23	0	40
Scina borealis	Hyperiid	0.23	0	41
Hyperiidae	Hyperiid	0.11	0	42
Amphipoda	Amphipods	0.11	0	43
Erythrops erythrophthalma	Mysid	0.11	0	44
Percentage of empty stomachs		39.86	-	-
Number of stomachs		873	-	-

Appendix 1. Continued.
 Redfish preys (length $<20 \mathrm{~cm}$)

Latin Name	English name	$\begin{gathered} \mathrm{F}_{\mathrm{occ}} \\ (\%) \end{gathered}$	$\begin{aligned} & \text { MC } \\ & \text { (\%) } \end{aligned}$	Rank PFI
Crustacea	Crustacean	21.88	12.75	1
Calanoida	Calanoid copepod	21.79	11.74	2
Themisto compressa	Hyperid	5.2	8.1	3
Calanus sp.	Calanoid copepod	13.95	12.84	4
Pasiphaea multidentata	Pink glass shrimp)	1.46	12.92	5
Meganyctiphanes norvegica	Nordic krill	4.01	6.43	6
Themisto sp.	Hyperiid	11.76	5.66	7
Euphausiidae	Euphausid	5.29	5.25	8
Thysanoessa sp.	Euphausid	1.19	3.97	9
Boreomysis arctica	Mysid	1.46	0.95	10
Boreomysis sp.	Mysid	4.47	2.33	11
Calanus hyperboreus	Calanoid copepod	10.12	5.64	12
Pandalus borealis	Northern shrimp	0.18	2.18	13
	Unidentified digested material	4.19	1.27	14
Dendrobranchiata / Caridea	Shrimps (generic)	1.64	1.94	15
Pandalus sp.	Shrimp	0.46	0.52	16
Copepoda	Copepod	1.82	0.63	17
Pandalus montagui	Striped shrimp	0.09	0.99	18
Metridia sp.	Calanoid copepod	4.1	0.52	19
Themisto libellula	Hyperiid	0.64	0.79	20
Aphroditella hastata	Polychaete	0.09	0.29	21
Scina borealis	Hyperiid	1.55	0.31	22
Aetideidae	Calanoid copepod	0.09	0.07	23
Themisto abyssorum	Hyperiid	1.28	0.42	24
Paraeuchaeta norvegica	Calanoid copepod	2.73	0.25	25
Pseudomma roseum	Mysid	0.27	0.12	26
Cumacea	Cumacean shrimp	1.46	0.06	27
-	Digested invertebrates	0.46	0.14	28
Calanus. finn. + glacialis	Copepods	0.46	0.05	29
Amphipoda	Amphipods	0.73	0.06	30
-	Digested fish	0.18	0.14	31
Hyperia sp.	Hyperiid	0.09	0.03	32
Neohela monstrosa	Gammarid	0.09	0.17	33
Gammaridea	Gammarid	0.36	0.02	34
Byblis sp.	Gammarid	0.18	0.06	35
Mallotus villosus	Capelin	0.09	0.14	36
Hyperiidae	Hyperiid	0.46	0.03	37
Hyperia galba	Hyperiid	0.09	0.07	38
Bradyidius similis	Calanoid copepod	0.64	0.01	39
Ostracoda	Ostracods	0.55	0.01	40
Metridia longa	Calanoid copepod	0.55	0.04	41
硣	Unidentified fish eggs	0.09	0.03	42
Monoculodes sp.	Gammarid	0.09	0.01	43
Pseudomma sp.	Mysid	0.09	0.01	44
Calanus finmarchicus	Calanoid copepod	0.18	0.01	45
Limacina sp.	Sea butterfly	0.18	0.01	46
Mysida	Mysid	0.09	0.01	47
Brachyura	Crabs	0.09	0	48
Metridia lucens	Calanoid copepod	0.09	0	49
Chiridius gracilis	Calanoid copepod	0.18	0	50
Invertebrata	Invertebrates	0.09	0	51
Gastropoda	Gastropods	0.09	0	52
Mollusca	Molluscs	0.09	0	53
Mysidae	Mysid	0.09	0	54
Percentage of empty stomachs		32.73	-	-
Number of stomachs		1097	-	-

[^0]: +: From 2008, the sampling was increased with the addition of strata in shallow waters (37 to 183 m) in the Estuary.

[^1]: * Exponential model : (where $\mathrm{h}=$ distance $) \quad \gamma(h)=c_{0}+c\left[1-\exp \left(-\frac{h}{a_{0}}\right)\right]$

[^2]: * Exponential model : (where $\mathrm{h}=$ distance $) \quad \gamma(h)=c_{0}+c\left[1-\exp \left(-\frac{h}{a_{0}}\right)\right]$

[^3]: * Exponential model : (where $\mathrm{h}=$ distance $) \quad \gamma(h)=c_{0}+c\left[1-\exp \left(-\frac{h}{a_{0}}\right)\right]$

