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ABSTRACT 
This document was devloped from a peer-review process in June 2018 on the development of a 
Precautionary Approach (PA) and Decision Making (DM) management framework for the 
Newfoundland and Labrador Snow Crab resource and fishery. The document highlights some of 
the history surrounding the establishment of a PA/DM framework for this fishery and presents a 
suite of models to test the efficacy of key resource status indicators as the basis for stock status 
reference points and harvest control rules. As per the role of DFO Science Branch in 
establishing PA/DM frameworks for Canadian fisheries resources, limit reference points (LRPs) 
and associated removal references for fishery exploitation are provided. A multi-indicator 
approach is applied in the assessment of the resource and development of a framework. Three 
resource and fishery metrics (egg clutch fullness, fishery catch per unit effort [CPUE], and 
fishery discards) are examined, with an underlying focus on two key principles of biological 
protection and efficient resource extraction guiding the philosophy of the approach. 
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INTRODUCTION 
Fisheries and Oceans Canada (DFO) produced guidance for development and implementation 
of Precautionary Approach (PA) and Decision Making (DM) frameworks into the management of 
fisheries resources in Canada in 2006 (DFO 2006, 2009). However, DFO has yet to adopt a 
formal PA/DM framework for the management of Newfoundland and Labrador (NL) Snow Crab 
(Chionoecetes opilio) resource and fishery. PA/DM frameworks have been implemented into the 
management of other Atlantic Canadian Snow Crab fisheries for several years (i.e. DFO 2010, 
2015). A key underlying objective of implementing a PA/DM framework is to prevent serious 
harm to aquatic resources through fishing. When scientific uncertainty about stock status 
parameters is high, management decisions are advised to err on the side of caution.  

Ultimately, nearly all iterations of PA/DM frameworks strive to develop transparent, target-based 
management of fisheries resources. Under such frameworks, stock status is assessed relative 
to pre-described indicators (‘reference points’) and management decisions are made consistent 
with prescribed harvest control rules that reflect risk tolerance relative to stock status. A typical 
PA framework entails a measure of stock size, often spawning stock biomass (SSB), in relation 
to a measure of a fishing effect, such as harvest rate. A PA/DM framework is both mandated by 
DFO and necessitated for this stock due to its Marine Stewardship Council (MSC) 
eco-certification. The NL fishery for Snow Crab received eco-certification as a sustainably 
managed resource by this certifying body in 2012, under the stipulation that a PA/DM framework 
would be implemented in the forthcoming years. 

A PA Working Group (WG) consisting of members from DFO Science, DFO Resource 
Management, and fishing industry representatives was established to address the 
implementation of a PA/DM framework into the management of NL Snow Crab in 2012. To date, 
the WG has not established a proposal satisfactory enough to proceed with implementation of a 
formal framework. The WG has advocated that the confluence of unique biological attributes of 
Snow Crab, a high level of climate regulation of the resource (Mullowney et al. 2014), and a 
stringent set of management regulations already constitutes a sufficient PA/DM framework for 
this fishery (Dawe and Mullowney 2016). A major point the WG has advanced is that the 
exploitable biomass of male Snow Crab (≥95 mm carapace width [CW]), the portion of the 
resource targeted by the fishery, is not an appropriate analog for SSB (or a similar measure of 
stock status) in a framework. The rationale for this is that current management measures and 
gear selectivity sufficiently protect virtually all females from capture and to-date have 
consistently ensured only a portion of males are retained (Fig. 1). Accordingly, the theory is that 
there is continuous safeguarding of stock reproductive capacity under current management 
practices. The WG has advised that alternate approaches from conventional biomass-based 
frameworks be pursued for the NL Snow Crab resource, such as one that strives to promote 
fishing efficiency in resource extraction.  

This document presents quantitative and qualitative analyses supporting a PA/DM framework 
for NL Snow Crab that addresses safeguarding of stock reproductive capacity as well as 
minimizing wastage in resource extraction. In alignment with the perspectives of the WG, a 
multiple-indicator approach is presented. This approach focuses on three key resource metrics 
of stock status: 

1. Female egg clutches, 

2. Fishery catch per unit of effort (CPUE); and 

3. Fishery discards.  
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All three metrics are intended to directly and indirectly address two key ideologies of biological 
protection and efficiency in resource extraction. 

In this analysis, as per policy guidance from DFO (DFO 2006, 2009), we provide bases for limit 
reference points (LRPs) for the focal metrics and guidance for upper stock references points 
(USR). Associated removal references are identified and advice on harvest control rules (HCRs) 
for sustainable exploitation of the resource is provided. 

METHODS AND RESULTS 

SPATIAL UNITS OF ASSESSMENT 
Five Assessment Divisions (ADs) based on the Northwest Atlantic Fisheries Organization 
(NAFO) divisional boundaries and conforming to those used in the annual assessments of NL 
Snow Crab are presented in the analyses (Fig. 2). The ADs extend from central Labrador in the 
north (2HJ) through coastal waters off the northeast coast of the island of Newfoundland (3K), to 
the largest AD represented by the Grand Bank (3LNO) in offshore areas off the southeast coast 
of Newfoundland. AD 3Ps occurs off the south coast of Newfoundland. AD 3L Inshore is 
assessed seperately from the broader scale offshore (i.e., AD 3LNO) due to differences in data 
availability, with multi-species trawl surveys not routinely extending into inshore bays where high 
biomass of Snow Crab occurs (Mullowney et al. 2017).  

Areas off the west coast of Newfoundland in the Gulf of St. Lawrence (AD 4R3Pn) are not 
considered in this analysis due to data deficiencies necessary to establish indices for all focal 
metrics; specifically, there is no trawl survey conducted by the NL Region of DFO, logbook 
return rates have been historically low, and there has been a virtual absence of at-sea observer 
coverage throughout the time series (Mullowney et al. 2017). This framework does not take into 
consideration stock variations between the smaller scale Crab Management Areas (CMAs) used 
to manage the fishery because data are not sufficient to conduct this analysis at such small 
spatial scales. Moreover, the CMAs are generally too small to constitue biologically meaningful 
units. The genetic stock spans all of Atlantic Canada (Puebla et al. 2008), suggesting larval drift 
dynamics are much broader in scale than the CMAs, and ontogenetic and seasonal movements 
of crab extend across CMA boundaries (Mullowney et al. 2018). 

ASSESSMENT METRICS 

Egg Clutches 
Data on egg clutch fullness in mature females captured in offshore multi-species trawl surveys 
and inshore trap surveys for Snow Crab conducted by DFO have been recorded wherever 
surveys have occurred for the past two decades. Multi-species trawl surveys have consistently 
occurred in NAFO Divisions 2J3KLNO during fall (September to December) since 1995 and in 
Subdivision 3Ps during spring (March to May) since 1996. Inshore trap surveys have occurred 
in AD 3K (White and Notre Dame Bays) since 1994 during late-August to mid-September. In AD 
3L Inshore, long-term surveys have occurred in Bonavista (late July) and Conception 
(late-September/early-October) Bays since 1979, while Trinity (early-August) and St. Mary’s 
(mid-June) Bays have been surveyed only in the most recent 4-5 years. In AD 3Ps, a trap 
survey has been conducted in Fortune Bay during early June since 2007. Further details on all 
trawl and trap surveys are available in Mullowney et al. 2017.  

From all surveys, data captured on clutch fullness of mature females are coarse grain, 
identifying subjects as either having full or partial clutches, with no finer quantification of the 
relative fullness of partial clutches. Accordingly, the clutch fullness index was treated as 



 

3 

binomial, with individuals either being ‘full’ or ‘not full’ of viable eggs. However, additional codes 
in the datasets identifying recently liberated egg clutches (i.e., trace evidence of viable eggs 
remaining) were grouped with the full clutch classification, operating under the assumption that 
the animal had recently released a viable clutch of eggs.  

Growth and reproductive aspects of Snow Crab biology are complicated. Growth is a stepwise 
process associated with molting, which ceases after a terminal molt (Conan and Comeau 1986). 
Terminal molt occurs over a broad size range of about 40–160 mm CW for males and 
30-95 mm CW for females (Sainte-Marie and Hazel 1992; Sainte-Marie et al. 1996). For males, 
sexual maturity is achieved before the terminal molt. Males become ‘morphometrically mature’ 
by growing enlarged claws upon terminally molting. A sexually but not morphometrically mature 
male is termed an adolescent. For females, the sexual and terminal/morphometric maturity molt 
occur at the same time. It takes an estimated minimum of 8–10 years for male crab to reach 
exploitable size (95 mm CW) in NL (Mullowney et al. 2017), with maximum longevity following 
terminal molt about 7–8 years (Fonseca et al. 2008), although such longevity to maximum post-
terminal molt age is likely not common.  

Reproductive dynamics suggest full clutches of viable eggs should be common in mature 
females. Mating is promiscious such that breeding females may be inseminated by several male 
partners each year (Sainte-Marie and Hazel 1992; Sainte-Marie et al. 1999, 2008). Further, 
females can store sperm to fertilize subsequent clutches of eggs (Sainte-Marie and Carriere 
1995). Under-size (<95 mm CW) adult males can successfully mate females, although largest 
adults are likely the most successful breeders in the presence of mating competition (Sainte-
Marie et al. 1999). Moreover, adolescent males may also participate in mating (Kolts et al. 
2015), although the extent to which this occurs is unknown. Finally, egg incubation time can be 
prolonged, specifically in cold conditions where females may carry eggs for up to two years 
before release (Kanno 1987, Sainte-Marie 1993), as opposed to the more common one-year 
period in warmer areas. 

Different life-history strategies between the sexes creates the potential for egg clutch levels to 
be naturally ‘dampened’; such variation depends on the state of the development ‘cycle’ of a 
given cohort (Sainte-Marie et al. 1996). For an initial example, if the population features a 
relatively high proportion of senesent females the presence of full egg clutches in mature 
females would be expected to be relatively low. As a second example, as females from any 
given cohort would be expected to reach the age of sexual maturity before males, there is 
potential for relatively low levels of successful fertilization in the paucity period before most 
males mature. However, in a healthy stock comprised of multiple mixed cohorts at any given 
size, such occurrences of low clutch fullness should be relatively infrequent. This is supported 
by perpetually high levels of egg clutch fullness across a broad spatial scale (Fig. 3). 

High proportions of females carrying less than full clutches of viable eggs is viewed as a 
potential biological concern on stock reproductive capacity through fishing. Sainte-Marie et al. 
2008 describe some of the potential implications of excessive fishing of large males as 
promoting mating of less fecund males, reducing opportunity for female mate choice, and 
increasing the likelihood of sperm limitation. They state that these changes have mixed but still 
incompletely appreciated effects on female reproductive fitness and that long-term potential for 
genetic selection against large size-at-maturity remains uncertain. Moreover, large mature 
males are important for the post-molt protection of vulnerable soft-shelled females (Rondeau 
and Sainte-Marie 2001). 

The offshore multi-species trawl surveys are known to have a low catchability for female-sized 
Snow Crab (Dawe et al. 2010). Trawl catchability is highest for largest crab on softest substrate. 
There was concern that small sample sizes of females from the trawl surveys could detract from 
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the reliability of egg clutch fullness as a metric of concern in a PA/DM framework. To account for 
this, two-year cumulative sums of each group of females (full vs. not full) were calculated before 
deriving percentages of clutch fullness. Although sample sizes were higher in inshore trap 
surveys, the same cumulative sum procedure was applied to inshore trap-captured samples for 
consistency. The greatest concern over small sample sizes of mature females is in the offshore 
trawl surveys from AD 2HJ, where the two year cumulative sum ranges from about 100-250 
animals in any given year (Fig. 4). 

There was strong consistency in levels of clutch fullness between offshore trawl-captured 
samples and inshore trap-captured samples across a broad spatial spectrum. With little 
exception, the proportion of females carrying full clutches of viable eggs has remained above 
0.6 wherever measured, with proportions above 0.8 the norm (Figs. 3, and 5). One notable 
exception to this is Fortune Bay (AD 3Ps), with the egg clutch fullness index dropping to 0.5 in 
2014 (Fig. 5). This is an area where the biomass of exploitable males and fishery CPUE have 
been low for an extended period (Mullowney et al. 2017).  

In AD 3L Inshore, the only available data on egg clutches came from localized trap surveys in 
Bonavista, Conception, Trinity, and St. Mary’s Bays, as well as off the Avalon Peninsula (Fig. 5). 
However, there were broken and disjoint time series’ across bays. To account for spatial 
differences in sampling, for final inclusion of this AD in a PA/DM framework, a stratum-area 
weighted mean was used to calculate a composite divisional estimate of egg clutch fullness 
each year. 

Fishery CPUE 
CPUE is known to reflect the relative strength of the exploitable biomass in all ADs, with the 
annual catch rate index lagged a year (i.e., trap) or two (i.e., trawl) in reflecting annual survey 
biomass estimates. Further, CPUE has also knowingly been negatively related to annual fishery 
discard levels in all ADs throughout the time series (Mullowney et al. 2017), thought to reflect an 
increased catchabilty of under-size and/or soft-shell crab in the absence of large males.  

The CPUE metric used in this framework is a predicted annual average catch per trap haul (total 
catch divided by total traps per set) based off a prediction model defined below, and not an 
instantaneous measure of CPUE at any specific point in time. Other CPUE metrics were 
considered during the peer review process, such as start of fishing season CPUE, which would 
best correlate with biomass at the start of the year, and end of year CPUE, which would 
integrate both beginning-of-year biomass and fishing effort. However, it was demonstrated at 
the peer review process that annual average CPUE was tightly correlated with both early and 
late-season point esimates for each AD.  

Although lagged annual CPUE estimates are generally consistent in reflecting annual survey 
biomass point estimates in this resource/fishery, CPUE has several potential issues when 
interpreting it as a metric of relative stock size. Along with changes in stock size, CPUE is also 
sensitive to changes in both fishing technology and spatial distributions of fishing effort (Hilborn 
and Walters 1992). Accordingly, using CPUE as an indicator may mask changes in stock size. 
In many fisheries, CPUE will decline at a slower rate than the biomass/abundance of the fished 
stock (i.e., is hyperstable; Harley et al. 2001). In NL, this phenomenon played out during the 
collapse of northern cod (Gadus morhua) in the early-1990s as fishery CPUE remained 
artifically high in some areas, reflecting hyperstability introduced by fishing on extant dense 
aggregations of fish (Rose and Kulka 1999). Hyperstability of CPUE indices in relation to stock 
size can occur both within-season as well as over prolonged time scales. For example, the 
1-2 year lag commonly observed between directional changes in annual survey biomass indices 
versus responses in annual CPUE reflects a gradual (i.e., not instantaneous) process. Annual 
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measures of CPUE also have the potential to mask the relative magnitude of the two key 
processes it reflects, the magnitude of the initial biomass and the associated extent of 
exploitation. For example, a similar annual catch rate estimate could arise from an initially dense 
population that is heavily exploited versus an initally sparse population that is lightly exploited. 
However, this outcome largely reflects one of the underlying philosophies of most PA/DM 
frameworks, which is to lower the harvest fraction when relative biomass is low and allow an 
increased harvest fraction when relative biomass is high.  

Given a suite of negative resource indicators from the most recent stock assessment (DFO 
2018) including low exploitable biomass levels, high exploitation rate indices, declining landings, 
increasing and high total mortality of exploitable crab, expected low recruitment into the 
exploitable biomass, and low CPUE, the risk of negative outcomes stemming from over-
interpretation of potentially hyper-stable CPUE could be high at-present. However, the 
relationship between CPUE and biomass is well understood in this fishery and demonstrated in 
this framework. CPUE also offers several advantages over biomass for this framework. First, 
CPUE has a longer time series than all survey series. In extension, it is also more spatially 
broad than any given survey series, with neither trawl nor trap surveys consistently covering all 
managed crab fisheries in NL. Accordingly, with no consistent source of long-term survey-based 
information from which to derive biomass for all ADs, different estimation sources are invoked 
for different ADs. Second, CPUE is directly related to population density per unit area rather 
than absolute abundance. Population density would more strongly affect local inter- and 
intraspecific interaction rates. As ADs vary substantially in overall area and the amount of each 
AD constituting crab habitat is unknown, it would be difficult to develop consistent abundance 
based reference points for each AD, whereas it is possible to develop a single reference point 
for CPUE in all ADs. Third, while CPUE does show hyperstability at high abundances in this 
fishery, the relationship between abundance and CPUE within each AD is approximately linear 
at the low abundances relevant for setting LRPs (see below). The numerous small spatial scale 
CMAs within which quotas are allocated are thought to partially safeguard against hyperstability 
at low biomass as they serve to force fishing effort to be spatially broad-based each year; 
marginal areas are consistently included in the CPUE index and the overall fishing pattern 
remains relatively constant each year.  

The framework recommends setting management decisions based on predicted rather than 
current CPUE estimates. Examination of changes between observed and predicted CPUE could 
allow the ability to detect potential interferences arising from changing technolgies or fishing 
patterns that could potentially affect the efficacy of CPUE. We also highlight that CPUE 
predictions are partially based on fishery independent biomass indices, and that communicating 
changes in biomass through the metric of CPUE is expected to elevate the level of 
understanding, trust, and ownership of this PA/DM framework as CPUE has long been a 
measure of central focus for managers and harvesters in the co-management of this fishery. It 
should be noted that complementary and independent catch rate indices are available to help 
ensure catch rate reporting remains reliable (Mullowney and Dawe 2009). 

This framework uses a series of modelling steps to address the issues identified with CPUE, 
and to develop a predictive metric of CPUE that can be used as an indicator: 

• Use a mixed effect model of instantaneous CPUE as a function of day of year, year, and 
fishing location to account for small-scale fluctuations in CPUE across time. Predicted 
values from this model are used to estimate average CPUE per year. 

• Use a depletion estimator based on instantaneous CPUE to estimate within-AD biomass for 
each year. Regress survey biomass estimates on this metric to determine AD-specific 
catchability (q) metrics.  
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• Regress average annual CPUE measures from step 1 on trawl biomass (scaled by q) from 
the prior year and lagged environmental and fishing effort measures.  

• Use the model from step 3 to generate a prediction of what AD-specific average CPUE 
should be in a given year for a given trawl biomass, environmental conditions, and fishing 
effort. 

The remainder of this section lays out these steps in detail. 

Submission of logbooks detailing time and location of fishing activities as well as the level of 
catch (tonnes) and effort (trap hauls) are mandatory in this fishery. Logbook return rates in the 
fishery are generally above 70% of the given fishing trips occurring in any AD and year and 
have been generally above 80% in all examined ADs in recent years (Fig. 6). Previous studies 
have shown that logbook catch rate indices align closely with those from other sources such as 
an electronic vessel monitoring system (Mullowney and Dawe, 2009), and there is a continuous 
time series of data available throughout the fishery from which to base analyses.  

Annual fishery CPUE estimates are standardized for time and space using a linear mixed model 
(LMM) (eq [1]). In this model, y indicates a given year, t indicates a given day, and D indicates a 
given division. 𝛼𝛼 terms indicate intercepts, 𝛽𝛽 terms indicate coefficients for specific covariates, 
the 𝜖𝜖 term indicate unmodelled error around predicted CPUE, and 𝜎𝜎2 terms indicate variances 
on random effects or the error term. The model regresses the response variable of square-root 
transformed CPUE (catch/trap haul) from individual observations (normally on a per set basis) 
against fixed effects of time, binned in 5-day intervals (𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷) and gear soak time, measured in 
days (𝛽𝛽𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆). Random effects were used to model root CPUE at the start of the season (𝛼𝛼𝐷𝐷,𝐷𝐷) 
and slopes for time effects (𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷,𝐷𝐷,𝐷𝐷) of year*CMA groupings are included in the model. The 
CMA parameter accounts for spatial variation across multiple management areas within any AD. 
The positively-skewed response variable was square-root transformed to normalize it, as 
stronger transformations such as logarithms were found to produced negatively-skewed 
distributions in some cases. Finally, the model is weighted by effort (traps). This model was 
used to predict average annual CPUE by averaging set-specific predicted values (as well as 
95% lower and upper confidence estimates) for each AD and year.  

�𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸𝐷𝐷,𝑡𝑡,𝐷𝐷 = 𝛼𝛼𝐷𝐷,𝐷𝐷 + 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷,𝐷𝐷,𝐷𝐷 ⋅ 𝐷𝐷𝐷𝐷𝑦𝑦𝐷𝐷,𝑡𝑡,𝐷𝐷 + 𝛽𝛽𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆 ⋅ 𝑆𝑆𝑆𝑆𝐷𝐷𝑘𝑘𝐷𝐷,𝑡𝑡,𝐷𝐷 + 𝜖𝜖𝐷𝐷,𝑡𝑡,𝐷𝐷 

𝛼𝛼𝐷𝐷,𝐷𝐷~𝑁𝑁(𝜇𝜇,𝜎𝜎2𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡) 

[1] 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷,𝐷𝐷,𝐷𝐷~𝑁𝑁(𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷������,𝜎𝜎2𝐷𝐷𝐷𝐷𝐷𝐷) 

𝜖𝜖𝐷𝐷,𝑡𝑡,𝐷𝐷~𝑁𝑁(0,
𝜎𝜎2𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆𝑖𝑖
𝑒𝑒𝑒𝑒𝑒𝑒𝑆𝑆𝑒𝑒𝑒𝑒

) 

Fishery CPUE has varied in all ADs throughout the time series (Fig. 7). It is generally highest in 
Divs. 3LNO and is presently at or near a two-decade low in all but AD 2HJ.  

Fishery CPUE is used to adjust survey biomass indices into comparable scales across and 
within ADs (i.e., account for differences in spatiotemporal survey catchability concerns). This is 
done through Delury depletion modelling (Delury 1947). A representative depiction of the 
method (from AD 2HJ) is shown in Fig. 8. Time-binned natural log (ln) transformed CPUE is 
regressed on cumulative fishing effort (measured as number of pots, binned into 5-day intervals) 
using a mixed effects model with a random effect for both the slope and intercept for each 
AD-year combination. Biomass is then estimated as the natural exponent (ex) of the intercept 
divided by the negative of the slope of the regression for each year-AD combination, following 
the standard Delury population estimate (Delury 1947). These start of season biomasses were 
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then compared to the prior fall trawl survey biomass indices to calculate annual catchability 
scaling factors (i.e., ‘q’s’) for the trawl survey biomass estimates. In AD 3Ps, where the survey is 
in-season, a third of the annual landings were subtracted from the estimated beginning of 
season biomass to compare with the trawl survey to derive q’s. In AD 3L Inshore, where no 
trawl survey occurs, fishery depletion-based estimates were compared with a trap-based 
biomass index developed from various DFO and collaborative trap surveys (Mullowney et al. 
2017) to derive survey q’s.  

The major point of developing the Delury (logbook) biomass estimates is to re-scale knowingly 
underestimated survey biomass estimates into near-absolute levels through adjustment q’s. A 
common q adjustment factor also brings trap and trawl survey biomass estimates into a 
common scale. Adjusted biomass is subsequently used as an input into predictive CPUE 
models and as the basis for calculating exploitation rate indices. 

To account for changing q over time within each AD, an exponential weighted moving average 
(EWMA) was calculated using the Proc Expand function in SAS. This EWMA included a 
smoothing factor of 0.3 to allow historical observations to remain influential in affecting the 
terminal value of the time series. Essentially, the EWMA q smoother is lagged in responding to 
annual changes in survey q and when there is no pattern in q in the time series the EWMA 
differs little from an arithmetic mean. The q’s used in the analysis to re-scale biomass ranged 
from 0.08 in AD 3Ps, where a spring survey occurs, to 0.86 in AD 3L Inshore, where a trap 
survey using the same gear as the fishery occurs. Several factors including vessel, substrate, 
season, and latitude all likely affect trawl survey q’s (Mullowney et al. 2017 and references 
therein). The high q in AD 3L Inshore likely reflects survey gear, with that AD being surveyed 
with the same pots used in the fishery.  

Trap survey biomass indices are less preferred than trawl survey indices as, on the broad-scale, 
they have shorter time series and are deemed to have a less representative sampling design, 
generally avoiding shallow areas. This is largely due to the inclusion of the Collaborative Post-
Season (CPS) dataset in the analyses. This survey, conducted collaboratively with the Fish, 
Food, and Allied Workers (FFAW) Union, has been designed to target deep fishing grounds 
where the fishery concentrates (Mullowney et al. 2017). This is also the case for the DFO trap 
surveys in Bonavista and Conception Bays in AD 3L Inshore prior to 2012, with the survey 
designs becoming depth-stratified after that in those bays. Despite incomplete vertical coverage, 
a strength of the CPS survey relative to the DFO trap surveys is broad spatial coverage, with 
more CMAs surveyed each year by the CPS survey.  

The AD 3L Inshore trap-based biomass index used in this analysis includes data from both the 
CPS and DFO surveys (Mullowney et al. 2017). The short time series reflects the fact that the 
CPS survey only began in most portions of AD 3L Inshore in 2004, therefore that point 
constitues the start of the biomass index time series. Nonetheless, the AD 3L Inshore trap 
survey index strongly correlates with the trawl survey biomass index from adjacent AD 3LNO 
(r2=0.93) (Fig. 9), supporting the inclusion of the AD Div. 3L Inshore trap-based biomass index 
for analysis.  

Although the depletion re-scaling method for exploitable biomass (herein termed ‘biomass’) 
estimation is generally deemed a dependable method, there are several factors that affect its 
reliability. Accordingly, final biomass estimates are not deemed absolute, rather they are 
deemed to be close to real values. First, the depletion estimation method relies on the fishery 
strongly depleting the resource. This has occurred in most ADs each year since 1999 
(Mullowney et al. 2017). Second, there are concerns that the method may slightly overestimate 
biomass due to non-linearity created by traps saturating at a moderate CPUE at the start of the 
season, when biomasses are high, and an increased rate of depletion near the end of the 
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season in some years. Further, CPUE may also increase near the end of the season as crab 
that were soft-shelled at the start of the season begin to more frequently trap (which would also 
lead to overestimating beginning-of-year biomass). The beginning and end 5% of the fishing 
effort in any given AD and season were removed prior to conducting the regression analysis to 
partially account for these issues, but it is recognized that biomass is still likely overestimated. 
This in-turn would underestimate exploitation rate indices derived and used in this study. It 
should be noted that non-linear methods of depletion-based biomass estimates are currently 
being developed to improve precision, and that exploitation rates developed and discussed as 
potential targets for harvest rates in the fishery are considered preliminary. 

We explored the ability to predict CPUE first by examining the relationship between CPUE and 
survey biomass. Annual raw survey biomass estimates were initally re-scaled by AD-specific q’s 
described above. Subsequenlty, the re-scaled annual biomass estimates were smoothed as 
two-period moving averages to account for concerns of ‘year effects’ created by inconsistent 
trawl efficiency. Such year effect concerns have been frequently raised at the stock 
assessments for NL Snow Crab (Mullowney et al. 2017). One example of their presence is that 
pre-recruit crab indices tend to be more strongly correlated with exploitable crab indices within 
year than at a lag. Moreover, it was suspected that the impact of biomass on CPUE would 
exhibit some degree of auto-correlated behaviour, with the biomass index from any given year 
resonating to affect the CPUE over a period of more than one subsequent year, particulary in 
cases where there was a strong residual component to the biomass.  

The relationship between CPUE and biomass was found to be non-linear in all ADs, reflecting 
an asymptotic shaped process (Fig. 10). Among other possibilities, this process could reflect 
trap competition or saturation. In NL, in contrast to other crab fisheries in Atlantic Canada and 
the Eastern Bering Sea of Alaska (EBSA), crab pots are tied together in long-lines (termed 
‘fleets’) and spaced close together, generally at a distance of about 45 m. To account for the 
relational shape between biomass and CPUE we fit a Type II non-linear response model of the 
form: 

[2]  𝐶𝐶�̅�𝐷,𝐷𝐷  = 𝐷𝐷𝐷𝐷 ⋅
(0.5⋅𝐵𝐵𝑖𝑖𝑆𝑆𝐵𝐵𝐷𝐷𝑠𝑠𝑠𝑠𝐷𝐷,𝑦𝑦−1+0.5⋅𝐵𝐵𝑖𝑖𝑆𝑆𝐵𝐵𝐷𝐷𝑠𝑠𝑠𝑠𝐷𝐷,𝑦𝑦−2)

1 + 𝐷𝐷𝐷𝐷ℎ𝐷𝐷(0.5⋅𝐵𝐵𝑖𝑖𝑆𝑆𝐵𝐵𝐷𝐷𝑠𝑠𝑠𝑠𝐷𝐷,𝑦𝑦−1+0.5⋅𝐵𝐵𝑖𝑖𝑆𝑆𝐵𝐵𝐷𝐷𝑠𝑠𝑠𝑠𝐷𝐷,𝑦𝑦−2)
 

Where 𝐶𝐶�̅�𝐷,𝐷𝐷 represents expected CPUE in a given AD-year for a given biomass, 𝐷𝐷𝐷𝐷 and ℎ𝐷𝐷 are 
division-specific shape parameters reflecting ‘searching efficiency’ and ‘handling time’ in the 
process and 𝐵𝐵𝐵𝐵𝑆𝑆𝐵𝐵𝐷𝐷𝐵𝐵𝐵𝐵𝐷𝐷,𝐷𝐷is the average survey biomass index in AD D in year y (Fig. 10). The 
parameters were estimated in Proc NLIN in SAS Enterprise Guide ver. 5.1.  

The AD-specific predicted value from eq. [2], 𝐶𝐶�̅�𝐷,𝐷𝐷was used as an offset term in a LMM to 
estimate final predicted CPUE (eq. [3]). This offset term serves to provide both a linkage to 
biomass and a structural parameter to shape the response variable (CPUE) in the prediction 
model. An overall type II response model with ADs pooled produced a saturation point estimate 
of 14.5 kg/trap (Fig. 11), which was subsequently used with a varieity of other CPUE metrics to 
derive reference points. The fixed effects in the CPUE prediction model were the exploitation 
rate index (ERI), the ratio of exploitable to pre-recruit males from the most recent survey (Ratio), 
and a lagged index of the North Atlantic Osciallation (NAO, measured at some lag, l). All 
parameters were treated as random effects with AD as the grouping level. As predictors were 
not centered prior to inclusion in this model, the model also included a random intercept term 
(𝛼𝛼𝐷𝐷) in addition to the offset term, to account for the fact that average CPUE would not be 
predicted to be equal to the offeset if all coeficients were set to zero. Predicted values from this 
equation are the indices to be used in the main framework. 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐸𝐸��������𝐷𝐷,𝐷𝐷 =  𝐶𝐶�̅�𝐷,𝐷𝐷 + 𝛼𝛼𝐷𝐷 + 𝛽𝛽𝐸𝐸𝐸𝐸𝐸𝐸,𝐷𝐷 ⋅ 𝐸𝐸𝐸𝐸𝐼𝐼𝐷𝐷,𝐷𝐷 + 𝛽𝛽𝐸𝐸𝐷𝐷𝑡𝑡𝑖𝑖𝑆𝑆,𝐷𝐷 ⋅ 𝐸𝐸𝐷𝐷𝑒𝑒𝐵𝐵𝑆𝑆𝐷𝐷,𝐷𝐷 + 𝛽𝛽𝑁𝑁𝑁𝑁𝑁𝑁,𝐷𝐷 ⋅ 𝑁𝑁𝑁𝑁𝑂𝑂𝐷𝐷−𝑙𝑙,𝐷𝐷 + 𝜖𝜖𝐷𝐷,𝐷𝐷 

𝛼𝛼𝐷𝐷 𝑁𝑁 𝜎𝜎𝛼𝛼

𝐷𝐷

= (𝛼𝛼�, 2) 

[3] 𝛽𝛽𝐸𝐸𝐸𝐸𝐸𝐸, = 𝑁𝑁

𝛽𝛽𝐸𝐸𝐷𝐷𝑡𝑡𝑖𝑖𝑆𝑆 𝐷𝐷 𝑁𝑁 𝜎𝜎𝐸𝐸𝐷𝐷𝑡𝑡𝑖𝑖𝑆𝑆

𝐷𝐷 𝑁𝑁

𝜖𝜖𝐷𝐷 𝐷𝐷 𝑁𝑁 𝜎𝜎𝜖𝜖

(�̅�𝛽𝐸𝐸𝐸𝐸𝐸𝐸 ,𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸2 ) 

, = (�̅�𝛽𝐸𝐸𝐸𝐸𝐸𝐸 , 2 ) 

𝛽𝛽𝑁𝑁𝑁𝑁𝑁𝑁, = (�̅�𝛽𝐸𝐸𝐸𝐸𝐸𝐸 ,𝜎𝜎𝑁𝑁𝑁𝑁𝑁𝑁2 ) 

, = (0, 2) 

The ratio of exploitable to pre-recruit males was included in the CPUE prediction model to 
account for the ‘buffering capacity’ of residual crab in the population to prevent less competitive 
pre-recruits from trapping. A priori analyses have shown that the presence of a relatively strong 
residual biomass is typically associated with increased CPUE, while a ratio skewed toward pre-
recruits is often associated with low CPUE and high discard levels (Mullowney et al. 2017). As 
there was no trawl survey in AD 3L Inshore from which to formulate an exploitable:pre-recruit 
ratio, the ratio from the adjacent AD 3LNO was used.  

The NAO is a dominant ocean climate forcing mechanism in NL (Colbourne et al. 2016) and at 
the most recent stock assessment this climate index was shown to be strongly correlated with 
future exploitable biomass in all ADs. Exploratory analyses showed strong lagged correlations 
of the NAO index with CPUE in all ADs. The NAO reflects the relative strength of atmospheric 
pressure at sea level between dominant centres in the western (Icelanic Low) and eastern 
(Azores High) north Atlantic. Under high NAO, Arctic northwesteriles prevail and the NL shelf 
experiences overall cold conditions (Petrie 2007, Colbourne et al. 2016). The NAO index data 
were obtained from the National Oceanographic and Atmospheric Association (NOAA) of the 
United States website. The NAO index used herein is a smoothed 3-period centred moving 
average of the annual NAO, which is calculated by averaging monthly values each year. 
Consistent strong cross-correlations between CPUE and NAO occurred at lags of 7-10 years in 
all ADs, with the best-fit lags used in the CPUE prediction models being 7 years in ADs 2HJ, 3K, 
3PS, 8 years in AD 3K, and 9 years in AD 3LNO. 

The CPUE prediction model reliably predicted fishery catch rates in most ADs and years 
(Fig. 12) with no strong systematic patterns in the residuals (Fig. 13). The presented predicted 
values for 2018 assumed status quo landings as the 2017 season in each AD. One notable 
period of exception of divergence between the CPUE prediction model and observed CPUE 
occurred in AD 3K in 2007-08. Reasons for this divergence are unknown. Interestingly, this 
exceptionally high level of observed CPUE and a corresponding abrupt 60% decline in the 
exploitable biomass index in that AD in 2009 have remained poorly explained by the stock 
assessment for NL Snow Crab. The biomass/CPUE increase was associated with a coincidental 
spike in pre-recruit crab abundance in the trawl survey but it was not strongly associated with 
any climate metric used to predict biomass and CPUE in the assessment in recent years 
(Mullowney et al. 2017). Reasons for other disparities in model-predicted versus observed catch 
rates such as in the mid-2000s in ADs 3LNO and 3Ps are unknown.  

Fishery Discards 
Theoretically, three key components of the Snow Crab population should comprise the majority 
of discards: females, under-size adult males, and soft-shell pre-recruit males. The inclusion of 
discards as a metric of concern in this analysis is intended to broadly safeguard all three 
biologically important components of the population from fisheries-induced mortality. Minimizing 

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml
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discards also serves to help maximize fishing efficiency through reduced handling mortality on 
crab not retained by the fishery. 

The fishery imposes mortality to crab through discarding, although exact levels are unknown. 
This constitutes both biological and economic wastage. The out-of-water environment is very 
different from the cold, dark, deep, and relatively stable environment occupied by Snow Crab. 
Time out of water, air and water temperature, wind speed, sunlight, shell hardness, and crab 
size all influence the mortality level on discarded Snow Crab (Miller 1977, Dufour et al. 1997; 
Grant 2003). Soft-shell crab are likely subject to more damage and mortality than hard-shell 
crab. Prolonged exposure on deck and dropping or throwing crab induces limb loss and also 
leads to increased mortality levels associated with catching and discarding crab (Grant 2003). A 
recent study from the EBSA predicted only about 5% mortality on discarded Snow Crab (Urban, 
2015), an estimate virtually identical to the estimate of Grant (2003) in NL Snow Crab. However, 
Grant (2003) cautioned that this low estimate was for crab subjected to best handing practices, 
specifically in the form of minimal dropping distances and little exposure time on deck, and 
showed mortality rates increased substantially under poor handling practices. Further, both 
studies featured predominately hard-shell crab and both authors cautioned that unobserved 
latent mortality is unaccounted for in their studies. It is quite likely that mortality rates are higher 
on soft-shell crab, particularly as it is common to see them floating near the surface for 
extended times following release (personal observations).  

The management of the NL Snow Crab fishery already attempts to safeguard against mortality 
imposed to soft-shell pre-recruits through discarding. A protocol was initiated in 2004 that closes 
small grids to fishing when soft-shell crab is observed to constitute 15 or 20% of the catch, 
depending on AD (Mullowney et al. 2017). Extending discard protection to female and under-
size adult males through this PA/DM framework increases the overall precaution inherent in the 
resource management. 

The only reliable source of discard data available is from at-sea observer coverage. Discard 
estimates in logbooks are deemed poor, with frequent observations of nil discards and little 
precision in existing estimates when present. However, the at-sea observer data also have 
deficiencies that stem from low and non-representative coverage. Observer coverage levels can 
be variable, but in a typical year less than 5% of the fishing trips are observed and <0.4% of the 
catch is sampled (Fig. 14). Moreover, representative spatiotemporal distribution of the limited 
coverage is often compromised by the multiple demands placed on the observer program such 
as targeted deployments for enforcement concerns or non-random deployments for imposition 
of the soft-shell protocol. 

In an attempt to account for spatiotemporal concerns in the observer data, discard percentages 
were modelled in a generalized linear mixed model (GLMM) for the most recent stock 
assessment (Eq. [4]). The binomial model with a logit link function regressed raw data from 
observations of discarded weights from individual fishing sets. The response variable was the 
ratio of discarded to total catch. Fixed effects were time (5-day bins) and soak times (days) and 
random intercepts for time in year*CMA groupings were included. As per the CPUE 
standardization model, the spatial CMA term accounts for the multiple management areas within 
each AD. Also like the CPUE model, the discard standardization model was weighted by effort 
(traps). 

𝑁𝑁𝑑𝑑𝑖𝑖𝑠𝑠𝑖𝑖𝐷𝐷𝑖𝑖𝑑𝑑,𝑡𝑡,𝐷𝐷,𝐷𝐷 = 𝐵𝐵𝐵𝐵𝐵𝐵𝑆𝑆𝐵𝐵(𝑁𝑁𝑖𝑖𝐷𝐷𝑐𝑐𝑐𝑐ℎ𝑡𝑡,𝑡𝑡,𝐷𝐷,𝐷𝐷,𝑝𝑝𝑡𝑡,𝐷𝐷,𝐷𝐷) 
[4] 𝑙𝑙𝑆𝑆𝑜𝑜𝐵𝐵𝑒𝑒�𝑝𝑝𝑡𝑡,𝐷𝐷,𝐷𝐷� = 𝛼𝛼𝐷𝐷𝑖𝑖𝑠𝑠𝑖𝑖𝐷𝐷𝑖𝑖𝑑𝑑,𝐷𝐷,𝐷𝐷 + 𝛽𝛽𝐷𝐷𝐷𝐷𝐷𝐷,𝐷𝐷,𝐷𝐷 ⋅ 𝐷𝐷𝐷𝐷𝑦𝑦𝑡𝑡,𝐷𝐷,𝐷𝐷 + 𝛽𝛽𝑆𝑆𝑆𝑆𝐷𝐷𝑆𝑆 ⋅ 𝑆𝑆𝑆𝑆𝐷𝐷𝑘𝑘𝑡𝑡,𝐷𝐷,𝐷𝐷 

𝛼𝛼𝐷𝐷𝑖𝑖𝑠𝑠𝑖𝑖𝐷𝐷𝑖𝑖𝑑𝑑,𝐷𝐷,𝐷𝐷 = 𝑁𝑁(𝛼𝛼�𝐷𝐷𝑖𝑖𝑠𝑠𝑖𝑖𝐷𝐷𝑖𝑖𝑑𝑑 ,𝜎𝜎𝛼𝛼2) 
Β𝐷𝐷𝐷𝐷𝐷𝐷,𝐷𝐷,𝐷𝐷 = 𝑁𝑁(�̅�𝛽𝐷𝐷𝐷𝐷𝐷𝐷,𝜎𝜎𝐷𝐷𝐷𝐷𝐷𝐷2 ) 
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Observers estimate discards in two ways; first by visually observing fishing activities and second 
by physically measuring crab. To maximize precision, the physical measurements were 
modelled, classifying crab that were either female, under-size, or soft-shell as discarded and 
legal-size hard-shelled males as kept. 

Discard percentages have been highly annually variable in most ADs (Fig. 15). In AD 2HJ, there 
have been two major episodes of high discarding since 1999, one during 2002-04 when the 
percentage of the catch discarded elevated to as high as 55%, and another during 2011-14 
when discards reached ≥30% in some years. In AD 3K, discards have been steadily increasing 
in recent years, reaching a level of almost 40% of the catch in 2017. In AD 3L Inshore, discards 
have been at time-series lows, below 20%, in the past four years. A similar, relatively low, level 
of <20% has occurred throughout the time series in AD 3LNO, while in AD 3Ps such low levels 
have never been observed and discards are routinely >20% of the catch and have elevated to 
an exceptionally high level of about 50% of the catch in the past two years. 

For the present analysis, we developed a predictive discard model (GLMM) toward enhancing 
the utility of advice provided from outputs of the PA/DM framework. This binomial model with a 
logit link regressed the ratio of discarded to total catch against fixed effects of CPUE, mean 
fishing week, and the exploitable biomass index from the most recent CPS trap survey. A 
random intercept was incorporated and all explanatory variables were treated as random effects 
against the subject of AD. For projections in 2018, the AD-specific projected CPUE values from 
the CPUE projection model were used and mean fishing weeks were assumed to be the same 
as 2017. For the presented discard projection (Fig. 16), status quo landings were used to 
predict the CPUE input variable. Variability about the projected means was generally high and 
model-estimated 95% confidence intervals were generally large. This could reflect many factors 
including the overall low level and sporadic nature of observer sampling. Residuals from the 
model showed no pattern in most ADs, but in recent years the model has systematically 
overestimated discards in AD 3L Inshore (Figs. 16 and 17). The performance of this model will 
need to be monitored closely in forthcoming years. Nonetheless, at present, the model is able to 
accurately predict directional trends in discards within its 95% confidence intervals in most ADs 
and years. Increased utility of observer data in the management of the Snow Crab fishery under 
this framework will likely necessitate improvements to the observer program including increased 
and more representative coverage.  

The two predictive models developed for this PA framework collectively allow for the provision of 
scenario-based management advice regarding potential outcomes for CPUE and discards in the 
subsequent year. Landings and associated exploitation rates can be varied toward probability-
based advice on potential outcomes of CPUE and discards at different levels of fishing. 

REFERENCE POINTS 

Egg Clutches 
The first approach employed in developing a proposed LRP for egg clutch proportions was 
resource recovery. We define ‘Erecovery’ as the lowest observed level of egg clutches from which 
the population has recovered to remain productive. Productive is defined as the fishery CPUE 
achieving a level of ≥5 kg/trap 8-10 years later (the expected time for a crab to grow to legal-
size). The term ‘productive’ is placed in context of the entire 1995-present period being a 
productive one for NL Snow Crab, with no exceptionally large biomasses knowingly present 
prior to then. Accordingly, although 5 kg/trap may appear low as a benchmark for some ADs, 
this is a level above which we do not suspect large-scale sustained fisheries could have been 
maintained historically during less productive times.  
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In examining both trawl and trap surveys, Erecovery was determined to be 0.61, the lower of the 
two estimates from trawl versus trap-based surveys. This is the proportion of full egg clutches 
observed in AD 2HJ during 2006 (Fig. 18), with the subsequent 2014-2016 fishery achieving a 
CPUE of 7-10 kg/trap, a level close to the long-term mean (Fig. 7). A similar low level of egg 
clutches occurred in AD 3Ps in 2002, with the subsequent 2010-12 fishery CPUE exceeding 
10 kg/trap. From the trap surveys, the lowest historical proportion of egg clutches of 0.73 in 
2005 (Notre Dame Bay) was associated with CPUEs of 4.8-6.0 kg/trap from 2013-15 (not 
shown). However, concerns have been raised regarding over-reporting of effort and under-
reporting of catch and a subsequent under-estimation of CPUE in logbooks in that CMA in 
recent years. This issue is being addressed separately. It is unknown how the recent declines in 
egg clutch fullness in the AD 3K and 3LNO trawl surveys (Fig. 18) and in the Fortune Bay and 
White Bay trap surveys (Fig. 19) will affect the future fishery but the outcomes should be 
monitored moving forward toward revision of Erecovery if need be. 

As a second approach for developing a potential LRP for egg clutches we examined the first 
and third standard deviations (sd) from the means for all observations of clutch fullness from the 
trawl and trap surveys respectively. We term this approach ‘Ehistory’. The underlying logic is 
based on the ’68-95-99.7’ rule for normal distributions, with 68% of observations falling withing 1 
sd of the mean and 99.7% of observations falling within 3 sd of the mean. Accordingly, 
observations below 3 sd would not be likely to occur by chance alone. From the analysis, 
‘Ehistory’ was determined to be 0.59 for the trawl surveys (Fig. 20) and 0.64 for the trap surveys 
(Fig. 21). By extension, the 1 sd levels were used as suggested values for upper stock 
references for egg clutches. These values were 0.79 and 0.83 for the trawl and trap surveys 
respectively (Figs. 20 and 21). 

Given the consistency across approaches and surveys, a LRP of 0.60 was proposed and 
accepted for the egg clutch fullness index and 0.80 was suggested as a benchmark for the 
USR. 

Fishery CPUE 
As a first approach for establishing a LRP for fishery CPUE we introduced the concept of 
‘Crecovery’. The definition of recovery was as per that used for egg clutches, with recovery back to 
a level of CPUE ≥5 kg/trap 9-11 years later. The logic is that the offspring of crab participating in 
breeding in any given year would be expected to be in the fishery 9-11 years later. The extra 
year in relation to egg clutches reflects the year in which the male would have inseminated the 
female, with egg development occurring in the following year. Crecovery was set at 3.3 kg/trap 
based on the CPUE in AD 2HJ in 2004 and CPUE ranging from 7.7-9.9 kg/trap from 2013 to 
2015 (Fig. 22). 

The second approach used to explore benchmarks for CPUE reference points was ‘Chistory’. This 
was defined as the 40th and 80th percentiles of annual catch rates in the fishery since 1995. AD 
3LNO was excluded from the analysis because CPUE there has been unusually high relative to 
other ADs throughout the time series. The 40th and 80th percentile approach was used as per 
recommendations from the guidance document for developing PA/DM frameworks (DFO 2009), 
with these measures being preferred targets in relation to a high level for a given metric in the 
absence of other biologically justifiable reasoning (‘the 40/80 approach’). From the analysis, the 
Chistory LRP (40th percentile) was 7.7 kg/trap and the 80th percentile associated with a USR was 
11.3 kg/trap (Fig. 23). 

A third approach employed to explore reference points for CPUE was ‘Chighlow’. For a LRP, this 
was defined as an average level across ADs from which the resource subsequently recovered. 
AD 3LNO Offshore was excluded from this analysis due to unusually high CPUE values 
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throughout the time series relative to other ADs. The Chighlow LRP was 5.0 kg/trap (Fig. 24). For a 
USR the 80th percentile of an average of the time series high value for each AD was calculated. 
This USR level was 11.1 kg/trap. 

As a fourth approach for establishing a LRP, the 40th and 80th percentiles of the modelled 
saturation point of CPUE (=14.5 kg/trap) for the period 1995-2017 was used as an index of 
‘Csaturate’. From the analysis, Csaturate was determined to be 5.8 kg/trap for the LRP (40th 
percentile) and 11.6 kg/trap for the suggested USR (80th percentile) (Fig. 25). 

The fifth approach used to explore a basis for establishing a LRP for CPUE was based on 
fishing efficiency. This index, ‘Cefficient’, was based on CPUE in relation to an index of ‘recruit per 
pre-recruit (RPP)’. RPP was deined as: 

[5] RPP = P2ma[y-1] / R2ma[y] 

Where, P2ma denotes the abundance of the two-period moving average of pre-recruit males 
(65-95 mm CW adolescents), R2ma denotes the two-period moving average of recruits (≥95mm 
CW new-shelled males), y denotes the current survey year and y-1 denotes the previous survey 
year.  

The RPP index assumes a pre-recruit male will grow into a recruit in the following one to two 
years. In reality, several factors such as skip-molting (Dawe et al. 2012) could violate this 
assumption. Nonetheless, the broad signal that emerges from the index is deemed to reflect 
relative levels of wastage in the fishery. The RPP index was positively related to CPUE in all 
ADs (Fig. 26), suggesting fishing efficiency is higher when CPUE is high. A generalized linear 
model (GLM) with a normal distribution and log link was used to model the relationship between 
RPP and CPUE. For selection of potential CPUE targets for reference points, the 40th and 80th 
percentiles of the RPP index were calculated and plotted, with the intersection points of the 
regression curve forming the basis of the LRP (CPUE=3.8 kg/trap) and suggested USR 
(CPUE=16.0 kg/trap) (Fig. 27). 

The average lower limit for CPUE across the four methods was 5.1 kg/trap. Based on 
consistency across techniques, the proposed and accepted LRP for CPUE was 5.0 kg/trap. The 
average of the USR across the three analyses was 12.5 kg/trap. We suggest  a USR of 12.5 
kg/trap to differentiate the cautious and healthy zones of the PA/DM framework. 

Fishery Discards 
Two analyses were conducted to explore bases for discard reference points, a ‘Dhistory’ analysis, 
whereby the 40th and 80th percentiles of discard levels across all ADs and years were 
calculated, and a ‘Defficient’ approach whereby the RPP index was regressed against percent 
discards.  

The ‘Dnormal’ analysis produced a 40th percentile of 18% discards and an 80th percentile of 33% 
discards, which was associated with a LRP (Fig. 28). 

A negative relationship between the RPP index and percent discards occurred in all ADs 
(Fig. 29). The intersection of the 40th and 80th RPP index percentiles along a regression curve 
produced through a GLM model (normal distribution, log link) was used to set potential 
reference points (Fig. 30). The LRP occurred at 28% discards and the USR occurred at 11% 
discards. 

Based on consistency across the two analyses, a LRP for discards at 30% was accepted and 
15% was suggested as a value for the USR. 
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HARVEST CONTROL RULES 

Removal Reference 
Harvest control rules (HCRs) normally focus on exploitation rates so several analyses were 
conducted to examine the relationships between exploitation rate indices (ERIs) and the focal 
metrics of CPUE and discards. However, prior to this we developed models to explore the 
efficacy of controlling ERIs in a DM framework. 

The NL Snow Crab resource has been strongly regulated by climatic factors for over two 
decades (Mullowney et al. 2014, 2017). Impacts of fishing have not been as clearly 
demonstrated as have the relationships between stock biomass and fishery CPUE with lagged 
climate variables. The lagged NAO has a strong positive relationship with future CPUE in all 
ADs (Fig. 31). This relationship was examined in a simple GLM (normal distribution, identity 
link), regressing CPUE against lagged NAO with all ADs pooled. The model showed a strong 
ability of the NAO to predict future CPUE (p<0.0001, Table 1), with no patterns in the residuals 
(Fig. 32) and a scaled deviance statistic of 1.02 indicating a tight fit.  

The residuals from the initial model were subsequently regressed against the ERIs, again with 
ADs and years pooled and once again in a simple GLM with a normal distribution and identity 
link. This analysis essentially investigated if ERI was an explanatory variable for differences 
between NAO-projected and realized CPUEs, with a priori knowledge that there was a negative 
relationship between the two variables in all ADs (Fig. 33). The model indicated a strong 
negative relation between ERI and departures of CPUE from NAO-projected values (p<0.0001, 
Table 2). Once again, there was no pattern in the modelled residuals and the scaled deviance 
estimate of 1.02 suggested a tight model fit. 

A simple GLM (normal distribution, identity link) incorporating the main and interaction effects of 
lagged NAO (set at seven years in all ADs) and ERI as independent variables for the response 
variable of EBI showed a strong significant interaction (p<0.001) of the two explanatory 
variables in all but AD 3L Inshore (Table 3). In the case of AD 3L Inshore, the ERI was the only 
significant main effect in the model (p<0.0001). This simple model accurately predicted 
exploitable biomass indices within 95% confidence intervals in most years in all ADs (Fig. 34).  

A simple GLM regressing CPUE on ERI showed that the relationship between CPUE and ERI 
was strongly negative (Fig. 35). GLM predicted values intersected levels suggested for CPUE 
reference points (5 and 12.5 kg/trap) at ERIs of 0.79 and 0.18, respectively. Based on historical 
data, it is observed that the resource has never been in the proposed CPUE healthy zone 
(>12.5 kg/trap). 

Clearly, the ERI of the fishery exerts a strong influence over exploitable biomass and has a 
major impact on where the fishery lies with respect to stock status zones. This supports it as a 
focal metric for harvest control rules. The impacts of the other major factor knowingly regulating 
the exploitable biomass, climate, can not be controlled. 

In exploring reference levels for ERI in harvest control rules, we initially examined the 
relationship between the residuals of NAO-predicted CPUE and ERI to determine if breaks 
occurred at any given level of exploitation that would produce positive [negative] CPUE 
residuals. The analysis showed breaks at ERI=0.21 and 0.63 for positive[negative] CPUE 
residuals (Fig. 36). We associated these two points with potential removal references at the 
LRP and USR. 

The relationship between annual change in CPUE versus ERI was next examined toward 
identifying appropriate targets for ERI in HCRs. The relationship between the two variables was 
negative in all ADs (Fig. 37), indicating that high ERIs are commonly associated with 
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subsequent reductions in CPUE. We modelled the relationship in a GLM (normal distribution, 
identity link) and looked for breaks to identify levels of ERIs that would promote no or negative 
changes in CPUE. The analysis showed that, on average, an ERI of 0.30 produced no change 
in CPUE while ERIs above 0.62 were associated with negative responses in CPUE (Fig. 38). 
We identified these as removal references to associate with the LRP and USR.  

Finally, in exploration of targets for removal reference HCRs, we examined the relationship 
between changes in discard levels and ERI. This relationship was neutral or positive in all ADs 
(Fig. 39). A GLM (normal distribution, identity link) produced a positive relationship, albeit with a 
high degree of variability associated with the expected values (Fig. 40). In identifying break 
points associated with no or positive change in discard levels, we identified ERIs of 0.20 and 
0.65, which we associated with potential removal references for the LRP and the USR.  

Given the consistency in estimates associated with a removal reference based on ERI in 
relation to NAO-projected CPUE (ERI=0.63), changes in CPUE (ERI=0.62) , and changes in 
discards (ERI=0.65), a removal reference of 0.63 ERI at the USR was recommended. A 
removal reference point of 0.24 is suggested as the maximum ERI when the resource is in the 
critical zone (i.e. at or below the LRP) based on the average estimate from the three analyses. 
These ERI removal references are tentative. Biomass estimation continues to be refined and it 
is anticipated annual point estimates will change prior to the next assessment. As such, it is 
recognized that these tentative removal references will need to be reviewed upon revision of 
biomass and subsequent ERIs prior to formal adoption of them into a PA/DM framework. 

The impacts of fishing resonate via many direct and indirect pathways in this fishery. High ERIs 
are associated with low CPUE and high discards. This reflects a deterioration of the residual 
biomass in heavily exploited areas (Mullowney et al. 2017). Perpetual high exploitation leaves 
the fishery heavily reliant on incoming recruitment each year. This is a risky approach given the 
possibility for unpredictable events to negatively affect productivity of the resource &/or 
recruitment into the exploitable biomass in any given year. Historically, areas where the fishery 
has performed best in terms of maintaining a high CPUE and low discard levels (i.e., ADs 3LNO 
and 3L Inshore) have been perpetually associated with a strong residual biomass and relatively 
low ERIs (Mullowney et al. 2017). 

No Snow Crab fishery has ever knowingly induced prolonged serious impacts to reproductive 
capacity in wild populations. However, excessive exploitation of competive mating males can 
likely lead to sperm limitation. This has been demonstrated in populations residing in tanks, 
where the removal of too many males led to sperm limitation in females (Rondeau and Sainte-
Marie 2001). Despite the inherent biological resilience created by the complex mating system of 
the species, ultimately, the probability that one male can fertilize a females lifetime production of 
eggs is small (Rondeau and Sainte-Marie 2001). Large, competitive, breeding males are an 
integral part of reproductive success of the population and sufficient protection of them in any 
PA/DM focused on biological precaution is obligatory. 

Complementary Options 
Although removal references have been proposed, various management actions that do not 
directly relate to ERI are available to reduce the risk of harm to the population. Although 
controlling ERI is a central measure likely to have direct and indirect effects on all three focal 
stock status metrics, complementary management measures relevant to the specific metrics 
used to classify the population within any given zone can be adopted. Although not considered 
an exhaustive list, potential management measures that could be adopted (or used in 
combination) for specific metrics are listed Table 4. These actions would likely help promote 
faster responses of desired outcomes than controlling exploitation rates alone. As a specific 



 

16 

example, we elaborate on increasing mesh size as a potential strategy to rapidly decrease the 
consistently high level of discards in the AD 3Ps fishery. 

AD 3Ps is a unique area in that it features an unusually high proportion of small terminally 
molted male crab in the population (Dawe et al. 2012, Mullowney et al. 2017). This is thought to 
reflect unusually small down-slope ontogenetic movements and a perpetual entrapment of crab 
in cold water, with the deep slope edges surrounding the AD too warm for inhabitation 
(Mullowney et al. 2018). This contrasts most other areas of the stock range in NL waters, where 
crab move large distances following settlement in shallow cold areas into deep warm water as 
adolescents, likely to promote increased size via molting in warm water (Mullowney et al. 2018). 
As a result of this unique situation and unusual population composition, the discards in AD 3Ps 
are commonly dominated by under-sized old-shelled males (Mullowney et al. 2017), which 
suggests they are small terminally molted adult crab. With relatively few large-size adult males 
in the population, these discarded crab are likely to be very important to mating success and 
reproductive capacity of the population in this AD. Accordingly, increased protection of these 
crab is advisable and encouraged in this PA/DM framework. The desired outcome could likely 
be quickly accomplished through an increase in regulated mesh size. 

Suggested measures of shortened or shifted seasons are intended to promote a high level of 
CPUE and low level of discards. Over the past decade seasons extending beyond June have 
typically been associated with low CPUE and high discard rates in most ADs, particularly those 
featuring little residual component to the exploitable biomass (Mullowney et al. 2017). This likely 
reflects the increased catchability of less competitive crab, such as those recently molted, in the 
absence of competition from large hard-shelled males. A recent analysis showed that from July 
to November the meat content of these soft and new-shelled crab was low (unpublished data) 
and represented a concern for efficiency in resource extraction. It also represents biological 
wastage in that it needlessly imposes elevated and likely high mortality on pre-recruits that 
would contribute to breeding in subsequent years. 

Suggested measures of depth restrictions on fishing could be beneficial in several ways. For 
example, mating is known to occur most typically over-winter and during spring in shallow areas 
(Mullowney et al. 2018). Prohibition of fishing in shallow water during spring could help protect 
spawning grounds and promote high fertilization rates. Another avenue whereby depth 
restrictions have been used in the past pertains to discards. In some inshore bays of ADs 3K 
and 3L inshore, in lieu of invoking the grid-based soft-shell protocol, deep areas have been 
closed to fishing as seasons have prolonged and soft-shell incidence been high. This practice is 
consistent with the movement dynamics of Snow Crab, whereby large adolescent males are 
known to commonly molt in deep water (Mullowney et al. 2018). 

STOCK STATUS 
The resource is assessed to be above the LRP for egg clutches in all ADs (Fig. 41). The 
resource (fishery) is above the LRP for CPUE in all but AD 3Ps. The point estimates for CPUE 
in 2018 are projected to be in the cautious zone for all but AD 3Ps. For discards, the resource 
(fishery) is assessed to be in the critical zone in ADs 3K and 3Ps and in the healthy or cautious 
zones in all other ADs. For 2018, all but AD 3Ps are projected to be in the cautious zone, with 
AD 3Ps remaining in the critical zone. 
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DISCUSSION 

SPATIAL UNITS OF APPLICATION AND DATA QUALITY ISSUES 
This multiple-indicator PA/DM framework is applied at the spatial scale of Assessment Division. 
It cannot, and should not, be appiled at the smaller spatial scales of the CMAs due to data 
deficiencies and inconsistencies with the broad spatial scales over which movement dynamics 
(Mullowney et al. 2018) and synchronous resource indicators such as CPUE (Mullowney et al. 
2017) operate. Management is advised to consider how to address the likely scenario of a given 
CMA not conforming to the stock status advice for a given AD in any given year.  

The discard data originate from at-sea observer coverage during the fishery. Data quality 
concerns stemming from the observer program are not associated with the quality of work being 
done by observers sampling crab at sea. Rather, they reflect administration of the program. The 
percentage of catch observed is at or near time-series lows in every AD, with <0.4% of the 
catch sampled. Additional observer coverage is required to more precisely identify, model, and 
predict discards. Further, representative and random coverage should be invoked whenever 
possible to ensure results that are accurate and representative of the entire AD. Moving 
forward, an assessment metric based on discards will require that sufficient and representative 
observer coverage is in place within every AD.  

Finally, it is highly advised to improve the data quality for all assessment metrics in AD 4R3Pn. 
Along with the aformentioned need for consistent at-sea observer coverage, improvements to 
the data quality in AD 4R3Pn would necessitate recording data on female egg clutch fullness 
during multi-species trawl surveys conducted by other DFO region(s) and/or the CPS trap 
survey. More stringent adherence to the licence requirement to return commercial fishing 
logbooks would also be necessary to adequately assess this AD.  

HONOURING SOUND MANAGEMENT WHILE RECOGNIZING POTENTIAL FOR 
SERIOUS HARM 
The history of the management regime for the NL Snow Crab fishery serves as testament to 
fundamentally sound management of the resource. Under historic and current management 
practices, prolonged serious or irreversable harm has never knowingly been inflicted upon the 
resource through fishing. Above all else, the large-mesh traps used in the fishery constitute a 
precautionary management measure (Dawe and Mullowney 2016). However, under the current 
regime there remains potential for serious biological harm through fishing to occur as there is no 
explicitly identified upper limit(s) on harvest rates. Further, under historic and current practices 
resource extraction has been highly inefficient for sustained periods of time as evident by very 
high episodic levels of discarding in several ADs.  

Despite the current suite of management measures being fundamentally cautious in principle, a 
PA/DM framework is beneficial. Without reference points and an associated removal references, 
there remains potential for the fishery to be exploited at exceptionally high levels and in turn for 
detrimental impacts on the reproductive capacity of the resource to emerge. Indeed, recognizing 
that ERIs currently used in the assessment likely under-estimate true levels of exploitation, it is 
realized that the NL Snow Crab fishery generally exploits the resource much more aggressively 
than most other regions where Snow Crab fisheries occur. Conservative estimates of ERIs are 
routinely >50%, particularly when biomass is low. Such high exploitation rates are well above 
those allocated for the resource in the Southern Gulf of St. Lawrence, even when it is well inside 
the healthy zone (DFO 2010), and are purposely avoided no matter the state of the resource 
along the Eastern Scotian Shelf (ESS) (DFO 2015).  



 

18 

Warm (bottom temperature) areas such as ADs 2HJ and 3K are thought to be the least 
productive for Snow Crab (Mullowney et al., 2014). Along the ESS, another such warm area, the 
resource extraction strategy is to maintain a low exploitation rate (a target of 20% ERI) at all 
times toward promoting stability and resilience in the biomass. The situation in ADs 2HJ and 3K, 
where there has been a prolonged low level of residual bioimass in the population (Mullowney 
et al. 2017) is unique relative to most fished Snow Crab populations globally. Within Atlantic 
Canada, overall broad-scale ocean warming has occurred in the past decade (DFO 2017). This 
is to the detriment of Snow Crab productivity. Nothwithstanding spatiotemporal differences in 
rates of warming both within and across regions, the fisheries for Snow Crab have been least 
stable in NL waters, where the largest (both proportional and absolute) reductions in overall 
biomass have occurred. This is associated with a comparatively aggressive extraction level.  

In recent years, exploitation rates in the biggest areas of supply (i.e. ADs 3LNO Offshore and 
Inshore) have elevated to exceptionally high levels relative to historic norms, reflecting more 
substantial reductions in the biomass than landings, and greatly increasing the potential for 
negative biological outcomes in those areas. An inability for fisheries to take quotas has been 
common in numerous CMAs in recent years. Thus, in several areas it is possible for fisheries to 
capture virtually all available exploitable males in a given year. Sperm limitation under excessive 
exploitation of large males is a real possibility. As previously mentioned, sperm limitation has 
been shown to occur in Snow Crab in tanks (Rondeau and Sainte-Marie 2001). Moreover, 
sperm limitation has been induced in wild populations of other heavily exploited male-only crab 
fisheries including Chilean mola rock crab (Metacarcinus edwardsii) (Pardo et al. 2015, 2017), 
Eastern United States blue crab (Callinecetes sapidus) (Hines et al. 2003), and Japanese 
coconut crab (Birgus latro) (Sato et al. 2010). Further, some data suggest sperm limitation may 
have occurred concomitant with the collapse of a Gulf of St. Lawrence Snow Crab population 
during the early-1990s (personal communication, Bernard Sainte-Marie). In some localized 
areas of the NL shelf where the exploitable biomass has been low in recent years, such as 
Fortune and White Bays, the proportion of mature females carrying full clutches of viable eggs 
has fallen to unusually low levels. A broad-scale monitoring program investigating for the 
presence of sperm limitation in NL Snow Crab populations is currently occurring.  

Regarding controlling ERIs, a best advised approach on being cautious in a PA/DM framework 
is to ‘stick to what has worked’, and maintain ERIs at levels that have knowingly not been 
associated with detrimental impacts to stock reproductive capacity. This includes borrowing 
information from what has worked in other regions. To allow ERIs to elevate to new or sustained 
high levels, as could potentially occur in the absence of a PA/DM framework, invokes the 
possibility of biological harm to the resource via other potential routes such as depensation.  

A second advisable approach to maintain or increase efficiency in resource extraction, and by 
extension biological protection, is to establish a strong residual biomass in the population in all 
ADs. For ADs 2HJ and 3K, in particular, this would likely necessitate reducing ERIs to levels 
below historic norms. Indeed, these ADs have been consistently fished near the upper removal 
reference level for ERI identified herein. A strong residual biomass also serves to reduce risks 
associated with unforeseen events that could negatively affect recruitment in any given year. 
For example, Taylor et al. 1993 described a scenario whereby a high incidence of skip-molting 
in the population resulted in recruitment failure and a localized fishery collapse off the Avalon 
Peninsula in the mid-1980s. They cautioned that the strategy of exploiting the biomass at 50-
60% each year should be re-examined to avoid deleterious impacts to both the resource and 
fishery in the event such anomalous events occured.  
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PRECAUTIOUS AND ADAPTIVE FRAMEWORK  
CPUE was used as a metric of relative biomass in this analysis in lieu of the exploitable 
biomass indices. Among other reasons, this was supported by the fact that CPUE is known to 
reflect survey biomass indices at a one to two year lag. Despite the historic agreement between 
the two indices, the inclusion of CPUE rather than exploitable biomass introduces flexibility into 
the PA/DM framework in the event the biomass continues to decline moving forward. 
Conventional biomass-based frameworks offer little possibility for management or harvesters to 
adapt to changing conditions when resources go into decline. In the present scenario for the NL 
Snow Crab resource, with the exploitable biomass at or near its lowest observed level since 
surveys began in all ADs, any biomass-based analysis would place the stock in or near the 
critical zone in all ADs. Invoking CPUE as a metric of relative biomass allows managers and 
stakeholders flexibility to introduce alternate measures to sustain CPUE at a relatively high 
level, even during periods of resource shortages. In this regard, this PA/DM framework enables 
a responsible fishery to adapt to changing productivity conditions associated with climate shifts, 
consistent with the adivice of the PA working group to recognize the underlying precautious 
nature of the male-only fishery in implementing a PA/DM framework. In extension of this 
flexibilty, the presence of objectives of maintaing egg clutches at a relatively high level and 
discards at a relatively low level extends the scope of precaution and efficacy of this framework 
beyond those currently used to manage Snow Crab fisheries in Canada. 

FORTHCOMING CHANGES 
Although the peer-review process and this document lay out the basis for a PA/DM framework, 
it is fully expected that some key quantitative variables will change prior to it being formally 
utilized in the management of the resource. The biomass indices for NL Snow Crab continue to 
be refined, and preliminary insights from advanced non-linear depletion techniques suggest 
current biomass indices may over-estimate absolute biomass. A consequence of this would be 
increased exploitation rate indices, thus the basis for removal reference point levels will need to 
be re-visited in the near future. The current upper removal reference level of 0.63 ERI should be 
considered preliminary. Further, in-part based on comments received following the peer review 
process, it is anticipated further work will be undertaken on both predictive models (CPUE and 
discards) prior to formal implementation of them as the basis of management advice at the next 
stock assessment meeting. This has no bearing on the currently established LRPs for CPUE 
and discards and will only affect the advice that is provided from the framework upon 
implementation versus the current demonstration phase.  
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FIGURES 

 

Fig. 1. Size frequecies of male (adult and adolescent) and female (mature and immature) Snow Crab from 
trawl surveys in Assessment Divisions 2HJ, 3K, 3LNO, and 3Ps (1995-2017). Vertical line indicates 
exploitable size (carapace width = 95 mm).  
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Fig. 2. Map depicting Assessment Divisions (shaded areas) used for the assessment of Newfoundland 
and Labrador Snow Crab. Bays where Fisheries and Oceans Canada inshore trap surveys occur are also 
identified.  
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Fig. 3. The proportion of female Snow Crab with full clutches (or recently liberated) by Assessment 
Division (data from trawl surveys). Solid line is mean and shaded area is 95% confidence limits.   
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Fig. 4. Number (black) and 2-year cumulative sums (purple) of female Snow Crab sampled during 
offshore trawl surveys by Assessment Division.
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Fig. 5. The proportion of female Snow Crab with full clutches (or recently liberated) of viable eggs by bay 
(data from inshore trap surveys). Solid line is stratum-area weighted mean and shaded area is 95% 
confidence limits.   
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Fig. 6. Annual return rates of Snow Crab logbooks (percent landings in logbook dataset) in each 
Assessment Division.  
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Fig. 7. Standardized fishery CPUE (kg/trap) based on linear mixed model (LMM). Shaded area represents 
the 95% confidence interval. Vertical dashed line in 1992 denotes the start of the cod moratorium.  
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Fig. 8. A representative depiction of the Delury depletion analysis using Assessment Division 2HJ.  
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Fig. 9. Relationship between exploitable biomass index estimated from the trawl survey (2-year moving 
average) and exploitable biomass index estimated from the inshore trap-based surveys in Assessment 
Division 3L inshore.   
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Fig. 10. The relationship between fishery CPUE (kg/trap) and exploitable biomass index (t) (a two-period 
moving average) from the trawl survey in each Assessment Division. The blue lines depict the predicted 
relationships and the shaded areas are the 95% prediction limits. Note AD 3L Inshore uses trap survey 
biomass data.  
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Fig. 11. The relationship between fishery CPUE (kg/trap) and exploitable biomass index (t) (a two-period 
moving average) from the trawl survey. The blue lines depict the predicted relationship and the shaded 
areas are the 95% prediction limits. 
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Fig. 12. Observed (thick line) versus predicted (band) CPUE by Assessment Division. Shaded areas 
depict 95% Confidence Intervals. 2018 projections assume status quo landings and fishery season dates. 
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Fig. 13. Annual residuals from the predictive CPUE model. 
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Fig. 14. The percentage of catch with observer coverage (left) and the percentage of catch sampled by 
observers (right) in each Assessment Division. Percentages made with dockside monitored landings 
totals representing the denominator.  
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Fig. 15. Standardized fishery discards based on generalized linear mixed model. Shaded area represents 
the 95% confidence interval.  
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Fig. 16. Observed (thick line) versus predicted (band) discard percentages by Assessment Division. 
Shaded areas depict 95% confidence intervals. 2018 projections based on projected CPUE and assume 
status quo trap soak times. 
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Fig. 17. Annual residuals from the predictive discards model.  
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Fig. 18. Proportion of females carrying full or recently liberated clutches of viable eggs in relation to 
Erecovery LRP, by Assessment Division. Data from multi-species trawl surveys. Shaded areas are 95% 
confidence intervals.  
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Fig. 19. Proportion of females carrying full or recently liberated clutches of viable eggs in relation to 
Erecovery LRP, by bay. Data from inshore trap surveys. Shaded areas are 95% confidence intervals.  
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Fig. 20. Proportion of females carrying full or recently liberated clutches of viable eggs in relation to 
Ehistory limit reference and upper reference points, by Assessment Division. Data from multi-species 
trawl surveys. Shaded areas are 95% confidence intervals.  
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Fig. 21. Proportion of females carrying full or recently liberated clutches of viable eggs in relation to 
Ehistory limit and upper reference points, by bay. Data from inshore trap surveys. Shaded areas are 95% 
confidence intervals.  
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Fig. 22. Fishery CPUE in relation to Crecovery LRP, by Assessment Division.  
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Fig. 23. Fishery CPUE in relation to Chistory limit and upper reference points, by Assessment Division. 



 

46 

 
Fig. 24. Fishery CPUE in relation to Chighlow limit and upper reference points, by Assessment Division. 
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Fig. 25. Fishery CPUE in relation to Csaturate limit and upper reference points.  
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Fig. 26. Fishery CPUE in relation to recruit-per-pre-recruit index, by Assessment Division. Data 
standardized in line plots in left panels and unstandardized data used in scatter plots and linear 
regressions in right panels.  
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Fig. 27. Fishery CPUE limit and upper reference points based on Cefficient analysis. Shaded area depicts 
95% confidence intervals from regression model.  
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Fig. 28. Fishery discards in relation to Dhistory limit and upper reference points, by Assessment Division. 
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Fig. 29. Fishery discards in relation to recruit-per-pre-recruit index, by Assessment Division. Data 
standardized in line plots in left panels and unstandardized data used in scatter plots and linear 
regressions in right panels. 
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Fig. 30. Fishery discard limit and upper reference points based on Defficient analysis. Shaded area 
depicts 95% confidence intervals from regression model.  



 

53 

 
Fig. 31. Fishery CPUE in relation to lagged NAO index, by Assessment Division. Data standardized in line 
plots in left panels and unstandardized data used in scatter plots and linear regressions in right panels. 
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Fig. 32. Boxplot of residuals from CPUE versus lagged NAO regression model. 
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Fig. 33. Residuals from observed versus NAO-predicted CPUE in relation to exploitation rate indices, by 
Assessment Division. Data standardized in line plots in left panels and unstandardized data used in 
scatter plots and linear regressions in right panels. 
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Fig. 34. Exploitable biomass indices for trawl-surveyed Assessment Divisions based on generalized linear 
model incorporating lagged NAO and annual exploitation rate indices. Thin brown lines are observed 
biomass, thick brown lines are model-predicted biomass and shaded areas are 95% confidence intervals 
from the model.  
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Fig. 35. Fishery CPUE in relation to exploitation rate indices. Regression line from generalized linear 
model. Shaded area is 95% confidence intervals. Vertical coloured lines depict exploitation rate levels 
where the regression curve intersects limit (red) and upper (green) reference point levels for CPUE. 
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Fig. 36. Residuals of observed versus NAO-predicted CPUE in relation to exploitation rate indices. 
Regression line from generalized linear model. Shaded area is 95% confidence intervals. Horizontal black 
line shows zero value for residuals. Vertical coloured lines depict arbitrary exploitation rate levels where 
positive, neutral, and negative residuals would be likely to occur. 



 

59 

 
Fig. 37. Annual percentage change in fishery CPUE in relation to exploitation rate indices, by Assessment 
Division. Data standardized in line plots in left panels and unstandardized data used in scatter plots and 
linear regressions in right panels. 
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Fig. 38. Annual percentage change in fishery CPUE in relation to exploitation rate indices. Regression 
line from generalized linear model. Shaded area is 95% confidence intervals. Horizontal black line shows 
zero value for change in annual CPUE. Vertical coloured lines depict arbitrary or regression model 
intersection points for exploitation rate indices where negative (red) or no (green) change in CPUE would 
be expected to occur. 
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Fig. 39. Annual percentage change in fishery discards in relation to exploitation rate indices, by 
Assessment Division. Data standardized in line plots in left panels and unstandardized data used in 
scatter plots and linear regressions in right panels. 
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Fig. 40. Annual percentage change in fishery discards in relation to exploitation rate indices. Regression 
line from generalized linear model. Shaded area is 95% confidence intervals. Horizontal black line shows 
zero value for change in annual discard levels. Vertical coloured lines depict arbitrary or regression model 
intersection points for exploitation rate indices where positive (red) or no (green) change in discard levels 
would be expected to occur. 
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Fig. 41. Stock status in relation to proposed metrics and reference point levels for the PA/DM framework 
(egg clutches left panels, CPUE middle panels, discards right panels). Note projected 2018 CPUE 
assumes status quo landings and season dates while projected 2018 discards assume status quo soak 
times.  
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TABLES 

Table 1. Generalized linear model output for CPUE versus lagged NAO - Analysis of Maximum Likelihood 
Parameter Estimates.  

Parameter DF Estimate Standard 
Error 

Lower 
95% CL 

Upper 
95% CL 

Wald Chi-
Square 

PR> 
ChiSq 

Intercept 1 9.4146 0.3136 8.7999 10.0292 901.19 <.0001 

Nao 1 6.2388 1.164 3.9574 8.5201 28.73 <.0001 

Scale 1 3.2703 0.2156 2.8739 3.7215 - - 

Table 2. Generalized linear model output for CPUE versus exploitation rate index - Analysis of Maximum 
likelihood Parameter Estimates.  

Parameter DF Estimate Standard 
Error 

Lower 
95% CL 

Upper 
95% CL 

Wald Chi-
Square 

PR> 
ChiSq 

Intercept 1 3.5264 0.5378 2.4722 4.5805 42.99 <.0001 

Nao 1 -8.4724 1.1724 -10.7702 -6.1747 52.23 <.0001 

Scale 1 2.6633 0.1902 2.3154 3.0635 - - 
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Table 3. Generalized linear model output for Exploitable Biomass Index in relation to lagged NAO and 
annual exploitation rate indices, by Assessment Division - Analysis of Maximum Likelihood Parameter 
Estimates 

2HJ 

Paramet
er DF Estimate Standard 

Error 
Lower 

95% CL 
Upper 

95% CL 

Wald 
Chi-

Square 

Pr > Chi
Sq 

Intercept 1 10560.33 1351.547 7911.345 13209.31 61.05 <.0001 

eri 1 -10939.8 2676.496 -16185.7 -5694.01 16.71 <.0001 

nao 1 31345.74 4201.798 23110.37 39581.12 55.65 <.0001 

eri*nao 1 -48626.4 9569.627 -67382.5 -29870.3 25.82 <.0001 

Scale 1 2089.984 315.0769 1555.319 2808.448 - - 

3K 

Parameter DF Estimate Standard 
Error 

Lower 
95% CL 

Upper 
95% CL 

Wald 
Chi-

Square 
Pr > ChiSq 

Intercept 1 39103.01 4169.716 30930.52 47275.5 87.94 <.0001 

eri 1 -29935.5 7227.548 -44101.2 -15769.8 17.16 <.0001 

nao 1 68503.82 12595.79 43816.53 93191.11 29.58 <.0001 

eri*nao 1 -77873.7 22494.86 -121963 -33784.6 11.98 0.0005 

Scale 1 5446.754 821.1291 4053.352 7319.16 - - 

3LIN 

Parameter DF Estimate Standard 
Error 

Lower 
95% CL 

Upper 
95% CL 

Wald 
Chi-

Square 
Pr > ChiSq 

Intercept 1 29710.99 2151.416 25494.3 33927.69 190.72 <.0001 

eri 1 -25910.3 6296.123 -38250.5 -13570.1 16.94 <.0001 

nao 1 -14278.5 8283.92 -30514.7 1957.664 2.97 0.0848 

eri*nao 1 30838.73 18427.15 -5277.83 66955.29 2.8 0.0942 

Scale 1 991.6983 194.488 675.2199 1456.512 - - 
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3LNO 

Parameter DF Estimate Standard 
Error 

Lower 
95% CL 

Upper 
95% CL 

Wald 
Chi-

Square 
Pr > ChiSq 

Intercept 1 352077.3 16872.91 319007 385147.6 435.41 <.0001 

eri 1 -1029829 118512.4 -1262109 -797549 75.51 <.0001 

nao 1 343989.8 37418.48 270651 417328.7 84.51 <.0001 

eri*nao 1 -1532664 189213.6 -1903516 -1161812 65.61 <.0001 

Scale 1 31917.36 4811.723 23752.18 42889.45 - - 

3PS 

Parameter DF Estimate Standard 
Error 

Lower 
95% CL 

Upper 
96% CL 

Wald 
Chi-

Square 
Pr > ChiSq 

Intercept 1 27134.77 3097.453 21063.88 33205.67 76.74 <.0001 

eri 1 -29016.6 6195.504 -41159.6 -16873.7 21.94 <.0001 

nao 1 54661.32 8315.223 38363.78 70958.86 43.21 <.0001 

eri*nao 1 -69565.4 16018.33 -100961 -38170 18.86 <.0001 

Scale 1 4129.883 669.9555 3005.07 5675.719 - - 

Table 4. Suggestions for management controls to incorporate into harvest control rules to address 
negative outcomes in each framework assessment metric. 

Egg clutches CPUE Discards 

- Reduce exploitation 
rate index 

- Fishing depth 
restrictions 

 

- Reduce exploitation 
rate index 

- Shorten or shift 
fishing season 

 

- Stricter soft-shell encounter 
protocol rules 

- Shorten or shift fishing season 
- Gear modifications to reduce 

catches of small individuals 
- Increase soak times 
- Fishing depth restrictions 
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