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ABSTRACT 
The eastern Scotia Shelf Shrimp fishery has been ongoing since the early 1980s, although the 
fishery’s contemporary history began with the introduction of the Nordmøre grate in 1991, which 
allowed the fishery to overcome bycatch limitations. Salient aspects of the species’ and stock’s 
biology and ecology are reviewed to support a detailed description of the diverse data streams 
that have been used in the provision of science following a multiple indicator Traffic Light 
Analysis for nearly a quarter-century. The details of the collaborative Fisheries and Oceans 
Canada (DFO)-Industry survey, which is entering its twentieth in 2015, are provided. This 
includes survey history and design, comparative fishing experiments, trawl mensuration 
methods for the estimation of total biomass and catch composition, which provides the data that 
are the basis of the many fishery-independent Traffic Light indicators. The details of the 
collection and analysis of commercial catch rate and catch composition data are also provided. 
The holistic manner in which these primary indicators of stock abundance and composition, as 
well as supporting ecosystem indicators, are analysed annually to provide science advice for 
adaptive Total Allowable Catch (TAC) adjustments in the new biennial assessment schedule are 
described. Despite its long track record of the provision of science advice for the highly 
successful co-management of this stock, the Traffic Light method has been subject to two 
important criticisms since its inception: the lack of defined quantitative outcomes based on the 
indicator values, and the lack of quantitative projections. These limitations are explored in detail 
and options are discussed to address them. The deterministic harvest control rule model 
discussed herein to provide a range of TAC advice yields relatively conservative quota advice 
that is generally consistent with the successful and conservative management history of this 
stock, except at high biomass, where it allows for higher exploitation than this conservative 
fishery has historically opted for. Its principle benefit is that it provides clear and conservative 
management guidance at low to moderate biomass levels (i.e. Critical and Cautious zones), 
where this fishery had very little contemporary experience. In addition to the higher (than 
historical) exploitation rates at high abundance resulting from this deterministic linkage of 
harvest advice to biomass indices, this method would risk losing the inclusivity and flexibility that 
has resulted in effective collaboration between science, management and stakeholders to guide 
this fishery towards a profitable and sustainable exploitation strategy for so long.  Indicator 
weighting is necessary for deterministic harvest control rules and continues to be a serious and 
perhaps insurmountable problem with this approach. The results of a Bayesian state space 
biomass dynamic model is reviewed as a means to provide quantitative stock projections based 
on the relationship between variations in biomass as a function of previous biomass and other 
population specific parameters. All three biomass indicator series yield implausible biomass and 
parameters estimates, particularly those derived from a very low modelled carrying capacity 
(less than half of the historical survey biomass index values). The model assumptions, which 
this and most other shrimp stocks tend to seriously violate, are discussed. There has been no 
detectable influence of fishing mortality on biomass variation in the very conservatively exploited 
Scotian Shelf Shrimp stock. It is proposed that science advice for the eastern Scotian Shelf 
Shrimp fishery should continue to be provided by the holistic combination of qualitative and 
quantitative interpretations of data in the Traffic Light Analysis that has proven so successful. 
Quantitative analysis of biomass indicators, corroborated by a suite of other shrimp stock and 
ecosystem data, coupled with qualitative projections based tracking year classes in survey and 
commercial length frequencies now has a long track record of transparent and inclusive co-
management of this stock, and there is no reason to change this. Future research efforts should 
focus on continued validation and refinement of the Traffic Light indicators rather than the 
identification of deterministic harvest control rules or quantitative projection methods. 
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Crevette nordique (Pandalus borealis) de l’est du plateau néo-écossais de 2015 

RÉSUMÉ 
On pêche la crevette nordique de l’est du plateau néo-écossais depuis les années 1980, bien 
que l’historique contemporain de la pêche ait débuté avec l’introduction de la grille Nordmore en 
1991, ce qui a permis à la pêche de surmonter les limites des prises accessoires. Des aspects 
importants relatifs à la biologie et à l’écologie des espèces et des stocks sont examinés afin de 
contribuer à une description détaillée des flux de données divers qui ont servi à la transmission 
d’avis scientifiques à la suite d’une analyse des indicateurs multiples des feux de circulation 
depuis près d’un quart de siècle. On présente les détails de l’étude conjointe de Pêches et 
Océans Canada (MPO) avec l’industrie, qui entamait sa vingtième année en 2015. Ils 
comprennent l’historique et la conception de l’étude, des expériences de pêche comparatives, 
des méthodes et du dimensionnement des chaluts pour l’estimation de la composition totale de 
la biomasse et des prises, ce qui fournit les données sur lesquelles reposent de nombreux 
indicateurs de feux de circulation indépendants des pêches. On fournit également les détails 
relatifs à la collecte et à l’analyse des données sur le taux de prises commerciales et la 
composition des prises. La manière holistique avec laquelle ces indicateurs primaires de 
l’abondance et de la composition des stocks, et les indicateurs des écosystèmes à l’appui, sont 
analysés annuellement afin de fournir un avis scientifique pour les rajustements adaptatifs du 
total autorisé des captures (TAC) dans le nouveau calendrier d’évaluation biennal sont décrits. 
Malgré les longs antécédents de transmission d’avis scientifiques sur la cogestion très réussie 
de ce stock, la méthode des feux de circulation a fait l’objet de deux critiques importantes 
depuis ses débuts : le manque de résultats quantitatifs définis reposant sur les valeurs des 
indicateurs, et le manque de projections quantitatives. On explore ces limites en détail et 
discute des options en vue de les examiner. Le modèle déterministe de règle de contrôle de la 
capture dont il est question dans les présentes, dans le but de dispenser divers conseils sur le 
TAC, offre des conseils relativement conservateurs sur le quota qui concordent généralement 
avec l’historique de gestion réussi et conservateur de ce stock, sauf dans le cas d’une 
biomasse élevée, qui permet une plus vaste exploitation que cette pêche conservatrice a 
historiquement choisie. Son principal avantage vient du fait qu’il fournit des directives de gestion 
claires et conservatrices à des niveaux de biomasse qui varient de faibles à moyens (c.-à-d. des 
zones critiques et prudentes), dans lesquels cette pêche n’avait que peu d’expérience 
contemporaine. Outre les taux d’exploitation plus élevés (que les taux historiques) en période 
de grande abondance découlant de ce lien déterministe de l’avis sur la récolte des indices de la 
biomasse, cette méthode risquerait de perdre l’inclusivité et la flexibilité qui a abouti à la 
collaboration efficace de la science, de la gestion et des intervenants pour guider les pêches 
vers une stratégie d’exploitation rentable et durable depuis si longtemps. Le poids de 
l’indicateur est nécessaire pour obtenir des règles de contrôle des récoltes déterministes et 
continue de représenter un problème majeur, voire insurmontable, avec cette approche. On 
examine les résultats de la modélisation de la dynamique de la biomasse du modèle bayésien 
de type état-espace en tant que moyen de fournir des projections quantitatives sur les stocks 
qui reposent sur la relation entre les variations de la biomasse comme une fonction de la 
biomasse précédente et d’autres paramètres précis de la population. Les trois séries 
d’indicateurs de la biomasse donnent des estimations peu vraisemblables de la biomasse et 
des paramètres, particulièrement celles dérivées d’une très faible capacité de charge (moins de 
la moitié des valeurs historiques de l’indice de la biomasse exploitable). Nous discutons des 
hypothèses relatives au modèle, que ces stocks et la plupart des autres stocks de crevettes ont 
tendance à enfreindre gravement. Aucune influence de la mortalité de la pêche n’a été détectée 
sur la variation de la biomasse dans le stock de crevettes nordiques de l’est du plateau néo-
écossais exploité de façon très conservatrice. Nous proposons l’apport continu d’avis 
scientifiques par la combinaison holistique d’interprétations qualitatives et quantitatives des 
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données dans l’analyse des feux de circulation qui se sont révélées un grand succès. Une 
analyse quantitative des indicateurs de la biomasse, corroborée par une série d’autres données 
sur le stock et l’écosystème de la crevette, jumelée à des projections qualitatives fondées sur la 
surveillance des classes d’âge dans les études et les fréquences des longueurs commerciales, 
a maintenant un long historique de cogestion transparente et inclusive de ce stock, et aucune 
raison ne justifierait un changement. Les efforts futurs déployés dans la recherche devront être 
axés sur la validation continue et le peaufinage des indicateurs de feux de circulation plutôt que 
sur la désignation de règles de contrôle de récolte déterministes ou de méthodes de projection 
quantitative. 
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INTRODUCTION 
Science advice for the eastern Scotian Shelf (ESS) Shrimp stock is provided to set a new quota 
on an annual basis.  A full stock assessment is performed every other year, generating a 
Research Document and Science Advisory Report.  In the intervening years, interim advice is 
provided in the form of a Special Science Response at a smaller meeting.  A framework meeting 
is scheduled to take place approximately every five years for this stock.  The purpose of this 
framework is to thoroughly review and critically assess the background information and the 
stock assessment methodology for the ESS Shrimp stock. 

BIOLOGY AND ECOLOGY 
The biology of Northern (pink) Shrimp, Pandalus borealis (hereafter “shrimp”), is reviewed in 
Shumway et al. (1985) for various stocks world-wide, and by Koeller (1996, 2000, 2006) and 
Koeller et al. (2000a, 2003b) for the ESS stock. The above references provide a very thorough 
review. Salient points for this framework, which derive from the body of literature above, unless 
otherwise noted, are given below. 

Shrimp have a discontinuous circumboreal distribution mostly north of the 46th parallel, 
depending mostly on temperature, salinity, substratum and depth. Shrimp are stenohaline, 
preferring high salinity, and are found at temperatures ranging from -1.6 to 12ºC, although most 
commonly from 0 to 5ºC. Extended periods of exposure to -1ºC or colder have resulted in mass 
mortality events. Shrimp prefer a soft mud or sand/silt bottom and their occurrence is strongly 
correlated with organic content of the bottom sediments. Depth preferences vary with latitude, 
with higher densities occurring at greater depths at higher latitudes than they do in southern 
parts of the species’ range. Although they have been reported from water as deep as 1450 m, 
shrimp are most common between 50-500 m, especially on soft muddy bottoms from 10-300 m. 
Shrimp also undergo diurnal vertical migration, such that catch rates decrease with a bottom 
trawl at night and shrimp are sometimes seen at the surface at night. In general, female shrimp 
migrate inshore to release larvae, although this is less true on the ESS than in some other parts 
of the species’ range (e.g. Gulf of Maine (GoM)). 

Shrimp are protandrous hermaphrodites, and the interaction of habitat conditions, primarily 
temperature, with growth and the timing (age) of various life history transitions can have 
profound effects on the species’ population dynamics. Sex transition to female generally takes 
place earlier in southern populations. In general, in warmer temperatures shrimp grow more 
quickly, undergo sex transition at a younger age (fewer years as males) and are less long-lived 
than in colder temperatures. However, density and total mortality are also thought to influence 
sex transition, with shrimp delaying changing sex when density is high (i.e. when there are lots 
of females, it is a good strategy to remain male) and changing sex at a younger age when adult 
mortality rates are high (i.e. when female abundance is declining, it is a good time to change 
sex to replace them). 

Shrimp spawn in the summer or fall. They mate within 36 hours of moulting and fecundity, which 
is directly related to body size, ranges from 600-4900 eggs. Fertilized eggs remain attached to 
the female until they hatch in the spring. The occurrence of a pernidian parasite (known as 
“white eggs”) can reduce fecundity. After hatching, larvae feed for 3-4 months in the water 
column before settling to the bottom. Recruitment processes have proven very difficult to define 
for shrimp, which has important implications for stock assessments and the provision of harvest 
advice. 

Although there are no known direct methods for estimating natural mortality (M), it is thought to 
be generally high, especially that of females after spawning.  Principle factors affecting M 
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include predation by diverse fishes, temperature anomalies and food supply for juveniles. 
Important predators of shrimp include Cod, various flatfish, Silver Hake, Redfish and halibut. 

Shrimp on the Scotian Shelf and in the GoM are at the southern extreme of the species’ range 
(concentrated north of 46N), and by inference at the extreme of the species ecological and 
physiological limits (Koeller 1996). Although temperatures over a wide area of the Scotian Shelf 
are suitable for shrimp, smaller areas of suitable habitat on the ESS define the limits of the 
commercially important population. Most of the groundfish species on the ESS feed on 
crustaceans at some point in their lives, and shrimp have often been identified as important 
parts of the diets of Cod, Silver Hake, Greenland Halibut, Redfish and various flatfish (Shumway 
et al.1985). Koeller’s (1996) analysis of environmental and ecological factors identified important 
differences between the GoM, western Scotian Shelf (WSS) and the ESS, including inshore 
areas of the Scotian Shelf where exploratory trap fisheries were ongoing. He found that the ESS 
contained by far a much higher proportion of preferred temperature and bottom habitat than the 
WSS, where generally unfavourable temperatures resulted in variable and short-lived 
commercially viable populations. Similarly marginally suitable temperatures were invoked to 
explain the relatively unstable stock in the GoM, which fluctuates a lot based on temperature 
anomalies and fluctuations in predator abundance. Overall, trends in shrimp stocks on the WSS 
track the GoM while the ESS shrimp stock is different. In particular, ESS shrimp are 
concentrated on relatively small areas of suitable habitat in a broad area of suitable 
temperatures, and so are less prone to temperature-induces crashes as seen in the GoM. 
Because temperatures are broadly suitable on the ESS, and depth is of lesser importance, 
predation appears to have a strong effect on shrimp abundance trends. 

Shrimp migration patterns also differ significantly between stocks, mostly because of differences 
in temporal and spatial availability of suitable substrate and temperature combinations. For 
example, temperatures on deepwater habitats are perennially suitable for shrimp in 
Newfoundland, so inshore migrations are not observed. By contrast, in the GoM, deep water 
temperatures get too warm in the fall, so shrimp come inshore to spawn, and return to deep 
water in the spring. The same is true of the central and WSS, where deep water temperatures 
exceed the upper thermal limit for shrimp, resulting in a winter inshore migration similar to the 
GoM (e.g. between Roseway Basin and Mahone Bay). On the ESS, females and juveniles are 
found both inshore and offshore, suggesting that spawning takes place in both areas. This 
reflects the fact that ESS temperatures are near the shrimp’s lower limit throughout the year, so 
stock components can stay inshore and offshore at high densities perennially. One exception to 
this is that it becomes too cold for shrimp in Chedabucto Bay in some years in the late 
winter/spring, so shrimp move offshore to deeper/warmer water in those instances. This 
difference is evident in winter trap fishery catches, with Mahone Bay experimental trappers 
catching mostly ovigerous females, while the ongoing commercial Chedabucto Bay trap fishery 
catches all life stages. 

Several factors suggest that a high degree of precaution is warranted for the provision of 
sustainable harvest advice for ESS shrimp. First, the concentration of this stock on small areas 
of mud substrates makes local overfishing a potential concern. If this occurred, it is unlikely that 
the ESS could be reseeded from the next upstream stock in the Northern Gulf of St. Lawrence. 
Furthermore, the highly dynamic hydrogeographic regime, with horizontal tides and larval 
retention gyres larger than the area of suitable habitat, suggest that a high percentage of larvae 
settle on unsuitable habitat, or currents carry larvae from the ESS to unsuitable habitats to the 
west, which are not very far away. As a result, this stock may experience high larval mortality 
and be vulnerable to recruitment overfishing, in which case harvest strategies that maintain a 
higher Spawning Stock Biomass (SSB) would be prudent, relative to other stocks where 
reseeding from other stocks is more likely (e.g. Newfoundland). 
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Shrimp on the ESS are generally represented by six year classes – the first four as juveniles 
and males/transitionals followed by one primiparous female and one multiparous female year 
class (Koeller et al. 2000a). Under certain conditions, particularly when influenced by a 
particularly abundant year class, ESS shrimp appear to be able to live up for several more years 
(e.g. 2001 year class; Koeller et al. 2011). 

Koeller (2006) reviewed available information on growth and stage structure in ESS shrimp. He 
found that only ages 2 and 3 are reliably identifiable length modes for many stock, despite living 
up to as much as 8 years. Although older age classes are difficult to differentiate based on 
length modes, they can be differentiated as being primiparous or multiparous based on sternal 
spines, which provides a useful means to roughly differentiate year classes (generally 5 and 6 
year olds). Based on this work, Koeller found that size at sex transition and maximum size were 
largely determined by growth rate, rather than density, with faster growing shrimp in warm 
conditions changing sex earlier and reaching a smaller maximum size due to decreased 
longevity. When colder, and when density is high, they grow more slowly, change sex later and 
live longer, reaching a larger maximum size. Longevity was largely determined by the number of 
male age classes, achieved by protracting or abbreviating the male period before sex transition 
depending on growth rate, as determined by temperatures, metabolism and density effects. 

Size at sex transition is an important life history parameter for stock assessment because of the 
demographic consequences of the relationship between body size and fecundity. While slow 
growing shrimp take longer to become female, they produce more eggs once they do. 
Conversely, although fast growing shrimp become female and begin producing eggs sooner, 
they are also less fecund. A further important consideration, especially for the provision of 
qualitative “projections” based on length-frequency tracking, is that only part of very large year 
classes will change sex each year. 

Koeller (2006) invoked these linkages between environment, growth rate, age/size at sex 
change, longevity and maximum size to explain the invariant nature of the ratio of size at sex 
transition and maximum size in ESS and other shrimp stocks (i.e. Charnov’s rule; Charnov and 
Skúladóttir 2000). When it is cold, growth slows, and both size at sex transition and maximum 
size increase. Conversely, when it is warm, growth is faster, and both size at sex transition and 
maximum size decrease. Because the environment affects the growth rates of all age classes, 
and because it is growth rate that determines size/age at sex transition, Charnov’s rule holds. 
Temperature is also relevant to shrimp population dynamics as a linkage between the 
ecosystem and shrimp life history. Koeller at al. (2009) showed that colder bottom temperatures 
increase egg incubation times resulting in later hatching times, which are closer to favourable 
spring growing conditions (warmer surface water and spring phytoplankton bloom). 

FISHERY 
Although there has been some shrimp fishing on the Scotian Shelf since the 1960s, the Nova 
Scotia fishery began to expand toward its full potential only when groundfish bycatch restrictions 
were overcome with the introduction of the Nordmøre grate in 1991 (Figure 1). The total 
allowable catch (TAC) was first reached in 1994, when individual Shrimp Fishing Area (SFAs) 
quotas were removed. The TAC was raised to 3600 mt for 1997 and to 3800 mt for 1998 in 
response to high biomass and good recruitment. The TAC was increased to 5000 mt in 1999 
and to 5500 mt in 2000 due to the maintenance of high SSB and the recruitment of several large 
year classes (1993-1995) to the fishery. As those strong year classes completed their life cycle, 
survey biomass began to decrease, exploitation rates increased and the distribution of the 
resource began to change, triggering a TAC decrease to 5000 mt for 2001 and to 3000 mt for 
2002 and 2003. Following the first survey index increase in 3 years during the 2003 survey, the 
TAC was raised to 3500 mt. Although the belly-bag index was still a relatively new data series at 
that point, the continuation of a detectable signal from the very strong 2001 year class 
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suggested that the stock would continue to increase, and the 2004 survey biomass was the 
highest on record, so the TAC was raised to 5000 mt for 2005. The TAC was kept at 5000 mt for 
the 2006-2008 fisheries due to the maintenance of relatively high biomass, albeit gradually 
declining. The gradual declines in biomass were consistent with expectations that the 2001 year 
class was at or past normal life expectancy. This, coupled with below average recruitment from 
succeeding year classes and a large biomass decrease in Shrimp Fishing Area (SFA) 14, led to 
a TAC reduction to 3500 mt for 2009, despite the maintenance of relatively high commercial 
catch rates. A problem with the angle of attack of the Nordmøre grate in the survey trawl was 
discovered and rectified for the 2009 survey. The survey abundance index increased nearly 
50% to the second highest value on record in 2009. The degree to which this increase, and the 
underestimation of the population in preceding years, can be attributed to the degeneration and 
refurbishment of the survey trawl is discussed in Koeller et al. (2011). In general, the increase in 
the survey index in 2009 can be attributed to both the increased catchability with the refurbished 
trawl and increased biomass, the latter due, in part, to the unexpected continued contribution of 
the 2001 year class beyond its expected lifespan. As a result, the TAC for 2010 was raised to 
5000 mt, and a program of independent and professional survey trawl inspections was 
implemented. In response to a gradual decline in both survey and commercial catches 
beginning in 2010, TAC was reduced to 4600 mt (2011) and 3800 mt (2012). The precautionary 
TAC reductions until the full recruitment of the relatively strong 2007 and 2008 year classes to 
the SSB in 2013 helped to ensure a relatively abundant and evenly distributed resource on the 
ESS, so the TAC was raised to 4500 mt for 2014. Although survey catch rates declined in 2014, 
survey catch rates remained high and other indicators were generally favourable, so the TAC 
was once held at 4500 mt for 2015, once again with the proviso that immediate TAC reductions 
might be required for 2016 if the 2015 data showed signs that the 2007-2008 year classes that 
are currently supporting the fishery were reaching the end of the their life cycle, particularly 
given that succeeding year classes were known to be much less abundant. 

Although approximately 25 indicators are considered in the provision of science advice for this 
stock, the quota history detailed above shows that TACs have generally been higher during 
periods of high survey total and SSB, and when large year classes are known to be recruiting to 
the fishery. The TAC has generally been reduced to maintain low exploitation rates when 
biomass indices and/or catch rates are decreasing, or are expected to decrease based on 
cohort tracking. 

The SFAs on the ESS are shown in Figure 2 and Table 1. Table 2 gives licensing information 
for the recent period covered under sharing agreements between the Maritimes and Gulf fleets. 
It currently operates under an ‘evergreen’ Integrated Fisheries Management Plan. Because 
there are no discards of the target species, all shrimp removals are accounted for in the stock 
assessment. 

Fishing effort is distributed clearly over the four “holes”, including the relatively concentrated 
shrimp habitat in Canso and Louisbourg holes, and the inshore area known as Bad Neighbours, 
as well as, the more diffuse habitat of Misaine Hole (Figure 3). Fishing takes place in all four 
areas in most years, except in some years in Louisbourg Hole (e.g. 2012, 2013) and very little 
trawling occurred in the inshore areas until 1998. The annual temporal distribution of effort 
changes over time, although in recent years effort has generally been broadly distributed in the 
spring, becoming more sparse and scattered in the summer when shrimp are moulting, and 
then concentrated in the inshore in the fall (since fishing began there in 1998). Prior to 1998, 
most fall fishing effort took place in Misaine Hole. Catch rates over 400 kg/h were infrequent 
until the stock increased in the early 2000s. Since then, such high catch rates have generally 
been achieved in all areas except in Louisbourg Hole, where abundance appears more 
cyclically variable. 
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Of all the experimental trap fishing that has been undertaken since the mid-1990s, only the 
Chedabucto Bay fishery has become established (Figure 4). The experimental trap fishery was 
not under quota management from 1995-1998 except for a 500 mt precautionary “cap”. As a 
result, the total catch tended to exceed the TAC due to the trap fishery. When the trap fishery in 
Chedabucto Bay was made permanent in 1999, a trap quota was set at 10% of the total TAC, 
e.g. 500 tons of the 5000 mt TAC. The reallocation of any uncaught portion of the trap quota 
late in the year resulted in some fishers being unable to take advantage of the additional quota. 
This often contributed to an overall catch lower than the TAC. In an attempt to avoid 
reallocations, in 2004, only 300 mt were allocated to this fishery, which was closer to its 
capacity. The trap allocation was reduced to 8% in 2005 and trap fishing effort and catch were 
very low during 2005-2010 due to poor market conditions. Market conditions improved in recent 
years. Total trap landings were 224 mt for 2013, and 122 mt (of 360 mt quota allocation) were 
landed as of November 17, 2014. 

BYCATCH 
The introduction of the Nordmøre grate in 1991 reduced bycatch and allowed the fishery to 
expand to its present size. Bycatch data from 2004-2014 was derived from observer coverage 
of 29 commercial mobile shrimp trips (404 tows) on the shrimp grounds of the ESS (Table 3). In 
most years, observer coverage is a good representation of the spatial distribution of the fishery 
(Figure 5). Between 0.01-0.03% of total reported fishing hours are covered by observers 
annually. 

Both log book data and observer data are reported by tow allowing for a comparison of shrimp 
landed to the shrimp catch as estimated by the observer. The weight of shrimp landed 
(MARFIS), rather than shrimp estimated by the observer, is used in determining the proportion 
of bycatch by weight. Shrimp account for between 97.2-99.5% of the total catch by weight on 
observed trips over the past decade (average 98.2%). The three most common bycatch 
species, on average are Atlantic Herring (0.41%), Silver Hake (0.33%) and Witch Flounder 
(0.23%). On average, bycatch is slightly higher in the fall (2.7%) than in the spring (1.7%) fishing 
period, particularly for Atlantic Herring and Silver Hake (Table 4). Overall, bycatch information 
from observed fishing trips suggests that the fleet’s trawl configurations including the use of the 
Nordmøre grate continue to ensure low total bycatch. It is noteworthy that this value is very 
likely over-estimated due to the minimum 1 kg weight recorded by the observers (e.g. a single 
Sand Lance would be recorded as 1 kg despite weighing only a few grams. 

FISHERIES AND OCEANS CANADA (DFO)-INDUSTRY COOPERATIVE TRAWL 
SURVEY 

Although Fisheries and Oceans Canada (DFO) groundfish (ecosystem) surveys on the ESS 
have been ongoing since 1970, shrimp catchability in groundfish gear without a cod end liner 
neither precisely nor accurately represent trends in shrimp abundance. Although groundfish 
survey records have been applied to questions of shrimp distribution, only shrimp-specific 
surveys are considered for quantification of this stock. These include a biannual research 
survey carried out from 1982-1988 using the Fisheries Research Vessel (FRV) the EE Prince 
(Etter and Mohn 1989), an industry survey in 1993 carried using commercial vessels/trawls 
(Roddick 1994) and the ongoing contemporary DFO-Industry collaborative survey (1995-
present), which uses a commercial vessel and a standard survey trawl (DFO 2015 and below). 
This data series includes periods of both low (1982-1988) and high (1995-present) shrimp 
abundance. Although the entire range of data are included in order to provide a broad range of 
indicator values, comparative fishing experiments were not done to directly intercalibrate the 
surveys from the two abundance periods. Catch rates between the two periods have only been 
adjusted to account for the difference in the wingspread of the trawls used in 1982-1988 (trawl 
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specifications) versus the ongoing modern survey (actual trawl mensuration). Size selectivity of 
the trawls in the two times series is assumed to be identical because the cod end mesh was 
40 mm in all cases. 

SURVEY DESIGN 
The contemporary survey follows a mixed stratified random/fixed station design. There are four 
survey strata, the nomenclature of which has been a source of confusion between survey strata 
and shrimp fishing areas (SFAs). The “inshore” stratum 17 includes portions of SFAs 13-15 
(Louisbourg, Misaine and Canso holes, respectively). Strata 13-15 are the parts of SFAs 13-15 
that are not captured in stratum 17 (Figure 2). To further confuse the issue, the “inshore line” on 
Figure 2 delineates the management boundary for the Chedabucto Bay trap fishery, within 
which the trawler are not permitted to fish, and is not relevant to the inshore stratum (17). 
Survey stations in strata 13 and 15 are randomly stratified at depths >100 fathoms. Stations in 
stratum 14 are fixed due to difficulty finding trawlable bottom. The fixed stations in stratum 14 
are assumed to be representative of shrimp abundance throughout the stratum. Stations in 
stratum 17 are randomly selected at all depths having a bottom type identified as LaHave clay 
on Atlantic Geosciences surficial geology maps. This survey does not extend beyond the 
boundaries of the stock distribution, focusing instead only on the main concentrations in the 
shrimp “holes”. Shrimp distributions on the ESS are strongly correlated with organic mud 
habitats in the survey area (Koeller 2000) and their abundance therein is considered to be 
representative of the abundance of the stock as a whole. To extend this survey beyond the 
stock range while maintaining suitable coverage within the holes would be prohibitively 
expensive for this small industry, relative to the benefits gained. As a result, the swept area 
abundance estimate is generally referred to as an abundance index, and it is explicitly 
acknowledged that it underestimates true stock abundance, perhaps by as much as 25%. This 
fact is considered to represent an additional measure of precaution in the consideration of 
relative exploitation indices/fishing mortality (i.e. that there are “bonus shrimp” unaccounted for 
in the periphery). However, the fact that the earliest signs of stock decline are likely to occur at 
the peripheries of the species’ range, where this survey might not detect them, should not be 
overlooked. 

The annual survey consists of 15 survey stations in each of the 4 strata. Each station consists of 
a 30 minute tow at a vessel speed of 2.5 knots. Because shrimp are known to be mostly 
densely aggregated near the bottom during daytime, survey stations are only conducted 
between 0500 and 2000, beginning on June 1st as or soon as possible thereafter as weather 
conditions permit (but not earlier). The survey generally takes about 8-12 days of fishing, 
depending mostly on weather conditions and is generally completely by June 20th at the latest. 
Stations are not carried out in very rough weather for safety reasons and to ensure consistent 
trawl performance/catchability. The clock on the computer is synchronized with the 
temperature/depth recorders, vessel Global Positioning System (GPS) and Netmind system at 
the start of fishing every day for the purposes of determining bottom time for trawl mensuration 
(below). Science staff and the vessel skipper monitor the Netmind trawl mensuration data during 
each tow, and inspect the gear and catch when the trawl and catch are brought aboard before 
deciding if the set is “good” or not. If there are any problems or doubts about the 
representativeness of the catch the problem is rectified and the station is repeated. 

SURVEY HISTORY 
The cooperative DFO-Industry trawl survey began in 1995, and all surveys since 1997, have 
been conducted using a standard trawl (Gourock #1126 2-bridle shrimp trawl and #9 Bison 
doors). The chronology of survey vessels, gear changes and comparative fishing experiments 
are summarized in Table 5. Trawl mensuration (headline height and trawl wingspread) were 
made in all survey sets using SCANMAR or Netmind sensors. The current sensors (Netmind) 
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are beginning to become problematic, as the technology has become obsolete. The Netmind 
system is no longer supported, is not upgradeable and the sensors are no longer holding their 
charge very well. These problems have recently be exacerbated by the fact that VEMCO has 
ceased production of their MINILOG temperature/pressure sensors that have been used to aid 
in the verification/determination of bottom time for the trawl mensuration process. In 2015, the 
assessment team acquired a complete set of eSonar trawl mensuration equipment, which will 
be installed and used from 2015 onwards. This system is fully supported, works on a digital 
signal (which is superior to analogue in quality and accuracy). Furthermore, the eSonar system 
has temperature and depth logging capabilities, which will alleviate the loss of MINILOG 
sensors. The manufacturers (eSonar) are working to develop bottom contact sensors, which 
can be added to the new system once developed and would further improve trawl mensuration. 

2013 COMPARATIVE FISHING 
Previous comparative fishing experiments are discussed in Koeller et al. (1997). The most 
recent comparative fishing work took place during an interim year in 2013 (i.e. no research 
document) and so has not previously been documented. The survey trawl was most recently 
replaced in 2011. A small modification was made in 2011 to correct an error in trawl 
construction – the chafer was sewn too low on the cod end. The sets done on the first trip of the 
2011 survey before the chafer problem was detected were redone once the trawl was up to 
specifications. In 2012, in the course of some deep water sets in particular strong currents, the 
skipper of the survey vessel noted that the trawl did not seem to be “taking bottom” very well. 
He pointed out that the gear was coming up too clean and that the bridles were more tarnished 
than would be expected if they were rubbing the bottom firmly throughout the sets (they should 
be shiny). Some possible reasons for this were cumulative effects of rust-loss on footgear 
chains and doors, trawl knot looseness or some other intangible aspect of the new trawl 
construction or attachment to the gear. He proposed adding weight to the doors and to the 
footgear during the 2012 survey, but it was decided not to change the trawl mid-survey. It was 
decided to proceed with the addition of weight to the trawl for the 2013 survey, and to conduct a 
small comparative fishing experiment during the 2013 survey to test the effect of the added 
weight at various depths and current situations. 

Methods 
In 2013, approximately 35 kg (each) purpose-built door weights were added to the survey doors 
and approximately 20 kg of chain (5 kg per section) was added to the footgear using hammer 
locks. Four sets in each stratum were repeated without the additional weight at a variety of 
depths (Table 6). Two stations were repeated on any given day (consecutive stations to 
minimize the amount of work required adding and removing additional weight). Station selection 
was non-random; the first station of the day after 0900 hrs and the one following that were 
repeated to avoid crepuscular periods when shrimp may be less “settled” on the bottom. No 
stations were repeated without gear changes. The repeated station was carried out to be as 
close and as similar as possible to the first set, but not so close as to be expected to be 
influenced by the preceding set (e.g. depletion, herding or other disruptions). 

Results and Discussion 
The weighted trawl caught from 46% to 194% as much weight of shrimp as the unweighted 
trawl, after having accounted for differences in trawl mensuration (Table 6). On average, the 
weighted trawl caught approximately 9% more shrimp (271.8 kg) relative to the unweighted 
trawl (253.8 kg). This difference was not statistically significant (paired t-test, P>0.5) and 
correlation coefficient between the two catch series was 93% (Figure 6). Although there was no 
significant relationship between trawl performance (weighted/unweighted ratio) and average 
depth (R² = -0.0171, P=0.4), the weighted trawl caught more shrimp in both the main trawl and 
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the belly-bag at the only two stations (station 47, 48) for which notably strong currents were 
recorded on the decksheets. This last result provides some support for the conclusions that 
unweighted trawl performance was indeed being negatively affected by currents in 2011 and 
2012, although with so few data, this conclusion cannot be unequivocally made. However, other 
subjective indicators of trawl performance, including the amount of mud in the trawl and doors, 
increased shine on the bridles, and skipper feedback (i.e. “feel” and RPM versus vessel speed) 
suggested that the trawl was indeed performing closer to specifications than it did without the 
weight. Given that the added weight did not appear to influence catch rates in most conditions 
except possibly when the current was very strong, it was concluded that the survey could 
continue with the added weight on this trawl, as it did in 2014, and that no adjustments were 
needed to the data. Due to very low catches of juvenile shrimp in the belly-bag in 2013 (i.e. “0” 
catches at many stations; Table 6), any effect of trawl weighting on juvenile catch rates are 
impossible to detect in such a limited comparative experiment, except to note that catches were 
approximately twice as high in the weighted trawl belly-bag at the two stations where notably 
strong current was observed and where higher main trawl catches were also observed in the 
weighted trawl. 

TRAWL MENSURATION 
The vessel’s GPS system feeds directly into the Netmind trawl mensuration software. 
Synchronizing the science computer clock to the vessel’s GPS at the start of each workday 
ensures that all files are consistently time-stamped, which is important for the trawl mensuration 
process. The Netmind file includes data, time, latitude, longitude, wingspread, headline height 
and vessel speed at 2-second intervals. Time-stamped temperature data downloaded from the 
Minilog are combined with the Netmind file to create a chart (e.g. Figure 7). When the trawl 
reaches the bottom, it is not considered to be fishing effectively until the headline “settles out”. 
Invariably, the headline signal (which is being monitored in real-time by science staff and the 
Captain) spikes to a high value before “settling out” at a value of approximately 6 m. For trawl 
mensuration data calculations, the time at which the set is considered to have begun is visually 
determined at the time when the headline has stabilized. Mean bottom temperature, vessel 
speed, headline height and wingspread are calculated from that time until the vessel speed 
drops of, which is the beginning of haulback (when the winches are engaged) and the end of the 
set time. For the example in Figure 7, the average temperature is 3ºC, average speed is 
2.5 knots, average headline height is 5.9 m and average wingspread is 17.3 m. In the event that 
the Netmind signal is dropped, as is evident in the artificial spike the wingspread signal in 
Figure 7 around 6:00:00 (detected and corrected visually/manually), these values are excluded 
from the calculation of average wingspread used in the calculation of swept-area. 

The distance trawled in nautical miles is calculated based on latitude and longitude at the times 
corresponding to the beginning (warp “all out”; LATs & LONs) and end (vessel speed drops off – 
haul back begins; LATe and LONe) of the set as follows: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑐𝑐𝑐𝑐𝑐𝑐(𝑟𝑟𝑟𝑟𝑟𝑟(90 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) x 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑟𝑟𝑟𝑟𝑟𝑟(90 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)
+ 𝑠𝑠𝑠𝑠𝑠𝑠�𝑟𝑟𝑟𝑟𝑟𝑟(90 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)� x 𝑠𝑠𝑠𝑠𝑠𝑠�𝑟𝑟𝑟𝑟𝑟𝑟(90 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)� x 𝑐𝑐𝑐𝑐𝑐𝑐�𝑟𝑟𝑟𝑟𝑟𝑟(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
− 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)��  x 3440.065 

The actual catch at each survey station is estimated by weighing each bag of shrimp on a spring 
scale for catches totaling less than 15 bags. In rough conditions, the speed of the vessel is 
reduced to improve the accuracy of the weights. For catches of more than 15 bags, an average 
bag weight is calculated by weighing 6 bags taken from different parts of the catch, and then 
multiplying the average of the 6 bags by the bag count, plus any part (final) bag. The actual 
catch at each survey station is standardised (17.4 m x 1.25 nm) by the average measured 
wingspread and the actual distance travelled (Table 7). The average standardized survey catch 
in each stratum is raised to the total number of trawlable units in that stratum and the four 
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stratum totals are combined to estimate the survey biomass index (Halliday and Koeller 1981). 
Confidence intervals are estimated using the BIOSurvey package in R (Smith 1997). 

COMMERCIAL AND SURVEY SAMPLE ANALYSIS 
Samples have been collected from shrimp surveys in 1982-1988; 1993; 1995-2014. One main-
trawl (entire series) and one belly-bag (since 2002) sample are collected from each survey set 
as follows. Approximately 5 kg of shrimp are collected immediately when the trawl is emptied 
(before any shrimp are removed) by scooping from several different parts of the catch into a 
standard 20-lb fish pan. A similar 5 kg sample of shrimp is collected from the last set of each 
commercial trip (collected during the fishery in all areas from all fleet components including 
vessels <65’ landing mainly in Louisbourg and vessels >65’ landing mainly in Arichat), and 
frozen. 

The belly-bag is emptied into a large bucket with a mesh bottom and rinsed with saltwater if 
necessary. Any bycatch and debris is removed except for mysids and other small crustaceans 
and the belly-bag contents are transferred to a labelled bag. Both samples are immediately 
frozen onboard. 

Trap samples are collected twice monthly from varying Chedabucto Bay trap vessels during 
periods of active commercial fishing. The sample is a pseudo-random selection of shrimp from 
one vessel obtained by scooping a few pounds from 3 or 4 different traps from the same string. 
All samples collected are analysed. This can range from 0 -16 per season depending on fishing 
activity. Sampling generally reflects the temporal distribution of effort, which occurs for a 
variable period, depending on market conditions and catch rates, between September and April. 

Three hundred shrimp (P. borealis only) are analysed from every survey trawl, commercial 
mobile trawl and trap sample using the same protocol. Prior to 2006, 500 shrimp were analysed. 
The data collected for each individual includes: sex (nine stages), egg development stage (nine 
stages) and sternal spine condition (four stages). Each individual is also weighed, measured for 
carapace length and inspected for parasites, egg disease and other unusual conditions. These 
data, along with associated vessel (boat code), fishing date, latitude, longitude and gear type 
are uploaded to the Scotian Shelf Shrimp Database after in-house quality assurance and quality 
control. 

All 60 survey trawl samples, all 60 survey belly-bag samples, and all trap samples are analysed 
every year, but only 50 of the many commercial trawl samples are analysed. These 50 samples 
are selected in a manner to reflect the spatial and temporal distribution of the fishery between 
the two fleets (Gulf and Maritimes). Once the Monitoring Document data has been entered into 
the DFO MARFIS database, the monthly catch by SFA by fleet (Maritimes or Gulf based vessel) 
are used to estimate the percentage of the quota caught in each SFA by month and the 
proportional number of samples per fleet per month is selected for detailed analysis. The 
50 trawl samples, of which 75% are from Maritimes-based vessel and 25% from Gulf-based 
vessels, are selected to reflect these proportions. 

The population length frequency is estimated from the carapace lengths of the 300 shrimp 
measured in each of the 60 main-trawl survey samples, then raised to an estimate of the total 
number of shrimp of each length class via the swept area method for the number of trawlable 
units in each stratum, summed over the entire survey area. The total population estimate is 
subdivided into length frequencies of multiparous and primiparous/transitional shrimp by 
multiplying the total population estimate of each length bin by the percentage of multiparous and 
primiparous/transitional shrimp in the samples, respectively. The male population length 
frequency is obtained by subtracting the multiparous and primiparous/transitional estimates for 
each length bin from the population totals. 
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The commercial catch length frequency is estimated from the carapace lengths of the 300 
shrimp measured in each of the 50 commercial samples each year. The sample length 
frequencies are raised to the total catch for that year in each SFA and a length-weight 
relationship for this stock is used to generate a total commercial catch length frequency. 

COMMERCIAL FISHERY LOGBOOK DATA 
Commercial catch and effort data from both the mobile and trap monitoring documents are 
downloaded from the Maritime Fishery Information System database.  Checks and adjustments 
are done in Excel using the filter feature to identify suspected errors.  Corrections are made only 
after errors or omissions are confirmed through manual checks of the scanned monitoring 
document, contact with Commercial Data Division or the vessel Captain directly.  Once 
corrections are completed, data is uploaded to the Science Shrimp Database. 

Errors can include but are not limited to data entry typos and misinterpretation of the written 
entry or missing values in a document field.  For example, the last tow of the trip is sometimes 
missing estimated catch weight which, once the catch weights are prorated to actual offload 
weight, artificially inflates the CPUE for the entire trip. 

Checks conducted include: 

- Confirmation of a monitoring document for every hail in. 
- Cases where effort (hours fished) is null, less than 1 or greater than 8 hours for mobile 

logs, and is less than 24 or greater than 72 hours for trap. 
- Cases where estimate weight is anomalous (null, very high or low). 
- Cases where a large discrepancy exists between tow catch estimate and actual 

weight/tow (approximately 1000 lbs). 
- Cases where a large discrepancy exists between hail in and offload weights. 
- Confirmation that positions are within reasonable proximity to the fishing grounds 

(e.g. 48 degrees latitude should be 43 degrees latitude). 
- Examination of CPUE (kg/hr towed) outliers that could indicate incorrect tow time or 

estimated weight. 

TRAFFIC LIGHT ANALYSIS 
“Traffic Light Approach” (TLA) was first coined by Caddy (1998) to describe a precautionary 
assessment framework for fisheries assessment in data-poor situations. He proposed that the 
state of a fishery and ecosystem could be summarised using red (poor), yellow (neutral) and 
green (good) lights to characterize the status of multiple indicators. The TLA was viewed as a 
way to focus scientific attention on the biology of the resource and its interactions with the 
ecosystem and the environment to provide a broader and sounder basis than approaches 
based simply on an accounting for population changes. The TLA also provides more opportunity 
for the integration of industry experiences and knowledge, and allowed results to be presented 
in a manner that promoted a broad understanding of the results by all stakeholders in a simple 
and transparent way. At the time of its inception, the TLA was viewed as an alternative to 
Maximum Sustainable Yield (MSY) methods to apply the Precautionary Approach (PA) in a 
manner that would help to overcome some of the limitations of MSY based references points. 
These limitations included that MSY approaches: assume that a relationship between 
recruitment and spawning stock size is exists and is understood, require lots of data, base 
decision rules on only biomass and fishing mortality, and consider the dynamics of only a single 
species in environmental and ecological stasis. 
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A TLA has been used to assess the status of the ESS shrimp stock for the provision of science 
advice since 1999 (Koeller et al. 2000b, Mohn et al. 2001, Halliday et al. 2001). This holistic 
multiple indicator approach considers the current value of each indicator relative to its time 
series and summarises individual indicators into four “characteristics”, as well as in an overall 
stock summary value. Indicators always represent summary data for the entire area (i.e. all 
SFAs combined, according to the current practice of managing the fishery as one stock). Where 
appropriate, the interpretation of the indicator time series themselves are supplemented by 
other data. For example, individual SFA data often replicate the area-wise indicator trends and 
thus substantiate them. Supporting data may be quite independent from the data used to derive 
the main indicator. For example, if catch rates in the shrimp trap fishery supported the apparent 
increasing shrimp aggregation shown by the survey and Catch Per Unit Effort (CPUE) data; 
anecdotal reports of large numbers of Age 1 shrimp found on Cape Breton beaches in 2002 
supported survey data indicating a strong 2001 year class, etc. This additional information may 
be used in the interpretation of indicator trends, but it is not used in the summary traffic light 
“scores.” The TLA is currently seen simply as a tool for displaying, summarising and 
synthesising a large number of relevant yet disparate data sources into a consensus opinion on 
the health of the stock. To date, such scoring has not been intended to be translated directly 
into management action (e.g. in the form of rules linked to summary scores), although that 
possibility is discussed herein. 

TRAFFIC LIGHT INDICATORS 
Ideally, Traffic Light indicators are easily and precisely measureable, clearly interpretable, and 
sensitive to changes in the status of the stock (Halliday et al. 2001). Default boundaries 
between traffic lights for individual indicators, i.e. transition from green to yellow and from yellow 
to red, were arbitrarily taken as the 0.66 and 0.33 percentiles, respectively, of the data in the 
series, unless an increase was considered bad for stock health, in which case these are 
reversed (Table 8). Data series vary in length from 13-33 years depending on the availability of 
data for each indicator. The 24 indicators are grouped into Abundance, Production, Fishing 
Effects and Ecosystem characteristics (which are themselves assigned a Traffic Light colour, as 
is the overall Traffic Light summary of all indicators). Indicator summaries are achieved by 
assigning a value according to the indicator colour, i.e. green = 3, yellow = 2, and red = 1, and 
an average is calculated. Regardless of whether or not an indicator time series is presented in 
an independent figure in the assessment documents, a red-yellow-green bar graph is presented 
depicting the relative values of each indicator, characteristic or overall summary over time. 

Table 9 shows a correlation matrix of all indicators relative to each other. It should be noted that 
the correlation coefficients given therein do not necessarily inform whether or not there exists a 
biologically significant correlation between a given pair of indicators, because potential factors 
such as non-linear relationships, complex interactions between multiple indicators and the 
expectations of time lags are not accounted for. 

ABUNDANCE CHARACTERISTIC 
The survey (Figures 8-9), Gulf and standardised CPUE indices generally track one another, and 
particularly close attention is paid to possible explanation in years when they do not. Because 
the vessels and gear differ somewhat between the three series, each of the indicator series 
were normalized to one (divided by the mean of the series) and the mean of the three indicators 
series (Figure 10) was taken. Although it has previously been suggested that a single 
standardised CPUE index should be adopted (DFO 2013), the assessment team has supported 
the maintenance of the three separate CPUE indicator series by virtue of the diagnostic benefits 
of corroborative (or contradictory) catch rate indices, and for comparative value of fishery 
dependent versus fishery independent catch rates to detect clumping of a declining stock. 
Nonetheless, normalizing the three CPUE indicators to their respective means will be helpful for 
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comparing them more robustly to each other, and the mean normalized CPUE index provides 
an informative summary of shrimp catch rates as a measure of abundance for discussion 
purposes, even though the three CPUE indicator series will be retained in the TLA. 

Survey Abundance Index 

 
The Research Vessel (RV) Survey Abundance Index provides a generally robust, fishery 
independent metric of shrimp abundance trends in the ESS SFA (Figures 8-9). Coupled with 
commercial catch rate indices, with which it is generally strongly correlated (Figure 10, Table 9), 
and the modal analysis of sample length-frequencies, the survey abundance index forms the 
basis of the most important data considered in the assessment of this stock. Many other indices, 
including SSB, Age 2 and Age 4 Abundance, Total. and Female Exploitation, derive at least in 
part from this index. As discussed earlier, the derivation of biomass and exploitation indices 
from survey coverage that is restricted to the shrimp fishing grounds (rather than exceeding the 
stock boundaries as survey design theory would recommend) is generally viewed as an extra 
measure of precaution in the management of this fishery (i.e. uncounted shrimp outside of the 
survey area are “bonus shrimp”). However, the fact that this survey design would not detect 
peripheral range retractions until they effect aggregations in central/optimal habitat in the shrimp 
holes is an important proviso. 

In general, the three CPUE-based indicators follow similar trends (Figure 10, Figure 11 – top 
panel). There have been three notable divergences between commercial CPUEs and the 
shrimp survey (i.e. high commercial CPUEs in the face of declining survey CPUE in 2000-2003 
and 2005-2008, and declining commercial CPUEs in the face of a high/stable survey CPUE in 
2014; Figure 10, Figure 11 – top panel). The first divergence was attributed to distributional 
changes associated with the demise of the large 1995 year class. The second divergence 
appears to be, at least in part, due to problems with the survey trawl (Koeller et al. 2011). Most 
recently, the commercial CPUEs declined (Figure 10) due to a decline in the incidents (Figure 
12) and area (Figure 13) of highest catch rates. This may also have been due to some vessels 
reportedly targeting aggregations of larger shrimp despite lower catch rates. The results of 
comparative fishing discussed above, coupled with the fact that the three catch rate trends were 
consistent in 2013, suggests that the use of the trawl weights for the 2014 survey do not 
account for the divergence of the survey from the commercial catch rate trends. 

The total (all SFAs) abundance index is evaluated in the context of what was expected based 
on the ongoing qualitative tracking of year classes, which starts in some cases with the belly-
bag index (Figure 14) and following on through the modal analysis of the survey (Figure 15) and 
commercial (Figure 16) sample length frequency distributions, both quantitatively (formal modal 
analysis, below) and qualitatively/visually. The trend in survey abundance estimate is expected 
to corroborate these qualitative “projections” from cohort tracking, especially when a particularly 
strong year class or group of year classes is expected to be entering or leaving the fishable 
biomass. A divergence from this expectation necessitates closes examination to differentiate 
survey coverage or catchability problems from unexpected changes in biomass. Similarly, 
survey biomass trends are considered most robust when they are consistent with commercial 
catch rates, which they generally are. If they are not, the divergence between survey and 
commercial catch rates is further examined in the context of indices of dispersion (e.g. survey 
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coefficient of variation, commercial fishing area), to try to identify instances whereby high catch 
rates are maintained by fishing aggregations of a declining stock. In that case, the survey 
coefficient of variation would be expected to be high, and the commercial fishing area index 
would be expected to indicate declining areas of high catch rates. Lastly, the total survey 
abundance index is evaluated in the context of abundance trends in each SFA, even though the 
stock is not managed at that level. As is the case with several other indices in the TLA, this is 
done based on the principle of evaluating whether or not trends in individual SFAs corroborate 
the index trend across the entire survey area. Furthermore, doing so can help to clarify some 
divergences between survey and commercial catch rates, especially in years when fishing effort 
is particularly unevenly spatially or temporally distributed among SFAs. For example, there can 
sometimes be very little fishing effort in the relatively remote Louisbourg Hole (SFA 13) until 
biomass and/or shrimp size reach a commercially viable threshold, at which point effort 
increases. The estimation of abundance within SFAs also allows the assessment team to 
monitor SFA-specific exploitation rates (Table 10). 

Gulf Vessels Catch Per Unit Effort 

 
The Gulf Region vessels are the largest vessels in the fleet (>65’, compared to the <65’ 
Maritimes Region fleet). Catch data from this time series are particularly valuable because they 
include periods of both low (preceding groundfish collapse) and high shrimp abundance on the 
ESS. However, the introduction of the Nordmøre grate in 1991 coincides approximately with the 
beginning of the increase to the contemporary period of high abundance of this stock, and so 
the difference in this index between those two periods should be interpreted cautiously. This 
catch rate data from, which this index derives, also tends to be temporally and sometimes 
spatially different from the Maritimes fleet data, because the Gulf vessels typically fish most of 
their quota very early in the year, generally returning in the late fall only in the event of transfer 
of trap quota back to the mobile fleet from the trap fleet. The Gulf fleet is also more likely to fish, 
or at least try fishing, in Louisbourg Hole. The fact that the Gulf index tends to track the 
Standardised Index quite closely (Figures 10-11) despite these spatio-temporal differences in 
effort make both indices more compelling. 

This and the Standardised Index (below) are interpreted similarly to the Survey Abundance 
Index in the sense that all three indices are expected to yield consistent results. When they do 
not, the underlying data, as well as the trends in other indices (as described above), are 
examined to attempt to reveal whether survey results are thought to be robust that year and 
whether the unexpected divergence of catch rate trends might be explained by high commercial 
catch rate on a declining and highly aggregated resource (clumping). As a result of this 
possibility, the “polarity” of the default boundary for both commercial catch rate series should be 
considered in conjunction other indicators for certain years. For example, increased CPUE 
series coupled with increased aggregation and decreased survey abundance would be viewed 
as a negative development. 



 

14 

Commercial Trawler Standardised Catch Per Unit Effort 

 

 

Although the unstandardised CPUE time series overall and by SFA are presented annually as 
supporting material for discussion (e.g. Figure 11 – bottom panel), the Traffic Light Index for the 
standardised Maritimes vessel CPUE time series includes only vessels <65’ that have fished for 
at least 7 years in the time-series (1994-present), including the present year. Only data from 
April-July inclusive, the months when the bulk of the TAC is generally caught, are used. A 
generalised linear model is used to standardise commercial CPUEs with year, month, area, and 
vessel as categorical components. Predicted standardised CPUE values and confidence limits 
for a reference vessel, month, and area are then calculated for each year using the package 
predict.glm (R Development Core Team 2005). The data fit best to a Gaussian distribution 
(lowest Akaike information criterion value). The time series is standarised to the month of June, 
the high liner of the fleet in the current year and to SFA 14. 

The standardised Commercial CPUE index is interpreted alongside the Gulf and Survey catch 
rates as discussed above. Here also, divergences among catch rate time series are evaluated 
in the context of other indices of stock dispersion and predicted changes based on previous 
years’ length-frequency distributions. 

Survey Coefficient of Variation 

This measure of shrimp stock dispersion (Figure 17), along with the Commercial Fishing Area 
index (below), is used to interpret changes in biomass indices, particularly in cases where 
survey biomass is declining while commercial catch rates stay high. In that case, an increase in 
this index would warrant consideration that the fishery may be maintaining high catch rates on 
remaining high-density aggregations of a declining resource, while the survey is revealing 
patchiness in the distribution of shrimp. This trend would be even more worrisome if the 
Commercial Fishing Area index declined, indicating that the area within which high catch rates 
are being achieved is smaller as the stock clumps in these areas. It should be noted that other 
factors, such as anomalous temperature conditions during the survey affecting shrimp 
distribution (Figure 9) or availability to survey gear, or the dominance of a small number of year 
classes in the biomass (e.g. large shrimp tend to aggregate at the southern ends of the shrimp 
holes), can also result in high survey coefficient of variation for reasons unrelated to a declining 
stock. High survey abundance despite a high coefficient of variation can lessen concerns about 
this index, as was the case in 2013 and 2014. 
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Commercial Fishing Area 

 

 

As discussed above, this measure of dispersion is particularly important when survey indices 
are decreasing while commercial catch rates continue to increase, particularly if the survey 
index of dispersion is also high. Although the trend in the area of commercial catch rates 
>250 kg/h are used for the Commercial Fishing Area index, trends in the area of several other 
ranges of catch rates are also presented for discussion and to contextualize the interpretation of 
this index (Figure 13). For example, although the areas of catch rates >250 kg/h (this index) 
remained favourably high in 2014, declines in all commercial CPUE indices while the survey 
catches remained high warranted a closer examination of the dispersion of commercial catches. 
Industry feedback suggested that while no-one was achieving the extremely high catch rates of 
recent years, most were achieving consistently high catch rates throughout the fishing area. 
This was supported by the evaluation of other trends, which showed that the highest catch rates 
(>450 kg/h) had declined after the passage of the 2001 year class, and then increased as the 
2007-2008 year classes recruited to the fishery, were now declining again as these more recent 
dominant year classes began to reach the end of their lifespan. Although the spatial distribution 
of effort does not link directly to any of the traffic light indices in this assessment, it is presented 
annually, in comparison to the previous year, and can be useful in the interpretation of the 
temporal trends in the distribution of areas where various ranges of CPUEs are achieved 
(e.g. Figures 18-19). 

PRODUCTION CHARACTERISTIC 

Belly-bag Abundance at Age 1 

The need to develop an early index of recruitment of ESS shrimp was identified as a research 
priority in the late 1990s (DFO 2000). Juvenile surveys using small-mesh beam trawls in 
February proved less efficient than the addition of a small-mesh “belly-bag” to the footgear of 
the survey trawl (Koeller et al. 2003a). As a result, the latter method was chosen to provide the 
data for an index of recruitment for this stock, and has been used since 2002. The belly-bag is a 
small mesh bag 1 m wide that is attached to the footrope and belly between the two middle 
rollers. A belly-bag sample is obtained from each survey station, which is analysed to obtain a 
swept area index estimate of shrimp of each carapace length class of 11 mm and shorter. The 
belly-bag index of recruitment is the sum of this index for all SFAs for all carapace lengths 
<12 mm, which are interpreted as the carapace lengths in June that corresponding to the 
preceding year’s cohort. 
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This index shows considerable dynamic range. It correctly predicted the strength of the 2001, 
2007 and 2008 year classes, two years before these began to show up in commercial catches, 
and as many as five years before they were fully recruited to the fishery (Figures 14-15, 
Table 11). The belly-bag index of Age 1 abundance was the second highest on record in 2014 
(Table 11, Figure 14), which is consistent with a third recruitment pulse derived from a 
successful spawning event by the mature 2007-2008 year classes in 2013. Although there is a 
positive correlation between the belly-bag index and the time lagged Age 2 (1 year) and Age 4 
(3 year) indicators series, these relationships collapse if the very large 2001 year class is 
removed from the series (Figure 20). The 2013 year class, which was observed in the 2014 
survey at very nearly the same level as the 2001 year class, will be monitored closely for its 
contributions to the Age 2 indicator in 2015 and to future biomass thereafter. 

These three recruitment pulses since the modern fishery began, i.e. strong year classes 
associated with the maturation of the 1994-1995, 2001, and now 2007-2008 year classes 
provide evidence of recruitment cycles that approximately equal the species’ life-span. The 
appearance of recruitment cycles provides evidence that some form of a stock recruitment 
relationship exists (i.e. strong year classes result in large spawning stocks, thus resulting in 
strong year classes); although no classic stock recruitment relationship is immediately evident in 
the data (Figure 21). The lack of a stock recruitment relationship for ESS shrimp is consistent 
with numerous sources of evidence supporting that shrimp recruitment is most strongly 
influenced by environmental factors rather than by SSB. 

Survey Abundance at Age 2 

 
Survey Age 2 and Age 4 abundance indices for the TLA, as well as survey population estimates 
of all ages (e.g. Table 11) are estimated from the detailed analysis of survey samples 
(described above). The number of shrimp of each length caught in each survey stratum is 
standardised and multiplied by the number of trawlable units in that stratum as per the swept 
area method to estimate the total number of shrimp in each stratum and summed over the 
survey area. Survey population estimates by age group are estimated by separating total 
population at length estimates from the swept area method into inferred age groups using modal 
analysis (“mixdist” in R; Macdonald and Pitcher 1979). The data are usually assigned to seven 
age bins, which are interpreted as corresponding to ages 1-7, although in some years the use of 
six bins for ages 1-6 provides a more highly significant fit to the length frequency. Although this 
is verified annually and the most significant fit is presented, modes corresponding to older ages 
are binned together as 5+ (Table 11) because the assignment of ages would be highly 
subjective for ages 6 and older. 

Although the length frequency modal analysis tends to clearly define the Age 2 mode, it is 
possible that this size of shrimp is not well (quantitatively) sampled by the main survey trawl. It 
is perhaps for this reason that concordance between indices of Age 1 and Age 2 abundance 
have been somewhat equivocal (i.e. changes in the Age 1 index are not always followed by 
concomitant changes in the Age 2 indicator the following year, Table 11, Figure 20). 
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Survey Abundance at Age 4 

 

 

The abundance of Age 4 shrimp is calculated as per Age 2 above; from survey population at 
length estimates from swept area and modal analysis. On the Scotian Shelf, most Age 4 shrimp 
are in their final year as males. This group represents shrimp that will breed as males during the 
survey year and will change sex the following year. Since females comprise most of the catch, 
the last-year males are a measure of recruitment to the fishery. In some years, the Age 4 mode 
is indistinguishable from the large modes of older shrimp from very strong year classes. This 
has occurred in the past (2000, 2006, 2007, 2014) when the mode representing Age 4 shrimp 
could not be distinguished from the large 1995, 2001 and 2007-08 year classes (Table 11, 
Figure 15). In several cases, this index has reflected recruitment pulses first seen in the belly-
bag four years before (e.g. 1995 year class in 1999 Age 4 index, 2001 year class in 2002 belly-
bag and 2005 Age 4 index, and 2007-08 year classes in 2008-09 belly-bag and 2011-12 Age 4 
index; Table 11, Figure 20). 

Survey Spawning Stock Biomass (Females) 

A clear stock-recruitment relationship has not yet been described for Scotian Shelf Shrimp 
(Figure 21), although it has been for some other pandalid stocks (Hannah 1995, Boutillier and 
Bond 2000). The limited amount of good shrimp habitat on the ESS and the nature of currents 
as they pertain to shrimp settlement/colonization, suggest that a more precautionary approach 
is needed for this stock in terms of maintaining a high SSB relative to areas like Newfoundland 
(Koeller 2000). For this reason, because of evidence of recruitment cycles following high SSB, 
and because the fishery targets mostly females, the SSB Index is used to define biomass 
reference points for this stock (see Precautionary Approach section, below). 

The SSB, or total weight of females in the population, is calculated with the swept area method 
from the weight of females in each set, determined by identifying females (including 
transitionals) and their lengths in the detailed sample, the total catch weight, and a length-
weight relationship. Transitionals are included because on the ESS, all transitionals are 
expected to complete sex change during the summer and extrude eggs during the late summer, 
contributing to the SSB that year. 

Beginning in the late 1980s, SSBs increased from approximately 4300 mt to values nearly 3-fold 
higher by the mid-1990s. However, these increases occurred under specific environmental 
conditions (cold water temperatures and decreasing natural mortality due to predation) and 
negligible fishing mortalities, so 4300 mt should be considered the very lowest that the stock 
should be allowed to decline, and a more conservative value (5459 mt) is used as the Limit 
Reference Point (LRP) for this stock. By itself, SSB is not a measure of reproductive capacity. 
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Since fecundity is directly related to size, it should be considered in conjunction with the shrimp 
size indicators. In addition, multiparous females tend not to spawn every year. 

Average Size at Sex Transition (Lt) 

 

 

Size indices, of which four are included in the TLA, provide important information about shrimp 
stocks given that environmental (temperature) and demographic (density) factors influence 
shrimp growth and life history in ways that can have profound effects on the stock. Koeller et al. 
(2003b) and Koeller (2006) show that size at transition is related to growth rate. It is 
hypothesised that an increase in growth rate, due to density dependent effects or temperature 
increases (Koeller et al. 2000a), results in decreases in the size at transition, maximum size, 
longevity, and fecundity, followed by a population decline. By contrast, during cooler periods, 
shrimp grow more slowly, undergo sex transition at a larger size and older age, and live longer. 
Furthermore, delayed sex transition occurs during periods of high population density and results 
in extra years of growth, which in turn results in the production of larger females. Because of the 
relationship between female shrimp size and fecundity, a stock composed of larger females is 
potentially much more productive. The increased longevity of particularly abundant year classes 
(e.g. 2001) can have important implications for the qualitative projections (based on length 
frequency tracking) used to evaluate the potential exploitation rates resulting from different 
TACs. Although the 2007-2008 year classes were expected to be at or near the end of their 
lifespan (6-7 years), science advice in 2014 considered the high likelihood that these year 
classes were expected to live longer than year classes from periods of lower abundance, and so 
cautious maintenance of a relatively high TAC was advised with the proviso that immediate TAC 
reductions would be required as soon as the stock began to show signs of the expected decline 
(DFO 2015). 

Average Maximum Size (Lmax) 

The ratio of size at sex transition to maximum size was hypothesised to be constant (invariant) 
at about 0.8-0.9 for all stocks of P. borealis (Charnov and Skúladóttir 2000). This rule was 
shown to apply to the Scotian Shelf (Koeller et al. 2003b, Koeller 2006). Consequently, 
maximum size attained in the population is an indicator of growth, i.e. change in maximum size 
is probably indicative of a change in growth rate. The relationship between Lt or Lmax to changes 
in growth rate is complex due to the influence of other factors including concurrent changes in 
longevity and natural mortality (e.g. slower growing shrimp tend to live longer). Overall though, 
when the biggest shrimp are particularly big, this is likely because they are slow growing and 
long-lived, as they tend to be during periods of high abundance and slow growth due to cool 
temperatures. A large maximum size is, therefore,  indicative of favourable environmental and 
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stock conditions. The indicator declined gradually since the early-1990s, and although 
interannual variation and uncertainty in the estimate make it difficult to discern short-term 
trends, it appears to have stabilized or even be increasing again since 2006 (Figure 22B). 

Predation 

 
The predation index is an index of natural mortality. Most groundfish feed on crustaceans at 
some time in their life history. Groundfish abundance is negatively correlated with shrimp 
abundance on the Scotian Shelf and in most other SFAs. Shrimp are an important component of 
the diets of several important commercial groundfish species that comprise most of the biomass 
on the ESS, including Atlantic Cod, Silver Hake, Greenland Halibut and various flatfish species 
(Koeller 2000). Shrimp populations on the Scotian Shelf are influenced by predation, 
temperatures and habitat availability. However, on the ESS specifically, temperatures are more 
broadly suitable and depth is of lesser importance. Here, shrimp are concentrated on small 
areas of suitable habitat, and are less prone to temperature induced crashes as seen in the 
GoM, so predation appears to have a relatively strong influence on ESS shrimp abundance 
(Koeller 2000). 

This index derives from the mean stratified catch per tow on the annual ecosystem survey 
(previously known as the “groundfish” survey) of all groundfish in strata coinciding with known 
areas of shrimp distribution (i.e. strata 443-445 and 459), and it is assumed to be proportional to 
predation pressure. Here, “groundfish” refers to all species with species codes less than 1000 in 
the ecosystem survey database, and it includes a broad range of species (Table 12). As a 
result, in recent shrimp assessments, the term ‘finfish’ has been used rather than groundfish to 
reflect this fact. 

This index does not reflect whether or not the species considered are confirmed to eat shrimp 
on the ESS and, if so, how much. Despite this, the unrefined index is still very likely a suitable 
index of predation. However, it overlooks the availability of the necessary data from the stomach 
contents analysis of a subsample of the fish collected during summer surveys on the ESS. 
Reviewers at past assessments have pointed out that this would be a useful improvement in this 
index. In response to this, the following options are proposed. 
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Stomach contents data from the ecosystem survey on the Scotian Shelf from 2000-2010 were 
used to obtain a list of all fish species observed to have shrimp in their stomachs, and the 
percentage of shrimp in their diet was quantified, as well as the frequency of shrimp found in the 
stomachs of individuals of that species (Table 12). The list of confirmed shrimp predators is 
somewhat shorter than the previously used list of species derived from species code <1000 
(Table 12). However, the traffic light series generated based on the list of confirmed shrimp 
predators (“pred_all” series, above) did not differ greatly from the original indicator series (“pred” 
above and Figure 23). Further limiting the selection of shrimp predators to those observed with 
shrimp in their stomach >5% of the time (Table 12) generates a different time series (“pred_5% 
above and Figure 23). In particular, the >5% predation series is less variable, which is mostly 
because of the exclusion of haddock data. As a result, the >5% predation index is less likely 
than the other series to result in a red traffic light due to large fluctuations in biomass of species 
that are not common shrimp predators. Figure 23 shows that the negative correlation between 
predator and shrimp abundance indices occurs on a broad scale (i.e. pre-1990 versus mid-
1990s to present). Compelling negative correlations between shrimp and predator abundance 
indices using any of the predator criteria are driven by the pre-1990s data of high groundfish 
and low shrimp abundance (Figure 24). The shrimp assessment will proceed using an index of 
all known shrimp predators while the stomach contents database is explored in more detail to 
ensure species that are known to be important shrimp predators but that may not show up in the 
database due to eviscerated stomachs (e.g. Redfish) are included. 

FISHING IMPACTS CHARACTERISTIC 

Commercial Counts 

 
Fishers determine the number of shrimp per pound (the “count”) in their catches soon after they 
are brought aboard in order to determine the price that they will obtain from buyers, and adjust 
fishing practices (especially location) accordingly. This information is of economic importance 
and is often conveyed to other fishers or buyers before landing, so care is usually taken in 
obtaining and recording it. The methodology used is basic (number of shrimp in a fixed volume, 
often a tobacco can, that weighs about 1 lb) but generally agrees with more rigorous methods 
used by buyers. The index used here is the simple arithmetic average of all counts reported in 
log books for the year. 

Although in general, low counts are characteristic of a slow-growing population of late-maturing, 
large, long lived and highly fecund shrimp, the interpretation of this indicator should take into 
account the possibility that the polarity may need to be reversed. For example, an increase in 
the count could indicate that (a) recruitment is good and there are so many small shrimp it is 
difficult to avoid them or (b) the population of larger shrimp is declining, or a combination of (a) 
and (b). Moreover, an increase in this indicator can be considered good (increased recruitment) 
or bad (growth overfishing) depending on whether it is placed in the production or fishing effects 
characteristic. Consequently, this indicator must be considered with others including abundance 
indices of the different age categories. Note that counts also change considerably during the 
fishing season, usually starting relatively high, decreasing to a minimum in July, and increasing 
thereafter, probably due to size specific changes in vertical and\or geographic distribution 
associated with changes in day length. The Commercial Counts index can also be useful to 
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corroborate the interpretation of year class strengths from length frequencies. For example, the 
2014 counts were at their lowest level in the past decade, reflecting the high biomass of large 
female shrimp from the 2007-2008 year classes and very little representation of the less 
abundant subsequent year classes (Figure 22). 

Exploitation Index 

 

 

An overall index of exploitation rate is calculated as the total catch weight divided by the RV 
biomass estimated using the swept area method. The survey biomass estimate has been 
shown to be underestimated by as much as 25% because of lack of coverage in shallow areas 
surrounding the shrimp holes; consequently, the exploitation rate is probably overestimated. 
This indicator is, therefore, considered an index of exploitation. Since the survey uses a 
common commercial trawl with a Nordmøre grate, its selectivity is similar to commercial gear. 
The biomass used to estimate exploitation can be considered an estimate of “fishable biomass”. 
At the time of the annual provision of science advice (November or December), the exploitation 
index is provided based on the assumption that all or nearly all of the TAC will be caught, and is 
adjusted if necessary thereafter. Although shrimp stock are generally thought to be quite robust 
to overfishing, and exploitation projections for the ESS shrimp stock in the 1980s suggested that 
up to 35% of the biomass could be taken sustainably, other stocks have collapsed at lower 
exploitation rates. Furthermore, larval settlement patterns and the low likelihood of “rescue” from 
adjacent stocks to reseed the ESS have been invoked to suggest that a more conservative 
exploitation strategy is required here (Koeller 2000). The total exploitation index for this stock 
averages about 12% and is generally very conservative, having never exceeded 20% (Table 10, 
Figure 25 top panel). 

Female Exploitation Rate 

Female exploitation is of interest because the shrimp fishery is selective for the larger females. 
It can be considered an important measure of the impact of fishing on the reproductive potential 
of the stock, and it is for this reason that it is used as the removal reference for the 
Precautionary Approach for this stock (Smith et al. 2012). This is calculated as the estimated 
weight of females in the catch divided by the weight of females in the population from the 
survey, i.e. SSB. The catch composition is determined from the detailed analysis of commercial 
samples as discussed above. As is the case for the total exploitation index, the female 
exploitation index is also quite conservative, rarely exceeding 20%, which is the removal 
reference (which management decisions avoid exceeding when the stock is in the Healthy 
Zone; Figure 25 bottom panel, Figure 26). 
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Mean Size of Females in Catch 

 

 

A decrease in this indicator could indicate a decrease in the number of larger shrimp in the 
population due to fishing removals and an increased reliance on smaller animals, i.e. possible 
growth overfishing and/or recruitment overfishing. The average size of females in the catch has 
decreased from the early years of the fishery as the larger animals were selectively and 
continually removed from the population. During periods of high biomass, when growth slows, 
sex transition is delayed, and the longevity of large females increase (i.e. maturation of the 2001 
and now 2007-2008 year classes) this index tends to increases (Figure 22C). The trend in this 
index tends to be similar to the Commercial Counts index, given that it derives from port 
samples that are selected to approximate the spatio-temporal distribution of fishing effort, and 
that counts are going to be low when the female shrimp that make up the bulk of that catch are 
large. 

Proportion of Females in Catch 

A decrease in this indicator could indicate a decrease in the number of larger shrimp in the 
population due to fishing removals and an increased reliance on smaller animals, i.e. possible 
growth overfishing and/or recruitment overfishing. It is calculated based on the data obtained 
from the analysis of commercial samples (described above) using the lengths and individual 
weights of shrimp identified as female, relative to the total catch weight. It should be interpreted 
cautiously and in combination with other indicators, since it could also indicate good recruitment 
conditions and difficulty in avoiding young shrimp. For example, the proportion of females in the 
catch decreased between 2004 and 2006 due to the increase in the proportion of 2001 year 
class males, so the negative traffic light was an artefact of a positive development in the stock. 
The increase in 2007-2010 was due to the sex change and recruitment to the female population 
of this year class, and the delayed sex-transition of abundant 4+ males observed in 2009. The 
proportion of females in the catch has been relatively stable at a high value since 2009, which 
reflects the fact that the population is currently dominated by older shrimp, mostly female, with 
relatively poor succeeding year classes (fewer males), which is also apparent in survey and 
commercial length frequency distributions (Figures 14-16). 
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ECOSYSTEM CHARACTERISTIC 

Population Age-length Evenness 

 

 

 

This indicator is based on the assumption that a population that is spread evenly across length 
or age classes is more resilient to environmental or fishing perturbations than one where the 
population is concentrated in fewer length or age classes. It is calculated from the survey 
population-at-length estimate as Shannon’s equitability index, EH, which is obtained from 
Shannon’s diversity index, H. The latter is calculated from the proportion (p) of the population in 
each of the total number of length groups (S). 

𝐻𝐻 = −�𝑝𝑝𝑖𝑖ln𝑝𝑝𝑖𝑖

𝑆𝑆

𝑖𝑖=1

 

This indicator is placed under the ecosystem characteristic assuming that evenness is related to 
the population’s robustness or resiliency to various perturbations within the ecosystem, but it 
could also have been placed under fishing effects, since fishing will remove the largest/oldest 
length/age classes, or production, since an even length/age distribution implies stable 
recruitment. On the other hand, this index will also respond to the passage of an exceptional 
year class through the population, which may not be a negative development if the abundance 
of other year classes remains relatively stable. 

Population evenness was high at the beginning of the survey series in 1995 when the fishery 
was relatively new (it first attained the TAC only in 1994). It declined in the late 1990s as the 
large 1994-1995 year classes dominated the population, and was very low once again in 2003-
2006 as the 2001 year class dominated. Since the end of the long-lived 2001 year class in 
2009, the index has been fluctuating around a relatively high value. 

Bottom Temperatures

For some Northern Shrimp stocks near the southern limits of the species’ range, abundance is 
negatively correlated with water temperatures (Appolonio et al. 1986). It is hypothesized that 
warmer water temperatures have a negative influence on shrimp populations because of the 
decreased fecundity associated with increased growth rates, decreased size at transition, and 
decreased maximum size as described above. Recent work also indicates that colder bottom 
temperatures increase egg incubation times resulting in later hatching times, which are closer to 
favourable spring growing conditions (warmer surface water and the spring phytoplankton 
bloom (Koeller et al. 2009). On the ESS, the large population increase that occurred from the 
mid-1980s to the mid-1990s is associated with colder surface and bottom water temperatures 
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(Figures 27-28). However, relative to the GoM and the rest of the Scotian Shelf, the ESS shrimp 
grounds are known to more broadly and perennially remain near the shrimp’s lower thermal 
limit, so small scale temperature anomalies may have a less severe impact on ESS shrimp. 

Bottom temperatures on the shrimp grounds were relatively warm during the 1980s, when the 
shrimp population was low, and they were colder during the population increase of the 1990s 
(Figure 28). Colder temperatures in 2007-2008 may have helped larval survival, as measured 
by belly-bag results, by increasing the incubation period, bringing hatching times closer to the 
spring bloom and vernal warming of surface waters, which are conditions favourable for larval 
growth and survival. Similarly, the warmer temperatures in 2005, 2006 and 2009 are consistent 
with the low belly-bag index results in 2006, 2007 and 2010, respectively. However, despite 
warm bottom and spring Sea Surface Temperatures (SSTs) in 2013, the belly-bag index result 
from 2014 was very high (Figure 28, Table 11). Bottom temperatures during the shrimp survey 
have been high for the past four years and increased in 2014 relative to 2013 (Figures 27-28). 

Shrimp survey bottom temperatures are determined throughout each shrimp survey set with a 
continuous temperature recorder (Vemco Ltd.) attached to the headline of the trawl and are 
generally consistent with temperatures from the groundfish survey (Figure 29). In the past, this 
index was calculated from July groundfish survey data as the mean bottom temperatures at 
depths >100 m in sampling strata (443, 444, 445, and 459) on the ESS that encompass the 
shrimp grounds (because it provided a longer data series). However, given inconsistencies in 
groundfish survey temperature recording methods and the fact that that shrimp survey 
temperature data series now covers 20 years, the latter is now used. 

Spring Sea Surface Temperatures 

 
Negative correlations between spring SST and lagged population estimates (four to five years in 
GoM) are common for the southern P. borealis stocks (Appolonio et al. 1986). This may be 
related to water-column stability and the match-mismatch of resulting phytoplankton bloom 
conditions with hatching times as hypothesised by Ouellet et al. (2007). Accordingly, SSTs used 
were averages for a period encompassing average hatching times on the Scotian Shelf (mid-
February to mid-March). Sea surface temperatures are calculated from satellite data as average 
temperatures within defined rectangles encompassing the shrimp holes. 

On the Scotian Shelf, the below average temperatures prevalent during the late 1980s and early 
1990s may have facilitated the high abundances in the mid to late 1990s associated with the 
strong 1994-1995 year classes. However, at least one exceptional recruitment event occurred 
recently (2001) despite relatively high SSTs, and the same appears to be true for the 2013 year 
class. 

Similarly to the bottom temperature index, SST on the ESS only appears negatively correlated 
with shrimp abundance on a broad scale (pre- versus post-1990), whether lagged (four years) 
or not (Figure 30). Since the early 1990s, SST has been gradually warming, with significant 
interannual variability, during a period when shrimp abundance was also rising. In fact, neither 
the 4-year lagged nor unlagged SST index series appear negatively correlated with shrimp 
abundance (Figure 31) at an annual scale, so this indicator series appears only to be relevant to 
shrimp abundance at a broad scale. Once again, this may be due to the fact that temperatures 
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on the ESS are cooler overall than other in areas where such negative correlations exist 
(e.g. GoM). 

Capelin Abundance 

 

 

Capelin is among the most common bycatch species, both in the ESS shrimp fishery (Table 4) 
and the June shrimp survey. They have been shown to increase in abundance during cold 
periods, which are also favourable for shrimp recruitment, and so can be considered a 
sympatric species (e.g. Frank et al. 1994). Their presence has, therefore, been considered an 
indicator of conditions favourable to the production of shrimp. 

During the last 10 years, Capelin abundance has been lower on average than the relatively high 
values between 1993 and 1999, and was especially low (near those of the 1980s when shrimp 
abundance was low) in 2008-2009. Capelin abundance in 2014 was the lowest on record, while 
shrimp abundance indices continue to oscillate around relatively high values. 

Overall, there is no significant correlation between the Capelin abundance and any of the CPUE 
indices of abundance used in this analysis, and abundance index trends between shrimp 
indicators and the Capelin index appear to be generally correlated until approximately 1998 
(Figure 32). Whether or not the divergence of shrimp and Capelin abundance index trends over 
the past 15 years or so reflects differential sensitivity to gradually warming temperatures or to 
changes in ESS groundfish abundance or species composition, or both, or some other 
combination of factors, is beyond the scope of this work. However, the lack of concordance 
between these indices over the past 15 years suggests that Capelin abundance may no longer 
provide a meaningful predictor of suitable conditions for shrimp on the ESS. The Capelin index 
will no longer be considered in the assessment of the ESS shrimp stock. 

Cod Recruitment 

This is an index of natural mortality due to predation, which reflects the fact that Cod abundance 
is generally negatively correlated with shrimp abundance for most north Atlantic stocks, 
including the Scotian Shelf (Berenboim et al. 2000, Ingibjörg et al. 2012). This is probably partly 
due to large scale environmental influences, such as temperature, which appear to have 
opposite effects on Cod and shrimp population dynamics, as well as a trophic effect of Cod 
predation on shrimp via predation (Lilly et al. 2000, Worm and Myers 2003). With few 
exceptions, the Cod recruitment index (<30 cm) has remained very low since the early 1990s, 
which is interpreted that natural morality of shrimp due to Cod predation is likely to remain low. 
Cod are among the species that are found to contain shrimp >5% of the time that their 
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stomachs have been examined (Table 12), and their abundance index approximately mirrors 
that of shrimp on the ESS (Figure 33). 

Greenland Halibut Recruitment 

 

 

 

Greenland Halibut is a cold water species whose abundance is often positively correlated to 
shrimp abundance (Figure 34). This is among the most common bycatch species, both in the 
ESS shrimp fishery (Table 4) and the June shrimp survey. Although Greenland halibut are also 
known predators of shrimp (Table 12), this species was rarely found during the warmer period of 
the 1980s when shrimp and Capelin were also low in abundance. Greenland halibut <30 cm 
increased in the 1990s and early 2000s in general concordance with increases in shrimp 
abundance on the ESS (Figure 34). Restricting this indicator to juvenile halibut (<30 cm) 
decreases the influence of predation and may have more predictive value for shrimp 
abundance. Retaining this indicator at this time is recommended, as is monitoring the downward 
trend of the past 5 years in comparison to shrimp abundance trajectories, in the event that more 
influential factors than those shared with shrimp are acting to depress Greenland Halibut 
abundance, as appears to be the case for Capelin. 

Snow Crab Recruitment

The Snow Crab recruitment index, as described in Hardie et al. (2013), is now shifted forward 
by 1 year in the TLA (e.g. 2013 value used for 2014 Traffic Light Value) to solve the problem 
that the current-year value is generally not available in time for the shrimp assessment. This is 
an index of immature male snow crabs (<56 mm carapace length), which would be 1-3 years 
pre-fishable biomass and about 6-8 years post-settlement. 

Snow Crab abundance, as with Greenland Halibut and Capelin, are thought to track shrimp 
abundance in the long-term; however, Snow Crab have considerably longer longevities and 
population cycles. These life history differences make it difficult to interpret how the trends are 
expected to be correlated, depending especially on what time-lag would be appropriate for their 
comparison (Figure 35). The snow crab recruitment index has been relatively strongly correlated 
with the shrimp abundance indices for the past decade, although earlier values were discordant. 

TRAFFIC LIGHT SUMMARY 
Traffic Light indices are summarised (Figure 36) for each of the four characteristics and as a 
single overall summary traffic light colour. These summaries are not emphasized in the 
provision of advice because they are derived by a simple averaging process that does not 
account for complex interactions between indicators that may be occurring. Figure 36 simply 
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ties all the individual indicator values into a single picture where stakeholders can review the 
status and trends of all the indicators, and be reminded to which characteristics of stock and 
ecosystem health they pertain. It is worth remembering that the polarity of some indicators 
should be considered reversed in some years (but doing so in Figure 36 would reverse the 
value for all other years as well), and the placement of indicators within characteristics is also 
open to interpretation, as discussed above. 

Generally, a simple statement is made about the Traffic Light summary, in reference to the 
trends in the summary characteristics. For example, for 2014: the summary Traffic Light 
indicator for 2014 improved to green for the first time in four years. In general, while indices of 
Abundance declined, Ecosystem indices improved and Fishing Effects and Production indices 
remained relatively stable (Figure 36). 

Similarly, each of the summary characteristics are very briefly discussed to remind readers of 
which individual indicators provided particularly meaningful or influential signals to explain the 
summary characteristic values. For example, for 2014: the Abundance characteristic for 2014 
declined to yellow for the first time in a decade due to declines in the Gulf and Standardised 
CPUE indices. The Production characteristic remained yellow in 2014. The negative influence of 
declines in the abundance of young shrimp associated with poor juvenile recruitment over the 
past four years were offset by the positive influence of a very strong recruitment signal of the 
2013 year class in the 2014 belly-bag and the maintenance of high SSB. The Fishing Effects 
characteristic remained green for 2014, after having improved greatly from red values for 2011 
and 2012. This is due mostly to relatively low total and female exploitation indices and a high 
proportion of large females in the catch. The 2014 Ecosystem characteristic improved to yellow 
after three years as red. This improvement is accounted for by a decrease in spring sea surface 
temperature (good juvenile recruitment conditions), a very low Cod recruitment index 
(expectation of low predation by Cod) and an increase in Greenland halibut recruitment 
(sympatric coldwater species) (Figure 37). 

Overall, it is in the holistic and inclusive analysis and discussion of the individual indicators that 
the “meat” of the science advice is provided. The TLA returns to the overall and characteristic 
traffic light summaries simply as a means to provide a concise image of the complex data and to 
put the conclusions in context. 

PRECAUTIONARY APPROACH 
A PA using reference points and control rules within the framework of the TLA was first 
reviewed during the DFO Maritimes 2009 Regional Science Advisory Process. That approach 
has since been modified and included in the new Integrated Fisheries Management Plan in 
2011 and was reviewed at a Regional Science Advisory Process in 2012 (Smith et al. 2012). In 
general, the precautionary application of reference points for ESS shrimp (Figure 26) includes 
the following. 

Limit Reference Point (LRP): 30% of the average SSB (5459 mt) maintained during the 
modern fishery (2000-20101). The LRP is approximately equal to the average SSB during the 

 

1 The reference points are set based on data from 2000-2010 to avoid a scenario whereby reference 
points based on a moving average would become less conservative during a period of a biomass 
downturn. This action does not negate the need to be vigilant for signs of a shift away from the current 
high productivity regime towards a lower productivity regime in which these reference points may no 
longer be suitable. 
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low-productivity (pre-1990) period for this stock, characterised by low shrimp abundance, high 
groundfish abundance and relatively warm temperatures. The Scotian Shelf shrimp population 
previously increased from a low level (approximately 4300 mt) during the transition from low- to 
high-productivity, so the working assumption is that shrimp could once again recover from this 
level given appropriate environmental conditions and fishing pressure (i.e. Brecover proxy). 
Secondly, given the important role of shrimp in the Scotian Shelf ecosystem, particularly as prey 
for groundfish, this LRP is set to avoid a decrease in shrimp abundance below the level at which 
it was previously able to fulfill its ecosystem roles under a situation of high groundfish 
abundance (i.e. to avoid a scenario in which low shrimp abundance could act as a limiting factor 
in groundfish non-recovery). At SSB levels below the LRP the fishery is closed. 

Upper Stock Reference (USR): 80% of the average SSB (14,558 mt) maintained during the 
modern fishery (2000-20101). The USR has been selected at the default value (80%) and to 
maintain a sufficient gap between the LRP and USR to account for uncertainty in the stock and 
removal reference values, and to provide sufficient time for biological changes in the population 
to be expressed, detected and acted upon. 

Removal Reference Point: The removal reference for Scotian Shelf shrimp is 20% female 
exploitation (actual female catch/SSB) when above the USR. This exploitation rate has rarely 
been exceeded during the modern fishery (2000-present), a period during which high CPUE and 
SSB have been maintained. Additionally, given that shrimp survive for approximately 3-4 years 
after their recruitment to the fishery, it can be approximated that on the order of 25-33% of the 
fishable biomass would be subject to natural mortality in any given year. As a result, the 
removal reference of 20% for shrimp is on the conservative side of this simplistic estimation of 
natural mortality (25-33%). Although exploitation scenarios in which fishing mortality equals 
natural mortality may result in optimal yield (e.g. Gulland 1971), this may be an overly risky 
exploitation strategy. As a result, the maximum removal reference of 20% for shrimp is on the 
conservative side of the simplistic approximate range of natural mortality (25-33%). 

It is worth reiterating that SSB by itself is not a measure of reproductive capacity. Because the 
relationship between fecundity and size, and the dynamic range of shrimp size in response to 
fluctuations in density, temperature and growth rate, it is important to carefully consider the 
“Auxiliary Data” provided by the Traffic Light indicators when interpreting the biomass and 
removal reference points. A suite of approximately 20 secondary indicators of shrimp 
abundance and production, fishing effects and environmental conditions provide a scientific 
interpretation of holistic data to inform the way in which science advises responding to the stock 
status and removal relative to reference points. 

BIENNIAL INTERIM SCIENCE ADVICE 
Although the TAC is set annually at the Advisory Committee meeting early in the calendar year, 
science advice for this stock adopted a multi-year assessment approach in 2013. Full 
assessments are provided biennially, with interim advice provided in alternate years. The DFO-
Industry survey is completed annually. 

In “Full Assessment” years, advice is provided as it has been throughout the recent history of 
this fishery. Once the assessment has been completed, the assessment team attends the 
Atlantic Canadian Shrimp Association (ACSA) Annual General Meeting (AGM) to present the 
results of the analysis and to obtain industry feedback, as well as discussing any other 
business. Shortly thereafter, a Regional Advisory Process (RAP) meeting is held, with 
simultaneous translation provided, in which a Research Document and Science Advisory Report 
(SAR) is presented by the assessment team and reviewed by expert reviewers. This meeting is 
attended by all stakeholders. The SAR is finalized shortly thereafter and translated in time for 
the Advisory Committee meeting, when the TAC is discussed and decided (e.g. DFO 2014). 
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In “Interim” years, the same complete analysis of all data is carried out as per a full assessment. 
The assessment team once again attends the ACSA AGM, but no RAP is held. Instead, the 
assessment team prepares a much shorter Special Science Response (SSR), which is 
presented at a meeting attended only by DFO Science, CSAS and expert reviewers. The SSR is 
finalized at this meeting and is translated in time for the Advisory Committee meeting, when the 
TAC is discussed and decided. 

In the 2013 SSR, the results for all TLA indices and characteristics were presented in the form 
of the TLA summary (Figure 36), which shows only changes in the colour of the traffic light for 
each index (without the bar graphs showing relatives changes within colours). Key indices that 
are emphasized every year were presented, including the PA figure (SSB and Female 
Exploitation, Figure 26), as well survey, Gulf and Standardised CPUE indices, the swept area 
biomass estimate and survey length frequencies (differentiating total, transitional/primiparous, 
multiparous shrimp). Results from other indices were discussed if notable or if relevant to the 
interpretation of other indices (DFO 2014). 

The main strengths of this approach are that both forms of science advice are provided based 
on complete analysis of the data on an annual basis. The continuation of the survey and 
complete TLA data analysis on an annual basis enable for TAC adjustments in a manner that is 
consisted with the PA for a species/stock that has a short life-span and for which abundance 
can change quite rapidly. The TLA lends itself particular well to the production of an SSR 
because the key indices can be summarized, along with any of the secondary indicators that 
show particularly notable changes or trends in that year, and these can be succinctly discussed 
in a relatively concise document. 

The main weaknesses of this approach include the removal of industry and other stakeholders 
from the science review process, and the minimal time-savings for the assessment team 
(relative to multi-year assessment schema in which no analysis or less analysis is carried out in 
interim years). The lack of other stakeholders means that science reviewers and industry 
representatives do not review the assessment at the same time (the former at the SSR meeting, 
and the latter at the AGM and Advisory Committee meeting), which limits the often productive 
discussion based on the respective perspectives if each and expertise that tend to take place at 
RAP meetings in full assessment years. Although the complete analysis of all data in interim 
years minimizes the time savings for the assessment team, the efficiencies realized by not 
having to produce and edit the long Research Document and SAR should not be overlooked. 
Given the long-standing, highly productive and cooperative relationship between this industry 
and DFO, options to include a small number of industry representatives in the SSR review 
process should be explored, so that their important perspectives can be considered during the 
review process. One example in which this was particularly important occurred in 2014 (which 
fortunately was a full assessment year). Industry representatives were able to provide a very 
important perspective on the interpretation of a decline in CPUE trends that were inconsistent 
with the maintenance of high survey catch rates. Had this occurred in an interim year, this would 
not have been possible. One minimal option would be to include the Skipper of the survey 
vessel in the SSR review process in interim years. 

Given that the full analysis of data is completed every year for this assessment, and the time 
between full assessments is short (biannual), it is perhaps less imperative to define triggers for 
initiating full assessments in what would otherwise be an interim year than it would be for stocks 
that have set multiyear TACs, reduced analyses for interim years, or set longer periods between 
full assessments. Furthermore, given that the assessment team presents and receives industry 
feedback on the full analysis at the Industry AGM annually, the only benefits of full assessments 
are the more thorough science review of the assessment in those years and the opportunity for 
science reviewers and industry to overlap. The principle situation in which this would be 
particularly important is when commercial and survey CPUE indices provide discordant results 
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that are likely to affect the science advice, or if abundance indices are inconsistent with 
expectations based on qualitative and quantitative interpretation of length frequencies the 
preceding year. 

QUANTITATIVE HARVEST CONTROL RULES 

WEIGHTING AND QUANTIFYING TRAFFIC LIGHT SCORES 
At its inception, the TLA was to include a set of harvest control rules (HCRs) to define actions to 
be taken depending on the number of lights of each colour, with increasingly restrictive 
measures as the proportion of reds increased. By incorporating such rules, Halliday et al. (2001) 
suggested that the TLA could provide a single framework within which DFO could provide 
management advice in a manner compliant with the Precautionary Approach, and that the TLA 
could be used to assess the status of diverse stocks, whether rich or poor in data. In principle, 
the development of HCRs to trigger pre-agreed conservation and management actions in 
response to estimated or perceived stock conditions would allow for rational, objective and 
farsighted decision making. However, the translation of biological information on stock status 
directly into catch limits has proven difficult. In a broad sense, doing so tends to oversimplify 
biological inputs that form the basis of stock status determination by not taking into account the 
full range of information in setting the TAC (e.g. biological, environmental, ecological but also 
socioeconomic, compliance, etc.). Deterministic HCRs for co-managed fisheries also tend to 
overlook that the science perspective should be emphasized when the stock is in an unstable or 
depressed state, whereas industry and management perspectives should be emphasized when 
it is stable and abundant. Specifically, though, the principle crux of applying HCRs to the TLA is 
that it cannot be achieved quantitatively without explicit consideration of weighting of the 
indices, which has generally been very problematic. 

Theoretically speaking, weighting should reflect: 

• the degree of independence of indices when derived from the same data, 

• the availability of multiple indicators for the same stock attribute, 

• the degree to which the index is a true measure of the stock attribute, and 

• the precision of the indicator estimation, among other things. 

Practically speaking, understanding and accounting for the non-independence of indicators has 
proven very difficult. In addition, indices can be over-represented when the time series/trend is 
interpreted in the provision of advice (rather than just the value of that index in the current year) 
such that the status of the index was already used to adjust the TAC the previous year(s), and 
that TAC forms the basis from which quotas are adjusted the following year. Furthermore, the 
relevance and extent to which an indicator provides a true measure of the stock attribute is often 
not amenable to statistical quantification. 

The strength of the TLA is its ability to bring together a broad spectrum of information, 
qualitative and quantitative, which might be relevant to the issue in question. Weighting has 
tended to generate intense, prolonged and highly technical debate while adding little the 
accuracy of the overall result (Halliday et al. 2001). The Proceedings from ESS shrimp stock 
assessments using the TLA reveal a record of discussion about whether or not the indicators 
could or should be weighted to reflect that some are clearly more strongly emphasized than 
others, with a view towards developing quantitative decision rules. Overall, the assessment 
team continued to defend the qualitative application of the TLA, without weighting individual 
indices, as a holistic framework for the discussion and interpretation of diverse indices of shrimp 
abundance, productivity, fishery and ecosystem condition as a means to inform decisions for 
adaptive TAC adjustments. Furthermore, industry feedback suggested that they preferred traffic 
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lights as a visual representation for a fluid and truly cooperative discussion rather than having 
them directly resulting in a TAC, which would functionally exclude them from the co-
management process. Quantitative HCRs were also viewed as problematic because the TLA is 
meant to be a composite of many factors used in decision making. To use the TLA score 
against just one indicator (biomass) to develop the TAC was viewed as contrary to the holistic 
philosophy of the TLA. Quantitative HCRs force a large quantitative leap to be taken at the last 
step, after a qualitative discussion of the other indices. Shrimp assessment proceedings from 
the early-mid 2000s provide a record of this philosophical difference of opinion on the value of 
the TLA as a holistic discussion framework for adaptive co-management versus several 
reiterations of the view that deterministic HCRs (which necessitate indicator weighting) were 
essential to the defensible application of the TLA for the provision of science advice. Since the 
mid-2000s, however, the TLA has been used in the former sense – without weighting or 
deterministic interpretation, as a means to take into account a variety of different factors and to 
facilitate discussion. Although it would be naïve to discount the innate high productivity of 
shrimp during this period as an important factor, the status quo approach of using adaptive TAC 
adjustments based on a holistic discussion of diverse shrimp stock, fishery and ecosystem 
considerations as guided by the TLA have clearly provided one of the best examples of a truly 
cooperative assessment and adaptive management framework. 

Nonetheless, the recent implementation of a multi-year assessment schedule for shrimp 
provides the opportunity to revisit ideas during the Framework meetings. Here, presented for 
discussion, is a model that qualitatively links the annual values of weighted Traffic Light 
indicators to the provision of a range of TACs for the following year as a proportion of the survey 
biomass index from the preceding year. The model discussed herein does not circumvent the 
limitations and complications of weighting indices and of the use of deterministic HCRs from the 
TLA that are outlined above. Rather, it embraces, or at least acknowledges them, effectively 
“taking the bulls by the horns” to examine: what quantitative HCRs might look like, what 
outcomes are produced, how outcomes compare retrospectively to history, and what steps, if 
any, can be taken to mitigate some philosophical and practical issues that have been identified 
with such steps. 

THE HARVEST CONTROL RULE TRAFFIC LIGHT ANALYSIS MODEL 

Methods 
The model presented for discussion herein builds on the SSB-based biomass reference points 
that have been adopted for this stock (Smith et al. 2012 and discussed above). Historically, TAC 
recommendations for year t+1 have ranged from 10% – 16% of the survey biomass estimate in 
year t (average13%). Notably, TACs representing the highest proportion of the biomass index 
have resulted from assessments when SSB (and survey biomass) were low, with TACs 
representing lower exploitation rates derived from years of higher SSB. When the SSB Traffic 
Light index was red, historic TACs represented, on average, 14% exploitation of the preceding 
year survey biomass index; 14.5% when SSB index was yellow, and only 12% when it was 
green. Higher relative exploitations during periods of lower stock abundance may seem counter-
intuitive to conservative management practices; however, this is not the case here. In fact, this 
trend reflects the fact that the current application of the TLA is functioning effectively to ensure 
that other aspects of stock, fishery and ecosystem condition are being considered when the 
TAC is set, not just shrimp biomass. The Advisory Committee generally seeks quite modest 
increases in the TAC from within the range advised by science, even when biomass has 
increased significantly (i.e. less than proportional TAC increases). This fact alone, as will be 
seen below, flags the possibility that applying deterministic HCRs based on a biomass index 
could result in a less precautionary quota setting process than the status quo holistic TLA in an 
adaptive co-management framework. 
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For the HCR model, the base TAC (baseTAC) is a proportion of the preceding year’s swept 
area biomass estimate, depending where in the biomass reference zone current SSB is, to a 
maximum of 10% when SSB is above the USR. Further proportions of the preceding year’s 
swept area biomass estimate are added to baseTAC depending on the value of the other Traffic 
Light indices (tlaTAC), which are weighted based on the historic emphasis that has been places 
on the various indices and characteristics, to a maximum of 8%, as described below. 

As outlined above, the TLA for the ESS has never formally employed quantitative weighting of 
indicators. Nonetheless, there has been a natural emphasis on certain core indicators in every 
annual assessment. Other indicators are routinely less strongly emphasized, unless a 
particularly notable trend occurs, or unless the information from those “secondary” indicators 
helps to inform the interpretation of one of the “core” indicators. Certainly, survey and 
commercial catch rate indices (survey, Gulf and standardised CPUE) and indices linked to 
length frequency distributions and analysis (belly-bag, SSB, Age 2 and Age 4 abundance) have 
generally been strongly emphasised in annual assessments. Environmental indices such as 
temperature and Cod recruitment, which are known to be important determinants of shrimp 
population dynamics, are generally given more consideration than, for example, abundance 
trends in conspecific species such as Capelin, Greenland Halibut, or Snow Crab. Here, a 
weighting system has been applied to all the indicators except for SSB (which is already very 
heavily weighted as the basis for baseTAC) based on a subjective review of the summary 
bullets in Science Advisory Reports and of discussions as recorded in meeting Proceedings, to 
see which indicators have tended to be most strongly emphasised in the provision of past 
science advice. Importantly, this makes the assumption that the provision of past science advice 
has been correct. Ironically, this assignment of quantitative weights undertaken by a subjective 
leap of faith by the assessment team is precisely what the application of deterministic HCRs 
strives to get away from (subjectivity). Nonetheless, indicators are weighted here on this 
subjective basis to allow a working model to be discussed. No additional rules are applied for 
the purposes of this exercise (e.g. limiting maximum relative TAC changes, limiting maximum 
TAC). In the event that a deterministic approach is adopted for this stock, the question of 
weighting indicators will surely need to be revisited by an expert panel, as will the issue of 
whether additional rules are needed to constrain the HCR model. 

Currently, the only formal HCR is that the fishery is closed when the stock is below the LRP 
(5459 mt SSB), which is 30% of the mean SSB during a high productivity period truncated to 
2000-2010 inclusive (see Precautionary Approach section above). For the purposes of this 
model, mean SSB is further divided into 10% increments from 30% to 100% of the mean 2000-
2010 SSB, and a baseTAC has been assigned to each of these 10% mean SSB intervals as 
shown in Table 13. The sum of baseTAC and tlaTAC are the total Harvest Control Rule TAC 
(hcrTAC), expressed for the quota for year t as a percentage of the survey swept area biomass 
estimate Bs from year t-1. It is worth reiterating that SSB is simply an indicator that had been 
assigned a higher significance by virtue of its adoption as the basis of the PA. Similarly, in this 
context it has functionally been very heavily weighted as the basis for baseTAC (Table 14). 
Before accounting for any other indicators, SSBt determines baseTACt+1 as 0% to 10% of Bs, 
increasing stepwise in an approximately sigmoidal fashion throughout the 10% stepwise 
increases in SSBt (Table 13, Figure 38). At an absolute maximum, baseTAC (10% at or above 
USR) and tlaTAC (8% if all indicators are at their highest values on record -100th percentile) 
combine for a total exploitation rate of 18% of the preceding year’s swept area biomass. The 
mean characteristic tlaTACs for each characteristic are multiplied by 4% for the Abundance 
characteristic, 2% for the Productivity characteristic, and 1% each for the Fishing Effects and 
Ecosystem characteristics. The weighting of both indicators and characteristics results in 
cumulative weights shown in the last column of Table 14. These cumulative weights do not 
account for the sometimes high degree of correlation of indicators, particularly those that derive 
from the same data (Table 9). 
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The tlaTAC was calculated for each characteristic, as follows: 

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = 3 ∗ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 2 ∗ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + 2 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎/9 

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = (2 ∗ 𝑏𝑏𝑏𝑏 + 2 ∗ 𝑟𝑟𝑟𝑟2 + 2 ∗ 𝑟𝑟𝑟𝑟4 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 2 ∗ 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)/10 

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 2 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒 + 2 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑝𝑝 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓)/7 

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 = (𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 2 ∗ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 2 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 0.5 ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑐𝑐𝑐𝑐𝑐𝑐 + 0.5 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 0.5
∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)/7.5 

Characteristic tlaTACs were added to baseTAC and combined to reflect weighting of the 
characteristics as follows: 

𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉𝒉 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 4(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) + 2(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ + 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

The bounds of the minimum (10% of Bs) and maximum (18% of Bs) hcrTACs possible using this 
method contain 75% of the values of historical 1-year lagged exploitation rates (TACt/ Bs(t-1)) 
(Figure 38). The range provided around the proposed hcrTAC is simply the annually derived 
95% confidence interval in the survey biomass estimate, proportionally applied to the hcrTAC to 
reflect the uncertainty in the biomass estimate and to provide flexibility for continued co-
management of the fishery in a way that reflects industry, socio-economic and management 
concerns as well as science advice. 

Results 
The retrospective application of the HCR model results in significantly higher (5003 mt) average 
hcrTACs (5003 mt) than average historical quotas (4342 mt) (Figure 39, paired t-test for means, 
p<0.05). However, several of the highest hcrTACs over 6000 mt would be unlikely to be 
supported by the Advisory Committee, based on the conservative history of co-management of 
this stock. Historic TACs falls within the proposed range of the hcrTACs in 8 of the 19 year 
series. The result that some hcrTACs, especially when SSB is in the Healthy Zone, would have 
exceeded management history was predictable based on the fact that some historical quotas 
are lower than the minimum baseTAC (Figure 38). As discussed above, relatively low quotas at 
high stock abundance levels reflect the history of generally cautious increases in targeted 
exploitation when the stock increased and the careful consideration of the all indicators (other 
than abundance). However, under periods of lower abundance around the USR, the HCR 
method more closely simulates management history (Figure 38). 

The ESS shrimp stock has been relatively abundant throughout the period captured by the 
contemporary survey data series (1996-present) in Figures 38-39. As a result, Figure 39 
provides accurate predictions of the results of the HCR model for these years, for which both Bs 
and SSB data exist, but the actual TAC predictions (tonnage) for lower abundance period 
remain obscure. For example, the HCR model tells us that in the lowest part of the Cautious 
Zone (between 30-40% of the PA SSB index) the hcrTAC would range between 0-8% of Bs 
depending on the tlaTAC (because baseTAC is 0%). Because the data do not include 
contemporary survey or SSB estimates for such low abundance, this question cannot be easily 
answered (i.e. it is not known what Bs is; it is likely to be at low SSB). In order to approximate 
the possible ranges of TACs for hypothetical low-SSB situations, a regression equation between 
Bs and SSB was used. The relationship is auto-correlated given that survey CPUE data are 
used to calculate both indices (SSB simply accounts for the proportion of females and 
transitionals in the catch), so is used here only for the purposes of approximating the Bs values 
at low SSB to estimate hypothetical hcrTACs in low PA zones for which there is no robust data. 
Table 15 shows minimum (baseTAC) and maximum (maxTAC) values as percentages of 
hypothetical Bs values extrapolated from the regression of Bs on SSB from 1996-present data. 
It is important to note that maximum TAC values are largely theoretical, especially at low SSB, 
because they represent the situation where every indicator is at 100th percentile of the entire 
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data range. This is unlikely in any case, but it is impossible at low abundance. While the 
maximum TAC column makes relatively high TACs (e.g. 1244 mt when only just above the LRP) 
seem possible, the low Traffic Light values of most indicators when the biomass is so low would 
result in hcrTACs much closer to baseTAC than to maximum TAC near the LRP. Quotas closer 
to maximum hcrTAC are increasingly likely the higher the stock abundance. 

Conclusions 
In general, the HCR model achieves the goal of providing a quantitative means of interpreting 
Traffic Light indicators and Characteristics in a manner that is consistent with the PA. However, 
as was stated above, there remain serious concerns and limitations with a deterministic 
interpretation of the TLA that this model does not resolve. Although the earliest proposals of the 
TLA purported that HCRs triggering pre-agreed conservation and management actions were 
necessary for the TLA to be compliant with the PA, the ESS shrimp assessment gradually 
moved away from this deterministic interpretation. So it should be reiterated that, right at the 
outset, this exercise is a philosophical departure from the much more qualitative interpretation of 
the TLA as a holistic means to summarize and discuss diverse information to arrive at adaptive 
quota decisions in a cooperative manner with various stakeholders. Another important issue 
with the HCR model is that it ties the lion’s share of the TAC annual adjustments to variability in 
biomass indicators, which favours as a management strategy that “chases the biomass”. 

Probably the most serious and difficult to overcome problem with the HCR model is the issue of 
weighting. The way in which weights were applied in this exercise (subjectively interpreting the 
emphasis placed on different indicators and characteristics throughout stock history) is 
inconsistent with the spirit of the approach to reduce subjectivity in the TLA. Certainly, there are 
means to improve this, such as a canonical correspondence analysis of indicator values when 
quotas were increased or decreased (i.e. quantifying which indicators were “greener” when the 
quota was increased in the past, which indicators were “redder” when the quota was reduced, 
and weighting those accordingly). This makes the important assumption (as has been made 
here) that the past quota adjustments have been the correct ones. Making this assumption then 
begs the important question: if the past management actions have been correct, then why 
change things?  Another approach is for an expert panel to rigorously quantify the evidence for 
a biological basis of each indicator, and to apply weights accordingly. But the biological and 
statistical complexity of the correlations between indicators, and the interactions of other factors 
on the index values, would surely make this approach prohibitively complex so as to no longer 
be useful. Such an undertaking risks confusing the obscure with the profound, putting us once 
again completely at odds with the philosophy of the TLA. Overall, the problem of weighting in 
the deterministic application of the TLA may be insurmountable. 

The retrospective analysis shows that the hcrTACs tend to be more conservative than historical 
TACs at lower abundance, but less conservative at higher abundance. On the one hand, this is 
consistent with a conservative approach, although the very high hcrTACs when abundance is 
high are beyond what this fishery has experienced, so there are some unknowns (e.g. market 
conditions, fleet capacity, local depletion, etc.). When considering the possibility of a more 
directly proportional link between exploitation rate and biomass that would result from the HCR 
model, it is worth reiterating that the ESS shrimp survey covers the stock distribution in a rather 
limited way, and there is considerable uncertainly in the biomass indices that derive from it. If a 
deterministic approach such as the HCR model is taken, some precautionary caps might be 
advisable until the outcomes over higher TACs are better understood. Given that the ESS 
shrimp TAC has undergone annual changes of up to 43% in recent years (both increases and 
decreases), it would be difficult to justify a supplemental rule limiting the permissible relative 
annual change in TAC. Such decisive TAC changes in response to science advice underly the 
success of the adaptive co-management of this stock. There is, of course, no true lower limit on 
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the TAC using any method for the provision of advice; the Advisory Committee can always 
decide on a lower quota than the science advice. 

Under the current PA, conservative management actions are well defined within the Critical 
Zone (close the fishery) and the Healthy Zone (set TACs to try remain below 20% exploitation). 
However, management actions are much less well defined within the Cautious Zone, and the 
fishery has been there infrequently enough so as not to have developed much experience with 
it. The HCR model does provide some potential benefit here, where the current management 
guidelines fall somewhere between the vastly different Critical and Healthy Zone rules. Overall, 
the sigmoidal changes in the baseTAC within the Cautious Zone ensure increasingly 
conservative decreases in the TAC the closer the stock gets to the LRP, and the supplemental 
tlaTAC that is added to the sigmoidal baseTAC are likely to also be very conservative, 
particularly given how many indicators are derived from abundance metrics, and these tend to 
be more heavily weighted. 

The proportional application of the confidence intervals from the swept-area biomass estimate 
to the hcrTACs is a rather blunt way to provide a range of quota advice. However, in addition to 
reflecting uncertainty in the survey biomass data that is used for many indicators, it also helps to 
overcome one of the previous concerns expressed by industry: that a deterministic 
interpretation of the TLA would tend to exclude them from the interpretation of the data. The 
relatively large range of the hcrTAC advice leaves room for input by industry and other 
stakeholders in the interpretation of science advice. Furthermore, it provides flexibility in the 
science advice itself, in the event that there are nuances in the data that are not adequately 
captured in the HCR model (e.g. the loss of the ability to interpret an indicator differently based 
on trends in other indicator(s)). 

In summary, although the HCR model does appear to provide harvest advice following a 
quantitative analysis of the Traffic Light indicators and characteristics in a manner consistent 
with the PA, weighting remains a problem that will be difficult or impossible to overcome, as it 
always has been. Despite some perceived benefits of a more prescriptive interpretation, 
particularly in the Cautious Zone where appropriate management actions are currently poorly 
defined, this approach appears to be in conflict with the two-decade long proven track record of 
the interpretation of the TLA as a way to summarize diverse information about stock health in a 
way that engenders fluid and open discussion by industry, management, science and other 
stakeholders to achieve precautionary TACs via adaptive co-management. 

QUANTITATIVE STOCK ASSESSMENT MODELS 
Quantitative stock assessment models have often proven difficult to apply to shrimp 
populations. Uncertainties concerning age, growth and mortality, difficulties in judging year class 
strength, and particularly the failure to adequately define widely variable and environmentally 
determined recruitment processes have prevented quantitative projections of shrimp biomass. 
As a result, catch recommendations have generally been decided based on changes in CPUE, 
biomass estimates and tracking changed in length-frequencies (Shumway et al. 1985). Shrimp 
assessment methods do not normally employ biological reference points, tending to be more 
descriptive in nature, monitoring changes in commercial and survey data and samples to make 
TAC decisions without making a formal link between population structure and recruitment 
(Koeller et al. 2000). Stock collapses in shrimp are relatively rare compared to highly 
parameterized models and management regimes in many finfish stocks. 

A surplus production model (SPM) was explored in 2009 (Koeller et al. 2011). The SPM is a 
class of model using undifferentiated aggregated biomass to circumvent the lack of age 
information, as is the case for shrimp. This approach assumes that the population produces 
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more offspring than necessary to replenish itself and that fisheries can harvest this surplus 
indefinitely. Other SPM assumptions include: 

• that abundance indices are proportional to true abundance, 

• that the population has stabilized to the current rate of fishing, 

• that all losses other than fishing are natural mortality, 

• that fishing mortality is density independent, 

• that the stock reacts instantaneously to fishing mortality, and 

• that the environment is constant and has no effect on biomass trajectory. 

Clearly, many of these assumptions are problematic for shrimp, perhaps most notably the last 
two. Fitting a SPM generally requires a wide range of dynamic values as the time series of 
inputs. 

Koeller et al. (2009) used ASPIC (A Stock Production Model Incorporating Covariates) in the 
NOAA Fisheries Toolbox to fit ESS shrimp data to Shaefer’s (logistic) and generalized SPMs. 
They used survey, Gulf and Standardised Maritimes CPUE indices to simulate stock dynamic 
during different periods of stock productivity. Modelled values of carrying capacity (K), MSY and 
equilibrium yield for 2010 were substantially different among the three data series. Given 
uncertainties between the Gulf vessel catch rates during periods of low and high abundance 
related to gear changes (Nordmøre grate), they opted to use the Standardised Maritimes CPUE 
data, which predicted yields and biomasses similar to the historical averages. 

The generalized and logistic models yielded similar results with linear fits between observed and 
modelled CPUEs. The model outputs suggested that fishing mortality had been low and 
biomass had been high for the past 8 years (2000-2008). Predicted yields (yield at equilibrium 
and Fmsy) for the past 5 years were similar to actual TAC/landings. Bootstrapping suggested a 
high degree of uncertainty in the parameter estimates, particularly for K. Projections of F and 
biomass suggested that catches on the order of 3000-5000 mt per year would result in F well 
below Fmsy and biomass well above Bmsy under model assumptions. Biomass at Maximum 
Sustainable Yield (BMSY) and MSY were quite high from the model, and higher than seen in the 
assessment. The authors concluded that while the SPM showed that the TAC in recent years 
had been similar to FMSY, they pointed out that there was considerable uncertainty in model 
outputs, and that it was problematic that it did not incorporate environmental factors or trophic 
linkages that are known to be very important for shrimp. 

A similar exploratory analysis of contemporary data (up to 2014) was first undertaken using the 
Schaefer formulation of the SPM based on equations in Hilborn and Walters (1992) in R. Fitting 
the model to the shrimp data (each CPUE series separately, as in Koeller et al. 2009) proved to 
be extremely sensitive to minor adjustment in starting values for r, q, B0, but particularly in 
carrying capacity, K. This approach was abandoned in favour of a Bayesian state-space 
modeling approach for reasons outlined below. 

BAYESIAN STATE-SPACE MODEL 
A simple stock assessment model in the form of a modified discrete logistic model or Biomass 
Dynamic Model (BDM) was used to combine the biomass indices with landings data. This 
modeling approach was chosen as it is one of the simplest, and most robust, families of models 
that can be used to explore population dynamics. Briefly, the variations in biomass in year t, Bt, 
are described as a function of the previous year’s biomass, Bt-1 and other population specific 
parameters, specifically r, the intrinsic population growth parameter and K, or the population 
carrying capacity. 
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In BDMs r is an integrative parameter accounting for population recruitment, mortality and 
growth. A Bayesian State-Space Modeling (BSSM) approach was used to estimate the states of 
Bt, r and K. This approach was proposed by Millar and Meyer (2000) because it allowed for the 
incorporation of random errors in both the population dynamics (process errors) and the 
observed data (observation errors) and because it incorporates non-linearity in the dynamics. 
These ‘process errors’ refer to the errors propagated through the transition between states Bt-1 
and Bt, whereas the ‘observation errors’ refer to the uncertainties associated with measurement 
and observation. This SSM approach is useful for fishery time series analysis because the data 
collected are typically indices of the true stock biomass or abundance that cannot be observed 
directly. Moreover, SSM has been suggested to provide more realistic parameter estimates and 
more credible forecasts. 

The simple formulation of BDMs also provides parameter estimates that can be used to define 
maximum sustainable yield (MSY) reference points. Simply MSY=0.25rK, BMSY=0.5K and 
FMSY=0.5r. In a SSM framework, the estimates of process error can be incorporated to provide 
stochastic MSY reference points (Bousquet et al. 2008). 

As per the suggestion of Millar and Meyer (2000), the Bt’s and Ct’s in equation 1 were rescaled 
by K as Pt = Bt / K and ct=Ct/K to improve the convergence of the Gibbs sampler. The resulting 
model was: 

( ) 1111 1 −−−− −−+= ttttt cPrPPP  Eq. 2 

The biomass of shrimp, similar to most other species, was assumed to follow a lognormal 
distribution, and a multiplicative observation model with variance, τ2, estimated as: 

It ~ LN[ log (q*K*Pt ), τ2] Eq. 3 

where It was the biomass index at time t, q was the catchability or proportionality constant that 
scales the index to estimates of the ‘true’ biomass. Similarly, the process errors, were assumed 
to also follow a (multiplicative) lognormal distribution with variance σ 2, 

( ) ]),1[log(~ 2
1111 σ−−−− −−+ ttttt cPrPPLNP  Eq. 4 

For this work, all three biomass indices, the Survey Catch Rate (SCR), the Gulf fleet catch rate 
(GCR) and the Standardised Catch Rrate (SSCR) were modelled separately. This modelling 
strategy was employed over the more commonly used multiple ‘q’ modelling approach where 
several biomass indices are simultaneously fitted as it does not rely on ‘data-weighting’ methods 
and yields descriptors of the full range of potential model results (Francis 2011). 

Priors for Bayesian State-Space Model Parameters 
The prior for r was assumed to follow a normal distribution centered at 0.85 with a standard 
deviation of 0.13, similar to other invertebrate species (Cook et al. 2014). The prior for the 
parameter K followed a lognormal distribution of the mean and standard deviation were 
estimated by setting the 90% quantile range to the maximum observed biomass from each of 
the biomass index and six times that index’s maximum. A uniform prior on q was used for all 
survey series following the probability distribution of U[0.005,0.4]. The priors for process error 
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were assumed to follow a uniform distribution. In winBUGS, the second moment (variance or 
scale) used for distributions is the inverse of many typical implementations of probability 
distributions (i.e. statistical software R). As such, process errors are estimated as the precision 
(variance-1) of the lognormal distribution. Prior distributions for process precision, herein referred 
to as inv.τ2, were U[0.02,400]. Similar to the process errors, the observation errors σ2  followed a 
uniform distribution and was the inverse of variance, herein referred to as inv.τ2  with prior 
distributions of U[0.02,400] for all biomass indices. 

Model Selection 
The software winBUGS (version 1.4.2; Lunn et al. 2000) was used to perform the Markov Chain 
Monte Carlo (MCMC) integration required to implement the Bayesian state-space filter. Three 
chains of length 300,000 with a burn in phase of 20,000 and thinning of 125 were determined to 
be sufficient to allow for adequate mixing, removal of initialization and decrease in 
autocorrelation, respectively. Convergence of chains was tested with a Gelman-Rubin 
diagnostic (Gelman and Rubin 1992). 

Results and Discussion 

For each BDM fitted to a survey series, the posterior distributions for estimated parameters 
were updated from prior distributions suggesting that there was sufficient information in the data 
to describe the results (Figures 40-42). There was substantial overlap between parameter 
estimates between the standardised and Gulf commercial catch rate based models while the 
survey catch rate based model yielded disparate results (Figures 43-45, Table 16). Commercial 
catch rate median estimates of r (0.98, 1.04) and K (19 160, 17 820) for Gulf and standardised 
data, respectively, were very similar, yielding MSY values around 4500 mt and FMSY around 0.5 
(Table 16, Figures 46-47). The survey data based median parameter estimates suggest that the 
ESS shrimp stock is even smaller (K = 10 840) than the already implausibly low median carrying 
capacity predicted from commercial data model fits. The survey data also predicted very high 
median productivity (r = 1.62) and high FMSY of 0.8 as a result (Figure 48). That said, even the 
higher commercial data-based estimates of carrying capacity for shrimp on the Scotian Shelf 
appear to be low relative to current understanding, where conservative swept-area biomass 
estimates are on the order of 30-50,000 mt, so at least 2-3 times above the BDM estimated 
carrying capacity. The lower survey data-derived carrying capacity is even less plausible. The 
use of BDM modeling to estimate population parameters and MSY reference points relies on the 
assumptions that the survey index reflects the changes in population size through time and the 
influence of the fisheries landings are an important determinant of the transitions of biomass. 
Given the precautionary approach of the Scotian Shelf fishery, the relative magnitude of 
landings may be lower than the natural fluctuations in the population, which would result in an 
underestimate of 'true' population carrying capacity. 

One simple way to test whether or not fishing mortality is an important determinant of biomass 
fluctuations is called the AIM (An Index Method) method. If fishing mortality contributes to the 
biomass signal, one could expect to observe a negative relationship between relative fishing 
mortality and relative change in biomass. For ESS shrimp, there is no such negative relationship 
(Figure 49), which provides evidence that the conservative exploitation levels in the ESS shrimp 
fishery do not appear to be important determinants of annual biomass variation. 

Failures of BDMs are often derived from data failure due to poor contrast between fishing effort 
and stock abundance (Hilborn 1979), and the ESS shrimp stock appears to be no exception. 
Without contrast in spawning stock size, the stock-recruitment relationship cannot be clearly 
understood. In the context of parameter estimation for BDMs, this means that one must have 
high historical variation in stock size and fishing pressure to estimate the parameters of the 
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model with any reliability. As a result, the BDM analytical approach is not considered to be a 
valid avenue to pursue for the provision of science advice for this stock. 

CONCLUSTION: ADAPTIVE CO-MANGEMENT OF 
 EASTERN SCOTIAN SHELF SHRIMP 

The TLA has provided a simple, effective and comprehensive means to provide science advice 
for the co-managed ESS shrimp fishery for nearly a quarter century. Although the TLA is not 
without its limitations and caveats, it is difficult to find fault with this track record. It is important 
not to overlook the role that the increase in the shrimp stock to the current and sustained high 
productivity state has played in easing the provision of science advice over this period. Hence, 
by the same token, one should not overlook the lengthy track record of conservative quota 
increases in the face of these strong biomass trends, as well as, immediately substantial quota 
retractions in response to stock decreases and subsequent science advice. The exploratory 
analysis of deterministic (HCR model) and stock projection (BDM) models discussed herein are 
problematic for a number of reasons, but perhaps most importantly, their adoption risks 
disrupting the close cooperative relationship between science, industry and management that 
has proven so successful. This overall result is not novel; it confirms the conclusions of past 
considerations of similar approaches (e.g. Koeller 2000, Koeller at al. 2009). 

The HCR model explored herein as a means to provide deterministic quota recommendations 
based on the results of the TLA does yield TACs that are relatively consistent with management 
history and the conservative exploitation of this stock, although the advice risks being 
substantially less conservative at high biomass. Developing a means to more clearly define 
management responses to science advice at low-moderate abundance levels than the current 
subjective approach is tempting. The impetus to develop guidance at lower stock abundance 
derives from the fact that the co-management system for this fishery has relatively little recent 
experience with this. However, as mentioned above, past and ongoing prompt and conservative 
responses to science advice based on the TLA suggest that appropriate management 
responses to a declining stock would be very likely. Such decisive responses to science advice 
depend on high levels of communication and trust between science and stakeholders that a 
deterministic interpretation may lessen. An approach that is tied so strongly to biomass trends 
also risks imparting more interannual variation in quotas than is advisable for economic and 
logistical reasons. Management regimes that “chase biomass” have often been problematic. 
Perhaps most significantly, though, a deterministic interpretation of the TLA cannot be achieved 
without weighting indicators. As discussed in detail, appropriate weights for highly correlated 
indicators are a moving target, particularly given the possibility of polarity reversal, and 
identifying a compelling means to achieve this remains a serious and probably insurmountable 
stumbling block to a deterministic application of the TLA to the provision of TAC advice. 

The earliest work to quantitatively model ESS shrimp population dynamics concludes with what 
has proven to be an enduring statement. Mohn and Etter (1982) wrote: in light of the probability 
that it is environment, not effort, that is the major determinant of (shrimp) stock size, it would 
appear that MSY from classical fisheries models must be received critically, if not cynically.”  
The influence of environmental determinants of shrimp stock size has been incorporated into 
similar methods (e.g. Hvingel and Kingsley 2006), but for conservatively exploited shrimp stock 
such as the ESS, wherein historical fishing mortality appears to have little detectable influence 
on biomass trends, such methods are likely to remain problematic. Although the implementation 
of the Precautionary Approach has put pressure on assessment scientists to develop models 
that provide the ability to project the probability of various management actions on stock 
biomass, methods that depend on a detectable instantaneous response between fishing 
mortality and biomass are unlikely to provide robust parameter estimates for ESS shrimp, 
particularly given its conservative management history. 
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The TLA distances stock assessment from model error that arises from the use of inevitably 
variable, uncertain or limited monitoring data implicitly in the models to set target yields (Koeller 
2000). It brings together information from a suite of stock specific quantitative and qualitative 
indicators in a manner that is transparent to all stakeholders, to provide political and intellectual 
equity in the decision making process. The result has been a long track record of the provision 
of science advice resulting in conservative and sustainable management of the ESS shrimp 
fishery. It is recommended that the ESS shrimp assessment continues with the holistic, 
qualitative interpretation of the TLA, and that future research efforts be focused on the 
refinement and further validation of the Traffic Light indicators rather than exploring quantitative 
alternatives to the TLA. 

Research Recommendations 

The ESS shrimp Framework meeting resulted in a number of research recommendations aimed 
at further development and improvement of Traffic Light indicators. These recommendations 
included: 

1. Further exploration of Cod, Turbot and Snow Crab ecosystem indicators to study the degree 
to which abundance trends of these species are interrelated, and how they subsequently 
influence shrimp. It was also recommended to investigate Atlantic Halibut trends, given that 
abundance of this species has increased in recent years. 

2. Exploration of Atlantic Zone Monitoring Program indicators as more direct ecosystem 
indicators to track potential ecosystem shifts that may relate to shrimp life history and 
abundance. 

3. Due to uncertainty about the interpretation (i.e. polarity) of the population age-length 
evenness index, depending on the influence of particularly abundant year classes, it was 
recommended that alternative means of providing an index of the distribution of the stock 
across year classes be explored. 

4. The addition of shrimp trap fishery catch rate as an additional fishery-dependent abundance 
index that derives from different gear and is spatially and temporally distinct from trawl 
fishery catch rate indices. It was also recommended to explore the suitability of shrimp 
abundance in the annual ecosystem and snow crab surveys as additional fishery-
independent abundance indices. 

5. Bycatch analyses to compare bycatch from the shrimp survey and bycatch from other 
fisheries on the ESS to that observed in the shrimp fishery. Currently, only bycatch from the 
shrimp fishery is reported. 

6. It was recommended that total fishing effort be added to the analysis as a fishery-dependent 
exploitation index. 

7. Consider reformatting the document and presentation to reflect the functional emphasis on 
primary and secondary indices, including but not limited to removing individual indicator bar-
charts in favour of a focus on plots and trends currently presented in figures. 

8. Clearly define triggers to warrant a break from interim assessments (to trigger a full 
assessment). These triggers might include core abundance or productivity index triggers. 
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TABLES 

Table 1. Total allowable catches (TACs; trawls) and catches (trawls and traps) from the eastern Scotian 
Shelf shrimp fishery (SFAs 13-15), 1980-2014 (dashes indicate lack of data). 

Year 
TAC 

Trawl 
TAC 
Trap 

Trawl Catch Trap 
Catch 

Total 
Catch SFA 13 SFA 14 SFA 15 Total 

1980 5021 - 491 133 360 984 - 984 
1981 - - 418 26 10 454 - 454 
1982 4200 - 316 52 201 569 - 569 
1983 5800 - 483 15 512 1010 - 1010 
1984 5700 - 600 10 318 928 - 928 
1985 5560 - 118 - 15 133 - 133 
1986 3800 - 126 - - 126 - 126 
1987 2140 - 148 4 - 152 - 152 
1988 2580 - 75 6 1 82 - 82 
1989 2580 - 91 2 - 93 - 93 
1990 2580 - 90 14 - 104 - 104 
11991 2580 - 81 586 140 804 - 804 
1992 2580 - 63 1181 606 1850 - 1850 
21993 2650 - 431 1279 317 2044 - 2044 
31994 3100 - 8 2656 410 3074 - 3074 
1995 3170 - 168 2265 715 3148 27 3175 
1996 3170 - 55 2299 817 3171 187 3358 
1997 3600 - 570 2422 583 3574 222 3797 
1998 3800 - 562 2014 1223 3800 131 3931 
1999 4800 200 717 1521 2464 4702 149 4851 
2000 5300 200 473 1822 2940 5235 201 5436 
2001 4700 300 692 1298 2515 4505 263 4768 
2002 2700 300 261 1553 885 2699 244 2943 
2003 2700 300 612 1623 373 2608 157 2765 
2004 3300 200 2041 755 376 3172 96 3268 
2005 4608 392 1190 1392 1054 3636 9 3645 
2006 4608 392 846 1997 1111 3954 32 3986 
2007 4820 200 267 2633 1678 4578 4 4582 
2008 4912 100 349 2703 1265 4317 4 4321 
2009 3475 25 298 2450 727 3475 2 3477 
2010 4900 100 280 1846 2454 4580 1 4581 
2011 4432 168 254 2340 1653 4247 111 4358 
2012 3954 246 197 2296 1227 3693 199 3892 
2013 3496 304 158 2514 708 3380 224 3604 
20144 4140 360 644 2259 996 3919 122 4041 
20145 4140 360 697 2444 999 4140 360 4500 

Notes: 
1 Nordmøre separator grate introduced. 
2 Overall TAC not caught because TAC for SFAs 14 and 15 was exceeded. 
3 Individual SFA TACs combined. 
4 Current year to date (November 27, 2014). 
5 Current year prorated to total TAC. 
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Table 2. Number of active vessels and total licences (in brackets) for the ESS shrimp fishery.  

Year 

Trap 
Scotia-
Fundy1 

Trawl 
Scotia-
Fundy2 Gulf3 

1995 4 24(23) 6(23) 
1996 9(17) 21(24) 6(23) 
1997 10(17) 18(23)  6(23) 
1998 15(26) 17(28)4 10(23)5 

1999 15(22) 19(28)4 10(23)5 

2000 12(21) 18(32)6 10(23)5 

2001 10(28) 18(28)4 10(23)5 

2002 10(14)7 15(23) 6(23) 
2003 9(14) 14(23) 5(23) 
2004 6(14) 14(23) 6(23) 
2005 2(14) 20(28)8 7(24)9 
2006 5(14) 18(28) 7(24) 
2007 2(14) 20(28) 7(24) 
2008 1(14) 18(28) 7(24) 
2009 1(14) 17(28) 6(14)10 
2010 3(14) 18(28) 7(14) 
2011 7(14) 15(28) 5(14) 
2012 8(14) 12(28) 5(14) 
2013 11(14) 13(28) 6(14) 
2014 7(14) 9(28) 5(14) 

Notes: 
1 All but one active trap licences are vessels <45’. They receive about 8% of the TAC. 
2 These vessels receive about 70% of the TAC according to the management plan. Inactive NAFO 4X 
licences (15) not included in total. 
3 All licences 65-100’ length over all (LOA). Eligibility to fish in Scotia-Fundy for about 23% of the TAC. 
4 Temporary allocation divided among 5 vessels. 
5 Temporary allocation divided among 4 vessels. 
6 Temporary allocation divided among 9 licences. 
7 Nine (9) licences were made permanent for 2002. The reduction in the total number of trap licences is 
due to cancellation of some non-active exploratory licences. 
8 Five (5) temporary licences made permanent. 
9 One (1) temporary licence made permanent. 
10 The previously reported number of licenses included (10) that were invalid for a number of reasons. 
The number of valid licenses was updated in 2009. 
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Table 3. Observer coverage statistics for the ESS shrimp fishery from 2004-2014. (Note: In was no 
observer coverage in 2007.) 

Year 
Trips 

Observed 
Sets 

Observed 

Fishing 
Hours 

Observed 

Shrimp 
Catch 

(MARFIS, 
kg) 

Shrimp 
Catch 

(Observer, 
kg) 

SFA 
Covered 

2004 3 40 133 47,455 45,895 13,14,15 
2005 3 51 211 72,914 71,761 14,15 
2006 3 35 110 71,020 68,107 14,15 
2007 0 0 0 0 0 0 
2008 2 36 126 101,009 103,316 14,15 
2009 3 35 138 64,096 62,933 14,17 
2010 7 87 311 98,201 99,275 13,14,15,17 
2011 2 31 150 67,639 67,858 14,15 
2012 3 55 211 101,025 108,174 14,15,17 
2013 1 13 67 45,661 47,865 14 
2014 2 21 83 39,013 37,981 14,17 
 Total 29 404 1540 708,0331 713,1651   
 

 

1The difference between the MARFIS and Observer shrimp weight could be due to the 1% “bag 
allowance”. 
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Table 4. Fish and shellfish bycatch by year recorded on all observed trips on the ESS from 2004-2014 relative to the shrimp catch, number of tows 
and summarized by season (all years). Dash (-) cells indicates none caught. 

SPECIES 

TOTAL CATCH ANNUAL BYCATCH AND (# of tows) SEASON 
Weight 

(kg) 
total 

% 
2004 
(40) 

2005 
(51) 

2006 
(35) 

2008 
(36) 

2009 
(35) 

2010 
(87) 

2011 
(31) 

2012 
(55) 

2013 
(13) 

2014 
(21) 

Spring 
(337) 

Fall 
(67) 

SHRIMP 708033 98.22% 97.95% 97.23% 98.96% 99.45% 99.04% 96.89% 97.81% 98.33% 99.29% 97.21% 98.33% 97.34% 
HERRING(ATLANTIC) 2947 0.41% 0.13% 0.53% 0.03% 0.01% 0.18% 0.61% 0.70% 0.25% 0.02% 2.43% 0.38% 0.62% 
SILVER HAKE 2396 0.33% 0.05% 0.01% 0.48% -  -  1.37% 0.09% 0.52% 0.07% 0.01% 0.26% 0.97% 
WITCH FLOUNDER 1656 0.23% 0.39% 0.59% 0.18% 0.08% 0.21% 0.14% 0.32% 0.18% 0.26% 0.02% 0.24% 0.12% 
AMERICAN PLAICE 1487 0.21% <0.01% 0.75% 0.05% 0.09% 0.22% 0.22% 0.33% 0.16% 0.09% 0.01% 0.20% 0.22% 
REDFISH UNSEPARATED 886 0.12% 0.07% 0.36% 0.04% 0.11% 0.05% 0.21% 0.16% 0.04% 0.08% 0.01% 0.11% 0.22% 
TURBOT,GREENLAND HALIBUT 691 0.10% 0.87% 0.09% 0.01% -  0.02% 0.04% 0.14% 0.03% 0.02% 0.01% 0.10% 0.08% 
EELPOUTS (NS) 651 0.09% 0.04% 0.21% 0.04% 0.01% 0.05% 0.06% 0.34% 0.10% -  0.01% 0.10% 0.05% 
CAPELIN 570 0.08% 0.02% 0.07% 0.03% 0.13% 0.12% 0.21% 0.01% 0.05% -  0.01% 0.06% 0.24% 
BLENNIES (NS) 228 0.03% -  0.01% 0.03% 0.09% 0.01% 0.03% 0.04% -  0.10% -  0.03% <0.01% 
SQUID (NS) 229 0.03% 0.07% 0.01% 0.01% -  -  0.01% <0.01% 0.16% -  -  0.03% 0.01% 
ALEWIFE 210 0.03% <0.01% <0.01% <0.01% -  0.03% 0.04% -  0.04% -  0.26% 0.03% 0.04% 
WINTER FLOUNDER 147 0.02% 0.29% -  -  -  -  -  0.01% -  -  -  0.02% -  
ROCKLING (NS) 112 0.02% -  -  <0.01% 0.01% 0.01% 0.02% -  0.06% 0.04% -  0.02% 0.01% 
THORNY SKATE 95 0.01% 0.01% 0.03% -  0.01% 0.01% 0.03% -  0.02% 0.01% <0.01% 0.01% 0.02% 
ATLANTIC SEA POACHER 64 0.01% -  0.05% 0.01% -  0.02% 0.01% -  <0.01% -  -  0.01% -  
ALLIGATORFISH 43 0.01% -  <0.01% 0.02% 0.02% -  0.01% -  -  -  -  0.01% 0.01% 
SNOW CRAB (QUEEN) 41 0.01% 0.01% 0.01% 0.01% -  0.01% <0.01% -  0.01% <0.01% -  0.01% <0.01% 
SKATES (NS) 40 0.01% -  -  0.02% -  -  0.01% -  0.02% -  -  0.01% <0.01% 
OCEAN POUT(COMMON) 34 <0.01% -  <0.01% 0.05% -  -  -  -  -  -  -  0.01% -  
SAND LANCES (NS) 32 <0.01% <0.01% <0.01% -  -  0.01% 0.01% 0.02% -  -  0.01% <0.01% <0.01% 
DAUBED SHANNY 29 <0.01% -  -  -  -  -  0.01% 0.02% -  -  -  <0.01% 0.01% 
AMERICAN EEL 28 <0.01% 0.05% -  <0.01% -  -  -  -  -  -  -  <0.01% -  
YELLOWTAIL FLOUNDER 26 <0.01% 0.01% 0.01% <0.01% -  <0.01% 0.01% -  -  -  -  <0.01% 0.01% 
SEA CUCUMBERS 23 <0.01% -  -  -  -  -  -  -  0.02% -  -  <0.01% -  
WHITE BARRACUDINA 22 <0.01% -  <0.01% -  -  <0.01% 0.01% 0.02% -  -  -  <0.01% 0.01% 
COD(ATLANTIC) 21 <0.01% <0.01% <0.01% <0.01% -  -  0.01% -  <0.01% -  -  <0.01% 0.01% 
MARLIN-SPIKE 17 <0.01% -  -  -  -  -  0.02% -  -  -  -  <0.01% -  
SCULPINS (NS) 15 <0.01% 0.02% <0.01% -  -  -  <0.01% -  <0.01% -  -  <0.01% <0.01% 
RHODICHTHYS SPP. 14 <0.01% -  -  -  -  0.01% <0.01% -  -  -  -  <0.01% -  
SQUIRREL OR RED HAKE 10 <0.01% -  0.01% -  -   - <0.01% -  <0.01% -  -  <0.01% -  
WRYMOUTH 8 <0.01% -  -  <0.01% -  0.01% <0.01% -  -  -  -  <0.01% <0.01% 
WHITE HAKE 8 <0.01% <0.01% -  0.01% -   - <0.01% -  -  -  -  <0.01% -  
STRIPED ATLANTIC WOLFFISH 6 <0.01% -  <0.01% -  -  <0.01% <0.01% -  -  -  -  <0.01% <0.01% 
POLLOCK 4 <0.01% -  -  -  -   - <0.01% -  -  -  <0.01% <0.01% <0.01% 
TOAD CRAB, UNIDENT. 4 <0.01% -  -  <0.01% -  <0.01% <0.01% -  -  -  -  <0.01% -  
ATLANTIC WOLFFISH 3 <0.01% -  -  <0.01% -   - <0.01% -  <0.01% -  -  <0.01% <0.01% 
MACKEREL(ATLANTIC) 3 <0.01% -  -  -  -   - -  <0.01% <0.01% -  -  <0.01% -  
ARISTOSTOMIAS POLYDACTYLUS 2 <0.01% -  -  -  -   - -  -  <0.01% -  -  <0.01% -  
SPONGES 2 <0.01% -  -  <0.01% -   - -  -  -  -  -  <0.01% -  
ATLANTIC SAURY,NEEDLEFISH 2 <0.01% <0.01% -  -  -   - -  -  -  -  -  <0.01% -  
HADDOCK 2 <0.01% -  -  -  -   - -  -  <0.01% -  <0.01% <0.01% -  
ASTEROIDEA S.C. 1 <0.01% <0.01% -  -  -   - -  -  -  -  -  <0.01% -  
ATLANTIC HAGFISH 1 <0.01% -  -  -  -   - <0.01% -  -  -  -  -  <0.01% 
ATLANTIC HALIBUT 1 <0.01% -  -  <0.01% -   - -  -  -  -  -  <0.01%  - 
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SPECIES 

TOTAL CATCH ANNUAL BYCATCH AND (# of tows) SEASON 
Weight 

(kg) 
total 

% 
2004 
(40) 

2005 
(51) 

2006 
(35) 

2008 
(36) 

2009 
(35) 

2010 
(87) 

2011 
(31) 

2012 
(55) 

2013 
(13) 

2014 
(21) 

Spring 
(337) 

Fall 
(67) 

FISH DOCTOR 1 <0.01% -  <0.01% -  -   - -  -  -  -  -  <0.01%  - 
HERMIT CRAB 1 <0.01% -  -  -  -   - <0.01% -  -  -  -  -  <0.01% 
MONKFISH 1 <0.01% -  -  <0.01% -   - -  -  -  -  -  <0.01%  - 
NORTHERN WOLFFISH 1 <0.01% -  -  <0.01% -   - -  -  -  -  -  <0.01%  - 
SEASNAILS 1 <0.01% -  -  -  -   - <0.01% -  -  -  -  -  <0.01% 
SEA SCALLOP <1 <0.01% <0.01% -  -  -   - -  -  -  -  -  <0.01%  - 
CUSK <1 <0.01% <0.01% -  -  -   - -  -  -  -  -  <0.01%  - 
GRAND TOTAL 720849 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
% BYCATCH   1.78% 2.05% 2.77% 1.04% 0.55% 0.96% 3.11% 2.19% 1.67% 0.71% 2.79% 1.67% 2.66% 
 

Notes: 

SHRIMP (weight landed) includes P. borealis; P. montagui; Crangon. 
EELPOUTS(NS) includes; Short Tailed Eelpout(vahl) and Pale Eelpout. 
BLENNIES (NS) includes; Snake Blenny; blenniidae sp.; eel-unidentified. 
SQUID (NS) includes; Short-fin; Longfin Squid; Longfin Inshore; Northern Shortfin Ssquid. 
SCULPINS (NS) includes; Ribbed Sculpin; nybelini sculpin. 
ROCKLINGS (NS) includes; Threebeard Rockling; Fourbeard Rockling. 
SKATES (NS) includes; Smooth Skate. 
Weights may be overestimated due to data collection restrictions (minimum recorded weight is 1 kg). 
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Table 5. The history of survey vessels, survey trawls/modifications and comparative fishing of the ESS shrimp survey. 

Year Vessel Trawl Trawl Performance/comparative Fishing Notes or References 
1982-88 FRV EE Prince Yankee 36  None 

1993 W.A. Moore  
April & Colette Commercial None 

1995 Cody & Kathryn Commercial None 

1996 Lady Megan II Commercial Comparative fishing with Cody& Kathyrn/commercial net (Koeller et al. 1997) 

1997 Miss Marie Survey trawl A 
(Nordsea) Comparative fishing with Cody& Kathyrn/commercial net (Koeller et al. 1997) 

1998 Cody & Kathryn Survey trawl A None 

1999-01 Carmel VI (named 
Amelie Zoe in 1999) Survey trawl A None 

2002-03 All Seven Survey Trawl B 
(Pescatrawl) None 

2004-08 All Seven Survey Trawl C (new in 
2004) 

Declining grate angle over time detected in 2008 as resulting in low catches (see 
Koeller et al. 2011) 

2009 Cody & Kathryn Survey trawl C  Capt. Shrader brought grate angle back to specifications. Protocol added to have 
trawl inspected annually (Koeller et al. 2011) 

2010 Cody & Kathryn Survey trawl C Pre-survey inspection by Capt. Shrader, DFO and IMP 

2011 Cody & Kathryn Survey trawl D Pre-survey inspection by Capt. Shrader and IMP. Chafer length adjustment to 
new trawl during survey (to match trawl C). Stations from first trip repeated.  

2012 Cody & Kathryn Survey trawl D 
Pre-survey inspection by Capt. Shrader and IMP. Capt. Shrader observed that 
net not taking bottom well in deep water when the tide was strong. Weight 
addition suggested (discussed herein) 

2013 Cody & Kathryn Survey trawl D 
Pre-survey inspection by Capt. Shrader and IMP. Survey completed with weight 
added to doors and footgear. 16 stations repeated without additional weight 
(discussed herein) 

2014 Cody & Kathryn Survey trawl D Pre-survey inspection by Capt. Shrader and IMP. Survey completed with heavier 
trawl. 
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Table 6. Comparative fishing results of weighted and unweighted trawl configurations during the 2013 ESS shrimp survey. 

Station Stratum 
Warp 

(Fathoms.) 
Avg. Depth 
(Fathoms) 

Standardised 
Heavy Trawl 
Catch (kg) 

Standardised 
Light Trawl 
Catch (kg) 

Heavy/Light 
Trawl Catch 

Ratio 

Heavy Trawl 
Juvenile 

Catch (#s) 

Light Trawl 
Juvenile 

Catch  
(#s) 

4 15 350 116 112.00 241.52 46% 2 1 
5 15 325 107 76.09 76.74 99% 6 0 
9 15 375 127 83.41 87.29 96% 40 77 
11 15 375 133 263.02 192.27 137% 9 14 
24 14 375 123 837.49 757.66 111% 0 0 
26 14 450 145 293.95 456.17 64% 0 0 
14 17 375 120 206.13 177.66 116% 11 8 
54 17 325 105 237.62 185.74 128% 0 1 
42 13 450 147 267.71 218.24 123% 0 1 
43 13 400 132 167.57 185.10 91% 0 0 
36 13 500 162 249.34 128.22 194% 0 0 
35 13 500 207 36.65 58.21 63% 0 0 
28 14 425 136 535.81 534.35 100% 0 2 
27 14 425 139 24.70 20.48 121% 0 0 
47 17 350 127 555.24 450.06 123% 33 13 
48 17 275 088 401.68 290.93 138% 31 19 
Average 271.78 253.79 109% 8.3 8.5 
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Table 7. Set statistics from DFO-industry survey CK1401 conducted by motor vessel (MV) Cody & 
Kathryn from 1-12 June 2014. 

SET SFA DATE LAT. LONG. 
SPEED 

(kts) 
DIST. 
(n.m.) 

DUR. 
(min) 

WING. 
(m) 

DEPTH 
(fth) 

TEMP 
(°C) 

RAW 
CATCH 

(kg) 

STAND. 
CATCH 

(kg) 

DENSITY 
(gm/m2 

or 
m.t./km2) 

1 15 01-Jun-14 445940 605870 2.67 1.22 30 17.17 104.57 2.37 22.68 23.53 0.58 
2 15 01-Jun-14 445652 610178 2.72 1.31 30 16.72 105.57 2.25 48.99 48.78 1.21 
3 15 01-Jun-14 445417 610375 2.67 1.31 30 16.99 110.29 2.28 82.55 80.59 2.00 
4 15 01-Jun-14 445340 605812 2.62 1.19 30 17.92 134.29 2.26 175.45 179.55 4.46 
5 15 02-Jun-14 444817 605615 2.53 1.06 30 16.36 136.14 2.33 53.52 66.90 1.66 
6 15 02-Jun-14 445603 604637 2.50 1.18 30 17.51 120.57 2.62 151.05 158.82 3.94 
7 15 02-Jun-14 445035 604076 2.25 1.16 30 17.37 156.14 3.23 112.72 121.28 3.01 
8 15 02-Jun-14 444683 603692 2.44 1.18 30 17.67 127.00 3.30 37.56 39.10 0.97 
9 15 02-Jun-14 445676 602762 2.67 1.31 30 17.67 133.43 3.76 80.74 75.95 1.89 
10 15 02-Jun-14 445478 602344 2.56 1.16 30 17.51 129.43 3.87 231.70 247.86 6.15 
11 15 02-Jun-14 445009 602189 2.55 1.18 30 17.58 164.43 3.98 69.85 73.12 1.82 
12 15 02-Jun-14 444928 601633 2.41 1.21 30 17.09 163.43 3.88 35.38 37.17 0.92 
13 15 03-Jun-14 445518 601166 2.37 1.18 30 17.59 142.86 3.81 281.23 294.46 7.31 
14 15 03-Jun-14 445786 600828 2.40 1.22 30 17.08 118.43 3.64 220.45 229.62 5.70 
15 15 03-Jun-14 445470 595846 2.48 1.19 30 16.86 105.71 4.02 230.43 249.12 6.18 
16 14 03-Jun-14 444831 595825 2.57 1.20 30 16.59 133.00 4.23 91.99 100.48 2.49 
17 14 03-Jun-14 444062 600737 2.38 1.16 30 16.54 103.00 4.43 60.78 68.84 1.71 
18 14 03-Jun-14 444154 600079 2.24 1.09 30 16.98 116.43 4.70 93.89 109.96 2.73 
19 14 03-Jun-14 444320 594712 2.62 1.28 30 18.27 139.29 4.47 256.74 238.91 5.93 
20 14 03-Jun-14 444153 593595 2.29 1.14 30 17.11 115.57 4.17 184.39 205.63 5.10 
21 14 04-Jun-14 445610 581975 2.48 1.16 30 17.35 139.00 3.76 464.48 502.89 12.48 
22 14 04-Jun-14 445055 583181 2.54 1.23 30 17.47 138.17 3.47 258.82 263.05 6.53 
23 14 04-Jun-14 444768 583798 2.60 1.26 30 17.40 139.43 3.57 223.17 221.73 5.50 
24 14 04-Jun-14 445608 584304 2.52 1.20 30 17.69 142.29 3.17 541.50 556.64 13.82 
25 14 04-Jun-14 444768 585328 2.50 1.20 30 17.57 144.86 3.30 396.90 409.01 10.15 
26 14 04-Jun-14 445145 590318 2.43 1.17 30 17.29 128.57 3.06 415.04 445.70 11.06 
27 14 04-Jun-14 444755 591130 2.43 1.21 30 17.08 124.71 3.07 279.42 293.31 7.28 
28 14 05-Jun-14 443858 590260 2.51 1.25 30 17.31 117.29 2.96 279.51 281.56 6.99 
29 14 05-Jun-14 445107 592792 2.54 1.19 30 17.57 141.71 3.72 381.02 395.01 9.81 
30 14 05-Jun-14 445120 594204 2.39 1.18 30 17.24 122.71 4.11 571.17 608.51 15.11 
31 17 09-Jun-14 451530 595534 2.51 1.18 30 17.03 105.86 2.95 917.54 996.54 24.74 
32 17 09-Jun-14 451827 594767 2.46 1.24 30 16.55 74.14 2.44 3.63 3.85 0.10 
33 17 09-Jun-14 452126 595370 2.41 1.22 30 16.55 82.00 2.69 166.20 179.48 4.46 
34 17 09-Jun-14 452743 594376 2.61 1.19 30 16.55 71.57 2.48 0.00 0.00 0.00 
35 17 09-Jun-14 452465 595780 2.34 1.15 30 16.33 91.43 3.18 119.21 137.74 3.42 
36 17 09-Jun-14 452831 600317 2.31 1.35 30 16.92 97.29 3.12 95.26 90.53 2.25 
37 17 09-Jun-14 453417 600517 2.37 1.25 30 17.28 97.57 2.75 1242.86 1247.02 30.96 
38 17 09-Jun-14 453683 595958 2.40 1.21 30 17.65 94.29 2.76 542.32 552.88 13.73 
39 13 10-Jun-14 453651 584011 2.36 1.20 30 17.99 161.14 4.33 103.42 104.23 2.59 
40 13 10-Jun-14 453507 583505 2.43 1.19 30 17.47 138.14 4.11 163.02 169.84 4.22 
41 13 10-Jun-14 453233 582894 2.20 1.06 30 17.21 139.00 4.26 251.66 299.21 7.43 
42 13 10-Jun-14 453397 582090 2.30 1.16 30 15.83 203.14 4.60 82.10 96.85 2.40 
43 13 10-Jun-14 454047 581950 2.21 1.14 30 16.49 201.50 4.48 53.52 62.16 1.54 
44 13 10-Jun-14 454079 582818 2.51 1.23 30 16.30 205.57 4.70 65.32 71.09 1.76 
45 13 10-Jun-14 454778 583130 2.30 1.21 30 17.49 163.00 4.98 403.25 416.00 10.33 
46 13 10-Jun-14 454705 583537 2.32 1.17 30 17.94 163.57 5.01 241.31 250.79 6.23 
47 13 11-Jun-14 454645 583988 2.29 1.15 30 17.44 154.71 4.99 122.47 132.37 3.29 
48 13 11-Jun-14 455074 584991 2.37 1.21 30 17.37 134.29 4.83 270.34 279.15 6.93 
49 13 11-Jun-14 454771 585745 2.45 1.20 30 17.35 129.29 4.78 305.00 318.10 7.90 
50 13 11-Jun-14 454440 590030 2.57 1.26 30 17.45 138.71 4.75 414.86 411.36 10.21 
51 13 11-Jun-14 454298 585611 2.37 1.13 30 17.48 138.71 4.79 160.57 176.12 4.37 
52 13 11-Jun-14 454213 585126 2.78 1.23 30 17.55 132.43 4.76 143.79 145.17 3.60 
53 13 11-Jun-14 453709 590463 2.67 1.16 30 17.67 142.14 4.68 120.66 128.04 3.18 
54 17 12-Jun-14 452878 602425 2.13 1.15 30 16.71 118.57 2.87 271.34 308.25 7.65 
55 17 12-Jun-14 453321 602851 2.31 1.33 30 16.43 84.86 2.62 616.26 613.13 15.22 
56 17 12-Jun-14 452977 603177 2.58 1.20 30 17.24 95.86 2.86 922.07 971.05 24.11 
57 17 12-Jun-14 452925 603731 2.59 1.26 30 15.93 81.00 2.50 384.56 416.34 10.34 
58 17 12-Jun-14 452634 603460 2.50 1.27 30 15.81 88.57 2.72 500.41 540.39 13.42 
59 17 12-Jun-14 452552 604165 2.46 1.24 30 15.56 76.29 2.36 458.50 517.32 12.84 
60 17 12-Jun-14 452259 605979 2.42 1.26 30 16.73 58.71 0.92 151.54 156.82 3.89 
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Table 8. Input data for Traffic Light Analysis. 

Year R
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1982 34.50 128.00 NAN 89.06 NAN 5040.65 NAN NAN NAN 21.46 28.24 179.29 NAN NAN NAN NAN NAN 0.81 NAN NAN NAN 2.38 0.00 NAN 
1983 71.50 127.70 NAN 78.52 NAN 7323.05 NAN NAN NAN 21.80 28.03 164.05 NAN NAN NAN NAN NAN 0.77 NAN 2.78 NAN 2.42 0.00 NAN 
1984 39.00 109.50 NAN 75.84 NAN 4460.96 NAN NAN NAN 22.17 27.69 353.25 NAN NAN NAN NAN NAN 0.73 NAN 0.48 NAN 5.57 0.06 NAN 
1985 17.00 75.40 NAN 83.09 NAN 2417.71 NAN NAN NAN 21.77 27.87 236.37 NAN NAN NAN NAN NAN 0.75 NAN -0.07 1.55 1.71 0.05 NAN 
1986 23.00 87.30 NAN 106.13 NAN 3187.87 NAN NAN NAN 23.63 27.94 144.33 NAN NAN NAN NAN NAN 0.74 NAN -0.77 0.13 0.37 0.09 NAN 
1987 25.50 90.70 NAN 67.53 NAN 3424.46 NAN NAN NAN 23.16 27.94 187.04 NAN NAN NAN NAN NAN 0.79 NAN -1.32 0.77 0.87 0.16 NAN 
1988 31.50 85.10 NAN 60.14 NAN 4047.02 NAN NAN NAN 23.84 28.12 142.81 NAN NAN NAN NAN NAN 0.76 NAN -0.92 0.17 1.19 0.06 NAN 
1989 NAN 133.40 NAN NAN NAN NAN NAN NAN NAN NAN NAN 66.58 NAN NAN NAN NAN NAN NAN NAN -1.07 18.38 1.75 0.00 NAN 
1990 NAN 134.50 NAN NAN NAN NAN NAN NAN NAN NAN NAN 67.33 NAN NAN NAN NAN NAN NAN NAN -1.02 9.23 1.16 0.00 NAN 
1991 NAN 197.90 NAN NAN NAN NAN NAN NAN NAN NAN NAN 46.91 NAN NAN NAN NAN NAN NAN NAN -0.77 5.07 0.17 0.46 NAN 
1992 NAN 176.30 NAN NAN NAN NAN NAN NAN NAN NAN NAN 32.10 NAN NAN NAN NAN NAN NAN NAN -1.72 34.88 0.17 0.08 NAN 
1993 75.00 187.89 142.20 80.33 31.00 NAN NAN NAN NAN 23.78 30.45 68.53 NAN NAN NAN NAN NAN NAN NAN -2.07 193.36 0.29 1.86 NAN 
1994 NAN 213.52 188.40 NAN 48.00 NAN NAN NAN NAN NAN NAN 66.17 NAN NAN NAN 0.89 26.05 NAN NAN -1.52 1563.89 0.30 1.98 NAN 
1995 173.02 187.02 181.17 82.84 71.00 10912.15 NAN 358.50 875.92 24.05 29.27 66.52 55.92 13.44 21.04 0.72 26.03 0.83 1.59 -1.17 138.62 0.54 1.74 NAN 
1996 213.92 244.58 224.35 64.88 99.00 13368.38 NAN 307.34 1247.63 24.73 29.99 32.56 54.47 11.50 16.11 0.68 26.01 0.83 1.72 -0.92 87.53 0.16 4.78 NAN 
1997 193.00 236.26 218.89 53.46 146.00 12100.80 NAN 128.85 1257.47 24.94 29.78 35.85 56.35 14.41 19.08 0.64 26.44 0.80 2.74 -0.47 146.64 0.40 2.91 6588.78 
1998 238.38 343.73 298.94 74.42 209.00 15707.48 NAN 39.89 1883.71 24.33 29.51 59.87 53.22 12.08 14.73 0.60 25.68 0.78 1.97 -0.06 284.31 0.31 0.41 8446.24 
1999 268.40 395.70 325.53 72.20 258.00 17607.48 NAN 165.63 3010.18 24.08 29.31 64.13 55.30 13.24 16.90 0.63 25.46 0.75 3.24 -0.50 159.96 1.39 1.67 10482.22 
2000 233.36 383.66 365.48 72.00 242.00 15893.36 NAN 280.34 0.00 24.74 29.74 76.29 55.19 17.06 19.79 0.58 25.57 0.78 3.60 0.07 32.38 0.79 11.44 5128.69 
2001 183.32 428.24 443.46 126.03 221.00 14475.58 NAN 174.90 1184.11 24.29 29.19 73.28 54.70 19.05 19.56 0.63 25.15 0.79 2.36 -0.55 15.99 1.58 3.66 4664.29 
2002 161.40 572.36 523.48 111.15 192.00 14133.20 980.00 134.00 399.17 24.45 29.02 57.30 52.53 14.17 13.43 0.70 25.61 0.78 2.77 -0.09 49.85 0.32 3.88 2212.31 
2003 204.42 675.41 520.72 104.48 265.00 16916.16 196.00 576.74 1411.07 24.31 29.05 100.65 53.48 9.83 10.91 0.73 25.68 0.84 2.69 -1.30 2.70 1.03 6.69 1656.46 
2004 353.70 793.14 549.32 78.00 263.00 26856.47 316.00 354.09 839.46 24.13 29.44 57.46 54.96 6.75 9.48 0.80 25.41 0.80 1.99 -0.43 5.93 0.64 3.44 1248.30 
2005 312.90 683.25 496.53 83.01 364.00 18587.50 198.00 187.02 4502.48 23.63 29.46 99.05 58.93 8.20 13.05 0.66 25.72 0.73 2.41 0.47 99.41 0.25 14.00 1500.56 
2006 275.20 716.40 614.86 75.86 296.00 16288.53 61.00 121.30 0.00 23.39 29.35 77.47 63.23 10.55 13.57 0.55 25.96 0.75 3.62 1.03 5.78 0.80 18.92 3012.34 
2007 281.20 696.62 507.79 66.34 389.00 18345.54 194.00 39.00 0.00 23.67 29.07 51.64 65.30 11.92 12.28 0.45 25.70 0.73 2.30 -0.73 8.45 0.29 7.77 5482.42 
2008 226.10 664.07 520.17 72.25 423.00 12119.42 484.11 134.72 1046.18 23.84 28.57 92.82 61.52 13.98 20.50 0.52 24.98 0.73 1.96 0.03 1.36 1.24 6.51 6145.07 
2009 333.10 648.76 628.16 91.70 324.00 24853.59 566.52 304.05 463.00 24.21 28.74 55.35 57.56 7.65 9.37 0.72 25.06 0.77 2.59 -0.61 0.21 0.57 5.42 4424.86 
2010 273.00 536.23 465.57 105.47 350.00 21706.69 205.08 188.00 1036.00 24.53 28.87 70.88 57.77 12.31 15.45 0.74 25.20 0.80 2.35 1.54 11.06 0.16 2.55 6264.81 
2011 223.60 671.18 456.36 78.89 320.00 16823.67 97.34 85.22 1044.08 24.27 28.51 149.12 61.34 14.28 18.61 0.71 25.19 0.77 2.99 0.72 0.57 0.93 1.96 4912.83 
2012 205.30 552.28 496.05 66.78 294.00 14762.95 124.76 273.22 1022.00 23.88 29.01 31.80 59.61 15.01 18.93 0.72 25.22 0.79 4.20 0.43 1.25 0.65 1.37 4436.99 
2013 287.60 626.68 672.22 91.88 337.00 20679.51 24.92 302.00 1693.00 23.79 29.11 101.00 59.30 9.64 13.27 0.74 25.56 0.76 3.04 0.40 0.17 1.94 1.17 3363.25 
2014 284.30 417.43 478.84 91.86 342.00 20358.62 789.32 125.00 0.00 24.29 28.97 115.00 55.54 9.80 14.56 0.70 25.72 0.77 3.64 -0.35 0.10 0.04 3.27 3214.33 

Note: NAN = not a number. 
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Table 9. Correlation matrix of Traffic Light Indicators (1982-2014 data) used in the ESS shrimp stock assessment. 
indicator nrm_cpue survey gfcpue stcpue rvcv area ssb bb rv2 rv4 sexmm maxmm pred count exp femexp femprop femsize popeven botemp surtemp Capelin Cod turbot Crab 
nrm_cpue 1 0.54 0.67 0.56 -0.23 0.00 0.33 -0.10 0.13 0.17 -0.46 0.38 -0.13 0.13 -0.56 -0.44 0.08 0.04 -0.15 -0.33 -0.05 0.13 0.18 0.33 -0.23 

survey 0.54 1 0.21 0.21 -0.13 0.21 0.59 0.00 0.13 -0.01 -0.31 0.33 -0.03 0.03 -0.77 -0.44 0.16 0.04 -0.21 -0.18 -0.05 -0.08 -0.13 0.08 -0.13 
gfcpue 0.67 0.21 1 0.38 -0.31 -0.08 0.10 -0.23 -0.05 0.09 -0.38 0.36 -0.05 0.21 -0.28 -0.36 -0.11 0.17 -0.21 -0.36 -0.08 0.36 0.15 0.51 -0.26 
stcpue 0.56 0.21 0.38 1 -0.05 -0.13 0.10 -0.03 0.26 -0.01 -0.23 0.26 -0.15 0.00 -0.38 -0.41 0.11 -0.04 0.01 -0.15 -0.23 0.00 0.36 0.21 -0.21 

rvcv -0.23 -0.13 -0.31 -0.05 1 -0.15 0.23 0.26 0.18 0.12 0.56 0.03 0.18 -0.59 -0.05 -0.13 0.45 0.01 0.43 0.08 0.00 0.03 -0.13 -0.18 -0.18 
area 0.00 0.21 -0.08 -0.13 -0.15 1 0.00 -0.08 -0.36 0.14 -0.23 -0.10 0.10 0.41 0.03 0.15 -0.32 -0.09 -0.54 -0.31 0.08 -0.15 -0.05 0.10 0.41 
ssb 0.33 0.59 0.10 0.10 0.23 0.00 1 0.15 0.23 -0.01 0.10 0.23 0.03 -0.28 -0.62 -0.44 0.53 0.01 0.21 -0.23 -0.10 -0.03 -0.23 -0.08 -0.13 
bb -0.10 0.00 -0.23 -0.03 0.26 -0.08 0.15 1 0.00 -0.25 0.38 -0.10 -0.15 -0.46 -0.08 -0.10 0.00 -0.12 0.10 -0.26 -0.23 0.10 -0.41 0.05 -0.10 
rv2 0.13 0.13 -0.05 0.26 0.18 -0.36 0.23 0.00 1 0.33 0.21 0.08 -0.13 -0.44 -0.31 -0.23 0.47 -0.17 0.54 -0.03 -0.15 -0.03 0.18 -0.13 -0.23 
rv4 0.17 -0.01 0.09 -0.01 0.12 0.14 -0.01 -0.25 0.33 1 -0.09 0.01 0.33 -0.01 -0.09 0.07 0.26 -0.26 0.08 -0.14 0.17 0.04 0.43 -0.14 -0.04 

sexmm -0.46 -0.31 -0.38 -0.23 0.56 -0.23 0.10 0.38 0.21 -0.09 1 -0.31 0.05 -0.51 0.18 0.00 0.37 -0.27 0.57 0.00 -0.13 -0.05 -0.21 -0.31 0.05 
maxmm 0.38 0.33 0.36 0.26 0.03 -0.10 0.23 -0.10 0.08 0.01 -0.31 1 -0.03 -0.13 -0.46 -0.44 0.05 0.55 -0.01 -0.08 -0.05 0.33 -0.13 0.33 -0.54 

pred -0.13 -0.03 -0.05 -0.15 0.18 0.10 0.03 -0.15 -0.13 0.33 0.05 -0.03 1 -0.03 -0.10 0.18 0.13 0.06 -0.01 0.18 0.15 -0.28 0.18 -0.13 -0.08 
count 0.13 0.03 0.21 0.00 -0.59 0.41 -0.28 -0.46 -0.44 -0.01 -0.51 -0.13 -0.03 1 0.21 0.28 -0.45 -0.06 -0.57 -0.03 0.26 0.03 0.18 0.08 0.44 

exp -0.56 -0.77 -0.28 -0.38 -0.05 0.03 -0.62 -0.08 -0.31 -0.09 0.18 -0.46 -0.10 0.21 1 0.62 -0.26 -0.17 -0.01 0.21 0.23 0.05 0.05 -0.21 0.36 
femexp -0.44 -0.44 -0.36 -0.41 -0.13 0.15 -0.44 -0.10 -0.23 0.07 0.00 -0.44 0.18 0.28 0.62 1 -0.21 -0.14 -0.07 0.28 0.41 -0.08 0.08 -0.23 0.44 

femprop 0.08 0.16 -0.11 0.11 0.45 -0.32 0.53 0.00 0.47 0.26 0.37 0.05 0.13 -0.45 -0.26 -0.21 1 -0.25 0.62 -0.03 -0.05 -0.16 0.11 -0.39 -0.16 
femsize 0.04 0.04 0.17 -0.04 0.01 -0.09 0.01 -0.12 -0.17 -0.26 -0.27 0.55 0.06 -0.06 -0.17 -0.14 -0.25 1 -0.08 0.22 -0.04 0.19 -0.27 0.35 -0.40 

popeven -0.15 -0.21 -0.21 0.01 0.43 -0.54 0.21 0.10 0.54 0.08 0.57 -0.01 -0.01 -0.57 -0.01 -0.07 0.62 -0.08 1 0.10 -0.10 -0.01 0.01 -0.29 -0.18 
botemp -0.33 -0.18 -0.36 -0.15 0.08 -0.31 -0.23 -0.26 -0.03 -0.14 0.00 -0.08 0.18 -0.03 0.21 0.28 -0.03 0.22 0.10 1 0.15 -0.28 0.03 -0.28 -0.03 

surtemp -0.05 -0.05 -0.08 -0.23 0.00 0.08 -0.10 -0.23 -0.15 0.17 -0.13 -0.05 0.15 0.26 0.23 0.41 -0.05 -0.04 -0.10 0.15 1 0.10 0.00 -0.15 0.21 
Capelin 0.13 -0.08 0.36 0.00 0.03 -0.15 -0.03 0.10 -0.03 0.04 -0.05 0.33 -0.28 0.03 0.05 -0.08 -0.16 0.19 -0.01 -0.28 0.10 1 -0.33 0.38 -0.08 

Cod 0.18 -0.13 0.15 0.36 -0.13 -0.05 -0.23 -0.41 0.18 0.43 -0.21 -0.13 0.18 0.18 0.05 0.08 0.11 -0.27 0.01 0.03 0.00 -0.33 1 -0.13 0.03 
turbot 0.33 0.08 0.51 0.21 -0.18 0.10 -0.08 0.05 -0.13 -0.14 -0.31 0.33 -0.13 0.08 -0.21 -0.23 -0.39 0.35 -0.29 -0.28 -0.15 0.38 -0.13 1 -0.18 

crab -0.23 -0.13 -0.26 -0.21 -0.18 0.41 -0.13 -0.10 -0.23 -0.04 0.05 -0.54 -0.08 0.44 0.36 0.44 -0.16 -0.40 -0.18 -0.03 0.21 -0.08 0.03 -0.18 1 
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Table 10. Survey biomasses, commercial shrimp catches, and exploitation rates (catch/biomass) by survey strata (13-15, offshore part), and the 
inshore area (17), 1998-2014. 

Survey Metric  SFA 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Mean 

Biomass (mt) 

13 7188 9517 5866 4089 3114 7047 12184 9687 6129 7507 4144 6208 2688 4537 6011 7970 8204 6324 
14 11279 11040 9364 12325 12020 12035 20228 20035 18929 15957 12710 20544 16009 14614 10941 17682 11801 13984 
15 4549 7807 7268 2073 2766 3751 4399 4378 5130 5345 4227 7235 4784 4223 4232 2594 3022 4975 
17 9530 8262 9365 6541 2872 5296 11627 10333 7581 9622 9823 11438 13731 7136 6793 11136 15765 8086 

Total 32546 36626 31863 25028 20773 28130 48438 44433 37769 38431 30904 45424 37212 30510 27978 39381 38791 33401 

Catch (mt) 

13 517 616 233 432 270 585 2011 1145 630 85 212 11 125 4 0 0 438 445 
14 2029 1516 1750 1206 1552 1621 752 1372 1998 2640 2696 2026 1844 2309 2126 2509 2283 1897 
15 486 442 915 965 247 226 338 613 444 612 534 540 1123 982 694 407 192 631 
17 899 2276 2538 2165 874 333 168 515 915 1245 879 900 1490 1062 827 688 1002 983 

Total 3931 4851 5436 4768 2943 2765 3268 3645 3986 4582 4321 3477 4581 4358 3647 3604 3916 3955 

Exploitation (%) 

13 7.2 6.5 4.0 10.6 8.7 8.3 16.5 11.8 10.3 1.1 5.1 0.2 4.6 0.1 0.0 0.0 5.3 6.8 
14 18.0 13.7 18.7 9.8 12.9 13.5 3.7 6.8 10.6 16.5 21.2 9.9 11.5 15.8 19.4 14.2 19.3 15.0 
15 10.7 5.7 12.6 46.6 8.9 6.0 7.7 14.0 8.6 11.5 12.6 7.5 23.5 23.3 16.4 15.7 6.4 12.9 
17 9.4 27.5 27.1 33.1 30.4 6.3 1.4 5.0 12.1 12.9 8.9 7.9 10.9 14.9 12.2 6.2 6.4 12.8 

Total 12.1 13.2 17.1 19.1 14.2 9.8 6.7 8.2 10.6 11.9 14.0 7.7 12.3 14.3 13.0 9.2 10.1 12.4 

Table 11. Minimum survey population numbers at age from modal analysis. Numbers x 106. 

Age 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Avg. 
11 - - - - 980 196 316 198 61 194 484 567 263 97 113 25 790 316 
2 40 166 280 175 134 616 354 187 121 39 114 304 188 85 348 302 125 215 
3 785 27 757 362 383 312 3118 652 880 506 396 267 1020 752 1018 1157 628 754 
4 1884 3010 04 1184 399 1506 839 4502 04 04 1190 463 1036 1044 1022 1693 04 1428 

5+ 2047 1952 3374 2110 1847 1727 3324 2224 5106 5506 3017 6020 4109 2488 1666 2398 4980 2891 
TOTAL 4755 5155 4412 3831 2763 4161 7636 7763 6169 6244 5201 7622 6616 4467 4167 5574 6523 5161 
Age 4+ males2 2243 3235 1784 1771 938 1526 1549 4956 3916 2804 3317 4263 3454 1755 1211 1032 3276 2424 
Primiparous3 889 736 728 817 678 551 870 786 771 1739 892 1492 1324 930 281 860 659 868 
Multiparous 647 991 863 706 630 1188 1698 1183 480 1157 482 1295 630 945 1309 2224 1835 885 
Total females 1535 1727 1591 1523 1308 1739 2568 1969 1251 2896 1374 2787 1954 1875 1590 3084 2494 1753 

Notes: 
1 Belly-bag. 
2 Total population less ages 2, 3 males, transitionals and females, i.e. males that will potentially change to females the following year. 
3 Includes transitionals. 
4 Four year olds of the 1996 and 2002, 2003 year classes were not distinguishable in the MIX analysis. These year classes appear to be small and are contained 
in the ages 3 or 5+ categories. 
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Table 12. Shrimp predators on the ESS with stomach contents data from 2000-2010 summer ecosystem 
surveys. Fish species found to have shrimp in their stomach more than 5% of the time that they are 
examined are in bold. 

Ecosystem survey species 
Code<1000  

Number 
Sampled 

(With 
Prey) 

Shrimp 
Percent 
Weight 
in Diet 

Shrimp 
Frequency 

in Diet 
TomCod, Atlantic1 3 44.0% 0.333 
Halibut, Greenland  830 13.0% 0.152 
Hake, White 1462 4.2% 0.120 
Eelpout, Newfoundland 27 16.4% 0.111 
Halibut, Atlantic 369 1.1% 0.103 
Atlantic Cod 4180 3.9% 0.100 
Cusk 21 2.2% 0.095 
Skate, Smooth 311 10.6% 0.090 
Hake, Longfin 105 21.1% 0.067 
Hake, Squirrel/Red 370 5.7% 0.059 
Plaice, American 1868 10.7% 0.049 
Sculpin, Longhorn 1310 1.5% 0.040 
Redfish2 873 6.2% 0.034 
Pollock 744 1.5% 0.031 
Sea raven 470 0.1% 0.028 
Skate, Thorny2 1213 3.2% 0.028 
Hake, Silver 1754 2.2% 0.027 
Skate, Winter2 183 5.2% 0.027 
Skate, Little 39 3.1% 0.026 
Spiny Dogfish 525 0.2% 0.023 
Monkfish 272 0.3% 0.022 
Haddock 3388 0.8% 0.017 
Wolffish, Atlantic 198 0.1% 0.015 
Eelpout, Vahl's2 169 3.4% 0.006 
Herring, Atlantic 1132 0.4% 0.002 
Flounder, Witch 1059 0.3% 0.001 
Flounder, Yellowtail 1006 0.0% 0.001 
Alligatorfish 0 n/a. n/a. 
American Shad 0 n/a. n/a. 
Butterfish 0 n/a. n/a. 
Capelin 0 n/a. n/a. 
Dragonfish, Boa 0 n/a. n/a. 
Eelpout, Laval's 0 n/a. n/a. 
Hagfish, Northern 0 n/a. n/a. 
Lanternfish, Horned 0 n/a. n/a. 
Lumpsucker, Atlantic Spiny 0 n/a. n/a. 
Mackerel, Atlantic 0 n/a. n/a. 
Northern Sand Lance 0 n/a. n/a. 
Rockling, Fourbeard 0 n/a. n/a. 
Sculpin, Hookear 0 n/a. n/a. 
Sculpin, Mailed 0 n/a. n/a. 
Sculpin, Twohorn 0 n/a. n/a. 
Shanny, Daubed 0 n/a. n/a. 
Snakeblenny 0 n/a. n/a. 
Wrymouth 0 n/a. n/a. 

 
Note: 
1Atlantic tomCod are excluded from all analysis due to low sample size (N=3). 
2Several other species stomach contents contain a relatively high proportion of shrimp by weight, despite being infrequently (<5%) 
found to have any shrimp in their stomachs.  
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Table 13. Base Total Allowable Catch (baseTAC) used for the HCR model for each 10% increment (of 
average 2000-2010 SSB) above the lower reference point.  The Critical Zone ( column 2 ) is shown in 
red, the Cautious Zone ( column 3-7 ) is shown in yellow and the Healthy Zone ( column 8-10 ) is shown 
in green. 

SSBt 

(% of 2000-2010) <30% 
30-
40% 

40-
50% 

50-
60% 

60-
70% 

70-
80% 

80-
90% 

90-
100% >100% 

baseTACt 

(% of Biomasst-1) 0% 0% 0.75% 2.5% 6% 9% 10% 10% 10% 

 

Table 14. Hypothetical relative weights applied to Traffic Light indicators and characteristic in the HCR 
model.  Rows corresponding to Abundance and Fishing Effects indicators are shaded grey, while rows 
corresponding to Productivity and Ecosystem indicators are unshaded. 

Traffic Light Indicator 
(Characteristic) 

Indicator 
Weight 

Characteristic 
Weight 

Maximum Possible 
(%) 

survey (abund) 0.33 4 1.33% 
gfcpue (abund) 0.22 4 0.89% 
stcpue (abund) 0.22 4 0.89% 

rvcv (abund) 0.11 4 0.44% 
area (abund) 0.11 4 0.44% 

ssb (prod) baseTAC baseTAC 0-10% 
bb (prod) 0.20 2 0.40% 
rv2 (prod) 0.20 2 0.40% 
rv4 (prod) 0.20 2 0.40% 

sexmm (prod) 0.10 2 0.20% 
maxmm (prod) 0.10 2 0.20% 

pred (prod) 0.20 2 0.40% 
count (fish) 0.14 1 0.14% 
exp (fish) 0.29 1 0.29% 

femexp (fish) 0.29 1 0.29% 
femprop (fish) 0.14 1 0.14% 
femsize (fish) 0.14 1 0.14% 
popeven (eco) 0.13 1 0.13% 
Botemp (eco) 0.27 1 0.27% 
surtemp (eco) 0.27 1 0.27% 
Capelin (eco) 0.07 1 0.07% 

Cod (eco) 0.13 1 0.13% 
turbot (eco) 0.07 1 0.07% 
crab (eco) 0.07 1 0.07% 

TOTAL 18% 
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Table 15. Extrapolated survey biomass (Bs) corresponding to the SSB in 10% increments of the PA SSB 
index and corresponding minimum and maximum hypothetical total allowable catch using the HCR 
model.  n/a indicates not applicable. The Critical Zone ( row 2 ) is shown in red, the Cautious Zone ( row 
2-6 ) is shown in yellow and the Healthy Zone ( row 8-10 ) is shown in green. 

% PA SSB SSB Extrapolated Bs baseTAC (mt) maxTAC (mt) 

<30% n/a n/a 0 0 

30% 5459 15550 0 1244 

40% 7279 18385 138 1609 

50% 9099 21220 531 2228 

60% 10919 24055 1443 3368 

70% 12738 26890 2420 4571 

80% 14558 29725 2972 5350 

90% 16378 32559 3256 5861 

100% 18198 35394 3539 6371 

 

Table 16. Bayesian Surplus Production model parameters. 

Catch Series r K BMSY MSY FMSY 

Gulf 0.98 19160 9580 4470 0.49 

Standardised 1.04 17820 8910 4510 0.52 

Survey 1.62 10840 5420 4390 0.81 
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FIGURES 

 
Figure 1. History of ESS shrimp fishery catches per SFA (13, 14 and 15), TAC (thousands of mt) and 
effort (thousands of hours), from 1980-2014. 
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Figure 2. Shrimp Fishing Areas (SFAs) on the ESS. The heavy-dashed “inshore line” prohibits trawlers 
from fishing inside Chedabucto Bay during the trapping season (fall to spring). Note the distinction 
between SFAs used to report catches survey strata defined offshore (strata 13, 14, 15) by the 100 fathom 
contour (solid lines) and inshore (stratum 17) by the extent of LaHave clay north of 45°10' and west of 
59°20' on surficial geology maps). Stratum 17 is defined by the stippled line, and includes portions of 
SFAs 14, 15 and 15. Strata 13-15 are those parts of the corresponding SFAs that are not included in 
stratum 17. 
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Figure 3. All shrimp fishing trawler effort (commercial fishing sets/tows) from 1993-2014. 

 
Figure 4. All shrimp fishing trapping effort (commercial fishing sets/tows) from 1996-2014. 
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Figure 5. Observer coverage of the ESS shrimp fishery (yellow rings) compared to the distribution of effort 
(pink dots) from 2004-2014. 
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Figure 6. Comparative standardised shrimp catches from 16 repeated survey stations using unweighted 
(light) versus weighted (heavy) trawl configurations, relative to a 1:1 relationship (dotted line). 
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Figure 7. An example of the data plot used to establish start and end times for shrimp survey trawl 
mensuration. 

Figure 8. Stratified catch/standard tow for DFO-industry co-operative surveys from 1995-2014, and 
estimates for the individual strata, which approximately correspond to the main shrimp holes and SFAs. 
Stratum 13 - Louisbourg Hole and SFA 13; Stratum 14 - Misaine Holes and SFA 14; Stratum 15 - Canso 
Holes and the offshore part of SFA 15. The ‘Inshore’, or Stratum 17, is comprised of inshore parts of 
SFA 13-15. 
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Figure 9. Distribution of catches (kg/standard 30 minute tow) and bottom temperatures from DFO-industry 
surveys in 2013 and 2014. See previous research documents for distributions prior to 2013. 
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Figure 10. Research survey, unstandardised Gulf vessel and standardised Maritimes vessel CPUE 
normalized to the mean of each data series (coloured lines) and the overall mean normalized CPUE 
series (heavy black line) from 1982-2015. 
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Figure 11. Survey stratified CPUE and standardised commercial CPUE with 95% confidence 
intervals, and unstandardised Gulf vessel CPUE (top panel); unstandardised commercial CPUE 
for each fishing area, from 1993-2014 (bottom penal). Note that SFA 15 includes the inshore, 
but the latter is also shown separately since fishing began there in 1998. 
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Figure 12. Boxplots of unstandardised CPUE of all (Gulf and Maritimes region) shrimp trawlers on the 
ESS from 1993-2014. 
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Figure 13. Number of 1 minute square unit areas fished by the shrimp fleet with mean catch 
rates above (top) and within (bottom) the values or ranges specified in the legend, from 1993-
2014. 
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Figure 14. Population estimates from belly-bag (dashed line) and main trawl (solid line) catches 
for the 2005-2014 surveys. 
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Figure 15. Population estimates at length from DFO-industry surveys, 2005-2014 (solid line). 
The heavy dotted line in each figure represents transitional and primiparous shrimp, and the 
stippled line represents multiparous shrimp. 
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Figure 16. Catch at length from commercial sampling, 2001-2014.  
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Figure 17. Coefficients of variation (CV) for shrimp survey strata 13, 14, 15, and 17, from 1992-
2014. Note that the earlier survey series has two values per year, one for the spring and one for 
the fall survey. The use of fixed stations in 14 likely acts to constrain interannual changes in CV 
relative to other areas with random stations. 
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Figure 18. Annual effort by trawlers 2013 (top) and 2014 (bottom), cumulative by 1 minute 
squares. 
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Figure 19. Shrimp fishing effort (sets) for the ESS shrimp fishery in 2013 (top) and 2014 (bottom) showing 
total annual (pink), spring (black), summer (yellow) and fall (orange) effort distribution. 
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Figure 20. Regressions of the Age 2 and Age 4 abundance indices at 1 and 3 year time-lags, 
respectively, relative to the belly-bag index from the ESS shrimp research survey. The positive 
relationships for both regressions collapses to approximately flat if the datapoints associated with  the 
large 2001 year class (*) are removed. 

Figure 21. Shrimp juvenile recruitment index (belly-bag index) versus the preceding year’s spawning 
stock biomass index. 
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Figure 22. Averages for commercial count (A: top left), maximum length (B: top right), female size 
(C: bottom left), and size at sex transition (D: bottom right) for all SFAs combined for 1995-2014 with 95% 
confidence intervals. 



 

77 

 

 

Figure 23. Annual time series of the mean normalized shrimp abundance index (black) relative to the 
mean annual abundance index of the three proposed predator species groupings (coloured). 

Figure 24. Regressions of annual time series of the mean normalized shrimp abundance index relative to 
the mean annual abundance index of the three proposed predator species groupings. 
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Figure 25. Changes in the SSB index (A: top) and the total and female exploitation indices 
(B: bottom) for the ESS shrimp population. The dashed lines shows the LRP at 30% and USR at 
80% of the mean SSB value during the 2000-2010 high-productivity period (A) and the removal 
reference of 20% for the exploitation index (B). 
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Figure 26. Graphical representation of the precautionary approach for Scotian Shelf shrimp. The dotted 
lines in the Cautious Zone represent a range of management actions possible, depending on whether the 
stock is stable, increasing or decreasing, or on trends in other indicators of stock or ecosystem health. 
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Figure 27. Annual time series of the mean normalized shrimp abundance index relative to the mean 
annual abundance index of the shrimp survey bottom temperature index. 

Figure 28. Mean bottom temperatures (°C) from shrimp surveys by SFA (13, 14, 15 and 17). Note that 
both spring and fall values were available from the earlier series (1982-1988), but only one survey (June) 
was conducted annually in the recent series. 
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Figure 29. Comparison of average bottom temperatures among shrimp and groundfish surveys at various 
depths. 
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Figure 30. Annual time series of the mean normalized shrimp abundance index (black) relative to the 
lagged (4 years) and mean spring SST index series, unlagged and 4-year lagged. 
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Figure 31. Correlations of the annual time series of the mean normalized shrimp abundance index relative 
to spring SST lagged by 4 (top panel) or 5 (bottom panel) years. 
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Figure 32. Annual time series of the mean normalized shrimp abundance index (red) relative to the mean 
Capelin annual abundance index from 1982-2014. 

Figure 33. Annual time series of the mean normalized shrimp abundance index relative to the mean 
annual Cod recruitment index from 1982-2014. 
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Figure 34. Annual time series of the mean normalized shrimp abundance index relative to the Turbot 
recruitment (<30 cm) index from 1982-2014. 

Figure 35. Annual time series of the mean normalized shrimp abundance index relative to the Snow Crab 
pre-recruit index from 1982-2014.
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Figure 36. The Traffic Light Analysis summary from 1982-2014.
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Figure 37. The Traffic Light Analysis characteristic for Abundance, Production, Fishing Mortality and 
Ecosystem summaries from 1982-2014. 
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Figure 38. The minimum (baseTAC) and maximum (baseTAC plus maximum of tlaTAC) total allowable 
catches possible using the HCR model, relative to 10% intervals of the mean 2000-2010 SSB. Open 
circles are historical TACs as proportions of the preceding year’s swept area biomass. 

Figure 39. Retrospective analysis of historical TACs versus HCR TACs from the deterministic 
interpretation of the traffic light results using the HCR model from 1997-2015. 
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Figure 40. Prior (red dashed line) and posterior distributions (bars) of BDM parameters using the 
standardised fishery catch rate series as the biomass index. 
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Figure 41. Prior (red dashed line) and posterior distributions (bars) of BDM parameters using the Gulf 
fishery catch rate series as the biomass index. 
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Figure 42. Prior (red dashed line) and posterior distributions (bars) of BDM parameters using the survey 
catch rate series as the biomass index. 
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Figure 43. Modelled biomass estimate (grey polygon 95% limits) using the standardised fishery catch 
rates as the biomass index from 1992-2014 and projected to 2016. Dark grey line represents the median 
estimated biomass, blue stippled line represents the mean modelled biomass and the red line represents 
the survey biomass corrected by the median estimate of q. The vertical dashed line represents the end of 
the time series of the index and the following two years represent model projections given fixed landings 
of 5000 t. 
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Figure 44. Modelled biomass estimate (grey polygon 95% limits) using the Gulf fishery catch rates as the 
biomass index from 1992-2014 and projected to 2016. Dark grey line represents the median estimated 
biomass, blue stippled line represents the mean modelled biomass and the red line represents the survey 
biomass corrected by the median estimate of q. The vertical dashed line represents the end of the time 
series of the index and the following two years represent model projections given fixed landings of 5000 t. 
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Figure 45. Modelled biomass estimate (grey polygon 95% limits) using the survey catch rates as the 
biomass index from 1992-2014 and projected to 2016. Dark grey line represents the median estimated 
biomass, blue stippled line represents the mean modelled biomass and the red line represents the survey 
biomass corrected by the median estimate of q. The vertical dashed line represents the end of the time 
series of the index and the following two years represent model projections given fixed landings of 5000 t. 
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Figure 46. Stochastic MSY reference points estimated from the BDM model using the standardised 
fishery catch rates as the biomass index. 
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Figure 47. Stochastic MSY reference points estimated from the BDM model using the Gulf fishery catch 
rates as the biomass index. 
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Figure 48. Stochastic MSY reference points estimated from the BDM model using the survey catch rates 
as the biomass index. 
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Figure 49. Biomass ratio in year t (Bt/Bt-1) versal relative fishing mortality in year t-1 (catch/B)t-1 
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APPENDICES 

APPENDIX 1: HIGH PRODUCTIVITY INDICATOR THRESHOLDS 
It was suggested that consideration should be given to basing the indicator thresholds that 
define the boundaries of red/yellow/green indicators (33rd and 66th percentiles, respectively, or 
reversed for negative polarity indicators) on the current high productivity period for this stock as 
opposed to the entire data series. The panels below show the indicator threshold values at the 
33rd and 66th percentiles based on the entire series of data available (left panel) as has been 
done throughout the history of the shrimp assessment using the Traffic Light Analysis, and the 
same 33rd and 66th percentile thresholds based only on data from 2000-2010 (the same fixed 
time period adopted to estimate biological reference points for this stock in the Precautionary 
Approach (PA)). Reversed polarities are reflected in the figures as described in the Framework 
and previous stock assessment documents. The 2000-2010 period was selected for this 
discussion because it is the same period that has been adopted for the PA, although other 
options exist. 

Reviewers also suggested that biological thresholds (rather than the arbitrary percentiles) 
should be explored where possible (e.g. the preferred temperature range for shrimp is relatively 
well understood). Such biologically based thresholds are the subject of future work and are not 
explored here. 

The Traffic Light indicator histograms that have been presented in shrimp stock assessment 
documents for several decades are produced through scripts in the Virtual Data Centre (VDC). 
Certain modifications (e.g. indicator polarity, threshold percentiles) can easily be made with the 
program in the VDC, but there is no straightforward way to change the range of data/years upon 
which the thresholds are based. As a result, and because the VDC is now nearly obsolete, the 
figures are instead generated using code independent of the VDC and presented as a more 
conventional time series rather than the Traffic Light histograms. 

The suitability/relevance of the 2000s-truncated thresholds (i.e. 33rd and 66th percentiles of the 
2000-2010 data) are discussed above each comparative figure. The Abundance, Production, 
Fishing Effects and Ecosystem Characteristics are also presented as calculated from annual 
percentile ranks based on all data (the historical Traffic Light method) compared to percentile 
ranks relative to 2000-2010 data only. 

Survey Catch Per Unit Effort 
The 2000s-truncated data series excludes the early period of very low survey catch rates before 
the collapse of the groundfish stocks. As a result, the 2000s-truncated thresholds are higher 
(more conservative) and are probably more relevant to the goals of this fishery to retain 
contemporary (high) survey catch rates/biomass (Figure A1). 

Gulf Catch Per Unit Effort 
The exclusion of nearly all of the period of very low catch rates during the early expansion of the 
shrimp stock and the development of the fishery results in much more conservative thresholds 
based on the 2000s-truncated data series. The result is that only the years of the absolute 
highest Gulf vessel catch rates are green values, and recent values are either yellow or red. 
Given that Gulf catch per unit efforts (CPUEs) have been on a declining trend for over a decade, 
and some recent values have been quite low, this modification (although quite extreme) may 
better reflect this index of abundance relative to the goals of the fishery to retain contemporary 
high catch rates (Figure A2). 
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Standardised Maritimes Vessels CPUE 
The 2000s-truncated thresholds capture only the period of highest abundance for this index, 
and exclude the historical lows and recent moderately low values of the Standardised Maritimes 
vessel CPUE index. As a result, both thresholds are more conservative (Figure A3). Although 
this conservative interpretation of the data using the 2000s-truncated thresholds is consistent 
with the management and conservation of the contemporary stock, the increase in the RY 
threshold narrows the yellow range to such a degree that changes between green and red 
indicator values are prone to occur even when the data series has not changed in any 
biologically significant way. 

Survey Coefficient of Variation 
The 2000s-truncated data series excludes some of the least variable survey years and includes 
the highest. The result is that the yellow-red (YR) threshold is quite a bit higher (Figure A4). The 
yellow-green (YG) threshold is also slightly higher, but not very changed. Overall, the truncated 
thresholds probably better reflect what might be more meaningful signals in this fishery 
independent index of dispersion by virtue of a broader yellow zone, although they are less 
conservative then those based on the entire survey data series. 

Commercial Fishing Area 
The thresholds based on the 2000s-truncated data include much of the period of highest catch 
rates, and exclude most of the very low catch rate areas earlier in the data series. As a result, 
both index thresholds occur at higher levels that are more conservative and relevant to the 
contemporary management and conservation of this stock (Figure A5). 

Spawning Stock Biomass (SSB) 
The 2000s truncated data series excludes the period of low SSB early in the data series. As a 
result, both thresholds are raised, particularly the YR, making the truncated data indicators more 
conservative (Figure A6). However, the relatively larger increase in the RY than the YG 
threshold results in a narrowing of the yellow zone that is likely to result in inter-annual changes 
in indicator colour that may not be biologically relevant given the noisiness of the SSB index 
which derives from a fairly small survey. Given that 30% and 80% of the mean of the SSB index 
from 2000-2010 are currently accepted as the lower and upper stock reference points, 
respectively, it would be more appropriate and consistent to use these same thresholds to 
define indicator thresholds in the index. 

Belly-bag Index 
The belly-bag index series is relatively short (only beginning in 2002), so the 2000s-truncated 
series excludes three very poor and one very good recruitment year (2011-13 and 2014, 
respectively). The truncated data series raises YG threshold, while the RY threshold remains 
relatively unchanged compared to thresholds based on the full data series (Figure A7). The 
2000s-truncated YG threshold may be more appropriate than the entire data series because it 
only assigns green lights to the four belly-bag years that have been considered (and generally 
proven) to be “strong year classes”. 

Age 2 Abundance Index 
The 2000s-truncated data series excludes both high and low Age 2 index values, but includes 
the very high Age 2 index value, which has a relatively greater influence on thresholds based on 
the truncated time series than on the full data series. As a result, the YG threshold is lower and 
the RY threshold is slightly higher using the 2000s-truncated data series, which is slightly less 
conservative than thresholds based on the entire data series (Figure A8). 
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Age 4 Abundance Index 
Similarly to the Age 2 index, the 2000s-trunctaed Age 4 abundance index data also includes the 
very high value associated with the passage of the 2001 year class. However, because some of 
the high Age 4 index values from the late 1990s are excluded, the 2000s-truncated thresholds 
are slightly lower (less conservative) than the entire dataset (Figure A9). 

Mean Size at Sex Transition 
The 2000s-truncated thresholds exclude the smallest sizes at sex transition from the 1980s-
1990s. As a result, the RY threshold is raised (more conservative) while the YG threshold 
remains similar to the threshold from the entire data series (Figure A10). The 2000s-truncated 
data series provides thresholds that are more consistent with the contemporary goals of the 
fishery. 

Mean Maximum Size 
The 2000s-truncated data series excludes some years of very small mean maximum sizes early 
in the data series, as well as some of the largest sizes from the late 1990s and some recent low 
values since 2010. While the YG threshold is similar to the thresholds based on all data, the 
2000s-truncated RY threshold is quite a bit higher (Figure A11). The 2000s-truncated data 
provides thresholds that are more consistent with a conservative approach to the assessment of 
this stock, and would more appropriately capture the steady decline in mean maximum size in 
the past 20 years. 

Predator Abundance 
The 2000s-truncated data excludes the pre-1990 period of high predator abundance and results 
in a more conservative (lower) YR threshold (Figure A12). The result is that red values are 
nearly twice as frequent in the past 15 years based on 2000s-truncated thresholds. Similarly to 
the Cod recruitment index, the narrow gap between the GY and YR 2000s-truncated thresholds 
may result in frequent red index values due to noise in the data series. 

Commercial Count 
The 2000s-truncated data excludes comparable high and low average commercial count index 
values from before and after 2000 and 2010, respectively. As a result, the 2000s-truncated data 
does not change the thresholds significantly relative to the thresholds based on the entire data 
series (Figure A13). 

Total Exploitation Index 
The 2000s-truncated data series excludes several years of the highest exploitation rates in the 
data series (which are still low, relative to most fisheries). The result is that both the RY and the 
YG thresholds are slightly more conservative (lower) than those using the entire data series 
(Figure A14), but the influence on annual indicator colours in the data series is minimal, relative 
to the use of the entire data series. 

Female Exploitation Index 
The 2000s-truncated data series excludes high female exploitation rates in the late 1990s and 
the thresholds are more strongly influenced by the low female exploitation rates in the mid-
2000s, resulting in more conservative threshold (particularly the YR threshold, Figure A15). Red 
indicator values will be triggered at quite modest female exploitation rates (approximately 15%), 
given that the removal reference for the PA for this stock is 20%. 



 

102 

Proportion of Females in the Catch 
The 2000s-truncated thresholds exclude the highest proportion of females on record and 
include the lowest. The result is that the RY threshold is lowered, making the index slightly less 
conservative using the truncated data series (Figure A16). 

Female Size 
The 2000s-truncated data series excludes the largest average female sizes on record and 
includes the lowest. As a result, both thresholds are less conservative, but particularly the RY 
threshold (Figure A17). 

Population Evenness 
This suitability of this index is being reconsidered at present. However, the 2000s-truncated 
data series captures the highest and lowest indicator values on record, spreading the thresholds 
(broadening the yellow zone, Figure A18). 

Bottom Temperature 
The 2000s-truncated data series excludes some very low temperatures in the late 1990s and 
some very high post-2010 temperatures. The result is that the YR threshold is lower (more 
conservative) while the YG threshold is nearly identical to the thresholds from the full data 
series (Figure A19). As discussed in the framework meeting, biologically based thresholds 
should be possible here based on what is known of shrimp temperature preferences/tolerances. 

Biologically-based temperature thresholds will likely have five zones. A central green zone near 
the optimum flanked by a yellow and then red zone towards unfavourably cold and warm 
temperatures. More research (literature review) is required to defend appropriate thresholds and 
to consider appropriate/relevant temperature data sources, so it is not presented here. 

Sea Surface Temperature 
The 2000s-truncated data series excludes historical and recent warmer temperatures, resulting 
in slightly closer and higher thresholds (slightly less conservative; Figure A20). Given what is 
known about the temperature regime experienced by ESS shrimp relative to the species 
temperature tolerances, the truncated data series is likely more appropriate. Regardless, 
biologically based thresholds are being developed for this index.  

Cod Recruitment Index 
The thresholds based on the 2000s-truncated data series are much closer together, mostly due 
to a decrease in the YR threshold triggering a red index value (Figure A21). This change reflects 
the exclusion of the early parts of the data series when Cod were abundant and shrimp were 
not. The triggering of red values based on frequent fluctuations in the (noisy) Cod recruitment 
index in the past two decades are probably not meaningful, compared to the less frequent red 
index values using the entire data series (which may themselves not be very meaningful in most 
years, relative to the red values preceding 1990). 

In this case, the 2000s truncated data series is likely to result in more changes in index colours, 
especially triggering red lights, due to noise in the data series that may not be particularly 
indicative of increased Cod predation on shrimp than using the entire data series, which 
captures the pre-1990 period of high Cod abundance when Cod predation was very likely a 
factor in low shrimp abundance. The truncated data index is, however, more conservative and is 
consistent with the management and conservation practices for this shrimp stock. 

Turbot Abundance Index 
The 2000s-truncated data series excludes the early period of very low turbot abundance at the 
same time that the shrimp stock was low, and includes all of the highest turbot abundance data. 
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As a result, both thresholds are much higher (more conservative, Figure A21). The thresholds 
based on the entire data series probably more realistically capture the period of highest turbot 
abundance as green years, although only a near complete crash in turbot abundance would 
trigger a red year based on all years. 

Snow Crab Recruitment Index 
The 2000s-truncated data series excludes the very high values from the late 1990s, resulting in 
a lowered RY threshold that is more conservative than the RY threshold derived from the entire 
data series (Figure A22) 

Characteristics 
The Abundance, Productivity, Fishing Effects and Ecosystem characteristics are calculated as 
the means of the percentiles (accounting for reversed polarity as needed) for annual indicator 
values relative to the entire available data range (“all data”, top panel) or relative to the 2000s-
truncated data (“2000-2010”, bottom panel). 

The 2000s-truncated thresholds result in a slightly more conservative Abundance characteristic 
because both the RY and the YG thresholds are slightly higher (Figure A23). Similarly, the 
Production Characteristic thresholds are slightly more conservative based on the 2000s-
truncated data, particularly by raising the RY threshold (Figure A24). The Fishing Effects 
characteristic is very similar whether the thresholds are based on the 2000s-truncated data or 
the entire data series (Figure A25). The Ecosystem Characteristic is slightly more conservative 
based on the 2000s-truncated data because both the RY and the YG thresholds are slightly 
increased (Figure A26). 

Discussion 
The indicator colour thresholds based on 33rd and 66th percentiles of 2000s-truncated data 
provide improved or at least equally suitable values for the survey CPUE, survey CV, 
commercial fishing area, belly-bag, Age 2 index, Age 4 index, size at sex transition, maximum 
size, count, total exploitation, population evenness and the snow crab recruitment index. The 
only immediately apparently problematic or unsuitable indicators using the thresholds from the 
2000s-truncated data are the standardised Maritimes vessels CPUE index (too little variability in 
2000s-truncated data such that thresholds are very close together such that colours will vary 
based on non-significant data noise). The same is true of the Cod recruitment index. For the 
remaining indicators it is perhaps less clear cut. The Gulf CPUE is probably over-conservative 
using the 2000s-truncated data. The SSB, predator abundance, female exploitation, bottom 
temperature, spring sea surface temperature (SST) indices using the 2000s-truncated data 
thresholds may also result in colour changes that are mostly due to biologically insignificant 
noise in the data, or at least are more prone to do so than using the entire data series. The 
turbot index is probably too conservative using 2000s-truncated data – too quickly triggering red 
indicator values. 

Overall, when taken as mean percentiles in the calculation of the Characteristics summarising 
Abundance, Production, Fishing Effects and Ecosystem, the adoption of the 2000s-truncated 
thresholds appears feasible and probably more accurately reflects changes in indicators relative 
to a higher-abundance period. Some of the equivocal indicators discussed above, and perhaps 
some of the indicator colour changes triggered by data noise, are dampened by taking the mean 
in the summary characteristics. The mean percentile ranks based for abundance indicators 
against the 2000-2010 data show a more conservative summary that better reflects the gradual 
stock decline over the past decade that was evident in the normalized CPUE indicator series 
from the framework (mean of survey, gulf, standardised CPUEs each normalized to its own 
mean, see Figure 10). The mean percentile ranks for Production indicators against the 2000-
2010 data also show a more conservative summary that may be more sensitive to periods of 
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poor recruitment and the population declines that follow if there is poor recruitment for a number 
of consecutive years. Neither the Fishing Effects nor the Ecosystem summary characteristics 
are substantially changed by the adoption of 2000s-truncated percentiles, although both are 
slightly more conservative, which is likely appropriate given the apparently sustained period of 
high productivity of this stock and the industry goals to maintain their conservative fishing 
strategy to avoid stock declines due to fishing mortality. Overall, it has been agreed to proceed 
with indices and characteristics based on the 2000s-truncated data while working to develop 
biologically-based thresholds where possible (e.g. bottom temperature and spring SST). 

 
Figure A1. The survey CPUE index time series showing thresholds based on the 33rd and 66th percentiles 
of the entire data series (left) and only data from 2000-2010 (right). 



 

105 

 

 

Figure A2. The Gulf vessel CPUE index time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (left) and only data from 2000-2010 (right). 

Figure A3. The Standardised Maritimes vessel CPUE index time series showing thresholds based on the 
33rd and 66th percentiles of the entire data series (left) and only data from 2000-2010 (right). 
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Figure A4. The Survey coefficient of variation index time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (left) and only data from 2000-2010 (right). 

Figure A5. The Commercial Fishing Area index time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (left) and only data from 2000-2010 (right). 
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Figure A6. The SSB index time series showing thresholds based on the 33rd and 66th percentiles of the 
entire data series (left) and only data from 2000-2010 (right). 

Figure A7. The belly-bag index time series showing thresholds based on the 33rd and 66th percentiles of 
the entire data series (left) and only data from 2000-2010 (right). 
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Figure A8. The Age 2 abundance index time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (left) and only data from 2000-2010 (right). 

Figure A9. The Age 4 abundance index time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (left) and only data from 2000-2010 (right). 
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Figure A10. The mean size at sex transition index time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (left) and only data from 2000-2010 (right). 

Figure A11. The mean maximum size index time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (left) and only data from 2000-2010 (right). 
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Figure A12. The predator abundance index time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (left) and only data from 2000-2010 (right). 

Figure A13. The commercial count index time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (left) and only data from 2000-2010 (right). 
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Figure A14. The total exploitation index time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (left) and only data from 2000-2010 (right). 

Figure A15. The female exploitation index time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (left) and only data from 2000-2010 (right). 
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Figure A16. The proportion of females in the catch index time series showing thresholds based on the 
33rd and 66th percentiles of the entire data series (left) and only data from 2000-2010 (right). 

Figure A17. The female size index time series showing thresholds based on the 33rd and 66th percentiles 
of the entire data series (left) and only data from 2000-2010 (right). 
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Figure A18. The population evenness index time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (left) and only data from 2000-2010 (right). 

Figure A19. The survey bottom temperature time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (left) and only data from 2000-2010 (right). 
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Figure A20. The spring SST index time series showing thresholds based on the 33rd and 66th percentiles 
of the entire data series (left) and only data from 2000-2010 (right). 

Figure A21. The Cod recruitment index time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (left) and only data from 2000-2010 (right). 
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Figure A22. The Turbot abundance index time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (left) and only data from 2000-2010 (right). 

Figure A23. The Snow Crab recruitment index time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (left) and only data from 2000-2010 (right). 
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Figure A24. The Abundance Characteristic time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (top) and only data from 2000-2010 (bottom). 

Figure A25. The Production Characteristic time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (top) and only data from 2000-2010 (bottom). 
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Figure A26. The Fishing Effects Characteristic time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (top) and only data from 2000-2010 (bottom). 

Figure A27. The Ecosystem Characteristic time series showing thresholds based on the 33rd and 
66th percentiles of the entire data series (top) and only data from 2000-2010 (bottom). 
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