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ABSTRACT 
The objective of this study was to describe the spatial distribution of krill in eastern Canadian 
waters using a statistical modelling approach in support of the identification of important habitat 
for the western North Atlantic (WNA) blue whale (Balaenoptera musculus). Generalized Additive 
Models (GAMs) were constructed from krill biomass data obtained during multifrequency 
acoustic surveys conducted in the Gulf of St. Lawrence (GSL) and a set of static (bathymetry 
and slope steepness) and satellite-derived dynamic (sea surface temperature, chlorophyll a 
biomass, sea level height anomalies) environmental correlates. GAMs were built for the spring 
and summer seasons for different krill taxa/categories. GAM results showed that environmental 
conditions promoting high krill biomass are species-specific and varied with season. Static and 
dynamic environmental variables were selected in all GAMs, indicating that dynamic 
oceanographic processes were important in controlling krill aggregations and distribution. GAMs 
predicted spatial patterns of krill biomass generally similar to those obtained with independent 
plankton net and acoustic data. GAMs were then used to predict ‘Significant Aggregations of 
Krill’ (SAK), i.e., areas where dense krill aggregations would have a greater probability of 
occurring. SAK cover less than 2% of the entire spatial domain and their location varied among 
krill categories and seasons. SAK were generally predicted in the lower St. Lawrence Estuary, 
along the Gaspé Peninsula and in the Shediac Valley, along the coast of southern and 
northeast Newfoundland, as well as along the slope of the deep channels in the GSL, off the 
Nova Scotian and Newfoundland continental shelfs, and in the outer Bay of Fundy. These SAK 
are interpreted as areas where environmental conditions promote krill aggregation on a regular 
basis and therefore are potentially important for WNA blue whale foraging in eastern Canadian 
waters. 
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Décrire la distribution de krill dans l'ouest de l'Atlantique Nord en utilisant des 
modèles statistiques d'habitats 

RÉSUMÉ 
L’objectif de cette étude est de décrire la distribution spatiale du krill dans les eaux de l’est du 
Canada à l’aide de modèles statistiques, un travail réalisé en support à l’identification de 
l’habitat de la baleine bleue (Balaenoptera musculus) de l’ouest de l’Atlantique. Nous avons 
construit des modèles additifs généralisés (MAGs) à partir de données de biomasse de krill 
obtenues avec l’acoustique multifréquences lors de missions réalisées dans le golfe du Saint-
Laurent (GSL) et un ensemble de données environnementales statiques (bathymétrie, pente du 
fond) et dynamiques estimées par imagerie satellitaire (température de surface, biomasse de 
chlorophylle a, anomalie de la hauteur de la surface). Les analyses à l’aide des MAGs ont été 
réalisées pour les saisons printanières et estivales ainsi que pour différentes catégories de krill. 
Les résultats montrent que la biomasse de chaque catégorie de krill répond de manière 
distincte aux conditions environnementales, une réponse variant également selon la saison. 
Des variables environnementales statiques et dynamiques contribuent dans les différents 
MAGs, démontrant l’importance des processus océanographiques dynamiques dans le contrôle 
de la distribution et l’occurrence des essaims de krill. Les MAGs permettent de prédire des 
patrons de distribution de la biomasse de krill correspondant de manière générale avec des 
données indépendantes. Par la suite, les MAGs ont été utilisés pour prédire les ‘Régions 
d’Agrégation Significatives de Krill’ (RASK), i.e. les régions où la probabilité de rencontrer des 
essaims denses de krill est la plus élevée. Les RASK ainsi déterminées ne représentent que 
2 % de la superficie de la région d’étude et leur emplacement varie selon les catégories de krill 
et la saison. En général, les RASK sont prédites dans l’estuaire maritime du Saint-Laurent, le 
long de la péninsule gaspésienne et dans la vallée de Shediac, le long des côtes sud et est de 
Terre-Neuve, dans certaines régions situées sur la marge des chenaux profonds du GSL, sur le 
talus continental au large de la Nouvelle-Écosse et Terre-Neuve, ainsi qu’à l’entrée de la baie 
de Fundy. Ces RASK sont considérées comme des régions où les conditions 
environnementales permettent la formation d’essaims denses de krill sur une base régulière, 
représentant ainsi des régions potentiellement importantes pour l’alimentation de la baleine 
bleue de l’ouest de l’Atlantique.
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INTRODUCTION 
Ecological, management and legal requirements reinforce the need to identify and protect 
important habitat for marine predators, especially those of species at risk, and has led to the 
propagation of spatially-explicit habitat models using a vast array of statistical approaches (Elith 
and Leathwick 2009, Aarts et al. 2012). Although food availability is obviously a key parameter 
for determining habitat quality for marine predators, in general only indirect proxies of prey 
density such as sea-surface physical (e.g. fronts, temperature) and biological (e.g. 
phytoplankton biomass) characteristics have been used in these models, with variable success 
(e.g., Forney et al. 2015, Willis-Norton et al. 2015). The relative weakness in predictive capacity 
of these indirect habitat variables is most likely because they are too many levels removed from 
the prey itself, given that the variability at each level is additive. 

However, it is the lack of strong predictive capacity using prey field data which is the most 
concerning. This could arise for various reasons. Firstly, pelagic prey and predator data are 
rarely collected simultaneously, resulting in a temporal mismatch that minimizes the probability 
that any mechanistic predator-prey relationship will be captured with these data. Secondly, even 
when collected at the same time during surveys, the spatial resolution obtained using traditional 
point-sampling techniques (e.g., bongo and trawl net tows) to sample pelagic forage species 
such as mesozooplankton, krill and small fishes is in general considerably greater than the 
spatial and temporal scales that are meaningful for predators such as baleen whales. In 
addition, the scarcity of data for rarer species such as the endangered blue whale 
(Balaenoptera musculus) forces the use of observational data collected over multiple seasons, 
years and regions, with often no matching prey data. 

For all of these reasons, researchers have advocated for the use of statistical models as the 
best approach to incorporate prey field distribution and abundance in predator habitat models 
(Torres et al. 2008, Aarts et al. 2014). In addition, the development of multifrequency acoustic 
techniques has enabled the continuous sampling of more detailed categories of prey groups 
over much larger areas compared to traditional station-sampling techniques. The description of 
areas of high prey density based on acoustically-derived prey biomass and predator observation 
data collected during synoptic surveys has contributed to the understanding of factors governing 
the distribution of marine birds (Santora et al. 2011), commercial fish stocks (Ressler et al. 
2012), and baleen whales (Friedlaender et al. 2006, Santora et al. 2010, Ressler et al. 2015). 

To identify the important habitat of WNA blue whales in eastern Canadian waters, our approach 
was therefore to describe statistically the spatial distribution of their principal prey, krill, while 
considering the stochastic nature of their distribution. Krill aggregations are often observed in 
the lower St. Lawrence Estuary (SLE) and Gulf of St. Lawrence (GSL), in the Scotian Shelf-Bay 
of Fundy (SS-BoF) region and off southern Newfoundland (NL) (McQuinn et al. 2015). However, 
the exact geographical position of these aggregations could vary substantially over time, 
reflecting the inherent variability of the complex bio-physical coupling between krill swimming 
behaviour and physical processes (Maps et al. 2014, Maps et al. 2015, Lavoie et al. 2015). In 
the GSL, the probability of observing discrete dense krill aggregations is greater in areas of 
surface convergence, suggesting that dynamic processes coupled to krill behaviour are 
significant for the formation and occurrence of these dense aggregations (Maps et al. 2015). 

Our objectives were: (1) to build statistical habitat models using generalized additive models 
(GAM) from multifrequency acoustic data of krill collected during synoptic spatial surveys in the 
GSL along with environmental correlates, and (2) to use predictions from these habitat models 
to identify recurrent areas of high krill biomass over a multiyear period in the GSL, as well as in 
the SS-BoF and NL regions. 



 

2 

MATERIALS AND METHODS 

KRILL HISTORICAL DATA 
Krill biomass was estimated from multifrequency acoustic data (38, 70, 120, 200 kHz) collected 
during recent spatial surveys in the lower SLE and GSL (Fig. 1, 2). Two additional surveys with 
dual frequency acoustics (38, 120 kHz) were also performed, one in July in the SS-BoF and one 
in April off southern NL (Appendix 9). Multifrequency acoustic data were integrated in 0.5 km 
bins along the vessel track, affording a high-resolution quantification of biomass for different krill 
categories: (1) Euphausiids (= total krill), (2) Meganyctiphanes norvegica and (3) Thysanoessa 
spp. Only the more general category ‘Plankton’, shown to be dominated by krill and therefore 
considered as an equivalent of the Euphausiids category, was estimated from the dual 
frequency data (see McQuinn et al. 2015). Thysanoessa spp. included two common cold water 
species, T. raschii and T. inermis, and the rarer oceanic and warm water species, T. 
longicaudata. Technical details on the sampling and treatment of acoustic data are provided in 
McQuinn et al. (2013) and McQuinn et al. (2015). 

KRILL HABITAT MODELS 

Environmental variables 
We used a set of environmental variables shown or hypothesized to be important in the control 
of krill spatial and temporal distribution. These variables could be grouped into two categories: 

1) Static: bathymetry (Bathy) and bottom slope steepness (Slope) 

These variables are commonly included in habitat models of krill and other zooplankton 
because they can constrain their horizontal distribution through interaction with their vertical 
distribution and migrations. Bottom depth (Bathy) data was acquired from a 1 arc-minute global 
relief model (Amante and Eakins, 2009). Bottom slope (Slope) was calculated using the 
bathymetry of Amante and Eakins (2009). The slope steepness was calculated in degrees from 
8 neighbouring cells using the algorithm of Horn (1981) implemented in R using the “raster” 
package (version 2.5-2, Hijmans, 2015). 

2) Dynamic: Sea Surface Temperature (SST), chlorophyll a (CHLA), and mean sea level 
height anomalies (MSLA) 

SST is a basic marine habitat parameter and is a proxy of the temperature regime influencing 
zooplankton productivity (biomass) and distribution at small and large spatial, and temporal 
scales. CHLA could be considered as a proxy of microplankton production and has often been 
used as a zooplankton habitat characteristic at large spatial scales in the open ocean (Santora 
et al. 2012, Albouy-Boyer et al. 2016). Finally, dense krill aggregations in the GSL have a 
greater probability of being associated with areas of high surface water convergence estimated 
by finite-time Lyapunov exponents (FTLE) computed from a 3-D physical model (Maps et al. 
2015). However, a comparable modelling approach was not applicable for the spatial domain 
considered in our study because the operational 3-D physical model does not encompass the 
same region. However, MSLA has been used as a proxy of the circulation processes and 
dynamic features (fronts, gyres) that could accumulate planktonic organisms (Riquelme‐
Bugueño et al. 2015). MSLA derived from satellite imagery was therefore used as a substitute 
for FTLE. 

Satellite imagery provided the dynamic environmental data at adequate temporal and spatial 
scales for our study. The monthly averages of the three dynamic variables were extracted from 
2004 to 2014, inclusively. CHLA was extracted from MODIS Aqua Level 3 satellite images with 
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a resolution of 4 km (Ocean Biology Processing Group, 2003). MSLA daily anomalies were 
available in reference to a 20-year climatology (1993-2014) calculated from satellite images 
(available at http://marine.copernicus.eu/). The resolution of MSLA images was 0.2° 
Longitude/Latitude. Monthly SST were acquired as Level 3 satellite images 
(resolution=0.015/0.01° Longitude/Latitude). An example of the spatial patterns for all static and 
dynamic environmental variables is shown in Appendix 1. 

The spatial resolution of satellite imagery data is not ideal for the upstream half of the lower 
SLE, a region where krill aggregations are regularly observed. This limitation was judged minor 
considering (1) the need to describe krill spatial distribution over a wide region, including areas 
where very little is known on krill distribution, and (2) blue whales are known to use the upper 
half of the lower SLE, a region where krill aggregation dynamics has been intensively studied in 
the past (Simard et al. 1986, Simard and Lavoie 1999, Lavoie et al. 2000). 

Generalized additive models 
Two seasons (spring, summer) were considered in building the GAMs to account for seasonal 
changes in krill behaviour and growth, and in the main circulation regime resulting from changes 
in the dominant wind direction in mid-summer (Maps et al. 2011, Lavoie et al. 2015). 

Krill biomass and environmental variables were converted to a 10 x 10 km grid. Then, the 
maximum biomass value observed in each grid cell from all the surveys was extracted. 
Environmental data were resampled according to the same grid using the mean value in each 
cell. Krill biomass data collected in areas deeper than 600 m or shallower than 10 m were 
excluded from the analyses because of their extremely low occurrence in the data set. 

GAMs were fitted using R and the “mgcv” (v. 1.8.10, Woods, 2015) package (version 3.1.0, 
2014), assuming a Gaussian distribution. The response variable (krill biomass) was normalized 
using x1/5. The number of degrees of freedom was limited to ≤ 3 for the SST, ≤ 5 for Bathy and ≤ 
4 for CHLA, Slope and MSLA to avoid multimodal relationships and to obtain biologically 
interpretable effects (Albouy-Boyer et al. 2016). Although we did run GAMs with unlimited 
degrees of freedom, these runs did not result in better model fits while showing effects from 
predictors sometimes difficult to reconcile with krill biology (not shown). A GAM was fitted for 
each krill category (dual frequency: Plankton; multifrequency: Euphausiids, M. norvegica, 
Thysanoessa spp.) for each of the two seasons (spring, summer). Data in May and June were 
used to fit spring models and those acquired in August and September were used to fit summer 
models. Dual frequency acoustic surveys conducted in April off southern NL, and in July in the 
SS-BoF were used in the spring and summer Plankton models, respectively. Krill data were 
fitted using the monthly mean of environmental variables corresponding to the month and year 
when each acoustic survey was conducted. 

Optimal GAMs were selected by computing models with every possible combination of the five 
environmental variables using the “MuMin” package (version 1.15.6, Barton, 2016). For each of 
the ten iterations ran for each model, a random sample of 70% of the data set was used to fit 
the model and the remaining 30% to evaluate model performance. Variables were selected to 
minimize the AIC and maximize the Spearman rank correlation coefficient. The optimal model 
included variables that were, on average, more frequently selected after 10 iterations. The final 
model was refitted on 100% of the data. For more details on this procedure see Albouy-Boyer et 
al. (2016). 

Model residuals were inspected for normality, homogeneity and spatial autocorrelation (SA). SA 
was verified with the Moran’s I using the R package “spdep” (version0.5-92, Bivand, 2015). 
Contiguity was evaluated by nearest neighbors within a distance of 11 km to ensure complete 
connectivity. SA was generally significant at lag 1 (I < 0.4), and lag 2 (I < 0.3). The SA value is 

https://slgo.ca/en/remotesensing/data.html
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the result of the aggregation of krill and decreased when the resolution of the grid was adjusted 
to 20 km. Moreover, the presence SA did not result in a biasing of predictions, as suggested by 
the strong similarity between predictions from models fitted with 10 and 20 km grids (not 
shown). 

PREDICTION OF SIGNIFICANT AREAS OF KRILL 
Optimal GAMs were used to predict krill biomass distribution in the SS-BoF, GSL and NL 
regions. Because of the inherent variability in the distribution of krill aggregations, we chose an 
approach considering the probability for a dense krill aggregation to be observed in any given 
location, i.e. a dynamic ‘preyscape’. 

Environmental variables were resampled on a 10-km grid with an extent of -72.5 to -35° in 
longitude and 42 to 58 ° in latitude. One grid (10 x 10 km) was generated for each of the months 
of May, June, July, August and September for each year from 2009 to 2013. The months of May 
and June were used to predict the response using the spring models whereas the months of 
July, August and September were used with the summer models. Our predictions were 
therefore based on 10 (2 months*5 years) and 15 (3 months*5 year) replicates for the spring 
and summer periods, respectively. 

Our approach included three steps: 

(1) For each replicate (month*year), cells with a predicted biomass >95th percentile across the 
model domain were selected. This ‘relative’ threshold was used because GAMs predict the 
average response of the dependent variable to variations in environmental conditions, not its 
extremes as are the denser krill aggregations. It also corresponds to the proportion of krill 
biomass data that were above a density threshold of 100 g m-2 in 2005 and 2007 in the GSL 
(Goldbogen et al. 2011, Maps et al. 2015); 

(2) For each cell, the number of replicates (month*year) with a predicted biomass > 95th 
percentile was calculated; 

(3) Results were mapped according to three categories based on the occurrence of biomass > 
95th percentile, i.e. cells with no occurrence, cells with less than 50% of occurrence, and 
cells with more than 50% of occurrence. Cells with a probability greater than 50% for a 
dense krill aggregation to occur were defined as ‘Significant Areas of Krill’ (SAK). 

RESULTS 

KRILL HABITAT MODELS 
Optimal GAM results are summarized in Table 1 and 2, and response curves of models used for 
predicting dense krill aggregations (see below) are presented in Appendix 2-7. Every static 
(Bathy, Slope) and dynamic (SST, CHLA, MSLA) environmental variables contributed (but not 
necessarily in all models) to explain the deviance in krill biomass distribution (Table 1). 

Slope was a significant variable in all GAMs (Table 1). Additionally, the effect of Bathy and 
Slope on biomass differed among M. norvegica and Thysanoessa spp. and seasons (Table 2). 
M. norvegica biomass was positively affected by bathymetry between 69-324 m in spring and 
74-473 m in fall, whereas depths between 56-172 m and 60-200 m showed a positive effect on 
Thysanoessa spp. biomass in spring and summer, respectively (Table 2). A change in the range 
of slope values showing a positive effect on biomass accompanied these changes in bathymetry 
(Table 2). 
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While SST was not selected as a significant variable for M. norvegica in spring (Table 1), 
biomass of this species was positively influenced by SST between 9.8 and 16oC in summer 
(Table 1). For Thysanoessa spp., abundance was greater at SST above 10.5oC in spring and 
between 11.2oC and 16.2oC in summer (Table 2). Therefore, biomass of both krill species was 
negatively affected at SST greater than 16oC. 

The different krill categories responded similarly to MSLA when selected (Table 1, Table 2). A 
positive effect on krill biomass was shown over a smaller range of MSLA values in spring 
relative to summer, but maximum MSLA values were similar in both seasons (Table 2). This 
pattern suggests that dense krill aggregations in spring were more associated with specific and 
high MSLA values (i.e., frontal regions) than during summer. 

High krill biomass was associated with high surface CHLA biomass when this variable was 
included in the GAMs (Table 1, Table 2). The lower threshold CHLA value was greater in 
summer than in spring, whereas the maximum value was lower for M. norvegica than for 
Thysanoessa spp. (Table 2). 

GAM results were similar among the three krill biomass categories estimated from 
multifrequency acoustic data (Euphausiids, M. norvegica and Thysanoessa spp.) with the range 
of environmental variables promoting high biomass either corresponding to the range described 
for a particular species or to an average of both species (Table 1, Table 2). GAMs built with the 
more general Plankton category estimated from dual frequency acoustic data did perform well, 
but not as well as those with krill categories estimated with multifrequency data (Table 1). 
Although the effect of environmental variables was generally similar to those obtained with other 
models, their poorer predictive power was perhaps caused by a poorer discrimination of the krill 
signal from other important components of the pelagic community. For this reason, we decided 
not to use this category further in our study. 

PREDICTION OF SIGNIFICANT AREAS OF KRILL 
In general, the confidence intervals around the modelled effect of each environmental variable 
on krill biomass increased at both ends of their data range where observations were less 
abundant (see Appendix 2-7). We were therefore careful not to stretch our predictions beyond 
the range of environmental data included in the GAMs to minimize the uncertainty around the 
predictions as is inherent to every statistical approach (Brun et al. 2016). Consequently, areas 
shallower and deeper than 10 m and 600 m, respectively, and with slope greater than 1.5° were 
not considered in our predictions (see Appendix 2-7). This conservative approach had the 
advantage of minimizing the uncertainty of the krill biomass predictions but with the drawback of 
excluding the margin of the continental shelf from the spatial domain considered in our 
predictions. 

Biomass of the Euphausiids category predicted for June 2012 is presented as an example of 
predictions made with the GAMs (Fig. 3). In this GAM, the environmental seascape included two 
static variables, Bathy and Slope, and two dynamic variables, MSLA and CHLA (Table 2). The 
GAM predicted strong spatial gradients resulting in a spatial pattern previously observed with 
historical acoustic data not included in our analyses in the lower SLE and western GSL 
(McQuinn et al. 2015). It also predicted greater krill biomass in deep basins on the eastern SS 
(relative to surrounding waters) although predicted biomasses were markedly lower than in the 
GSL (Fig. 3). 

Predictions were made for the spring and summer periods with GAMs built for Euphausiids, M. 
norvegica and Thysanoessa spp. Significant Areas of Krill (SAK) were specifically identified. 
Results are first represented for the spatial domain covered by krill historical data, i.e., the GSL, 
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SS-BoF and off southern NL. Predictions for the Euphausiids category on the eastern NL shelf 
outside the spatial domain for which we had krill biomass data are presented separately. 

Overall occurrence of predicted dense krill aggregations 
Considering all models, cells with at least one predicted dense krill aggregation represented 
only 10% of the spatial domain. Among these cells, 25% were SAK (>50% of occurrence), 
whereas only 4% showed a 100% probability for a dense krill aggregation to occur. Over the 
entire spatial domain, SAK represented only 2% of the total number of cells. A more detailed 
description of the predictions from the different models is provided below. 

Category Euphausiids 
In spring, SAK represented 32% of all cells where at least one dense Euphausiids aggregation 
was predicted (Appendix 8). In the GSL, large SAK occupying several contiguous 10 X 10 km 
cells were organized as a continuum along the southern coast of the lower SLE and along the 
Gaspé Peninsula into the Shediac Valley, along the coast of the northern GSL and around 
Anticosti Island (Fig. 4). Large SAK were also predicted at the head of Esquiman channel in the 
eastern GSL, in the outer BoF and in the western Gulf of Maine. Smaller SAK were also 
predicted on the eastern SS and off southern NL. 

In summer, SAK represented 27% of locations where at least one dense aggregation of 
Euphausiids was predicted (Appendix 8). Several large SAK that were observed in spring in the 
lower SLE, in the GSL and in the Gulf of Maine/ BoF appeared smaller in the summer with a 
more fragmented distribution (Fig. 5). Contrary to the GSL, large SAK occupying several 
contiguous cells were predicted off southern NL, while smaller ones appeared on the eastern 
SS and in the Gully (Fig. 5). 

Category Meganyctiphanes norvegica 
Prediction of SAK for M. norvegica varied greatly among seasons (Fig. 6, 7). SAK represented 
38% and 8% of cells with at least one dense aggregation in spring and summer respectively 
(Appendix 8). In spring, SAK spatial distribution resembled the one for the Euphausiids category 
(eg: in the lower SLE and western GSL, on the eastern SS), but also showed differences with 
several small SAK predicted along the slopes of deep channels (Fig. 6). In summer, SAK were 
mostly restricted to the lower SLE, western GSL and off southern NL (Fig. 7). 

Category Thysanoessa spp. 
Prediction of SAK for Thysanoessa spp. also varied among seasons (Fig. 8, 9). The proportion 
of cells where at least one dense aggregation was predicted and estimated to be a SAK was 
greater in summer (31%) than in spring (17%) (Appendix 8). In spring, SAK were located in 
coastal areas near Anticosti Island and in the northeast GSL (Fig. 8). In summer, SAK were 
generally larger and formed a continuum in several areas similarly to those described for the 
Euphausiids category (Fig. 9). Large SAK also were predicted in the lower SLE and in different 
sub-regions of the GSL, off southern NL, on the SS and in the outer BoF (Fig. 9). 

Euphausiids on the eastern Newfoundland shelf 
In spring, GAM predicted very few areas of biomass >95th percentile (Fig. 10) in eastern NL 
where we had no corresponding krill biomass data. However, several SAK were predicted in 
eastern NL waters with the summer GAM built for the Euphausiids category (Fig. 10). SAK were 
predicted at the shelf break around the Grand Banks and offshore around Flemish Cap, but also 
on the inner and outer shelf in northern areas (Fig. 10). 
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DISCUSSION 

KRILL HABITAT MODELS 
Overall, our results showed that the performance of our habitat model was comparable to other 
studies on krill biomass distribution using GAMs (i.e., Santora et al. 2012, Riquelme‐Bugueño et 
al. 2015, Silk et al. 2016). Static and dynamic environmental variables were selected in all 
GAMs. In our framework, static environmental variables could be seen as obligatory for a krill 
aggregation to occur through their influence in modulating background circulation patterns. 
Dynamic environmental variables represent proxies for processes influencing the pattern of krill 
patches by determining the spatial distribution and density of krill aggregations at finer 
spatiotemporal scales. Our results also highlighted the importance of considering species-
specific responses to environmental conditions as well as seasonal variations in environmental 
forcing. 

The effect of static environmental variables on krill biomass varied among species and seasons. 
The effect of bathymetry and slope steepness on krill biomass was species-specific, likely 
reflecting the different daytime optimal depth observed in the GSL, deeper for M. norvegica and 
shallower for Thysanoessa spp. (Plourde et al. 2014, McQuinn et al. 2015). Additionally, the 
effect of bathymetry varied among seasons, with high biomass of all krill categories being 
associated to deeper regions in the summer compared to spring. This seasonal difference could 
be associated with a deepening of krill daytime depth in response to a greater light penetration 
in summer than in spring following a seasonal decrease in the input of freshwater loaded with 
dissolved organic matter from the St. Lawrence River and other tributaries (Plourde et al. 2014). 

The positive effect of MSLA did confirm the importance of considering dynamic circulation in krill 
habitat models (Santora et al. 2012, Riquelme‐Bugueño et al. 2015). Moreover, indices of ocean 
surface structures (eg: fronts, gyres, etc…) have been used as proxies of potential planktonic 
and small pelagic prey availability in several habitat models of top marine predators (i.e., Torres 
et al. 2008). Using an index such as MSLA derived from satellite imagery, our results confirmed 
previous results obtained with finite-time Lyapunov exponents (FTLE) calculated from a 3-D 
physical model showing the importance of convergence areas to promote krill aggregations in 
the GSL (Maps et. al. 2015). Similarly to the static environmental variables, the effect of MSLA 
on krill biomass varied between seasons. The observed change in the range of values for MSLA 
between spring and summer that positively affect krill biomass could reflect a change in the 
coupling between krill behaviour and circulation. This change in coupling could be associated 
with the biologically-driven modification of krill swimming behaviour and vertical distribution 
caused by changes in reproduction state and feeding mode e.g. herbivory vs carnivory, 
following the end of the bloom period (Sameoto 1980, Nicol 1984, Lass et al. 2001). 

While MSLA would reflect the effect of physical dynamic processes on krill aggregations, SST 
and CHLA should be interpreted as environmental factors affecting the overall krill population 
dynamics and productivity. SST in the GSL in spring had little effect on krill biomass due to 
generally cooler conditions (See Table 2). However under the wider SST range observed in the 
warmer summer, our GAMs revealed that SST greater than 16oC would have a negative effect 
on the biomass of all three categories of krill in the GSL. A 16oC SST in summer corresponds to 
12-14oC averaged over the 0-50 m layer in eastern Canadian waters, the depth layer generally 
occupied by migrating sub-Arctic copepods and krill that are actively foraging during nighttime in 
the region (Simard et al. 1986, Souriseau et al. 2008, Maps et al. 2011). Interestingly, 
temperatures above 12oC could negatively affect the metabolisms of cold water krill species 
such as T. raschii and T. inermis, whereas the same conditions may not affect the metabolism 
of M. norvegica (Huenerlage and Bucholz 2015). SST could also be indicative of more global 
ecological processes regulating zooplankton mortality and survival in general, e.g. daily 
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mortality rate of the dominant sub-Arctic Calanus finmarchicus is also positively related to 
temperature (Plourde et al. 2009, Melle et al. 2014). Such relationships are unknown for krill, but 
the negative effect of SST >16oC (or 12-14oC in the 0-50 m layer) on krill biomass in summer 
could reflect similar ecological processes. The significant effect of CHLA on krill biomass should 
reflect a general association between physical processes favouring krill aggregation and areas 
of greater primary production (e.g. upwelling zones along the coast in the northern GSL; 
Appendix 1) but also a direct effect on krill growth and recruitment at the monthly scale 
considered in the GAMs. 

PREDICTION OF SIGNIFICANT AREAS OF KRILL 
Our GAMs predicted high biomass values (> 95th percentile of predicted values) for at least one 
month in the 2009-2014 period in 10% of the spatial domain. However, SAK (areas predicted 
with a probability >50% for a biomass >95th percentiles) occurred over a much smaller area, 
representing 25% of the high biomass area, and 2% of the entire spatial domain. Variations in 
the probability of high density values predicted in each grid cell were caused by variations in 
dynamic environmental variables (SST, CHLA, MSLA), probably reflecting the interaction 
between the dynamic environmental forcing and krill diel vertical migrations. Therefore, the 
concept of SAK developed in this study would be more relevant to the description of the 
dynamic krill preyscape than predictions of krill biomass itself. 

Our models did predict dense augmented krill aggregations and SAK in deep basins on the 
eastern SS, but not in basins on the western SS. Basins on the SS have been the focus of a few 
krill studies between the mid 1980’s and mid 1990’s (Cochrane et al. 1991, Sameoto et al. 
1993). However as for other areas, their relevance for describing krill population dynamics at the 
scale of eastern Canadian had never been evaluated. The spatial distribution of dense krill 
aggregations summarized in Appendix 9 using data not included in our GAMs suggests that krill 
biomass was not substantial in the basins of the western SS in 2012. SST is generally 
increasing on the SS, and inflow of warmer deep slope waters onto the western SS has 
occurred more frequently over the past few years, affecting bottom temperature in the region 
(Hebert et al. 2013). These changes in oceanographic conditions were accompanied by an 
increase in abundance of warm-water, offshore copepod species, and a decrease in sub-Arctic 
and Arctic copepod species (Johnson et al. 2016). Consequently, the western SS might have 
become less suitable for the cold-water krill species targeted in our study. 

There is an inherent uncertainty around the predictions made with habitat models and it is 
generally recommended to limit predictions to the geographic range and time period included in 
the data used to build these models (Heikkinen et al. 2012). In our study, we did limit predictions 
of krill biomass from GAMs built with data collected in the GSL to the range of static 
environmental correlates well represented in our data, i.e. depths between 10 and 600 m and 
slope < 1.5°, a range over which the effect of these variables on krill biomass included small 
confidence intervals (Appendix 2-7). GAMs have been shown to be the regression-based 
method with the best transferability capacity and that habitat models based on abundance 
appear to outperformed those based on presence/absence data (Araujo et al. 2005, Heikkinen 
et al. 2012, Howard et al. 2014). Therefore, our decision to use GAMs built with biomass data 
and to limit the predictions to the environmental data range for which the models best performed 
suggests that predictions made outside the GSL should be reliable. Furthermore, comparison 
with independent krill data suggests that our predictions are generally consistent with our 
current knowledge of krill distribution in the region. In the GSL, predicted SAKs correspond in 
large part to the high convergence zones where krill aggregations were observed with a greater 
probability in August 2005 and 2007 than in the rest of the GSL (Maps et al. 2015). Moreover, 
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the location of dense krill aggregations previously observed in the GSL during synoptic spatial 
surveys also corresponds to areas where SAK were predicted (McQuinn et al. 2015). 

In the SS-BoF region and off southern NL, SAKs roughly correspond to areas of dense krill 
biomass based on data collected with a dual acoustic system during two surveys that were not 
included in our GAMs (see Appendix 9). On the eastern and northern NL shelf, the lack of krill 
biomass data precluded any validation of our predictions made in this region and should 
therefore be interpreted with caution. As previously mentioned, the statistical limitation of our 
approach prevented predictions of krill biomass and SAK in the deeper continental slope region 
(depth >600 m, slope > 1.5°), a region where blue whales have historically been observed and 
which could contain important foraging habitat for this species (Appendix 9). 

The transferability of our GSL-based krill habitat models to other regions could also be 
influenced by changes in krill biology and species composition that could affect relationships 
with environmental correlates described in our GAMs. Although consistent krill taxonomic and 
biomass data are generally lacking on the SS and in the NL region, one would expect that the 
large gradient in environmental conditions across the eastern Canadian Atlantic region would 
affect krill species composition on the SS, NL and in deeper continental slopes regions relative 
to the GSL. GAMs built with the more general Plankton category estimated from dual frequency 
acoustic did not perform as well as those with distinct krill taxa estimated with multifrequency 
data (see Table 1). As a consequence, it appears essential to analyse existing or newly 
acquired multifrequency acoustic data validated with biological samples from the SS and NL to 
improve krill habitat models and potentially the prediction of SAK in the SS and NL regions, 
particularly on the continental slope area. 

In conclusion, one must remember that krill transport and aggregation are highly dynamic 
processes and are the reflection of a pelagic habitat varying at different spatial and temporal 
scales. Statistical habitat modelling has been widely used to describe species distribution and 
responses to potential changes in environmental conditions in the ocean, but are inherently 
limited by the spatial and temporal scales of available data that rarely correspond to the scales 
at which processes determining species abundance and distribution are operating (i.e., Torres 
et al. 2008). Because of this, our statistical modelling approach and SAK determination which 
considered variations in dynamic environmental variables on a monthly scale is a step forward, 
but might not be optimal for matching krill biomass field data collected during synoptic surveys. 
Attempting other temporal integration scales for environmental data might improve our results. 
Despite their own limitations, 3-D coupled bio-physical models of krill life history including the 
swimming behaviour modulated by key biological processes (reproduction, moulting, feeding) 
could be a complementary tool to address questions related to biological-physical coupling 
processes such as those involved in the control of krill biomass and SAK formation in the 
region. 

IMPLICATIONS FOR THE IDENTIFICATION OF THE CRITICAL HABITAT OF THE 
BLUE WHALE 
Because of its ecological significance, food availability has been advocated as a key habitat 
characteristic for large marine predators but has rarely been considered in habitat modelling due 
to a lack of adequate data. When available in the past, pelagic prey data have not substantially 
improved large marine predator habitat models, most likely because synoptic prey distribution 
data does not adequately represent the inherent spatio-temporal scales and variability 
characteristic of the pelagic foraging habitat of large predators (i.e., Torres et al. 2008). 
Consequently, most studies of large marine predator habitat and distribution have used indirect 
oceanographic proxies thought to represent processes that would drive prey distribution and 
density. However, it has been proposed that predictive modelling of prey distribution could 
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represent a better tool to estimate prey availability in large marine predator habitat models 
(Torres et al. 2008, Aarts et al. 2014). 

This study was performed in the context of determining important foraging habitat for the WNA 
blue whale population in eastern Canadian waters. Our assumption was that the krill preyscape 
would be a key feature of blue whale foraging habitat and spatial distribution from spring to fall 
in eastern Canadian waters. We elected to use a statistical modelling approach capturing the 
fundamental characteristics of krill habitat, including the dynamic surface circulation processes 
likely involved in the formation, transport and disruption of krill aggregations (Maps et al. 2015). 
Our statistical modelling approach allowed for the optimal use of synoptic spatial krill biomass 
data collected at high spatial resolution with multi-frequency acoustic methods and available 
environmental data. The dynamic dimension included in our statistical models allowed the 
prediction of a dynamic krill preyscape based on the probability for a whale to encounter a high 
biomass krill patch at any location in spring and summer within the region. Despite the inherent 
uncertainty associated with predictions made using statistical habitat models, this study 
represents a significant step forward in developing a comprehensive approach for the 
understanding of ecological drivers of large marine mammal distribution, population dynamics, 
and habitat use. 
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TABLES 

Table 1: Optimal GAMs based on different categories of krill biomass data. See text for the description of abbreviations used for environmental 
variables. 

Season Category Formula N intercept GCV %DEV r 

Spring Plankton Biomass ~ log(ChlA + 1)*** + log(Bathy)*** + 
MSLA)ns + Slope*** + SST*** 

1660 1.699*** 0.359 19.64 0.43*** 

 Euphausiids Biomass ~ log(ChlA + 1)*** + log(Bathy)*** + 
MSLA*** + Slope*** 

614 1.392*** 0.172 37.48 0.61*** 

 M. norvegica Biomass ~ log(ChlA + 1)*** + log(Bathy)*** + 
MSLA)ns + Slope*** 

614 1.249*** 0.140 34.23 0.53*** 

 Thysanoessa Biomass ~ log(ChlA + 1))ns + log(Bathy)*** + 
MSLA** + Slope*** + SST* 

614 0.957*** 0.231 27.11 0.44*** 

Summer Plankton Biomass ~ log(ChlA + 1)*** + log(Bathy)*** + 
MSLA*** + Slope*** + SST* 

2160 1.675*** 0.315 16.96 0.39*** 

 Euphausiids Biomass ~ log(ChlA + 1)*** + log(Bathy)*** + 
MSLA*** + Slope*** + SST*** 

2113 1.430*** 0.264 24.54 0.47*** 

 M. norvegica Biomass ~ log(ChlA + 1)*** + log(Bathy)*** + 
MSLA*** + Slope*** + SST*** 

2113 1.307*** 0.193 20.46 0.43*** 

 Thysanoessa Biomass ~ log(ChlA + 1)*** + log(Bathy)*** + 
MSLA*** + Slope*** + SST*** 

2113 0.876*** 0.325 26.47 0.49*** 

p-value of smooth terms and correlation coefficients are indicated by : ns > 0.05; * 0.05 - 0.01; ** 0.01 - 0.001; *** < 0.001 
r: Spearman rank correlation coefficient. 
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Tables 2: Optimal GAMs based on krill biomass data. Environmental data range showing partial residuals > 0 indicating a positive effect on 
biomass of the different krill categories in spring (May-June) and summer (July-August-September). The absence of values = variable not selected 
in a particular GAM. See text for the description of abbreviations used for environmental variables. 

Category Variables Spring max Summer max 
min min 

Euphausiids ChlA 2.78 - 4.05 23.05 
Bathy 62 228 69 233 
MSLA 0.049 0.064 -0.047 0.073 
Slope 0.35 1.31 0.32 1.85 
SST - - 10.9 16.2 

M. norvegica ChlA 2.97 - 4.37 21.65 
Bathy 69 324 74 473 
MSLA - - -0.053 0.074 
Slope 0.36 2.67 0.35 1.955 
SST   9.8 16 

Thysanoessa ChlA - - 4.21 32.78 
Bathy 56 172 60 200 
MSLA 0.053 0.07 -0.055 0.06 
Slope 0.3 0.83 0.3 1.75 
SST 10.5 - 11.2 16.2 
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FIGURES 

 

Figure 1: Map of the study area and regions. BoF: Bay of Fundy, GoM: Gulf of Maine, GSL: Gulf of St. 
Lawrence, NL: Newfoundland, SLE: Lower St Lawrence Estuary, SS: Scotian Shelf. Grey lines represent 
the 200 m isobath.  
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Figure 2: Vessel tracks for various acoustic surveys conducted in eastern Canada (Plourde et al. 
unpublished data).  
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Figure 3: Biomass (g m-2) for the krill category Euphausiids’ predicted in June 2012 with the GAM built 
with acoustic data collected in May and June in the GSL. Biomass represented as Ln (x+1).  
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Figure 4: Euphausiids in spring. Locations with a probability greater than 50% for a dense krill 
aggregation (biomass >95th percentile) to occur (red) and defined as Significant Areas of Krill (SAK) in 
spring 2009-2013. Predictions were performed with the GAM described in Table 2. Dark grey line: 200 m 
isobaths. Light grey line: 100 m isobaths.  
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Figure 5: Euphausiids in summer. Locations of SAK in summer 2009-2013. Predictions were performed 
with the GAM described in Table 2. See Fig. 3 caption for layout details.  
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Figure 6: Meganyctiphanes norvegica in spring. Locations of SAK in spring 2009-2013. Predictions were 
performed with the GAM described in Table 2. See Fig. 3 caption for layout details.  
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Figure 7: Meganyctiphanes norvegica in summer. Locations of SAK in summer 2009-2013. Predictions 
were performed with the GAM described in Table 2. See Fig. 3 caption for layout details.  
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Figure 8: Thysanoessa spp. in spring. Locations of SAK in spring 2009-2013. Predictions were performed 
with the GAM described in Table 2. See Fig. 3 caption for layout details.  
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Figure 9: Thysanoessa spp. in summer. Locations of SAK in summer 2009-2013. Predictions were 
performed with the GAM described in Table 2. See Fig. 3 caption for layout details. 
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Figure 10: Euphausiids on the eastern Newfoundland shelf. Locations of SAK in spring (left panel) and summer (right panel) 2009-2013. 
Predictions were performed with the GAM described in Table 2. See Fig. 3 caption for layout details. 
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APPENDIX 

 
Appendix 1: Spatial patterns of static (Bathy, Slope: upper panels) and dynamic (SST, CHLA, MSLA: lower panels) environmental variables used 
in krill habitat models. Dynamic variables are averaged for August 2012 as an example of their spatial structure. Data are represented on a 
10*10km cell grid. 
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Appendix 2: Optimal GAM showing the influence of significant environmental on biomass of krill in the 
Euphausiids category during the spring period. Ticks on the x-axis indicated the data observations. The 
environmental variable has no effect when the 95% confidence intervals (shaded areas) include the zero 
on the y-axis (dotted line). See Table 1 for GAMs details. 
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Appendix 3: Optimal GAM showing the influence of significant environmental on euphausiids biomass 
during the summer period. See Appendix 2 caption for details of figure layout.  
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Appendix 4: Optimal GAM showing the influence of significant environmental on Meganyctiphanes 
norvegica biomass during the spring period. See Appendix 2 caption for details of figure layout.  
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Appendix 5: Optimal GAM showing the influence of significant environmental on Meganyctiphanes 
norvegica biomass during summer. See Appendix 2 caption for details of figure layout.  
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Appendix 6: Optimal GAM showing the influence of significant environmental on Thysanoessa species 
biomass during spring. See Appendix 2 caption for details of figure layout.  
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Appendix 7: Optimal GAM showing the influence of significant environmental on Thysanoessa species 
biomass during summer. See Appendix 2 caption for details of figure layout.  
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Appendix 8: Frequency distribution of the number of krill biomass >95th percentile predicted in each grid 
cells with GAMs built for krill categories of Euphausiids, M. norvegica and Thysanoessa species in spring 
and summer. Significant Areas of Krill (SAK) = cells with > 5 and > 8 high biomass values in spring and 
summer respectively. Frequency of grid cells with no krill biomass >95th percentile represented 90% of 
the domain and were not plotted. 
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Appendix 9: Spatial distribution of krill biomass based on acoustic data for the Plankton category 
estimated with dual frequency acoustic in the GSL, SS-Bay of Fundy and Newfoundland (A), and for the 
Euphausiids (B), M. norvegica (C) and Thysanoessa spp (D) categories estimated with multifrequency 
acoustic in the GSL. Data are represented as standardized anomalies (± number of s.d) of the maximum 
krill biomass (g m-2) observed in each 10*10km cell relative to the average value over the entire spatial 
domain (Plourde et al.1 unpublished report). 

                                                

1 Plourde, S., McQuinn, I.H., Lesage, V., Lehoux, C., Joly, P., Bourassa, M-N. Spatial distribution of krill in 
eastern Canadian waters: a climatological appraoch based on historical plankton net and acoustic data. 
Institut Maurice Lamontagne, 850 route de la mer, Mont-Joli, Qc, G5H 3Z4 
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