THE BIOLOGY AND PRODUCTION OF THE STOGKS OF BLACK SEA KUMERA (SALMON/TROUT)

By G. F. Bayach

Kandidad of Brological Sciences (Georgia Fish Protection and Management Serviceachrourybvod)

Original title: Biologira i vosproizvodstwo zapasov chernomorskoi kumzhi (lososiá-foreli).

From: Akademiia Nauk SSSR, Ikhtiologicheskaia Komissiia, Trudy Soveshehanii, No. 7, pp. 235-242. 1957. [Trudy Soveshchanina po Rybovodstru, 1954.]

Preliminaxy translation by W. E. Ricker

Distributed by the Fisheries Researoh Board of Canada Biological Station, Nanaimo, Bo C.

This is a preliminary translation prepared for the use of the Fisheries Research Board of Canada. It is not a definitive English version of the article, and it has not been checked or approved by the author.

The present article is an attempt to solve some questions. concerning the natural and artificial production of stocks af Black Sea salmon' on the basis of a study of its biology. The studies were made in 1951 and 1952 under the auspices of the Georgian Branch of the AzoviBlack Sea Research Institute for Fisheries and oceanography (AzchervIRO) and wh 1953 according to a plan outined by the Georgaan Fish Proteotion and Meragement Service (Gruarybvod).

SYSTEMATIC POSITION OF THE BLACK SEA SACMON

L. S. Berg refexred the Black Sea salmon to the Atlantic species kumsha, as one of the 3 subspecies which he recognized for the Ponto-Caspian-Axel jchthyological province-m conformity with this wiew the Black Sea subspecies is named Salmo trutta labrax Pallas. To the same subspecies of kumzha Berg also referred the river tront inhabiting foivers of the Black Sea basin, considering them to be a non-anadromous river "moxpha" of the anadromous Kumzha. Anadromous salmonid fishes are considered by Berg, and the other ichthyologists who agree with him, to be primarily-marine fishes which are adapted to reproduction in fresh water. The" anadromous kumzha (salmon) is the basic type; the freshwater nonanadromous kumzha (trout) is a form which arose from itoma "morpha" distinguished by characteristics which are temporary in the sense that it transmitis them to its progeny only if the external conditions remain the same.

On the question of the evolution and genetic relationships of the anadromous forms (salmon) and non-anadromous forms (trout) of the genus Salmo, I hold the opposite opinion, and regard them as primarily-freshwater fishes. The Black Sea salmon, and the brook trout which inhabits the rivers of the Black Sea basin in which the salmon reproduce and live one or two years of their youth, constitute two mutually connected forms of existence of a single subspecies of kumzha, which is a freshwater fish by nature, and either takes the opportunity to leave the wiver and live in the sea and return to the river for reproduction, or else remains for the whole or part of its life in the river.

In line with this opinion I suggest that the Black Sea kumzha must be named Salmo fario labrax Pallas; its migrabory [page 236] form--S. fario labrax forma trutta; and its non-anadromous formS. fario labrax forma fario. These two forms do not have the character of systematic units of the category of morphae; I consider that neither of them should be regarded as having been derived from the other.
${ }^{1}$ Throughout this txanslation salmon $=$ Iosos, trout $=$ forel, while kumgha is retained in the Russian form.

The origin of the anadromous form I consider to be xot a zesult of adaptation of a maxine species to reproduction in fresh water, but gexeudt of the extension of the feding migraxion or a freshwater spenies out to sea. Jt is more comect ta speak.

 of magrent trout to theaz matire medium 1 om meproduction.

THE UNITY OF THE NON-GNADROMOUS AND ANADROMOUS POPULATIONS OR BLACK SEA MUMZHA

It is a widely held and madisputed opiaion that the river Lite of the young is the dewizive period for the production of stocks of salmonid inshes. The sea provides almost unlimited opporfunities for frorease fom the numbros of salmonid stocks but these opportarities ase Immted by the survival of the young in the an wew beriore their migration to the sea. It would be expected therefore that all of the young tish whigh hatoh from the eggs lada in the river by female salmon and inve thexe up to the necessaty age, would ge down to sea and swell the oumberg of recruits to ith salmonid stoth. The whole key to the matterw Lies In the hatoming of the young and their protection up to that particular moment. The fry output depends on the number or spawnes coming back to apawn and on the size of the spawning area and ibs preservationmothat is. on the aggregate af non-biological and biological conditicoms afferting the development ot the egge and the life of the young fish up to the time of theix seaward migration。

My observations and studies lead to the congusion that. among the factors influencing the natural production of zalmonid stocks, great importance should be attached to the factor or migration to sea, something which has not been considered up to this time. Under this head I include the eanditions of rexer life which stimulate, ow prewent, the seaward migyation of young salmonids whith hare attained the nesessary age Not al the Burviring progeny of salmon migrate to sea sind become zecruits 60 the anadromous stock: parto of them remain in the xoiver and assume the condition of the non anadromons population. Go the other hand, from the eggs laid by a temale mon-anadromous trout there may also come indridvals which go to sea and change over into anadromous salmon, $2:$ well as individuals wheich memain in the roiver and retain the ehexacteristiss of the freshwater formmothe civent.

As a besult, both the reproduction of the salmon, that ts, of migrants returning to the river, and the weproduction ot the trouboothe nonomadromous indiwidwals of this same kummanm
regard as a single soure for the seproduction of both, that is, of young for ah amg which in the first year the fytuxe migrants canno be distinguished. They axe all a ampletely homogeneous masmonthe fivgexidmg kumina. The sex ratio in thin ageagroup is 1:1.

The wriced winer stock of Blesk Sea kumha becones separated inte the pertemonom-anadromors and anadromowsomunually in its serond year ar life.

The migretory instrinet in humana in to a comsiderable degree associated with ser: it is predominimthy the females which migrate to sea, while the moforisy on the males remain the the xover where they quachy athain sexual maturisy. Hmone donnstream migrants of the Ghernata Rever the temales ompsise 88% and the males 12%. This is also appoximately the sex matio in the stocks of migratory salmon returning to the xomer for gpaming: on the awerage ores a period of Feams in the Chemaia Fiver stock there were 85% fenezess dnd If\% males. The reterse ratio in found in the nonmanadromows themara River population: 74% males and 26% females.
[page 237] From this I have drawn the conclusion that the dynamics of salmonid stocks in the Black sea axe determined not oxly by the reproduction of the salmon and the survival of their Foung, but also by the reproduction of the trout and the factors which stimalate for alternatively, discouxage downstream migration of the young fish to the seam (Baroch. 1952).

The fact that in the samon and trout spamaing yovers there always remains a part of the Feumg figh, these besng recruited to the non-anadromous population-man sort of matiliter reserve: of salmone-gidy us reason to believe that the searard migration factors are of decisive importyance in the prodution of the sximom. steck. By them is determined the quantitative ratio in which the separation of tho common stok of yonge fish into nonanadromons and aredromous portwoms oceurs in different rivers and in different years or in other words, it determines the dymancs of abundance of both types.

Anong the foators aftecting migration, bydrological condim fions, and partioularly food conditions, must have considerable Importance. In my time I have observed, since 1949 an increase in the number of females in the composition of the nonanadromous populaton of the Chemaig Riwero dudicatiog a weakening of the migratory tendexcy. Along with this I have demonstrated a marked decine In the population of the Chermaia Fivero as the result of an intensive tisherg for trow during those years. mo may postulate thet the improved food conditions resulting from the decrease in abudance of the population has been a factor which has redumed migxation to the sea, and consequently that inctease in abundance foverpopulation) will Lead to increase in migration. Thus dommstream migration to the sea serves as a regulator of
abundance of the salmonid population of the mivers (Barach, 1952).
Consequently I consider that the departure to sea of a part of the salmonid popalation is necessaryg th the vimal sense of that word, and is governed by the fect thet the food supply of the niver in inauticient for the whole popaletion. In the wiver there remein only as many as it can provide food for, The individuale mion remain in the river do not atwain the size which the seawand migrants do, but in the thiro ysay of Iife they too mature and begin to reproduce. pazt of those which haye once been sexually mature, also, ean suim ont to sea and transform into anadromone kumzha.

The already well whown fact that sexully mature txout can migrate to seg and transform into anadromoun kunzha made it possible for Dahl to speak of replenishment of the kameha stock in the sea by worer trout. Accepting the relevames of the facts outlined, I suggest that for the most part the zecruitment of trout to the Balmonid stooks in the Black sea is determined by the [degree of] seaward migration of the Joung fish whion are the common stock on recrutits for both the salmon and the trovt populations associated with any given river.

SPAWNING MIGRATION OF the anadromous kumzha

In wiew of the scarcity and rather low fecundity of the females in the freshwater population and the incomparably greater fecundity of the females of the anadromous kumeha, we must consider that the natural reproduction of the salmon and trout populations is maintained mainly by females of the anadromous form.

The approach of kumzha to the Abkhaziia coast begins at the end of February; at this time scattered individuals appear, which are not yet entering the river. Throughout March and April there is an acoumulation of anadromous kumeha in the region just of 1 the mouths of the rivers, and in April their entry into the river begins. Toward the end of May the approach of new masses of kumeha to the coasts of Abkhazifa falls of and in June it ends, and the catches in the sea fall ofic abxuptly. Toward the middle of July the main bulk of the anadromous salmon are in the rivers-in the sea there are none (possibly oceasional examples escape enumeration).

As regards the sex composition of the Black Sea anadromous kumaha it is typical, as mentionea above, to have invariably an excess of females over males-orten quite maxkedly developed: [page 238] in the Cherraía River stock the females comprised on the average 88% (in different years from 76 to 100%, in the Kodor River stook they amounted to 65% (from 53 to $7 \% \%$, and in the Bzyb River 63% (fxom 53 to 71%).

The Black Sea kumzha attain sexual maturoty and go up to spawn for the most part in thex third year (age 2t), after one (frequenty incomplete) yeax of life in the sea. Only a few indifiduals from among the late-leaving young, after remaining in whe rover longer and moving to sea during the minter or spring at the start of their third year of life, become sexually mature and go up to spawn for the most part at the beginxing of their fourth year, at age 3t.

The composition of the spawning stocks is indicated in the following table [see next page].

It in characteristic of Black Sea salmon to have early sexual maturity and to spawn annually. Among first-spawning individuals, more than 80% are third year fish $(2+$ and about 20% are individum als at the start of their fourth year of 1 ife (3t). Yearly mepetition of spawning is associated apparently with short migration zoutes, which do not require a great expenditure of energy and permit the kelts to return quickly to the sea after spawning, and easily and rapidly recuperote their strength for a new spawning。

The frmetional fecundity of the females of the Chernara River stock, on the average for 5 years (1947-1950), was 8,500 eggs per Semale: the average number varied in different years from 7,500 to 10,500, individual variation was from 2,500 to 15, 500 eggs. Two exceptonal examples which I observed were a female 81 cm long witir 23,200 eggs, and ane 79 om long with 19.400 eggs.

The magnixude of the functional feeundity of the Chernaia Ripen females is very close to their absolute fecundity, since the eggs in these years were obtained by opening females caught alive before the eggs were loose.

The average functional fecundity of the Byyb and Kodox River females, taken by spear after the egge were running, that is, when there had been some loss of eggs, was lowex namely 6,300 and 7,400 eggs. Their absolute fecundity naturally was no less than that of the Ghernaia River fish.

GROWTH OF THE YOUNG BLACK SEA KUMZHA AND THEIR DOWNSTREAM MIGRATION

The hatehing of the fry from the egga, which takes place in the Chernaia River at a temperature of $9-10^{\circ}$, occux: during December and January and lasts sometimes into the first days of February. $V p$ to 70% of the fry hateh at the middle [page 239] of January, the remaindex in the second half of Jenuary. Eggs develop vander the same temperature condrtions in the greater. part of the spawing grounds of the Bayb and Kodor Rivers. The

Groups, according to number of sexual cycles	Percentage in the composition of the stock	Age	Fork length in cm		
			Range	Mean	Principal range
Individuals spawning for the first time	31-32	$2+(3+)$	35-90	60.7	50-70 (71\%)
Individuals with one previous spawning	44-45	$3+(2+m+4)$	50-100	80.9	70.90 (74\%)
Individuals with two previous spawnings	14-15	$4+(3-5)$	$70-110$	89.8	90. 100 (55%)
Individuals with three previous spawnings	$6-7$	4+, 5+	70-110	95.0	90-110 (75\%)
Individuals with four previous spawnings	1-2	$5+$	90-120	100	110-120 (67\%)

dividuals with three
$6-7$
$4+5+$
$70-110 \cdot 95.0$
90-110 (75\%)

Individuals with four
1-2

-
beginning of free [individualnaia] Iffe in the Blaxk Sea kumgha in the tivers of the Abkhavira coast ocours at the start of the year.

Toward the end of the year the fingexings have attained a fork length [po Smitu] from 9 to $15(12.8) \mathrm{cm}(a v \mathrm{p} .10 .4 \mathrm{~cm}$) and a weight ot 15 wo 35 g (aw. 2 g g g . The growh in length of the salmon (trout fingemings in whe Ghervara River is wharacteristically reep d and wniformo

Ht the beginaing of thear second sumer the gearings have attained, by dinect measurement, 9.0 m 16.6 cm (avo 12.1 cm); by back car whetron rrom the seales of downstream migrants eaught in the Chemara Riwer therr length varies from 80% to 15.9 m (av. 11.5 cm)。

The incerase duxing the winter of their first yeax and spring of theix zecond is about $30-35 \%$. The awesage length of the body
 (ay. 27.1 my fo the fork of the tail. On the scales there can be distinguished an intexnal ring with a number of selerites from 16 to 20 (av, I\&) corvesponding to the complete first year including the winter, and an external spring mong of the second year, in which up to Aproit there are 5op sclexites in all.

The transfomation of Chemare River pary to the mingatory stage begins in the spring of theiry second year. Among the smolts in spxing there are encountered indiwhuses with a body length of I4 cm, a majowity hawe a length ram 17 to 21 cm . In October the yearlings (smolts) hawe weached a fork length of l7.4-25.1 cm (av. 20.7 an! and a weight of $60-160 \mathrm{~g}$ (aw. 90.3 g$)$. Among the dowstream migrants sampled [uchtenye] in 1951 in the Chernara Rives, those of Kpril and May comproise $2 l \%$, those in july were 18% and in October 61%. The length of all the sampled migroants was from 14 to 26 cm (av. 29.3 cm): among them 77% were betreen 16 to 22 cm . The lengeh of the smolts caught during May and June in the sea was from 14 to 30 cm (are 20.6 cm). By back falculation from the catches ot migreting samon we obtained the same ayerage [smolt] length: 20.2 cm (from 9 to 40 cm , or which ry\% are from $164026 \mathrm{~cm} \%$.

The downstream migration of the young of the Black Sea kumme begins in the spring and lasts throughout the summero and autumn. Towards wintex apparently all the smolts have lefty for the sea.

All of the Black Sea anadromous kumzha-nthe salmon-mend theit river life during their second yeaz, and migyate to sea at age 1 mo
 the rapid rote of growth, which in turn as related to the temperam tuxe conditions and, apparentiy, good feeding conditions in the nuxisery witers.

NKPURAI AND ARTTFICIAI PRODUCTYON OF THE STOCKS

Production of stoms of Black Sae kmmhe ts favowned by the following factors: $1 /$ lewge extent of the mparing area, in which

 relatimely high tecuadty of the andornous tormo In sprte ot the favourable aremmswances fugt mentomed, neithes the netural productan now the nemagement progecmees acapted we to now have
 Black Seap which remains at a yexy lon lepel。 I belreqe the cause

 but elso the mumber of young pish which reach the see is reduoed, becanse zlong wich the trout smolts ase caughe whimh have alxeady begra to mmin to sea. Amother mexy mifawnarable oizounstance for
 both pron to spaming and also in the spawning period (spearing on the reddsl. Increased protegtion for the selmonids in the spawing ripers, elimenation or poabing, and regalation of the trout idshrag industry, will gradually improve the gitudthon; but, all of this eanot bratug the stomia 3 p to the tefel at which salmon in the Black Sea will become of commercial imporanobe.

The hatohery of the Chemare River Station is supposed to take 400,000 eges Teas 9 for 2ncubation, and to release all of the product, among which young fiah of magrant gexe should ramber \$2,000 pieces. Commeroini returms awe expscted to the namber of 25%, that is, about 20,500 pieces ox 800 m 1000 centrexs of salmon. However for fish cultural work on such a scale the size of the rearing facinties of the hatchery are insuffacent.

Rewiewing the results of rearing young samon in ponds on natural foods, B. I. CherPas came to the conelusion that "Yith carrect chote of pords and the prorision of measures which permit the wearing ot food faum for the young, the produetive output

In owx establishment there 2 s only 0.76 bectare of ponds, which are fax from being well adapted to introducing an intensifised culturel program. At the rate of prodretron mentioned by Cherfas, we could anticipate obtainug fzom the existing pomd apea 91.2 kg of product. At the uswal awerage welght of migrant Foung Black Sea salmon fat the beginming of the spring of fte zecond year this will gite 2800 dish in plege or the anticipated $82,000$.

As far as I kow, arodequial reaximg of selmond roung to the
 reazong of fingerliag salnon has mot got begozd the stage of
experimental work. In view of this the projected results of the Chernafa River hatchery seem to me unreasonable. For the present the rearing of salmonid young can consist only of experimental efforts, divorced from production assignments. In any ewent, in the years immediately ahead the productive activity of the Chernaia River hatchery can consist only of the release of young at the fry stage. But to improve the fawourable effect of this at is necessary to increase the collection of eggs for incubation as much as possible.

Dowbts exist concerning the usefuiness of rearing salmon by release of the product in the fry stage. I believe that even this measure can be wery mach more effective than natural reproduction: with artificial fertilization and incubation the loss of eggs is many times less than with natural spawning. Therefore the favourable effect of releasing fry may be regarded as cextain. The whole matter depends on the scale of the work--the number of eggs obtained for incubation.

There is one further consideration: the level of release of young into the river is limited by the food resources of the latter. The observations which I made earlier give reason for believing that the abundance of the salmonid population of the river is regulated by the degree of migration downstream to the sea, and that adding to the level of the population in the river will not lead to overpopulation but to an increase in downstream migration, and consequently to an increase in the abundance of the migratory stock at the expense of the freshwater stock. From the point of view of production of salmon stocks, this seems to me a favourable factor.
[page 241] However, I do not suggest limiting our efforts in producing salmon stocks solely to the release of the maximum number of fry in the Chernaia River, leaving everything else as it is. Gonsidering the river as a site for rearing the young fish to the age of migration, and the sea as a foraging water: and considering that some part of the young fish, after reaching this age, do not migrate to sea but remain in the river and constitute an unutilized reserve of potential salmon, we should make it our object bo achieve the maximum departure of young to the sea for feeding. This objective can be achieved by an annual fishing-out of the river and transplanting the young firsh to sea-the secondyear salmon/trout-and also some of the sexually mature trout. Part of the sexually mature trout retained must be put in holding ponds for utilization as spawners (of this, more below), and the remainder can be used commercially. This annual fishing-out of the river will result in improved conditions for reasing the young fish and will increase their survival rate.

Thus, in fact, we do not object to rearing young fish to the age of migration, but we propose to do this under natural conditions in the Chernaia River. Because of its rather short length ($18-20 \mathrm{~km}$), the Chernaià River can be used as a rearing water for the Chernaia River fish hatchery if the lattex is provided with
the necessaxy equipment for the proposed management measures. This will give bettex results than using learing ponds at the hatchery, with less expenditure of labour and materials.

To tinerease the collection of eggs appears to me quite praetical. The si\%e of the salmonid spawning stocks of the Chemara, Buyb and Kodor Requx makes it possible to codmb on a considerably larger odlection of eges than at the present time In addition, we may and we must use as spamess the non-madromous trout-kumeha (the reasor for this was given aboved. Ta any eqemt fertilizetion of salmon eggs fyy the milt of the male trove is not only pemisshble (amd under our condithons mavoideble), but it is also desirable. We have in mind the studies of Daturing as elaborated by Io Vo Miehuring on the imporonace of erowsing males and femaies fof a magle species which difier in respect to place and condithons of feeding, or ox gin. The xecommerded heterospermous fextilimation is posmble for us only by ueing male trout.

Thus at the present time a systen of fieh-oultural measures fos increasing stocks of salmon for the firhery in the Black sea must include, in my opinion, the following:

1) Collection and incubation of salmon and trout eggs in the largest numbers possible; 2) release into the Chernaia River of their product at the fry stage, or as fingexilugs $1-2$ months old; 3) atthing in the riter and transportation to the sea of secondyear salmonftrout and, to some extent, of mature trout. These measures must be continued for as long as the problem remains unsolved of rearing young fish in ponds and basins of the Chernaia River hatchery to the downstream migrant stage, or at least to the [autumn] fingering stage. But I believe it is yery likely that rearing the young fish in the Chernaia River, with yearly transportation of these young to the sea. will always be more economic.

The proposed basic plan for fish-crltural measures to increase the stocks of Black Sea kumzha gives high priority to the following scientific reseazch work:

1) pexfection of the biological techniques of holding spawners;

21 study of the embryonic development of kumaha under the conditions of incubation that prevail In the Chernaia River hatchery;
[page 242] 31 a comparative study of the survival of eggs of salmon, trout, and their cross, and the hardiness of the young of these different origins;
4.) study of the Chernara River as a nursery watex for the hatehery, the infe of the young fish in the wor wer, and the dynamies or their downstream migration;
5) study of the mavine migrations of kumzha, and their rewum as comeroial-size stock.

LITERATURE
Barach, G.P. 1952. Significance of brook trout in the production of stocks of Black Sea salmen (kumzha). Zool. \%huxn., Vol. $31,{ }^{2}$ No. 6. Cherfas, B.I. 1950. Fish culture in natural bodies of water. Pishohepromzdat.

