ARCHIVES

FISHERIES RESEARCH BOARD OF CANADA

Translation Series No. 176

RESULTS OF A STUDY OF THE BIOLOGY OF SOGKEYE SALMON 9 THE CONDITIONS OF THE STOCKS AND THE FLUCTUATIONS IN NUMBERS IN KAMGHATKA WATERS

By F. V. Krogius and E. Mo Krokhin
(Kamchatka Division of the Pacific Institute of Fisheries and Oceanographical Research)

Original title: Rezultaty issledovanii biologii nerki-krasnoz, sostoianiia ee zaposov i kolebanii chislennosti v vodakh Kamchatki

From: Voprosy Ikhtiologii, No. 72 pp. 3-20, 1956

Translation by R. E. Foerster

Distributed by the Fisheries Research Board of Canada, Biological Station, Nanaimo, B. C.

The world's stocks of salmon aze xelatively lowo In premwar years around 8 million centners of these valuable fish were taken of which more than a third consisted of Kamchatka salmon. In the Kamehatika eatches socikeye amounted to from 6 to 12%. But, since this species constitutes the mosto valuable raw material fox the canning industry, theis value increased to 25% of the palue of the whole catch of salmon in Kamehatke.

Po 3 (2) Pacific salmon are taken at the time of their spawning migration and the fishery can be fery intensive. Spawning once, with a comparatively low fertility and reproducing in fresh water where the conditions are very variable, places a limitation, for all species of Pacifie salmon, on theig reproductive capacity and requires an extremely attentive and careful concems fox the stock of silmon ad, in particular, the sockeye.

Po 3 (3) The sockeye ocsupy a sperial place among Pacific salmon. Ther have ties longest and most complicated infe gyele (with the exception of Q. ©howhtshed for spaming they require special water areass the yours spend the longest time in fresh water: for sockeye there is a most pronounced insininet for return to the netal rivero These characteristies explain the waxiable oceuryence of sockeye within their areas and complicate their reproo duction (Krogiras, 1952)。

Po, 3 , Sowkeye as in the case of the rest of Pacific salmon spawn in the riverim on the Asiatics and Anerican coasts of the northern paros of the Pacific oneano Theiry feeding areas are in the North Paciric oceano The major pare of the Asiabje poprlation of sockeye reproduee in the rivers of the Kamehatika paninsuma and onity small part in the rivers of the west evast of the 0khotsk Ses and the norbin-bist const of Beriag Sea. phe great distance of travel from the feading aveas to the spawning rivers facilibates the possibility of catching the sehools ot sockey durizg the mignation persod. 90% of all the local xishery fos sockeye is obtainci from the catokes of those sishools, produced in the Oqexraya River sysien on the western shore of the Kamchatka peninsuia and in the Kamchatika River on the easterno

Po. 3 (5) From the end of the 1920's up to 2955 there were vergy groat fluctua tioxsin the cabches of sockey, caused not only by differences ix intensity of fishing efforty but also because of the changes in the abuodance of these fisho The highest levol was reached at the end of the $19200^{\circ} \mathrm{s}$ and in the
 in numbers of sockeye was noted, particularly clearly indicated on the easty cost of Kambhtka Consequenty, under such conditions, the actipities of the Kamchatika Division of TINRO were dirested especially to a study of the sockeye.

HISTORY OF INVESTICATTON

Po fe (D) At the tine of the oxganization of the Kanchatka Dixision of the Pacific Institute of Fisheries Remearch and Oceanography (TTNRO) in 1932, the Kamohatka sorkeye had boen very Iitule strudied. Insividual observatione on the biology of the sockege had bean made by PoU. Schmidt (19N(8) sud RoNo Derjawix (1916) there should be mentioned especially the work of IoI。 Kumetroy (1928) which contains most detai led data on the reproduction of sockeye, and also the work of $\mathrm{M}_{0} \mathrm{P}_{\mathrm{o}}$ Somov ($1930,1930 \mathrm{a}$) on the sockeye of the

Kamchatka River system．Therefore，ix the initial period，in addition to the investigations directed toward the solution of the main problem an anderm standing of the causes of the fluctuations in the numbers of sockeye o it was important to accumulate general information on them。 Investigations were conducted in the Ozernaya River system by EoM．Krokhin and FoV．Krogius in 1932／33；on the Kamehatika River by VoSo \＆VoBo Bool． $\mathrm{M}_{0} \mathrm{~V}_{0}$ Jeltenkovg Bo F_{0}
 from 1932 to 1944 ：in the Bolshaya River system by $F_{0} V_{0}$ ．Krogius．$E_{0} M_{0}$ Krokhin，AoS．Baranenkow，RoSo Semko from 1932 to 1934_{0} The results of these studies have been published，in part（Krokhin \＆Krogius，1937，1937a）．

Pe 4＿（2）These expeditions of investigation emphasized the necessity of studying salmon，particularly sockeye，at a specific site。 Studies were undertaken in 1937 in the Paratunka River area anl endeavoured to elucidate the relation of fluctuations in numbers of sockeye to the conditions of rem production and to establish production coefaicients for this species，which would be necessary for the development of methods of making up predictions of the fishery（Krogilss and Krokhin，1948）。

Po＿4（3）In 1940 there was established an observation station on the Ozernaya River，for the purpose of checking on the huge stock of sockeye，reproducing in the Kurile Lake area．The studies were conducted by VoI．Gribanov and Vov．Azbelev and from 1950 to the present time have been carried on by $T_{0} V_{0}$ Egorova and FoEo Lashko．

Pe＿4（4）Prior to 1948 ghe investigations on the Kamehatka River consisted chiefly in the collection，in the Kamehatka delta，of biomstatistical informan tion and its subsequent avalysis．Investigations in the rimer bacin were of a general nature。 More intensive and specifie investigations began in 1949。 after the sudden decline inu the numbers of sockeye，observed in 1948．To these studies were assignerd VoVo Agbelev and VoIo Cineukowa and in 1950 they continued their work wader the guidance of IoIo Kurenkow the investigations were directed to make known the presentoday conditions in the reproduction of sockeye and to develop measures for increasing their numberg，and also for the acclimatization of the fish（transplenting to new areas presumably． R．E．Fo）。

Pe＿4（5）In 1935 VoI。Gribanot and EoMo Krokhin proposed a scheme for introm ducing a run of adult sockeye into Kronotz Lake。 In the spring of 1935 the lake was investigated by EoMo Krokhin and MoIo。Alperovich（Krokhin 1936）。 This question was again raised in 1952 and in the autumn of that year，during the period of spawaing in the Lake，EoMo Krokhin and IoIo Kurenkoy surveyed the Kronotz River and the eastern part of the Iake（Krokhin \＆Kurenkow 1954）。

P． 5 （1）In 1954 FoVo Krogius carried out a brief study of the Palana River and Palana Lake，formerly the location of spawning of schools of sockeye，which provided，at the end of the $1920^{\circ} s_{9}$ eatches of up to 23,000 centners，but at the present time none of commercial significance．Since 1951 FoV。Krogius has been using an aerial method of study of the condition and abundance of the spawning adult sockeye in the Kamchatka River system（Krogius，1955）．

P． 5 （2）Studies of sockeye in the sea were limited to certain investigations in coastal sections：thus ${ }^{2}$ in the jurisdiction of the Kamchatha Department of the Pacific Institute of Sea Fishery Research \＆Oceanography（TINRO），during several summers under the direction of WoWo Korslev，MoLo Aplerovich and $\mathrm{N}_{\mathrm{N}} \mathrm{N}^{\prime}$ ．Spassko ${ }_{2}$ drift netting for sockeye was carried out in the Gulf of

Kronotz。 For the purpose of determining the route of approach of salmon to the mouths of the rivers in the Kamchatka gulf marked sockeye were used by $V_{0} A_{0}$ Rudakova and $K_{0} A_{0}$ ．Lyamin and in Avachi Bay by $P_{0} A_{0}$ Dvinin．Young salmon in Avachi Bay were studied by PoA。Dvinin and FoV。Krogius in 1939－1940．A．I． Synkova published data on the feeding of salmon on their approach to the spawn－ jing rivers（Synkova，1951）．In 1954，in the course of a commercial scouting expedition，$L_{0} D_{\text {。 }}$ Andrievsky，a colleague of the Division，collected interesting material on salmon．

CONDITION OF THE STOCKS OF SOCKEYE

P． 5 （3）From the time of the conclusion in 1907 of a fishery convention with Japan up to 1944 there has been in Kamchatka a Japanese coastal set net fishery for salmon in the Convention Areas．In the first half of the $1930^{\circ} \mathrm{s}$ a Japanese salmon fishery was initiated and began to develop rapidly in the open sea along the southeeast coast of Kamchatika and along the north of the Kurile Islands，reaching maximum intensity at the end of the 1930＇s．The huge catch of sockeye along the coast of the peninsula caused，early in the 1940＇s， a decline in their abundance in the Kamchatka River and in the Ozernaya（to a．lesser degree）．

P． 5 （4）The Ozernaya stocks of sockeye，the spawning runs of which reach 8 million individuals，have been under complete check now for 14 years；for this period we have authoritative information on the fluctuations which have taken place in their abundance．Usually the sockeye return to spawn in the Ozernaya River in the 6th year of life，therefore in the 6th year after an abundant spawning there was noted a run of increased numbers（1943－1949， 1945－1951．1947－1953）．Since prior to 1940，the distribution of spawners in the Ozernaya River system was not checked，it is not known what fluctuation in adult sockeye occurred in the prewar fishery for those sockeye migrating to the rivers on the west coast of Kamchatka．The fishery amounted to 250，000 centners，of which around 200,000 were taken in the Ozernaya River area．From 1940 to 1944 when there existed a Japanese fishery in the open ocean and in the Concession Area，the catch of Ozernaya sockeye amounted，on the average， to around 80% of the number of migrating schools and reached 85% from 1945 to 1951 the catoh was，on the average， 56% and never exceeded 76% of the total migrating run．After 1944 it was not just a question of the catch but the passage of adult sockeye in the spawning run to the Ozernaya River system increased＇．therefore the abundance of the Ozernaya River sockeye stock began to increase．

P． 5 （5）In 1953 the total catch comprised 77% ，and in 1954， 94% of the whole migration of Ozernaya River sockeye。＂As a result，into Kurile Lake there escaped in 1953，1．2 million sockeye，but in 1954 only 0.32 million．On the basis of many years＇observations it has been determined that for the mainten－ ance of brood years（ $\mathrm{p}, 6$ ）of sockeye above the average it is necessary to let through to the spawning grounds of the Ozernaya system $2.0-3.5 \mathrm{million}$ adults．The spawning of 1.2 million adults，however，can，under good conditions for reproduction，give a brood year close，in numbers，to the average but 0.32 million adults，even under very excellent conditions，will give only an extremely small year class．

Po6 (1) In the Kamchatka River the sockeye return chiefly in the 5th year of life. After the huge catch in 1937-1939 there occurred a reduction in abundance in 1942-1944. In 1942-1947 the sockeye catch was stabilized at a lower level than in the prewwar years. But, apparently, such a fishery was not able to improve the condition of the runs except under favourable conditions for reproduction; since these conditions did not prevail, the numbers in the run were sharply reduced in 1948, the decrease continued and in succeeding years made it necessary to introduce, as of 1951; a complete prohibition of sockeye fishing in the Kamchatka River and Kamchatka Gulf which continues to the present time.
P. 6.(2) A sudden drop in the abundance of sockeye occurred in 1948 also in the runs to other rivers of the east coast, for example the Paratunka system. Here, a complete count of the adult sockeye proceeding to spawn was made by the Kamchatka Division of TINRO in the rivers flowing out of Lakes Dalnee and Blizhnee. The fluctuations in the numbers of sockeye in the Kamehatka River and the sockeyes reproducing in Dalnee and Blizhnee lakes are very similar but they differ markedly from the variations in numbers of these fish in the Ozernaya River (Fig。l).

RUNS AND NUMBERS OF SOCKEYE

P. 6 (3) The characteristic of Pacific salmon to return to spawn in their natal stream makes it possible to predict the numbers of them in the runs. In sockeye the adherence to the natal stream theory prevails to the greatest degree, and applies to local runs going to the principal tributaries of a river; for example, in the Paratunka system there are three separate populations of sockeye, each reproducing in its own river and in the springs which flow into it, which rivers flow into Dalnee and Blizhnee Lakes.
P. 6 (4) The iish of each population differ from one another in biological indices, in particular, in the structure of the scales. Quite apparent differences in the pattern of the scales in sockeye from known sections of the Paratunka. system can be utilized to distinguish, in the ocean catches of set nets, the sockeye of different populations. Lately this method has been used to determine the sockeye of the Ozernaya and Bolshaya Rivers in the set net catches. For ocean investigations this method can be of help in distinguishing different populations of sockeye.
P. 7 (1) A determination of the principal factors that direct the movement of salmon to the spawning area is a matter of paramount importance both for the industry and for the development of measures to increase abundance. However, up to the present this question has been but little studied. The only investigations in this regard were carried out in 1950-1953 in the Paratunka system. It was established that sockeye proceed upwriver preferably in the evening and morning hours under a minimal influence of temperature, oxygen and monocarbonate content, and their movement does not take place in direct relation to the light conditions. The physiological nature of this phenomenon up to the present time has not been studied. This makes it difficult to extropolate the results obtained to other areas (Krogius, 1955).

Po7（2）The timing of the runs of different biological groups and local populations of sockeye are not identical：in the Ozernaya sockeye occur from midwJune to midwSeptember；the principal run of early sockeye in the Kamchatka River takes place during June，but the late run－azabach－prior to the end of August．

P． 7 （3）The number of generations（year classes）of sockeye，as with other salmong depends on the number of spawing parent fish and on the conditions in which took place the spawning，the development of the egg，the feeding of the young and their migration to the sea．A total of nine yearmclasses of sockeye in the Ozernaya River（from information of V 。I。Gribanov，V．V． Azbelev and T ．V ．Egorova）reveals a direct relation between the quantities of parent fish（ $0.5-4.2$ million）and the numbers of offspring（2．3－7．8 million）．However，the effectiveness of reproduction was considerably greater in the cases of the spawning of relatively small quantities of adults：the correlation between these values changed from 1：1． 5 for the spawning of large quantities of fish up to $1: 5.7$ and even higher in the case of small spawnings．

P 7 （4）For the sockeye of Lake Dalnee，this correlation was somewhat different：instances were observed when from large quantities of spawning fish there resulted year－classes of small extent（1937 and 1944）and on the contrary－－when from spawning of small numbers of adults there resulted year－ classes of large numbers（1935，1942，1949；Fig．2）。

P。7（5）Each spawning basin possesses a certain amount of spawning area；to it must，conform the numbers of adults which succeed in passing to the spawning grounds and which can be determined with adequate accuracy．Stadies of the spawning areas and the distribution of spawners in the Ozernaya and Bolshaya systems were undertaken earlier by the Kamchatka Djvision of TINRO（Krokhin \＆ Krogius 1937，1937a）．At the present time similar studies are being carried out on the Kemchatka．The Kamchatka Division has developed and put into practice a new speedy method of determining the distribution of spawning salmon by the use of aeroplanes．（ $\mathrm{p}, \mathrm{8}$ ）．These tests were made in the Kamchatka system for three seasons at the time of the spawning of early sockeye．In 1954 the aeroplame method was used for estimating the distribution of spawning chum salmon in the rivers of the Karagin Gulf．The air method permits in a very short period of time the making of a general estimation of the distribution of a spawning population of salmon and the comparing of the annual distribution with preceding ones（Krogius，1955a）．

SPAWNING

P． 8 （1）The time of spawning of the different biological groups and local populations of sockeye conforms to the time of the run．The sockeye of the Ozernaya differed the most in this respect，the spawning taking place from the end of August to February，in contrast to the early sockeye in the Kamchatka River which spawn from the second half of July to mid－August．Sockeye enter the river and arrive at the lake in silvery condition；spawning commences a month or more after arrival．

Po， 8 （2）The spawning grounds of sockeye differ considerably from that of the other species of Pacirile salmon；only sockeye ubilize the lake spawing grounds． though they，like other salmon，spawn also in the rivers and sprimgao Aas unistakable sign of a sockeye spawning area is the appearance of groundo water outlets during the day in the spawning area．By this one can deduee， in principle，the difference in the place of spawning of sockeye from that of pink salmon。 For the labter，the most effective spawnings are in the river chanrels，where they deposit the eggs in the gravel at considerably shallower depths（ $10-20 \mathrm{~cm}$ ），than the sockeye（up to 40 cm ）$\%$ wesking of the pink salmoz eggs results from this \mathbb{L} low of filltered riwer water，but the sookeye eggs o from the flow of groum watex：on the spawing areas they select as locations for nests（redds）places with the strongest craxent of ground watero Exo periments at Lake Dalnee have shown that sockeye，established in a partitioned axea in the littoral section．when deprivec of a flow of growes water，do not deposit eggs and pexish ．

Po 8（3）All the spawaing grounds of sockeye are located in cos，ose sandy alluvial ground．The lake spawing grounds occupy，as a rule，cones of dow posits of lake tributaries，in some instances no longer now existingo The temperature of the grownd in the spawning areas in the summer period is cono siderably lower than in the other parts of the littoral zone\％thus，in Lake Delnee the temperature difference could reacks 6 oo 70 （ $6-70$ in the spaming areas and $13-14^{\circ}$ in other sections）。 Both these peculiarities giveg in river investigations，a simple mens of detemining the places suitable for spawning in the gase of absence of sockeye on the spawning grounds at the time of the regulaie inspection of the river systera．

Po f（b）After deposition of the eggs in ine ground the females grard the restrs for $10-20$ dayso It the number of spawning adrits is grea\％，the late Epawning fish often scettaz on the surface of the grawel all the earilero buried eggs and these pewisia．This explains the high mortality of sockege egge in the case of a supertuous quantity of adults on the spewnixag groundmo
Fo， 3 （2 The enbryonit derelopment of sockeye continues undex nawnel conso ditions and in tatcheries，for 5 months：from the data of Mo Imo Ierleva， $347=600$ degreemays axe required for this：from her observations also． of all the Pacific salmon，the sockeye have the slowest rate of embryonic developinent．

Po $8(6)$ As prevails wor the other salmong the developnent of sockeye eggs takes place during the autuma－winter period，at the time of lowest watere Levels．A decrease in the groundwater flow in yeass with small quantities of precipitatiors fiequentily is（ $p_{\rho} 9$ ）the cause of considerable loss of egge during incubation。 Freezing of the sparming grounds，irequentig observed ins the Amur，rarely occurs under the conditions present in the Kanchatka and does not involve the large spaming areas．As a rule，the ground watero providing a．circulation of water in the nests，in comparison with the surface waters are poor in oxygen and richer in free carbon dioxide。 These peculiarities were discovered during investigations in 1932 at Kurise Lake and in later mone detailed studies at Dalnee。

Pon（1）Successful development of eggs under conditions of a decrease in oxygen content and an increase in carbon dioxide content shows that（1） sockoye eggs are not very sensitive to scarcities op oxygen and abuxtance of free carbon dioxide，as was once assumed to be the case，and（2）the role of ground water in the spawing grounds in the first instance，is to assure the
removal from the sockeye nests of the harmivi products of medabolism（Krokhin \＆Krogius， 1937 and Krogius \＆Krokhin，1948）。 Bo Ya。Levanidow（1954）came to this same conclusion in regard to autumn chum salmox．These conclusions have special significance in the case of the selection of a water supply source for the artificial propagation of sockeye。

P． 9 （2）The necessity to provide a favourable exchange of water for the development of sockeye，chum，and coho eggs in the spawning beds shows how important it is to maintaing in the beds of the spawning ripers，all the conditions which promote the cutting down of the amplitude of flood and drought waters and provide a high level of flow of ground waters．In the light of these requirements，particular significance attaches to the preservation of the forests in the water sheds of the spawning areas．

Po．9（3）．The loss of eggs under natural conditions during the time of their development can be very considerable．In Lake Dalnee they varied from 20 to 80% and on the average amounted to around 50% ．In Lake Kurile the mortality of eggs reached an average of $25-30 \%$ and onily once attained 65% ．

Po． 9 （h）Under artificial propagationg the survival of eggs can be much higher： experiments at the Ushkov hatehery demonstrated that under hatcherymincubation conditions there can be obtained up to 90% egg survival．But，as will be shown later，the loss of young，prior to downstream migration to the sea，is very great，therefore a high general efficiency of artificial propagation can be achieved only with a high survival of the young to the time of migration to the sea．

FEEDING OF THE YOUNG TN FRESH WATER

Pa， 9 （5）The development of sockeye larvae，as with other species of salmong takes pliae in the gravel of the spawning grounds．In lco months after hateh， with the completion of the absorption of the yolk sac，the fry appear on the surfacs of the botitom and begin to eat intensizely．The time of emergence of the fry from the gravel in the difierent basins is not the same：the yourg oi early sookeye in the Kamehatka River system appear in January w February， but in the Ozernaya system the young of the summer sockeye ofrom April to the beginning of September．The young，which appear in the spring and early summers find at once better conditions than those appeaxing in the winter，but they have at their disposal less time for growth during the first year of life． The attaiument，as a result of winter and first－year growth of relatively large sizes increases the probability of seaward migration of yearlings．The loss of young in the early stages，i。e。 immediately after emergence from the gravel ${ }_{9}$ is very greatig therefore studies of this period are extremely essentiel for discovering methods of increasing the efficiency of both natural and artificial propagation。

Pon（6）Investigations at Lake Dalnee have shom that after emergence from the gravel，young sockeye for a certain time（around $1-2$ months）live in the littoral（ $\mathrm{p}_{\mathrm{o}} 10$ ）part of the lake，feeding on small crustaceans，larval chironomids and terrestrial insects．Then they retreat to the pelagic parto of the lake，where they live until they go to sea，feeding on Cyclopida， Diaptomidae and Daphnidae．Similar data were obtained by Ricker fol young sockeye in Canadian lakes（Ricker，1937）．In the rivers and springs the young sockeye feed in a similar manner on larval Chironomids，terrestrial insects and small crustaceans（Synkova，1951）。

Pol0（1）In the lakes，the young perform vertical and horizontal migrations， feeding or escaping from predators．In the vertical shifts the young follow the food organisms but their means of communication may be organic hydro－ logical factors．Vertical migrations are associated with the occurrence of autumn and spring circulations in the lakes and the shifts in the thermocline （Krogius \＆Krokhin，1948；Krogius，1953）．
$P_{0} 10$（2）In connection with the investigations of the vertical migrations of the young new views developed，in principle，on the appearance of the thermocline in lakes．E．M．Krokhin showed that thermocline forms in the deep strata of the lakes and gradually rises upward but not the reverse，as was previously＂thought to occur．The vertical migration of the young sockeye at that time fully conforms with the hydrological processes in the lake（Fig．3）．

P＿10（3）An investigation of the horizontal movements of the young in the lake is particularly important in connection with studies of the start and development of their seaward migration．It was found that the horizontal migration of the young in the period prior to seaward migration was dependent on the horizontal transfer of the water masses，associated with the offeand－－ on－shore appearances in the lake．Investigations of the horizontal migration and a determination of their directive processes have only been begun and require further continuation．

Pol0（4）In the mursery water areas of the Kamchatka system in addition to the young salmon there dwell other fish：three－spined and many－spined stickle－ backs，smelts（＂inyashkaw）and char．The interrelationships involved in this ichthyological community have an intimate influence on the reproduction of sockeye。

Po 10 （5）In the Paratunka lakes，in addition to the young sockeye，there live three－and manywspined sticklebacks，anadromous and resident char and young coho．The three－spined（p．I1）sticklebacks live on the same plankton crustaceans as the young sockeye and therefore are their food competitors． The resident char are predators as regards the young sockeye and sticklem backs since they，to a large extent，devour sticklebacks．Therefore，to achieve improvement，it is necessary to attempt to reduce the populations of char and sticklebacks simultaneously（Krogius－Krokhin，1948）．It was estab－ lished by us that approximately the same interrelationship exists among the fish in Azabachi Lake，but the competition there is not only with sticklebacks， but also with smelts．On the basis of an analysis of the interrelationships in the ichthyological community in Dalnee Lake there was conceived the idea of arranging a large－scale removal of sockeye－－eating fish in Azabachi Lake as a preliminary improvement of the lake by means of reducing the numbers of predators and competitors（Krogius and Krokhin，1954）。

P． 11 （1）Valuable investigations on the food interrelationship were carried out in the Karymaisky springs（Bolshaya system）。 It was established that the predators of young sockeye appeared to be not only char but also the young of older age groups of other species of salmon and even sometimes sockeye them－ selves（Semko，1948）．These studies deserve continuation and should be verified in other river systems．
P. 11 (2) In the Kamchatka River system at the beginning of the 1930° s there were introduced silver goldfish. Studies have shown that goldfish do not have an adverse influence on young salmon and, in particular, sockeye; this was the basis for recommending a wide distribution of goldfish in other spawningnursery areas; this is being done at the present time in Kamchatka fish waters (Kurenkov, 1954).
P. 11 (3) For an accurate appraisal of the food relationships of the young with other fish, it is necessary to have quantitative evidence。 A determination of the food ration of sockeye was undertaken at Lake Dalnee by three methods: feeding under experimental conditions, quantitative analysis of the stomach contents of the young captured in the lakes, and a method developed by us, based on the consumption of oxygen and the expression of this value in its equivalent in calories of quantity of food. All three methods gave consistent results (Krokhing 1955a).
P. 11 (4) It has been shown that the daily (24-hour) ration of fingerlings varied during the year from 1.5% of body weight in winter to 11% in summer? but for yearlings - from 1.5 to 6.7% (Fig. 4).

P, 11 (5) The mean yearly daily ration of the young represents around 3% of its body weight. The daily ration for adult three-spined sticklebacks varied from 1.8 to 5.1% with a mean yearly ration of 2.7%. The yearly consumption of food by young sockeye and sticklebacks exceeded by 8 -9 times their final weight, which is typieal for plankton-feeding fish (Bokova, 1940).
P. 12 (1) In connection with the question of selection of food in the rearing of young salmon where different natural foods in Lake Dalnee are present, experiments were conducted with young sockeye, chums and cohos. It was noted that young chums and cohos thrive much better when reared on larval chironomids than on plankton, Young sockeye, on the contrary, grow more quickly on plankton foods. Therefore, for artificial development of young sockeye it would be most reasonable to rear them on plankton food.

Pe 12 (2) Furthermore other factors, both biotic and abiotic, which are active in the rearing basin, influence the yield of young sockeye. Here reference may be made to feeding conditions which do not remain constant in different years. The annual biomass of plankton crustacea in Lake Dalnee varies from 2 to $4 \mathrm{~g} / \mathrm{m}^{3}$, in Lake Blizhnee - from 0.6 to $2 \mathrm{~g} / \mathrm{m}^{3}$, in the Kurile Lake - from 0.3 to $2 \mathrm{~g} / \mathrm{m}^{3}$. It has been established by us that the fluctuations in abundance of plankton are closely associated with the variations, in the different years, of the seasonal progression of hydrodynamic processes in the lakes (presence or absence of a complete spring circulation and its intensivenes, the position of the thermocline, etc.) 。With the shift of water masses in the lake is associated a rotation of the biogenic elements, and consequently of the abundance of plankton. Inasmuch as the characteristics of the hydrodynamic phenomena, progressing through spring and summer, are, to a considerable extent, already predetermined by the large or small heat loss or heat uptake of a lake during the preceding winter, the possibility arises of making a prognosis of the favourability of conditions for development of plankton approximately a half year ahead. Differences in the dynamics of the water masses in the lakes to a very great degree are determined by the
peculiarities of their morphometry. In a calculation of this kind one can successfully apply the general principle relating the dynamics of the water masses to the development of plankton, as derived in the Paratunka lakes, to the prevailing condibions in other lakes in Kamehatika (Kurile, Hachiking Kronotzl: Azabachi, Palani).

Po 12 (3) In the regime of the biogenic elements of the spawning and nursery basins the carcasses of the spawnedmout adult salmon have a special fertilim zing effect (Krokhin, 2954. Our calculations have indicated that from the mass of sockeye carcasses in the lake there is produced a positive balance of phosphorus. An increase in the phosphorus content of the sockeye spawning a nursery lakes is confirmed by chemical analysis and also by comparative tests of the waters of differen'c lakes by the method of biological productivity (Krokhin, 1955)。

Po 12 (4) Questione of the food suppiies ix the rearing basins have been irrtensively undertaken accordingly in the Kamohatika Riper system. It has been shown that the biomass of benthic food organisms in the lakes of the Kamchatka River systen expeed in some instances $2000000 \mathrm{~kg} / \mathrm{hectare}$ and are not come pletely consumed by the young salmon; these studies showed that in the Kanchatka Riwer system it is possible to introduce addibional species of benthic.feeding fish, under the condition that this action will not adversely affect the propagation of Pacific salmon and in the first instance sockeye (Kurenkovo 1953)。 Anong sueh fish, in the opinion of the Kamehatka Division of TINRO_{2} can be included eaxpo sterlet (smadt staxgeon) and sturgeon.

Po ip (5) For an estimato of the food supply of the basin it is far from sufficient to consicer the matter only of the biomess. It is mueh more accurate to deal with produetion of the food organisms. We howe devised a methad af calculating the wrometion of one of the importank food items of young sockeye Gyelopidaec The merliod is based ox alvost a somplete consumption of a summer generation of byclops by the young sockeye and the number of Gyclops generations per year. The wandethom showed that production of Cyelopidea exeeeds by approximately 2 - 205 times their biomass. (0.13) But this is only the first test of the determinabion of production, far from perfectiono

Po 13 (1) On the basis of a relation observed by us, between the consumption of food crustaceans during the summer period and the number of seaward migra, ting young in the following 2 years, in the first test being expressed as a straight line, one may tentatively predict the number of migrating fish in the year ahead. Such a method of predicting the numbers of young in the seaward migration was checked by ve under the conditions prevajling at Lake Dalnees the results confirrned in principle the possibility of prediction. In addition it turned out that the norcoincidence of the supposed number of young in the seaward migration with the actual number was explained by the presence in the lake of consumers of food which did not take part in the seaward migram tion: here sticklebacka and dwarf (residual) sockoye were involved, the quantity of which could be approximated by computing from the size of the divergence between the predicted and the actual seaward migrationo

Pn 33 (2) The average aize of yeailing young sockeye in the Kamehatka system varies from 5 to 12 emo and in weight a from 5 to 20 grams. The rate of growth of the young was yery difterent not only in the different areas, but also in different years in the some area. Young sockeye have a very quick growth in the Dalnee and Achehyon (Ghu*otok) lakes and slower in Kurile Lake.

Po 13 (3) Studies at Lake Dalnee revealed that there exists an inverse relationship betwreen the size and weight of migrating young and the number of plankton consumers in the Lake (Krogius, 1953)。 Consequently, in the lake, in spite of a relatively high plankton content, strained inter-and intramspecific relationships exist. Extensive competition for food unfavourably affects the growth and development of the young and caused them to be detained in the lake. Under the conditions of considerable retardation of growth during the first year of life the young fish remain in fresh water for a second or even a third year.

Po13 (4) In certain lakes, for example in Dalnee, a portion of the young sockeye do not migrate to the sea and, reaching maturity, proceed to spawn。 Like the males of Atlantic salmon, which spawn without going to sea, we desigo nate these as residual sockeye. This applies chiefly to males which spawn in the third or fourth year of life. Residual females are quite a lot scarcer: they spawn chiefly in the fourth but sometimes also, in the fifth year of life

Ps 13(5) From the spring and rivers, the young sockeye migrate chiefly as yearlings. At Kurile and Achchyon Lakes, the young migrate seaward as twoand three-year fish, in spite of a considerable difference in size. But in one lake the relation of numbers of young migrating seaward at different ages, does not remain the same from season to season. This indicates that the conditions for existence have an important bearing on the attainment of the migratory stages. Apparently, seaward migration is determined by the attainment, on the part of the young, of that stage of development which completes the preparation of the young for transition to another stage the precise nature and character of this stage have as yet not been determined.

DOWNSTREAM MIGRATION OF THE YOUNG

Po 13 (6) The number of seaward migrants is the final result of all the complex processes of reproduction which take place in fresh water. A count of the young sockeye (and ix gemernl all young salmon) was firet wade by the USSR at Lake Dalnee. Thus, in 1935 there was constructed in the Dalnee River a special weir. Later a count of young salmon was commenced at Karymaisky Spring and now these are conducted also at fishocultural (pol4) stations throughout Kamchatka. Because of the difficulty of installing a counting weir in a large river, up to the present time a count of the young, migrating down the Ozernayra River from Kurile Lake, has not been successful. For this same reason ${ }^{2}$ in spite of the fact that for five seasons a fish cultural station has been operated on Azabachi Lake, up to the present no count of the migrating young has been made, but only of the adult sockeye in the Azabachi River.

Po 14 (1) The relation of the number of dowstreammigrating young to the number of eggs, contained in the mature females on the spawning grounds, reveals the index of efficiency of reproduction. At Lake Dalnee in the years of observation there spawned from 2,500 to 140,000 sockeye. The number of downstreammigrating young from a single generation (brood year) varied from 14,000 to 300,000 and represented $0.04-1.3 \%$ (the average for 17 seasons ${ }_{9}$ 0.31%) of the eggs contained in the females present on the spawning grounds. For sockeye ${ }_{3}$ produced in Karluk Lake (Alaska), this value amounted to 0.13 to 1. 38% (average for 5 seasons - 0.45%) (Holmes_{2} 1934) . From calculations of the results of natural spawning in Cultus Lake (Ganada) it was found that the seazardmomigrating young amounted to $1.13 \% 1.05$ and 3.16% of the eggs contained
in the femaleso Substituting，for natural spawning，the planting in the lake of artificiallfwreared fry or eggs in the eyed stage did not give an appreciably higher efficienoy of propagation and only destruction of predetox fish in the lakes increased the survival index to $\%$ ． 4%（Foerstex， 1938% Foerster \＆ Ricker．1942）。

Pa If（2）The Loss of young during the migration to sea is very greatg the survival of the young in this period has，for reproduction，not a smaller but， often a greater significance then survival of eggs during incubation；such as in those cases when loss of egg＇s does not exceed 50\％．

Po If（3）The number of sockeye，returning to spawn in Lake Dalnee cono stitutes $100=38 \%$（on the average arourd 20% ）of the seawerdamigrating young， $i . G$ ．these fluctuations are 10 times less than in the case of the relation of numbers of seawerdrmigratring young to the nomber of deposited eggs．Consem quently，during the marimo poriod of life the losis of sookeye is much less and more consistent，than during the freshwater period；therefore，the abundance ot a brood jear is the mature siothe is predetermined by the mamber of descendm ing young（Figo 2）This ciruanstance makea it possible to predict，with a good degree of acourewy the abundance of a year elass of sockeye from the count of descending young At Cultus Lake the number of returning soskeye amounted． to around 10% of the seaward mignetion of young，but at Karluk leake 218 （Foexster， 1948 ）F oerstex plases greas importance on the sige of the descenting young for supvivat duping thes time of seaward migration and al zo ix the sex，and whows a divect woletionship of percenfage producion of sogeye to the length anc meight of the descending yousg（Foexstem，2954）o For sockeyen
 this laok of colncidence is explaince by the fact that the mean size and weight of the young migrating downsmoan wem Lake Daluee in different years are

Po lif（b）The most genesal survital（ioeog the relation of retarming fish to the mamber oi eggs containet in spaming senaies），computed on the mean fecundity，distinctive for fish of different schools，has been given fos sock eye，produced in Karile Jake $=0.26 \%$（according to the daha of Vovo Azbelev） and for sockeye from Guhtus Lake m 0.20%（Foerster．1945）；the general sur． vival was lower for sockeye from Lake Dalnee o 0.24%（from the data of $F_{0} V_{0}$ Krogius）and for sockeye from Kariluk Lake a also o 0．14\％（Hodmes，1934）。 Sinee the general survival and mean ferundiby are different both the number of fish returning from each spawning group of fernas and forthermore，the presumed percentage of the catek，will differ substantially in the different populabjoms of sockeye。

AGE GROUPS

Pol5（1）Anong Pacific salmon the sockeye possess the most complex life cyole．After residence of the young in fresin watex，the sockeye proceed to the sea，as a roise，for two，three and（rarely）four years：a minor part of the femsles retum to spawn after one year of life in the sea The schools of sockeye，migrating to tine different rivers，differ in the characteristics of the age groups，usually warying within compaxatively small limitso in the Komehatk River around 70% of the sockeye migrate at an age of 4 to yeara；

Dalnee is quite variable (Krogius, 1949).
Po15(2) Sometimes quite wide deviations from the average relationship in an age group occur, caused by an unusual rate of maturing in certain brood year groups and associated with the conditions for life in the sea. These deviations complicate the prediction of numbers of fish, returning from the sea at a specific age。

PREDICTION

Pon 15 (3) The great importance to the fishing industry of a sound prediction of the numbers of salmon approaching to spawn is unquestioned. Prediction is necessary also for the regulation of the fishery so that there may be allowed passage to the spawning grounds of an adequate number of adult spawners.

Pa 15 (4) Methods of making up a prediction were first worked out for sockeye in the case of those populations propagating in Lake Dalnee. The first prem diction was made for the run of sockeye in 1939 and since then it has been made annually with subsequent comparative analysis of the actual run and the prediction, so as to ascertain the causes of error of the latter.

Po 15 (5) Two methods were developed for obtaining predictions. The first of these is based on the calculation of the number of adults in the spawning run $_{9}$ of the age groups of sockeye in the runs and on a qualitative estimation of the conditions for reproduction. A test of the adequacy of this method was made on the basis of available observations on the numbers of sockeye at Lake Dalnee and the conclusion was reached that although it will give ${ }_{9}$ in the majority of cases, satisfactory results, they are all still subject to large scale errors ${ }_{s}$ In 1946 this method with some improvements (with the addition of data on survival of eggs and a qualitative estimate of the seaward migration) was successfully used for the Ozernaya River sockeye (Fig. 5); out of nine predictions only one was off the mark. This method then was adopted for tabulating the predictions on the runs of salmon to the Kamchatka River.

Pe 15 (6) The basis of the second method is the condition of relative con stancy of the return of sockeye from the sea, expressed as a percentage of the number of seaward-migrating young. This more thorough method also was first used for the sockeye of Lake Dalnee; the predictions were prepared on the basis of the data from the calculations of descending young, on the mean percentage return of sockeye from the sea (taken to be equal to 25% of the seaward migration of the young) and on the average age composition of the brood years of sockeye (Krogius \& Krokhin, 1948). This same principle was later used as a basis for the predictions drawn up for the salmon of the Bolshaya River system.

Pe 16 (1). The development of predictions is divided into 2 parts. on the one hand it is necessary to forecast the number of brood years which will participate in a spawning migration, on the other o the number of that portion of the brood years which will return in that year for which the prediction is made。

Pe 16 (2) When the data are available on the count of descending young as s_{3} for example, at Lake Dalnee, the number of brood years can be forecasted with good accuracy: but in the absence of information on the results of reproduce tion or even though separate stages (concentration on the spawning grounds, survival of eggs) be known, the accuracy of prediction of the number of
brood years is reduced. Therefore the accuracy of prediction of the sockeye in the Ozernaya River is lower than for Lake Dalnee, and for the Kamehatka River sockeye prediction was made only in a qualitative way.

Pa 16 (3) For a determination of the second part of the prediction - the number of different age groups which may return in a given year, we can, up to the present time, with but little knowledge of the sea period of life of the sockeye, base our estimates oniy on the means of many years" data regarding the age groups per brood year and this, as has already been explained, introm duces the possibility of much error.

DIRECTION OF FURTHER INVESTIGATIONS

Pol 16 (4) It is obvious that the directiong in which further studies of socko eye and other salnon mast go, depends on the problems put forward pertaining to the scientific development of the fisheries industryo At the present time, there would appear to be clearly three such problems.

1. Present day fishery conditions in the waters adjacent to Kamchatka, require studies of the ocean period of life of the salmono
2. The stocks of sockeye in Kanchatka, especially those populations whose reproduction is connerbed with the spawning basins on the east coast of the peninsule, dre ja a depreciated state。 There arises the necessity of: (a) the application of exfectige measures of improving natural propagation of somkey: (b) greater expansion of artificial (poly) propam gation of scoireye (c) arailability as spmmingarearing areas of the basing of paxts not now urinited by sockeye. In this case it is necessaxy to extend considerably the studies comnected with measures for increasing the efficiengy of naturai and artiricial propagation of cockeye and also for the creation of new comerciallywatilizable populations of sockeye。

Pon (17)

3. The great importance of fishery predictions of salmon runs for industry and the whole salmon resource requires an increase in their quality.

Po 17 (2) For a solution of these three basic problems it is necessary to conduct studies along the following liness

Pe 17 (3) For a knowledge of the ocean period of the life of salmon it is necessary to study their feeding areas and routes of the spaming migrations from the hydrological standpoint, and from the point of view of the food suppo lies for selmon, and thus investigate the behaviox of salmon in relation to the conditions of their environmeat.

Pe 17 (4) In connection with the management of an active ocean fishery fore salmon ${ }^{2}$ and especially sockeye, it is necessary to take into consideration the timing of the reproduction of each school in the appropriate river systems. Therefore, it is necessary to investigate the degree of isolation of the schools of sockeye, propagating in the different rivers, with respect to the
feeding areas and routes of migration.
Po 17 (5) Inasmuch as sockeye start on their spawning migration at different ages, there inevitably arises in the ocean a reorganization of the schools of the young. Therefore the catch of salmon in the different periods of their residence in the sea reflects quite differently on the numbers of fish returning to spawn. This makes it necessary to study the reorganization and forming of the schools of sockeye in the ocean.

Po. 17 (6) It is possible to suppose, on the basis of studies of the rate of growth of sockeye at Lake Dalnee, that the rate of maturity in the ocean is in direct relation to the rate of growth, associated probably, with feeding conditions: this means that the hydrological and feeding conditions must be elucidated annually. Lastly, in order to ensure the organization of a coastal ocean fishery and improve the operation of a stable fishery, it is necessary to study the behaviour of sockeye and the daily rhythm of their travel in the fishing areas under the prevailing environnental conditions.

Po 17 (y) The greatest problems at the present time facing the fish industry in the field of sockeye propagations, require the transfer of research to this field at the highest level, conforming to a new large problem。 An insuffia ciency of theoretical studies hinders the solution, in practice, of important questionso One of the basic deficiendies of preceding investigations was this almost complete absence of fundamental studies of the fish themselves, such as how they react to this or that change in external conditions and why just that and not otherwise。 These gaps musit be and can quickly be filled.
$\mathrm{P}_{0} 17$ (8) Problems facing the fishing industry in the field of sockeyo propagation, require the following investigationso
P_{0} I7 (9) In the Kanchatika River basin there usually reproduce not one but several populations of sockeje. For accurate resuits the catches in the fishery and the russ of adults to the spawning grounds should be studied at the time of the run, also the localization and, in particular, the reproduction of each separate population in the large river systems and, in the first in stance, in the Kamchatka River system.

Po 17 (10) For improvement of the biowtechniques of artificial propagation of sockeye and a more detailed examination of the causes of the low efficiency of natural propagation, it is necessary to examine the requirements of the egga and fry of sockeye of the different biological groups with respect to environmental conditions and find out the optimal ($\mathrm{p}_{\mathrm{o}} \mathrm{l8}$) conditions for developa ment of eggs and fry. In those instances, when the construction of fish-rearing plants presents great difficulty, there must be developed a method of incubam ting the artificially fertilized eggs in gravel. A considerable increase in efficiency of natural and artificial propagation of sockeye can result from biological improvement of the productivity of the river system area, such as a reduction in the numbers of predators and competitors; therefore the development of methods to achieve such results are problems of primary importance.
$P_{0} 18$ (7) In many cases there arises the question of increasing the food producing capacity of the area, which brings up the necessity of developing theoretical bases and methods of fertilizing the nursery areas; a second means of increasing the food supply lies in the introduction into the nursery waters of new food forms for young sockeye. An extremely desirable possibility is
that of reducing the length of residence of the young sockeye in the rearing areas to one year. it is necessary, therefore, to understand the causes of difo ferent rates of attainnent by the young of conditions for seaward migration and to develop the means of managing them.

Po 18 (2) In order to define more accurately the survival of the young under different conditions valuable results may be obtained by the use of marked atoms. For this purpose, it is necessary to develop methods of introducing radioactive isotopes into the body of the young fish and methods for detecting the marked fisho In order to improve the quality of the prediction for the commercial catoh it is necessary to obtain an estimate of the young in the larger rivers; fore this there mast be established counting weirs designed to be operated by electricity.

Po 18 (3) Fox success in developing neasures for the creation of new popula tions of sockeye, besides the recapitulation of investigations, it is necessary to conduct studies which will throw light on the specificity of conditions for reproduction in fish producing areas (for example, in Kronotz Lake).

Polf(4) Ocean investigations and perfecting of counts of the young, and also further examination of the regularity of the factors which determine the dynamies of the number of salmon, ofer possibility of an increase in the quality of prediction.

PRTMARY MEASURES FOR THE RESFORATTON OF THE NUMBIRS OF SOCKEYE

Po 28 (5) Since a rechuction in numbers of populations of sockeye has resulted from an excessive fishexy and from deberionating conditions for reproductiong it becomes necensery, in order to reserve the numbers of someye, to apply measures for the regulabion of the fishery and on increase in propagation efficiencyo try persyoctive, owe must ain at those conditions for propagation which will result in the possithe abteinment of maximun catchess. To achieve this gool onn masto firet of ais, regulate the fishory for socseys. At the present fine regulations for the catching of salmon are, fin essence, lackingo It is neeessary to continue and intensify the studies on fish manage ment on a permit system per river, to watch the conditions of the spawning stocks in the rivers and to introduce the practice of the broad use of inspection by aix of the distribution and abondance of spowning adult salmon. On the basis of available data and predictions it is feasible to regulate the eatch so as to provide an adequate esceperment of adults to the spaming grounds.

Po 18 (6) Since in future years only natural propagation will be able to provide high levels of populations of sockeye, it is necessary to take as strong measures as possible to increase its efficiency.

Po 18 (7) There is required an endeavour to put into effect; all the proposed measures for preventing the pollution of the spawninganursery areas (p_{0} 19) and also the riyers, which are the migration routes for salmon. In particulax it follows rationally to combine the interests of the fish and forest industries by means of the creation of watereprotection zones, the prohibition of pollution and the blocking of the rivers with logs. It is necessary to have real improvee ment in guarding the spawnixg areas and the approaches to then.

P． 19 （1）Improvement in the spawning and rearing areas is one of the most effective measures；in those cases，when it can be adopted without extra investigation，it should now be put into practice．

P． 19 （2）The artificial propagation of sockeye should be expanded，per－ fecting its techniques，chiefly with respect to the rearing of the young．

P． 19 （3）It is recommended that the number of spawning and rearing areas be increased by hydraulic measures for improving the means of approach to them．

P． 19 （4）Specifically we can dwell on two measures which can contribute much to the increase in the stocks of sockeye；the first step is to examine both the expansion and intensive cultivation of salmon in Kanchatka． It is required to maintain in every way the organization of the spawnings rearing developments at Azabachi Lake（Kamchatka system）and to create in Lake Kronotz a largeascale population of anadromous sockeye．

P． 19 （5）One may acknowledge quite freely the organization of a broad propaganda of rational forms of the knowledge of salmon cultivation by means of giving lectures，publishing informative placards and popular brochures．

LITERATURE

Bokova，E．H．1940．Consumption and assimilation of food by the Gaspian roach． Tro Beeco $N_{0}-I_{0}$ IN - Ta Mopck．pbI b Ho $-K h o z \propto B a I_{0}$ Okean ToXI。

Derjavin，AoNo 1916．A winter expedition to Kurile Lake．An autumn expedio tion to Kurile Lake．Kameh．Exp．Ryabushinsky Zool．Otd．，Bull．I．

Krogius， $\mathbb{F} . \mathrm{V}$ 。1949．The dependence of sockeye abundance on spawning conditions and the biology of the young．Author ${ }^{\text {an }}$ s dissertation． I_{0}

Krogius， $\mathrm{F}_{\mathrm{o}} \mathrm{V}_{0}$ 1951．On the dynamics of sockeye salmon abundance．Repts．Pac． Sci．Inst．Fish．Res．\＆Ocean．Vol．XXXV．

Krogius，F．V．1953．Notes on discussions of reports．Trans．AllmUnion Conf。 on problems in Fish．Res．

Krogius，FoV．1955．Relation of the upstream run of sockeye and seaward migration of the young to the daily trend of water temperature $\mathrm{s}_{\mathrm{p}} \mathrm{pH}$ and content of dissolved gases．Repts．Pac．Sci．Inst．Fish．Res．\＆ Ocean．VoI．XLI．

Krogius，F．V．1955a．An experiment on the use of aeroplanes for inspection of the condition，distribution and abundance of Kamchatka salmon on the spawning grounds．＂Fish．Reso＂．No．11。

Krogius，$F_{0} V_{0} \&$ Krokhin $E_{0} M_{o s}$ 1948。 On the productivjity of young sockeye。 Repts．Pac．Sei．Inst．Fish．Res．\＆Ocean．Vol．XXVIII．

Krogius $\mathrm{F}_{\mathrm{O}} \mathrm{V}_{0}$ \＆Krokhin $\mathrm{E}_{0} \mathrm{M}_{\circ}$ 1954。 Methods of remestablishing and increasing the populations of Kamchatka salmon．Trans．Conference on salmon research DV．

Krokhin，$E_{0} M_{0}$ 1936。 An investigation of Kronotz Lake in Marchamay 1935。 Rept．Geogo Socog No．5o

Krokhing $\mathrm{E}_{\mathrm{o}} \mathrm{M}_{0}$ 1954．Studies on the quantities of saproplytic bacteria in Lake Dalnee．＂Microbiology＂，Vol．XXIIIo，No．I_{0}

Krokhin，EoMo 2955。 An estination of the richness of spawning lakes in bio－ genic elements by the method of＂hydrobiological productivity＂of water．Repts．Pac．Sei。 Inst．Sea Fish．Reso \＆Ocean（in press）．

Krokhin，$E_{0} M_{o}$ 1955a，Determination of the daily food rations of young sockeye and threesspined sticklebacks by the respiration method．Repts．Pac． Scio Inst．Sea Fish．Reso \＆Ocean．（In press）．
 biology of the sockeye salmon in its system．Trans．Pac．Comm．AN． USSRa，Vol．IV

Krokhin，E．M．\＆Krogius，FoV。193\％．A description of the Bolshaya River system and the spaming grounds of the salmon propagating in ito Reptso Pa，Scio Inst．Sea Fisho Res．\＆Ocean．Vol．IX．

Krolkhin． $\mathrm{E}_{0} \mathrm{Mo}_{0}$ \＆Kurienkoy，$I_{0} I_{0}$ 19540 Fisheries research in the Management of Kronotz Lake Trans．Conference on the problems of salmon research DoV．

Kyznetzov，IoIo 1928．Some observations on the propagation of Amur and

Kurenkov Io $_{0}$ 1953．On the studies of acclimatization in Kanchatka。 ＂Fisheries Researeh＂${ }^{18}$ No。 40

Kurenkow，Io．To 1954。 Results of introducing Goldfish into the Kamchatka system。 Trans．Conf．on problems of introducing fish and invertebrate food forms．

Levanidov，$V_{0} \mathrm{Ya}_{\mathrm{og}}$ 1954。 Inprovement of conditions for the natural propagation and artificial rearing of Amur Chum salmon。 Trans．Confo on salmon research problems $D_{0} V_{0}$

Semko，RoSo 1948。 On the biocenotic relationship of Pacific salmon and char in the spawningwearing sections of the Bolshaya River．＂Zoolo Journal＂。 Vol．XXVII．No． I_{0}

Somov，Mo P_{0} 1930．Changes in the age composition of sockeye salmon in 1929。 ＂Fisho Res．$D_{0} \nabla_{0}{ }^{\prime \prime}$ ，Nos．3040

Somov，MoP。1930a。 On the methodology of calculating the numbers of sockeye

Synkova，$A_{0} I_{0}$ 1951。 On the food of Pacific salmon in Kamchatka waters．Reptso Pe．c．Sci．Insto Sea．Fish。Reso \＆Oceano，VoloXXIV。

Schmidt，PoU。 1916。 Studies of the Zoological Department in Kamchatka in 1908－1909。 Kamchatika Expo Fisho，Zool．Depta，No。1。

Foerster，RoE。1938。 An investigation of the relative efficiencies of natunal and artificial propagation of sockeye salmon at Cultus Lake Bo $_{0}$ C． J．Fish。Res．BA．Can。4（3）， pp_{s} 151－161。

Foerster，R．E．1945．Some factors involved in the natural production of Pacific Salmon．Trans．RoSoGo，Sec．V_{8} pp，49－60．

Foerster，R．E．1948。 Prospects for managing our fisheries．Bull．Bing．Ocean。 Calo，Vol．XIo，Art． 40 May．

Foerster，RoE．1954。 On the relation of adult sockeye salmon（ \underline{o}_{\circ} nerka） returns to known smolt seaward migrations．Jo Fish。Reso Bd．Ganog $\mathrm{Vol} \mathrm{XI}_{9} \mathrm{No}$ 。 $49 \mathrm{pp}_{4}$ 339－350。

Foerster，$R_{0} E_{0}$ \＆Ricker，WoE．1947．The effect of reduction of predaceous fish on survival of young sockeye salmon at Cultus Lake．J．Fish． Res．Bd．of Canada，5（4），pp． 3150336 ．

Holmes．Ho 1934．Natural propagation of salmon in Alaska．Proc．Fifth Pac． Sci。Congros Vol．5o

Ricker，WoE．1937。 The food and food supply of sockeye salmon（ O．nerka $^{\text {n }}$ ）in Cultus Lake，BoC．Jo Biol．Bd．Cano，Vol．3，No．5o

Fig. 1. Fluotuations in numbers of spariners in the sockeye runs frum 1935-1954, as poraentages of the run of 19408 I -o Oqarnaye $R_{0} ; 2$ - Kamehatka R.; 3-- Blizhnge $R_{a} ;$ h - Dalnoe R_{a}

Fig. 2. Count of adults (1), downstream migration of young (2) and return of spawners (3) in the Dalnee River from 1935-1954.

Fig. 3. Vertical distribution of young sockeye in Lake Dalnee (in percentage of all young in each series) from 1937 to 1940.

Fig. 4. Food ration of young sockeye (fingerlings and yearlings) in percentage of body weigit.

Fig. 5. Predicted and actual runs of sockeye to the Ozernaya River (A) and to Lake Dalnee (B): white parallelograms - predicted runs; cross-hatched-sctual runs of sockeye.

