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ABSTRACT 

Walruses are harvested for subsistence in northern Canada. In this study a surplus production 
model was fitted to aerial survey data of abundance using Bayesian methods. The model was 
fitted to abundance data from two stocks: the Hudson Bay-Davis Strait stock and the Foxe 
Basin stock. The model estimated that walrus abundance in the northern Hudson Bay region of 
the Hudson Bay-Davis Strait stock declined from approximately 10,400 animals (rounded to the 
nearest 100) in 1954 to a minimum of 3,900 animals in 1986, but has increased since then to 
7,000 walruses (95% Credibility Intervals =4,100–10,800). The model estimated a current 
population abundance in Foxe Basin of 12,500 (95% Credibility Intervals 8,600–18,500, 
rounded to the nearest 100). This population appears to have remained stable over the last 60 
years. Walrus are considered Data Poor, consequently, Total Allowable Removals have been 
estimated using the Potential Biological Removal method. The population model can be used to 
provide inputs needed to estimate allowable removals. Given more data, the population model 
can be used to evaluate the probability that different harvest scenarios will meet management 
objectives.  
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Modélisation de la dynamique de population de morse : une voie pour les 
évaluations futures. 

RÉSUMÉ  

Les morses font l'objet d'une chasse de subsistance dans le nord du Canada. Dans la présente 
étude, un modèle de production excédentaire a été ajusté aux données du relevé aérien de 
l'abondance au moyen de méthodes bayésiennes. Le modèle a été ajusté en fonction des 
données sur l'abondance de deux stocks : le stock du détroit de Davis et de la baie d'Hudson, et 
le stock du bassin Foxe. Selon le modèle, on a estimé que l'abondance de morses du stock du 
détroit de Davis et de la baie d'Hudson dans la région du nord de la baie d'Hudson avait 
diminué, passant d'environ 10 400 animaux (arrondi à la centaine près) en 1954 à un minimum 
de 3 900 animaux en 1986, mais avait augmenté depuis pour remonter à 7 000 morses 
(intervalles de crédibilité de 95 % = 4 100 - 10 800). Le modèle a aussi permis d'estimer que 
l'abondance de la population actuelle dans le bassin de Foxe était de 12 500 animaux 
(intervalles de crédibilité de 95 %= 8 600 - 18 500 animaux, arrondis à la centaine près). La 
population semble être demeurée stable au cours des 60 dernières années. Le morse est 
considéré comme étant une espèce avec peu de données, en conséquence, le total autorisé 
des captures a été estimé à l'aide de la méthode du retrait biologique potentiel. Le modèle de 
population peut fournir les données nécessaires pour estimer les prélèvements autorisés. Avec 
plus de données, le modèle de population pourrait servir à évaluer la probabilité que divers 
scénarios de prélèvement atteignent les objectifs de gestion. 
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INTRODUCTION 

The primary goal of a management model is to use data to make decisions that result in 
meeting management objectives that are usually defined by law, regulation or some 
management body (Taylor et al. 2000). The management of marine mammals in Canada is 
governed by the Fisheries Act, Oceans Act and Species at Risk Act. None of these pieces of 
legislation specify management objectives, consequently marine mammal harvesting in Canada 
is managed using a patchwork of approaches such as sustainable yield (Nunavik beluga, 
Doniol-Valcroze et al. 2013), a Precautionary Approach framework with precautionary and 
reference limit levels (Atlantic seal management, e.g., Hammill and Stenson 2007) and with 
harvests set using the Potential Biological Removal (PBR) formula (e.g., narwhal, bowhead, 
walrus, Doniol-Valcroze et al. 2015a, b, Stewart and Hamilton 2013). 

PBR has found wide application in Canada in recent years because it requires only a single 
estimate of abundance (and standard error) to generate an allowable harvest that has a very 
low probability of causing significant harm to the stock. Unfortunately, in Canada, abundance 
data are limited for many marine mammal stocks (e.g., walrus), so PBR has fulfilled a need to 
provide harvest advice in such data-poor situations. However, the PBR was developed in 
tandem with the Marine Mammal Protection Act (MMPA) in the United States, which identified 
specific management objectives for this group of animals. In the United States, outside of 
Alaska, there is no directed harvesting of marine mammals. At the same time, it was realized 
that anthropogenic mortality of marine mammals would never fall to zero (e.g., incidental 
catches in fisheries). Therefore, some means was needed to identify an acceptable level of 
mortality that would allow industrial activities (e.g., fishing) to continue and would still fulfill the 
management objectives of the MMPA. The main management objective of the MMPA is to allow 
a stock to reach or maintain its ‘Optimum Sustainable Population’, which is defined as a 
population level between carrying capacity and the population level at maximum net productivity 
MNPL (Wade 1998), which can also be considered the population size that provides Maximum 
Sustainable Yield. An underlying philosophy behind PBR is that it does not address whether a 
population is increasing or not, or where it is situated with respect to MNPL. Instead, it 
addresses whether the level of removals could lead to a decline below MNPL (see Wade 1998 
and references therein; Taylor et al. 2007). Simulation trials have shown that the method 
performs well with respect to the management objective under different types of bias and 
uncertainty (Wade 1998). 

PBR is easy to estimate (see Wade 1998; Hammill et al. 2016a, b). Owing to its conservative 
properties, PBR can perform very well when there is considerable uncertainty associated with 
our understanding of the resource (Milner-Gulland et al. 2001; Wade 1998). There has been 
some debate on the strengths and weaknesses of PBR (e.g., Cooke et al. 2012; Lonergan 
2011, 2012). The fact that PBR only requires a single population estimate (and standard error) 
is both a strength and a weakness. If only a single estimate is available, some advice on 
removals can be provided, but as more abundance information is accumulated, PBR levels will 
fluctuate with each new population estimate, often in ways that are not realistic for K-adapted 
species such as marine mammals, which adds to the difficulties for harvesters to plan 
harvesting activity and discourages buy-in into the management process. Moreover, PBR does 
not benefit from the information added by multiple survey estimates, meaning that additional 
data do not decrease uncertainty. Another problem is that the MMPA was designed to reduce 
takes to as close to zero as possible, therefore the PBR simulations did not consider the 
potential costs to harvesters of forgoing potential harvest. i.e., it only provides an estimate of 
removals that should allow a population to move towards or remain above MNPL. However, 
managers and harvesters are likely to make very different decisions concerning removals or 
takes that accept different levels of risk for populations that are abundant (e.g., harp seals> 7 
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million animals) compared to populations that are less abundant (e.g., St. Lawrence beluga 
<1200 individuals).  

Surveys for marine mammals are often highly variable; insufficient to estimate vital rates and to 
understand mechanisms underlying population growth and decline. However, state-space 
models are a means of integrating data with population dynamics models and readily 
quantifying the various types of uncertainty, particularly when applied in a Bayesian framework. 
A state-space model consists of two components, a state process model and an observation 
model. The process model specifies the underlying dynamics of the population with the relevant 
population processes, such as the rate of increase, the density-dependent process, and 
carrying capacity (K), while the observation model relates the true population size to our 
observed information on abundance (Buckland et al. 2007; Mosnier et al. 2015; Wade 2000). 
This approach allows the simultaneous estimation of demographic parameters and the 
predicted trend of the population under different levels of harvest (Schaub and Abadi 2011; 
Mosnier et al. 2015; Doniol-Valcroze et al. 2013).  

Abundance information for walrus populations in Canada is limited. However, time-series of 
counts are available for two of the four stocks of Atlantic walrus occurring in the central Arctic 
population (Fig. 1): nine surveys of walrus have been completed over the last 61 years in the 
Hudson Bay-Hudson Strait area and five surveys over the last 32 years in Foxe Basin. These 
surveys have differed in their methods, in area covered, and are characterized by large 
uncertainty. Bayesian statistics are well adapted to this situation because they allow the 
incorporation of prior existing knowledge of parameter values, including their associated 
uncertainty (Mosnier et al. 2015). In this paper, we have adapted a Bayesian model, that was 
initially developed for Eastern Hudson Bay beluga (Doniol-Valcroze et al. 2013), and applied it 
provide harvest advice for two stocks of Atlantic walrus in Canada. We have fitted the model to 
the Hudson Strait component of the Hudson Bay-Davis Strait and Foxe Basin stocks and used it 
to provide insights into the dynamics of each stock and provide recommendations for Total 
Allowable Removals. Since management objectives of walrus have not been stated clearly, we 
present the advice using two different management objectives: sustainable yield and PBR. 
Sustainable yield is the level of harvest that will allow the population to remain constant over a 
defined period of time. In this study, we define sustainable yield as harvest levels projected over 
a 10-year period that do not result in a decline of the population below 2014 levels. The 
objectives of PBR have been outlined in detail above, but here we estimate the PBR levels 
using outputs from the population model in order to benefit from all the available information 
rather than a single abundance estimate. We also discuss some of the implications of using 
these two approaches. 

MATERIALS AND METHODS 

SURVEYS 

Hudson Bay-Davis Strait (HBDS) stock  

A total of nine surveys have been flown to obtain estimates of abundance in the Hudson Bay-
Hudson Strait area of this stock (Table 1). In August 1952, preliminary aerial surveys were flown 
at low altitude over Nottingham, Salisbury, Walrus and White islands using a RCAF Lancaster 
bomber, but no walrus were observed (Loughrey 1959). In July 1953, a flight with the US Fish 
and Wildlife Service over Coats and Walrus islands only detected 30 animals, but it was noted 
that animals began to scramble for the water when the aircraft was more than a ¼ mile away. 
The aircraft type was not specified. Further testing suggested that survey altitudes of 305 to 457 
m minimized disturbance and in August 1954, two surveys were completed over seven haulout 



 

3 

sites around Southampton-Walrus-Coats islands using a twin engine Anson 1954 (Loughrey 
1959). This resulted in an average count of 2,900 animals, which the author felt to be within 
15% of accuracy. We interpreted this as a coefficient of variation of 15%. A combination of boat 
and aerial surveys of the same area resulted in a count of 2,650 animals in 1961 (Mansfield 
1962). Twelve flights in July–August 1976, and 10 flights were made in July and August 1977 
around the Southampton-Walrus-Coast Island area flying at an altitude of 150 to 250 m. The 
surveys involved a combination of visual and photographic observations (Mansfield and St. 
Aubin 1991). We took the average of all 1976 flights to obtain a mean estimate for 1976. In 
1977, only 26 animals were observed on one flight and six on a second flight. These counts 
were not included, leaving eight counts which were used to obtain a mean estimate for 1977 
(range 138–2171) (Mansfield and St. Aubin 1991; Hammill et al. 2016a)(Table 1). Coastal 
surveys were completed around the same area, and included Nottingham and Salisbury islands 
as well during July–August in 1988, 1989 and 1990. Line transect surveys were flown using 
Twin Otter flying at 150 m in Hudson Strait from the eastern entrance of the Strait to as far west 
as about the northwestern point of Mansell Island during March–April 2012 (Elliot et al. 2013). 
Finally, a coastal survey covering Hudson Strait, Southampton, Walrus, Coats and Mansell 
islands was flown in September 2014. The survey altitude was 204–305 m. Visual and 
photographic data were collected (Hammill et al. 2016a). Since the Southampton/Coats Island 
and Nottingham/Salisbury Island complexes appear to account for the majority of walrus 
observations, these were considered as relatively complete surveys for looking at the northern 
Hudson Bay-Hudson Strait component of this stock. 

The aerial surveys, with the exception of the March–April 2012 survey (Elliot et al. 2013) only 
report counts of animals hauled out. These counts must be corrected for the proportion of 
animals that are hauled out during the survey. Telemetry data are not available for these 
surveys, therefore we used a mean haulout proportion of 0.3 (SE=0.18) which was estimated 
from several published studies (Table 1 in Hammill et al. 2015). The line-transect survey of 
Hudson Strait already included corrections for perception and availability bias (Elliot et al. 2013). 

Foxe Basin stock 

A total of five different survey studies were completed to obtain information on walrus 
abundance in Foxe Basin (Table 2). The Foxe Basin abundance estimates were based on 
haulout counts from surveys flown in July–September 1983, 2010 and 2011, and systematic 
strip-transect surveys flown in July–August 1988 and 1989 (Orr et al 1986; Richard unpublished 
report; Stewart and Hamilton 2013; Stewart and Higdon unpublished report). As these data 
represent counts of animals hauled out, they need to be adjusted by the proportion of the 
population hauled out when the survey was flown. 

On 19 and 20 August 1983, flights were flown, at an altitude of 61–457 m, with 150 m being the 
preferred altitude. A total of 2,722 walrus were counted (Orr et al. 1986). 

During August 1988 and July 1989, east-west systematic strip transects were flown using a 
DeHavilland Twin Otter flying at an altitude of 457 m. Four hundred and forty-three walrus were 
counted in 1988, and 476 walrus were counted in 1989 (Higdon and Stewart unpublished report; 
Hammill et al. 2016b). This resulted in a hauled-out count of 5,128 (SE=4,390) in 1988 and 
5,510 (SE=1,644) in 1989. 

During August and September of 2010 and 2011 surveys were also flown in Foxe Basin using a 
de Havilland Canada DHC-6 Twin Otter at a target altitude of 300 m ASL and speed of 210 
km/h flying approximately 1 km off the coastline (Stewart et al. 2013). Both visual and 
photographic data were collected. A time-distance criterion (45 km/24 h) was applied to reduce 
the probability of double-counting walrus at different haulouts, which meant that final counts 
were based on fewer haulout sites than were examined in total (Stewart et al. 2013). A total of 
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3,861 walrus were counted in 2010. Two haulout counts in 2011 resulted in 5,945 and 4,484 
animals. Taking the average for the two, resulted in an average haulout counts of 5,214 
(SE=1,033) walruses. 

The Foxe Basin counts were not adjusted for animals in the water at the time the studies were 
completed. Satellite transmitters were deployed on animals in Foxe Basin during the 2010 and 
2011 surveys and these were used to adjust the haulout counts of all surveys using a mean 
proportion of animals hauled out of 0.37 (SE=0.16) (Table 2).  

HARVEST RECORDS  

Harvest data are available from annual reports of landed catches (Table 3,4)(summarized in 
Hammill et al. 2016a, b). We assume that all walruses harvested by the communities in Hudson 
Strait, Ungava Bay, western Hudson Bay (Arviat, Chesterfield Inlet, Coral Harbour, Rankin Inlet, 
Naujjuat Whale Cove), eastern Hudson Bay (Akulivik, Puvirnituq) and the east Baffin Island 
communities of Iqaluit, Pangnirtung, Qikiqtarjuaq, and Clyde River are from the HBDS stock. 
We did not include harvests from Greenland. Similarly, it was assumed that animals harvested 
from the Foxe Basin stock were taken only by hunters from the communities of Igloolik and Hall 
Beach. The harvest records had several years where data were not reported. We substituted 
the average harvest of the most recent five years for the missing data (Tables 3, 4). Similarly, 
not all walrus that are killed are recovered and reported. Information on loss rates is limited. 
Loss rates of 20–30% have been reported for Greenland (Witting and Born 2005), and 30–60% 
for harvesting in Canada (Loughrey 1959). More recent estimates from the 1970s and 1980s 
range from 30–38% (Mansfield 1973, Orr et al. 1986, Freeman 1974/75 in Stewart et al. 2014). 
NAMMCO assumes a Struck and Loss of 30% unless there is more specific information 
available (DFO 2002; NAMMCO 2006). We incorporated this range of estimates in the prior 
formulation for the struck and loss factor (see below). 

MODEL SPECIFICATION 

A stochastic stock-production model, assuming density dependence acting on the population 
growth rate, was fitted by Bayesian methods. We sought to separate the observation error 
(associated with data collection and abundance estimation) from the process error (arising from 
natural variability in population dynamics). To this end, we developed a hierarchical state-space 
model that considers survey data to be the outcome of two distinct stochastic processes: a state 
process and an observation process (de Valpine and Hastings 2002). 

The state process describes the underlying population dynamics and the evolution of the true 
stock size over time, using a discrete theta-logistic model, i.e., a re-parameterization of the 
Pella-Tomlinson model (Pella and Tomlinson 1969; Innes and Stewart 2002). Population size in 
each year Nt (from 1954 to 2014) is a multiple of the previous year’s, with removals deducted: 

𝑁𝑡 = 𝑁𝑡−1 + 𝑁𝑡−1 ∙ (λ𝑚𝑎𝑥 − 1) ∙ [1 − (𝑁𝑡−1 𝐾⁄ )𝜃] ∙ 𝜀𝑝𝑡 − 𝑅𝑡 , with 𝜀𝑝𝑡~𝑙𝑜𝑔𝑁(0, 𝜏𝑝) 

where rmax is the maximum growth rate, K is environmental carrying capacity and theta θ defines 
the shape of the density-dependent function. εpt a stochastic term for the process error and Rt 
are the removals for that year. Removals were calculated as reported catches, Ct, corrected for 
the proportion of animals that were struck and lost, SL: 

𝑅𝑡 = 𝐶𝑡 ∙ (1 + 𝑆𝐿)  

The observation process describes the relationship between true population size and observed 
data. In our model, survey estimates St are linked to population size Nt by a multiplicative error 
term εst: 
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𝑆𝑡 = 𝑁𝑡 ∙ 𝜀𝑠𝑡 , with 𝜀𝑠𝑡~𝑙𝑜𝑔𝑁(0, 𝜏𝑠) 

PRIORS 

Existing information, traditional knowledge, and expert opinions were used to formulate prior 
distributions for the random variables included in the model (Table 5). We did not know what the 
starting population might be, but provided a wide range that encompassed the adjusted 
estimate of walrus from surveys completed in 1954 by Loughrey (1959). The initial population 
size (N1954) was given a uniform prior between 500 and 30,000 individuals. In addition, we 
limited the initial population size, so that it could never be higher than K. 

In previous assessments, the maximum annual rate of increase of walrus was set at λmax =1.07 

e.g., Stewart and Hamilton (2013), which agrees with some early work that estimated λmax , by 

fitting an exponential curve to Soviet estimates of abundance from 1958 to 1975, when walrus 
were not considered to be food-limited (Sease and Chapman 1988). However, this estimate is 
likely to be conservative because it did not take into account the impacts of harvesting on 
population growth. More recent modeling suggests that the maximum rate of increase is 1.08, 
(Chivers 1999; Taylor and Udevitz 2015; Witting and Born 2014) and this is the default used in 
the United States in the most recent assessments of Pacific walrus. Consequently, in this 
assessment a λmax of .08 was used. 

We know little about carrying capacity and the theta density-dependence parameter for walrus 
in the Hudson Strait area of the Hudson Strait-Davis Strait stock. For K, we used a Uniform prior 
of 500 to 35,000, which encompassed the starting population size. Marine mammals are 
considered to reach maximum productivity between 50 and 85% of K (Taylor and DeMaster 
1993), which results in theta lying roughly between 1 and 7. Trzcinski et al. (2006) used theta 
=2.4 to model the dynamics of grey seals (Halichoerus grypus), while recent work on walrus has 
used a range of values from 1 to 4 (Chivers 1999). Witting and Born (2005) modelled the 
dynamics of Greenland walrus populations and allowed the model to estimate theta. Their 
posterior values for theta were generally around 2.7 (95% credibility intervals 1.1–7.2). We 
assumed a Uniform Distribution for theta with a range of 1 to 7 (Table 5). 

Reported harvests underestimate the number of walrus killed because of animals wounded or 
killed but not recovered, as well as an absence of harvest reports for some communities in 
different years. For communities with missing report data, we estimated the average number of 
walrus reported killed based on the most recent 5 years with harvest data. The loss rates in 
walrus hunts are not known exactly. We gave the struck-and-lost correction factor (SL) a 
moderately informative prior following a Beta (3, 4) distribution, with a median of 0.42 and 
quartile points at 0.29 and 0.55. 

The stochastic process error terms εpt were given a log-normal distribution with a zero location 
parameter. The precision parameter for this lognormal distribution was assigned a moderately 
informative prior following a gamma (1.5, 0.001) distribution. These parameters were chosen so 
that the resulting error multiplier would have a median of 1 and quartiles of 0.98 and 1.02 
reflecting our belief that walrus stock dynamics are not highly variable. 

The uncertainty associated with each survey is poorly estimated. Therefore, this uncertainty was 
incorporated into the fitting process only by guiding the formulation of the prior distribution of the 
survey error. The survey error term εst followed a log-normal distribution with a zero location 
parameter. Its precision parameter was given a moderately informative prior following a gamma 
(2.5, 0.4) distribution. These parameters were chosen so that the resulting CV on the survey 
estimates would have quartiles of 35% and 55%, which are approximately equivalent to the 
range of what we consider to be plausible CV for the survey abundance estimates. 

https://www.federalregister.gov/articles/2013/04/18/2013-09067/marine-mammal-protection-act-draft-revised-stock-assessment-reports-for-the-pacific-walrus-and-three


 

6 

PARAMETER ESTIMATION AND MODEL DIAGNOSTICS 

We obtained posterior estimates of all the parameters using a Gibbs sampler algorithm 
implemented in JAGS (Plummer 2003). Results were examined using packages R2jags and 
coda developed in the R programming language. With any MCMC simulation, it is important to 
check convergence of the sampled values to their stationary distribution (Brooks et al. 2004; 
King et al. 2010). Initial runs of the code were made to investigate convergence and mixing (i.e., 
the extent and spread with which the parameter space was explored by the chain), as well as 
autocorrelation. Following these initial runs, we kept one sample every 50 iterations from 5 
chains of 45,000 iterations, after a burn-in of 50,000 samples, for a total of 4,500 samples. For 
the Foxe Basin models, one sample was kept every 30 iterations. 

We tested for mixing of the chains using Geweke’s test of similarity between different parts of 
each chain (Geweke 1996), and for convergence between chains using the Brooks-Gelman-
Rubin (BRG) diagnostic, which compares the width of 80% Credible Interval (CI) of pooled 
chains with the mean of widths of the 80% CI of individual chains (Brooks and Gelman 1998). 

We tested the sensitivity of the results for the HBDS runs, to the values of two hyper-

parameters: 𝛼s used in the prior distribution of the precision of the survey error, and 𝛼SL used in 
the prior distribution of the struck-and-lost factor. To this end, we ran versions of the model with 
different values of each hyper-parameter and examined the influence of these parameters on 
the final population estimate as well as on the posterior distributions of the parameters 
themselves. These runs had fewer iterations (10,000 after a burn-in of 10,000, resulting in a 
thinned chain of 250 samples), but their point estimates were similar to those of the main model. 

FUTURE PROJECTIONS AND HARVEST SCENARIOS UNDER THE 
PRECAUTIONNARY APPROACH 

The model was extended into the future for up to ten years to predict stock trajectory. These 
predictions were performed under different harvest scenarios, with yearly catch levels ranging 
from 0 to 400 walrus. To provide information in a useful format for risk-based management, we 
estimated the probability of stock decrease after ten years for each of the scenarios, using the 
proportion of simulations in which the stock size in 2024 was below the estimated 2014 stock 
size i.e., the probability of a certain harvest level resulting in a population decline below 2014 
levels after ten years. 

RESULTS 

MODEL CONVERGENCE 

Each of the five chains showed rapid mixing and reached a stationary distribution (Geweke's 
diagnostic, all Z-scores < 1.96) for both models (Fig. 2a, b). The overall BGR statistics for both 
stocks were close to 1 (Tables 6, 7). There was some evidence of autocorrelation for K and to a 
lesser extent for the initial population and struck and loss in the HBDS stock model, but the 
number of effective iterations remained high (N>2600) (Fig. 3a). There was no evidence of 
autocorrelation in the Foxe Basin model (Fig. 3b). 

HUDSON BAY-DAVIS STRAIT STOCK 

Some additional sensitivity analyses were completed for this stock, as well as some additional 
runs. The model was first fitted to the entire survey time-series data (1954–2014) from the 
HBDS stock and included data from all communities that could be harvesting from this stock 
(Run 1). A second run included only surveys from 1988 and later to examine the impact of the 
early surveys on current estimates (Run 2). A third run assumed that only communities in 
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Hudson Strait, Ungava Bay and northern Hudson Bay were harvesting animals from the survey 
area i.e., harvests from communities along the east coast of Baffin Island (Iqaluit, Pangnirtung, 
Qikiqtarjuaq, and Clyde River) were excluded from the analysis (Run 3). This reduced the 
average annual harvest from 251 animals, if all villages are included, to 178 animals, if east 
Baffin Island communities are excluded, when the complete time series is used (1954–2014) or 
from an annual harvest of 85 to 63 animals, using the average harvest for the last five years.  

SENSITIVITY TO PRIORS 

The sensitivity of model outputs to the priors was only examined for Run 1. The median of the 

2014 HBDS stock size estimate was little influenced by changes in the hyper-parameter 𝛼SL 
used in the prior Beta(𝛼SL, βSL) distribution of the struck and lost (Fig. 4). Using 𝛼SL values of 
2,3,6, and 10, shifted the median prior for Struck and Loss from 0.3 to 0.7. The posterior 
distribution for struck and loss was sensitive to changes in prior values, with median posterior 
values remaining within 0.1 of the median value for the prior. If the prior assumed a uniform 
distribution between 0.2 and 0.7, the prior median was 0.45, while the posterior value was 0.36 
(95%CI=0.21-0.67). Changes in the hyper-parameters 𝛼s and βs used in the prior Gamma (𝛼s, 
βs) distribution of the survey precision term had no perceptible influence on the 2014 point 
estimates of the stock size, but did have an impact on the associated uncertainty (Fig. 4). 

In the HBDS model that used all harvest and all survey data (Run 1), the strongest correlation 
was observed between carrying capacity (K) and the estimated population size in 2014 (0.42), 
and between struck and lost and the initial population size (0.40, Fig. 5a). For the HBDS model 
that did not include surveys flown prior to 1988 (Run 2), cross-correlation was observed 
between Struck and Lost and K (0.33), and between Struck and Lost and the starting population 
size (0.53). For Run 3, which used all survey data but excluded harvests reported from east 
Baffin island communities, strong correlations were observed between K and the 2014 
population size (0.42), between struck and lost and K (0.28), and between the 2014 population 
estimate and the starting population (0.4, Fig. 5c).  

MODEL UPDATE OF PRIORS AND ABUNDANCE ESTIMATES 

For the run that included all survey data (1954–2014) and all harvests from communities 
harvesting from this stock, there was significant updating of the priors for the starting population, 
K, theta, struck and loss, and to a lesser extent survey precision (Table 6a; Fig. 6a). Carrying 
capacity was updated from a mean of 17,764 to a mean of 12,901 (median=9,739, 95% 
Credibility Interval 7,021–32,417). The starting population was updated from a prior with a mean 
of 15,231 to a mean of 10,421 (median=9,461 95% CI=6,415–19,838). The theta parameter, 
which defines the shape of the density dependence relationship, was updated from a prior mean 
of 4 (Uniform distribution) to a posterior mean of 3.3 (median=3.0, 95% Credibility Intervals (1.1-
6.7). The HBDS model also showed moderate updating from a prior mean of 0.43 for struck and 
lost to a posterior value 0.35 (Table 6a, Fig. 4a). For all runs, there was little difference between 
the priors and the posteriors for the process error. 

The 1954, 1988, 1989, 1990, 2012 and 2014 survey estimates all lie within the 95% credibility 
intervals of the HBDS model (Fig. 7a, b). The point estimates from the 1976 and 1977 surveys 
lie below the 95% credibility interval (Fig. 7a, b). The model estimated a mean starting 
population in 1954 of 10,421 (before harvesting). The population declined, reaching a minimum 
of 3,600 animals (SE=900; 95% CI 2,600–6,100) in 1993, but has increased since then to a 
2014 estimate (after harvesting) of 6,980 (SE=1641; 95%CI 4,137–10,753) (Fig. 7a, b). The 
posterior for theta had a median value of 3.0 (Table 6a), which means that maximum stock 
productivity would occur at 63% of carrying capacity. Accordingly, the finite rate of increase was 
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at a minimum of 1.026 in 1954, increased to 1.075 in 1993 when the stock was at a minimum, 
then declined to 1.052 in 2014.  

Excluding surveys prior to 1988 (Run 2) resulted in a model that was fitted to five surveys: a 
cluster of three surveys centred around 1988 and two surveys flown in 2012 and 2014, 
respectively. This resulted in a model that was essentially only fitted to two points, but had a 
long tail in which the dynamics were affected by the reported harvests (Table 6b, Fig. 6b, 7b). 
Excluding the aerial surveys allowed the model to drift more freely, relying on the reported 
harvests extending back to 1954, and the survey estimates from 1988 and onwards to fit the 
model. There was slightly less updating of priors using the reduced dataset than when using the 
complete dataset (Tables 6a, b; Fig. 6a, b). Compared to the results of Run 1, there was a slight 
reduction in K from 12,901 to 11,430, a slight change in the starting population from 10,421 to 
9,458 and an increase in the estimated population in 2014 from 6,980 to 7,437.  

Excluding harvests from east Baffin island villages (Run 3) resulted in significant updating of the 
priors for starting population, K, and theta, but no updating of the prior was observed for the 
struck and lost parameter (Tables 6a, b, c; Fig. 6a, b, c). The estimated 2014 population was 
slightly lower (Mean=6,356, SD=1,006; 95% Credibility intervals = 4,634–8,496) than in both 
other runs. 

The probability that harvesting would lead to a decline in the population was only examined for 
Run 1. Reported annual harvests of 100, 150 and 267 animals from the HBDS stock over the 
next 10 years would result in probabilities of population decline below 2014 levels of 0.1, 0.2 
and 0.5 respectively, and therefore would constitute sustainable yields (Fig. 8, 9). The PBR 
estimate for this stock using the 2014 model estimate of population size is 230, assuming a 
Recovery Factor of 1. For the runs when all surveys prior to 1988 are excluded, the PBR 
estimate is 249. The model run that excluded harvests from the east Baffin Island villages 
produced a PBR estimate of 223. All PBR estimates from the model were higher than the PBR 
of 218 estimated using the 2014 survey estimates only (Hammill et al. 2016a). The population 
model takes into account the uncertainty associated with struck and loss when estimating the 
probability of a decline under different harvest scenarios. However, the PBR calculation does 
not consider struck and lost. Instead, some assumptions must be made about the rate of struck 
and lost and the uncertainty associated with this estimate. The model provides a mean estimate 
of struck and lost of 0.35. Incorporating this into the PBR estimate, results in a revised PBR of 
150 animals. Reported harvests from all villages have averaged 85 per year (SE=10.5) over the 
last five years for this stock and show a long term declining trend (Fig. 7). If the east Baffin 
Island communities are excluded, the average annual harvest over the last five years has been 
63 animals per year. These harvests are below estimates of both sustainable yield and PBR.  

FOXE BASIN 

The Foxe Basin models exhibited strong correlation between the K parameter and the 2014 
abundance estimate (Fig. 10). The mean, standard deviation, median and quantiles for prior and 
posterior parameters for the Foxe Basin stock model are shown in Table 7, Fig. 11. There was 
little difference between the priors and the posteriors for the process error, suggesting that there 
is not enough information in the model to inform this prior or that the difference between the 
observations and the “true” population size is already taken into account by the survey precision 
error. As a result, the time series of the median errors estimated by the model are evenly 
distributed around 1 with no obvious trend over time. 

There was significant updating of the priors for the starting population, carrying capacity, theta 
and to a lesser extent survey precision. The K prior was updated from a mean of 20,234 to a 
mean of 13,583 (median=13,195, 95% Credibility Interval 9,466–20,030). The starting 
population was updated from a prior with mean of 20,242 to a mean of 11,862 (median=12,205, 
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95% CI=4,604–17,881). The theta prior introduced into the Foxe Basin model was based on the 
updated theta posterior from the HBDS model. We used a prior of (0.6+7*beta(2,3)). This prior 
had a mean of 3.4 (95% CI=1.1–6.3) compared to the Hudson Bay-Davis Strait posterior with 
mean of 3.3 (1.1–6.7). The prior was not updated (Table 6b, Fig. 4b). The prior for struck and 
lost introduced into the Foxe Basin model was also based on the updated struck and loss 
posterior from the HBDS model. Instead of using a beta distribution of beta (3,4), with a mean of 
0.43 for the prior, we used a beta (2,4), with a mean of 0.35. This resulted in only minor 
changes for the Foxe Basin stock struck and lost parameter to a posterior mean of 0.33 (Table 
7, Fig. 11). 

In the Foxe Basin model, all five survey point estimates are either just on, or lie within the 95% 
credibility intervals (Fig. 12). The model estimated a mean starting 1954 population (before 
harvesting) of 11,682 (median=12,205, 95% CI=4,604–17,881)(Table 7). The model indicates 
that there has been little change in the population over the last 60+ years. The mean 2014 
estimated (after harvesting) population is 12,489 (Median=12,158, 95% CI=8,574–18,489) 
(Fig. 12). The estimated theta had a median value of 3.4, which means that maximum 
productivity of the stock would occur at 65% of carrying capacity. 

Sustainable yields are defined as harvests that result in less than a 50% probability of decline. 
The probability that reported harvests of 150, 163 and 172 animals from the Foxe Basin stock 
over the next 10 years would result in a population decline below 2014 levels was 10%, 50% 
and 80% respectively (Fig. 13, 14). The PBR estimate for this stock using the model estimate of 
population size in 2014 is 422, assuming a Recovery Factor of 1. This estimate is higher than 
the estimate of 385 from Hammill et al. (2016b).This figure does not take into account struck 
and lost. The mean struck and lost factor from the model was 0.33 (95% CI=0.05–0.71). 
Adjusting PBR to take into account struck and lost results in PBR estimates of 283 (95% CI= 
122 to 400). 

Reported harvests since 1954 in the villages of Igloolik and Hall Beach have been relatively 
stable, averaging 170 (SE=25) animals over the last five years (Fig. 10). At current harvest 
levels the model suggests that the population will decline below 2014 levels, but removals are 
below PBR levels after taking into account struck and lost in the PBR calculation. 

DISCUSSION 

Walruses are harvested for subsistence purposes throughout much of their range in Canada, 
Greenland and Alaska. Moreover, in some areas there is a small sports harvest. Once widely 
distributed in the eastern Canadian Arctic, Hudson and James bays, and down the Atlantic 
coast, to the Gulf of St Lawrence and Sable Island (e.g., Stewart et al. 2014), their current 
distribution appears to be restricted to northern Hudson Bay, and northwards, with only a few 
now seen south of Labrador and James Bay (Born et al 1995; Stewart et al 2014; Clark 
undated; in Loughrey 1959; COSEWIC 2006). Their gregarious nature makes walruses 
vulnerable to large local takes and, coupled with a narrow trophic niche and restricted seasonal 
distribution, makes them vulnerable to environmental changes (Born et al. 1995, COSEWIC 
2006; Stewart et al 2014).  

Unfortunately, survey activity of the individual stocks, and demographic information on walrus in 
Canada are limited. There have been some abundance surveys flown in Foxe Basin and 
northern Hudson Bay/Hudson Strait, which forms part of the HBDS stocks, but in the case of the 
latter stock, some of these surveys date back over 60 years and they appear to have covered 
only the major haulout sites.  

State-space models particularly when applied in a Bayesian framework, are a means of 
integrating data with population dynamics models and readily quantifying the various types of 
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uncertainty (Buckland et al. 2007), which makes this approach suited for application to walrus, 
where the data are limited and very uncertain. Using Bayesian methods, we fitted a surplus 
production model to these highly uncertain data, taking into account harvest information that 
extended back to the early 1950s, to obtain estimates of abundance, population trend and to 
identify the impact of future harvests on the population. Additional uncertainty is associated with 
several of the model parameters including, the estimated rate of increase of the stock, the 
correction factor for diving animals, estimates of struck-and-loss, and environmental carrying 
capacity. However, Bayesian methods allowed us to explicitly incorporate uncertainty around 
these parameters (Wade 2000), which are represented in the model by statistical distributions 
instead of single values. Bayesian fitting also ensured that uncertainty was propagated 
throughout the analysis, and that the correlations among parameters were preserved (Hoyle 
and Maunder 2004). The resulting stock trajectory is based on realistic population dynamics and 
offers more information than a simple trend analysis. It also allows for the explicit expression of 
the risk associated with different levels of harvest within the context of whether these harvests 
will respect management objectives. 

We made certain assumptions about the prior distributions of the model parameters. Sensitivity 
analyses showed that these assumptions have a small impact on the final estimates of 
abundance, but can have a strong effect on the uncertainty around estimates, on future 
population trajectories, and on our interpretation of parameter values. For instance, point 
estimates of stock size were little influenced by changes in the hyper-parameter αs used in the 
prior distribution of the survey error. Their 95% CI, on the other hand, increased markedly with 
increasing values of α (which increase the CV of survey estimates). In other words, postulating 
higher uncertainty around aerial survey estimates also increased the uncertainty around model 
estimates. However, we note that the model was effective in reducing our uncertainty around 
our estimates of walrus abundance. 

POPULATION MODELLING AND PARAMETER ESTIMATES 

The estimated shape of the density-dependent parameter (θ) was well updated from its flat prior 
distribution in the HBDS model. The median value of 3.3 (HBDS model), was slightly higher 
than median values of 2.7 to 2.9 for walrus in Greenland, but were well within the 90% 
Credibility Intervals (Witting and Born 2005), resulting in Maximum Sustainable Yield levels at 
around 67% of K. On the other hand, theta values in the Foxe Basin model were not updated, 
indicating that there was insufficient information in the model to modify these values, which is 
not surprising, since the model shows a flat trajectory over the last 60 years There is some 
discussion concerning the maximum annual growth rate of walrus populations (see Materials 
and Methods), but 1.08 has been used as a default. We fixed this parameter, but realized 
growth rates were determined by both the shape parameter (θ) and the model estimates of 
population abundance in relation to K, with the result that the effective growth rate was normally 
much lower than the default. The model provided estimates of K, but we are unable to say how 
realistic these estimates might be. Recent efforts to reconstruct catch histories (Stewart et al. 
2014) for some stocks may provide an opportunity to reconstruct pre-exploitation estimates of 
the population, which, although they may not be the same as current K, would still provide 
insights into possible carrying capacity levels. 

The numbers of animals struck and lost are an important input into the models. Several 
estimates of Struck and Lost have been reported in the literature (see above), but these have 
been determined from different harvests in different areas and different time periods. The 
struck-and-lost factor was introduced into the model assuming a beta distribution, with a prior 
value of 42.2% (95% CI 12–78%), that we have used for Nunavik beluga. This is not to say that 
struck and lost rates for beluga and walrus are the same, but the beluga example provided 
suitable information that could be introduced into the model as a prior. When modelled for the 
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HBDS walrus stock, the prior was updated from a mean of 42% to a mean of 35% (95% CI=23 
to 45%), which is comparable to a quasi-default value of 0.3 used by NAMMCO (2006). This 
posterior was subsequently used as prior in the Foxe Basin walrus models, but showed little 
modification from its prior values. This could suggest that the struck and lost distributions are 
similar between the two areas, and between studies, which is possible, but could also be 
explained by the fewer survey points flown in the Foxe Basin within a more restricted period, 
and a flat population that does not bring enough information to update the struck and lost 
parameters. One final consideration is that although defined as the proportion of animals that 
are struck and not recovered, this factor also include the effects of under-reporting (of which 
struck-and-lost is a subset). 

In the HBDS model, K was moderately correlated with the struck and lost parameter, negatively 
correlated with the initial population size and had a small correlation with the abundance 
estimate for 2014. In the Foxe Basin models, a strong correlation was only observed between 
the carrying capacity parameter (K) and the 2014 estimate of population size. Overall, these 
correlations indicate that the historical population has remained close to carrying capacity, or 
because of a lack of a strong change, our modelling approach cannot provide credible 
information as to the actual values of these parameters. However, any independent estimation 
of the value of one or more of these parameters from a dedicated field program would increase 
our confidence in the estimation of the others as well as the accuracy of future projections. 

POPULATION TRAJECTORY AND HARVEST LEVELS UNDER THE 
PRECAUTIONARY APPROACH 

The HBDS model Run 1 assumed that animals that were surveyed in Hudson Strait in March–
April 2012, and during the surveys flown during July–September in other years were available to 
harvesters living in Nunavik communities north of Inukjuak, the northwestern and northeastern 
Hudson Bay communities, Coral Harbour, Nunavut communities in Hudson Strait, and along the 
east coast of Baffin island. Walrus counts and harvests from Greenland, with which this stock is 
shared were not included. There is some movement between areas, but the level of exchange is 
not well understood. The surveys of the northern Hudson Bay-Hudson Strait area resulted in a 
population estimate of 7,000 (95% CI 4,100–10,800, rounded to the nearest 100). A 2007 
survey of the east Baffin component of the HBDS stock resulted in an estimate of 2,500 (95% 
CI=1,800–3,500) for that region. It is not possible at the current time to add the two estimates 
together because of the seven year difference in timing of the surveys and because of 
uncertainty in the extent of movement between Greenland, east Baffin Island and Hudson Strait. 
If the late summer-early autumn surveys of Hudson Strait-Hudson Bay represent the population 
harvested by hunters in this area, then perhaps modeling east Baffin and Greenland haulouts 
separately, as has been done to date is adequate (e.g., Witting and Born 2005, 2014). 

Additional runs of the HBDS model excluded surveys flown prior to 1988. Excluding surveys 
from the 1970s, 60s and 50s essentially resulted in the model fitting to only two points, with a 
slightly higher estimate of the population in 2014 than was obtained using the more complete 
dataset. This also resulted in a higher estimate for PBR due to the higher estimate of population 
size as well as a slightly lower level of uncertainty associated with the population estimate. The 
earlier surveys did not cover as large an area as the surveys flown after 1988, but they did 
survey the main haulout sites and provided the model with useful information to improve fitting 
and updating of model priors such as K, theta, the starting population and struck and lost. 
Including these surveys indicated that the population was probably greater than it is today, and 
had probably declined after the 1950s, which is more in line with our understanding of the status 
of walrus in this area (e.g., see Loughrey 1959, Mansfield 1962). 
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The model did not fit well to the 1976 and 1977 data. Unlike the other surveys which were 
based on only one or two counts of important haulout sites, the July–August, 1976–1977 
estimates were mean counts from multiple surveys carried out over a 2 month period in the 
Southampton-Coats Island area. These counts were highly variable (Mansfield and St. Aubin 
1991), reflecting the considerable variability in walrus haulout behaviour which we likely have 
not captured very well in our analysis of walrus counts (Doniol-Valcroze et al. 2016). 
Nonetheless, they provide useful information to the model. The model shows that the HBDS 
stock declined from the 1950s, reaching a minimum in the early 1990s, and is likely to be 
increasing under current reported harvests, while the Foxe Basin model suggest that there has 
been little change in stock size over the last 60 years. The HBDS benefitted from having more 
estimates of abundance that stretched out over many years. The Foxe Basin model had 
difficulties in reconciling the starting population size and environmental carrying capacity and 
there was a strong correlation between K and the model estimate of the 2014 population size. 
This may be linked to the fact that the first aerial survey of Foxe Basin was flown in 1982, but 
we incorporated into the model, harvest data that extended back to 1954, which may have 
provided the model with too much flexibility prior to the onset of the survey time series. We will 
continue to explore possible factors that might be affecting this model, but with no strong trend 
in harvests over the last 60 years, no clear trend in abundance, limited survey effort that is more 
constrained in time (compared to the HBDS model), there may not be enough information to 
inform the Foxe Basin model further. Thus this model believes that the current population is 
near stock carrying capacity, with little change occurring over the last 60 years.  

In signing the United Nations Agreement for the Implementation of the Provisions of the United 
Nations Convention on the Law of the Sea relating to the Conservation and Management of 
Straddling Fish Stocks and Highly Migratory Fish Stocks, Canada has committed to managing 
fisheries resources to maintain or restore stocks to levels capable of producing maximum 
sustainable yield and to apply the precautionary approach with stock specific reference points. A 
precautionary approach framework was developed and implemented for Atlantic seals in 2003 
(e.g., Hammill and Stenson 2003, 2007, 2013), while departmental guidelines were developed 
in 2006 (DFO 2006), and some additional discussions on the precautionary approach in Canada 
and in other jurisdictions has occurred within the marine mammal peer review group (e.g., 
Hammill and Stenson 2013; Doniol-Valcroze et al. 2013, Stenson et al. 2012). The DFO 
guidelines suggest that a precautionary reference level be set at 80% of the population size at 
Maximum Sustainable Yield (MSY), and a critical reference limit be set at 40% of the population 
size at MSY, which divides the management space into three zones, a healthy, cautious and 
critical zone. Where a stock lies with respect to the precautionary and critical reference limits, 
determines in which zone it lies. Within northern communities, harvesting is also governed by 
the different land-claim agreements, which tend to reflect two objectives:  

i) subsistence harvesting can only be limited if there is conservation concern;  

ii) harvesting is governed by the Principles of Conservation, which includes:  

a. the maintenance of the natural balance of ecological systems;  

b. the protection of wildlife habitat; the maintenance of vital, healthy, wildlife 
populations capable of sustaining harvesting needs as defined, and  

c. the restoration and revitalization of depleted populations of wildlife and wildlife 
habitat. 

In the absence of a Precautionary Approach framework for walruses, we used two approaches 
to illustrate the risk of different harvest levels not respecting the management objectives we 
identified. We specifically tested the risk of a range of harvest levels not respecting a 
management objective of sustainable yield, where sustainable yield was defined as the number 
of animals that can be removed, in this case over a ten-year period, without resulting in the 

http://www.un.org/Depts/los/convention_agreements/texts/fish_stocks_agreement/CONF164_37.htm
http://www.un.org/Depts/los/convention_agreements/texts/fish_stocks_agreement/CONF164_37.htm
http://www.dfo-mpo.gc.ca/fm-gp/peches-fisheries/fish-ren-peche/sff-cpd/precaution-eng.htm
http://www.dfo-mpo.gc.ca/fm-gp/peches-fisheries/fish-ren-peche/sff-cpd/precaution-eng.htm
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population declining below 2014 levels. In a second approach we assumed that the 
management objective was to maintain the population above the level that results in MSY. We 
estimated acceptable levels of removals using population model outputs as data inputs for the 
PBR formula and compared these with PBR estimates from the most recent survey (Hammill et 
al. 2016a, b) We also incorporated the Struck and Lost posterior mean into the PBR estimate to 
provide a range of PBR values. Looking at the Hudson Bay Davis Strait stock, both the 
sustainable yield and PBR methods indicated that current harvests are likely to respect both of 
the identified management objectives here. The PBR indicated that hunters could remove up to 
190 animals after taking into account struck and lost. Unlike what is normally done, using model 
outputs to calculate the PBR means that, this calculation benefits from the information contained 
in the full survey series and catch records. The model estimate of PBR is higher than the PBR 
estimate from the aerial survey, which including struck and lost had a PBR of 126, for FR of 1. 
The difference results from the lower CV associated with the population model estimate of the 
2014 walrus population. For example the CV associated with the survey estimate of the 
population size is 0.58. The CV associated with the estimate of population size that is obtained 
from the population model is 0.23. In other words, the higher precision of the model estimate, 
which benefits from additional information compared to traditional PBR calculations, could result 
in a larger allowable harvest while still adhering to the same precautionary principles. 

For the Foxe Basin stock, there were major differences in allowable harvests between the 
sustainable yield harvest estimates and those obtained from PBR. These differences arise from 
the underling differences in management objectives between the two approaches and where the 
two stocks lie with respect to estimated environmental carrying capacity. The Foxe Basin stock 
appears to be close to K. Owing to density-dependent factors affecting the dynamics of the 
stock, this means that the effective rate of increase of the population was less than 2%. To 
maintain a constant population, only about 2% of the resource was potentially available to 
harvesters if the management objective was that of sustainable yield. However, the 
management objective for PBR is to maintain a population above MSY. For walrus, PBR 
assumes that the rate of increase is fixed at ½ of the maximum rate of increase, which for 
walrus we defined as 4% (50% of 0.08), resulting in a PBR estimate of 290 animals. The 
comparable estimates of PBR from the aerial surveys with FR=1 (i.e., after taking into account 
struck and lost) were 206 using the 2010 survey and 269 using the 2011 survey estimate. The 
difference is due to the lower CV in the 2014 estimate from the model (CV=0.20), than from the 
surveys alone (CV=0.43). 

An alternative to PBR is to estimate removals directly using the population model and to provide 
an estimate of the probability or ‘risk’ that different harvest levels will respect the management 
objective. Assuming the PBR default that MSY occurs at 0.5K, then the model indicates that 
yearly harvests of 233 walruses from the HBDS stock would have a 95% probability of 
remaining above MSY after 10 years. Using the same approach to estimate harvests in Foxe 
Basin, then harvests of 418 would have a 95% probability of the population remaining above 
MSY, if MSY is set at 0.5 of K. Thus, one of the values of the population model approach is that 
the probability of respecting the management objectives can be presented and discussed in a 
more explicit manner than is possible using the PBR formula only. 

In this study, a population model was fitted to very uncertain survey data, collected over the last 
60 years, using Bayesian methods, to provide inference into the impacts of harvesting and 
insights into current abundance. The model has been developed to include the possibility that 
some communities may be harvesting from different stocks. However, for the simulations 
presented here, we assumed a single stock composition of the harvest in each model i.e., 
Igloolik and Hall Beach only harvested from the Foxe Basin stock, and communities in Ungava 
Bay, Hudson Strait, northeastern Nunavik, and northern Hudson Bay only harvested from the 
northern Hudson Bay component of the Hudson Bay-Hudson Strait stock, because the amount 
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of exchange between the different stocks is not known. As more information becomes available, 
this feature can easily be ‘switched’ on. 

The model can also be used to provide a risk evaluation approach in evaluating whether 
different harvest or other removal scenarios (e.g., mortality due to ship strikes) will respect 
management objectives. Compared to the simplistic approach of PBR, the integrated population 
model improves our understanding of the dynamics of the population and helps to identify 
underlying uncertainties in the assessment that require additional work. 

An important factor in any assessment is recent data on abundance. The HBDS stock was 
surveyed in 2014, but the Foxe Basin stock was last surveyed in 2011. Model uncertainty 
increases with increasing time since the last survey, which affects our ability to evaluate the 
impact of harvesting on the population. Thus new surveys will not only reduce current 
uncertainty, they will also, over time, reduce our reliance on the ‘historical’ surveys as new data 
are incorporated into the model. 

In this study, we assumed that the proportion of animals hauled out was fixed and that the error 
around its estimate could be described using a binomial distribution. However, others have 
shown that haulout behaviour is more complex and variable than can be represented using a 
binomial distribution (Udevitz et al. 2009; Lydersen et al. 2008; Doniol-Valcroze et al. 2016). 
Trying to incorporate this uncertainty directly into the fitting process is one direction to try to 
improve the model. Struck and lost is an important source of uncertainty in marine mammal 
hunts. Improving information on struck and lost will not only improve model inference, related to 
this parameter, but may also reduce uncertainty in other model parameters as well. We did not 
examine the impacts of non-reporting. From the perspective of the model, non-reporting 
comprises an important subset of the struck and lost parameter, but in any harvest 
management, an understanding of actual removals is crucial. The impact of non-reporting is to 
increase uncertainty associated with struck and loss levels, which will result in more 
conservative estimates of acceptable take levels. Finally, we modelled Foxe Basin and HBDS 
walrus separately, assuming that they form two discrete stocks and that community harvests 
were assigned to the appropriate stock. Within the model, it is easy to include uncertainty 
related to stock identity of community harvests, but currently data are not available for this 
parameter. 

LITERATURE CITED 

Born, E.W., Gjertz, I. and Reeves, R.R. 1995. Population assessment of Atlantic walrus. Norsk 
Polarinst. Medd. 138: 100 p. 

Brooks, S. P. and Gelman, A. 1998. Alternative methods for monitoring convergence of iterative 
simulations. J. Comput. Graph. Stat. 7:434–455. 

Brooks, S., King, R. and Morgan, B. 2004. A Bayesian approach to combining animal 
abundance and demographic data. Anim. Biodivers. Conserv. 27: 515–529. 

Buckland, S.T., Newman, K. B., Fernandez, C., Thomas, L. and Harwood, J. 2007. Embedding 
population dynamics models in inference. Statist. Sci. 22: 44–58. 

Chivers, S.J. 1999. Biological indices for monitoring population status of walrus evaluated with 
an individual-based model. In Marine mammal survey and assessment methods. Edited by 
G.W. Garner, S.C. Amstrup, J.L. Laake, B.F.J. Manly, L.L. McDonald, and D.G. Robertson. 
A.A. Balkema, Rotterdam, Holland. 287 p. 

Cooke J., Leaper, R., Wade, P., Lavigne, D. and Taylor, B. 2012. Management rules for marine 
mammal populations: A response to Lonergan. Mar. Policy 36, 389–92. 



 

15 

COSEWIC. 2006. COSEWIC assessment and update status report on the Atlantic walrus 
Odobenus Rosmarus rosmarus in Canada. Committee on the Status of Endangered Wildlife 
in Canada. Ottawa, ix+65 pp. 

de Valpine, P., and Hastings, A. 2002. Fitting population models incorporating process noise 
and observation error. Ecol. Monogr. 72: 57–76. 

DFO. 2002. Atlantic Walrus. DFO Sci. Stock Status Rep. E5-17, 18, 19, 20. 

DFO. 2006. A Harvest Strategy Compliant with the Precautionary Approach. DFO Can. Sci. 
Advis. Sec. Sci. Advis. Rep. 2006/023 

Doniol-Valcroze, T., Gosselin, J.-F., and Hammill, M.O. 2013. Population modeling and harvest 
advice under the precautionary approach for eastern Hudson Bay beluga (Delphinapterus 
leucas). DFO Can. Sci. Advis. Sec. Res. Doc. 2012/168. iii + 31 p. 

Doniol-Valcroze, T., Gosselin, J.F., Pike, D., Lawson, J., Asselin, N., Hedges, K., and Ferguson, 
S. 2015a. Abundance estimates of narwhal stocks in the Canadian High Arctic in 2013. DFO 
Can. Sci. Advis. Sec. Res. Doc. 2015/060. v + 36 p. 

Doniol-Valcroze, T., Gosselin, J.-F., Pike, D., Lawson, J., Asselin, N., Hedges, K., and 
Ferguson, S. 2015b. Abundance estimate of the Eastern Canada – West Greenland 
bowhead whale population based on the 2013 High Arctic Cetacean Survey. DFO Can. Sci. 
Advis. Sec. Res. Doc. 2015/058. v + 27 p. 

Doniol-Valcroze, T., Mosnier, A., and Hammill, M.O. 2016. Testing estimators of walrus 
abundance: insights from simulations of haul-out behaviour. DFO Can. Sci. Advis. Sec. Res. 
Doc. 2016/040. v + 18 p. 

Elliot, R.E, Moulton, V.D., Raborn, S.W. and Davis, R. A. 2013. Hudson Strait marine mammal 
aerial surveys, 10 March to 2 April. Report prepared by LGL Ltd for Baffinland Iron Mines 
Corp. 107 p. (LGL Report No. TA8129-2. Prepared by LGL Limited, King City, ON for 
Baffinland Iron Mines Corporation, Toronto, ON. 87 p.) 

Geweke, J. 1996. Evaluating the Accuracy of Sampling-based Approaches to the Calculation of 
Posterior Moments, In Bayesian Statistics 4 Edited by Bernardo, J.M., Berger, J.M., Dawid, 
A.P., and Smith, A.F.M. Oxford University Press:169–193. 

Hammill,M.O. and Stenson, G.B. 2003. Application of the Precautionary Approach and 
Conservation Reference Points to the management of Atlantic seals: A Discussion Paper. 
DFO Can. Sci. Advis. Sec. Res. Doc. 2003/067. 

Hammill, M.O. and Stenson, G.B. 2007. Application of the Precautionary Approach and 
Conservation Reference Points to the management of Atlantic seals. ICES J. Mar. Sci. 64: 
702–706. 

Hammill, M.O. and Stenson, G.B. 2013. A Discussion of the Precautionary Approach and its 
Application to Atlantic Seals. DFO Can. Sci. Advis. Sec. Res. Doc. 2013/030. v + 25 p. 

Hammill. M.O., Mosnier, A., Gosselin, J.-F., Higdon, J.W., Stewart, D.B., Doniol-Valcroze, T., 
Ferguson, S.H., and Dunn, B. 2016a. Estimating abundance and total allowable removals 
for walrus in the Hudson Bay-Davis Strait and south and east Hudson Bay stocks. DFO Can. 
Sci. Advis. Sec.Res. Doc. 2016/036. v + 37 p. 

Hammill, M.O., Blanchfield, P., Higdon, J.W., Stewart, D.B., and Ferguson, S.H. 2016b. 
Estimating abundance and total allowable removals for walrus in Foxe Basin. DFO Can. Sci. 
Advis. Sec. Res. Doc. 2016/014. iv + 20 p. 

http://www.sararegistry.gc.ca/virtual_sara/files/cosewic/sr_atlantic_walrus_e.pdf
http://www.sararegistry.gc.ca/virtual_sara/files/cosewic/sr_atlantic_walrus_e.pdf
http://www.dfo-mpo.gc.ca/csas/Csas/status/2002/SSR2002_E5-17,18,19,20e.pdf
http://www.dfo-mpo.gc.ca/csas/Csas/status/2006/SAR-AS2006_023_E.pdf
http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2012/2012_168-eng.html
http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2012/2012_168-eng.html
http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2012/2012_168-eng.html
http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2015/2015_060-eng.html
http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2015/2015_058-eng.html
http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2015/2015_058-eng.html
http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2016/2016_040-eng.html
http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2016/2016_040-eng.html
http://www.dfo-mpo.gc.ca/csas-sccs/publications/resdocs-docrech/2003/2003_067-eng.htm
http://www.dfo-mpo.gc.ca/csas-sccs/publications/resdocs-docrech/2003/2003_067-eng.htm
http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2013/2013_030-eng.html
http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2013/2013_030-eng.html
http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2016/2016_014-eng.html


 

16 

Hoyle, S. and Maunder, M. 2004. A Bayesian integrated population dynamics model to analyze 
data for protected species. Anim. Biodivers. Conserv. 27: 247–266. 

Innes, S. and Stewart, R.E.A. 2002. Population size and yield of Baffin Bay beluga 
(Delphinapterus leucas) stocks. NAMMCO Sci. Publ. 4: 225–238. 

King, R., Gimenez, O., Morgan, B., and Brooks, S. 2010. Bayesian Analysis for Population 
Ecology. Chapman & Hall / CRC Press. 442 p. 

Lonergan, M. 2011. Potential biological removal and other currently used management rules for 
marine mammal populations: A comparison. Mar. Policy. 35: 584–589. 

Lonergan, M. 2012. The targets of management rules for marine mammal populations require 
justification: A reply to Cooke et al. Mar. Policy. 36: 1188-1190. 
doi:10.1016/j.marpol.2012.02.010 

Loughrey A.G. 1959. Preliminary investigation of the Atlantic walrus Odobenus rosmarus 
rosmarus (Linnaeus). Can. Wildl. Serv. Bull. (Ott.) (Series 1) 14: 123 p. 

Lydersen C, Aars, J., and Kovacs, K.M. 2008. Estimating the number of walruses in Svalbard 
from aerial surveys and behavioural data from satellite telemetry. Arctic, 61: 119–128. 

Mansfield, A.W. 1962. Present status of the walrus population at Southampton and Coats 
islands, pp. 41-52 (No. 16). In H.D. Fisher (In Charge), Fisheries Research Board of 
Canada, Arctic Unit (Montreal, Quebec), Annual Report and Investigator's Summaries, April 
1, 1961 to March 31, 1962. [Available online from Fisheries and Oceans Canada libraries] 

Mansfield A.W. 1973. The Atlantic walrus Odobenus rosmarus in Canada and Greenland. IUCN 
(Intl Union Conserv. Nat. Nat. Resour.) Publ. New Ser. Suppl. Pap. 39: 69–79. 

Mansfield, A.W., and St. Aubin, D.J. 1991. Distribution and abundance of the Atlantic walrus 
Odobenus rosmarus rosmarus, in the Southampton Island-Coats Island region of northern 
Hudson Bay. Can. Field-Nat. 105: 95–100. 

Milner-Gulland, E.J., Shea, K., Possington, H., Coulson, T., and Wilcox, C. 2001. Competing 
harvesting strategies in a simulated population under uncertainty. Anim. Conserv. 4: 157–
167. 

Mosnier, A, Doniol-Valcroze, T., Gosselin, J.-F., Lesage, V., Measures, L.N., and Hammill, M.O. 
2015. Insights into processes of population decline using an integrated population model: 
the case of the St. Lawrence Estuary beluga (Delphinapterus leucas). Ecol. Model. 314: 15–
31. 

NAMMCO. 2006. NAMMCO (North Atlantic Marine Mammal Commission) Scientific Committee 
Working Group on the stock status of walruses in the North Atlantic and adjacent seas, Final 
Report. Copenhagen, 11-14 January 2005. 27 p. 

Orr J.R., Renooy, B., and Dahlke, L. 1986. Information from hunts and surveys of walrus 
(Odobenus rosmarus) in northern Foxe Basin, Northwest Territories, 1982–1984. Can. 
Manuscr. Rep. Fish. Aquat. Sci. 1899: iv + 29 p. 

Pella, J.J., and Thomlinson, P.K. 1969. A generalized stock production model. Bull. Inter-Amer. 
Tropical Tuna Comm. 13: 420–496. 

Plummer, M. 2003. A program for analysis of Bayesian graphical models using Gibbs sampling, 
in: Proceedings of the 3rd International Workshop on Distributed Statistical Computing. 
Vienna, Austria. 

Schaub, M., and Abadi, F. 2011. Integrated population models: a novel analysis framework for 
deeper insights into population dynamics. J. Ornithol. 152: 1–11. 

http://www.dfo-mpo.gc.ca/Library/354095.pdf
http://www.dfo-mpo.gc.ca/Library/354095.pdf
http://www.sciencedirect.com/science/journal/03043800/314/supp/C


 

17 

Sease, J.L., and Chapman, D.G. 1988. Pacific walrus Odobenus rosmarus divergens. In 
Selected marine mammals of Alaska Species account with research and management 
recommendations. Edited by J. W. Lentfer. Marine Mammal Commission, Washington, D.C. 
275 p. 

Stenson, G.B., Hammill, M.O., Ferguson, S., Stewart, R.E.A., and Doniol-Valcroze, T. 2012. 
Applying the precautionary approach to marine mammals in Canada. DFO Can. Sci. Advis. 
Sec. Res. Doc. 2012/107. ii + 15 p. 

Stewart, R.E.A., and Hamilton, J.W. 2013. Estimating total allowable removals for walrus 
(Odobenus rosmarus rosmarus) in Nunavut using the potential biological removal approach. 
DFO Can. Sci. Advis. Sec. Res. Doc. 2013/031. iv + 13 p. 

Stewart, R.E.A., Hamilton, J.W., and Dunn, J.B. 2013. Results of Foxe Basin walrus (Odobenus 
rosmarus rosmarus) surveys: 2010-2011. DFO Can. Sci. Advis. Sec. Res. Doc. 2013/017. iv 
+ 12 p. 

Stewart, D.B., Higdon, J.W., Reeves, R.R., and Stewart, R.E.A. 2014. A catch history for 
Atlantic walruses (Odobenus rosmarus rosmarus) in the eastern Canadian Arctic. NAMMCO 
Sci. Publ. 9: 219–314. 

Taylor B.L., De Master, D.P. 1993. Implications of non-linear density dependence. Mar. Mamm. 
Sci. 9: 360–371. 

Taylor, R.L., and Udevitz, M.S. 2015. Demography of the Pacific walrus (Odobenus rosmarus 
divergens): 1974–2006 Mar. Mamm. Sci. 31: 231–254. 

Taylor, B.L., Wade, P.R., De Master, D.P., and Barlow, J. 2000. Incorporating uncertainty into 
management models for marine mammals. Biol. Cons. 14: 1243–1252. 

Taylor, B.L., Martinez, M., Geordette, T., Barlow, J., and Hrovat, Y.N. 2007. Lessons from 
monitoring trends in abundance of marine mammals. Mar. Mamm. Sci. 23: 157–175. 

Trzcinski, M.K., Mohn, R., and Bowen, W.D. 2006. Continued Decline Of An Atlantic Cod 
Population: How Important Is Gray Seal Predation? Ecol. Appl. 16(6): 2276–2292. 

Udevitz, M.S., Jay, C.V., Fischbach, A.S., and Garlich-Miller, J.L. 2009. Modeling haul-out behaviour 
of walruses in Bering Sea ice. Can. J. Zool. 87(12): 1111–1128. 

Wade, P. 1998. Calculating limits to the allowable human-caused mortality of cetaceans and 
pinnipeds. Mar. Mamm. Sci. 14: 1–37. 

Wade, P. R. 2000. Bayesian Methods in Conservation Biology. Conserv. Biol. 14: 1308–1316. 

Witting, L., and Born, E.W. 2005. An assessment of Greenland walrus populations. ICES J. Mar. 
Sci. 62: 266–284. 

Witting, L., and Born, E.W. 2014. Population dynamics of walruses in Greenland. NAMMCO Sci. 
Publ. 9: 191–218. 

  

http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2012/2012_107-eng.html
http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2013/2013_031-eng.html
http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2013/2013_031-eng.html
http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2013/2013_017-eng.html
http://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2013/2013_017-eng.html
http://dx.doi.org/10.1139/Z09-098
http://dx.doi.org/10.1139/Z09-098


18 

TABLES 

Table 1. Abundance observations from Nottingham/Fraser/Salisbury island complex and the Walrus –
Coats island complex. The SE of the adjusted number was calculated by combining the variance of the 

abundance estimates with the variance of proportion hauled out using the Delta method, i.e, 𝑆𝐸𝑎𝑑𝑗 =

𝑁𝑎𝑑𝑗√
𝑆𝐸𝑁

2

𝑁2 +
𝑆𝐸𝑃

2

𝑃2

Location / 
Survey type 

Date 
Number 

(SE) 

Proportion 
hauled out 

(SE) 

Adjusted 
number 

(SE) 
Source 

Hudson Strait to 
Southampton 

Island 

Sept 2014 2144 0.30 (0.173) 7147 (4122) Hammill et al. 
2015 

Hudson Strait Mar-Apr 
2012 

55 5254 (1591) Elliot et al. 2013 

Walrus-Coats Island-Southampton Island 

Aerial surveys August 
1954 

2900 
(435) 

0.30 (0.173) 9667 (5760) Loughrey 1959 

Aerial/boat surveys Aug 1961 2650 0.30 (0.173) 8833 (5094) Mansfield 1962 

Aerial surveys July-Aug. 
1976 

254-1491 
(Mean=82
0 SE=442) 

0.30 (0.173) 2733 (2156) Mansfield and St 
Aubin 1991 

Aerial surveys July –Aug 
1977 

6-2171 
(Mean=65, 
SE=670) 

0.30 (0.173) 2707 (2692) Mansfield and St 
Aubin 1991 

Aerial surveys Aug 1988 757+92 0.30 (0.173) 2830 (1632) 1Richard 1993 

Aerial surveys July 1989 1231+97 0.30 (0.173) 4427 (2553) 1Richard 1993 

Aerial surveys Aug 1990 1373+461 0.30 (0.173) 6113 (3526) 1Richard 1993 

1 Richard, P.R. 1993. Summer distribution and abundance of walrus in northern Hudson Bay, 
western Hudson Strait and Foxe Basin :1988-1990. AFSAC meeting 17-18 February 1993. 
Background report. 21 p. 
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Table 2. Survey year, count/estimate, proportion of animals hauled out, and adjusted counts for walrus in 
Foxe Basin. Source where the original count data can be found, but counts were adjusted as outlined by 
Hammill et al. 2016b. The SE of the adjusted number was calculated by combining the variance of the 
abundance estimates with the variance of proportion hauled out using the Delta method, i.e., 𝑆𝐸𝑎𝑑𝑗 =

𝑁𝑎𝑑𝑗√
𝑆𝐸𝑁

2

𝑁2 +
𝑆𝐸𝑃

2

𝑃2
  

Year Number (N) 
SE 
(N) 

Proportion 
hauled out 

SE 
(P) 

Adjusted 
Number 

SE Source 

1983 2,722   0.37 0.16 7,357 3,182 Orr et al. 1986 

1988 5,128 4,390 0.37 0.16 13,859 13,293 1Richard 1993 

1989 5,510 1,644 0.37 0.16 14,892 7,824 1Richard 1993 

2010 3,861  0.37 0.16 10,435 4,513 Stewart et al. 2013 

2011 5,945  0.37 0.16 16,068 6,949 Stewart et al. 2013  

2011 4,484  0.37 0.16 12,119 5,241 Stewart et al. 2013 

2011 (4,484+5,945)/2 1033 0.37 0.16 14,093 6,704 
2011 data 
combined 

1 Richard, P.R. 1993. Summer distribution and abundance of walrus in northern Hudson Bay, 
western Hudson Strait and Foxe Basin :1988-1990. AFSAC meeting 17-18 February 1993. 
Background report. 21 p. 
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Table 3. Adjusted harvest statistics for communities harvesting walrus from the Hudson Bay-Davis Strait 
for the period 1954–2014. In years where there were no reports, the five year average harvest was used 
to replace the blank cell. Data from communities in Ungava Bay, and Hudson Strait, plus Akulivik, Coral 
Harbour, Repulse Bay, Chesterfield Inlet, Rankin Inlet and Arviat. 

Year Harvest Year Harvest Year Harvest 

1954 603 1969 284 1995 193 

1955 528 1970 307 1996 187 

1956 462 1971 328 1997 120 

1957 448 1972 310 1998 97,8 

1958 543 1973 367 1999 66 

1959 391 1974 377 2000 97 

1960 426 1975 454 2001 81 

1961 400 1976 244 2002 139 

1962 300 1977 279 2003 90 

1963 311 1978 198 2004 95 

1964 324 1979 277 2005 111 

1965 288 1980 339 2006 155 

1966 338 1981 306 2007 118 

1967 384 1982 352 2008 93 

1968 311 1983 323 2009 93 

1969 284 1984 233 2010 94 

1970 307 1985 211 2011 88 

1971 328 1986 273 2012 114 

1972 310 1987 175 2013 59 

1973 367 1988 243 2014 72 

1974 377 1989 168 
  

1975 454 1990 211   

1976 244 1991 229   

1977 279 1992 187   

1978 198 1993 220   

1979 277 1994 194   
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Table 4. Adjusted harvest statistics for Igloolik and Hall Beach which are assumed to be the only 
communities harvesting from the Foxe Basin stock for the period 1954–2014. In years where there were 
no reports, the five year average harvest was substituted. 

Year Harvest Year Harvest Year Harvest 

1954 425 1978 138 2002 120 

1955 154 1979 325 2003 199 

1956 198 1980 187 2004 178 

1957 79 1981 310 2005 190 

1958 267 1982 300 2006 290 

1959 195 1983 300 2007 89 

1960 31 1984 210 2008 107 

1961 58 1985 210 2009 159 

1962 700 1986 151 2010 216 

1963 202 1987 168 2011 136 

1964 104 1988 185 2012 219 

1965 550 1989 137 2013 175 

1966 100 1990 178 2014 103 

1967 108 1991 178   

1968 150 1992 295   

1969 200 1993 225   

1970 60 1994 201   

1971 62 1995 111   

1972 69 1996 146   

1973 103 1997 193   

1974 120 1998 213   

1975 50 1999 178   

1976 130 2000 262   

1977 218 2001 92   
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Table 5. Prior distributions, parameters and hyper-parameters used in Hudson Bay-Davis Strait walrus 
population model “dist.” denotes a hyper-parameter with its own prior distribution. The same parameters 
were used for the Foxe Basin Model except for the Struck and Loss parameter. In Foxe Basin, this 
parameter followed a Beta (2,4). 

Parameters Notation Prior distribution Hyper 
parameters 

Values 

Survey error (t) εst Log-normal μs 

τs 
0 

dist. 

Precision (survey) τs Gamma αs 

βs 
2.5 
0.4 

Process error (t) εpt Log-normal μp 

τp 
0 

dist. 

Precision (Process) τp Gamma αp 

βp 
1.5 

0.001 

Density dependence 
Shape fusion 

θ Uniform Nupp 

Nlow 
7 
1 

Struck-and-lost SL Beta αSL 

βSL 
3 
4 

Initial population N1954 Uniform Nupp 

Nlow 
40,000 

500 

Carrying capacity K Uniform Nupp  
Nlow 

40,000 
500 

Maximum annual 
growth rate 

λmax   1.08 
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Table 6a. Model outputs for the Hudson Bay-Davis Strait stock using all aerial survey and harvest data (Run 1). Mean, Standard deviation (SD), 
median, 25

th
 and 75

th
 quantiles and 95% credibility intervals (2.5%, 97.5%) for model parameters: carrying capacity (K), density dependent shape 

(theta), process error, survey precision, starting population, struck and loss, and population size in 2014 for the Hudson Bay-Davis Strait stock 
assuming a haulout proportion of 0.3 (SE=0.173). R-hat is the BGR statistic, values near 1 indicate convergence of chains. N.eff is the number of 
effective chains after considering autocorrelation 

   Quantiles        

 

Mean SD 2.5% 25% 50% 75% 97.5% R-hat N.eff 

K 12901 6990 7021 8382 9739 14517 32417 1.002 2600 

K.prior 17764 9964 1352 9137 17759 26402 34143 1.001 120000 

Theta 3.3 1.6 1.1 2.0 3.0 4.5 6.7 1.001 19000 

Theta.prior 4.0 1.7 1.1 2.5 4.0 5.5 6.8 1.001 120000 

Deviance 162.6 2.5 159.3 160.9 162.1 163.8 169.0 1.001 120000 

Prec.process 1502.9 1228 106.4 606.7 1185.8 2058.5 4654.3 1.001 35000 

Prec.process.prior 1503.7 1226 107.2 607.3 1187.2 2058.9 4677.4 1.001 120000 

Prec.surv 6.4 2.6 2.3 4.5 6.0 7.9 12.5 1.001 120000 

Prec.surv.prior 6.2 3.9 1.0 3.3 5.4 8.3 16.0 1.001 120000 

Startpop 10421 3513 6415 7931 9461 11919 19838 1.001 5900 

Startpop.prior 15231 8505 1236 7852 15209 22573 29260 1.001 67000 

Struck.and.lost 0.35 0.15 0.09 0.23 0.33 0.45 0.68 1.001 120000 

Struck.and.lost.prior 0.43 0.17 0.12 0.30 0.42 0.55 0.78 1.001 120000 

N2014 6980 1641 4137 5968 6879 7794 10753 1.001 50000 
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Table 6b. Model outputs for the Hudson Bay-Davis Strait stock excluding surveys flown before 1988 (Run 2). Mean, Standard deviation (SD), 
median, 25

th
 and 75

th
 quantiles and 95% credibility intervals (2.5%, 97.5%) for model parameters: carrying capacity (K), density dependent shape 

(theta), process error, survey precision, starting population, struck and loss, and population size in 2014 for the Hudson Bay-Davis Strait stock 
assuming a haulout proportion of 0.3 (SE=0.173). R-hat is the BGR statistic, values near 1 indicate convergence of chains. N.eff is the number of 
effective chains after considering autocorrelation 

 

Quantiles 

Mean SD 2.5% 25% 50% 75% 97.5% Rhat n.eff 

K 11430 5006 7038 8573 9954 12038 28899 1.0 3700.0 

K.prior 17816 9934 1373 9259 17877 26421 34121 1.0 30000.0 

Theta 3.4 1.8 1.1 1.8 3.1 4.9 6.8 1.0 22000.0 

Theta.prior 4.0 1.7 1.2 2.5 4.0 5.5 6.9 1.0 50000.0 

Deviance 88.9 2.4 86.1 87.2 88.3 89.9 95.3 1.0 39000.0 

Prec.process 1506 1231 109 612 1190 2055 4724 1.0 50000.0 

Prec.process.prior 1510 1238 109 606 1184 2065 4717 1.0 50000.0 

Prec.surv 7.4 3.6 2.0 4.7 6.8 9.4 15.8 1.0 50000.0 

Prec.surv.prior 6.2 4.0 1.1 3.3 5.4 8.3 16.0 1.0 50000.0 

Startpop 9458 1832 6710 8082 9171 10585 13611 1.0 35000.0 

Startpop.prior 15336 8517 1265 7993 15383 22712 29306 1.0 50000.0 

Struck.and.lost 0.38 0.17 0.09 0.25 0.37 0.5 0.74 1.0 50000.0 

Struck.and.lost.prior 0.43 0.17 0.12 0.3 0.42 0.55 0.78 1.0 50000.0 

N2014 7437 1576 4579 6524 7387 8240 10737 1.0 33000.0 
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Table 6c. Model outputs for the Hudson Bay-Davis Strait stock including all surveys but harvests from east Baffin Island are excluded (Run 3). 
Mean, Standard deviation (SD), median, 25

th
 and 75

th
 quantiles and 95% credibility intervals (2.5%, 97.5%) for model parameters: carrying 

capacity (K), density dependent shape (theta), process error, survey precision, starting population, struck and loss, and population size in 2014 for 
the Hudson Bay-Davis Strait stock assuming a haulout proportion of 0.3 (SE=0.173). R-hat is the BGR statistic, values near 1 indicate 
convergence of chains. N.eff is the number of effective chains after considering autocorrelation 

 

Quantiles 

Mean SD 0.025 0.25 0.5 0.75 0.975 Rhat n.eff 

K 8076.6 2918.5 5676.4 6756.3 7529.8 8509.2 14934.3 1.001 16000 

K.prior 17735.5 9969.1 1366.8 9085.7 17720.2 26359.8 34136.4 1.001 220000 

Theta 3.2 1.6 1.1 1.8 2.8 4.3 6.7 1.001 67000 

Theta.prior 4.0 1.7 1.1 2.5 4.0 5.5 6.9 1.001 220000 

deviance 162.1 2.3 159.3 160.4 161.5 163.2 167.9 1.001 220000 

prec.process 1499.7 1225.7 109.6 606.1 1184.0 2052.1 4654.9 1.001 210000 

prec.process.prior 1501.4 1228.7 106.0 605.2 1181.7 2058.1 4677.0 1.001 220000 

prec.surv 6.6 2.7 2.5 4.7 6.3 8.2 12.8 1.001 220000 

prec.surv.prior 6.3 4.0 1.0 3.3 5.4 8.3 16.1 1.001 120000 

Startpop 7446.3 1156.8 5510.9 6598.2 7328.1 8191.1 9959.0 1.001 220000 

Startpop.prior 17739.9 9962.7 1361.5 9115.8 17739.0 26381 34136.1 1.001 220000 

struck.and.lost 0.43 0.17 0.13 0.30 0.42 0.54 0.76 1.001 220000 

struck.and.lost.prior 0.43 0.18 0.12 0.30 0.42 0.55 0.78 1.001 220000 

N2014 6356 1006 4634 5784 6288 6821 8496 1.001 190000 
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Table 7. Model outputs for the Foxe Basin stock. Mean, Standard deviation (SD), median, 25
th
 and 75 th quantiles and 95% credibility intervals 

(2.5%, 97.5%) for model parameters: carrying capacity (K), density dependent shape (theta), process error, survey precision, starting population, 
struck and loss, and population size in 2014 for the Hudson Bay-Davis Strait stock assuming a haulout proportion of 0.3 (SE=0.173). R-hat is the 
BGR statistic, values near 1 indicate convergence of chains. N.eff is the number of effective chains after considering autocorrelation. 

 

Quantiles 

Mean SD 2.5% 25% 50% 75% 97.5% R-hat N.eff 

K 13583 2770 9466 11812 13195 14853 20030 1.00 120000 

K.prior 20234 11383 1502 10384 20202 30115 38980 1.00 120000 

Theta 3.4 1.4 1.1 2.4 3.4 4.4 6.3 1.01 120000 

Theta.prior 3.4 1.4 1.1 2.4 3.4 4.4 6.3 1.01 40000 

Deviance 96.88 2.03 94.53 95.41 96.39 97.81 102.11 1.00 100000 

Prec.process 1497 1222 106 606 1182 2050 4663 1.00 10000 

Prec.process.prior 1506 1225 109 611 1189 2064 4678 1.00 120000 

Prec.surv 7.87 3.71 2.36 5.16 7.30 9.97 16.66 1.00 120000 

Prec.surv.prior 6.24 3.95 1.03 3.34 5.42 8.27 16.05 1.00 120000 

Startpop 11862 3297 4604 10229 12205 13905 17881 1.001 120000 

Startpop.prior 20242 11402 1499 10345 20226 30168 39032 1.001 32000 

Struck.and.lost 0.330 0.178 0.051 0.190 0.309 0.450 0.711 1.001 120000 

Struck.and.lost.prior 0.334 0.178 0.052 0.194 0.315 0.455 0.717 1.001 120000 

N2014 12489 2537 8574 10853 12158 13701 18489 1.00 120000 
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FIGURES 

 

Figure 1. Location of Atlantic walrus stocks as identified by management units in the eastern Canadian 
Arctic. The stocks are Baffin Bay (AW-01). West Jones Sound (AW-02). Penny Strait-Lancaster Sound 
(AW-03). North and Central Foxe Basin stocks (AW-04). Hudson Bay-Davis Strait and South and East 
Hudson Bay stocks.  
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Figure 2a. BGR convergence diagnostic for carrying capacity (K), population size in 2014 (N2014), 
Process error, initial population (init.N) and Struck and Lost (S&L) for the five chains plotted for increasing 
numbers of iterations (up to 1.000.000). Values close to 1 indicate good convergence for the Hudson 
Bay-Davis Strait stock.   
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Figure 2b. BGR convergence diagnostic for the Foxe Basin stock with haulouts adjusted using a haulout 
proportion of 0.37. Variables shown include carrying capacity (K), population size in 2014 (N2014), 
process error, initial population (init.N) and Struck and Lost (S&L) for the five chains plotted for increasing 
numbers of iterations (up to 1.000.000). Values close to 1 indicate good convergence.   
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Figure 3a. Plots showing evidence for auto-correlation within each chain for variables carrying capacity 
(K), 2014 population estimate (N2014), process error, initial population size (init.N) and struck and lost 
(S&L) for the Hudson Bay-Davis Strait stock.  
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Figure 3b. Plots showing evidence for auto-correlation within each chain for variables carrying capacity 
(K), 2014 population estimate (N2014), process error, initial population size (init.N) and struck and lost 
(S&L) for Foxe Basin stock after adjusting counts using a haulout proportion of 0.37.  
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a) 

  

b) 

 

Figure 4. Sensitivity of median population estimates (diamonds) and 95% CI (bars) to the hyper-
parameters used in prior distributions for Struck and Lost and Survey precision. a) Struck-and-lost factor 
(beta distribution (α. β). Closed diamonds: αsl = varies from 2 to 10. βsl was fixed at 4. Open diamond: 
Uniform distribution (0.2 to 0.7). b) Survey precision (Gamma (α. β). Closed diamonds: α s =2.5. β s =0.2 
to 0.8. open circle: α s =1. β s =0.4. for the Hudson Bay-Davis Strait stock.  
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Figure 5a. Hudson Bay-Davis Strait stock model runs that included all survey data and reported harvests 
from all communities. Correlations are shown between model parameters carrying capacity (K), the 2014 
population estimate (N2014), process error (Process), initial population size (Init.N), and struck and lost 
(S&L).  
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Figure 5b. Hudson Bay-Davis Strait stock model run with surveys flown before 1988 excluded. 
Correlations are shown between model parameters for variables carrying capacity (K), 2014 population 
estimate (N2014), process error (Process), initial population size (init.N) and struck and lost (S&L).  
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Figure 5c.Hudson Bay-Davis Strait model run with harvests from east Baffin excluded. Correlations are 
shown between model parameters for variables carrying capacity (K), 2014 population estimate (N2014), 
process error (Process), initial population size (init.N) and struck and lost (S&L).  
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Figure 6a. Prior (lines) and posterior (bars) distributions of four parameters estimated by the model for the 
Hudson Bay-Davis Strait stock model run that included all surveys and harvests from all communities. 
The prior for the process error was not updated and is not shown. Prior and posterior means. Quantiles 
and 95% Credibility Intervals are shown in table 6a. 
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Figure 6b. Prior (lines) and posterior (bars) distributions of four parameters estimated by the model for the 
Hudson Bay-Davis Strait stock for the run that did not include surveys flown before 1988. The prior for the 
process error was not updated and is not shown. Prior and posterior means. Quantiles and 95% 
Credibility Intervals are shown in table 6b.  
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Figure 6c. Prior (lines) and posterior (bars) distributions of four parameters estimated by the model for the 
Hudson Bay-Davis Strait stock for the run that did not include harvests from east Baffin Island. The prior 
for the process error was not updated and is not shown. Prior and posterior means. Quantiles and 95% 
Credibility Intervals are shown in table 6c.   
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Figure 7a. Estimates of Hudson Bay-Davis Strait walrus abundance obtained by fitting the model to all 
aerial survey estimates. Solid line: median estimates. Inner dashed lines: 25% and 75% quantiles. Outer 
dashed lines: 2.5% and 97.5% quantiles (= Bayesian Credible Interval). The model was fitted to aerial 
survey estimates corrected for animals at the surface (closed circles. ± 95% confidence intervals). Right 
y-axis: Reported catch of walrus from Ungava Bay, Hudson Strait, northeastern Hudson Bay, 
Southampton Island and northwestern Hudson Bay communities (open circles). For communities with 
missing data, the average of the most recent five years of catches was substituted.  
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Figure 7b. Model estimates of Hudson Bay-Davis Strait walrus abundance taking into account all harvests 
and all aerial surveys (top) or if surveys prior to 1988 are excluded from the model (bottom). Solid line: 
median estimates. Inner dashed lines: 25% and 75% quantiles. Outer dashed lines: 2.5% and 97.5% 
quantiles (= Bayesian Credible Interval). Aerial survey estimates are corrected for animals at the surface 
(closed circles, ± 95% CL).  
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Figure 8. Probability of Hudson Bay-Davis Strait walrus stock decrease from the 2014 abundance 
estimate after ten years of harvest estimated by a stochastic Bayesian stock-production model; as a 
function of the number of reported walruses removed from the stock every year. Dotted lines indicate 
levels of harvest (x-axis) corresponding to the probability of decline (y-axis).  
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Figure 9. Model estimates of the Hudson Bay-Davis Strait walrus stock abundance and predicted trends 
in median population size if the same reported harvest (0, 50,100,150, 200, 250 or 300 animals) is 
removed annually over the next 10 years. Middle line is the median estimate. The outer black lines 
represent the 95% Credibility intervals. Aerial survey estimates are corrected for animals at the surface 
(closed circles, ± 95% CL).  
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Figure 10. Foxe Basin stock model runs that included all survey data and reported harvests from all 
communities. Correlations are shown between model parameters carrying capacity (K), the 2014 
population estimate (N2014), process error (Process), initial population size (Init.N) and struck and lost 
(S&L). Haulout counts were adjusted assuming a proportion of 0.37 of the population was hauled out. 
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Figure 11. Prior (lines) and posterior (bars) distributions of four parameters estimated by the model for the 
Foxe Basin. The prior for the process error was not updated and is not shown. The Foxe Basin haulout 
counts were adjusted assuming a proportion of 0.37 of the population was hauled out. Prior and posterior 
means, Quantiles and 95% Credibility Intervals are shown in table 7.  
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Figure 12. Model estimates of Foxe Basin walrus abundance (adjusted assuming that the proportion of 
the population hauled out was 0.37). Solid line: median estimates. Inner dashed lines: 25% and 75% 
quantiles. Outer dashed lines: 2.5% and 97.5% quantiles (= Bayesian Credible Interval). The model was 
fitted to aerial survey estimates corrected for animals at the surface (closed circles. ±95% CL). Right y-
axis: Reported catch of walrus from Igloolik and Hall Beach (open circles). For missing data. the average 
of the most recent five years of catches were substituted, except for catches prior to 1957 when Hall 
Beach did not exist as a community.  
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Figure 13. Probability of Foxe Basin walrus stock decrease from the 2014 abundance estimate (adjusted 
assuming that the proportion of the population hauled out was 0.37) after ten years of harvest estimated 
by a stochastic Bayesian stock-production model; as a function of the number of walrus removed from the 
stock every year. Dotted lines indicate levels of harvest (x-axis) corresponding to the probability of decline 
(y-axis).   
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Figure 14. Model estimates of the Foxe Basin walrus population (adjusted assuming that the proportion of 
the population hauled out was 0.37) and predicted trends in median population size if the same reported 
harvest (100, 200, 300, 400, 500 or 600 animals) is removed annually over the next 10 years. 
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