

Fisheries and Oceans P Canada C

Pêches et Océans Canada

Ecosystems and Oceans Science Sciences des écosystèmes et des océans

Canadian Science Advisory Secretariat (CSAS)

Research Document 2016/048

Newfoundland and Labrador Region

Assessing the status of the cod (*Gadus morhua*) stock in NAFO Subdivision 3Ps in 2015

R. M. Rideout¹, D. W. Ings¹, B. P. Healey¹, J. Brattey¹, M. J. Morgan¹, D. Maddock Parsons¹, M. Koen-Alonso¹, and J. Vigneau²

¹Science Branch Fisheries and Oceans Canada PO Box 5667 St. John's, NL A1C 5X1

²IFREMER Av. du Général de Gaulle, 14520 Port en Bessin, France

Foreword

This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research documents are produced in the official language in which they are provided to the Secretariat.

Published by:

Fisheries and Oceans Canada Canadian Science Advisory Secretariat 200 Kent Street Ottawa ON K1A 0E6

http://www.dfo-mpo.gc.ca/csas-sccs/ csas-sccs@dfo-mpo.gc.ca

© Her Majesty the Queen in Right of Canada, 2016 ISSN 1919-5044

Correct citation for this publication:

Rideout, R.M., Ings, D.W., Healey, B.P., Brattey, J., Morgan, M.J., Maddock Parsons, D., Koen-Alonso, M., and Vigneau, J. 2016. Assessing the status of the cod (*Gadus morhua*) stock in NAFO Subdivision 3Ps in 2015. DFO Can. Sci. Advis. Sec. Res. Doc. 2016/048 vi + 90 p

TABLE OF CONTENTS

ABSTRACTIV	1
RÉSUMÉV	1
INTRODUCTION1]
ASSESSMENT1	
TOTAL ALLOWABLE CATCHES AND COMMERCIAL CATCH 1	
Total Allowable Catch 1	
Commercial Catch1	
CATCH AT AGE	;
WEIGHT AT AGE	5
SENTINEL SURVEY	-
STANDARDIZED SENTINEL CATCH RATES 4	
SCIENCE LOGBOOKS (< 35 FT SECTOR)	
INDUSTRY LOGBOOKS (> 35 FT SECTOR)	
TAGGING EXPERIMENTS / EXPLOITATION RATE	
RESEARCH VESSEL SURVEY10	
Abundance, Biomass, and Distribution11	
Age Composition	
Size-at-Age (Mean Length and Mean Weight)13	
Condition	
Maturity	
Cohort Analyses	
ECOSYSTEM CONSIDERATIONS16	;
CONCLUSIONS AND ADVICE	3
SOURCES OF UNCERTAINTY19)
ACKNOWLEDGMENTS)
REFERENCES)
TABLES	3
FIGURES	ŀ

ABSTRACT

The status of the cod stock in the Northwest Atlantic Fisheries Organization (NAFO) Subdivision 3Ps was assessed during a Fisheries and Oceans Canada (DFO) Regional Peer Review Process meeting held October 20-22, 2015. Stock status was updated based upon information collected up to spring 2015. Principal sources of information available for the assessment were: a time series of abundance and biomass indices from Canadian winter/spring research vessel (RV) bottom trawl surveys, inshore sentinel surveys, science logbooks from vessels < 35 ft., logbooks from vessels > 35 ft., reported landings from commercial fisheries, oceanographic data, and tagging studies.

Total landings for the 2014-15 management year (April 1-March 31) were 7,166 t or just 54% of the Total Allowable Catch (TAC), and this marks the sixth consecutive season that the TAC has not been fully taken. The 2015-16 fishery was still in progress at the time of the meeting. The removals through recreational fishing are unknown since 2007, but based on previous estimates are thought to be a small fraction (~ 1%) of the commercial landings.

Estimates of abundance and biomass from the DFO RV spring survey have been relatively stable over the past seven years (except for a high value in 2013 apparently influenced by a year-effect), with abundance being slightly higher than it was in the early 2000s and biomass being generally lower than it was in the early 2000s. The 2015 survey was dominated by young fish which are not yet of commercial size. Sentinel gillnet catch rates have been very low and stable since 1999. Sentinel linetrawl catch rates have been below average for the past six years and the 2014 catch rate was the lowest in the time series. Gillnet catch rates from logbooks of vessels < 35 ft. have been generally stable since 1999 but increasing to slightly above average in 2014. Linetrawl catch-rates decreased over 2006-10, but subsequently increased and are presently at the time-series average.

Estimates of Spawning Stock Biomass (SSB) derived from a survey-based (SURBA) cohort model increased considerably over 2009-12 but have since declined. The 2014 and 2015 estimates are approximately 1.4 times higher than the limit reference point (LRP), and the stock is currently in the 'cautious zone' according to DFO's Precautionary Approach (PA) Framework.. The probability of being below the LRP in 2015 is low (~0.05). Recruitment has improved over the last decade with most cohorts at or above the time-series (1983-2014) average. In particular, indications are that the 2011 and 2012 cohorts are strong. Estimated total mortality has generally been increasing since 1997 to near the time-series maximum. Over 2012-14, it averaged 0.65 (48% annual mortality), which is high especially considering that reported landings have been about half of the TACs over this time period.

Projection of the stock to 2016 was conducted assuming mortality rates will be within $\pm 20\%$ of current values (2012-14 average). Projection scenarios indicate that the 2016 SSB will increase from the 2015 estimate, with median 2016 relative SSB projections ranging from 1.7 to 2.1. In each of the scenarios, the probability of being below the LRP in 2016 is low (≤ 0.05).

Despite short-term projections for stock growth, there is reason for concern for 3Ps cod going forward. Although recruitment has recently been good, mortality is very high and hence the long-term contribution of these year classes to the fishery and spawning biomass is still uncertain. The spawning biomass is composed almost entirely of young fish, with the current age at maturity being the lowest recorded in the time series. Recent biological data suggest fish growth rates are low and that fish condition is poor. In recent years, cod in 3Ps have been feeding heavily on lipid-poor prey such as snow crab and other invertebrates. The combination of these biological data with the recent rise of warm-water species such as white hake is suggestive of broad changes in the 3Ps ecosystem and perhaps reduced cod productivity.

Évaluation de l'état du stock de morue (*Gadus morhua*) de la sous-division 3Ps de l'OPANO en 2015

RÉSUMÉ

L'état du stock de morue de la sous-division 3Ps de l'Organisation des pêches de l'Atlantique Nord-Ouest (OPANO) a fait l'objet d'une évaluation lors d'une réunion du processus régional d'examen par les pairs de Pêches et Océans Canada (MPO) tenue du 20 au 22 octobre 2015. L'état du stock a été mis à jour à partir des données recueillies jusqu'au printemps 2015. Les principales sources d'information disponibles ayant été utilisées pour l'évaluation sont : une série chronologique des indices d'abondance et de biomasse obtenus à partir des relevés au chalut de fond effectués à l'hiver et au printemps par un navire de recherche canadien, des relevés par pêches sentinelles côtières, les journaux de bord scientifiques des navires de moins de 35 pi, les journaux de bord des navires de plus de 35 pi, les débarquements déclarés des pêches commerciales, des données océanographiques et des études de marquage.

Les débarquements de l'année de gestion 2014-2015 (1er avril au 31 mars) se chiffrent à 7 166 tonnes, soit seulement 54 % du total autorisé des captures (TAC). Il s'agit de la sixième saison consécutive où le TAC n'est pas atteint. Au moment de la réunion, la pêche de 2015-2016 était toujours en cours. Depuis 2007, on ne connaît pas les prélèvements de la pêche récréative. Toutefois, les estimations précédentes donnent à penser qu'ils représenteraient une petite fraction (environ 1 %) des débarquements commerciaux.

Les estimations de l'abondance et de la biomasse obtenues à partir des relevés de printemps effectués par le navire de recherche du MPO sont relativement stables depuis les sept dernières années (à l'exception d'une valeur plus élevée en 2013, qui semble avoir été influencée par un effet propre à l'année). L'abondance est légèrement plus élevée qu'au début des années 2000 et la biomasse est, de manière générale, plus faible que durant ces années. Le relevé de 2015 a révélé la prédominance de jeunes poissons n'ayant pas encore atteint la taille commercialisable. Depuis 1999, les taux de prise des pêches sentinelles au filet maillant sont très faibles et stables. Depuis six ans, les taux de prise des pêches sentinelles à la palangre sont inférieurs à la moyenne. L'année 2014 est celle où le taux de prise a été le plus faible. Les taux de prise des pêches au filet maillant tirés des journaux de bord des navires de moins de 35 pieds sont passablement stables depuis 1999, mais ils ont augmenté en 2014, où le taux est légèrement supérieur à la moyenne. Les taux de prise des pêches à la palangre ont diminué au cours de la période 2006-2010, mais ont ensuite augmenté. Ils se situent actuellement dans la moyenne de la série chronologique.

Les estimations de la biomasse du stock reproducteur (BSR) calculées à partir d'un modèle de cohorte basé sur les relevés (SURBA) ont augmenté de façon importante au cours de la période 2009-2012, mais ont connu un déclin depuis. Les estimations de 2014 et 2015 sont environ 1,4 fois plus élevées que le point de référence limite (PRL), et le cadre de l'approche de précaution du MPO indique que le stock se situe actuellement dans la « zone de prudence ». La probabilité que la biomasse se situe sous le PRL en 2015 est faible (environ 0,05). Au cours des dix dernières années, le recrutement a augmenté, la plupart des cohortes se situant dans la moyenne de la série chronologique (1983-2014) ou la dépassant. Entre autres, les indications montrent que les cohortes de 2011 et 2012 sont abondantes. Depuis 1997, la mortalité totale estimée est, de manière générale, en hausse, et elle se situe aujourd'hui près du maximum de la série chronologique. De 2012 à 2014, sa moyenne était de 0,65 (mortalité annuelle de 48 %), ce qui est élevé, compte tenu du fait que les débarquements déclarés comptaient pour environ la moitié du TAC durant cette période.

Les prévisions relatives au stock de 2016 ont été effectuées en supposant que les taux de mortalité varieront d'environ 20 % par rapport aux valeurs actuelles (moyenne de 2012 à 2014). Les scénarios de projection indiquent que la BSR de 2016 sera plus élevée que l'estimation de 2015, les prévisions relatives médianes de la BSR de 2016 se situant entre 1,7 et 2,1. Dans chacun des scénarios, la probabilité que la BSR se situe sous le PRL en 2016 est faible (inférieure ou égale à 0,05).

Malgré les prévisions à court terme, qui laissent présager une croissance du stock, il y a lieu de se préoccuper de la morue de la sous-division 3Ps. En dépit du recrutement adéquat ces dernières années, le taux de mortalité est très élevé. Ainsi, la contribution à long terme de ces classes d'âge pour la pêche et la BSR demeure précaire. La BSR est presque entièrement composée de jeunes poissons, et l'âge de maturité actuel est celui le moins élevé parmi ceux enregistrés dans la série chronologique. Les données biologiques récentes donnent à penser que les taux de croissance du poisson sont faibles et que celui-ci est en mauvais état. Ces dernières années, la morue de la sous-division 3Ps s'est essentiellement alimentée de proies peu riches en lipides telles que le crabe des neiges et d'autres invertébrés. Ces données biologiques, combinées à l'essor récent des espèces d'eau chaude comme la merluche blanche, laissent présager que l'écosystème de la sous-division 3Ps subira des changements importants et que la productivité de la morue pourrait diminuer.

INTRODUCTION

This document gives an account of the 2015 assessment of the Atlantic cod (*Gadus morhua*) stock in North Atlantic Fisheries Organization (NAFO) Subdiv. 3Ps located off the south coast of Newfoundland (Figs. 1 and 2). The history of the cod fishery in NAFO Subdiv. 3Ps and results from other recent assessments of this stock are described in previous documents (e.g. see Brattey et al. 2008; Healey et al. 2013 and references therein). A regional assessment meeting was conducted during October 2015 (DFO 2016) with participation from Fisheries and Oceans Canada (DFO) scientists, a scientist from IFREMER (France), DFO fisheries managers, academia, fishing industry representatives from Canada, and representatives from the province of Newfoundland and Labrador and a non-government organization.

Various sources of information on 3Ps cod were available to update the status of this stock. Commercial landings through September 2015 were available. The results of the 2015 DFO RV survey were reviewed in detail and compared to previous survey results. Additional sources of information included commercial logbooks, inshore sentinel surveys and exploitation rates estimated from cod tagging conducted in 3Ps during 1997-2014. A survey-based assessment model (Cadigan 2010) was used to smooth signals in the RV survey, and provided estimates of biomass, total mortality and recruitment for the stock as covered by the DFO RV survey. Shortterm projections of these estimates under total mortality levels similar to current levels were also evaluated to advise on the management of this stock.

The French overseas territory of St. Pierre et Miquelon is within the boundaries of NAFO Subdiv. 3Ps. Following extension of jurisdiction by each country to 200 miles in the late 1970s, only Canada and France have fished in this area. This stock is jointly managed by Canada and France through formal agreements.

ASSESSMENT

TOTAL ALLOWABLE CATCHES AND COMMERCIAL CATCH

Total Allowable Catch

The cod stock in Subdiv. 3Ps was subject to a moratorium on all fishing from August, 1993 to the end of 1996. Excluding these years, the magnitude of the Total Allowable Catch (TAC) has varied considerably over time, ranging from 70,500 t in 1973, the initial year of TAC regulation, to 10,000 t in 1997 (Fig. 3). Beginning in 2000, TACs have been established for seasons beginning April 1 and ending March 31 of the following year (During January-March 2000, an interim TAC was set to facilitate this change). The TAC was set at 11,500 t for five consecutive management years (2009/10-2013/14) and was subsequently increased to 13,225 t for the 2014/15 management year and 13,490 t for the 2015/16 management year. Under the terms of the 1994 Canada France agreement, the Canadian and French shares of the TAC are 84.4% and 15.6%, respectively.

Commercial Catch

Prior to the moratorium, Canadian landings for vessels < 35 ft (see "Can-NL fixed" in Table 1) were estimated mainly from purchase slip records collected and interpreted by Statistics Division, DFO. Shelton et al. (1996) emphasized that these data may be unreliable. Post moratorium landings for Canadian vessels < 35 ft come mainly from a dock side monitoring program initiated in 1997. Landings for Canadian vessels > 35 ft come from logbooks. Non-Canadian landings (only France since 1977) were compiled from national catch statistics

reported by individual countries to NAFO. In recent years, French landings have been provided directly by French government officials.

Cod in the 3Ps management unit were heavily exploited in the 1960s and early 1970s by non-Canadian fleets, mainly from Spain and Portugal, with reported landings peaking at about 87,000 t in 1961 (Fig. 3a). After extension of Canadian jurisdiction in 1977, cod catches averaged between 30,000 t and 40,000 t until the mid-1980s when increased fishing effort by France led to increased total reported landings, with catches increasing to about 59,000 t in 1987. Subsequently, reported catches declined gradually to 36,000 t in 1992. Catches exceeded the TAC throughout the 1980s and into the 1990s. The Canada France boundary dispute at this time led to fluctuations in the French catch during the late 1980s. Under advice from the Fisheries Resource Conservation Council, a moratorium was imposed on all directed cod fishing in August 1993 after only 15,216 t had been landed. Access by French vessels to Canadian waters was restricted in 1993.

Total landings for the 2014-15 management year (April 1–March 31) were 7,166 t, or 54% of the 13,225 t TAC. This marks the sixth consecutive year in which the landings have been less than the TAC. Over the past four years the landings have averaged half the TAC. Industry participants have indicated multiple reasons contributing to this change, including reduced availability of fish, poor marketing conditions/economics, and the closure of a processing facility in St. Pierre. Prior to the 2009-10 season, the TAC had been fully utilized if not exceeded in each year since Canadian jurisdiction was extended in 1977. Furthermore, excluding the moratorium years, current landings are the lowest of the available time series. Preliminary landings data for 2015 to October 1 totaled 1,554 t. Although the 2015-16 fishing season is incomplete, these totals to date are again relatively low and it is unlikely that the full TAC will be landed.

Since 1997, most of the TAC has been landed by Canadian inshore fixed gear fishermen (where inshore is typically defined as unit areas 3Psa, 3Psb, and 3Psc; refer to Fig. 1), with remaining catch taken mainly by the mobile gear sector fishing the offshore, i.e., unit areas 3Psd, 3Pse, 3Psf, 3Psg, and 3Psh (Table 1, Figs. 3a, and 3b).

Line trawl (i.e. longline) catches dominated the fixed gear landings over the period 1977-93, reaching a peak of over 20,000 t in 1981 and typically accounting for 40-50% of the annual total for fixed gear (Table 2, Fig. 4). In the post moratorium period, line trawls have accounted for 16-26% of the fixed gear landings. Gillnet landings increased steadily from about 2,300 t in 1978 to a peak of over 9,000 t in 1987, and remained relatively stable until the moratorium. Gillnets have been the dominant gear used for the inshore catch since the fishery reopened in 1997, with gillnet landings exceeding 50% of the TAC for the first time in 1998. Gillnets have typically accounted for 70-80% of the fixed gear landings since 1998. Gillnets accounted for a lower percentage of the fixed gear landings in 2001 (60%), partly due to a temporary management restriction in their use that was removed part way through the fishery following extensive complaints from industry. Gillnets have also been used extensively in offshore areas in the post moratorium period. Cod trap landings from 1975 up until the moratorium varied considerably, ranging from approximately 1,000-7,000 t. Since 1998, trap landings have been reduced to negligible amounts (< 120 t). Hand line catches were a small component of the inshore fixed gear fishery prior to the moratorium (about 10-20%) and accounted for about 5% of landings on average for the post moratorium period. However, hand line catch for 2001 shows a substantial increase (to 17% of total fixed gear) and this may reflect the temporary restriction in use of gillnets described above. Increases in the proportion of hand-line catch in some years (e.g. 2009, 2013) are likely due to buyers paying a higher price for hook-caught fish than for gillnet landings.

The spatial-temporal details of reported landings are reported in (Table 3). Of particular note is the fact that offshore catches in 3Psh were higher from December 2014 through to March 2015 than in other recent years.

Inshore landings are low early in the year (Table 3), arising mostly from by-catch of cod in other fisheries. The vast majority of landings from the inshore areas (3Psa, 3Psb, and 3Psc) are taken in June-November, with highest landings in June and July, particularly in 3Psc. The inshore (3Psa, 3Psb, and 3Psc) has consistently accounted for most of the reported landings. These have typically been highest in Placentia Bay (3Psc), ranging from 1,500 t to almost 11,650 t with 26-55% of the annual 3Ps catch coming from this unit area alone. In 2014 the landings from 3Psc were 1673 t, representing 43% of the 3Ps total. Most of the offshore landings have come from 3Psh and 3Psf (Halibut Channel and the southeastern portion of St. Pierre Bank). Unit areas 3Psd, 3Pse and 3Psg have accounted for a very small portion of the total catch in recent years but totals for these areas were increased in 2014. Catches in these areas thus far in 2015 have again been very low. The breakdown of landings by unit area excludes landings by France from 2009 to present. Resource managers from France have reported that the majority of these landings are taken in either 3Psf or 3Psh, but the exact unit area is unavailable.

The 2013-14 (April 1 to March 31) conservation harvesting plan places various seasonal and gear restrictions on how the 3Ps cod fishery in Canadian waters could be pursued. For example, unit areas 3Psa and 3Psd were closed from November 15-April 15 of the following year to avoid potential capture of migrating cod from the Northern Gulf stock (NAFO Divisions 3Pn4RS) and all of 3Ps was closed from April 1 to May 14, a closure intended to protect spawning aggregations. Full details of these and other measures, which may differ among fleet sectors, are available from the DFO Fisheries and Aquaculture Management (FAM) branch in St. John's.

CATCH AT AGE

Estimates of the 2014 catch numbers-at-age were not available for the 2015 3Ps cod Regional Assessment Process due to a shortage of time/personnel for ageing commercial otoliths. Similar restraints at the French aging facility prevented the availability of age estimates from French catches. At this point the potential to age all future commercial samples is unclear.

Estimates of numbers at age for the 2011-13 catch were revised as fish larger than 100 cm were inadvertently omitted from the 2014 analyses due to a programming error. The revisions resulted in only minor changes in catch at age estimates. Generally, there were slight reductions observed in both the numbers and weights at age across the ages incorporated into modeling (2-12).

Revised detailed catch-at-age estimates for 2011-2013 are provided in Table 4 and the complete time series (1959 to 2013) of catch numbers at age (ages 3-14 shown) for the 3Ps cod fishery is given in Table 5. As noted in recent assessments (e.g. Brattey et al. 2008), there are discrepancies in the ratio of the sum of the product to landings over the 1959-76 period and attempts have been made to clarify these discrepancies by checking for missing catch and by adding plus group catch, but neither of these adequately explained the discrepancies. Until these discrepancies are resolved, it is recommended that catch at age prior to 1977 not be used as estimates of total removals in population analyses.

WEIGHT AT AGE

With no available ageing of commercial samples for 2014, weight-at-age could not be updated. The assessment uses approximate beginning of the year weights calculated from weight-at-age via the Rivard geometric mean method. In the absence of 2014 weight-at-age data, however, approximate beginning of the year weights at age for 2014 were instead estimated based on the geometric mean of the beginning of the year weights at each age for 2011-13.

The time series of mean weights-at-age in the 3Ps fishery (including landings from the commercial and food fisheries and the sentinel surveys) are given in Table 6a and Fig. 6, while beginning of the year weights-at-age are given in Table 6b and Fig. 7. Estimates of mean weights-at-age are derived from sampling of the catches stratified by gear type, unit area and month. Seasonal age length keys are applied to length frequency data to age the catch and calculate proportions at age. Weights-at-age are calculated using a length-weight relationship for cod.

For young cod (ages 3-6), weights-at-age computed in recent years tend to be higher than those in the 1970s and early 1980s (Table 6a; Fig. 7). The converse is generally true for older fish. Sample sizes for the oldest age groups (> 10) have been low in recent years due to the relative scarcity of old fish in the catch. The extremely low weights-at-age for ages greater than 10 could be related to these low sample sizes. Interpretation of trends in weights-at-age computed from fishery data is difficult because of among-year variability in the proportion at age caught by gear, time of year, and location.

SENTINEL SURVEY

The sentinel survey has been conducted in 3Ps since 1995 and there are now twenty complete years of catch and effort data. Sentinel activity for 2015 was ongoing at the time of the assessment; this data will be reviewed in subsequent years. The sentinel survey continues to produce a time series of catch/effort data and biological information collected by trained fish harvesters at various inshore sites along the south coast of Newfoundland. Sentinel fishers typically fish a control and an experimental site; the location of the control site is fixed, whereas the location of the experimental site can change only within the local area. In 2015, there were 11 active sites in 3Ps, using predominantly gillnets (5½" mesh) in unit area 3Psc (Placentia Bay) and line trawls in 3Psb and 3Psa (Fortune Bay and west). One 3¼" gillnet was also fished at each of 3 sites in Placentia Bay one day per week. Fishing effort was less in 1999 (6 weeks), 2003 and 2004 (8 weeks each), than most other years (9-12 weeks), but since 2005 an average of 10 weeks has been maintained. Most fishing takes place in fall/early winter. Catch rates for 5½" gillnets in 2015 remained low and were similar to those recorded since 2003. Line trawl catch rates have declined and have been below the series average for the past 5 years.

As in previous assessments, an age disaggregated index of abundance was produced for gillnet $(5\frac{1}{2})$ mesh) and line trawl sampling. There is insufficient data from the $3\frac{1}{4}$ gillnets to develop a standardized index for this gear.

STANDARDIZED SENTINEL CATCH RATES

The catch from 3Ps was divided into cells defined by gear type (5½" mesh gillnet and line trawl), area (unit areas 3Psa, 3Psb, and 3Psc), year (1995-2014) and quarter. Age length keys (ALKs) were generated for each cell using fish sampled from both the fixed and experimental sites; however, only fish caught at the fixed sites were used to derive the catch rate indices. Length frequencies and ALKs were combined within cells. The numbers of fish at length are assigned an age proportional to the number at age for that particular cell length combination. Fish that were not assigned an age because of lack of information within the initial cell were assigned an age by aggregating cells until the data allowed an age to be assigned. For example, if there are no sample data in a quarter then quarters are combined to half year, half years are combined to year; if an age still cannot be assigned then areas are combined for the year. Since 2002, there are considerably fewer otoliths available for aging; annual sample sizes range between 248 and

464 otoliths per year from gillnet catches (compared to an average of 1050 otoliths during 1995-2002). Sample sizes for linetrawl are more variable, averaging 1100 otoliths from 1996-2002, but were considerably lower in 2003-04 and from 2007 onward. These variations are generally reflective of annual differences in the numbers of fish caught and decreased sentinel effort over time. However, there have been some changes in the proportion of sampled fished aged over the duration of the Sentinel program. Despite these decreases, there have been no major difficulties in aging the sampled catch. Further, the fraction of the catch sampled for age in recent years is comparable to earlier years.

Catch at age and catch per unit effort (CPUE) data were standardized using a generalized linear model to remove site and seasonal effects. Only data from fixed sites collected between June-November were included. For gillnets, only sets with a soak time between 12 and 32 hours were included, and for line trawl, soak times less than or equal to 24 hours were used in the analysis. Prior to modeling, data are aggregated within a gear/division/site/month/year/age cell. Zero catches were generated for ages not observed in a set as sets with effort and no catch are valid entries in the model.

A generalized linear model (McCullagh and Nelder 1989) was applied to the sentinel catch and effort data for each gear type. The number of fish caught in each set is assumed to have a Poisson distribution. A log link function was chosen, and the factors included in the model were both "nested effects": month is nested within site and age is nested within year. Fishing effort is included as an offset term in the model. In the present assessment, the model adequately fitted data from gillnets and line trawls, and all effects included in the model were significant. Note that catch rates from the sentinel fishery are expressed in terms of numbers of fish, rather than catch weight as was used in the analyses of logbook data, as sentinel catches are usually not weighed (unavailability of scales). This complicates direct comparisons of the trends from Sentinel surveys to commercial catch rates.

Trends in standardized total (ages 3-10 combined) annual catch rates, expressed in terms of numbers of fish, are shown in Fig. 9a. Gillnet catch rates declined rapidly from 1997 to 1999 then remained stable but low from 1999 through to 2014. For line trawls, catch rates declined from 1995-97, remained relatively stable with no clear trend from 1997 to 2008, and have declined since that time with the 2014 value being the lowest in the time series.

Two standardized annual catch rate at age indices were also produced in the present assessment, one for each gear type. The standardized gillnet and line trawl catch rate at age indices for 1995-2013 are given in Table 7 and Fig. 9b. For gillnets, several year classes were well-represented in catches during 1995-97 but these are replaced by mostly weaker year classes. It has been noted that the 1997 and 1998 year-classes contributed significantly to both the fishery and RV index for several years. However, these year classes did not yield improvements in the magnitude of sentinel gillnet catch rates over 2002-06, when these year-classes would have been within the peak selection range of 5½" gillnets, and were a major contributor to inshore fisheries.

For line trawls, catch rates-at-age in the beginning of the time-series were higher due to the strong 1989 and 1990 year classes. In 2000-02, sentinel line trawl catch rates improved for younger fish (3 and 4 year olds) as the 1997 and 1998 year classes recruited to this index. Catch rates for older fish continued to decline. Both the 1997 year class, and in particular, the 1998 year class were consistently measured by sentinel linetrawl. As noted previously, these year-classes contributed strongly to commercial catches for several years. In addition, the 1999 year class also appears reasonably strong at ages 4-5 then is generally below average for older ages. This year class is weak in sentinel gillnet and in other (mobile gear) indices. These year-classes were followed by several successive year-classes which were weaker; but catch rates

of the 2004 year-class at ages 3-5 (in 2007-09) are higher (Table 7). In 2006, linetrawl catch rates for all ages (3-10) increased, suggesting a year effect in the data rather than a change in stock size (Table 7b). Similarly, the 2013 gillnet index shows catch rates for most ages were also higher than in the previous year.

Although the sentinel indices did not increase in magnitude as the 1997 and 1998 year-classes were available to these gears, the age composition of the standardized estimates indicates that the 1997 year-class was consistently detected as relatively strong in the sentinel gillnets (Fig. 9b). Conversely, the 1998 year-class was consistently tracked by linetrawl sampling.

As described in previous 3Ps cod assessments, interpretation of the sentinel catch rate indices is difficult. Sentinel fisheries were free from competitive influences during 1995-96 as the commercial fishery was closed. However, commercial fisheries may have had some disruptive influence on the execution of the sentinel fishery since 1997, particularly in Placentia Bay. The concentration of fishing effort in Placentia Bay during the late-1990s, primarily with gillnets, may have had a negative influence on the sentinel gillnet catch rates. Competition with commercial fishers for fishing sites, local depletion, inter annual changes in the availability of fish to inshore, and shifts in the timing of sentinel fishing to accommodate periods of commercial fishing could all influence mean catch rates between years. The extents to which such effects influence catch rates are not fully understood. These issues also complicate the interpretations of relative yearclass strength over the time-series. The decline in sentinel gill net catch rates after the fishery reopened in 1997 are consistent with the inshore catch rate data from science log books and the high estimates of exploitation from tagging in Placentia Bay. More recently, the index is consistently tracking the 2006 year-class, though the overall index has not shown increase. The linetrawl index indicates a strong contribution from the 2004 year-class but the 2006 year-class is estimated as one of the weakest over the time-series. This differs from the RV index, in which the 2006 year-class is well above average for ages 3 and 4, but near average for ages 5 and 6.

SCIENCE LOGBOOKS (< 35 FT SECTOR)

A science logbook was introduced to record catch and effort data for vessels < 35 ft in the re-opened fishery in 1997. Return of this logbook at season's end is mandatory (pers. comm., L. Slaney, Resource Management Branch-DFO). Prior to the moratorium, the only data for vessels < 35 ft came from purchase slips, which provided limited information on catch and no information on effort. Since the moratorium, catch information comes from estimated weights and/or measured weights from the dockside monitoring program. Catch rates have the potential to provide a relative index of temporal and spatial patterns of fish density, which may relate to the overall biomass of the stock. Prior to the fall assessment meeting, there were about 171,000 records in the database. As with the analysis of results from the Sentinel program, we consider data to 2014 only, and exclude the current (in-progress) year. The number of annual logbook records has declined over time. The percentage of the catch from the <35' sector that is accounted for in the standardized logbook indices declined from 70% in 1997 to a time series low of 22% in 2011, followed by a subsequent increase to 42% in 2014.

We present a catch rate index for data pertaining to the inshore fishery, i.e., unit areas 3Psa, 3Psb, and 3Psc. An initial screening of the data was conducted and observations were not used in the analysis if the amount of gear or location was not reported (or reported as offshore / outside of 3Psa, 3Psb or 3Psc), more than 30 gillnets were used, or < 100 or > 4,000 hooks were used on a line trawl. Upper limits for the amount of gear considered are applied to eliminate outlying records and exclude < 1% of the available data for each gear type. As reported in previous assessments, soak time for gillnets is most commonly 24 hours with 48 hours the next most common time period. In comparison, line trawls are typically in the water for a much shorter period of time, typically 2 hours with very few sets more than 12 hours.

The screening criteria described above have resulted in a substantial fraction of < 35 ft catch not being available for analysis. For example, in 2014 only 46% of the < 35 ft gillnet catch and 23% of the < 35 ft. linetrawl catch is included in the CPUE standardization. A major contributor to this loss of information is a high portion of logbook records with invalid entries for the location fished. This occurs when logbook entries do not record a fishing location as shown on the map included in the logbook. (These are denoted as fishing areas 29-37 and illustrated in Fig. 10a). Most of these instances are generated from logbooks which report the location fished as either "10" or "11", corresponding to "species fishing areas" (e.g., Lobster Area 10) which are relatively large and include more than one of the fishing locations illustrated in Fig. 10a. Therefore it is not possible to resolve these entries to the finer-scale areas indicated in the logbook, and, consequently, a substantial fraction of the catch and effort data from smaller vessels is excluded by our selection criteria.

As in previous assessments, effort was treated as simply the number of gillnets, or hooks for line trawls (1000s), deployed in each set of the gear; soak times were not adjusted as the relationship between soak time, gear saturation and fish density is not known. Catch rates from science logbooks are expressed in terms of weight (whereas those from the sentinel fishery are expressed in terms of numbers); commercial catches are generally landed as head on gutted and recorded in pounds; these were converted to whole weight (in kg) by multiplying by a gutted-to-whole weight conversion factor (1.2) and converting pounds to kilograms (2.203).

The catch from 3Ps was divided into cells defined by gear type (gillnet and line trawl), location (numbered 29-37, as described above) and year (1997-2014).

Initially, unstandardized CPUE results were computed and examined; in this preliminary analysis, plots of median annual catch rate for gillnets and line trawl were examined for each year location. Gillnet catch rates historically tend to be higher in areas 29-32 (Placentia Bay and south of Burin Peninsula) than elsewhere. The number of vessels fishing gillnet in the logbook database declined from 114 in 2012 to 96 in 2014. Gillnet catch rates in 2014 were high in areas 32-35 and 37, and generally average or better in the other areas (Fig. 10b). For line trawl, most data historically comes from areas west of the Burin Peninsula and the results in areas 29-33 tend to be based on low sample sizes and show more annual variability. The number of vessels fishing line trawl dropped considerably in the logbook database from 76 in 2012 to 35 in 2014. Line trawl catch rates in 2014 were highly variable among areas with no discernable patterns.

Prior to modeling, the data were aggregated within each gear/year/month/location cell, and the aggregated data were weighted by its associated cell count. Catch per unit effort data were standardized to remove site (fishing area) and seasonal (month, year) effects. Note that sets with effort and no catch are valid entries in the model.

In the present assessment, the model adequately fitted data from gillnets and line trawls and two standardized annual catch rate indices were produced, one for each gear type. All effects included in the model were significant.

Standardized gillnet catch rates declined over 1998-2000 and have subsequently been low but stable at approximately 19 kg/net (Fig. 10c). For linetrawls, temporal patterns differ from those of gillnets, with more inter-annual variation. After peaking in 2006, linetrawl catch rates generally declined to 2010, and have since been relatively steady near the time-series average of 271 kg/ 1000 hooks.

The observed trends in commercial catch rate indices for the inshore fishery are influenced by many factors. There have been substantial annual changes in the management plans in the post moratorium period (Brattey et al. 2003). In addition, gillnets and line trawls can at times be

deployed to target local aggregations. For inshore fisheries, catch rates can also be strongly influenced by annual variability in the extent and timing of inshore as well as along shore cod migration patterns. Similarly, the changes in management regulations, particularly the switch from a competitive fishery to Individual Quotas (IQs) and for some vessels the need to fish cod as bycatch to maximize financial return, can have a strong influence on catch rates that is unrelated to stock size (DFO 2006). Consequently, inshore commercial catch rate data must be interpreted with caution. Despite these issues, the initial declines in gillnet and line trawl catch rates following the re-opening of the fishery in 1997 were cause for concern. The remarkable consistency in gillnet catch rates since 1998, despite the changes in modeled catch rates for line trawls since 2006 may in part be reflecting the reduced availability of the 1997 and 1998 year classes in the inshore catch, as the numbers of fish in these cohorts decline. Subsequent year-classes have generally not been as strong, and catches would be more comprised of younger (and hence lighter) fish.

INDUSTRY LOGBOOKS (> 35 FT SECTOR)

The spatial distributions of both landings and unstandardized catch rates over 1998 to 2014 were determined using logbook data from the > 35' fleet. Data on landings and catch rates for otter trawls, gillnets and linetrawls were summarized in blocks at a resolution of 10 by 10 minutes of latitude and longitude (Fig. 10a-f) where there was sufficient data (arbitrary minimum of five per cell). The number of logbook records available for analyses has been variable over time. However, the number of gillnet sets recorded in logbooks were comparatively lower after 2008 than earlier in the time-series (Table 8). For all three gears, there was substantial spatial concentration in landings and a reduction in the number of areas reporting high landings over the time-series. Median catch rates per block were calculated for those logbook records that included duration (soak time) and limited to soak times typically observed for each gear type, based on analyses of observed frequency distributions. From 1998 to 2010, otter trawl catches were consistently high in the Halibut Channel and they were also high in areas of St. Pierre Bank during most years (Fig. 10a). Otter trawl catches declined in the Halibut Channel from 2010 to 2013. During 2014, effort was low by otter trawlers on St. Pierre Bank and while there was increased effort in the Halibut Channel, only low or moderate catches were reported there (Fig. 10a). Using all available data (including records without positional data) median catch rates for otter trawls were variable without trend for the time-series (Fig. 11). Intra-annual variability in otter trawl CPUE (5th and 95th percentiles, Fig. 11) was much lower post-2006 relative to pre-2006, consistent with results from the 10 x 10 minute analyses that showed that after 2006, fewer sets were conducted outside of the areas where high catch rates were reported previously (Fig. 10e). Catch rates in gillnets were highest in Placentia Bay and on St. Pierre Bank from 1998 to 2007, but since 2007 the highest catch rates were typically reported only on the bank (Fig. 10e). Overall, trends in gillnet catch rates declined from 1998 to 2001 and remained at a low level since then (Fig. 11). Generally, these results are consistent with those from the Sentinel Survey. Spatial trends differed between gillnets and linetrawls. Catch rates by linetrawls were variable without trend at most locations except in the Halibut Channel where catch rates were typically among the highest reported (> 1.0 kg per hook) up to 2010, but only low to moderate catch rates were reported there during 2013 and 2014 (Fig. 11f). Median catch rates in linetrawls remained similar among years over the entire time-series (Fig. 11), despite spatial shifts in effort. How trends in catch rates relate to stock status is unknown, particularly considering variable or declining effort.

TAGGING EXPERIMENTS / EXPLOITATION RATE

Tagging of adult (> 45 cm fork length) cod in Subdiv. 3Ps was initiated in 1997 and has continued through 2015. The objectives of the tagging study are to provide information on movement patterns of 3Ps cod as well as obtain ongoing estimates of exploitation rates (% harvested) on different components of the stock. Tagging efforts in 3Ps were reduced during 2005-11 with releases only in Placentia Bay (3Psc) during 2008-11 and there has been no tagging in the offshore regions of 3Ps since 2005 (Table 9a). However, during 2012-13 efforts were made to expand the tagging program under the auspices of a Fisheries Improvement Program (FIP) conducted by various levels of Government, Industry, and the WWF. The number of tags released was increased to 2,340 in 2012 and 3,951 in 2013, with coverage expanded to include a broader portion of the stock area (3Psa, 3Psb, 3Psc). Attempts to tag in the offshore were also made but these proved unsuccessful. In 2014, the number of tags released declined to 971 and coverage was again restricted to 3Psb and 3Psc. A brief synopsis of results from recent tagging is provided below.

Over 2008-10, approximately 300 tags were returned annually (Table 9b). Fewer tags were returned in 2011 and 2012 (133 & 190, respectively), resulting from both reductions in landings and the restricted spatial extent of releases, but returns have increased in 2013 (238) as a consequence of increased tagging effort. The percentage of returns coming from participants in the recreational fishery ranged from 4-11% during 2007-13 (Table 9b). Sufficient numbers of tags have been returned to estimate annual tag reporting rates (fraction of captured tags returned) using mixed-effects logistic regression (Cadigan and Brattey 2008). Inter-annual variations are relatively small with no trends over time (Fig. 12). Reporting rate for the offshore portion of 3Ps in 2013 was 0.62 and for the inshore was 0.72. Corresponding values for 2014 were 0.65 and 0.70, respectively.

The methods and estimates of the average annual exploitation rates (harvest rates, in percent) for cod tagged in different regions of 3Ps are described in detail elsewhere (Brattey and Cadigan 2004; Brattey and Healey 2003, 2004, 2005, 2006; Cadigan and Brattey 2003, 2006, 2008). However, results on size-specific exploitation rate from recent releases showed that although exploitation has been low in Placentia Bay, exploitation rate increases considerably with fish length, particularly for those sizes which are fully selected by the predominantly gill-net fishery. In the previous assessment, a comparison of exploitation rates across various size groups indicated that despite an overall low exploitation rate, larger cod (> 65 cm) were subject to higher exploitation rates. In 2013 harvest rates for cod tagged in Placentia Bay were broadly similar among cod size groups ranging from 13-16%; for those tagged in Fortune Bay the range was 10-25%. In 2014 harvest rates are modest, but given that only about half of the TAC was taken in both 2013 and 2014, harvest rates would have been substantially higher if the full TAC was taken.

With respect to migratory patterns and stock distribution, recent tagging results (not shown) generally agree with previous findings (Brattey and Healey 2004, 2005, 2006), and indicate restricted mixing of cod from different portions of the 3Ps stock area. In particular, cod tagged in western 3Psa tended to show strong association with 3Pn, whereas those tagged on the eastern side of the Hermitage Channel of 3Psa tended to move eastwards into Fortune Bay (3Psb). Among cod tagged in Placentia Bay a small percentage (2.7% of 566 recaptures during 2011-14) was recaptured from the neighbouring stock area in Divs. 3KL. Cod tagged inshore tended to show limited movement to offshore portions of the stock area. The limited mixing of inshore cod in particular make it difficult to determine whether inshore stock indices (Sentinel survey) are reflecting trends in the stock as a whole, or mainly of inshore components of the

stock. Trends in the indices differ between inshore and offshore and remain difficult to reconcile with the tagging results.

RESEARCH VESSEL SURVEY

Stratified-random surveys have been conducted in the offshore areas of Subdiv. 3Ps during the winter-spring period by Canada since 1972 and by France over 1978-92. The two surveys were similar with regard to the stratification scheme used, sampling methods and analysis, but differed in the type of fishing gear and the daily timing of trawls (daylight hours only for French surveys). Canadian surveys were conducted using the research vessels A.T. Cameron (1972-82), Alfred Needler (1983-84; 2009-present), and Wilfred Templeman (1985-2008). From the limited amount of comparable fishing data available, it has been concluded that the three vessels had similar fishing power and no adjustments were necessary to achieve comparable catchability factors, even though the A.T. Cameron was a side trawler. The CCGS Teleost has also been used during exceptional events (e.g. severe mechanical issues on regular survey vessel), and any potential vessel effect is unaccounted for. Cadigan et al. (2006) found no significant differences in catchability for several species, including cod, between the Wilfred Templeman and Alfred Needler research vessels. Surveys by France were conducted using the research vessels Cyros (1978-91) and Thalassa (1992) and the results are summarized in Bishop et al. (1994).

The Canadian research vessel surveys from 1983 to 1995 employed an Engel 145 high-rise bottom trawl. In 1996, research surveys began using the Campelen 1800 shrimp trawl. The Engel trawl catches for 1983-95 were converted to Campelen 1800 shrimp trawl-equivalent catches using a length-based conversion formulation derived from comparative fishing experiments (Warren 1996; Warren et al. 1997; Stansbury 1996, 1997).

The stratification scheme used in the DFO RV bottom-trawl survey in 3Ps is shown in Fig. 13. Canadian surveys have covered strata ranging down to 300 fathoms (ftm) in depth (1 fathom = 1.83 meters) since 1980. Five new inshore strata were added to the survey in 1994 (stratum numbered 779-783) and a further eight inshore strata were added in 1997 (numbered 293-300) resulting in a combined 18% increase in the surveyed area. Beginning in the 2007 assessment, new indices using survey results from the augmented survey area were presented for the first time. Two survey time series are constructed from the catch data from Canadian surveys. The index from the expanded surveyed area that includes new inshore strata is referred to as the "All Strata < 300 ftm" index and the time series extends from 1997 onwards. The original smaller surveyed area is referred to as the "Offshore" survey index and the time series that incorporates a random stratified design extends from 1983-present.

The timing of the survey has varied considerably over the period (Table 10, Fig. 14). In 1983 and 1984 the mean date of sampling was in April, in 1985 to 1987 it was in March, and from 1988 to 1992 it was in February. Both a February and an April survey were carried out in 1993; subsequently, the survey has generally been carried out in April. The change to April was aimed at reducing the possibility of stock mixing with cod from the adjacent northern Gulf (3Pn4RS) stock in the western portion of 3Ps. The stock mixing issue is described in more detail in previous assessments (e.g., Brattey et al. 2007). Due to extensive mechanical problems with the research vessel, the survey in 2006 was not completed: only 48 of 178 planned sets were completed. Therefore, results for 2006 for the full survey area are not considered comparable to the remainder of the time-series. All subsequent surveys were considered complete. The 2015 survey completed 173 of the intended 178 fishing sets. All index strata were covered.

Abundance, Biomass, and Distribution

Trends in the abundance index and biomass index from the RV survey are shown for the offshore (i.e. index strata only: those strata of depth \leq 300 ftm, excluding the new inshore strata) and the all strata area (Fig. 15). The trawlable abundance index declined from 88.2 million in 2001 to 38.7 million in 2008, the longest period of consistent decline in the entire time-series. However, the index has generally been higher during 2009-15. The 2013 estimate was particularly high, but was followed by a subsequent large decline for the 2014 and 2015 estimates which are around the 1997-2015 average. The trawlable biomass estimate has been variable for much of the post-moratorium period, but shows a general declining trend over 1998-2015, with the exception of a high value of 83,000 t in 2013. The survey biomass estimate for 2015 was 36,900 t and slightly above the time series average.

The trends and degree of variability in the combined inshore/offshore survey are almost identical to those of the offshore survey in spite of the 18% increase in surveyed area; the only exception is in 2005 when the combined inshore/offshore survey shows higher biomass and abundance due mainly to a large estimate from inshore stratum 294 (see Tables 11 and 12).

Survey indices of cod in 3Ps are at times influenced by "year-effects", an atypical survey result that can be caused by a number of factors (e.g., environmental conditions, movement, degree of aggregation, etc.) which may be unrelated to absolute stock size. The time series for abundance and biomass from 1983 to 1999 show considerable variability, with strong year effects, for example, the 1995, 1997 and 1998 surveys when compared to those from adjacent years. The 1995 estimate is influenced by a single large catch contributing 87% of the total biomass index and therefore has a very large standard deviation. The 1997 survey values were the lowest observed in the time series, which goes back to 1983, being less than half of the 1996 index. The size composition of fish in the 1997 RV survey suggested that this survey did not encounter aggregations of older fish, yet these fish were present in the 1996 survey and in subsequent commercial, sentinel, and survey catches.

There are strong indications that the 2013 survey may have been influenced by a year effect. In 2013, a large single catch of fish on Burgeo Bank resulted in >50% of the overall biomass being located in this particular area (Fig. 16) and causing a large spike in the survey indices for that year. A similar phenomenon occurred in the 2015 survey with a single large set on Burgeo Bank accounting for 38% of the biomass index. The fact that single large fishing sets have heavily influenced survey indices in two out of the last three years is a concern for the assessment and the sporadic appearance of high numbers of fish on Burgeo Bank is not fully understood. Another clear sign of a year-effect is the fact that the 2013 RV survey estimated that the abundance of multiple cohorts increased compared to observations of these same cohorts at one age younger in 2012. For at least some cohorts, this change is largely influenced by the single large survey catch described above. The number of fish in a cohort cannot increase as it ages (without immigration) and when analyses suggest that such an increase has occurred it is considered evidence for a year effect. In the 2013 survey, the 2011 year class (age 2 fish) was estimated to be by far the strongest in the times series. The subsequent two assessments have downgraded the estimated strength for this year class but it still appears strong relative to other recent year classes.

To further investigate whether there have been annual shifts in the distribution of the stock at the time of the survey, trends in the proportion of the total abundance observed in three different regions of the stock area were compared. The areas were (see Fig. 17): the inshore (strata 293-298, and 779-783), the Burgeo area (Hermitage strata 306-309, and 714-716), and the eastern area (remaining strata). Data from the combined inshore/offshore survey were used and the Campelen trawl was fished in all these surveys. The proportions were variable (Fig. 18), with

typically 30-70% observed in the larger eastern area, 15-60% in the Burgeo area, and around 10-25% in the inshore area. Part of the variation in the spatial composition of the index is due to year effects, often resulting from a small number of survey sets with very large catches. For example, the value for 1998 is high due to several large catches on Burgeo Bank and vicinity that may have included fish from the neighbouring northern Gulf (3Pn4RS) cod stock.

The spatial distribution of catches of cod during the 2015 survey was examined, for all ages combined (Fig. 19a, b, also includes 2012 to 2014 survey results for comparison) and separately for ages 1-12 (Fig. 19c). Previously it has been demonstrated (Healey et al. 2011a, Brattey et al. 2007) that cod tend to be caught over a considerable portion of NAFO Subdiv. 3Ps with the largest catches typically in the southern Halibut Channel area, on Burgeo Bank and vicinity, and within Fortune Bay. However, cod tend to be consistently scarce in the deep water below the mouth of Placentia Bay and in the inner reaches of Hermitage Channel. Increased catches of cod on Burgeo Bank were evident in 2015 and 2013.

Distribution plots of age-disaggregated survey catches from the 2015 survey (Fig. 19c) indicate low catches of one year old cod. It is important to note that due to their small size, one-year old cod are not fully selected by the trawl. However, the fact that survey catches of one year olds in 2015 appears much reduced relative to other recent survey years may be an early indication of a poor year-class. Two year old cod were found over most of the surveyed area, whereas the distribution of cod older than two years was restricted primarily to the Burgeo Bank/Fortune Bay area as well as the Halibut Channel. Almost no fish older than nine years were observed in the 2015 survey.

Age Composition

Survey numbers at age are obtained by applying an ALK to the numbers of fish at length in the samples. The current sampling design for cod in Subdiv. 3Ps requires that an attempt be made to obtain 2 otoliths per centimeter from each of the following locations: Northwest St. Pierre Bank (strata 310-314, 705, 713), Burgeo Bank (strata 306-309, 714-716), Green Bank-Halibut Channel (strata 318 319, 325 326, 707-710), Placentia Bay (strata 779-783) and remaining area (strata 315-317, 320-324, 706, 711-712). This spatial stratification ensures sampling is distributed over the surveyed area. The otoliths are then combined into a single ALK and applied to the survey data. These data can be transformed into trawlable population abundance at age by multiplying the mean numbers per tow at age by the number of trawlable units in the survey area. This is obtained by dividing the area of the survey by the number of trawlable units. For the "offshore" survey in 3Ps, the survey area is 16,732 square nautical miles including strata out to 300 ftms (and excluding the relatively recent inshore strata added in 1997). The swept area for a standard 15 min tow of the Campelen net is 0.00727 square nautical miles. Thus, the number of Campelen trawlable units in the 3Ps survey is $16,732 \div 0.00727 = 2.3 \times 10^6$. For the expanded survey area, there are approximately 2.7 x 10^6 trawlable units.

The mean numbers per tow at age in the DFO RV survey are given in Table 13 and results for ages 1-15 are shown in the form of standardized "bubble" plots in Fig. 20. Cod up to 20 years old were not uncommon in survey catches during the 1980s, but the age composition became more contracted through the late 1980s and early 1990s. In fact, few cod aged 15 or older have been sampled during surveys in the past two decades and none have been sampled in the last three years.

In recent years, much attention has been focused on the 2006 year-class. Over 2007-11, survey results for this year-class were much greater than average (at ages 1 through 5). However, subsequent surveys have suggested the numbers at age for the 2006 year-class at older ages to be near or below average. The age 1 survey index for the 2012 survey, representing the 2011

year-class, was much greater than the time-series average. This year-class has continued to look strong in subsequent surveys.

Size-at-Age (Mean Length and Mean Weight)

The sampling protocol for obtaining lengths-at-age and weights-at-age has varied over time (Lilly 1998), but has consistently involved stratified sampling by length. For this reason, calculation of mean lengths and weights included weighting observations by population abundance at length (Morgan and Hoenig 1997), where the abundance at length (3-cm size groups) was calculated by areal expansion of the stratified arithmetic mean catch at length per tow (Smith and Somerton 1981). Only data from 1983 onward are presented.

Mean lengths-at-age were updated using the 2015 survey data. For ages older than age 3 there was a general decline in length-at-age from the early 1980s to the mid-1990s (Table 14, Fig. 21a). For most ages there was an increase in length-at-age from the mid-1990s through the mid-2000s, followed by a period of lower length-at-age in recent years. In 2015 length-at-age increased compared to 2014 for about half of the ages examined.

Annual variation in mean length at age was examined using deviation from the average as a proportion over the time series for each age. The average mean length at age from 1983 to 2015 was calculated for each age. Deviation was calculated for each age in each year by subtracting the mean for the age for the time series from the annual observation for that age and then dividing this by the mean for that age. Ages 3 to 9 were included. Mean length at age was greater than average in the mid-1980s. It showed a declining trend until the mid-1990s when it was below average. Mean length-at-age subsequently increased. Length-at-age has been lower than average in 6 of the last 8 years and remains well below average in 2015. The last 3 years are 3 of the 4 lowest in the time series (Fig. 21b).

Values for mean weight at age were updated with data from the 2015 survey (Table 15, Fig. 22a). There was an increase in weight-at-age from the mid-1990s through the mid-2000s, but data from 2007-15 surveys suggest that mean weight-at-age was mainly lower than the mid-2000s. Mean weight-at-age was greater than average in the mid-1980s and generally declined to very low levels in the mid 1990's (Fig. 22b). As with mean length-at-age, mean weights-at-age increased after that time to about 2000. Weight-at-age since 2005 has been generally lower with 6 of the last 8 years below average. Weight-at-age in 2013 and 2014 were the lowest in the time series. Weight-at-age increased in 2015 but was still well below average and 5th lowest in the time series.

Condition

Relative gutted condition (relative K) and relative liver condition (relative LK) were calculated from survey data. It has been shown that the timing of the survey affects estimates of condition for 3Ps cod (Lilly 1998) and so only estimates from April surveys beginning in 1993 were estimated. A length gutted weight relationship was estimated, and the condition index is then observed condition divided by the condition predicted from the length weight regression for a fish of that length. Relative liver condition was calculated in a similar fashion using a liver weight-body length regression. However, evaluation of the model fit indicated that a simple linear regression did not provide an adequate fit to the data. In addition, liver weight data for fish under 30 cm and greater than 120 cm were highly variable. Therefore, the analyses were restricted to fish 30-120 cm in length and the regression was log(liver weight) = intercept + $b1^{*}log(length) + b2^{*}(log(length)^{*}log(length))$. Both gutted and liver condition increased to about 1998 and then were lower until 2004 with a spike in 2005 (Fig. 23). Gutted condition reached a low in 2008 but has increased steadily since that time to reach above average levels in 2013,

however it declined again in 2014 and remained low in 2015 Liver condition declined substantially in 2014 and most years since 2007 have been below average.

In conclusion, mean length-at-age and mean weight-at-age have both been low over the last 3 years and indices of condition have been low in the last 2 years.

Maturity

The sampling design used to gather biological data to study maturation trends and an overview of maturity and fecundity research relating to 3Ps cod can be found in Brattey et al. (2008).

Annual estimates of age at 50% maturity (A50) for females from the 3Ps cod stock, collected during annual winter/spring DFO RV surveys, were calculated as described by Morgan and Hoenig (1997). Trends in age at 50% maturity are shown in Fig. 24a (only cohorts with a significant slope and intercept term are shown); parameter estimates and associated standard errors for the 1954 to 2010 cohorts are given in Table 16, and the model did not adequately fit data for subsequent cohorts as most of these fish remain immature. Age at 50% maturity declined rapidly for cohorts from the 1980s and remained low for cohorts from the 1990s. There was a slight increase in A50 to ~ 5.5 years for cohorts of the early 2000s but values for the most recent cohorts have once again dropped below 5 years (Fig. 24a). Given that the estimation is conducted by cohort, estimates for the most recent cohorts may be revised slightly in future years as additional data are collected. Males show a similar trend in A50 over time (data not shown), but tend to mature about one year earlier than females.

Annual estimates of the proportion mature at age are shown in Table 17; these were obtained from the cohort model parameter estimates in Table 16. The estimates of proportion mature for ages 4-7 show a similar increasing trend (i.e., increasing proportions of mature fish at young ages) through the late 1970s and 1980s, particularly for ages 5, 6, and 7 (Fig. 24b). Due to the low age at 50% maturity, the proportions mature at age are quite high.

The time series of maturities for 3Ps cod shows a long-term trend as well as considerable annual variability. Such variations can have substantial effects on estimation of spawner biomass. Further, the age composition of the spawning biomass may have important consequences in terms of producing recruits (see Brattey et al. 2008).

Cohort Analyses

During the 2006 assessment of this stock, it was agreed that sequential population analyses of 3Ps cod should be discontinued, primarily due to inconsistent trends in the index data available (poor correlations within and between surveys) and poor model fit (strong year-effects and poor precision in estimated parameters) (For additional discussion, refer to DFO (2006, 2007) as well as Brattey et al. (2008)). In addition, the accuracy of the total landings captured by the commercial catch data has been questioned during assessment meetings (e.g., Shelton et al. 1996, DFO 2010). In the 2007 assessment of this stock, Brattey et al. (2008) provided estimates of instantaneous rates of total mortality (Z) for 1997-2007 as computed directly from the combined DFO RV survey. A debate on smoothing these annual estimates of total mortality during the winter 2009 zonal assessment meeting led to the exploration of cohort modeling of the survey data to provide structure to the smoothing. Consequently, a survey-based (SURBA) model based upon the work of Cook (1997) was implemented and it provides estimates of total mortality, relative recruitment strength, and relative estimates of total and spawning biomass from the DFO RV survey (see Cadigan 2010).

Data for ages 1-12 from the DFO RV expanded index were used in the SURBA, including an adjustment for the 1983-96 survey indices to account for the inshore area that was not sampled

in these years. However, data for ages 1 and 2 over 1983-95 are zero-weighted in estimation, due to concerns of potential biases in RV data conversion of these age groups (this conversion accounts for a change in the trawl gear after the 1995 survey). The age-specific adjustment is the ratio of the average survey index for the expanded area (1997-present) to the average offshore survey index over the same period (see Fig. 25). These adjustment factors are applied to the survey index at age over 1983-96. As younger fish are generally found in greater abundance in the near-shore, this ratio exceeds one at ages 1-3. For fish older than age 3, the adjustment is less than 1 and generally declines with age.

The age-disaggregated cohort model assumes that total mortality experienced by the population can be separated into vectors of age effects s_a and year effects f_y (such that $Z_{a,y} = s_a x f_y$). Estimation (lognormal likelihood) minimizes the difference between the predicted and observed survey index over all ages and years, with penalties applied to impose a degree of smoothing on the estimated age and year effects. However, the model was speculative in that it could not reliably estimate survey selectivity, and fixed values are applied. Survey selectivity is assumed to be constant for ages 4 +, that is, selectivity is "flat-topped". The age effects estimated in deriving a recruitment index from the age 1-4 survey data during a previous assessment of this stock (Healey et al. 2013) were used to provide some objectivity in the survey catchabilities supplied to the model for the ages which are not fully-recruited. An alternate assumption assuming "domed" selectivity was explored in a previous assessment (Healey et al. 2011a). It has been argued that best-practice is to assume flat-topped selectivity (Northeast Fisheries Science Center 2008) unless there is evidence otherwise.

Detailed model specification, sensitivities of results to modeling assumptions, and estimation procedures applied in developing this model are documented in Cadigan (2010). PROC NLMIXED in SAS/STAT[™] software is used to estimate parameter values and associated uncertainty.

An updated run of the previous assessment model formulation was presented. Estimated agespecific patterns in mortality indicate an increasing trend in relative total mortality to age 9, after which relative mortality decreases slightly (Fig. 26). Cohort analyses of the RV data indicated that SSB declined by 58% over 2004-09 (Fig. 27a). Median SSB was estimated to be at the LRP in 2008 and below the LRP in 2009. SSB increased considerably over 2009-12 but has since declined. The 2014 and 2015 estimates are approximately 1.4 times higher than the LRP. The probability of being below the LRP in 2015 is low (~0.05). As a result of improved recruitment and recent increases in the proportion mature-at-age, 82% of the 2015 SSB is comprised of fish of ages 4-7. The reliance on young spawners may be a concern given that younger fish produce fewer and smaller eggs/larvae that may have reduced survival. Young fish also spawn over a narrower time frame which decreases the probability of overlap between larval emergence and peak plankton abundance and can result in reduced survival.

Total mortality rates reflect mortality due to all causes, including fishing. Estimated total mortality from a cohort model (Fig. 27b) for ages 5-10 has generally been increasing since 1997 and current estimates are near the time series maximum. The average estimated mortality over the last three years (2012-14) is 0.65 (48% annual mortality), which is high especially considering that reported landings have been about half the TAC over this time period. The total mortality values are weighted by population number at each of ages 5-10. It remains unclear whether or not these mortality rates are sustainable over the longer term.

Recruitment (Fig. 27c) has improved over the last decade with most cohorts at or above the time series (1983-2014) average. Indications are that the 2011 and 2012 cohorts are among the strongest in the time-series. However, it should be noted that the uncertainty around the

estimates for these recent cohorts is quite high and the estimates may be revised as additional data are collected.

Model diagnostics are similar to results obtained during the previous assessment. There is evidence of the year-effects as described in the survey results section, particularly those during the mid-1990s (multiple years of almost all negative residuals). Otherwise, there are no indications of systematic model fit issues (Fig. 28).

The assessment of 3Ps cod has been subject to retrospective revisions of estimates from previous years with the addition of a new year's survey data (Fig. 29). For example, in the 2013 assessment the SSB demonstrated a steadily increasing trend from 2009-13 with the 2013 estimate being twice the level of the LRP. In the 2014 assessment, however, SSB leveled off after 2012, with the 2013 estimate being 1.6 times the level of the LRP. In the 2015 assessment, the 2013 SSB estimate has been further downgraded to 1.5 times the level of the LRP. Likewise, the previous assessment estimated the 2014 SSB to be 1.6 times the level of the LRP, whereas this has been adjusted to approximately 1.4 times the LRP in the current assessment. Retrospective revisions are not uncommon in cohort models, which use annual information to predict the abundance of multiple cohorts. The relatively large revision to the SSB estimates occurred because the 2014 and 2015 survey estimates have decreased considerably from the large (and unexpected) values of the 2013 survey. Several recent year-classes were revised downwards, with the greatest revision to the 2011 year-class. Total mortality has increased considerably since 1997 but there has been a retrospective revision of the trend in mortality in recent years. The 2013 assessment suggested mortality to have decreased slightly since 2009, the 2014 assessment estimated mortality to have remained somewhat steady since 2009, and the most recent assessment estimates that mortality has continued to increase since 2009 (Fig. 29).

Projection of the stock to 2016 was conducted assuming mortality rates will be within \pm 20% of current values (2012-14 average). More specifically, five projection scenarios were conducted, scaling current total mortality by each of 0.8, 0.9, 1.0, 1.1, and 1.2. A three year geometric mean of recruitment and three year average of weight-at-age were used. The proportions mature at age were projected forward from the cohort-specific model estimates.

Projection scenarios indicate that the 2016 SSB will increase from the 2015 estimate, with median 2016 relative SSB projections ranging from 1.7 to 2.1 (Fig. 30). In each of the scenarios, the probability of being below the LRP in 2016 is low (≤ 0.05). By 2016 the strong 2011 year class will be 5 years old and under all projection scenarios examined will constitute at least 50% of the 2016 SSB, indicating an extremely high reliance of the population on very young spawners.

ECOSYSTEM CONSIDERATIONS

The structure and trends in the fish community of NAFO Subdiv. 3Ps were analyzed on the basis of Research Vessel (RV) biomass, abundance, and biomass/abundance (BA ratio) indices derived from DFO winter and spring surveys in the 1982-2015 period. These analyses involved the characterization of the community by fish functional groups which, for the most part, are defined considering the species size and general trophic characteristics. These functional groups are small, medium, and large benthivores, piscivores, plankpiscivores, planktivores, and shellfish (this last group only includes commercial shellfish species, like *Pandalus* shrimps and Snow Crab). Reliable data on shellfish are only available since 1996, when the fishing gear used in the survey was changed from an Engels to a Campelen trawl. Since there are no conversion factors available for all species, many analyses were carried out partitioning the times series into Engels (1982-95) and Campelen (1996-2015) periods.

Changes in total biomass and internal structure of the fish community were described on the basis of trends over time, and analyzed using Bray-Curtis similarity matrices from standardized and non-standardized RV biomass data. Analyses from non-standardized data allow the consideration of differences in magnitude, while those from standardized data allow a focus on internal structure of the fish community. Hierarchical agglomerative cluster analyses, together with Similarity Profile permutation tests were used to identify significant clusters of years within the Engels and Campelen periods. Changes in abundance were described considering the trends over time by fish functional groups, while the changes in fish sizes were evaluated using normalized anomalies of BA ratios by functional group.

Food consumption by the fish community was explored using a suite of approaches aimed at estimating food requirements and/or average consumption rates [per unit of biomass] for different taxa. A total of 8 different consumption sets were defined considering different combinations of consumption models (daily ration and simple allometric models). All these models assume that consumers actually met their expected annual requirements, which could overestimate consumption, but also the expansion of consumption to the population/stock level is based on RV biomass estimates without catchability corrections, which may lead to underestimating consumption. Overall, these approaches considered together are not expected to provide a fine tuned estimate of consumption; instead, the goal is to produce a reasonable envelope for the order of magnitude of food consumption by the fish community.

Diet composition was studied using stomach content analyses from samples collected during DFO RV surveys. Diet studies focused on key fish species, including Atlantic cod. Other related information like the frequency of empty stomachs, and the meal size (approximated by the weight of the food remains in the stomach), were also examined.

Despite the issues associated with changes in timing of the survey (i.e. winter and spring), it is clear that the overall biomass of the fish community increased in the early 1980s, and later declined in the late 1980s and early 1990s (Fig. 31). This decline also involved changes in the structure of the fish community, and a general reduction in fish size (Fig. 32). Results from the cluster analysis of the 1982-1995 period indicate that the changes in community structure have a coherent temporal sequence, where significant clusters typically aggregate consistent periods of time (i.e. consecutive years).

Since the mid-1990s, the overall biomass of the fish community has not changed significantly, but abundance has. Overall abundance increased until 2013, and declined afterwards. These changes in abundance have been mainly driven by planktivores, and to a lesser extent plankpiscivores in the late 2000s (Fig. 31).

Notwithstanding the relative stability of the overall biomass level during the Campelen period (1996-2015), the biomass structure of the fish community has changed during this time. These changes have involved increases/decreases in biomass at the functional group level, but unlike earlier observations, the overall pattern of change in structure does not seem to follow any obvious temporal sequence. Still, trends among some functional groups are significantly correlated (e.g. small benthivores and shellfish are positively correlated, medium and large benthivores are also positively correlated). During this period, fish size (BA Ratio) also showed a further decline in the mid-2000s, and remains at that lower level to this day (Fig. 32).

Recent changes include clear declines in biomass in small benthivores, planktivores, and shellfish over the last five years (Fig. 31). Piscivores show a relatively stable overall biomass level, but experienced important changes in internal structure. Cod used to be the exclusive dominant species within this functional group, but silver hake has increased its dominance, and currently shows biomass levels similar to cod (Fig. 33).

Taking into account all these changes together, it seems that the fish community in 3Ps shows evidence of some level of internal structure and coherence, but it also shows signs of lessening in that internal cohesion in the most recent period. The noisier patterns in recent years could be linked to increasing import/export processes and/or increased variability in these fluxes. Therefore, and in terms of ecosystem identity, the marine community in NAFO Subdivision 3Ps possesses enough elements to characterize it as a functional ecosystem, but one that is heavily influenced by neighboring systems (Grand Bank, Gulf of St. Lawrence, and Scotian Shelf).

Regarding the order of magnitude of consumption, the fish community in 3Ps is estimated to consume food in the range of 1-3 million tonnes per year. Within this envelope, piscivores are estimated to eat in the order of 200-800 thousand tonnes per year.

Cod diet in the spring of 2015 continues to be dominated by snow crab, with sandlance as the second most important prey (Fig. 34). Predation on snow crab is more important in larger cod (Fig. 35). Although time series of cod diet data in 3Ps are far from complete, the available evidence indicates that cod has a very variable diet in this region. This suggests that food availability may be highly variable, and potentially limiting.

In the 2013-15 period, other predators like American plaice, turbot, and Yellowtail flounder had sandlance as a dominant prey; capelin was also an important prey in some of these predators. None of them preyed upon snow crab to the same degree as cod (Fig. 35).

When comparing 3Ps with neighboring 3O for cod and other predators, it seems clear that, although variable, sandlance is an important prey in the broader area, while the high reliance of cod on snow crab appears as a 3Ps-specific phenomenon.

Examination of meal sizes and frequency of empty stomachs indicate that current meal sizes are of similar or larger magnitude than the ones observed in the 1980s prior to the 1990s decline, while the frequency of empty stomachs is also low. Meal sizes were clearly smaller, and the frequency of empty stomachs much larger, during the mid-1990s. These observations suggest that availability of any food type may have been a factor in the early 1990s decline. Current status appears to be more likely related to food quality, although availability of higher quality food may also be at play.

In comparative terms, cod meal sizes are smaller in 3Ps than in the neighboring 3LNO ecosystem. This observation gives credence to the interpretation that the variability in 3Ps cod diet could be associated with potential constraints in prey availability.

In summary, the 3Ps fish community can be considered a reasonably defined ecosystem functional unit, but it also appears susceptible to external influences. Ongoing warming trends, together with the increasing dominance of warm water species, recent declines in planktivores, and the reduced fish sizes across fish functional groups suggest that this ecosystem is undergoing structural changes, and potentially experiencing reduced productivity conditions. Although complete understanding of these changes, and their full implications for piscivores like cod and white hake, are still lacking, the available evidence suggests that current productivity may be reduced. In this context, it would be strongly advisable to exercise higher than usual risk-aversion in the management of these stocks.

CONCLUSIONS AND ADVICE

The DFO survey covers most of the stock area and is designed to provide an index of stock size. Therefore, consistent with recent assessments, a cohort model (SURBA) based on this survey was used to infer overall stock trends.

The stock is currently in the Cautious Zone as defined by the DFO Precautionary Approach (PA) Framework. The spawning stock biomass (SSB) has declined since 2012 and is currently estimated to be 41% above the limit reference point (LRP; BRecovery = SSB1994). The probability of being below the LRP in 2015 is low (p=0.05). Concern is expressed that there are few older fish in the SSB.

Recruitment has improved over the last decade with most cohorts at or above the time-series (1983-2014) average. In particular, indications are that the 2011 and 2012 cohorts are strong.

Estimated total mortality has generally been increasing since 1997 to near the time-series maximum. Over 2012-14, it averaged 0.65 (48% annual mortality), which is high especially considering that reported landings have been about half of the TACs over this time period.

Projection of the stock to 2016 was conducted assuming mortality rates will be within \pm 20% of current values (2012-14 average). Projected SSB increases in all cases (ranging from 23-46%) but remains within the Cautious Zone. These increases are driven by the relatively abundant 2011 year-class.

Based on the Conservation Plan and Rebuilding Strategy adopted by Canada the calculated TAC for 2016/17 would be 13,043 t.

Recent trends in mean size and weight-at-age, fish condition, and age-at-maturity are at or near their lowest observed levels, suggesting reduced productivity of this stock. This is consistent with broader ecosystem trends which also suggest decreased productivity.

SOURCES OF UNCERTAINTY

The level of total removals is uncertain. It is likely that historical landings have been biased both upwards (e.g., due to misreporting of catch by area and/or species) and downwards (e.g., due to discarding). In addition, commercial catch accounting procedures pre- and post-moratorium are radically different, with current measures likely to provide improved estimates of removals. Estimates of recreational fishery landings have not been available since 2006. In assessing stock status, it would be useful to better understand the accuracy of total removals, especially in the post-moratorium period. Given these uncertainties and the variability in the reliability of removals estimates, they are not used in the current analytical assessment. Assessment models do exist that are capable of handling uncertainty in the catch estimates but some information would still be needed in order to place reasonable bounds on the landings.

There is uncertainty regarding the origins of fish found in 3Ps at various times of the year. Tagging and telemetry experiments show that there is mixing with adjacent stocks (southern 3L and 3Pn4RS) and this may vary over time. However, results indicate that exploitation of fish tagged within Placentia Bay has been predominantly within that area, even after several years at liberty.

The geographical coverage of tagging since 2007 is limited to inshore areas; during 2008-11 cod were only tagged in Placentia Bay (3Psc). More recently, tagging has been expanded to other inshore areas (3Psb in 2012-14, 3Psa in 2013). The lack of recent tagging in other areas adds uncertainty to the understanding of natural mortality rates, exploitation rates, stock structure, as well as movement patterns and how these influence survey and commercial catch rates in the recent period.

The relative efficiency of the survey trawl at capturing different age groups is uncertain. Differing patterns of catchability were explored in a recent assessment and yielded a similar outcome in terms of current status relative to the LRP. If the catchabilities differ from the assumed values, stock dynamics may differ from the results presented above.

Survey indices are at times influenced by "year-effects", an atypical survey result that can be caused by a number of factors (e.g., environmental conditions, movement, degree of aggregation, etc.) which may be unrelated to absolute stock size. There are strong indications that the 2013 survey may have been influenced by a year effect. In 2013, a large single catch of fish on Burgeo Bank resulted in >50% of the overall biomass being located in this particular area and causing a large spike in the survey indices for that year. A similar phenomenon occurred in the 2015 survey with a single large set on Burgeo Bank accounting for 38% of the biomass index. The fact that single large fishing sets have heavily influenced survey indices in two out of the last three years is a concern for the assessment and the sporadic appearance of high numbers of fish on Burgeo Bank is not fully understood. Another clear sign of a year-effect is the fact that the 2013 RV survey estimated that the abundance of multiple cohorts increased compared to observations of these same cohorts at one age younger in 2012. For at least some cohorts, this change is largely influenced by the single large survey catch described above. The number of fish in a cohort cannot increase as it ages (without immigration) and when analyses suggest that such an increase has occurred it is considered evidence for a year effect. In the 2013 survey, the 2011 year class (age 2 fish) was estimated to be by far the strongest in the times series. The subsequent two assessments have downgraded the estimated strength for this year class but it still appears strong relative to other recent year classes.

The percentage of the catch from the <35' sector that is recorded within the logbook database has declined over time and now represents only about 42% of the catch as compared to approximately 70% at the start of the time series in 1997. This likely affects the quality and comparability of the standardized catch rate index derived from these data over the time series.

Age at 50% maturity has been declining in recent years. The proportion of female cod maturing at younger ages has increased for all cohorts subsequent to the 1986 cohort, resulting in an increased proportion of young fish contributing to the SSB. It is uncertain whether or not these small, young fish are effective spawners.

ACKNOWLEDGMENTS

This assessment is supported by the extensive efforts by DFO personnel who participate in collection of data during annual research surveys or sampling of the 3Ps commercial cod fishery. Additionally, data processing by D. Pittman and P. Upward and the age reading efforts of G. Cossitt are gratefully acknowledged.

REFERENCES

- Bishop, C.A., Murphy, E.F., and Davis, M.B. 1994. An assessment of the cod stock in NAFO Subdivision 3Ps. DFO Atl. Fish. Res. Doc. 1994/033, 33p.
- Brattey, J., and Cadigan, N.G. 2004. Estimation of short term tagging mortality of adult Atlantic cod (*Gadus morhua*). Fish. Res. 66: 223-233.
- Brattey, J. and Healey, B.P. 2003. Updated estimates of exploitation from tagging of Atlantic cod (*Gadus morhua*) in NAFO Subdiv. 3Ps during 1997 2003. DFO Can. Sci. Advis. Sec. Res. Doc. 2003/091.
- Brattey, J. and Healey, B.P 2004. Exploitation of Atlantic cod (*Gadus morhua*) in NAFO Subdiv. 3Ps: further updates based on tag returns during 1997 2004. DFO Can. Sci. Advis. Sec. Res. Doc. 2004/084.

- Brattey, J. and Healey, B.P 2005. Exploitation of Atlantic cod (*Gadus morhua*) in NAFO Subdiv. 3Ps: further updates based on 1997 2005 mark recapture data. DFO Can. Sci. Advis. Sec. Res. Doc. 2005/071.
- Brattey, J. and Healey, B.P 2006. Exploitation of Atlantic cod (*Gadus morhua*) in NAFO Subdiv. 3Ps: estimates from mark recapture experiments for the October 2006 assessment. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/082.
- Brattey, J., Cadigan, N.G., Healey, B.P., Lilly, G.R., Murphy, E.F., Stansbury, D.E., and Mahé, J. C. 2003. An assessment of the cod (*Gadus morhua*) stock in NAFO Subdivision 3Ps in October 2003. DFO Can. Sci. Advis. Sec. Res. Doc. 2003/092.
- Brattey, J., Cadigan, N.G., Healey, B.P., Murphy, E.F., and Mahé, J. C. 2007. Assessment of the cod (*Gadus morhua*) stock in NAFO Subdiv. 3Ps in October 2006. DFO Can. Sci. Advis. Sec. Res. Doc. 2007/053.
- Brattey, J., Cadigan, N.G., Healey, B.P., Murphy, E.F., Morgan, M.J., Maddock Parsons, D., Power, D., Dwyer, K., and Mahé, J. C. 2008. Assessment of the cod (*Gadus morhua*) stock in NAFO Subdiv. 3Ps (November 2007). DFO Can. Sci. Advis. Sec. Res. Doc. 2008/029.
- Cadigan, N.G. 2010. Trends in Northwest Atlantic Fisheries Organization (NAFO) Subdivision 3Ps Cod (*Gadus morhua*) stock size based on a separable total mortality model and the Fisheries and Oceans Canada Research Vessel survey index. DFO Can. Sci. Advis. Sec. Res. Doc. 2010/015.
- Cadigan, N.G., and Brattey, J. 2003. Semi parametric estimation of tag loss and reporting rates for tag recovery experiments using exact time at liberty data. Biometrics. 59: 869-876.
- Cadigan, N.G., and Brattey, J. 2006. Reporting and shedding rate estimates from tag recovery experiments in Atlantic cod (*Gadus morhua*) in coastal Newfoundland. Can. J. Fish. Aquat. Sci. 63: 1944-1958.
- Cadigan, N.G., and Brattey, J. 2008. Reporting rates from cod tagging studies in NAFO Divisions 2J3KL and Subdivision 3Ps. DFO Can. Sci. Advis. Sec. Res. Doc. 2008/031.
- Cadigan, N.G., Walsh, S.J., and Brodie, W. 2006. Relative efficiency of the Wilfred Templeman and Alfred Needler research vessels using a Campelen 1800 shrimp trawl in NAFO Subdivision 3Ps and Divisions 3LN. DFO Can. Sci. Advis. Sec. Res. Doc. 2006/085.
- Cook, R.M. 1997. Stock trends in six North Sea stocks as revealed by an analysis of research vessel surveys. ICES J. Mar. Sci. 54: 924–933.
- DFO. 2006. Stock Assessment of Subdivision 3Ps cod. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2006/043.
- DFO. 2007. Proceedings of the Newfoundland and Labrador Regional Advisory Process for 3Ps Cod; October 16-20, 2006. DFO Can. Sci. Advis. Sec. Proceed. Ser. 2007/016.
- DFO. 2010. Stock Assessment of Subdivision 3Ps cod. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2010/067.
- DFO. 2016. Stock Assessment of NAFO subdivision 3Ps cod. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2016/005.
- Healey B.P., Murphy, E.F., Brattey, J., Cadigan, N.G., Morgan, M.J., Maddock Parsons, D., and Mahé, J.-C. 2013. Assessing the status of the cod (*Gadus morhua*) stock in NAFO Subdivision 3Ps in 2011. DFO Can. Sci. Advis. Sec. Res. Doc. 2012/158. iv + 81 p.

- Healey B.P., Murphy, E.F., Brattey, J., Cadigan, N.G., Morgan, M.J., Maddock Parsons, D., Power, D., Rideout, R., Colbourne, E., and Mahé, J.-C. 2011a. Assessing the status of the cod (*Gadus morhua*) stock in NAFO Subdivision 3Ps in 2010. DFO Can. Sci. Advis. Sec. Res. Doc. 2011/076. vi + 86 p.
- Lilly, G.R. 1998. Size-at-age and condition of cod in 3Ps as determined from research bottomtrawl surveys (1972-1997). DFO Can. Stock Assess. Sec. Res. Doc. 98/94. 29p.
- McCullagh, P., and Nelder, J.A. 1989. Generalized linear models. London, Chapman and Hall. 261 p.
- Morgan, M.J., and Hoenig, J.M. 1997. Estimating age at maturity from length stratified sampling. J. Northw. Fish. Sci. 21: 51-63.
- Northeast Fisheries Science Center. 2008. Assessment of 19 Northeast Groundfish Stocks through 2007: Report of the 3rd Groundfish Assessment Review Meeting (GARM III), Northeast Fisheries Science Center, Woods Hole, Massachusetts, August 4-8, 2008. US Dep Commer, NOAA Fisheries, Northeast Fish Sci Cent Ref Doc. 08-15; 884 p + xvii.
- Shelton, P.A., Stansbury, D.E., Murphy, E.F., Brattey, J., and Lilly, G. 1996. An Assessment of the cod stock in NAFO subdivision 3Ps. DFO Atl. Fish. Res. Doc. 1996/091.
- Smith, S.J., and Somerton, G.D. 1981. STRAP: a user-oriented computer analysis system for groundfish research trawl survey data. Can. Tech. Rep. Fish. Aquat. Sci. 1030.
- Stansbury, D.E. 1996. Conversion factors from comparative fishing trials for Engels 145 otter trawl on the FRV Gadus Atlantica and the Campelen 1800 shrimp trawl on the FRV Teleost. NAFO SCR Doc. 96/77, Ser. No. N2752. 15 p.
- Stansbury, D.E. 1997. Conversion factors for cod from comparative fishing trials for Engel 145 otter trawl and the Campelen 1800 shrimp trawl used on research vessels. NAFO SCR Doc. 97/73, Ser. No. N2907. 10 p.
- Warren, W.G. 1996. Report on the Comparative Fishing Trial between the Gadus Atlantica and Teleost. NAFO SCR Doc. 96/28, Ser. No. N2701.
- Warren, W., Brodie, W., Stansbury, D., Walsh, S., Morgan, J. and Orr, D. 1997. Analysis of the 1996 Comparative Fishing Trial between the Alfred Needler with the Engel 145' Trawl and the Wilfred Templeman with the Campelen 1800 Trawl. NAFO SCR Doc. 97/68, Ser. No. N2902.

TABLES

Table 1. Reported landings of cod (t) from NAFO Subdiv. 3Ps by country and for fixed and mobile gear sectors. Landings are presented by calendar year but note that since 2000 the TAC has been established for April 1-March 31. Catch estimates for 2015 are incomplete since the fishing year was in progress at the time of the assessment. See Healey et al. (2014) for pre-1980 data.

Year	Canada NL	Canada NL	Canada Mainland	France SPM	France SPM	France Metro (All	Others (All	Total	TAC
	(Mobile)	(Fixed) ²	(All	(Inshore)	(Offshore)	gears)	gears)		
	((gears)	((0	900.0 <i>)</i>			
1980	2,809	29,427	715	214	1,722	2,681	-	37,568	28,000
1981	2,696	26,068	2,321	333	3,768	3,706	-	38,892	30,000
1982	2,639	21,351	2,948	1,009	3,771	2,184	-	33,902	33,000
1983	2,100	23,915	2,580	843	4,775	4,238	-	38,451	33,000
1984	895	22,865	1,969	777	6,773	3,671	-	36,950	33,000
1985	4,529	24,854	3,476	642	9,422	8,444	-	51,367	41,000
1986	5,218	24,821	1,963	389	13,653	11,939	7	57,990	41,000
1987	4,133	26,735	2,517	551	15,303	9,965	-	59,204	41,000
1988	3,662	19,742	2,308	282	10,011	7,373	4	43,382	41,000
1989	3,098	23,208	2,361	339	9,642	892	-	39,540	35,400
1990	3,266	20,128	3,082	158	14,771	-	-	41,405	35,400
1991	3,916	21,778	2,106	204	15,585	-	-	43,589	35,400
1992	4,468	19,025	2,238	2	10,162	-	-	35,895	35,400
1993	1,987	11,878	1,351	-	-	-	-	15,216	20,000
1994	82	493	86	-	-	-	-	661	0
1995	26	676	60	59	-	-	-	821	0
1996	60	836	118	43	-	-	-	1,057	0
1997	108	7,594	79	448	1,191	-	-	9,420	10,000
1998	2,543	13,609	885	609	2,511	-	-	20,156	20,000
1999	3,059	21,156	614	621	2,548	-	-	27,997	30,000
2000	3,436	16,247	740	870	3,807	-	-	25,100	20,000
2001	2,152	11,187	856	675	1,675	-	-	16,546	15,000
2002	1,326	11,292	499	579	1,623	-	-	15,319	15,000
2003	1,869	10,600	412	734	1,645	-	-	15,260	15,000
2004	1,595	9,450	790	465	2,113	-	-	14,414	15,000
2005	1,863	9,537	818	617	1,941	-	-	14,776	15,000
2006	1,011	9,590	675	555	1,326	-	-	13,157	13,000
2007	1,339	9,303	294	520	1,503	-	-	12,959	13,000
2008	982	8,654	377	467	1,293	-	-	11,773	13,000
2009	1,733	5,870	193	282	1,684	-	-	9,762	11,500
2010	1,419	5,244	196	76	1,364	-	-	8,299	11,500
2011	1,392	4,046	300	456	682	-	-	6,876	11,500
2012	658	3,596	277	265	291	-	-	5,087	11,500
2013	378	2,680	174	366	768	-	-	4,366	11,500
2014 ¹	472	4199	637	279	1158	-	-	6,745	13,225
2015 ¹	879	1860	135	249	674	-	-	3,798	13,490

¹Provisional catches

²1996-2006 includes recreational and sentinel catch. 2007-15 does not include recreational catch

Year	Gillnet	Longline	Handline	Trap	Total
1980	5,493	19,331	2,545	2,077	29,446
1981	4,998	20,540	1,142	948	27,628
1982	6,283	13,574	1,597	1,929	23,383
1983	6,144	12,722	2,540	3,643	25,049
1984	7,275	9,580	2,943	3,271	23,069
1985	7,086	10,596	1,832	5,674	25,188
1986	8,668	11,014	1,634	4,073	25,389
1987	9,304	11,807	1,628	4,931	27,670
1988	6,433	10,175	1,469	2,449	20,526
1989	5,997	10,758	1,657	5,996	24,408
1990	6,948	8,792	2,217	3,788	21,745
1991	6,791	10,304	1,832	4,068	22,995
1992	5,314	10,315	1,330	3,397	20,356
1993	3,975	3,783	1,204	3,557	12,519
1994	90	0	381	0	471
1995	383	182	0	5	570
1996	467	158	137	10	772
1997	3,760	1,158	1,172	1,167	7,258
1998	10,116	2,914	308	92	13,430
1999	17,976	3,714	503	45	22,237
2000	14,218	3,100	186	56	17,561
2001	7,377	2,833	2,089	57	12,357
2002	7,827	2,309	775	119	11,030
2003	8,313	2,044	546	35	10,937
2004	7,910	2,167	415	15	10,508
2005	8,112	2,016	626	6	10,760
2006	7,590	2,698	314	2	10,603
2007 ²	7,287	2,374	445	11	10,116
2008 ²	6,636	2,482	341	21	9,480
2009 ²	4,052	1,644	612	36	6,344
2010 ²	4,013	1,182	296	2	5,493
2011 ²	2,910	882	221	19	4,032
2012 ^{1,2}	3,089	670	192	10	3,961
2013 ^{1,2}	1,939	457	270	14	2,680
2014 ^{1,2}	2,760	1,066	331	38	4,195
2015 ^{1,2,3}	1,444	196	207	9	1,856

Table 2. Reported fixed gear catches of cod (t) from NAFO Subdiv. 3Ps by gear type (includes non-Canadian and recreational catch). See Healey et al. (2014) for pre-1980 data.

¹provisional

²excluding recreational catch

³As of September 30, 2015

Year	Month	Inshore 3Psa	Inshore 3Psb	Inshore 3Psc	Offshore 3Psd	Offshore 3Pse	Offshore 3Psf	Offshore 3Psq	Offshore 3Psh	Total
2013	Jan	13.0	46.6	38.5	0.0	0.0	0.0	0.0	60.1	175.2
2013	Feb	19.9	56.4	44.8	0.0	0.0	0.0	0.0	88.2	193.0
2013	Mar	0.2	0.0	0.0	0.0	0.0	0.0	5.1	8.7	43.7
2013	Apr	0.0	0.0	0.0	0.0	0.0	0.0	3.2	43.6	18.1
2013	May	21.3	17.3	42.4	0.0	0.1	0.6	3.6	26.8	111.0
2013	Jun	45.1	51.4	492.2	0.0	0.5	0.0	1.9	0.0	591.1
2013	Jul	45.1	68.9	447.1	3.1	0.1	1.0	11.1	7.0	583.3
2013	Aug	1.8	26.3	77.0	0.0	0.0	0.6	1.2	0.0	106.9
2013	Sep	16.5	21.0	66.5	0.0	0.7	38.1	0.0	0.0	142.7
2013	Oct	24.5	36.8	141.5	0.0	0.0	127.0	0.0	0.9	343.9
2013	Nov	68.9	35.9	245.2	11.4	0.0	223.8	5.4	13.2	629.8
2013	Dec	16.2	9.9	78.4	0.0	0.0	54.6	0.0	0.0	133.0
2013	Total	272.4	370.5	1673.5	14.5	1.4	445.7	31.4	249.3	3058.7
2014	Jan	7.4	60.3	46.9	7.7	0.0	0.1	5.8	62.3	190.4
2014	Feb	8.8	35.0	58.1	6.1	0.2	0.0	70.5	38.2	216.9
2014	Mar	5.5	2.0	15.0	0.0	0.0	0.0	108.9	67.7	199.1
2014	Apr	0.1	0.0	0.0	0.0	0.0	0.0	21.5	21.9	43.4
2014	May	35.5	32.8	77.9	0.3	0.0	21.9	5.4	78.8	252.5
2014	Jun	46.5	75.3	600.0	15.6	7.9	69.1	11.7	51.4	877.5
2014	Jul	18.5	67.8	404.4	10.1	5.4	9.3	4.7	12.0	532.2
2014	Aug	5.6	18.0	183.2	0.0	4.9	17.0	0.5	1.6	230.7
2014	Sep	1.6	37.2	118.9	8.5	37.7	129.1	14.6	0.1	347.7
2014	Oct	7.8	67.0	119.9	46.2	18.0	216.3	43.6	6.4	525.1
2014	Nov	27.0	36.3	135.2	29.4	1.5	228.2	0.1	6.6	464.4
2014	Dec	21.5	125.2	258.2	0.0	0.0	11.3	11.8	362.7	790.9
2014	Total	185.8	557.0	2,017.6	123.8	75.6	702.2	298.9	709.8	4670.8
2015	Jan	26.2	131.2	90.0	0.0	0.0	8.75	0.0	419.68	675.8
2015	Feb	56.1	20.9	48.4	0.0	0.0	0.0	1.76	134.82	261.9
2015	Mar	4.0	0.0	14.3	0.0	0.0	1.10	0.0	297.69	317.1
2015	Apr	3.3	0.5	4.3	0.0	0.0	0.0	0.20	2.59	10.9
2015	May	38.4	37.3	59.9	0.0	0.0	0.0	0.0	0.0	135.7
2015	Jun	34.8	52.1	278.3	0.0	1.21	0.0	0.0	0.01	366.4
2015	Jul	19.0	80.0	469.0	0.0	0.31	0.38	0.0	0.0	568.7
2015	Aug	4.1	51.0	281.6	0.0	0.0	0.0	0.0	0.0	336.7
2015	Sep	0.1	25.6	40.5	0.0	0.0	0.0	0.0	0.0	66.2
2015	Oct	-	-	-	-	-	-	-	-	-
2015	Nov	-	-	-	-	-	-	-	-	-
2015	Dec	-	-	-	-	-	-	-	-	-
2015	Total	185.9	398.7	1286.2	0.0	1.5	10.2	2.0	854.8	2739.3

Table 2 Demosted meanth	· londing (1) of and	nor wit or on in A	INFO Cubdie ODa
Table 3. Reported monthl	y landings (t) ol cod	per unit area in N	VAFU SUDAIV. 3PS.

*French catch (2013 = 1134 t, 2014 = 1437 t, 2015 = 923 t) excluded since unit area not available.

Year	Age	Average Weight (kg)	Average Length (cm)	Total Catch (000's)	Total Catch std error	Total Catch CV	Total Catch Weight (t)*
2011	1	0.23	30.01	15	0.01	0.51	0
2011	2	0.58	40.42	872	0.27	0.31	1
2011	3	1.07	48.47	30602	3.23	0.11	32
2011	4	1.06	48.85	136030	10.64	0.08	145
2011	5	1.37	53.04	838616	20.82	0.02	1152
2011	6	1.63	55.98	808873	22.38	0.03	1321
2011	7	2.18	61.44	853939	21.85	0.03	1853
2011	8	2.42	63.40	351441	13.73	0.04	851
2011	9	2.72	65.09	172333	10.16	0.06	468
2011	10	2.67	64.70	67828	6.75	0.1	181
2011	11	2.79	66.11	32978	4.88	0.15	92
2011	12	2.81	65.90	23441	3.69	0.16	66
2011	13	7.01	86.65	16763	2.7	0.16	117
2011	14	10.42	102.55	7807	0.68	0.09	81
2011	15	5.16	80.93	9443	3.81	0.4	49
2011	16	12.73	108.40	581	0.15	0.26	7
2011	17	15.39	118	68	0.03	0.5	1
2011	18	17.10	121.19	216	0.11	0.49	4
2011	19	-	-	0	-	-	0
2011	20	18.09	124.20	220	0.11	0.51	4
2012	1	0.06	19.00	1	0.00	0.02	0
2012	2	0.18	27.43	30	0.01	0.17	0
2012	3	0.77	44.18	8056	0.89	0.11	6
2012	4	0.93	46.91	65563	4.97	0.08	61
2012	5	1.39	52.96	183215	11.07	0.06	255
2012	6	1.95	58.98	675125	26.42	0.04	1315
2012	7	2.01	59.96	621312	27.64	0.04	1250
2012	8	2.17	61.06	396430	23.55	0.06	862
2012	9	2.75	65.52	146424	13.85	0.09	403
2012	10	3.31	69.30	62806	5.73	0.09	208
2012	11	3.59	70.75	22766	3.46	0.15	82
2012	12	2.65	64.96	30690	5.35	0.17	81
2012	13	4.33	73.71	6239	1.19	0.19	27
2012	14	3.51	69.32	10713	1.84	0.17	38
2012	15	7.72	92.65	3302	0.69	0.21	26
2012	16	7.23	89.33	792	0.38	0.48	6
2012	17	15.18	116.78	120	0.05	0.44	2
2012	18	12.04	109.00	78	0.00	0.02	1
2012	19	20.75	130.00	37	0.06	1.54	1
2013	1	-	-	0	-	-	0
2013	2	0.21	29.17	34	0.01	0.18	0
2013	3	0.63	41.64	6296	1.33	0.13	4
2013	4	1.18	50.47	153640	11.60	0.08	182
2013	5	1.13	55.48	430935	20.69	0.05	676
2013	6	1.86	58.53	331654	19.51	0.06	617
2013	7	2.14	61.14	488483	22.31	0.05	1044
2013	8	2.14	60.18	361214	19.03	0.05	740
2013	9	2.05	64.13	139756	11.60	0.05	359
2013	10	2.98	67.76	48664	6.68	0.08	145

Table 4. Estimates of average weight, average length and the total numbers (000s) and weight of 3Ps cod caught at age from Canadian and french landings during 2011-13 (Excludes recreational catch).

Year	Age	Average Weight (kg)	Average Length (cm)	Total Catch (000's)	Total Catch std error	Total Catch CV	Total Catch Weight (t)*	
2013	11	3.05	67.97	21621	5.56	0.26	66	
2013	12	3.25	69.45	20534	4.71	0.23	67	
2013	13	2.46	64.13	4990	1.79	0.36	12	
2013	14	2.42	64.46	9231	3.42	0.37	22	
2013	15	2.01	61.00	2061	1.37	0.67	4	
2013	16	0.00	0.00	0	0.00	0.00	0	
2013	17	0.00	0.00	0	0.00	0.00	0	
2013	18	3.96	76.00	164	0.14	0.84	1	

2011 * Total catch estimate (t) 6425, Total landings (t) 6877, SOP 0.93 2012 * Total catch estimate (t) 4622, Total landings (t) 5021, SOP 0.92 2013 * Total catch estimate (t) 3939, Total landings (t) 4129, SOP 0.95

Year Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Age 6 Age 7 Age 8 Age 9 Age 6 Age 7 Age 8 Age 9 Age 6 Age 7 Age 13 11 11 13 14 1990 165 1490 5720 6714 3770 1484 1020 827 406 407 283 27 1961 1409 10357 15960 3716 376 791 571 187 711 187 140 1385 2241 1964 1906 6735 5563 5172 2305 1818 1803 1303 517 389 322 232 140 1338 122 365 107 1966 441 1200 6392 2344 1365 130 127 67 110 149 33 107 110 149 130 117 410 121 14 137 1414													
1950 1001 13940 7525 7265 4475 942 1252 1260 631 5446 241 141 1960 167 5496 23704 6714 3476 3444 1020 827 406 446 265 560 58 1962 1245 6749 9003 4533 5715 1567 1571 187 140 135 241 1965 2314 9636 5779 2567 1281 1033 327 66 122 36 1966 949 13652 13065 4621 5119 1586 1433 1039 517 389 32 22 36 1966 949 13652 1306 544 425 123 66 143 3 32 22 110 14 33 197 718 414 120 67 110 1970 13444 4541 726 82<	Year	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9			Age 12		
1961 450 5586 1037 15960 3316 4680 1849 1376 446 285 560 58 1962 1245 6749 9003 4533 5715 1367 791 671 187 140 135 241 1965 2314 9636 5799 3609 3254 2055 1218 1033 327 68 122 366 142 366 142 36 1033 327 68 122 36 1033 327 68 122 36 114 312 365 144 3 322 22 111 5 107 1960 774 708 114857 178 455 177 121 14 18 30 955 145 150 147 144 145 147 114 146 25 57 107 121 14 144 121 114 144 146	1959	1001	13940	7525	7265	4875	942	1252					
1962 1245 6749 9003 4533 5715 1367 791 571 187 140 135 241 1963 961 4499 7091 5275 5287 3030 898 292 143 99 107 922 1965 2314 9636 5799 3609 3254 2055 1218 1033 327 66 1122 36 1966 1433 12606 6621 5119 1566 1633 309 527 68 1149 3 1966 1433 12066 6327 2456 730 214 178 77 121 14 1970 756 8114 1216 9763 6374 2456 730 214 178 77 121 14 1971 1284 6444 857 723 1365 833 463 205 117 414 29 67 1414 149	1960	567	5496	23704	6714	3476	3484	1020	827	406	407	283	27
1963 961 4499 7091 5275 2527 3030 888 292 143 99 107 92 1964 1906 5785 5635 5179 2945 1881 1891 652 339 329 54 277 1966 2371 10963 13065 4621 5119 1586 1183 1033 327 58 149 3 1966 2471 10913 12000 6392 2349 1384 644 316 380 95 149 3 1960 774 7088 11455 7178 4554 755 41 85 125 671 149 1970 268 8114 12916 9165 331 1275 541 85 125 62 57 1971 2846 6444 451 355 136 333 463 205 114 53 117 14 48	1961	450		10357	15960	3616	4680	1849	1376	446		560	58
1966 2785 5635 5779 2845 1881 1891 652 339 329 54 27 1965 2314 9636 13065 4621 5119 1586 1833 1039 517 389 32 22 1967 2871 10913 12900 6392 2349 1364 604 316 380 95 149 3 1966 1143 1260 6335 3572 1308 549 425 222 111 5 107 766 8114 12916 9763 3374 2456 700 214 178 77 121 14 1971 2864 6444 8574 7266 8218 3131 1275 541 85 125 62 57 1972 731 4944 4591 3552 4903 221 17 114 48 45 1974 1887 6042 987	1962	1245	6749	9003	4533	5715	1367	791	571	187	140	135	241
1966 2314 9636 5799 3609 3254 2055 1218 1033 327 68 1122 36 1967 2871 10913 12006 6392 2349 1364 604 316 380 95 149 3 1968 174 7088 1143 1200 6392 2349 1364 604 316 380 95 149 3 1969 774 7088 11485 1717 845 4707 121 14 67 120 67 110 14 29 177 61 120 67 110 14 29 197 1364 6444 4501 2201 2019 515 172 110 14 29 1974 1887 6042 9807 6365 2540 1655 1149 538 248 80 32 17 10 14 52 6 25 1975 143	1963	961	4499	7091	5275	2527	3030	898	292	143	99	107	92
1966 949 13662 13065 4621 5119 1586 1833 1039 517 389 32 22 1967 2871 10913 12900 6332 2349 1364 634 316 380 95 149 3 1968 1143 12602 13135 5853 3572 1308 549 425 222 111 5 107 1970 756 8114 12916 9763 6374 2456 730 214 178 77 121 14 1971 1844 4591 3552 4603 2636 833 463 4051 117 48 45 1974 1840 7329 987 6365 25401 256 177 57 43 31 11 1976 315 072 17321 5037 172 14 43 3 101 1976 535 322	1964	1906	5785	5635	5179			1891	652	339	329	54	27
1967 2871 10913 12900 6392 2349 1364 604 316 380 95 149 3 1968 1143 12602 13135 5853 3572 1308 549 425 222 111 5 107 1970 2884 6444 8574 7266 8218 1757 732 717 61 120 67 110 1971 2884 6444 8574 7266 8218 1311 1275 541 85 125 622 57 1972 731 4944 4591 1356 2201 2019 515 177 14 43 1975 1136 6042 987 6365 2540 1857 1149 538 249 80 32 17 1976 110 12139 722 7 17 10 133 107 14 52 217 17 10		2314	9636	5799	3609	3254	2055	1218	1033	327	68	122	36
1968 1143 12602 13185 5853 3572 1308 549 425 222 111 5 107 1970 756 8114 12916 9763 6374 2466 730 214 178 77 121 14 1971 731 4944 4591 3552 4603 2636 833 463 205 117 484 451 1973 945 4707 11366 4010 4022 2201 2019 515 172 110 14 29 1974 1887 6042 9987 4541 5867 723 1186 105 174 52 6 2 1976 1840 7332 1235 146 6096 4006 1753 653 235 177 43 31 10 1977 353 315 4652 5656 1622 539 175 67 33 18			13662	13065	4621	5119	1586	1833	1039	517	389	32	
1969 774 7098 11585 7178 4554 7777 792 717 61 120 67 110 1971 2884 6444 8574 7266 8218 131 1275 541 185 125 62 57 1972 731 4944 4591 3552 4603 2636 833 463 205 117 48 45 1973 4944 4591 3552 4603 2201 2019 515 172 110 14 29 1975 1840 7329 5397 4541 5867 773 1496 105 174 52 6 2 2 1976 1410 12139 7923 2875 1305 495 140 53 177 21 4 3 10 1976 135 0072 10321 5066 2353 721 233 84 53 241 13		2871	10913	12900	6392	2349	1364	604	316	380	95	149	
1970 756 8114 12916 9763 6374 2466 730 214 178 77 121 14 1972 731 4944 4591 3552 4603 2636 833 463 205 117 48 45 1974 1887 6042 9887 6365 2540 1857 1149 538 249 80 32 17 1975 1840 7329 5397 4541 5867 723 1149 538 249 80 32 17 1975 1840 7329 5397 4541 5867 723 1149 538 249 80 32 17 1977 935 9156 8326 3209 920 385 255 178 72 27 17 10 1987 502 5146 6096 4006 1753 653 232 1175 67 35 18		1143	12602	13135	5853	3572			425	222	111		
1971 2884 6444 8574 7266 8218 3131 1275 541 85 125 62 57 1973 945 4707 11386 4001 4022 2201 2015 515 172 110 14 429 1974 1887 6042 9987 6365 2540 1857 1149 538 249 80 32 17 1975 1840 7329 5397 4541 5867 723 1196 105 174 52 6 2 1976 4110 12139 7923 2875 1305 495 140 53 17 21 4 3 1976 433 3072 10321 5066 2353 721 233 84 53 24 13 10 1980 368 1625 5054 8162 2855 1622 253 175 67 35 18		774			7178	4554	1757	792	717	61	120	67	110
1972 731 4944 4501 3552 4603 2236 833 463 205 117 48 455 1974 1887 6042 9987 6365 2540 1149 538 249 80 32 177 1975 1840 7329 5397 4541 5867 723 1149 513 177 21 4 3 1977 935 9156 8326 3209 920 395 265 117 57 43 31 11 1978 502 5146 6096 4006 1753 653 235 178 72 27 17 10 1980 368 1625 5054 8156 3379 1254 327 114 56 45 21 25 1981 1022 2888 3136 1652 539 175 67 35 18 2 1982 130 </th <th></th> <th></th> <th>8114</th> <th>12916</th> <th>9763</th> <th>6374</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			8114	12916	9763	6374							
1973 945 4707 11386 4010 4022 2201 2019 515 172 110 144 29 1976 1840 7329 6397 4541 5867 723 1196 105 174 52 6 2 1976 4110 12139 7923 2875 1305 495 140 53 17 21 4 3 1977 935 9156 8326 202 395 265 117 57 43 31 11 1978 502 5146 6096 4006 1753 653 235 178 72 27 17 10 1980 088 1625 5054 8156 377 123 371 18 110 1981 1022 2888 3136 4852 5855 1622 539 175 67 35 18 2 1982 130 503 <th>1971</th> <th>2884</th> <th>6444</th> <th>8574</th> <th>7266</th> <th>8218</th> <th>3131</th> <th>1275</th> <th>541</th> <th>85</th> <th>125</th> <th>62</th> <th>57</th>	1971	2884	6444	8574	7266	8218	3131	1275	541	85	125	62	57
1974 1887 6042 9987 6365 2540 1857 1149 538 249 80 32 17 1976 1410 12139 7923 2875 1305 495 140 53 17 21 4 3 1977 935 9156 8326 3209 920 395 265 117 57 43 31 11 1978 502 5146 6096 4006 1753 653 235 178 72 27 17 10 1979 135 3072 10321 5066 2363 721 233 84 53 24 13 10 1981 1022 2888 3136 4652 5855 1622 239 640 243 83 30 11 7 1982 130 5092 4430 2348 2445 542 338 134 45 8 8		731	4944	4591	3552	4603	2636		463		117		
1975 1840 7329 5397 4541 5867 723 1196 105 174 52 6 2 1976 4310 12139 7923 2875 1305 495 140 53 17 21 4 3 1977 935 9156 8326 209 925 265 117 57 43 31 11 1978 502 5146 6096 4006 1753 653 235 178 72 27 17 10 1980 368 1622 5054 8156 3377 142 337 118 8 1981 1022 2888 3136 4652 5855 1622 539 175 67 35 18 2 1983 760 2682 9174 4080 1752 1150 1041 244 91 37 18 8 1984 203 4521			4707	11386	4010	4022	2201	2019	515	172	110		
1976 4110 12139 7923 2875 1305 495 140 53 17 21 4 3 1977 935 9166 8326 3209 920 385 265 117 57 43 31 11 1978 502 5146 6006 1753 653 235 178 72 27 17 10 1979 135 3072 10321 5066 2353 721 233 84 53 24 13 10 1980 368 1625 5054 8156 327 114 56 455 21 25 1981 1022 2883 3136 4652 585 1602 539 175 67 35 18 2 1982 130 5052 453 1616 1041 244 91 37 18 8 1984 203 4521 4533													
1977 935 9156 8326 3209 920 395 265 117 57 43 31 11 1978 502 5146 6096 4006 1753 653 235 178 772 27 17 10 1980 368 1625 5054 8156 3379 1254 327 114 56 455 21 25 1981 1022 2888 3136 4652 5855 1622 539 175 67 35 18 2 1982 130 5092 4430 1348 264 243 83 30 11 7 1983 760 2682 9174 4080 1752 1150 1041 244 91 37 18 8 1984 203 4521 1480 626 542 338 109 21 6 1985 552 2560 11023													
1978 502 5146 6096 4006 1753 653 235 178 72 27 17 10 1979 135 3072 10321 5066 2353 721 233 84 53 24 13 10 1980 368 1625 5054 8156 3379 1254 327 114 56 455 21 255 1981 1002 2888 3136 4652 5855 1622 539 175 67 35 18 2 1983 760 2682 9174 4080 1752 1150 1041 244 91 37 18 8 1984 203 4521 4538 7018 2221 584 542 338 134 35 8 8 1986 366 5103 1228 1283 1461 1107 341 149 78 135 50 <tr< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr<>													
1979 135 3072 10321 5066 2353 721 233 84 53 24 13 10 1980 368 1625 5054 8156 3379 1254 327 114 56 45 21 25 1981 1022 2888 3136 4652 5353 622 539 175 67 35 18 2 1982 130 5092 4430 2348 2861 2939 640 243 83 30 11 7 1983 760 2682 9174 4080 1752 1150 1041 244 91 37 18 8 1984 366 5103 10253 11228 4283 2167 650 224 171 143 79 23 1987 585 2956 11023 9763 3543 1416 1107 341 149 78 135 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>													
1980 368 1625 5054 8156 3379 1254 327 114 56 455 21 25 1981 1022 2888 3136 4652 5855 1622 539 175 67 35 18 2 1982 130 5092 4430 2348 2861 2939 640 243 83 30 111 7 188 8 1983 760 2682 9174 4080 1752 1150 1041 244 91 37 18 8 1985 152 2639 8031 5144 5242 1480 626 545 353 109 21 6 1986 305 4951 4971 6471 5046 1793 630 284 123 75 53 31 1989 1071 895 7842 2863 2264 8102 100 104 47 2				6096	4006				178				
1981 1022 2888 3136 4652 5855 1622 539 175 67 35 18 2 1982 130 5092 4430 2348 2861 2939 640 243 83 30 11 7 1983 760 2682 9174 4080 1752 1150 1041 244 91 37 18 8 1984 203 4521 4538 7018 2221 584 542 338 134 35 8 8 1985 152 2639 8031 5144 5242 1480 626 545 353 109 21 6 1986 306 5103 10253 11228 4281 2167 650 224 171 143 79 23 31 1987 585 2956 11023 9763 5433 1237 692 350 142 104 <td< th=""><th></th><th></th><th></th><th></th><th>5066</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>					5066								
1982 130 5092 4430 2348 2861 2939 640 243 83 30 11 7 1983 760 2682 9174 4080 1752 1150 1041 244 91 37 18 8 1984 203 4521 4538 7018 2221 584 542 338 134 35 8 8 1986 306 5103 10253 11228 4283 2167 650 224 171 143 79 23 1987 585 2956 11023 9763 5453 1416 1107 341 149 78 135 50 1988 905 4951 4971 6471 600 223 141 57 29 26 1990 2006 8622 8195 3329 1483 1237 692 350 142 104 47 22 199 <t< th=""><th></th><th></th><th></th><th>5054</th><th>8156</th><th>3379</th><th></th><th>327</th><th>114</th><th>56</th><th></th><th>21</th><th></th></t<>				5054	8156	3379		327	114	56		21	
1983 760 2682 9174 4080 1752 1150 1041 244 91 37 18 8 1984 203 4521 4538 7018 2221 584 542 338 134 35 8 8 1985 152 2639 8031 5144 5242 1480 626 545 353 109 21 6 1986 306 5103 10253 11228 4283 2167 650 224 171 143 79 23 1987 585 2956 11023 9763 5453 1416 1107 341 149 78 135 50 1989 1071 8955 7842 2863 2549 1112 600 223 141 57 29 26 1990 2006 6622 8195 329 1483 127 72 10 14 52 1314				3136	4652	5855							
1984 203 4521 4538 7018 2221 584 542 338 134 35 8 8 1985 152 2639 8031 5144 5242 1480 626 545 353 109 21 6 1986 306 5103 10253 11228 4283 2167 650 224 171 143 79 23 1987 585 2956 11023 9763 5453 1416 1107 341 149 75 53 31 1989 1071 8995 7842 2863 2549 1112 600 223 141 57 29 26 1990 2006 8622 8195 3329 1483 1237 692 350 142 104 47 22 1991 182 7981 10028 5907 2164 807 76 50 22 13 14			5092	4430		2861		640	243	83			
1985 152 2639 8031 5144 5242 1480 626 545 353 109 21 6 1986 306 5103 10253 11228 4283 2167 650 224 171 1433 79 23 1987 585 2956 11023 9763 5453 1416 1107 341 149 78 135 50 1988 935 4951 4971 6471 5046 1793 630 284 123 75 53 31 1989 1071 8995 7842 2863 2549 1112 600 223 141 57 29 26 1990 2006 8622 812 7181 10028 5907 2164 807 620 428 108 76 50 22 1991 812 783 3156 1334 401 89 38 52 13		760	2682	9174	4080	1752	1150	1041	244	91	37	18	
1986 306 5103 10253 11228 4283 2167 650 224 171 143 79 23 1987 585 2956 11023 9763 5453 1416 1107 341 149 78 135 50 1988 935 4951 4971 6471 5046 1793 630 284 123 75 53 31 1989 7842 2863 2549 1112 600 223 141 57 29 266 1990 2006 8622 8195 3329 1483 1237 692 350 142 104 47 22 1991 812 7981 10028 5907 2164 807 620 428 108 76 50 22 1992 1422 4159 8424 6538 2266 658 269 132 137 74 62 28 12					7018								
1987 585 2956 11023 9763 5453 1416 1107 341 149 78 135 50 1988 935 4951 4971 6471 5046 1793 630 284 123 75 53 31 1989 1071 8995 7842 2863 2549 1112 600 223 141 57 29 26 1990 2006 8622 8195 3329 1483 1237 692 350 142 104 47 222 1991 812 7981 10028 5907 2164 807 620 428 108 76 50 22 1992 1422 4159 8424 6538 2266 658 269 192 187 83 34 41 1993 278 3712 2035 3156 1334 401 89 331 4 1 0		152	2639	8031	5144	5242		626	545	353	109	21	
1988 935 4951 4971 6471 5046 1793 630 284 123 75 53 31 1989 1071 8995 7842 2863 2549 1112 600 223 141 57 29 26 1990 2006 8622 8195 3329 1483 1237 692 350 142 104 47 22 1991 812 7981 10028 5907 2164 807 620 428 108 76 50 22 1992 1422 4159 8424 6538 2266 658 269 192 187 83 34 41 1993 278 3712 2035 3156 1334 401 89 38 52 13 14 5 1994 9 78 173 74 62 28 12 3 0 0 0 0 <t< th=""><th></th><th>306</th><th>5103</th><th>10253</th><th>11228</th><th>4283</th><th>2167</th><th></th><th>224</th><th>171</th><th>143</th><th>79</th><th>23</th></t<>		306	5103	10253	11228	4283	2167		224	171	143	79	23
1989 1071 8995 7842 2863 2549 1112 600 223 141 57 29 26 1990 2006 8622 8195 3329 1483 1237 692 350 142 104 47 22 1991 812 7981 10028 5907 2164 807 620 428 108 76 50 22 1992 1422 4159 8424 6538 2266 658 269 192 187 83 34 41 1993 278 3712 2035 3156 1334 401 89 38 52 13 14 5 1994 9 78 173 74 62 28 12 3 2 0 0 0 1995 3 7 56 119 57 37 7 2 0 0 0 0				11023	9763		1416	1107	341		78		
1990 2006 8622 8195 3329 1483 1237 692 350 142 104 47 22 1991 812 7981 10028 5907 2164 807 620 428 108 76 50 22 1992 1422 4159 8424 6538 2266 658 269 192 187 83 34 41 1993 278 3712 2035 3156 1334 401 89 38 52 13 14 5 1994 9 78 173 74 62 28 12 3 2 0 0 0 1995 3 7 56 119 57 37 7 2 0 0 0 0 1996 9 43 43 101 125 35 24 8 2 1 0 0 0 1	1988		4951		6471		1793	630	284	123		53	
1991 812 7981 10028 5907 2164 807 620 428 108 76 50 22 1992 1422 4159 8424 6538 2266 658 269 192 187 83 34 41 1993 278 3712 2035 3156 1334 401 89 38 52 13 14 5 1994 9 78 173 74 62 28 12 3 2 0 0 0 1995 3 7 56 119 57 37 7 2 0 0 0 0 1996 9 43 43 101 125 35 24 8 2 1 0 0 0 0 1 93 31 4 1 0 1 199 49 628 1202 2156 2321 1020 960	1989		8995									29	
1992 1422 4159 8424 6538 2266 658 269 192 187 83 34 41 1993 278 3712 2035 3156 1334 401 89 38 52 13 14 5 1994 9 78 173 74 62 28 12 3 2 0 0 0 1995 3 7 56 119 57 37 7 2 0 0 0 0 1996 9 43 43 101 125 35 24 8 2 1 0 0 1996 9 43 43 101 125 35 24 8 2 1 0 0 1998 91 373 793 1550 948 1314 1217 225 120 56 15 1 1999 49 6													
1993 278 3712 2035 3156 1334 401 89 38 52 13 14 5 1994 9 78 173 74 62 28 12 3 2 0 0 0 1995 3 7 56 119 57 37 7 2 0 0 0 0 1996 9 43 43 101 125 35 24 8 2 1 0 0 1996 9 43 43 101 125 35 24 8 2 1 0 0 1997 66 427 1130 497 937 826 187 93 31 4 1 0 1998 91 373 793 1550 948 1314 1217 225 120 56 15 1 1999 49 628 1202 2156 2321 1020 960 873 189 110 21													
1994 9 78 173 74 62 28 12 3 2 0 0 0 1995 3 7 56 119 57 37 7 2 0 0 0 0 1996 9 43 43 101 125 35 24 8 2 1 0 0 1996 9 43 43 101 125 35 24 8 2 1 0 0 1997 66 427 1130 497 937 826 187 93 31 4 1 0 1998 91 373 793 1550 948 1314 1217 225 120 56 15 1 1999 49 628 1202 2156 2321 1020 960 873 189 110 21 8 2001 80 475													
1995 3 7 56 119 57 37 7 2 0 0 0 0 1996 9 43 43 101 125 35 24 8 2 1 0 0 1997 66 427 1130 497 937 826 187 93 31 4 1 0 1998 91 373 793 1550 948 1314 1217 225 120 56 15 1 1999 49 628 1202 2156 2321 1020 960 873 189 110 21 8 2000 76 335 736 1352 1692 1484 610 530 624 92 37 16 2001 80 475 718 1099 1143 796 674 257 202 192 28 13 2002 <											13	14	
1996 9 43 43 101 125 35 24 8 2 1 0 0 1997 66 427 1130 497 937 826 187 93 31 4 1 0 1998 91 373 793 1550 948 1314 1217 225 120 56 15 1 1999 49 628 1202 2156 2321 1020 960 873 189 110 21 8 2000 76 335 736 1352 1692 1484 610 530 624 92 37 16 2001 80 475 718 1099 1143 796 674 257 202 192 28 13 2002 155 607 1451 1280 900 722 419 355 96 70 71 14 20													
199766427113049793782618793314101998913737931550948131412172251205615119994962812022156232110209608731891102182000763357361352169214846105306249237162001804757181099114379667425720219228132002155607145112809007224193559670711420031530187918101139596337277167675584200462113654159217136492661801044717242005493305151007162810874991439541261220064325386692884610556322378036197200797311727107276150152640116044342120083542261711059766343502951939127122009171298131000902													
1998913737931550948131412172251205615119994962812022156232110209608731891102182000763357361352169214846105306249237162001804757181099114379667425720219228132002155607145112809007224193559670711420031530187918101139596337277167675584200462113654159217136492661801044717242005493305151007162810874991439541261220064325386692884610556322378036197200797311727107276150152640116044342120083542261711059766343502951939127122009171298131000902460205991148656122010313775491240726<													
1999 49 628 1202 2156 2321 1020 960 873 189 110 21 8 2000 76 335 736 1352 1692 1484 610 530 624 92 37 16 2001 80 475 718 1099 1143 796 674 257 202 192 28 13 2002 155 607 1451 1280 900 722 419 355 96 70 71 14 2003 15 301 879 1810 1139 596 337 277 167 67 55 84 2004 62 113 654 1592 1713 649 266 180 104 47 17 24 2005 49 330 515 1007 1628 1087 499 143 95 41 26 12 2006 43 253 866 928 846 1055 632 237													
200076335736135216921484610530624923716200180475718109911437966742572021922813200215560714511280900722419355967071142003153018791810113959633727716767558420046211365415921713649266180104471724200549330515100716281087499143954126122006432538669288461055632237803619720079731172710727615015264011604434212008354226171105976634350295193912712200917129813100090246020599114865612201031377549124072638518176225730820113113683980985435117268333231782012866183675621396 </th <th></th>													
20018047571810991143796674257202192281320021556071451128090072241935596707114200315301879181011395963372771676755842004621136541592171364926618010447172420054933051510071628108749914395412612200643253866928846105563223780361972007973117271072761501526401160443421200835422617110597663435029519391271220091712981310009024602059911486561220103137754912407263851817622573082011311368398098543511726833231782012866183675621396146632331611													
2002 155 607 1451 1280 900 722 419 355 96 70 71 14 2003 15 301 879 1810 1139 596 337 277 167 67 55 84 2004 62 113 654 1592 1713 649 266 180 104 47 17 24 2005 49 330 515 1007 1628 1087 499 143 95 41 26 12 2006 43 253 866 928 846 1055 632 237 80 36 19 7 2007 97 311 727 1072 761 501 526 401 160 44 34 21 2008 35 422 617 1105 976 634 350 295 193 91 27 12													
200315301879181011395963372771676755842004621136541592171364926618010447172420054933051510071628108749914395412612200643253866928846105563223780361972007973117271072761501526401160443421200835422617110597663435029519391271220091712981310009024602059911486561220103137754912407263851817622573082011311368398098543511726833231782012866183675621396146632331611													
2004621136541592171364926618010447172420054933051510071628108749914395412612200643253866928846105563223780361972007973117271072761501526401160443421200835422617110597663435029519391271220091712981310009024602059911486561220103137754912407263851817622573082011311368398098543511726833231782012866183675621396146632331611													
20054933051510071628108749914395412612200643253866928846105563223780361972007973117271072761501526401160443421200835422617110597663435029519391271220091712981310009024602059911486561220103137754912407263851817622573082011311368398098543511726833231782012866183675621396146632331611													
200643253866928846105563223780361972007973117271072761501526401160443421200835422617110597663435029519391271220091712981310009024602059911486561220103137754912407263851817622573082011311368398098543511726833231782012866183675621396146632331611													
2007973117271072761501526401160443421200835422617110597663435029519391271220091712981310009024602059911486561220103137754912407263851817622573082011311368398098543511726833231782012866183675621396146632331611													
200835422617110597663435029519391271220091712981310009024602059911486561220103137754912407263851817622573082011311368398098543511726833231782012866183675621396146632331611													
20091712981310009024602059911486561220103137754912407263851817622573082011311368398098543511726833231782012866183675621396146632331611													
2010 31 377 549 1240 726 385 181 76 22 57 30 8 2011 31 136 839 809 854 351 172 68 33 23 17 8 2012 8 66 183 675 621 396 146 63 23 31 6 11													
2011 31 136 839 809 854 351 172 68 33 23 17 8 2012 8 66 183 675 621 396 146 63 23 31 6 11													
2012 8 66 183 675 621 396 146 63 23 31 6 11													
2013 6 154 431 332 488 361 140 49 22 21 5 9													
	2013	6	154	431	332	488	361	140	49	22	21	5	9

Table 5. Numbers-at-age (000s) for the commercial cod fishery in NAFO Subdiv. 3Ps from 1959 to 2013 (ages 3-14 shown). Recreational catches excluded for 2007 onward (see text).

Year	Age	Age	Age	Age	Age	Age	Age	Age	Age	Age	Age	Age
	3	4	5	6	7	8	9	10	11	12	13	14
1959	0.280	0.690	1.080	1.680	2.400	3.210	4.100	5.080	6.030	7.000	8.050	9.160
1960	0.280	0.690	1.080	1.680	2.400	3.210	4.100	5.080	6.030	7.000	8.050	9.160
1961	0.280	0.690	1.080	1.680	2.400	3.210	4.100	5.080	6.030	7.000	8.050	9.160
1962	0.280	0.690	1.080	1.680	2.400	3.210	4.100	5.080	6.030	7.000	8.050	9.160
1963	0.280	0.690	1.080	1.680	2.400	3.210	4.100	5.080	6.030	7.000	8.050	9.160
1964	0.280	0.690	1.080	1.680	2.400	3.210	4.100	5.080	6.030	7.000	8.050	9.160
1965	0.280	0.690	1.080	1.680	2.400	3.210	4.100	5.080	6.030	7.000	8.050	9.160
1966	0.280	0.690	1.080	1.680	2.400	3.210	4.100	5.080	6.030	7.000	8.050	9.160
1967	0.280	0.690	1.080	1.680	2.400	3.210	4.100	5.080	6.030	7.000	8.050	9.160
1968 1969	0.280	0.690	1.080	1.680	2.400	3.210	4.100	5.080	6.030	7.000	8.050	9.160
1969	0.280	0.690	1.080	1.680	2.400	3.210	4.100	5.080	6.030	7.000	8.050	9.160
1970	0.280	0.690 0.690	1.080	1.680 1.680	2.400	3.210 3.210	4.100	5.080	6.030 6.030	7.000	8.050 8.050	9.160 9.160
1971	0.280	0.690	1.080	1.680	2.400	3.210	4.100	5.080 5.080	6.030	7.000	8.050	9.160
1972	0.280	0.690	1.080	1.680	2.400	3.210	4.100	5.080	6.030	7.000	8.050	9.160
1973	0.280	0.690	1.080	1.680	2.400	3.210	4.100	5.080	6.030	7.000	8.050	9.160
1975	0.280	0.690	1.080	1.680	2.400	3.210	4.100	5.080	6.030	7.000	8.050	9.160
1975	0.280	0.690	1.080	1.680	2.400	3.210	4.100	5.080	6.030	7.000	8.050	9.160
1977	0.550	0.680	1.300	1.860	2.670	3.420	4.190	4.940	5.920	6.760	8.780	10.900
1978	0.450	0.700	1.080	1.750	2.450	2.990	4.100	5.160	5.170	7.200	7.750	8.720
1979	0.410	0.650	1.010	1.650	2.550	3.680	4.300	6.490	7.000	8.200	9.530	10.840
1980	0.520	0.720	1.130	1.660	2.480	3.600	5.400	6.950	7.290	8.640	9.330	9.580
1981	0.480	0.790	1.320	1.800	2.300	3.270	4.360	5.680	7.410	9.040	8.390	9.560
1982	0.450	0.770	1.170	1.780	2.360	2.880	3.910	5.280	6.180	8.620	8.640	11.410
1983	0.580	0.840	1.330	1.990	2.580	3.260	3.770	5.040	6.560	8.450	10.060	11.820
1984	0.660	1.040	1.400	1.970	2.640	3.770	4.750	5.560	6.010	9.040	11.200	10.400
1985	0.630	0.850	1.230	1.790	2.810	3.440	5.020	6.010	6.110	7.180	9.810	10.480
1986	0.540	0.750	1.180	1.840	2.430	3.150	4.300	5.500	6.190	8.720	8.050	11.910
1987	0.560	0.770	1.210	1.630	2.310	3.020	4.330	5.110	6.200	6.980	7.080	8.340
1988	0.630	0.820	1.090	1.670	2.170	2.920	3.580	4.980	5.610	6.600	7.460	8.920
1989	0.630	0.810	1.160	1.630	2.250	3.370	4.110	5.180	6.290	7.300	7.750	8.730
1990	0.580	0.860	1.270	1.850	2.450	3.000	4.220	5.090	6.350	7.600	8.310	10.370
1991	0.600	0.750	1.170	1.740	2.370	2.910	3.690	4.230	6.340	7.680	8.640	9.720
1992	0.459	0.694	1.038	1.560	2.226	2.891	4.142	5.542	6.420	7.822	10.397	11.880
1993	0.355	0.680	1.077	1.480	2.127	2.824	4.341	4.302	4.683	7.494	6.845	8.238
1994	0.617	0.816	1.303	1.860	2.054	2.746	3.593	4.377	6.291	7.768	6.784	8.073
1995	0.520	0.850	1.570	2.030	2.470	2.780	3.460	4.300	4.270	4.160	5.590	9.241
1996	0.674	0.985	1.485	2.048	2.525	2.941	3.232	4.031	4.823	4.680	7.257	9.921
1997	0.617	0.898	1.304	1.871	2.510	3.242	3.471	3.524	4.587	6.365	8.579	10.733
1998	0.620	1.020	1.570	2.050	2.420	3.100	4.040	4.130	4.620	5.210	6.390	9.690
1999	0.700	0.920	1.570	2.310	2.530	2.820	3.920	5.320	4.990	5.270	6.140	7.270
2000	0.615	0.896	1.358	2.066	2.741	2.813	3.152	4.597	6.538	6.123	6.423	7.734
2001	0.689	1.018	1.440	1.935	2.575	3.405	3.206	3.456	5.593	8.607	7.609	8.115
2002 2003	0.572	1.017 0.974	1.544	2.040	2.324	3.104	4.326 3.867	3.896	3.874	6.046	8.895	7.942
2003	0.681 0.587	0.974	1.574	2.111	2.342	2.634		4.750	4.297	5.330	7.819 7.128	10.346
2004	0.587	0.963	1.368 1.386	2.036 1.840	2.495 2.458	2.737 2.904	2.851 3.161	5.021 3.246	6.707 4.361	5.247 6.153	5.525	8.786 7.854
2005	0.637	1.010	1.549	1.840	2.456	2.904	3.435	3.465	3.133	4.923	5.525 6.593	7.498
2000	0.556	0.938	1.444	1.962	2.235	2.533	3.732	4.957	5.512	4.861	7.079	8.806
2007	0.663	0.930	1.350	1.902	2.233	2.465	2.629	3.804	5.199	5.292	5.003	8.455
2009	0.626	1.019	1.533	1.932	2.375	2.482	2.614	3.671	5.815	7.070	7.973	8.997
2010	0.635	1.089	1.363	2.009	2.260	2.585	2.761	2.932	5.518	7.910	9.520	9.981
2010	1.060	1.063	1.374	1.633	2.170	2.422	2.717	2.665	2.788	2.806	7.008	10.424
2012	0.772	0.930	1.392	1.948	2.012	2.174	2.749	3.307	3.590	2.654	4.333	3.507
2012	0.628	1.184	1.568	1.860	2.138	2.050	2.569	2.976	3.050	3.252	2.464	2.416
	0.020					2.000	2.000	2.570	0.000	0.202		

Table 6a. Mean annual weights-at-age (kg) calculated from lengths-at-age based on samples from commercial fisheries (including food fisheries and sentinel surveys where available) in Subdiv. 3Ps in 1959-2013. The weights-at-age from 1976 are extrapolated back to 1959.

Year	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10	Age 11	Age 12	Age 13	Age 14
1959	0.178	0.440	0.863	1.347	2.008	2.776	3.628	4.564	5.535	6.497	7.507	8.587
1960	0.178	0.440	0.863	1.347	2.008	2.776	3.628	4.564	5.535	6.497	7.507	8.587
1961	0.178	0.440	0.863	1.347	2.008	2.776	3.628	4.564	5.535	6.497	7.507	8.587
1962	0.178	0.440	0.863	1.347	2.008	2.776	3.628	4.564	5.535	6.497	7.507	8.587
1963	0.178	0.440	0.863	1.347	2.008	2.776	3.628	4.564	5.535	6.497	7.507	8.587
1964	0.178	0.440	0.863	1.347	2.008	2.776	3.628	4.564	5.535	6.497	7.507	8.587
1965	0.178	0.440	0.863	1.347	2.008	2.776	3.628	4.564	5.535	6.497	7.507	8.587
1966	0.178	0.440	0.863	1.347	2.008	2.776	3.628	4.564	5.535	6.497	7.507	8.587
1967	0.178	0.440	0.863	1.347	2.008	2.776	3.628	4.564	5.535	6.497	7.507	8.587
1968	0.178	0.440	0.863	1.347	2.008	2.776	3.628	4.564	5.535	6.497	7.507	8.587
1969	0.178	0.440	0.863	1.347	2.008	2.776	3.628	4.564	5.535	6.497	7.507	8.587
1970	0.178	0.440	0.863	1.347	2.008	2.776	3.628	4.564	5.535	6.497	7.507	8.587
1971	0.178	0.440	0.863	1.347	2.008	2.776	3.628	4.564	5.535	6.497	7.507	8.587
1972	0.178	0.440	0.863	1.347	2.008	2.776	3.628	4.564	5.535	6.497	7.507	8.587
1973	0.178	0.440	0.863	1.347	2.008	2.776	3.628	4.564	5.535	6.497	7.507	8.587
1974	0.178	0.440	0.863	1.347	2.008	2.776	3.628	4.564	5.535	6.497	7.507	8.587
1975	0.178	0.440	0.863	1.347	2.008	2.776	3.628	4.564	5.535	6.497	7.507	8.587
1976	0.170	0.440	0.863	1.347	2.008	2.776	3.628	4.564	5.535	6.497	7.507	8.587
1970	0.488	0.440	0.947	1.417	2.008	2.865	3.667	4.500	5.484	6.385	7.840	9.367
1978	0.374	0.430	0.857	1.508	2.135	2.825	3.745	4.650	5.054	6.529	7.238	8.750
1979	0.309	0.541	0.841	1.335	2.133	3.003	3.586	5.158	6.010	6.511	8.283	9.166
1980	0.422	0.543	0.857	1.295	2.023	3.030	4.458	5.467	6.878	7.777	8.747	9.555
1981	0.379	0.641	0.975	1.426	1.954	2.848	3.962	5.538	7.176	8.118	8.514	9.444
1982	0.379	0.608	0.961	1.533	2.061	2.574	3.576	4.798	5.925	7.992	8.838	9.784
1983	0.433	0.615	1.012	1.526	2.143	2.774	3.295	4.439	5.885	7.226	9.312	10.106
1984	0.582	0.777	1.084	1.619	2.292	3.119	3.935	4.578	5.504	7.701	9.728	10.229
1985	0.577	0.749	1.131	1.583	2.353	3.014	4.350	5.343	5.829	6.569	9.417	10.834
1986	0.452	0.687	1.001	1.503	2.086	2.975	3.846	5.255	6.099	7.299	7.603	10.809
1987	0.463	0.645	0.953	1.387	2.062	2.709	3.693	4.688	5.840	6.573	7.857	8.194
1988	0.556	0.678	0.916	1.422	1.881	2.597	3.288	4.644	5.354	6.397	7.216	7.947
1989	0.539	0.714	0.975	1.333	1.938	2.704	3.464	4.306	5.597	6.399	7.152	8.070
1990	0.510	0.736	1.014	1.465	1.998	2.598	3.771	4.574	5.735	6.914	7.789	8.965
1991	0.558	0.660	1.003	1.487	2.094	2.670	3.327	4.225	5.681	6.983	8.103	8.987
1992	0.377	0.645	0.882	1.351	1.968	2.618	3.472	4.522	5.211	7.042	8.936	10.131
1993	0.234	0.559	0.865	1.239	1.822	2.507	3.543	4.221	5.095	6.936	7.317	9.255
1994	0.525	0.538	0.941	1.415	1.744	2.417	3.185	4.359	5.202	6.032	7.130	7.434
1995	0.378	0.724	1.132	1.626	2.143	2.390	3.083	3.931	4.323	5.116	6.590	7.918
1996	0.584	0.716	1.123	1.793	2.264	2.695	2.998	3.734	4.554	4.470	5.494	7.447
1997	0.480	0.778	1.133	1.667	2.267	2.861	3.195	3.375	4.300	5.540	6.337	8.825
1998		0.793		1.635	2.128		3.619	3.786	4.035	4.889	6.377	9.118
1999	0.619	0.755	1.265	1.904	2.277	2.612	3.486	4.636	4.540	4.934	5.656	6.816
2000	0.478	0.792	1.118	1.801	2.516	2.668	2.981	4.245	5.898	5.528	5.818	6.891
2001	0.567	0.792	1.136	1.621	2.307	3.055	3.003	3.300	5.071	7.502	6.826	7.220
2002	0.439	0.837	1.254	1.714	2.121	2.827	3.838	3.534	3.659	5.815	8.750	7.774
2003	0.573	0.746	1.265	1.806	2.186	2.474	3.465	4.533	4.092	4.544	6.876	9.593
2004	0.464	0.810	1.154	1.790	2.295	2.532	2.740	4.406	5.644	4.749	6.164	8.288
2005	0.506	0.744	1.155	1.586	2.237	2.692	2.941	3.042	4.679	6.424	5.384	7.482
2006	0.455	0.802	1.209	1.640	1.997	2.599	3.159	3.309	3.189	4.633	6.369	6.436
2007	0.419	0.729	1.207	1.744	2.082	2.343	3.203	4.126	4.370	3.902	5.903	7.620
2008	0.535	0.738	1.125	1.665	2.089	2.347	2.581	3.768	5.076	5.400	4.931	7.736
2009	0.474	0.822	1.226	1.615	2.135	2.349	2.538	3.107	4.703	6.063	6.495	6.709
2010	0.491	0.825	1.178	1.755	2.089	2.478	2.618	2.768	4.501	6.782	8.204	8.921
2011	1.132	0.822	1.223	1.492	2.088	2.340	2.650	2.712	2.859	3.935	7.445	9.962
2012	0.623	0.993	1.216	1.636	1.813	2.172	2.580	2.998	3.093	2.720	3.487	4.958
2013	0.702	0.956	1.208	1.609	2.041	2.031	2.363	2.860	3.176	3.417	2.557	3.236
2014	0.702	0.921	1.216	1.578	1.977	2.177	2.528	2.854	3.040	3.319	4.049	5.426
									2.0.10			

Table 6b. Beginning of the year weights-at-age (kg) calculated from commercial annual mean weights-atage. The values for 1976 are extrapolated back to 1959.

Year	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10	Total
1995	0.02	0.07	3.91	8.48	5.15	2.40	0.36	0.14	0.02
1996	0.01	0.26	2.59	11.87	9.68	2.77	0.82	0.07	0.01
1997	0.01	0.20	5.01	5.03	8.97	7.26	1.07	0.58	0.01
1998	0.00	0.06	1.06	7.30	3.27	2.57	1.58	0.30	0.00
1999	0.05	0.06	0.41	0.79	1.23	0.57	0.24	0.24	0.05
2000	0.01	0.02	0.28	0.68	0.67	0.91	0.30	0.10	0.01
2001	0.01	0.11	0.38	0.85	0.67	0.38	0.36	0.17	0.01
2002	0.00	0.02	0.48	0.75	0.73	0.33	0.16	0.17	0.00
2003	0.01	0.05	0.22	0.94	0.45	0.16	0.09	0.04	0.01
2004	0.00	0.05	0.21	0.77	0.78	0.37	0.12	0.03	0.00
2005	0.00	0.02	0.13	0.55	0.62	0.36	0.27	0.05	0.00
2006	0.00	0.05	0.27	0.53	0.47	0.53	0.22	0.12	0.00
2007	0.00	0.05	0.38	0.99	0.69	0.36	0.25	0.17	0.00
2008	0.00	0.07	0.25	0.99	0.84	0.42	0.21	0.09	0.00
2009	0.01	0.02	0.24	0.60	1.07	0.20	0.16	0.04	0.01
2010	0.01	0.05	0.35	0.76	0.64	0.31	0.11	0.17	0.01
2011	0.01	0.01	0.10	0.31	0.56	0.22	0.16	0.02	0.01
2012	0.00	0.03	0.13	0.47	0.49	0.38	0.12	0.06	0.00
2013	0.13	0.06	0.48	1.08	0.45	0.48	0.27	0.03	0.13
2014	0.01	0.03	0.43	0.47	0.30	0.48	0.23	0.11	0.01

Table 7a. Standardized gillnet (5.5 in mesh) annual catch rate-at-age indices estimated using data from sentinel fishery fixed sites. Catch rates are expressed as fish per net.

Table 7b. Standardized line-trawl annual catch rate-at-age indices estimated using data from sentinel fishery fixed sites. Catch rates are expressed as fish per 1000 hooks.

Year	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10	Total
1995	6.87	13.97	49.40	71.24	18.85	17.17	3.60	1.36	182.45
1996	7.75	28.19	27.16	43.47	45.05	12.97	7.18	1.69	173.45
1997	5.34	22.70	24.75	16.04	16.34	20.24	2.80	1.62	109.82
1998	6.43	15.93	19.52	15.60	6.02	8.94	10.96	2.43	85.83
1999	4.95	16.59	23.04	13.25	7.49	4.72	4.38	1.84	76.26
2000	11.92	26.80	24.98	16.62	7.67	6.03	2.13	0.98	97.11
2001	17.23	30.56	22.61	13.40	7.32	4.18	2.25	0.69	98.25
2002	13.50	27.97	25.10	8.76	5.37	1.85	1.01	0.74	84.30
2003	2.48	33.88	39.03	20.01	7.99	3.46	1.17	0.87	108.89
2004	9.05	10.00	36.94	19.56	10.19	3.39	1.60	0.39	91.11
2005	6.31	19.66	13.30	13.49	11.50	4.35	1.87	0.82	71.29
2006	8.67	16.82	26.19	19.87	13.24	11.88	3.53	1.58	101.78
2007	10.62	18.88	16.52	13.86	8.36	5.01	4.42	1.81	79.49
2008	4.94	25.42	22.49	18.49	8.90	5.52	2.75	2.51	91.02
2009	5.12	13.40	27.27	15.58	6.30	3.70	1.59	1.29	74.24
2010	2.11	14.45	11.90	15.03	7.49	2.01	0.79	0.74	54.53
2011	7.60	10.60	17.26	17.07	10.95	3.94	1.77	0.66	69.86
2012	6.73	13.21	13.02	13.37	12.90	4.47	2.45	0.67	66.82
2013	2.13	11.88	12.49	8.09	5.66	5.57	1.52	0.74	48.07
2014	3.93	3.74	12.56	10.84	5.58	4.60	3.17	0.73	45.15

Year	Gillnet catch records	Linetrawl catch records	Ottertrawl catch records	Total catch records	Gillnet CPUE records	Linetrawl CPUE records	Ottertrawl CPUE records	Total CPUE records
1998	1155	213	457	1825	1318	266	434	2018
1999	3366	329	384	4079	3659	326	282	4267
2000	2460	323	287	3070	2474	302	220	2996
2001	2214	508	177	2899	2209	481	171	2861
2002	1750	314	336	2400	1644	309	335	2288
2003	1693	261	290	2244	1626	236	288	2150
2004	1834	356	370	2560	1742	351	369	2462
2005	2056	302	169	2527	1952	298	169	2419
2006	1784	278	193	2255	1753	290	193	2236
2007	2003	423	177	2603	1978	429	177	2584
2008	1916	453	255	2624	1876	457	255	2588
2009	1356	350	356	2062	1365	350	356	2071
2010	995	238	338	1571	991	242	338	1571
2011	930	162	360	1452	895	162	360	1417
2012	601	126	244	971	566	122	244	932
2013	447	264	184	895	424	259	184	867
2014	611	204	373	1188	606	202	373	1181

Table 8. Annual number of logbook records from larger vessels (> 35') in NAFO Subdiv. 3Ps used in the analysis of catch and catch rates by gillnets, linetrawls and otter trawls during 1998 to 2013.

Table 9a. Annual number of cod tagged in NAFO Subdiv. 3Ps during 2007-13 by tag type (low or high reward) and by unit statistical unit area.

Release Year	Low Reward (\$10)	High Reward (\$100)	Total Tagged in 3Psa	Total Tagged in 3Psb	Total Tagged in 3Psc	Total Tagged in 3Ps
2007	3410	480	840	1019	2031	3890
2008	315	80	-	-	395	395
2009	2006	504	-	-	2510	2510
2010	817	205	-	-	1022	1022
2011	767	196	-	-	963	963
2012	1869	471	-	743	1597	2340
2013	3153	798	554	557	2840	3951
2014	773	198	-	398	573	971

Table 9b. Annual number of cod tags returned from NAFO Subdiv. 3Ps during 2007-2013 by harvester type (commercial or recreational, unknowns excluded).

Recapture Year	Commercial Fishery	Recreational Fishery
2007	353 (93.9)	23 (6.1)
2008	289 (95.8)	13 (4.2)
2009	282 (925)	23 (7.5)
2010	269 (94.7)	15 (5.3)
2011	116 (88.6)	15 (11.4)
2012	180 (95.2)	9 (4.8)
2013	223 (91.1)	21 (8.6)
2014	225 (95.1)	11(4.9)

Table 9c. Harvest rates based on tagging for various size groups of cod tagged in three inshore areas of NAFO Subdiv. 3Ps.

Unit Area	Year	50-85 cm	>50 cm	>55 cm	>60 cm	>65 cm
3Psa (Hermitage Bay)	2009	16.8	16.8	17.4	18.9	19.5
3Psa (Hermitage Bay)	2010	-	-	-	-	-
3Psa (Hermitage Bay)	2011	-	-	-	-	-
3Psa (Hermitage Bay)	2012	-	-	-	-	-
3Psa (Hermitage Bay)	2013	-	-	-	-	-
3Psa (Hermitage Bay)	2014	6.0	6.9	7.8	6.3	-
3Psb (Fortune Bay)	2009	11.4	10.8	10.5	12.3	10.2
3Psb (Fortune Bay)	2010	-	-	-	-	-
3Psb (Fortune Bay)	2011	-	-	-	-	-
3Psb (Fortune Bay)	2012	-	-	-	-	-
3Psb (Fortune Bay)	2013	9.6	11.1	13.2	14.7	24.6
3Psb (Fortune Bay)	2014	11.1	11.4	12.9	15.0	20.7
3Psc (Placentia Bay)	2009	12.0	12.3	13.5	17.1	15.9
3Psc (Placentia Bay)	2010	18.9	20.4	25.8	34.5	23.4
3Psc (Placentia Bay)	2011	10.2	10.8	14.1	19.5	9.0
3Psc (Placentia Bay)	2012	9.9	13.8	18.6	22.2	17.7
3Psc (Placentia Bay)	2013	11.4	11.1	13.2	15.0	15.9
3Psc (Placentia Bay)	2014	10.2	10.8	15.6	14.4	12.0

Year	Vessel	Start Date	End Date	Days	Sets	Sets w/ Cod	% w/ cod
1983	AN 9	23-Apr-83	8-May-83	15	164	117	0.71
1984	AN 26	10-Apr-84	17-Apr-84	7	93	59	0.63
1985	WT 26	8-Mar-85	25-Mar-85	17	109	78	0.72
1986	WT 45	6-Mar-86	23-Mar-86	17	136	88	0.65
1987	WT 55-56	13-Feb-87	22-Mar-87	37	130	95	0.73
1988	WT 68	27-Jan-88	14-Feb-88	18	146	106	0.73
1989	WT 81	1-Feb-89	16-Feb-89	15	146	90	0.62
1990	WT 91	1-Feb-90	19-Feb-90	18	108	66	0.61
1991	WT 103	2-Feb-91	20-Feb-91	18	158	104	0.66
1992	WT 118	6-Feb-92	24-Feb-92	18	137	63	0.46
1993.1	WT 133	6-Feb-93	23-Feb-93	17	136	52	0.38
1993.4	WT 135	2-Apr-93	20-Apr-93	18	130	63	0.48
1994	WT 150-151	6-Apr-94	26-Apr-94	20	166	73	0.44
1995	WT 166-167	04-Apr-95	28-Apr-95	24	161	65	0.40
1996	WT 186-187	10-Apr-96	01-May-96	22	148	105	0.71
1997	WT 202-203	02-Apr-97	23-Apr-97	22	158	104	0.66
1998	WT 219-220	10-Apr-98	05-May-98	25	177	113	0.64
1999	WT 236-237	13-Apr-99	06-May-99	23	175	128	0.73
2000	WT 313-315	08-Apr-00	11-May-00	34	171	136	0.80
2001	WT 364-365, Tel 351	07-Apr-01	29-Apr-01	23	173	134	0.77
2002	WT 418-419	05-Apr-02	27-Apr-02	21	177	117	0.66
2003	WT 476-477	05-Apr-03	02-May-03	23	176	117	0.66
2004	WT 523, WT 546, Tel 522	11-Apr-04	11-May-04	30	177	107	0.60
2005	WT 617-618, AN 656	17-Apr-05	09-May-05	22	178	134	0.75
2006	WT 688	13-Apr-06	18-Apr-06	5.1	48	43	-
2007	WT 757-759	04-Apr-07	02-May-07	29	178	135	0.76
2008	WT 824-827	10-Apr-08	23-May-08	44	169	115	0.68
2009	AN 902-904	08-Apr-09	13-May-09	35	175	137	0.78
2010	AN 930-932	08-Apr-10	08-May-10	31	177	132	0.75
2011	AN 401-403	07-Apr-11	08-May-11	32	174	131	0.75
2012	AN 415-417	31-Mar-12	26-Apr-12	27	177	137	0.77
2013	AN 430-432	26-Mar-13	23-Apr-13	29	179	133	0.74
2014	AN 445-446, Tel 130	05-Apr-14	10-May-14	36	156	105	0.67
2015	AN 450-452	11-Apr-15	10-May-15	30	173	116	0.67

Table 10. Details of annual DFO research vessel surveys of 3Ps.

Strata	Depth (fathoms)	sq. mi.	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015
314	<30	974	256	1570	2144	573	287	328	1223	563	172	89
320	<30	1320	523	333	363	3222	1260	1603	4213	1189	893	363
293	31-50	159	2850	317	252	208	55	284	503	1312	186	56
308	31-50	112	16719	1410	2373	486	16893	3058	1167	878	4437	28379
312	31-50	272	1141	370	270	0	112	337	1310	854	4247	75
315	31-50	827	1161	1268	675	1634	767	1405	3705	2243	11141	211
321	31-50	1189	229	65	189	218	1823	2608	393	549	307	157
325	31-50	944	383	893	812	1542	7970	8019	519	2194	2708	1217
326	31-50	166	0	285	11	0	11	627	11	57	11	23
783	31-50	229	252	126	126	157	515	228	126	110	63	72
294	51-100	135	20685	1281	108	4960	713	59	2658	1476	845	1401
297	51-100	152	1317	1047	273	1056	4242	2781	3922	1547	1181	1241
307	51-100	395	3172	2735	4849	18237	7758	4945	3412	1902	2010	7480
311	51-100	317	788	1715	2519	3632	9627	1979	3212	17063	2847	1352
317	51-100	193	1367	2522	2881	912	3215	330	7022	12721	0	199
319	51-100	984	6064	15245	14670	24418	20120	10120	35549	40494	15851	20338
322	51-100	1567	2463	2507	1297	1049	820	2546	3162	11202	8400	1376
323	51-100	696	101	32	3300	105	15274	8179	3067	1332	2489	7854
324	51-100	494	432	481	153	359	417	3590	646	610	510	680
781	51-100	446	568	445	552	548	293	506	813	5031	1166	756
782	51-100	183	221	101	227	201	22	566	327	512	1032	277
295	101-150	209	976	1469	633	396	2441	nf	971	1639	1776	2444
298	101-150	171	282	7475	3384	73	585	0	6764	134	125	141
300	101-150	217	657	478	90	507	194	917	43	637	254	68
306	101-150	363	1015	2175	818	4054	714	1382	706	877	574	433
309	101-150	296	582	1122	244	49	236	529	308	49273	145	41
310	101-150	170	249	94	269	30	143	129	35	1695	86	386
313	101-150	165	66	124	23	111	259	21	11	164	571	23
316	101-150	189	117	117	13	116	10	12	17	65	0	45
318	101-150	129	683	336	16	189	18	9	9	237	21	35
779	101-150	422	142	671	310	186	0	503	5955	12283	7372	192
780	101-150	403 71	18	400	0	37	0	388	526	3587	1002	127
296 299	151-200 151-200	212	35 29	881 44	273 13	999 13	32 42	3581 58	2269 39	2338 110	103 188	161
	151-200		29 64	44 0	76				39 0			0
705 706	151-200	195 476	64 310	31	65	155 87	36 258	29 131	98	13 16	63 0	13 35
706	151-200	476 74	1263	122	257	737	238	16	98 15	173	12	35 22
707	201-300	1074	305	132	170	599	63	53	18	26	0	3600
715	151-200	1074	142	1368	51	1546	180	130	676	2330	264	551
708	151-200	539	142	641	0	4299	26	30	28	199	204 nf	59
708	201-300	126	1530	505	29	4299	44	29	20 3850	199	0	59 16
712	201-300	593	1550	106	 54	60	15	34	65	0	20	17
712	201-300	731	80	45	17	99	56	0	134	36	0	0
713	201-300	851	77	373	44	819	55	70	79	0	0	169
Total	Offshore	-	42716	38722	38652	69462	88490	52275	74660	148972	57779	75,237
Total	In/Offshore	-	70748	53457	44906	78803	97625	62146		179689		82,172
std	Offshore	-	29906	2383	7713	15303	24153	8209	12294	53762	10415	29521

Table 11. Cod abundance estimates (000's of fish) from DFO bottom-trawl research vessel surveys in NAFO Division 3Ps.*

*See Fig. 12 for location of strata. The survey was not completed in 2006. See Brattey et al. (2007) for pre-2005 data.

Strata	Depth (fathoms)	sq. mi.	2005	2007	2008	2009	2010	2011	2012	2013	2014	2015
314	<30	974	185	53	204	68	43	100	200	69	30	52
320	<30	1320	1890	1274	442	1069	603	500	1695	1618	759	69
293	31-50	159	1810	16	18	7	15	19	46	52	10	13
308	31-50	112	8011	253	789	170	8343	1558	426	732	1408	13903
312	31-50	272	345	60	434	0	37	78	206	234	904	30
315	31-50	827	13514	6456	99	1777	235	1295	1585	544	4726	180
321	31-50	1189	40	186	17	54	2054	1639	150	114	140	56
325	31-50	944	84	172	555	447	4194	2831	269	547	923	385
326	31-50	166	0	55	1	0	19	140	4	25	3	5
783	31-50	229	303	12	18	13	31	25	7	19	27	1
294	51-100	135	21147	85	27	149	55	7	315	73	47	111
297	51-100	152	1482	382	122	156	1224	2110	1863	528	227	285
307	51-100	395	2423	1471	3059	8114	4100	3258	1563	650	951	2185
311	51-100	317	570	83	219	395	2414	394	348	1512	684	108
317	51-100	193	218	1118	231	158	2436	31	2849	970	0	67
319	51-100	984	5845	14166	8888	33064	20494	10024	28365	20804	12559	11071
322	51-100	1567	1532	79	205	104	439	1395	206	607	1439	201
323	51-100	696	28	1	2525	4	10070	4602	655	127	1220	4048
324	51-100	494	148	51	39	53	39	653	86	175	97	112
781	51-100	446	203	23	49	28	33	44	55	151	70	114
782	51-100	183	34	5	13	20	1	328	30	101	42	51
295	101-150	209	727	128	83	20	519	nf	477	117	204	453
298	101-150	171	250	8445	2881	56	250	0	3903	37	79	43
300	101-150	217	391	149	25	286	111	480	94	200	74	14
306	101-150	363	812	2142	645	2021	630	932	649	501	268	244
309	101-150	296	464	1328	673	10	282	333	210	44380	25	14
310	101-150	170	410	11	427	7	82	105	17	306	74	152
313	101-150	165	101	352	79	61	213	14	21	39	315	12
316	101-150	189	95	120	5	156	7	7	29	23	0	75
318	101-150	129	1672	445	25	189	32	38	15	438	51	50
779	101-150	422	47	41	38	18	0	168	1246	4719	1875	34
780	101-150	403	2	86	0	2	0	71	21	284	178	13
296	151-200	71	54	146	76	239	5	2702	1863	589	29	33
299	151-200	212	15	327	1	2	26	63	29	9	275	0
705	151-200	195	96	0	111	122	47	36	0	49	141	18
706	151-200	476	301	56	76	51	153	180	126	17	0	53
707	151-200	74	3347	109	243	469	20	24	71	154	27	21
715	151-200	1074	451	167	296	1793	101	74	16	45	0	2033
716	151-200	128	123	1933	59	961	124	111	1102	1476	307	311
708	201-300	539	1272	940	0	3688	16	30	32	269	nf	109
711	201-300	126	1864	1024	52	100	33	25	3546	4	0	7
712	201-300	593	6	94	81	52	10	22	55	0	9	9
713	201-300	731	63	27	5	59	101	0	124	16	0	0
714	201-300	851	149	514	51	808	55	59	87	0	0	160
Total	Offshore	-	46059	34740	20535	56024	57429	30487	44706	76447	27057	35,740
Total	In/Offshore	-	72524	44585	23910	57020	59698	36505	54656	83327	30195	36,905
std	Offshore	-	31623	9058	4895	22078	18906	5042	11579	44705	6964	14899

Table 12. Cod biomass estimates (t) from DFO bottom-trawl research vessel surveys in NAFO Division 3Ps.*

*See Fig. 12 for location of strata. The survey was not completed in 2006. See Brattey et al. (2007) for pre-2005 data.

Year	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10	Age 11	Age 12	Age 13	Age 14	Age 15	Total
1983	6.42	10.01	6.52	1.14	3.72	1.62	0.48	0.89	1.61	0.75	0.36	0.14	0.06	0.05	0.04	33.81
1984	0.30	5.40	2.33	1.55	0.63	2.11	0.77	0.37	0.46	0.71	0.18	0.15	0.06	0.03	0.00	15.03
1985	0.38	7.74	14.88	12.57	9.96	3.28	2.66	0.79	0.48	0.42	0.42	0.49	0.21	0.12	0.03	54.43
1986	0.20	6.62	5.65	6.48	7.95	6.33	2.13	1.47	0.84	0.29	0.24	0.29	0.17	0.10	0.06	38.82
1987	1.09	8.48	5.67	4.97	13.82	8.31	3.35	1.29	0.69	0.28	0.23	0.16	0.17	0.16	0.06	48.73
1988	0.42	9.13	5.93	2.96	2.84	6.50	5.84	3.65	1.49	0.84	0.74	0.35	0.16	0.15	0.09	41.09
1989	0.49	6.50	4.66	3.17	1.51	1.16	2.15	1.21	0.67	0.37	0.41	0.13	0.11	0.05	0.09	22.68
1990	0.00	1.48	9.82	14.49	10.89	5.67	3.84	3.14	1.15	0.71	0.32	0.16	0.12	0.09	0.01	51.88
1991	1.30	27.69	5.03	10.00	11.24	5.75	2.84	1.58	1.19	0.74	0.56	0.22	0.11	0.07	0.04	68.36
1992	0.00	1.80	6.95	2.11	4.15	2.03	1.03	0.53	0.26	0.24	0.08	0.04	0.01	0.01	0.02	19.26
1993(Feb)	0.00	0.00	1.83	4.03	0.71	2.96	0.68	0.33	0.13	0.09	0.11	0.03	0.04	0.01	0.01	10.96
1993(Apr)	0.00	0.00	1.99	4.04	1.49	1.35	0.47	0.10	0.04	0.03	0.04	0.01	0.00	0.01	0.01	9.58
1994	0.00	1.63	1.46	4.31	6.10	1.73	1.62	0.50	0.08	0.04	0.03	0.02	0.01	0.01	0.00	17.54
1995	0.00	0.31	1.16	1.67	13.08	19.65	4.40	5.75	2.19	0.25	0.20	0.01	0.07	0.03	0.00	48.77
1996	0.90	1.08	3.67	3.62	1.32	2.69	2.91	0.54	0.46	0.09	0.09	0.02	0.00	0.00	0.00	17.39
1997	0.22	1.53	2.33	1.04	0.50	0.28	0.30	0.24	0.14	0.05	0.02	0.00	0.00	0.00	0.00	6.65
1998	0.52	0.97	6.79	8.42	5.60	3.99	1.96	2.50	2.79	0.43	0.30	0.06	0.03	0.00	0.00	34.36
1999	1.24	2.54	2.55	2.38	2.58	2.34	1.72	0.44	0.79	0.60	0.09	0.02	0.02	0.00	0.00	17.31
2000	1.25	3.33	5.36	3.10	2.17	1.82	1.20	0.89	0.35	0.31	0.53	0.12	0.00	0.01	0.00	20.44
2001	0.57	2.26	12.41	12.29	4.36	2.04	1.26	0.77	0.71	0.38	0.50	0.94	0.12	0.06	0.03	38.70
2002	0.58	1.10	3.90	8.28	5.85	3.04	2.04	0.99	0.53	0.37	0.08	0.12	0.19	0.01	0.00	27.08
2003	0.52	1.46	1.78	4.08	6.55	3.94	1.50	0.72	0.33	0.18	0.19	0.05	0.11	0.01	0.01	21.43
2004	0.20	1.90	2.07	1.71	2.08	4.05	4.24	1.26	0.81	0.67	0.79	0.15	0.10	0.02	0.07	20.12
2005	0.77	1.43	6.73	4.96	1.60	0.89	0.79	0.71	0.28	0.05	0.17	0.08	0.03	0.03	0.09	18.61
2006	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2007	3.18	1.73	4.84	3.11	1.48	0.76	0.44	0.22	0.47	0.42	0.12	0.09	0.08	0.05	0.01	17.00
2008	0.47	4.39	4.51	3.32	1.92	1.12	0.47	0.32	0.12	0.15	0.10	0.04	0.03	0.01	0.00	16.97
2009	0.40	1.43	9.25	6.67	5.70	3.09	1.79	0.99	0.21	0.17	0.21	0.38	0.14	0.02	0.00	30.45
2010	0.60	2.13	7.65	15.71	6.70	4.06	1.47	0.29	0.10	0.04	0.04	0.09	0.01	0.00	0.00	38.89
2011	0.15	4.70	6.55	2.46	5.08	1.92	1.41	0.48	0.10	0.08	0.00	0.02	0.01	0.01	0.00	22.97
2012	5.32	2.94	8.88	5.82	3.22	3.38	1.75	0.96	0.17	0.26	0.02	0.04	0.00	0.01	0.02	32.79
2013	1.58	18.42	11.49	16.61	6.43	4.50	3.09	2.36	0.56	0.28	0.07	0.01	0.00	0.01	0.00	65.41
2014	0.85	3.33	11.33	4.74	2.22	1.15	0.43	0.94	0.48	0.07	0.00	0.01	0.00	0.01	0.00	25.56
2015	0.11	4.55	9.11	12.60	3.32	1.36	1.07	0.36	0.50	0.06	0.01	0.00	0.00	0.00	0.00	33.05

Table 13a. Mean numbers per tow at age (1-15 only) in Campelen units for the Canadian research vessel bottom trawl survey of NAFO Subdiv. 3Ps (offshore index strata only).*

*Data are adjusted for missing strata. The survey in 2006 was not completed and there were two surveys in 1993 (February and April).

Table 13b. Mean numbers per tow at age (1-15 only) in Campelen units for the Canadian research vessel bottom trawl survey of NAFO Subdiv. 3Ps (inshore and offshore strata).

Year	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10	Age 11	Age 12	Age 13	Age 14	Age 15	Total
1997	0.32	1.68	2.44	1.01	0.46	0.25	0.26	0.21	0.12	0.04	0.01	0.00	0.00	0.00	0.00	6.80
1998	0.72	1.28	6.28	7.40	4.91	3.53	1.73	2.19	2.43	0.38	0.26	0.06	0.03	0.00	0.00	31.20
1999	1.31	3.05	2.52	2.26	2.41	2.12	1.54	0.39	0.68	0.52	0.07	0.02	0.02	0.01	0.00	16.92
2000	1.38	3.84	6.66	3.52	2.24	1.75	1.11	0.80	0.31	0.28	0.46	0.11	0.00	0.01	0.00	22.47
2001	0.99	2.88	11.44	10.58	3.71	1.74	1.08	0.66	0.60	0.32	0.43	0.80	0.10	0.05	0.03	35.41
2002	0.79	1.53	3.72	7.08	4.95	2.58	1.73	0.85	0.45	0.31	0.07	0.11	0.16	0.01	0.00	24.34
2003	0.61	2.62	2.24	3.67	5.88	3.51	1.34	0.63	0.28	0.16	0.17	0.04	0.09	0.01	0.01	21.26
2004	0.33	2.24	2.50	1.85	1.93	3.49	3.61	1.08	0.68	0.57	0.67	0.13	0.09	0.02	0.06	19.25
2005	0.80	1.63	7.32	7.27	3.49	2.08	1.52	1.20	0.41	0.09	0.15	0.06	0.03	0.03	0.08	26.16
2006	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
2007	3.31	2.34	5.33	3.26	2.11	1.14	0.76	0.35	0.56	0.37	0.12	0.10	0.07	0.04	0.01	19.87
2008	0.55	4.09	4.30	3.27	1.99	1.22	0.50	0.34	0.12	0.14	0.08	0.04	0.02	0.01	0.00	16.67
2009	1.44	2.47	8.64	5.81	4.91	2.65	1.53	0.84	0.18	0.15	0.18	0.32	0.12	0.01	0.00	29.25
2010	0.68	2.76	7.75	13.95	5.87	3.53	1.27	0.25	0.08	0.03	0.03	0.07	0.01	0.00	0.00	36.28
2011	0.19	4.63	6.37	2.56	5.46	2.04	1.42	0.49	0.09	0.08	0.00	0.02	0.01	0.01	0.00	23.37
2012	5.50	3.99	11.21	6.37	3.34	3.39	1.76	0.94	0.16	0.25	0.01	0.04	0.00	0.01	0.02	36.99
2013	3.14	19.94	12.11	16.14	5.83	4.04	2.72	2.06	0.48	0.24	0.06	0.01	0.00	0.01	0.00	66.78
2014	1.44	5.21	11.03	4.54	2.23	1.11	0.41	0.83	0.42	0.06	0.00	0.01	0.00	0.01	0.00	27.32
2015	0.41	4.90	8.47	10.97	2.87	1.17	0.92	0.31	0.43	0.06	0.01	0.00	0.00	0.00	0.00	33.05

*Data are adjusted for missing strata. The survey in 2006 was not completed

Year	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age	Age	Age
		-		-			-	-	_	10	11	12
1983	10.3	20.2	31.2	43.1	52.9	57.8	65.6	71.5	73.4	79.4	89.6	93.7
1984	12.0*	19.2	30.7	42.1	52.2	60.7	66.2	70.6	75.5	79.1	84.2	98.1
1985	-	17.9	29.1	40.3	51.2	60.2	66.4	74.2	73.9	79.4	88.9	93.0
1986	11.0*	18.8	27.1	40.3	49.0	55.7	62.1	72.2	76.4	82.8	93.3	93.9
1987	10.7	19.9	29.5	39.5	48.4	54.1	61.2	67.3	77.8	85.4	83.2	89.9
1988	9.2*	19.7	29.0	40.7	47.8	56.2	62.2	66.7	74.6	79.7	79.7	87.5
1989	12.0*	19.2	30.2	41.7	48.2	56.3	64.0	71.8	75.9	84.6	88.5	96.6
1990	-	19.9	29.9	40.1	48.3	53.7	56.6	62.3	70.1	76.2	79.1	88.7
1991	9.5	19.2	29.8	39.0	47.0	53.5	57.4	62.8	68.2	73.7	73.8	77.1
1992	-	20.7	30.4	40.9	47.4	55.3	61.2	62.4	66.7	73.3	83.9	81.8
1993	-	-	30.9	41.3	48.0	52.7	62.3	70.6	77.1	80.2*	96.0	106.0*
1994	-	19.1	32.2	39.4	48.2	50.2	53.7	59.1	68.0	87.7	79.7*	90.5
1995	-	21.2*	29.9	42.0	50.4	56.5	58.2	57.9	63.0	79.6	81.3	83.6*
1996	12.6	20.8	30.0	38.7	44.2	52.9	60.9	61.2	63.3	76.8	74.7	86.1*
1997	12.7	24.1	31.8	40.9	48.2	51.6	60.7	65.4	67.3	67.3	82.5*	-
1998	10.6	22.3	32.8	42.7	49.1	53.3	57.6	67.1	77.4	77.2	64.3	78.0*
1999	12.0	22.4	31.4	43.2	51.4	58.9	61.7	66.2	77.6	86.8	76.9	109.0*
2000	13.3	22.0	31.7	40.8	48.8	54.7	60.5	65.3	67.9	81.2	92.7	89.1
2001	10.6	21.9	33.2	40.6	47.6	51.4	57.4	68.8	77.5	75.0	85.5	96.8
2002	12.0	22.0	31.8	42.0	50.8	55.1	55.2	67.2	74.6	79.8	73.4*	86.0
2003	10.7	23.7	31.9	43.0	51.8	55.4	58.6	58.7	70.5	72.0	65.5	86.6*
2004	14.0	20.2	33.7	38.9	47.6	60.8	66.3	69.2	67.3	69.6	73.2	73.5*
2005	12.1	25.5	34.2	41.9	48.6	54.5	63.5	67.6	72.3	72.6*	99.2	103.4
2006	-	-	-	-	-	-	-	-	-	-	-	-
2007	11.1	21.2	30.7	38.1	48.9	54.9	55.8	64.9	81.7	91.6	86.9	86.6
2008	11.7	18.4	26.6	38.5	45.9	53.0	60.2	59.4	66.9	68.2	90.0	94.1
2009	12.3	19.1	31.3	38.7	46.7	55.0	60.5	63.5	72.3	76.0	83.3	87.2
2010	11.8	22.7	30.5	40.4	45.6	55.0	65.8	70.9	75.2	81.1*	92.6*	103.1
2011	14.0	23.5	30.2	40.1	47.1	49.5	56.1	61.7	73.8	53.2*	-	75.5*
2012	11.1	18.6	34.2	41.7	48.1	55.8	53.9	61.0	72.2	73.8*	105.0*	107.0*
2013	12.3	20.4	27.9	41.9	47.7	47.8	53.4	54.0	63.7	55.4	97.0*	95.9*
2014	10.6	20.9	30.2	35.0	47.8	53.4	54.5	63.2	65.0	59.3*	-	80.0*
2015	11.9	20.9	30.5	39.8	45.0	53.8	56.5	56.0	64.5	72.4*	87.0*	-

Table 14. Mean length-at-age (cm) of cod sampled during research bottom-trawl surveys in Subdiv. 3Ps in winter-spring 1983-2015. Shaded entries (*) are based on fewer than 5 aged fish.

Year	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10	Age 11	Age 12
1983	0.01	0.07	0.22	0.66	1.29	1.59	2.15	3.44	3.87	5.22	8.81	10.34
1984	-	0.07	0.25	0.63	1.13	1.84	2.74	3.84	4.26	5.06	8.09	10.03
1985	-	-	0.21	0.49	1.05	1.60	2.30	3.19	3.31*	3.76*	-	3.97*
1986	-	0.05	0.17	0.45	0.87	1.36	2.39	3.25	5.42	4.41	6.42*	9.16
1987	-	-	0.23	0.52	0.92	1.32	1.88	2.41	4.33	6.35	6.74	6.11
1988	-	0.06	0.19	0.56	0.88	1.42	2.17	2.51	4.08	4.77	4.21	9.43
1989	-	0.06	0.24	0.58	0.91	1.28	2.25	3.74	4.57	5.95	8.78	8.88
1990	-	0.06	0.20	0.52	0.96	1.36	1.62	2.19	3.21	4.33	5.09	7.46
1991	0.01	0.05	0.20	0.45	0.84	1.33	1.74	2.37	3.09	4.08	4.10	5.09
1992	-	0.06	0.22	0.54	0.89	1.44	2.06	2.32	2.91	4.15	5.90	5.81
1993	-	-	0.21	0.54	0.86	1.20	2.05	3.13	4.48	4.47*	8.53	13.20*
1994	-	0.05	0.23	0.44	0.87	1.08	1.33	1.87	3.03	6.35	5.21*	7.47
1995	-	0.06*	0.20	0.52	0.93	1.50	1.75	1.75	2.28	4.88	5.50	6.49*
1996	0.02	0.07	0.22	0.46	0.71	1.21	2.04	2.19	2.41	4.46	3.99	7.01*
1997	0.02	0.11	0.26	0.54	0.88	1.15	1.87	2.64	3.06	3.22	5.46*	-
1998	0.01	0.09	0.28	0.62	0.99	1.27	1.63	2.74	4.76	5.07	2.68	5.25*
1999	0.01	0.10	0.28	0.64	1.10	1.72	2.08	2.57	4.39	6.87	5.12	13.16*
2000	0.02	0.08	0.27	0.57	0.92	1.35	1.90	2.51	2.91	5.19	8.34	8.13
2001	0.01	0.08	0.28	0.55	0.87	1.16	1.67	2.96	4.39	4.35	6.09	9.05
2002	0.01	0.09	0.24	0.56	1.01	1.39	1.45	2.75	4.00	5.11	4.20*	6.24
2003	0.01	0.10	0.27	0.61	1.10	1.46	1.83	1.74	3.15	3.76	2.64	6.56*
2004	0.02	0.07	0.31	0.50	0.86	1.81	2.47	3.15	2.95	3.34	4.25	4.71*
2005	0.01	0.14	0.34	0.62	1.00	1.37	2.24	3.12	4.06	4.47*	10.31	11.30
2006	-	-	-	-	-	-	-	-	-	-	-	-
2007	0.01	0.08	0.23	0.46	0.95	1.44	1.57	2.54	5.34	8.17	7.66	7.82
2008	0.01	0.05	0.16	0.47	0.80	1.18	1.85	1.88	2.78	3.29	7.21	9.11
2009	0.01	0.05	0.24	0.47	0.79	1.39	1.96	2.42	3.68	4.27	6.26	7.07
2010	0.01	0.09	0.22	0.52	0.79	1.40	2.51	3.24	4.24	6.96*	9.05*	11.31
2011	0.02	0.11	0.24	0.50	0.87	1.09	1.67	2.35	3.80	1.30*	-	4.43*
2012	0.01	0.05	0.33	0.60	0.89	1.45	1.35	2.20	3.82	4.02	9.23*	12.61*
2013	0.02	0.07	0.19	0.60	0.89	0.98	1.42	1.43	2.44	1.76	9.88	10.32*
2014	0.01	0.08	0.21	0.35	0.86	1.28	1.36	2.24	2.65*	2.20*	-	4.68
2015	0.01	0.07	0.22	0.49	0.77	1.34	1.58	1.56	2.65	4.02*	5.67*	-

Table 15. Mean round weight-at-age (kg) of cod sampled during DFO bottom-trawl surveys in Subdiv. 3Ps in winter-spring 1983-2015. Shaded entries (*) are based on fewer than 5 aged fish.

Cohort	Slope	Slope SE	Intercept	Intercept SE	Cohort	Slope	Slope SE	Intercept	Intercept SE
1954	1.1094	0.2940	-8.1702	2.4445	1983	1.8944	0.2608	-11.8903	1.6045
1955	1.5059	0.2237	-10.2633	1.6124	1984	2.2315	0.2981	-13.4166	1.8044
1956	1.3174	0.3208	-9.4592	2.2216	1985	2.6988	0.3728	-16.0342	2.2010
1957	1.4604	0.3703	-10.3248	2.3525	1986	2.5829	0.2930	-14.0673	1.5934
1958	2.3929	0.5853	-16.4519	3.6202	1987	2.2526	0.2231	-11.9227	1.2350
1959	2.1113	0.5358	-13.0196	2.9364	1988	2.7731	0.4110	-14.0212	2.1672
1960	1.6741	0.2990	-10.6677	1.7584	1989	1.8846	0.1577	-9.7844	0.8110
1961	1.8639	0.3551	-11.4722	2.0669	1990	1.7888	0.1900	-9.2101	0.9575
1962	1.7141	0.2898	-10.5115	1.7043	1991	2.4874	0.4971	-13.1443	2.5618
1963*	-	-	-	-	1992	2.6015	0.3903	-13.0008	1.9108
1964	1.9272	0.2411	-12.7182	1.5667	1993	1.8954	0.2394	-9.8698	1.2957
1965	2.4194	0.5982	-16.4244	4.2387	1994	1.6015	0.1969	-8.1481	1.0091
1966	1.5492	0.2401	-10.0608	1.6025	1995	1.6523	0.2188	-8.7711	1.1242
1967	1.6876	0.3782	-10.0845	2.2543	1996	1.7414	0.2410	-9.3461	1.2620
1968	2.1397	0.2885	-13.1625	1.7869	1997	3.0797	0.4567	-14.8462	2.1742
1969	1.6825	0.3043	-10.3672	1.8439	1998	1.9984	0.2396	-9.6586	1.1567
1970	1.5265	0.2305	-8.8558	1.3136	1999	1.8423	0.2647	-9.1495	1.3103
1971	1.3122	0.1401	-7.8405	0.8346	2000	1.7800	0.3025	-9.2716	1.4885
1972	1.4117	0.1445	-8.9081	0.8853	2001	1.7588	0.2292	-8.3449	1.0333
1973	1.4521	0.1667	-9.3550	1.0320	2002	1.6768	0.2439	-8.8522	1.2949
1974	2.0042	0.1969	-13.1541	1.2944	2003	1.5873	0.2283	-9.0376	1.2856
1975	1.7846	0.2174	-11.1641	1.3757	2004	1.4998	0.1654	-8.3629	0.9172
1976	1.3552	0.2056	-8.5990	1.2510	2005	1.8574	0.2314	-10.0268	1.2524
1977	2.5066	0.3505	-15.3640	2.1732	2006	1.7491	0.1781	-8.5921	0.9051
1978	1.7920	0.1680	-10.7323	1.0205	2007	1.5798	0.2523	-7.5185	1.1952
1979	1.0297	0.1138	-6.4477	0.7670	2008	1.6777	0.2542	-8.2825	1.1113
1980	1.4270	0.1415	-9.4134	0.9131	2009	2.2862	0.3272	-10.9310	1.3912
1981	1.7431	0.1781	-11.9865	1.1846	2010	3.5736	0.8224	-16.3097	3.7200
1982	2.0091	0.2059	-13.3056	1.3496	-	-	-	-	-

Table 16. Parameter estimates and SE's for a probit model fitted to observed proportions mature at age (from "combined" survey area) for female cod from NAFO Subdiv. 3Ps based on surveys conducted during 1959-2014.

*Fit not significant

Year	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10	Age 11	Age 12	Age 13	Age 14
1954	0.0004*	0.0015*	0.0050*	0.0175*	0.0607*	0.1938*	0.4701*	0.7573*	0.9135*	0.9723*	0.9914*	0.9973*	0.9992*	0.9997*
1955	0.0009	0.0015*	0.0050*	0.0175*	0.0607*	0.1938*	0.4701*	0.7573*	0.9135*	0.9723*	0.9914*	0.9973*	0.9992*	0.9997*
1956	0.0002	0.0026	0.0050*	0.0175*	0.0607*	0.1938*	0.4701*	0.7573*	0.9135*	0.9723*	0.9914*	0.9973*	0.9992*	0.9997*
1957	0.0003	0.0007	0.0078	0.0175*	0.0607*	0.1938*	0.4701*	0.7573*	0.9135*	0.9723*	0.9914*	0.9973*	0.9992*	0.9997*
1958	0.0001	0.0011	0.0032	0.0234	0.0607*	0.1938*	0.4701*	0.7573*	0.9135*	0.9723*	0.9914*	0.9973*	0.9992*	0.9997*
1959	0.0000	0.0006	0.0040	0.0142	0.0677	0.1938*	0.4701*	0.7573*	0.9135*	0.9723*	0.9914*	0.9973*	0.9992*	0.9997*
1960	0.0000	0.0000	0.0026	0.0149	0.0610	0.1804	0.4701*	0.7573*	0.9135*	0.9723*	0.9914*	0.9973*	0.9992*	0.9997*
1961	0.0001	0.0002	0.0001	0.0112	0.0535	0.2265	0.4003	0.7573*	0.9135*	0.9723*	0.9914*	0.9973*	0.9992*	0.9997*
1962	0.0001	0.0007	0.0012	0.0010	0.0464	0.1744	0.5691	0.6693	0.9135*	0.9723*	0.9914*	0.9973*	0.9992*	0.9997*
1963	0.0002	0.0004	0.0035	0.0102	0.0111	0.1733	0.4409	0.8562	0.8599	0.9723*	0.9914*	0.9973*	0.9992*	0.9997*
1964	0.0001 [†]	0.0008	0.0028	0.0185	0.0785	0.1096	0.4745	0.7465	0.9641	0.9490	0.9914*	0.9973*	0.9992*	0.9997*
1965	0.0000	0.0005^{\dagger}	0.0046	0.0177	0.0914	0.4129	0.5741	0.7955	0.9166	0.9918	0.9826	0.9973*	0.9992*	0.9997*
1966	0.0000	0.0001	0.0028 [†]	0.0252	0.1041	0.3491	0.8531	0.9365	0.9437	0.9762	0.9982	0.9942	0.9992*	0.9997*
1967	0.0002	0.0000	0.0010	0.0159 [†]	0.1255	0.4283	0.7410	0.9796	0.9938	0.9863	0.9935	0.9996	0.9981	0.9997*
1968	0.0002	0.0009	0.0001	0.0066	0.0847 [†]	0.4435	0.8285	0.9385	0.9975	0.9994	0.9968	0.9983	0.9999	0.9994
1969	0.0000	0.0012	0.0044	0.0012	0.0438	0.3415 [†]	0.8157	0.9689	0.9879	0.9997	0.9999	0.9993	0.9995	1.0000
1970	0.0002	0.0001	0.0066	0.0206	0.0130	0.2396	0.7498 [†]	0.9609	0.9950	0.9977	1.0000	1.0000	0.9998	0.9999
1971	0.0007	0.0009	0.0012	0.0344	0.0899	0.1292	0.6840	0.9489 [†]	0.9927	0.9992	0.9996	1.0000	1.0000	1.0000
1972	0.0015	0.0030	0.0049	0.0099	0.1616	0.3174	0.6251	0.9370	0.9915 [†]	0.9987	0.9999	0.9999	1.0000	1.0000
1973	0.0006	0.0054	0.0137	0.0257	0.0784	0.5103	0.6865	0.9493	0.9903	0.9986 [†]	0.9998	1.0000	1.0000	1.0000
1974	0.0004	0.0023	0.0198	0.0601	0.1240	0.4196	0.8492	0.9116	0.9953	0.9986	0.9998 [†]	1.0000	1.0000	1.0000
1975	0.0000	0.0016	0.0093	0.0697	0.2274	0.4324	0.8600	0.9682	0.9798	0.9996	0.9998	1.0000 [†]	1.0000	1.0000
1976	0.0001	0.0001	0.0067	0.0369	0.2176	0.5752	0.8038	0.9812	0.9940	0.9956	1.0000	1.0000	1.0000 [†]	1.0000
1977	0.0007	0.0005	0.0008	0.0280	0.1359	0.5082	0.8617	0.9566	0.9978	0.9989	0.9991	1.0000	1.0000	1.0000 [†]
1978	0.0000	0.0028	0.0030	0.0058	0.1096	0.3922	0.7933	0.9663	0.9916	0.9997	0.9998	0.9998	1.0000	1.0000
1979	0.0001	0.0000	0.0106	0.0175	0.0418	0.3447	0.7259	0.9344	0.9925	0.9984	1.0000	1.0000	1.0000	1.0000
1980	0.0044	0.0008	0.0004	0.0400	0.0961	0.2444	0.6920	0.9157	0.9815	0.9984	0.9997	1.0000	1.0000	1.0000
1981	0.0003	0.0123	0.0047	0.0048	0.1391	0.3878	0.7058	0.9057	0.9781	0.9949	0.9996	0.9999	1.0000	1.0000
1982	0.0000	0.0014	0.0336	0.0275	0.0557	0.3851	0.7905	0.9468	0.9762	0.9946	0.9986	0.9999	1.0000	1.0000
1983	0.0000	0.0002	0.0059	0.0888	0.1453	0.4196	0.7084	0.9574	0.9925	0.9943	0.9987	0.9996	1.0000	1.0000
1984	0.0000	0.0001	0.0012	0.0240	0.2143	0.5049	0.8986	0.9040	0.9926	0.9990	0.9987	0.9997	0.9999	1.0000
1985	0.0000	0.0003	0.0007	0.0066	0.0929	0.4330	0.8596	0.9909	0.9733	0.9987	0.9999	0.9997	0.9999	1.0000

Table 17. Estimated proportions mature for female cod from NAFO Subdiv. 3Ps from DFO surveys from 1978 to 2015, projected forward to 2018. Estimates were obtained from a probit model fitted by cohort to observed proportions mature at age (from "combined" survey area). Black shaded cells(*) are averages of the three closest cohorts; grey shaded cells ([†]) are the average of estimates for the adjacent cohorts.

Year	Age 1	Age 2	Age 3	Age 4	Age 5	Age 6	Age 7	Age 8	Age 9	Age 10	Age 11	Age 12	Age 13	Age 14
1986	0.0000	0.0001	0.0020	0.0051	0.0366	0.2991	0.6814	0.9735	0.9993	0.9930	0.9998	1.0000	0.9999	1.0000
1987	0.0000	0.0000	0.0012	0.0132	0.0370	0.1783	0.6401	0.8569	0.9955	0.9999	0.9982	1.0000	1.0000	1.0000
1988	0.0001	0.0001	0.0004	0.0111	0.0818	0.2225	0.5536	0.8811	0.9437	0.9992	1.0000	0.9995	1.0000	1.0000
1989	0.0000	0.0006	0.0018	0.0053	0.0946	0.3719	0.6809	0.8763	0.9686	0.9791	0.9999	1.0000	0.9999	1.0000
1990	0.0004	0.0002	0.0057	0.0233	0.0731	0.4931	0.7975	0.9409	0.9759	0.9923	0.9925	1.0000	1.0000	1.0000
1991	0.0006	0.0024	0.0033	0.0515	0.2400	0.5396	0.9006	0.9632	0.9916	0.9957	0.9981	0.9973	1.0000	1.0000
1992	0.0000	0.0036	0.0158	0.0507	0.3408	0.8069	0.9457	0.9883	0.9943	0.9989	0.9992	0.9996	0.9990	1.0000
1993	0.0000	0.0003	0.0210	0.0957	0.4612	0.8310	0.9822	0.9962	0.9987	0.9991	0.9998	0.9999	0.9999	0.9997
1994	0.0003	0.0004	0.0034	0.1136	0.4106	0.9320	0.9791	0.9986	0.9997	0.9999	0.9999	1.0000	1.0000	1.0000
1995	0.0014	0.0023	0.0055	0.0394	0.4339	0.8210	0.9955	0.9978	0.9999	1.0000	1.0000	1.0000	1.0000	1.0000
1996	0.0008	0.0071	0.0150	0.0695	0.3302	0.8209	0.9679	0.9997	0.9998	1.0000	1.0000	1.0000	1.0000	1.0000
1997	0.0005	0.0042	0.0341	0.0921	0.5017	0.8557	0.9648	0.9950	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
1998	0.0000	0.0028	0.0216	0.1490	0.4030	0.9314	0.9862	0.9939	0.9992	1.0000	1.0000	1.0000	1.0000	1.0000
1999	0.0005	0.0002	0.0160	0.1032	0.4649	0.8180	0.9946	0.9988	0.9990	0.9999	1.0000	1.0000	1.0000	1.0000
2000	0.0007	0.0035	0.0037	0.0847	0.3753	0.8117	0.9676	0.9996	0.9999	0.9998	1.0000	1.0000	1.0000	1.0000
2001	0.0006	0.0042	0.0250	0.0740	0.3455	0.7582	0.9553	0.9950	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
2002	0.0014	0.0033	0.0260	0.1591	0.6347	0.7507	0.9424	0.9907	0.9992	1.0000	1.0000	1.0000	1.0000	1.0000
2003	0.0008	0.0079	0.0192	0.1443	0.5826	0.9742	0.9450	0.9884	0.9981	0.9999	1.0000	1.0000	1.0000	1.0000
2004	0.0006	0.0041	0.0444	0.1042	0.5155	0.9115	0.9988	0.9899	0.9978	0.9996	1.0000	1.0000	1.0000	1.0000
2005	0.0010	0.0028	0.0214	0.2125	0.4082	0.8704	0.9870	0.9999	0.9982	0.9996	0.9999	1.0000	1.0000	1.0000
2006	0.0003	0.0047	0.0137	0.1048	0.6104	0.8035	0.9769	0.9982	1.0000	0.9997	0.9999	1.0000	1.0000	1.0000
2007	0.0011	0.0018	0.0206	0.0637	0.3850	0.9010	0.9604	0.9963	0.9998	1.0000	0.9999	1.0000	1.0000	1.0000
2008	0.0026	0.0061	0.0115	0.0860	0.2495	0.7701	0.9814	0.9931	0.9994	1.0000	1.0000	1.0000	1.0000	1.0000
2009	0.0011	0.0124	0.0340	0.0693	0.2966	0.6192	0.9471	0.9967	0.9988	0.9999	1.0000	1.0000	1.0000	1.0000
2010	0.0002	0.0062	0.0578	0.1684	0.3230	0.6539	0.8883	0.9897	0.9994	0.9998	1.0000	1.0000	1.0000	1.0000
2011	0.0000	0.0016	0.0347	0.2309	0.5384	0.7536	0.8944	0.9749	0.9981	0.9999	1.0000	1.0000	1.0000	1.0000
2012	0.0004*	0.0001	0.0163	0.1712	0.5951	0.8704	0.9514	0.9743	0.9948	0.9996	1.0000	1.0000	1.0000	1.0000
2013	0.0004*	0.0026*	0.0037	0.1441	0.5429	0.8780	0.9748	0.9921	0.9942	0.9989	0.9999	1.0000	1.0000	1.0000
2014	0.0004*	0.0026*	0.0182*	0.1176	0.6317	0.8723	0.9724	0.9955	0.9988	0.9987	0.9998	1.0000	1.0000	1.0000
2015	0.0004*	0.0026*	0.0182*	0.1443*	0.8261	0.9459	0.9752	0.9942	0.9992	0.9998	0.9997	1.0000	1.0000	1.0000
2016	0.0004*	0.0026*	0.0182*	0.1443*	0.6669*	0.9941	0.9944	0.9956	0.9988	0.9999	1.0000	0.9999	1.0000	1.0000
2017	0.0004*	0.0026*	0.0182*	0.1443*	0.6669*	0.9374*	0.9998	0.9994	0.9992	0.9998	1.0000	1.0000	1.0000	1.0000
2018	0.0004*	0.0026*	0.0182*	0.1443*	0.6669*	0.9374*	0.9898*	1.0000	0.9999	0.9999	1.0000	1.0000	1.0000	1.0000

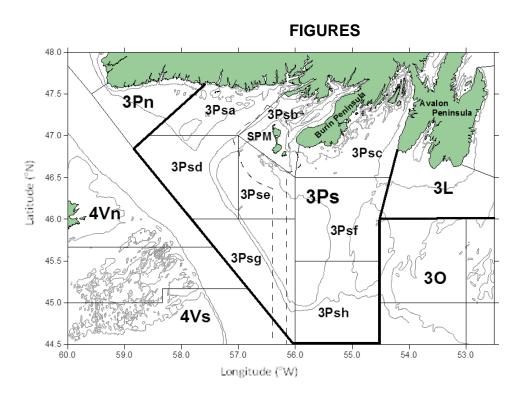


Figure 1. NAFO Subdiv. 3Ps management zone showing the economic zone around the French islands of St. Pierre and Miquelon (SPM, dashed line), the 100 m and 250 m depth contours (grey lines) and the boundaries of the statistical unit areas (solid lines).

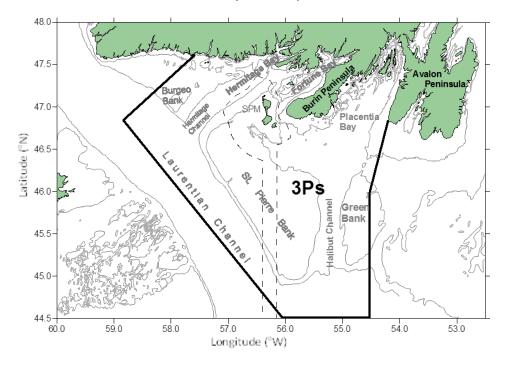


Figure 2. NAFO Subdiv. 3Ps management zone showing the economic zone around the French islands of St. Pierre and Miquelon (SPM, dashed line), the 100 m and 250 m depth contours (grey lines) and the main fishing areas.

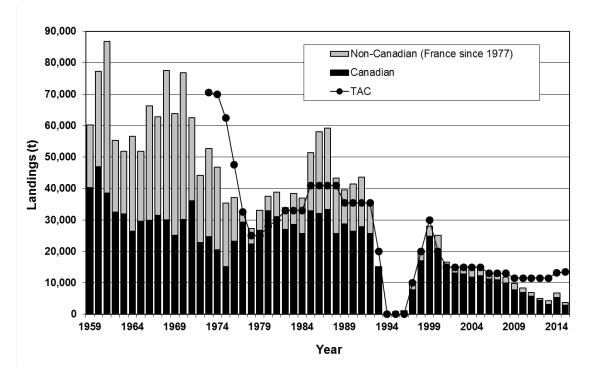


Figure 3a. Reported landings of cod by Canadian and non-Canadian vessels in NAFO Subdiv. 3Ps during 1959-September 2015. The 2015 fishery was still in progress at the time of the October 2015 assessment.

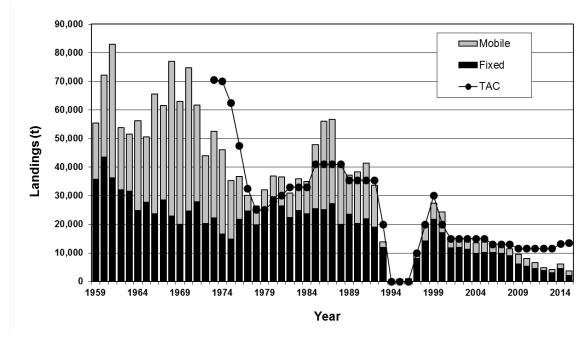


Figure 3b. Reported landings of cod by fixed and mobile gears in NAFO Subdiv. 3Ps during 1959-September 2014. The 2014 fishery was still in progress at the time of the October 2014 assessment.

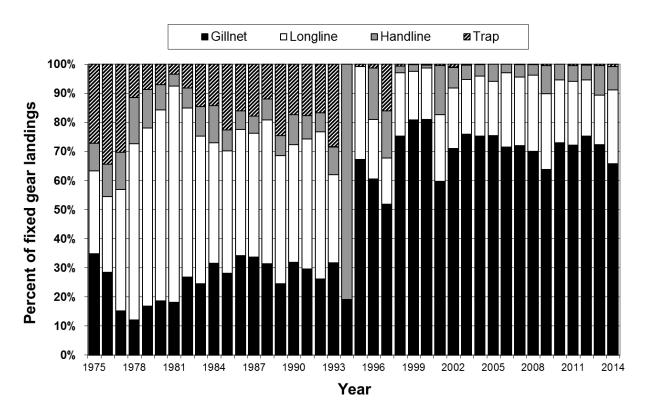



Figure 4. Percent of total fixed gear landings by the four main fixed gears used in the cod fishery in NAFO Subdiv. 3Ps during 1975-2013. The fishery was under a moratorium during 1994-96 and values for those years are based on sentinel and by-catch landings of < 800 t.

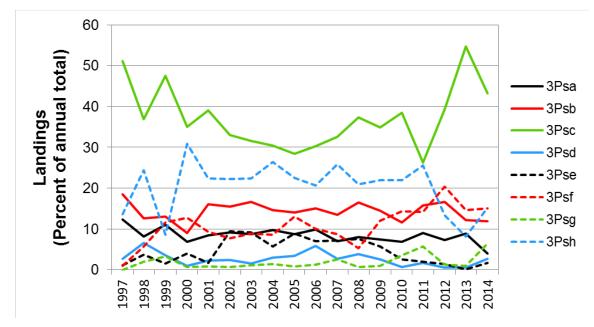


Figure 5. Annual reported landings of cod (upper panel) and percent of annual total (lower panel) by unit area from NAFO Subdiv. 3Ps during 1997-2013. Refer to Figure 1 for locations of unit areas.

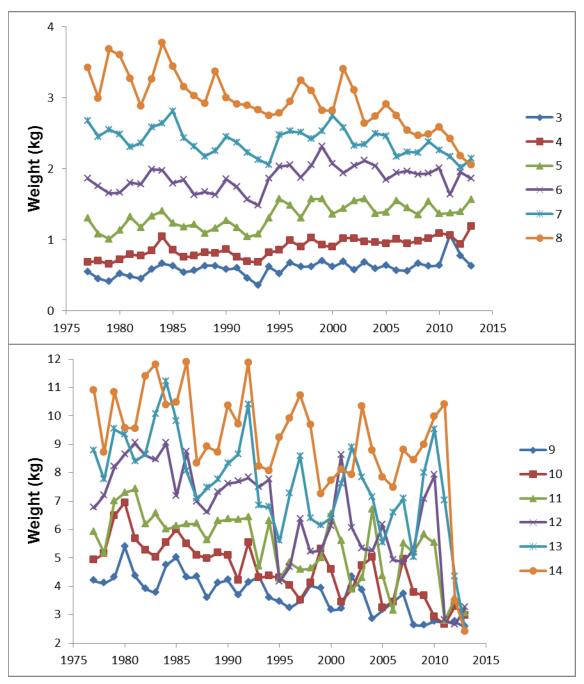


Figure 6. Mean weights-at-age calculated from mean lengths-at-age (upper panel: ages 3-8; lower panel: ages 9-14) from the commercial catch of cod in Subdiv. 3Ps during 1977 to 2013.

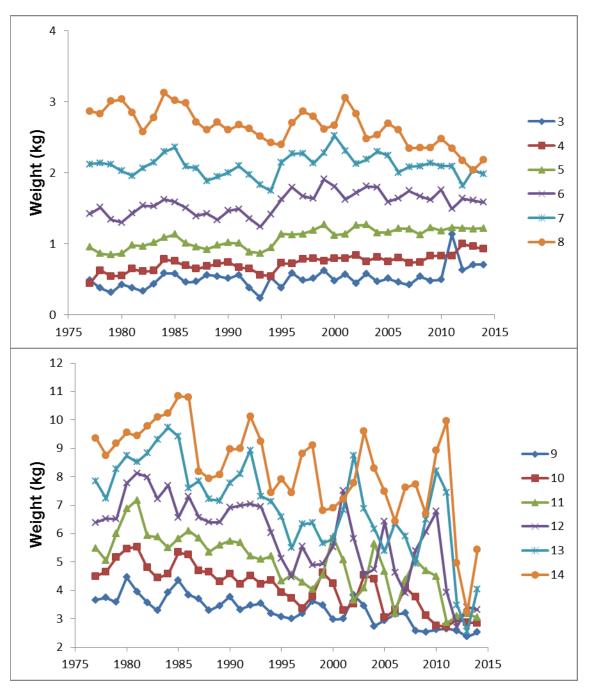
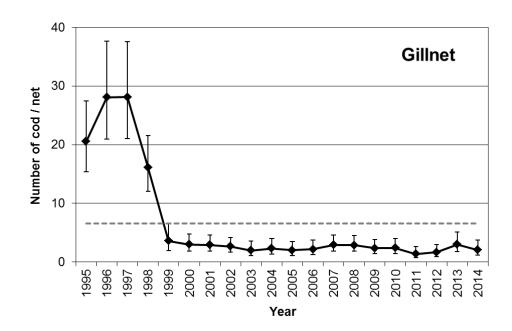



Figure 7. Beginning of year mean weights-at-age (upper panel: ages 3-8; lower panel: ages 9-14) from the commercial catch of cod in Subdiv. 3Ps during 1997 to 2014. Weights at age in 2014 are the geometric means of the prior three years.

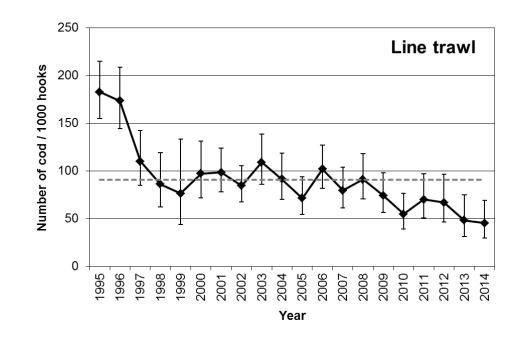


Figure 8a. Standardized age-aggregated catch rate indices for gillnets (5.5" mesh) and line-trawls (with 95% CL's) estimated using data from sentinel fishery fixed sites. Dashed horizontal lines indicate time-series average.

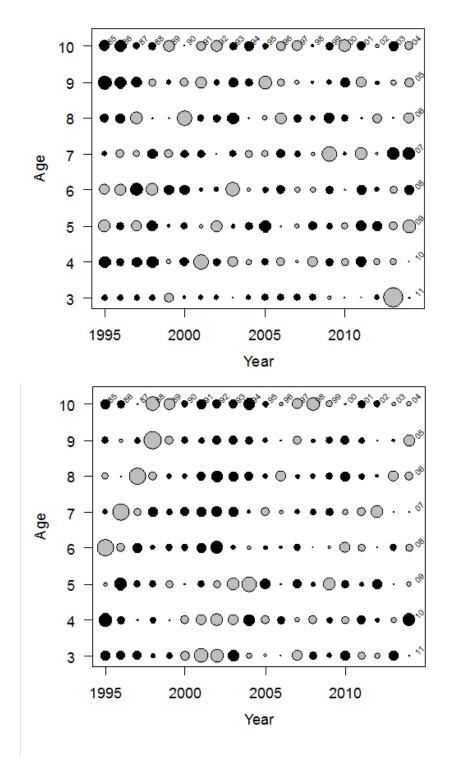


Figure 8b. Standardized proportions at age of sentinel catch rates at age for gillnet (top) and linetrawl (bottom) in Subdiv. 3Ps. Annual proportions were computed, and then standardized by subtracting the mean proportion and dividing by the standard deviation of the proportions across years. Symbol sizes are scaled and values greater than average are shown as grey circles, average values are shown as small dots, and less than average values are shown as black circles. Labels in the upper and right margins identify cohorts.

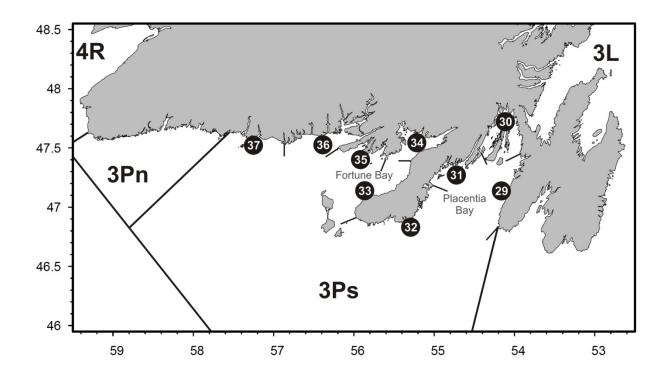


Figure 9a. Location and boundaries of numbered management areas along the inshore of the south coast of Newfoundland (NAFO Subdiv. 3Ps) (29=Placentia Bay East, 30=Head of Placentia Bay, 31=Placentia Bay West, 32=The Boot, 33=Fortune Bay, 34=Head of Fortune Bay, 35=Connaigre, 36=Hermitage Bay, 37=Francois-Burgeo).

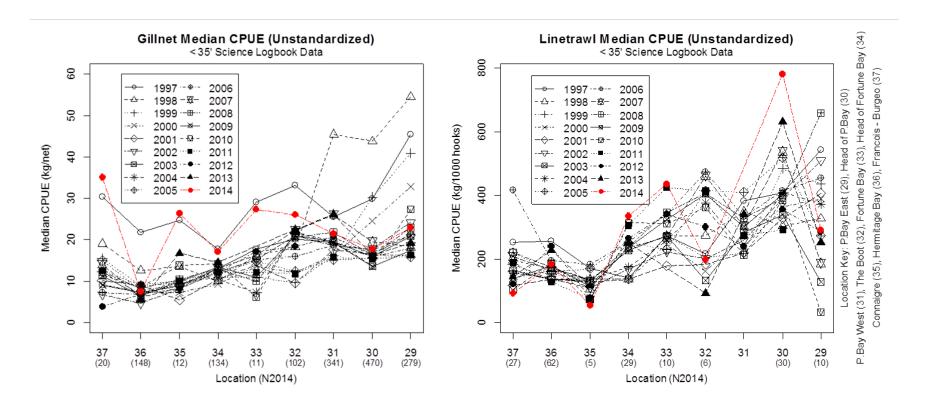


Figure 9b. Area-specific median annual catch rates of cod from gillnets (left panel, kg per net) and line-trawls (right panel, kg per 1,000 hooks) from science log-books for vessels < 35 ft. Labels on x-axis are lobster fishing areas ordered from west to east (see key on far right). Values in parenthesis on x-axis are number of valid sets per site during the 2013 fishery.

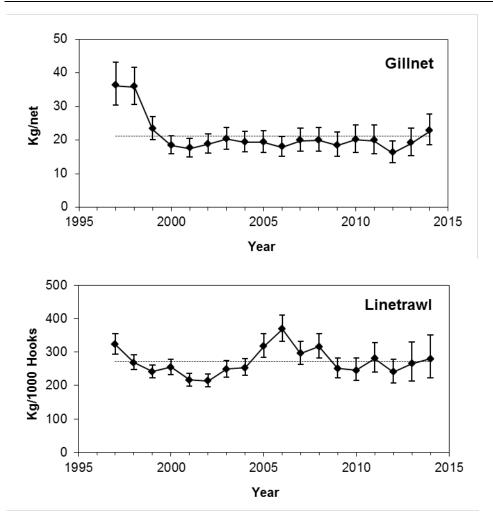


Figure 9c. Standardized catch rates for gillnets and line-trawls from science log-books for vessels < 35 ft. Horizontal dashed lines are time-series average; error bars are 95% confidence intervals of the means. Catch rates are expressed in terms of weight (kg per net or kg per 1000 hooks).

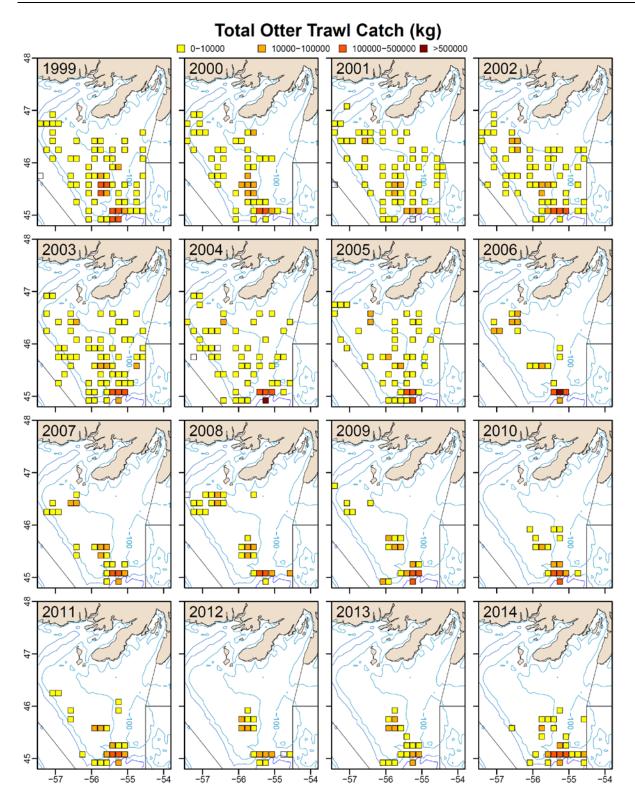


Figure 10a. Otter trawl landings of 3Ps Cod for 10 by 10 minute blocks of latitude and longitude as reported in logbooks from the > 35 ft. fleet during 1999 to 2014. Total landings are shown as four colors corresponding to four landings categories.

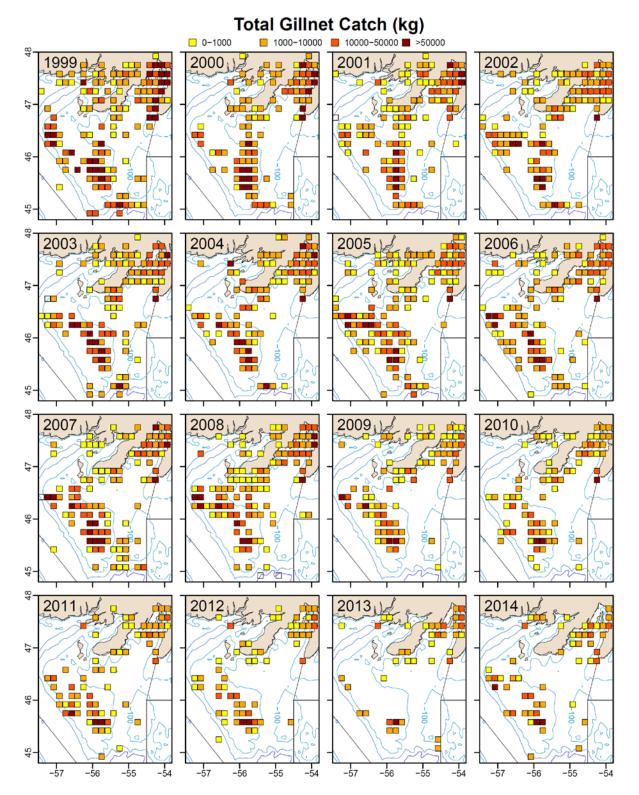


Figure 10b. Gillnet landings of 3Ps Cod for 10 by 10 minute blocks of latitude and longitude as reported in logbooks from the > 35 ft. fleet during 1999 to 2014. Total landings are shown as four colors corresponding to four landings categories.

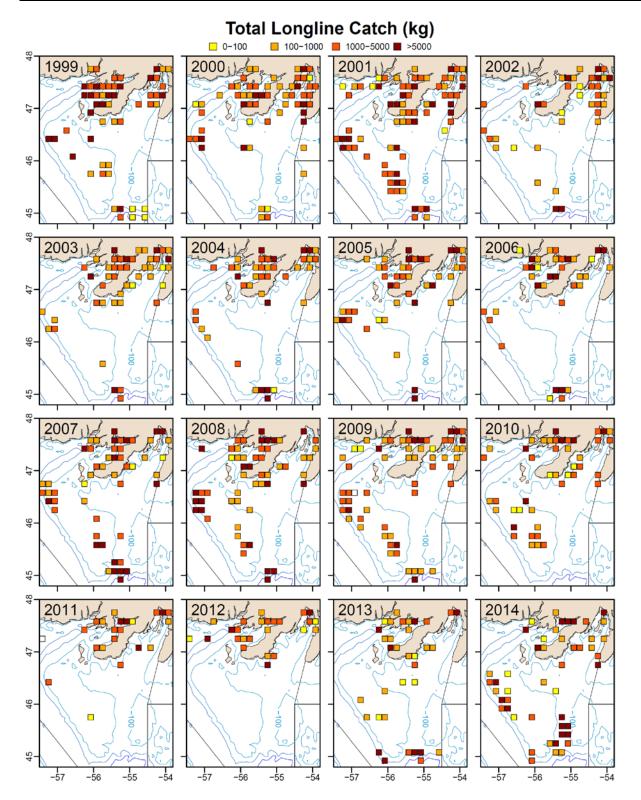


Figure 10c. Linetrawl landings of 3Ps Cod for 10 by 10 minute blocks of latitude and longitude as reported in logbooks from the > 35 ft. fleet during 1999 to 2014. Total landings are shown as four colors corresponding to four landings categories.

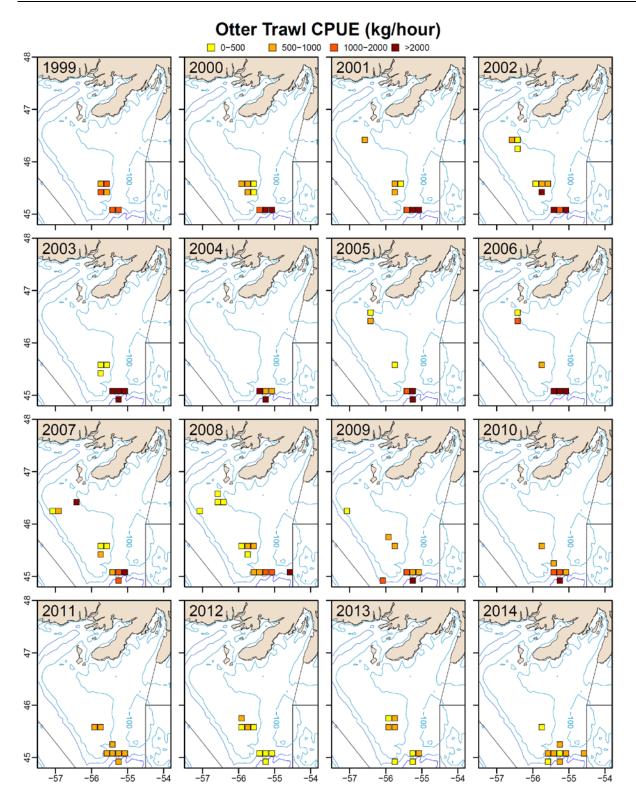


Figure 10d. Catch rates of 3Ps Cod by otter trawlers in 10 by 10 minute blocks of latitude and longitude as reported in logbooks from the > 35 ft. fleet during 1999 to 2014. Rates are calculated as kg per hour of towing and shown as four colors corresponding to four rate categories.

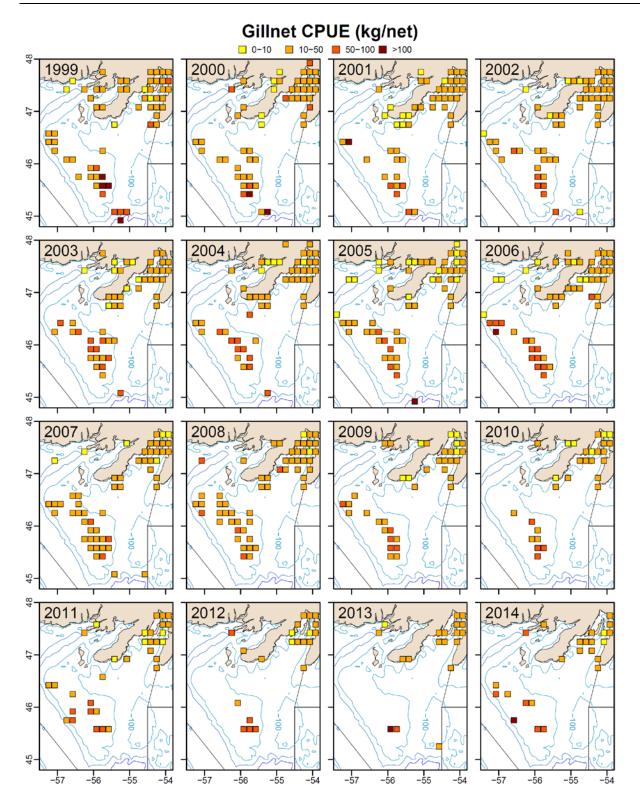


Figure 10e. Catch rates of 3Ps Cod for gillnets in 10 by 10 minute blocks of latitude and longitude as reported in logbooks from the > 35 ft. fleet during 1999 to 2014. Rates are calculated as kg per net and shown as four colors corresponding to four rate categories.

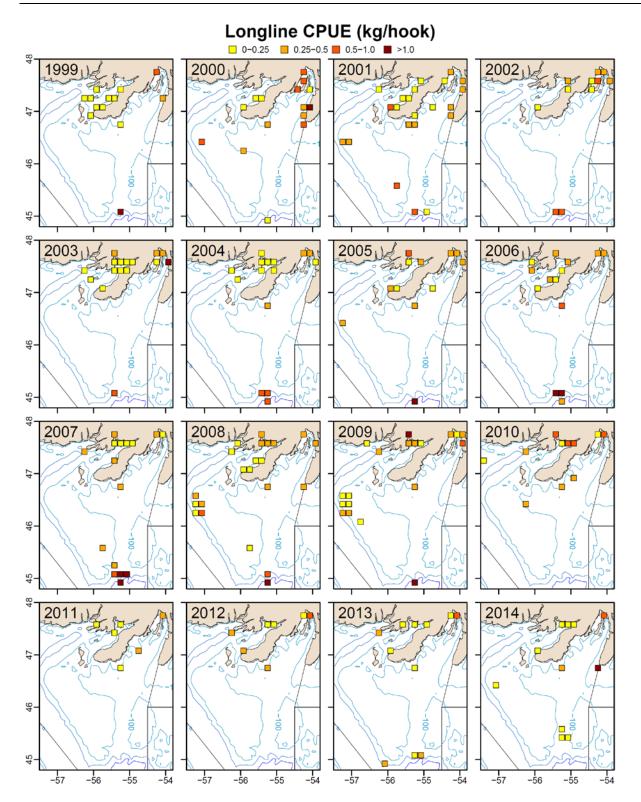


Figure 10f. Catch rates of 3Ps Cod for linetrawls in 10 by 10 minute blocks of latitude and longitude as reported in logbooks from the > 35 ft. fleet during 1999 to 2014. Rates are calculated as kg per hook and shown as four colors corresponding to four rate categories.

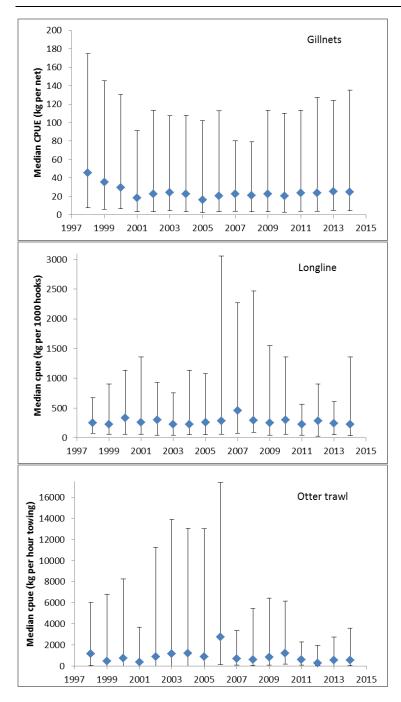
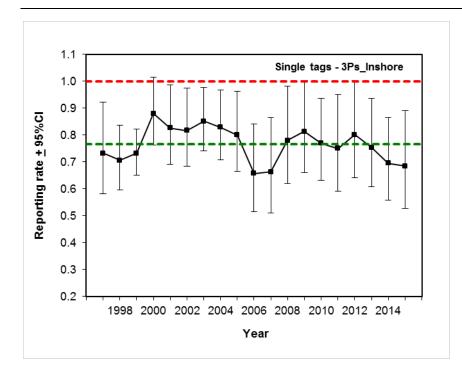



Figure 11. Median catch rates for 3Ps Cod by gillnets, linetrawls and otter trawls reported in logbooks from the > 35' fleet during 1998 to 2014. The 5th and 95th percentiles are shown.

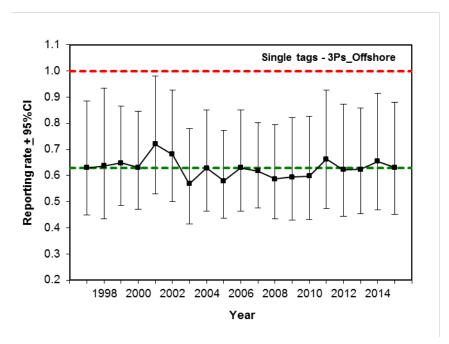


Figure 12. Trends in annual tag reporting rates (\pm Cl's) for low reward (\$10) tags based on a mixed effects logistic regression model. Horizontal dashed green line is time series average.

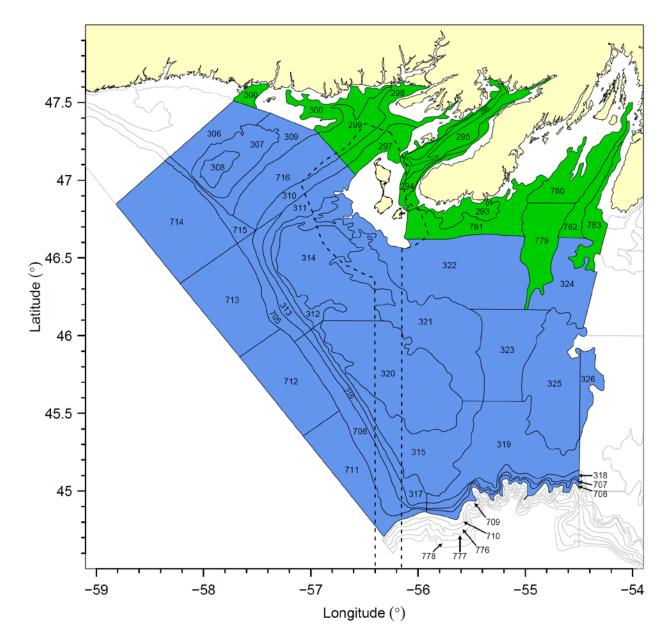


Figure 13. Stratum area boundaries and area surveyed during the DFO research vessel bottom-trawl survey of NAFO Subdiv. 3Ps. Offshore strata are shaded blue. Inshore strata were added in 1994 (strata 779-783) and 1997 (strata 293-300) and are shaded green. The dashed line represents the boundary of the French economic zone.

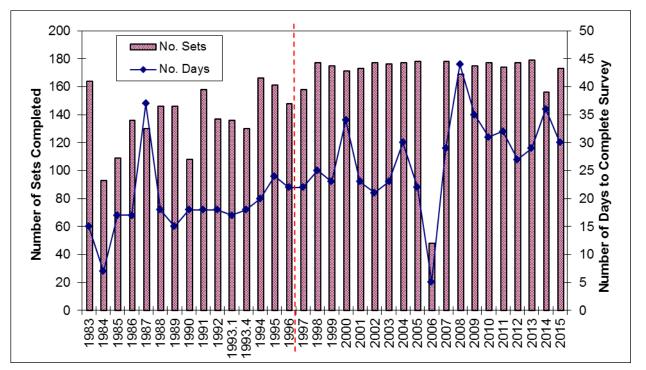


Figure 14. Number of research vessel survey sets completed during surveys of NAFO Subdiv. 3Ps, and the number of days required to complete these sets over 1983-2015. Survey coverage was expanded to present levels (i.e. covering all inshore and offshore index strata) in 1997 (dashed vertical line).

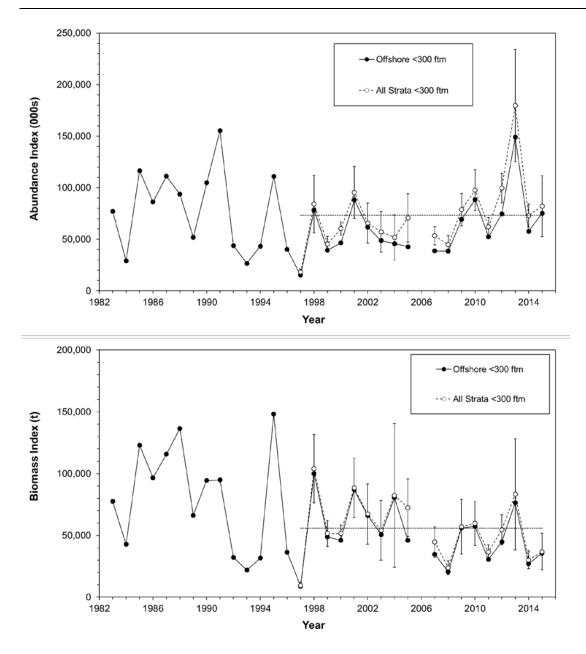


Figure 15. Abundance (upper panel) and biomass (lower panel) indices for cod in NAFO Subdiv. 3Ps from DFO research vessel bottom trawl surveys of index strata during winter/spring from 1983 to 2014. Error bars show plus/minus one standard deviation. Open symbols show values for the augmented survey area that includes additional inshore strata added to the survey in 1997. Dashed horizontal lines are means of the time-series for all index strata.

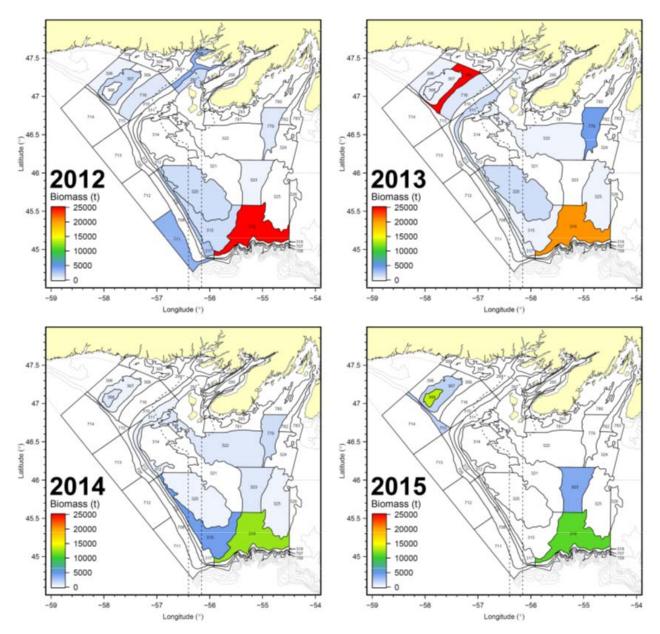


Figure 16. Stratum-specific biomass estimates of cod in Subdiv. 3Ps based on the DFO RV survey.

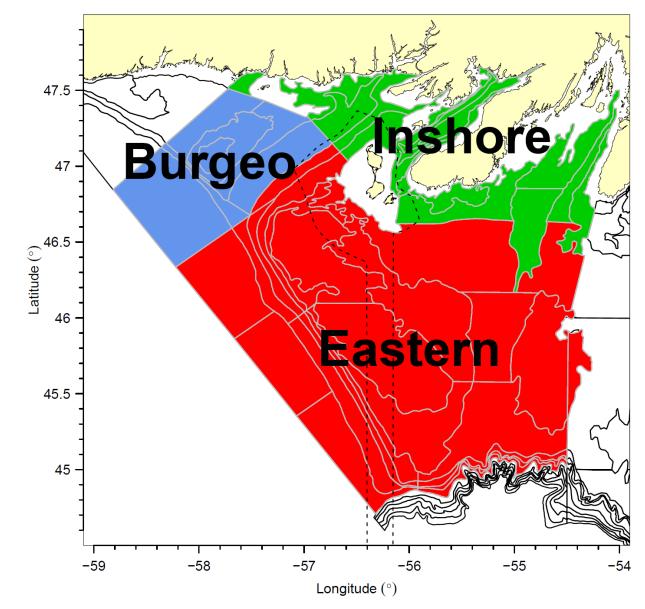


Figure 17. NAFO Subdiv. 3Ps management zone illustrating the allocation of survey strata into 'Inshore', 'Burgeo', and 'Eastern' regions. Survey trends for the three regions are depicted in Fig. 17

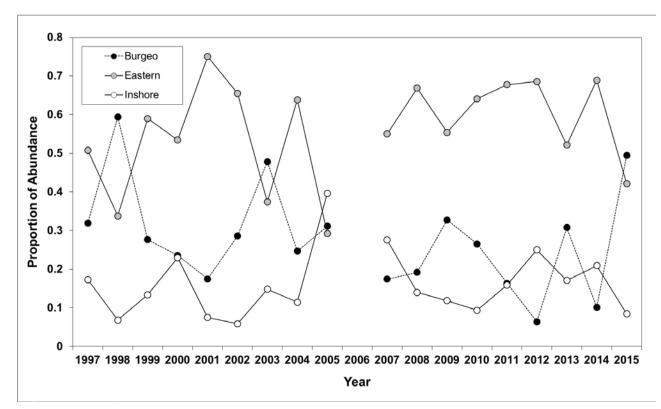


Figure 18. Total abundance index for cod in various regions of NAFO Subdiv. 3Ps from DFO research vessel bottom trawl surveys during winter/spring from 1997 to 2015. The 2006 survey was not completed. The Campelen trawl was used in all surveys.

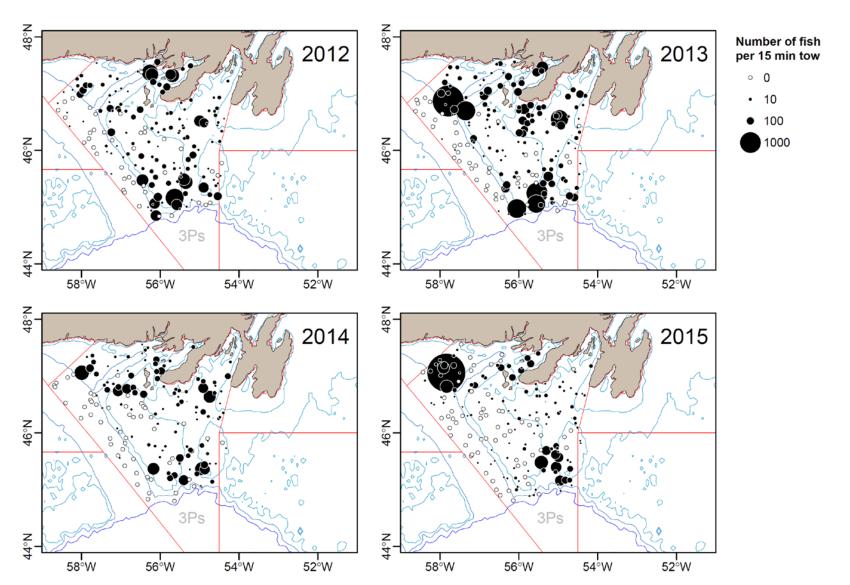


Figure 19a. Age aggregated distribution of cod catches (nos. per tow) from the April DFO research vessel surveys of NAFO Subdiv. over 2012-15. Bubble size is proportional to numbers caught.

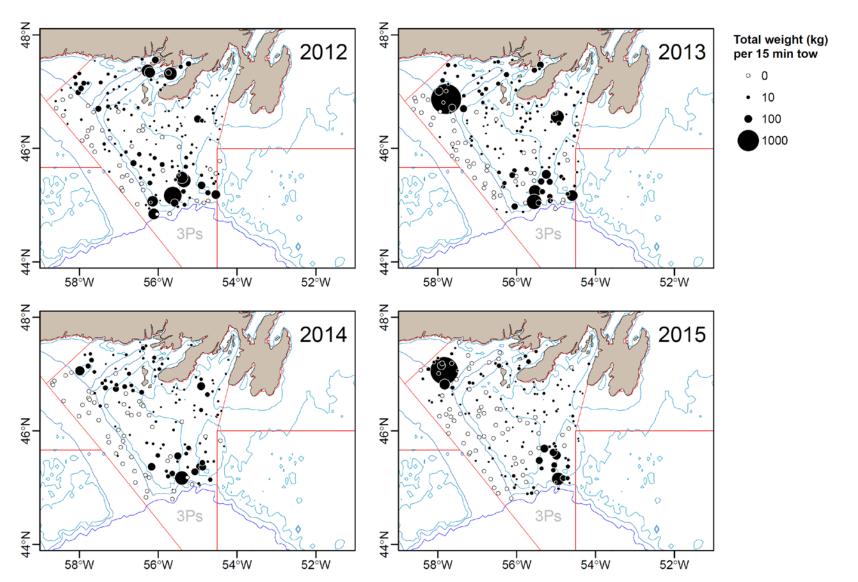


Figure 19b. Age aggregated distribution of cod catches (weight per tow) from the April DFO research vessel surveys of NAFO Subdiv. 3Ps over 2011-14. Bubble size is proportional to total weight caught.

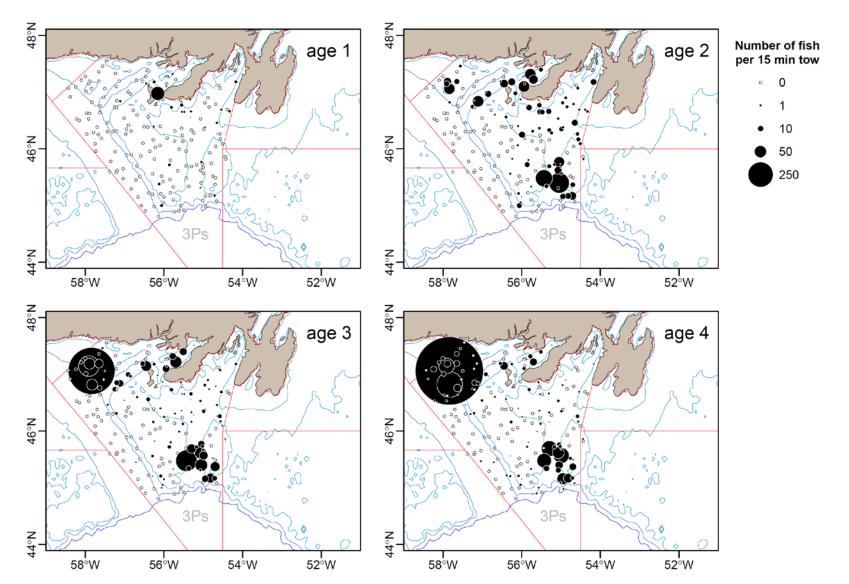


Figure 19c. Age dis-aggregated distribution of cod catches (nos. per tow, ages 1-4) from the April 2015 DFO research vessel survey of NAFO Subdiv. 3Ps. Bubble size is proportional to numbers caught.

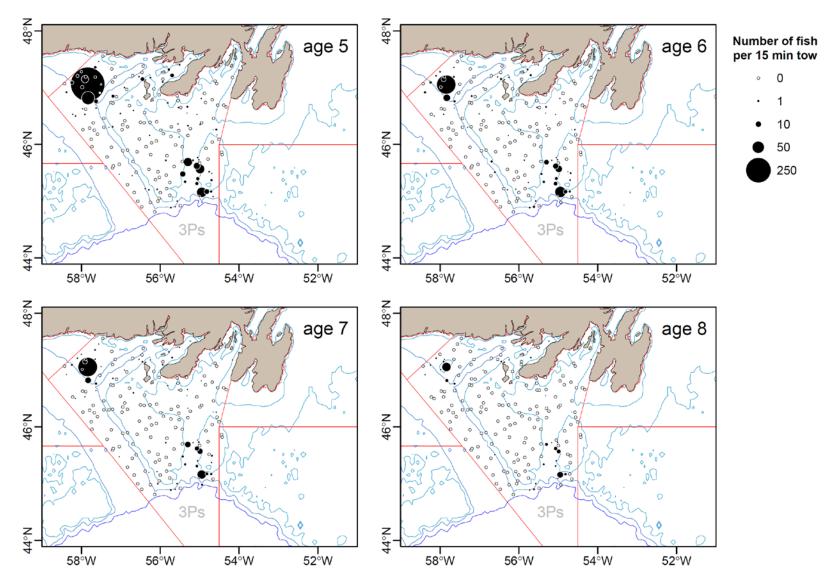


Figure 19c. Continued.

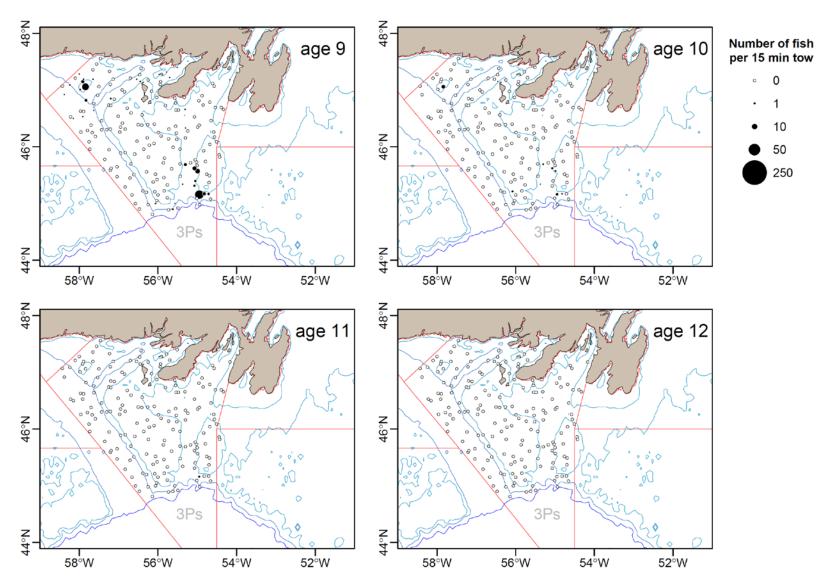


Figure 19c. Continued.

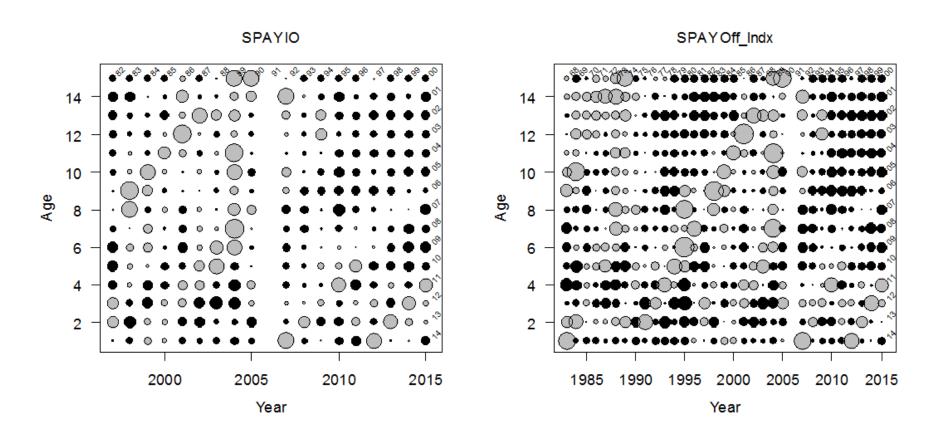


Figure 20. Standardized age-disaggregated catch rates from the spring bottom trawl survey of Subdiv. 3Ps. Catch rates (mean nos per tow) were converted to proportions within each year. Values were standardized by subtracting the mean proportion and dividing by the standard deviation of the proportions computed across years. Symbol sizes are scaled and values greater than average are shown as grey circles, average values are shown as small dots, and less than average values are shown as black circles. Labels in the upper and right margins identify cohorts. Left panel includes the 1997-2015 "All Strata < 300 fm" data, and panel at right includes data which comprise the "Offshore" index (1983-2015).

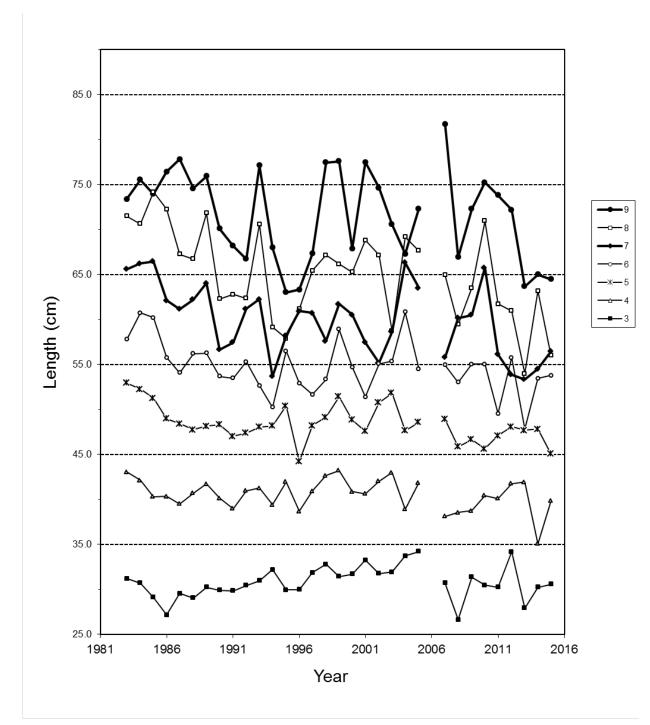


Figure 21a. Mean length at ages 3-9 of cod in Subdiv. 3Ps during 1983-2015 from sampling during DFO bottom-trawl surveys in winter-spring.

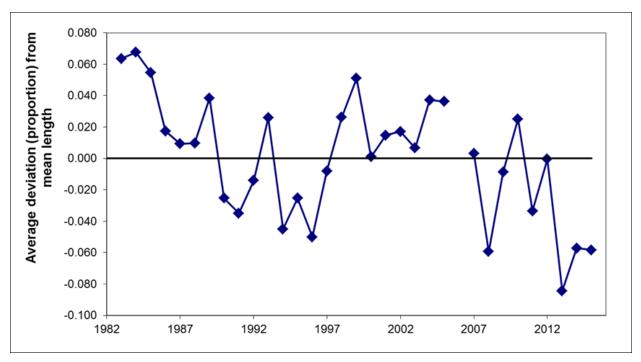


Figure 21b. Average proportion deviation from mean length at age for ages 3-9 from DFO bottom-trawl surveys from 1983-2015.

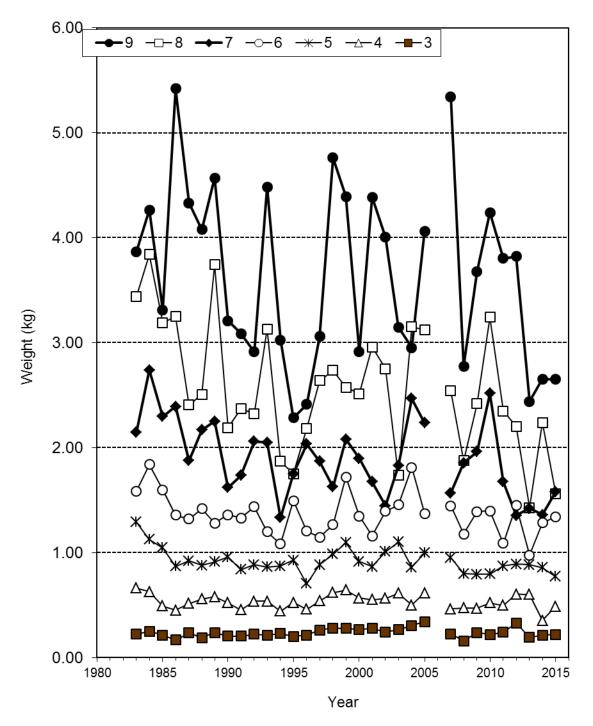


Figure 22a. Mean round weight-at-age (kg) of cod sampled during DFO bottom-trawl surveys in NAFO Subdiv. 3Ps in winter-spring 1983--2015.

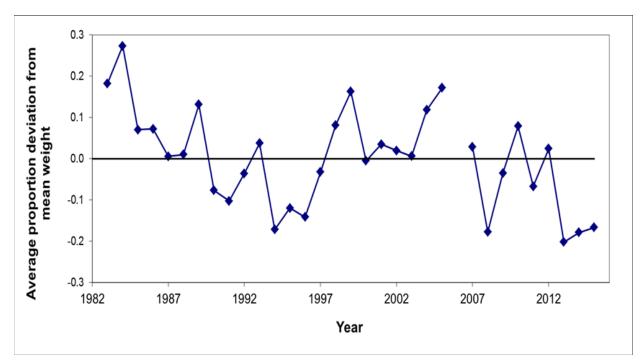


Figure 22b. Average proportion deviation from mean weight at age for ages 3-9 from DFO bottom-trawl surveys from 1983-2015.

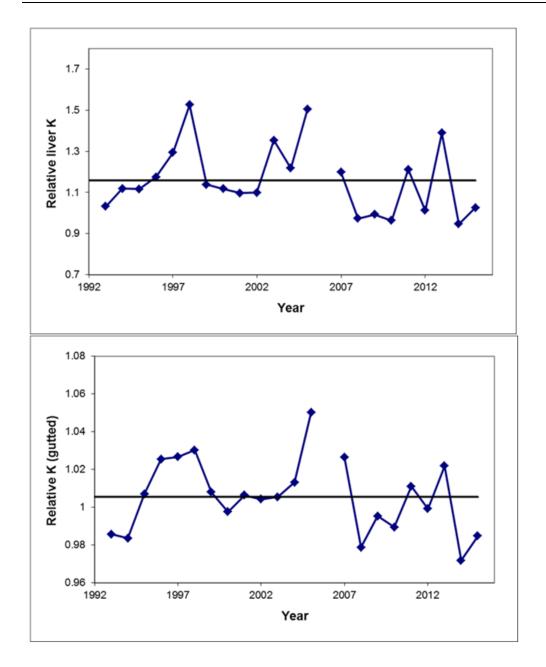


Figure 23. Relative condition indices for 3Ps cod from spring surveys over 1993-2015. Upper panel is relative gutted condition index; lower panel relative liver condition index. Horizontal line represents time-series average.

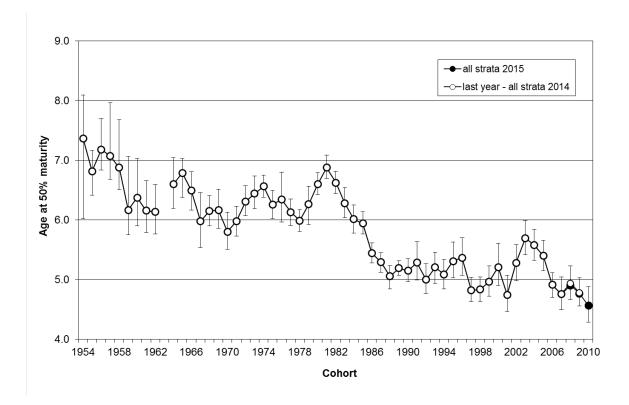


Figure 24a. Age at 50% maturity by cohort (1954-2010, excluding 1963) for female cod sampled during DFO research vessel bottom-trawl surveys of NAFO Subdiv. 3Ps. Error bars are 95% fiducial limits.

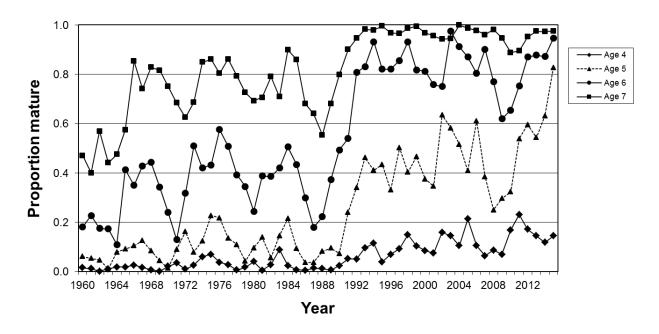


Figure 24b. Estimated proportions mature at ages 4-7 for female cod sampled during DFO research vessel bottom-trawl surveys in NAFO Subdiv. 3Ps (data from all strata surveyed).

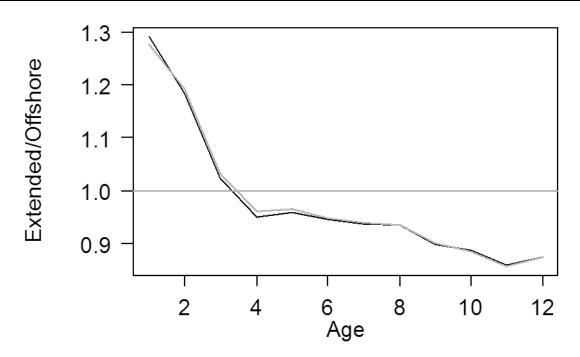


Figure 25. Age-specific ratio of the extended survey indices to the offshore survey indices (each index averaged over 1997-2015). Grey line indicates ratios from previous assessment, where averages were computed over 1997-2014.

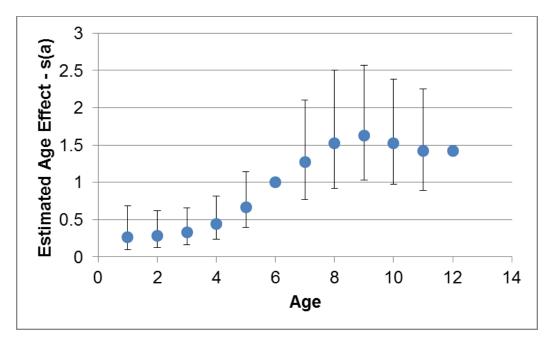


Figure 26. Estimated age-effects from SURBA cohort analysis, with 95% confidence interval. Age 6 is arbitrarily chosen as a reference age (and set to a value of 1), and the effect at age 12 is fixed at the level estimated for age 11.

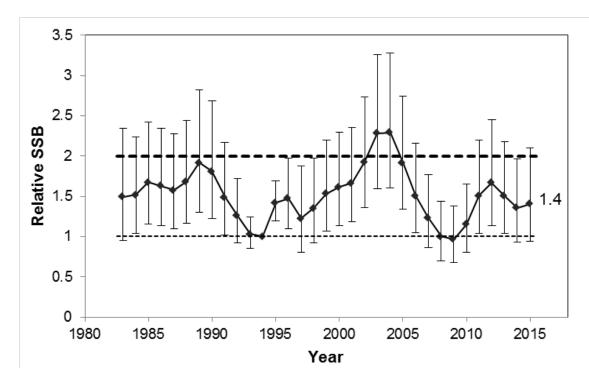


Figure 27a. Estimates of spawning stock biomass (SSB) relative to B_{lim} from SURBA cohort analysis model (i.e., estimates are divided by 1994 SSB), with 95% confidence interval.

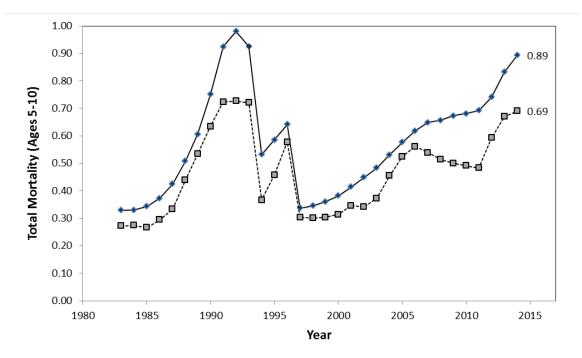


Figure 27b. Estimates of total mortality (Z) from a SURBA cohort analysis model, averaged over ages 5-10. Solid line: average annual mortality; dashed line: average annual mortality weighted by population size at ages 5-10. Text label indicates the estimated total mortality for 2014.

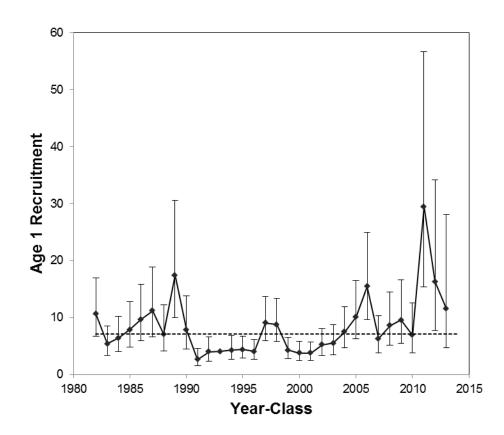


Figure 27c. Estimates of age 1 recruitment from SURBA cohort analysis model.

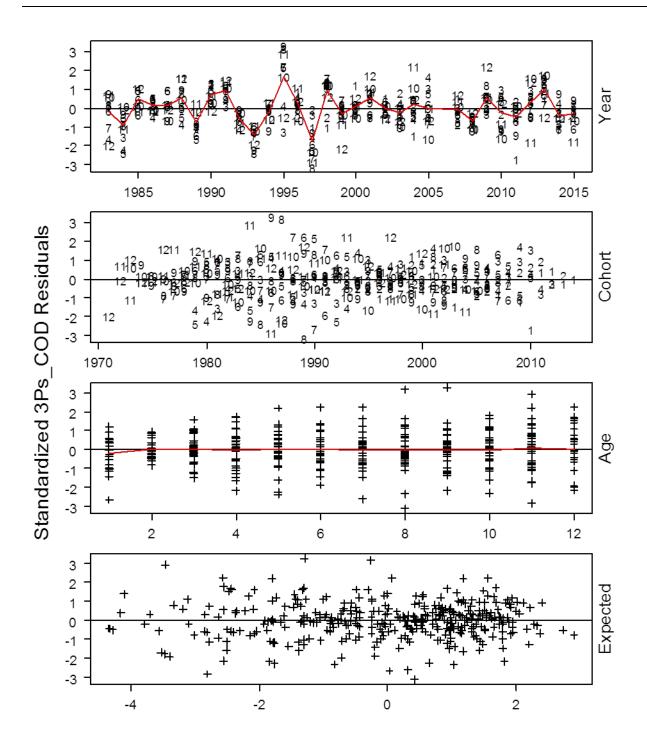


Figure 28. Standardized residuals from SURBA cohort analysis. Panels show residuals plotted year, cohort, age, and expected value, respectively.

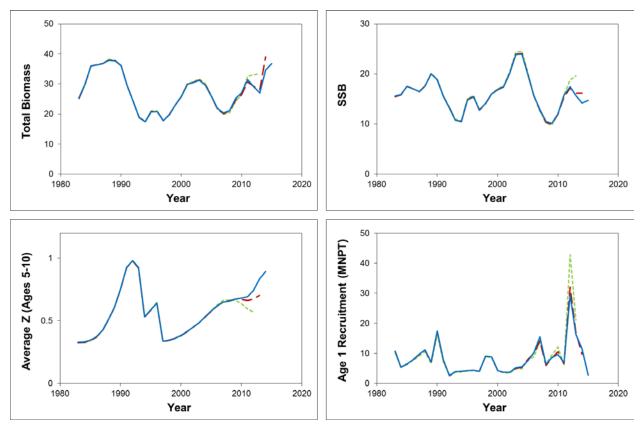


Figure 29. Retrospective patterns comparing the three most recent assessments for 3Ps cod based on a SURBA cohort analysis model.



Figure 30. Projections of spawning stock biomass from SURBA cohort analysis (refer to text for details). The panel on the right provides a higher magnification look at the last five years of SSB and the projections.

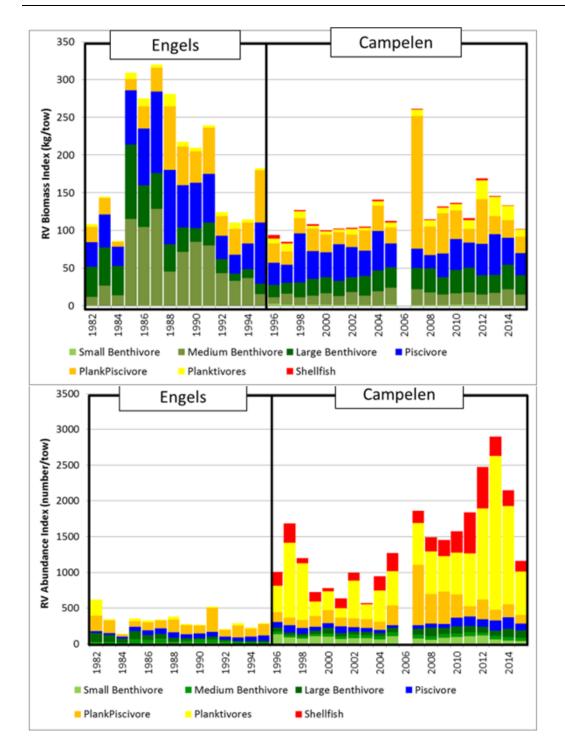


Figure 31. RV biomass (top) and abundance (bottom) from DFO 3Ps Spring survey by fish functional groups, with indication of the gear used in the survey (Campelen and Engels). Index values are not directly comparable between gears; the Campelen series also includes the Shellfish functional group.

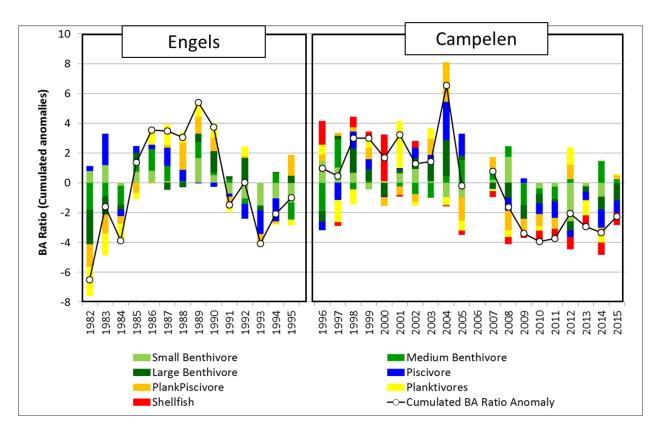


Figure 32. RV biomass/abundance ratio (BA ratio) normalized anomalies from DFO 3Ps Spring survey by fish functional groups, with indication of the gear used in the survey (Campelen and Engels). The colored bars indicate the anomalies for each functional group, while the line indicates the cumulated anomaly. BA ratio values are not directly comparable between gears.

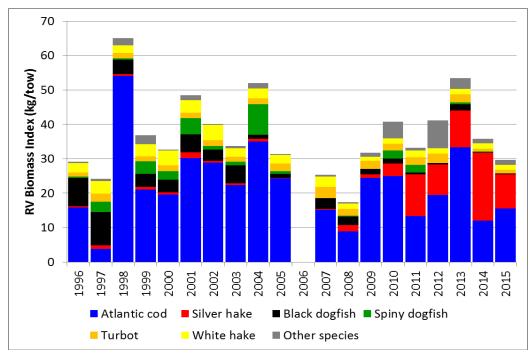


Figure 33. RV biomass from DFO 3Ps Spring survey for Piscivores functional group during the Campelen period. Note the increased dominance of silver hake during 2010-2015.

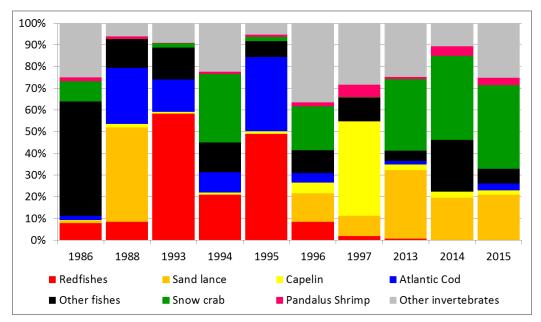


Figure 34. Diet composition of Atlantic Cod in NAFO Sub-Division 3Ps (% by mass) from stomach contents collected during DFO 3Ps Spring surveys.

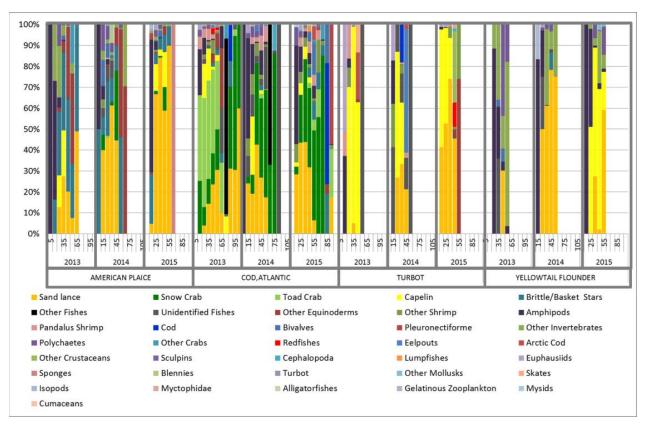


Figure 35. Comparison of Spring diet composition of key predators, by fish size (length in cm), in NAFO Subdivision 3Ps during 2013-15.