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ABSTRACT 

Walrus are a challenging species to enumerate owing to their clumped distribution and the 
highly variable proportion of animals hauled out at any one time. Previous attempts to describe 
this variability using a statistical framework assuming a uniform or a binomial distribution 
underestimate the uncertainty in haul-out proportions. Based on simulations, we determined that 
a more appropriate approach is to consider that counts follow a beta-binomial distribution which 
takes into account the overdispersion due to correlation among hauled-out walruses. Using this 
framework, four abundance estimators were examined for bias in estimating the size of a 
simulated population, with the number of animals hauled-out following a beta-binomial 
distribution with known parameters. The Minimum Counted Population (MCP) and Bounded 
Count (BC) methods were both likely to underestimate the true population size, even when 
corrected by an estimate of the maximum proportion of the population that can be hauled-out at 
any given time. The Simple Count (SC) method, using mean counts corrected by the average 
proportion of time hauled-out, provides a reliable and unbiased estimator.  Previous 
implementations of the MCP, BC and SC methods did not provide a realistic estimator of 
variance. Based on the beta-binomial framework, we propose a variance estimator for the SC 
method that takes into account the extra variance linked to the behavioural correlation among 
individual walrus. We also suggest a Bayesian estimator that provides a valid point estimate of 
the population size as well as a full and convenient description of the error distribution. 
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Méthodes d’estimation de l’abondance des morses : 
Leçons tirées de simulations du comportement sur les échoueries 

RÉSUMÉ 

Le morse est une espèce difficile à dénombrer en raison de sa distribution agrégée et de la 
proportion très variable des animaux qu’on peut retrouver hors de l'eau. Les tentatives 
précédentes pour décrire cette variabilité à l'aide d'un cadre statistique supposant une 
distribution uniforme ou binomiale sous-estiment l'incertitude autour des proportions d’individus 
échoués. Grâce à des simulations, nous avons déterminé que l’utilisation d’une approche 
considérant que les comptes observés suivent une distribution bêta-binomiale, prenant en 
compte la variance supplémentaire causée par la corrélation entre les morses, est plus 
appropriée pour modéliser l'incertitude autour des proportions d'animaux échoués. En se basant 
sur ce cadre statistique, nous avons testé quatre estimateurs de la taille d'une population 
simulée, à partir de comptes d’animaux échoués tirés d'une distribution bêta-binomiale ayant 
des paramètres connus. Les méthodes de la Population Minimale Comptée (MCP) et du 
Compte Borné (BC) étaient toutes deux susceptibles de sous-estimer la taille réelle de la 
population, même quand elles étaient corrigées par une estimation de la proportion maximale 
de la population qui peut se retrouver échouée à tout moment. La méthode du Simple Compte 
(SC), qui utilise la moyenne des comptes corrigée par la proportion moyenne du temps passé 
hors de l’eau, fournit un estimateur fiable et sans biais. Les mises en œuvre précédentes des 
méthodes MCP, BC et SC ne fournissaient pas d’estimation réaliste de la variance. Nous 
proposons un estimateur de variance pour la méthode de SC qui prend en considération le 
cadre bêta-binomial et permet ainsi de tenir compte de la variance supplémentaire liée à la 
corrélation comportementale entre les morses. Nous proposons également un estimateur 
bayésien fournissant une estimation valide de la taille de la population ainsi qu'une description 
complète et pratique de la distribution de l'erreur. 
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INTRODUCTION 

Walruses in Canada and Greenland are harvested for subsistence, in addition to a limited sports 
hunt in Canada. The Committee on Species of Endangered Wildlife in Canada (COSEWIC) has 
assessed Atlantic walrus as ‘Special Concern (COSEWIC 2006). Walrus are also listed under 
Appendix III of the Convention on International Trade in Endangered Species (CITES), which 
means that a permit from the Canadian CITES authorities is required to export walrus parts from 
Canada. 

Walrus are a challenging species to enumerate. Two approaches are generally used to assess 
their abundance. One approach is to survey along parallel lines and record walrus sightings 
using line-transect or strip-transect methods. Such surveys are usually flown during the spring 
(April-May), when walrus may be hauled-out on the ice (eg Udevitz et al. 2001; Heide-
Jørgensen et al. 2013). A second approach, involves coastal surveys, visiting haulout sites and 
floating ice in areas where walrus are known to occur during summer or early fall. 

Bias during surveys arises from two main sources: not all animals are detected by observers or 
on photographs (detectability bias) and not all animals are available to be detected (availability 
bias). Each of these factors will also have its own variance. Using vertical photographs and 
multiple counts of these photographs, detectability bias can be considered to be quite low in 
walrus surveys (Mansfield and St Aubin 1991, Stewart et al. 2014b). However, several studies 
have identified that the proportion of the population hauled out at any one time may fluctuate 
considerably (e.g. Stewart et al. 2014a,b; Udevitz et al. 2009; Lydersen et al. 2008; Mansfield 
and St Aubin 1991). Mansfield and St Aubin (1991) flew repeated surveys of the same area to 
count walrus during July-August 1976 and 1977, and noted that daily counts varied from as few 
as 6 to as many as 2171 walruses hauled out (fig. 1, Appendix tables A1 and A2). 

 

Figure 1. Maximum daily counts recorded at a haulout site on eastern Coats Island in 1976 and 1977 
from Mansfield and St Aubin (1991). 

Walrus surveys must often cover large areas, which by financial, logistical or temporal necessity 
limits the opportunities for repeated counts. This also leads to a challenge in interpretation of 
what a single count represents, and how this count or a series of haulout counts can be used to 
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obtain a reasonable estimate of walrus abundance. The question can be broken into two 
components. The first component is to obtain a count of animals hauled out, while the second 
component involves a factor to adjust for the proportion of the population that is not hauled out 
when the counts were made. 

Three types of counts have been used to estimate walrus abundance, either on their own, or in 
combination with some haulout correction factor. These counts can be referred to as Simple 
Counts (SC), Minimum Counted Population (MCP) and Bounded Counts (BC) (e.g., Johnson et 
al. 2007; Stewart et al. 2013, 2014 a,b). The SC are counts of hauled out animals. If a haulout 
site is visited more than once, then the mean of the counts for that site is taken. MCP are also 
counts of hauled out animals, and are identical to SC if haulout sites are visited only once. 
However, if a haulout site is visited more than once, then the highest count for that site is 
retained, and the lower counts are excluded from the analysis. In the case of BC, multiple visits 
are made to a haul out site or sites. The BC method assumes that each possible count is 
distributed uniformly, between 0 and the total number of individuals that haul out at that site. 
Thus it is assumed that the difference between the true number and a count is the same as the 
difference between the largest count, and the next largest count (Johnson et al. 2007). 

Once a count of hauled out walrus has been obtained, it must be adjusted for the proportion of 
animals that were in the water at the time the haul-out was surveyed. One approach to obtain 
this information might be to use a series of regular (hourly or daily) counts (eg Mansfield and St 
Aubin 1991), but at best it would give an estimate of the maximum proportion hauled-out. More 
recently, satellite transmitters have been deployed, and counts have been corrected for animals 
in the water by using the telemetry data on numbers hauled out or time spent hauled out to 
develop an adjustment factor (eg Udevitz et al. 2009, Lydersen et al. 2008; Stewart et al. 2013, 
2014a,b). However, the corrections have been applied in different ways by trying to model 
haulout behavior with respect to environmental conditions (Udevitz et al. 2009, Lydersen et al. 
2008), by applying a correction based on the average proportion of animals hauled out, or by 
assuming that counts such as MCP and BC represent counts made under favourable 
conditions, which necessitates a different correction factor based on what is considered as more 
favourable haulout conditons (Stewart et al. 2014a,b). 

In this study, we use two sets of simulations to gain insights into the performance of the different 
estimation methods. In the first part, we simulate the haul-out behavior of walrus to understand 
what causes the large variability in the proportion of walrus hauled-out and to determine the 
statistical distribution that underlies walrus count data. In the second part, we use this 
distribution to simulate walrus surveys of a theoretical population and test the efficiency of 
several estimators, including a Bayesian count model developed specifically to take into account 
the results of the first part. 

MODELLING WALRUS HAUL-OUT BEHAVIOUR 

To estimate abundance of walrus on haul-out sites, it is important to understand the impact of 
their hauling-out behaviour on the variability of counts made during surveys. Let us assume that 
each individual walrus spends a proportion P of its time hauled-out, and that this proportion is 
the same for all individuals in the population (e.g. because of physiological constraints). For 
each unit of time t (e.g., 1 hour), let us assume that whether a single walrus individual is hauled-
out or not is the result of a Bernoulli draw with probability P, and that all individuals are 
independent of one another. We illustrate this by simulating the haul-out behaviour of 20 
individual walrus that each spends 25% of their time hauled-out (fig. 2). 
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Figure 2. Haul-out behaviour of 20 simulated walrus over 100 hours. Haul-out bouts are represented as 
thick bold segments. 

If we calculate the average time spent hauled-out for each walrus (i.e., counting time units spent 
hauled-out on the horizontal axis of fig. 2), the distribution follows closely the input value of P 
(fig. 3 left). Previous telemetry studies have mostly focused on estimating the average value of 
P as precisely as possible, but the low variability among individuals clearly cannot explain the 
large variability in observed counts, that are seen in studies such as those by Mansfield and St 
Aubin (1991)(fig. 1). Instead, what is of interest for survey counts is the proportion of walrus 
hauled-out at any given time (i.e., summing hauled-out individuals along the vertical axis for 
each time t). The resulting distribution is much more variable (fig. 3 right). 

 

Figure 3. Haul-out behaviour of 20 simulated walrus over 100 hours. Left: average proportion of time 
spent hauled-out for each individual walrus. Right: proportion of the population hauled-out at any given 
time (over 100 hours). 

For the entire population of N walrus, the number of walrus hauled-out X at any given time t 
follows a binomial distribution X ~ Bin(N,P), which has mean NP and variance NP(1-P). 
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Expressed as a proportion of the entire population, the mean is P with variance P(1-P)/N. For 
any large number of walrus, this variance will be very small. For instance, for a group of 100 
walrus, the variance of repeated survey counts performed at different times above the haul-out 
site will be exceedingly small (fig. 4) and thus cannot account for the variability that is observed 
in real-life surveys (fig. 1). 

The extra variance (overdispersion) could be due to heterogeneity in P among individuals in the 
population (e.g., sex, age classes, physiological state). However, there is little evidence of this 
in published studies (i.e., individual proportions are relatively similar and variance around mean 
P is small). This small variance cannot explain the discrepancies among counts and poorly 
quantifies the true uncertainty around our survey estimates. Overdispersion will also appear if 
the walrus individuals are not independent from one another in their hauling behaviour, either 
because of social structure or because different individuals seek out the same environmental 
conditions (e.g. Lydersen et al. 2008). Regardless of the reason, correlation among individuals 
results in higher variance than expected from a regular binomial distribution. 

 

Figure 4. Number of walrus counted in surveys of a population of N=100 with P=0.25. Histogram: 
empirical distribution of counts of hauled-out walrus based on 100 simulated individuals over 1000 hours. 
Red line: probability density function of X ~ Bin(N,P). 

The extra variance 𝜎2 due to the overdispersion is quantified as 𝜎2 = 1 + (𝑁 − 1)𝜌 with 𝜌 being 
the mean correlation factor among individuals. If we simulate the same 20 walrus as before but 

we add a 𝜌 =30% correlation among individuals, we see that different individuals align their 
hauled-out bouts more often (fig. 5 left) and the proportion of the population hauled-out at any 
given time becomes much more variable (fig. 5 right). In particular, the occurrences of time 
periods during which no walrus are hauled-out become more common. We note that the 
resulting pattern is similar to that observed in Svalbard and by Udevitz et al. (2009) in their 
telemetry studies (Appendix figures A1 and A2). 
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Figure 5. Left: Haul-out behaviour of 20 simulated walrus over 100 hours with 30% correlation among 
individuals. Haul-out bouts are represented as thick bold segments. Right: proportion of the population 
hauled-out at any given time (over 100 hours). 

Such correlated Bernouilli trials can be modelled with a beta-binomial distribution (Skellam 
1948). That is, X follows a binomial distribution Bin(N,P) with P itself following a beta distribution 

Beta(a, b) that can also be parametrized as a function of P and 𝜌 the correlation factor. In other 
words, X ~ BetaBin(N,P, 𝜌). This beta-binomial distribution reproduces empirical simulations 
(fig. 6) and proposes a much more realistic framework to explain the observations of the 
proportion of walrus hauled-out from telemetry studies and variability in survey counts. 

 

Figure 6. Number of walrus counted while hauled-out in simulated surveys of a population of N=100 with 

P=0.25 and 𝜌=0.3. Histogram: empirical distribution of counts of hauled-out walrus based on 100 

simulated individuals over 1000 hours. Red line: probability density function of X ~ BetaBin(N,P, 𝜌). 
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Similarly, using this framework, we can replicate the results of published telemetry studies. For 
instance, if we use the parameters estimated in Udevitz et al. (2009), i.e., mean P=0.17 for 28 

walrus observed over 320 hours, we find that for 𝜌 = 0.11, we find a similar distribution to that 
observed in the study (figure 7 in Udevitz et al. 2009, appendix fig. A2). We also note that a 
direct relationship exists between the extra variance due to overdispersion and the parameters 
𝜌 and N. For instance, the extra variance factor of 2.02 calculated from raw telemetry data in 
Lydersen et al. for 28 walrus individuals corresponds to a correlation factor among walrus of 
𝜌 = 0.04. It is therefore clear that even a small correlation among individuals in haul-out 
behaviour can have a dramatic effect on the variability of the proportion of the population that is 
hauled-out at any given time, and thus on the variability of survey counts. 

TESTING ABUNDANCE ESTIMATORS USING SIMULATED WALRUS COUNTS 

Based on the examination of walrus haul-out behaviour above, we propose a framework for 
realistic simulations of walrus haul-out sites and of surveys taking place to estimate abundance 
at these sites. 

First, we assume a haul-out site for which the true population size N = 1000 walrus. We assume 
that the mean proportion of time that walrus spend hauled-out is P = 0.30 and that the 
correlation factor among walrus is 𝜌 = 0.10. Based on these parameters, the number of walrus 
available to be counted by an aerial survey at any given time t follows the beta-binomial 
distribution X ~ BetaBin(N,P,𝜌) shown on fig. 7, with mean 300 and a CV of 0.49.  

 

Figure 7. Number of walrus counted in surveys of a population of N=1000 with P=0.30 and rho=0.10. 

We define Pmax, the maximum proportion hauled-out at any given time, as the 99th percentile of 
this distribution, i.e. Pmax = 0.68. We chose the 99th percentile because the actual maximum 
observed value is highly variable. Note that Pmax is dependent on the sample size. For instance, 
if we simulate telemetry studies of 20 individuals, the 99th percentile is 0.75, a value similar to 
that reported in the literature for such small scale studies (fig. 8). 
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Figure 8. Value of the maximum proportion of walrus hauled-out at any given time, Pmax, defined as the 

99
th
 percentile of the beta-binomial distribution BetaBin(N,P=0.30,𝜌 = 0.10), as a function of the 

population size N. 

We use this beta-binomial distribution to simulate k counts C1, C2, …, Ck made by aerial surveys 
by drawing at random in this distribution. At this point, we assume that counts are made without 
error, i.e., that variance among counts stems entirely from the variability of the proportion 
hauled-out at any given time. We define Cmax as the maximum observed count and Cmean as the 
mean of all counts. We estimate abundance using three approaches defined below. 

MINIMUM COUNTED POPULATION (MCP)  

A single count of hauled-out walrus at a specific site can only be equal or lower than the true 
population size. If the proportion of the population hauled-out at any given time is much lower 
than 1, then the count will have a strong downward bias. If several survey counts are available 
for the same site, the MCP (Stewart and Hamilton 2013; Stewart et al. 2014b) is based on the 
largest count for that site, Cmax. Like a single count, Cmax can only be equal or lower than the 
true population size. However, if there are enough surveys, the Cmax will theoretically be closer 
to the true maximum number of walrus available for counting at any given time and will result in 
lower bias. Under the MCP approach, the estimated abundance is: 

𝑁̂𝑀𝐶𝑃 =
𝐶𝑚𝑎𝑥

𝑃𝑚𝑎𝑥
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BOUNDED COUNT (BC) 

The Bounded Count method assumes that k possible count values are distributed uniformly 
between 0 and the total number of individuals in the population (N) (Robson and Whitlock 1964; 
Johnson et al. 2007). Within this distribution, k random deviates are drawn, which divide the 
range of values into k+1 segments, whose expected values are identical. Thus, the difference 
between N and Cmax is expected to be the same as the difference between Cmax and Cmax-1. 
Numerically, the bounded-count estimator is simply twice the largest count minus the second-
largest count. Thus, the bounded count attempts to correct the downward bias of the minimum 
count and will provide a reliable estimate of N if several assumptions are met: Pmax is close to 1, 
there are enough surveys (but see Routledge 1982), the probability of obtaining a count 
between 0 and N is uniform. If Pmax is not close to 1 but is known (or can be estimated), then the 
Bounded Count can be corrected in the same way as the MCP. Note that if there is only one 
survey, the Bounded Count is identical to the MCP. 

𝑁̂𝐵𝐶 =
2𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑎𝑥−1

𝑃𝑚𝑎𝑥
 

SIMPLE COUNT (SC) 

The mean of several survey counts will always be lower than N. However, if it is then corrected 
by a reliable estimate of P (not Pmax), then it will result in an unbiased estimate of N. Thus, the 
estimator is: 

𝑁̂𝑆𝐶 =
𝐶𝑚𝑒𝑎𝑛

𝑃
 

Note that in some cases, when there are few surveys and P is relatively large, it is possible for 
the corrected mean count to be lower than the highest of the counts. In that case, the estimator 
is replaced by the MCP. 

BAYESIAN MODEL (BM) 

In addition to estimators used in previous studies, we propose a simple Bayesian model of 
walrus counts based on the insights gained from our simulation of hauled-out behaviour. The 
model assumes that the observed counts follow a binomial distribution, for which the parameter 

𝑃𝑡 itself follows a beta distribution: 

𝐶𝑘~𝐵𝑖𝑛(𝑁, 𝑃𝑡) 

𝑃𝑡~𝐵𝑒𝑡𝑎(𝑎, 𝑏) 

The hyper-parameters 𝑎 and 𝑏 are calculated so that the resulting beta-binomial distribution has 

mean P and correlation 𝜌 (presumed known): 

𝑎 = (
1

𝜌
− 1)/(1 +

1 − 𝑃

𝑃
) 

𝑏 = 𝑎 ×
1 − 𝑃

𝑃
 

A uninformative prior is given to N to let it range between 0 and a maximum (in this case we 
chose Nmax = 5,000): 

𝑁 = 𝑁𝑚𝑎𝑥  ×  𝜔 

𝜔 ~ 𝐵𝑒𝑡𝑎(0.025,1) 
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Parameter N was estimated by updating the prior to a posterior distribution based on the count 
data, using a MCMC approach in JAGS (Plummer 2003). Posterior distributions were examined 
in the R programming language (R Core Team 2015), using packages R2jags and coda 
(Plummer et al. 2006, Su and Yajima 2015). After a burn-in of 10,000 samples, every 5th point 
was kept from 5 chains of 10,000 iterations, for a total of 10,000 samples. 

SIMULATION RESULTS 

We ran 1000 simulation, each representing 3 surveys of a single site, and computed the four 
estimators. At this point, we assumed that P and Pmax are known with certainty. We then 
compared the distribution of the estimates to the true value of N (fig. 9). 

 

Figure 9. Estimators of abundance based on 1000 simulated surveys. In each survey, 3 counts are made 
in a population of 1000 walrus with P = 0.30 and 𝜌 = 0.10. Black line: median of estimates. Red dashed 
line: true population size. 

Results show that both the MCP and BC methods underestimated the population size, even 
when they were corrected by the real value of Pmax (i.e., the value of Pmax from the distribution 
that produced the simulated observations). The BC was closer to the true N than the MCP but 
had a longer right tail. 

In contrast, both the SC and the BM resulted in point estimates that were centered on the true 
population size, with a more symmetrical distribution around N than the MCP and BC. With few 
surveys, the two estimators can produce estimates that are far above or below the real N. 
However, when increasing the number of surveys, they converge rapidly towards the correct 
estimate (fig. 10). 

http://cran.r-project.org/package=R2jags
http://www.r-project.org/
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Figure 10. Estimators of abundance with increasing numbers of surveys (1, 3, 5, 10 and 25). Each run is 
based on 1000 simulated surveys, in which counts are made in a population of 1000 walrus with P = 0.30 

and 𝜌 = 0.10. Open circle: mean of estimates. Horizontal intervals contain 95% of simulation results. Red 
dashed line: true population size. 

ESTIMATION OF VARIANCE 

Estimating uncertainty around the point estimate is crucial for risk-based management. The 
MCP approach has no estimator of variance per se (although variance around the estimate of 
Pmax could be used to estimate part of the uncertainty). Similarly, the BC approach has no 
straightforward estimator of variance but a (1−∝) × 100% confidence interval is usually 

computed with the lower limit 𝑁𝐿 = 𝐶𝑚𝑎𝑥 and the upper limit 𝑁𝑈 = 𝐶𝑚𝑎𝑥 + (𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑎𝑥−1) ×
(1−∝)/∝ . If BC is corrected for Pmax, then the upper confidence limit should also be divided by 
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Pmax. From there, a crude standard error can be back-calculated by assuming for instance a 
lognormal error distribution. 

In previous walrus studies (e.g., Steward et al. 2014b), a formula for the variance of the 
corrected bounded count or average count was taken from Thompson and Seber (1994): 

 𝑣𝑎𝑟(𝐶𝑜𝑢𝑛𝑡𝑐𝑜𝑟𝑟) =
𝑣𝑎𝑟(𝐶𝑜𝑢𝑛𝑡)

𝑃2
+ 𝐶𝑜𝑢𝑛𝑡𝑐𝑜𝑟𝑟

1 − 𝑃

𝑃
+

𝐶𝑜𝑢𝑛𝑡𝑐𝑜𝑟𝑟
2

𝑃2
𝑣𝑎𝑟(𝑃) 

This formula was designed for the variance of an estimator with imperfect detectability, with 
multiple sites being surveyed once. The first term reflects variance among sample sites (for 
instance, in a Simple Random Sampling design). The middle term reflects variance in counts 
due to imperfect detectability (from a binomial distribution). The last term is added to incorporate 
uncertainty in the estimated value of the mean haul-out proportion. Essentially, this formula 
considers that the variance in counts and the variance due to the imperfect detection are two 
independent sources of variability. Moreover, it does not take into account the variability of P 
that is responsible for the overdispersion. Therefore, we suggest that the formula is not 
appropriate for multiple counts of walrus on the same study site, with most of the variability in 
counts driven by the variability in availability. 

Here, we suggest a formula for the SC that takes into account the beta-binomial model. If 

𝑁̂ =  𝐶𝑚𝑒𝑎𝑛 𝑃⁄  and 𝐶𝑚𝑒𝑎𝑛 =
1

𝑘
∑ 𝐶𝑖

𝑖=𝑘
1  with k the number of counts, then: 

𝑣𝑎𝑟(𝑁̂) =
𝑣𝑎𝑟(𝐶𝑚𝑒𝑎𝑛)

𝑃²
=

𝑣𝑎𝑟(∑ 𝐶𝑖
𝑖=𝑘
1 )

𝑘2𝑃²
=

𝑘 𝑣𝑎𝑟(𝐶)

𝑘2𝑃²
=

𝑣𝑎𝑟(𝐶)

𝑘 𝑃²
  

In the beta-binomial framework, 𝑣𝑎𝑟(𝐶) = 𝑁̂ × 𝑃 × (1 − 𝑃) × 𝜎2 with 𝜎2 the over-dispersion 
factor. Thus: 

 𝑣𝑎𝑟(𝑁̂) = 𝑁̂
1 − 𝑃

𝑘 𝑃
× 𝜎2 

where 𝜎2 is expressed by its relation with the correlation factor 𝜌 as 𝜎2 = 1 + (𝑁̂ − 1)𝜌. The 

standard error of the estimator is the square root of 𝑣𝑎𝑟(𝑁̂). To compute a Confidence Interval, 

we suggest assuming a lognormal distribution around 𝑁̂. In the rare cases where the lower 
confidence bound is less than the highest of the counts, the lower bound is replaced by that 
highest count value. 

In the case of the Bayesian estimator, the standard error of the estimator is simply the standard 
deviation of the posterior distribution of the estimated population size. The quantiles of the 
posterior distribution can be used directly to compute Credible Intervals. The CI bounds of the 
Bayesian estimator can never be inferior to the highest count and thus require no correction. 

For example, if the three survey counts are { 367, 155, 292 }, the estimates are 𝑁̂𝑀𝐶𝑃 = 540, 

𝑁̂𝐵𝐶 = 650, 𝑁̂𝑆𝐶 = 904, and 𝑁̂𝐵𝑀 = 964. The estimated variance for the simple count is: 

𝑣𝑎𝑟(𝑁̂𝑆𝐶) = 904 ×
1 − 0.3

3 × 0.3
× [1 + (904 − 1) × 0.10] 

And 𝑆𝐸(𝑁̂𝑆𝐶) = √𝑣𝑎𝑟(𝑁̂𝑆𝐶) = 253.4 (CV 28%). For comparison, the SE around the Bayesian 

estimator (𝑁̂𝐵𝑀) is 298.5 (CV 31%). 

UNCERTAINTY AROUND THE VALUE P 

So far, we have considered that availability 𝑃𝑡 varies in time but that the mean value of 𝑃 in the 
population is known without error. We now develop the framework further to include uncertainty 
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around the value of the haul-out proportion, which becomes a random variable with a normally-

distributed error (SDP) around its point estimate 𝑃̂. We assume that 𝑣𝑎𝑟(𝑃̂) = 𝑆𝐷𝑃
2 is estimated 

from an independent study (e.g., telemetry). 

With uncertainty around 𝑃, the Simple Count estimator of abundance becomes 𝑁̂𝑆𝐶 = 𝐶𝑚𝑒𝑎𝑛 𝑃̂⁄ , 
which does not change its point estimate. To calculate its variance, we follow Thompson and 
Seber (1994) and use the delta-method approximation. The full variance becomes: 

𝑣𝑎𝑟(𝑁̂) ≅ 𝑁̂
1 − 𝑃

𝑘 𝑃
× 𝜎2  +  

𝑁̂2

𝑃2
𝑣𝑎𝑟(𝑃) 

Note that the first term will decrease with an increasing number of surveys whereas the variance 
due to uncertainty around 𝑃 will not. 

For the Bayesian model, we replace the fixed value of 𝑃 in the calculation of Beta coefficients 𝑎 

and 𝑏 with 𝑃 ~𝑁(𝑃̂, 𝑆𝐷𝑃), i.e., 𝑃 becomes a hyper-parameter of 𝑃𝑡. 

To take into account the uncertainty around 𝑃 in the calculation of the corrected Bounded Count 

estimator, one must recalculate the value of 𝑃𝑚𝑎𝑥. (For instance, if 𝑁 = 1000, 𝑃̂ = 0.30, ρ = 0.10, 

and 𝑆𝐷𝑃 = 0.015, then 𝑃𝑚𝑎𝑥 = 0.70.). 

COVERAGE PROBABILITIES 

To validate the methods and estimate the reliability of the confidence intervals around the 
estimators, we ran 10,000 simulations with counts made in a population of 1000 walrus 

with 𝑃̂ = 0.30, ρ = 0.10 and 𝑆𝐷𝑃 = 0.015 (equivalent to a CV of around 𝑃̂ of 5%). We tested the 
effect of an increasing number of surveys (1, 3, 5, 10 and 25). In each case, we counted how 
many times the true value of the population size was included in the 95% CI. Table 1 shows that 
when there are few surveys, the coverage of the SC methods is slightly lower than the nominal 
value of 95%, whereas the BM approach maintains a better coverage. As pointed out by 
Routledge (1982) in a similar analysis, the coverage probability of the BC estimator is always 
inferior to 95% over the range of values tested. 

Table 1. Coverage probabilities of the 95% CI for each estimator. Each run is based on 10,000 simulated 

surveys, in which counts are made in a population of 1000 walrus with P = 0.30, 𝜌 = 0.10 and 𝑆𝐷𝑃 = 0.01. 
The MCP does not provide an estimator of variance and thus no confidence interval can be calculated. 

Number of surveys 1 3 5 10 25 

SC 89.2% 93.3% 93.9% 94.0% 95.0% 

BM 95.9% 94.6% 94.6% 95.5% 94.8% 

BC - 90.4% 91.0% 91.1% 92.9% 

DISCUSSION 

Biases due to imperfect detectability or incomplete availability are a problem in numerous 
wildlife studies, and various techniques have been proposed to account or correct for missed 
animals. Walrus counts made repeatedly on the same haul-out site typically show considerable 
variability. Previous statistical frameworks (i.e. assuming that counts are the results of a uniform 
distribution, or a binomial distribution based on the mean haul-out proportion in the population) 
could not explain this variability. In this document, we have started by simulating individual haul-
out behaviour of walrus and showing that the resulting distribution of population-level counts can 
adequately be modelled by a beta-binomial distribution. 
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Using both empirical individual-level simulations and the corresponding beta-binomial 
distribution, we have shown that introducing even a low amount of correlation among individuals 
(e.g., 5-10%) results in considerable variability in the proportion of the population hauled-out at 
any given time. This is the result of more synchronous behaviour among individual walrus, 
which increases the probabilities that either very few (even zero) or a large proportion of the 
population can be hauled-out at the same time. This framework allows us to reproduce and 
explain the results observed in both telemetry studies and survey counts. 

Previous studies have focused mostly on estimating the mean proportion of time that walrus 
spend haul-out, in order to use it as a correction factor for survey counts. This proportion seems 
to vary relatively little among individuals, which could be the result of physiological constraints, 
and therefore has little variance. Moreover, previous modelling efforts have used the error about 
the estimate of this proportion as the source of uncertainty in their estimates of population size. 
In effect, the more precisely this proportion was known, the less uncertainty in the abundance 
estimate. We suggest that this approach is flawed because it cannot account for the large 
variability observed in counts and does not model the error distribution appropriately. We have 
shown that it is more realistic to take into account the variability in the proportion of the 
population hauled-out at any given time. 

The beta-binomial framework has several implications for abundance estimates. First, it 
explains why counts are so variable even when conducted at short intervals and shows that any 
single count of walrus haul-out sites should be treated with great caution. Indeed, even with a 
small amount of inter-individual correlation, it is quite possible – even likely – for a count to be 
representative of 5%, 25% or 60% of the population. Even when correcting with an estimate of 
the mean haul-out proportion, a single count can result in a serious under- or over-estimate. 
Multiple surveys of the same haul-out sites at short intervals within the same year will therefore 
provide more useful information than single surveys performed in multiple years. 

Several estimators of abundance use either the mean P or Pmax to correct for unavailable 
walrus. This proposed framework suggests that the mean P is a valid correction factor. For 
methods that rely on Pmax, we propose a method to calculate Pmax based on the assumed 
correlation factor. Indeed, if Pmax is estimated from telemetry studies based on a few individuals 
(e.g., 0.74), it is incorrect to use the same value when correcting for a presumably much larger 
population. We examined this using simulations and found that Pmax decreases quickly with 
increasing sample size, but stabilizes beyond 50 individuals (with a Pmax ~0.68 when P=0.30 
and ρ = 0.10). Since most sites will presumably have at least that many walrus, using this 
approximation for Pmax should improve estimates for MCP and BC. 

This framework also allowed us to simulate sites to be counted and to test the validity and 
precision of four estimators of abundance. Our results showed that even with a correct estimate 
of Pmax, the estimators MCP and BC tend to severely underestimate the true population size, 
presumably because their basic assumptions are not met. Our results show that a simple mean 
of the counts yields a reliable and unbiased point estimate, even with a low number of surveys. 
With this in mind, we have proposed a different estimator of variance for the simple count that 
takes into account the extra variance that originates from the overdispersion of the underlying 
beta-binomial distribution. This overdispersion is linked directly to the correlation coefficient 
among individual walrus via a simple numerical equation. This means that a telemetry study 
aiming at estimating this correlation can be used directly to inform the error distribution of 
abundance estimates. This simple estimator performs well, although our simulations suggest 
that its coverage may be slightly insufficient when there are few surveys (less than 3). 

We have also proposed a Bayesian estimator developed on the assumption of a beta-binomial 
distribution of counts. This method provides a valid point estimate as well as a full and 
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convenient description of the error distribution, with adequate coverage probability, thus 
removing the need to assume a log-normal error distribution when calculating the CV or Nmin for 
PBR or population modelling. Another potential advantage of the Bayesian approach is that it 
could be integrated directly into a larger Bayesian model of population dynamics. 

In our first step, we have assumed that the true value of P was known without error. Obviously, 
if the value of P used in the calculations is incorrect, the estimate could be strongly biased. We 
have thus expanded the simple count and Bayesian frameworks to include uncertainty around 
the mean value of P in the population (which is not the same as saying that Pt varies through 
time around its mean value; that part is handled by the beta-binomial overdispersion). Our 
simulations suggest that the added variance of the MCC estimator (approximated using the 
delta-method) may be slightly underestimated. 

Theoretically, with enough surveys, the bounded count approach could provide a valid estimate 
of abundance without the need for an estimate of P, although if the true Pmax is far below one, 
there will always a downward bias. However, simulations have shown that the uncorrected BC 
approach requires a large number of counts to provide a valid estimate, especially when P is 
low. We note that in theory, with a large number of sites and surveys, P and the even correlation 

factor 𝜌 could be estimated from the count data under the Bayesian approach. 

In view of our simulations, our advice is that analyses of walrus surveys take into account the 
beta-binomial statistical framework that underlies the resulting counts, by using the corrected 
simple count with the appropriate variance estimator or the Bayesian count model. Based on 
comparisons with published telemetry studies and the variability observed in walrus count 
studies in general, we are suggesting that correlations factors of 5%–15% be used until more 
information becomes available. 
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APPENDIX 

Table A1. Walrus counts in the Southampton-Coats Island area of Hudson Bay during July-August 1976-
77. 

1 
Counts from 3 haulout sites on Coats Island. (Mansfield and St Aubin 1991). 

Date 
Walrus 
Island 

Bencas 
Island 

Cape 
Préfontaine 

Cape 
Pembroke 

East1 

Coats 
Sea Ice Total 

1976-07-24 297
a
 167

 a
 0 240

 a
 536

 a
 - 1230 

1976-07-24 169
 a

 0 0 0 561
 a

 - 730 

1976-07-25 368
 a

 0 33
 a

 0 1090
 a

 - 1491 

1976-07-26 103
 a

 0 102
 a

 30 992
 a

 - 1227 

1976-07-27 250 0 92
 a

 282
 a

 773
 a

 - 1397 

1976-07-28 75 0 103
 a

 345
 a

 333
 a

 - 856 

1976-07-29 15 15 12 30 175 - 232 

1976-07-30 8 0 75 0 175 - 258 

1976-07-31 9 0 20 0 225 - 254 

1976-08-01 7 0 195 0 450 - 652 

1976-08-03 0 0 160
 a

 50 536
 a

 - 746 

1976-08-04 0 0 7 12 750 - 769 

1977-07-20 0 - 0 0 20 6 26 

1977-07-21 0 - - - - 800 800 

1977-07-22 0 - - - 0 300 300 

1977-07-23 25 - - - - 675 700 

1977-07-24 0 - 0 0 6 - 6 

1977-07-26 0 - 25 0 1721
 a

 425 2171 

1977-07-26 - - - - - 625 625 

1977-07-28 0 - 0 13 125 0 138 

1977-07-29 0 - 0 248
 a

 179
 a

 0 427 

1977-08-01 0 - 70 150 1113
 a

 0 1333 

a Estimates based in the mean of triplicate counts from photographs  
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Table A2. Maximum daily counts from one haulout site located at 62
○
 46’ N, 81

○
 56’ Won eastern Coats 

Island during July-August, 1976-77 estimated from Figure 2 of Mansfield and St Aubin (1991).  

Date 1976 1977 

24-juil - 1 

25-juil - 770 

26-juil 740 1220 

27-juil 400 1460 

28-juil 220 700 

29-juil 115 250 

30-juil 120 310 

31-juil 220 1270 

01-août 305 1125 

02-août 550 0 

03-août 490 0 

04-août 440 0 

05-août 260 160 

06-août 240 655 

07-août 245 - 

08-août 235 400 

09-août 135 350 

10-août 270 475 

11-août 535 985 

12-août 600 835 

13-août 540 490 

14-août 10 820 

15-août 5 1010 

16-août 3 1610 

17-août 130 1790 

18-août 380 1230 

19-août 320 260 

20-août 160 380 

21-août 170 460 

22-août 105 1080 

23-août 50 600 

24-août 45 480 

25-août 0 570 

26-août 115 - 

27-août 170 - 

28-août 265 - 
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Figure A1. Proportion of 11 tagged walrus hauled out on any single day. Based on data from figure 3 in 
Lydersen et al (2008). In figure 5 of this document, we take into account overdispersion due to correlation 
among walrus when estimating the variance in haulout behaviour. The resulting distribution compares 
more favourably with observed haulout behaviour from Svalbard. 

 

Figure A2. Left: Frequency histogram of observed proportion of tagged walruses (N = 10) hauled-out at 
322 behavioral intervals, from figure 7 in Udevitz et al. (2009). Right: Frequency histogram of proportion 
hauled-out walruses from a simulated population using 332 samples from beta-binomial distribution with 

parameters N = 10, P = 0.17 and 𝜌 = 0.11. 
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