

Canadian Science Advisory Secretariat (CSAS)

Research Document 2013/122

National Capital Region

Evaluation of Five Freshwater Fish Screening-Level Risk Assessment Protocols and Application to Non-Indigenous Organisms in Trade in Canada

Nicholas E. Mandrak¹, Crysta Gantz², Lisa A. Jones¹, David Marson¹, and Becky Cudmore¹

¹Fisheries and Oceans Canada, Centre of Expertise for Aquatic Risk Assessment 867 Lakeshore Road, Burlington, ON L7R 4A6

> ²Department of Biological Sciences, University of Notre Dame South Bend, IN, USA, 46556

Foreword

This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Research documents are produced in the official language in which they are provided to the Secretariat.

Published by:

Fisheries and Oceans Canada Canadian Science Advisory Secretariat 200 Kent Street Ottawa ON K1A 0E6

http://www.dfo-mpo.gc.ca/csas-sccs/ csas-sccs@dfo-mpo.gc.ca

© Her Majesty the Queen in Right of Canada, 2014 ISSN 1919-5044

Correct citation for this publication:

Mandrak, N.E., Gantz, C., Jones, L.A., Marson, D., and Cudmore, B. 2014. Evaluation of Five Freshwater Fish Screening-Level Risk Assessment Protocols and Application to Non-Indigenous Organisms in Trade in Canada. DFO Can. Sci. Advis. Sec. Res. Doc. 2013/122. v + 125 p.

TABLE OF CONTENTS

ABSTRACTir	v
RÉSUMÉ	v
INTRODUCTION	1
Background	2
Purpose	3
METHODS	3
Selection and Evaluation of SLRA Protocols	3
Freshwater Fishes in Live Trade in Canada	5
Fish Species in Trade List	5
Habitat Matching	6
Climate Matching	7
Screening Species Using SLRA Protocols	8
RESULTS AND DISCUSSION	8
Evaluation of SLRA Protocols	8
Fish Species in Trade List, Habitat- and Climate-Match Analysis	2
Screening Species Using SLRA Protocols1	2
CONCLUSIONS14	4
RECOMMENDATIONS14	4
REFERENCES CITED1	5
APPENDIX 1 – FISK Risk Assessment Tool1	7
APPENDIX 2 – Modified Alberta Risk Assessment Tool2	2
APPENDIX 3 – Montreal Risk Assessment Tool4	0
APPENDIX 4 – GLANSIS Risk Assessment Tool4	6
APPENDIX 5 – Notre Dame Statistical Risk Assessment Tool60	0
APPENDIX 6 – Master List of Fishes in Trade in Canada6	2

ABSTRACT

Identification and prioritization of aquatic non-indigenous species (NIS) in trade that pose a potential risk to Canada's aquatic ecosystems (i.e., screening-level risk assessment (SLRA)) is an integral component of a three-stage biological risk assessment process developed by Fisheries and Oceans Canada's (DFO) Center of Expertise for Aquatic Risk Assessment (CEARA). DFO has identified fishes in live trade in Canada, but not yet present in Canadian waters, as a priority for screening. There are an estimated 1648 fish species imported to Canada each year through the aquarium, live food, biological supply, and water garden trades. The present document first evaluates the performance of five biological risk assessment tools for predicting establishment and impact of fishes using a validation dataset and then applies a chosen subset of these protocols to a list of freshwater fishes in live trade in Canada identified as having an environmental match (i.e., habitat and climate) to Canada. The five SLRA protocols identified from previous initiatives included: Freshwater Fish Invasiveness Scoring Kit Protocol (FISK): Modified Alberta Risk Assessment Tool (RAT): Montreal RAT: Great Lakes Nonindigenous Species Information System (GLANSIS); and, Notre Dame Statistical RAT. Following evaluation, two questionnaire-based SLRA protocols (Montreal RAT and GLANSIS) and one statistically-based protocol (Notre Dame Statistical RAT) were selected. These three protocols were subsequently applied to the 12 freshwater fishes in live trade that were identified to have an environmental match to Canada. This produced a scientifically defensible species list that allows for better prioritization of national and regional NIS program activities and resource allocation.

Évaluation de cinq protocoles d'évaluation préalable des risques des poissons d'eau douce et application aux organismes non indigènes apparaissant dans le commerce au Canada

RÉSUMÉ

L'identification et la priorisation des espèces aquatiques non indigènes (EANI) apparaissant dans le commerce et qui présentent un risque potentiel pour les écosystèmes aquatiques du Canada (c.-à-d. évaluation préalable des risques [EPR]) font partie intégrante d'un processus en trois étapes d'évaluation du risque biologique élaboré par le Centre d'expertise pour l'analyse des risques aquatiques de Pêches et Océans Canada (MPO). Le MPO a désigné les poissons apparaissant dans le commerce des espèces vivantes au Canada, mais qui ne sont pas encore présentes dans les eaux canadiennes, comme une priorité de l'évaluation préalable. On estime que 1 648 espèces de poissons sont importées au Canada chaque année par l'intermédiaire du commerce d'espèces vivantes destinées aux aquariums, aux jardins d'eau, à l'alimentation, et du commerce de produits biologiques. Le présent document évalue d'abord le rendement de cinq outils d'évaluation du risque biologique servant à prévoir l'établissement et les répercussions des poissons à partir d'un ensemble de données de validation, puis applique un sous-ensemble choisi de ces protocoles à une liste de poissons d'eau douce apparaissant dans le commerce des espèces vivantes au Canada et désignés comme ayant une correspondance environnementale (habitat et climat) avec le Canada. Les cinq protocoles d'EPR cernés dans le cadre d'initiatives antérieures sont les suivants : le protocole Freshwater Fish Invasiveness Screening Kit (FISK); l'outil d'évaluation des risques (OER) modifié de l'Alberta; l'OER de Montréal; le Système d'information sur les espèces aquatiques non indigènes des Grands Lacs (GLANSIS) et l'outil d'évaluation statistique du risque de Notre Dame. Suite à l'évaluation, deux protocoles d'EPR sous forme de questionnaire (OER de Montréal et GLANSIS) et un protocole fondé sur des statistiques (outil d'évaluation statistique du risque de Notre Dame) ont été choisis. Ces trois protocoles ont ensuite été appliqués aux 12 espèces de poissons d'eau douce apparaissant dans le commerce des espèces vivantes désignés comme ayant une correspondance environnementale avec le Canada. Cela a permis d'obtenir une liste d'espèces défendable sur le plan scientifique qui aide à mieux prioriser les activités de programmes et l'affectation des ressources visant les EANI à l'échelle régionale et nationale.

INTRODUCTION

Aquatic invasive species (AIS) threaten global biodiversity (Sala et al. 2000) and are the second leading cause of decline of Canadian freshwater species at risk (Dextrase and Mandrak 2006). The establishment of AIS can reduce the abundance or productivity of sport, commercial, or culturally important species and can cause habitat alteration (Rahel 2002). Therefore, preventing the arrival, establishment, and spread of AIS is an important step to protecting aquatic environments (Kolar 2004).

Fisheries and Oceans Canada (DFO) is mandated to manage and protect Canada's aquatic ecosystems, the health of which are currently jeopardized by the arrival of AIS that can cause ecosystem harm. For example, at least 69 non-indigenous fish species have been introduced to the Great Lakes, half of which are considered established (Mandrak and Cudmore 2010) and include high impact species, such as the Round Goby (*Neogobius melanostomus*) that have altered the ecosystem (Lederer et al. 2008, Poos et al. 2010). To aid in the development of DFO regulation, legislation, and management plans to protect Canadian aquatic environments from the impacts of AIS, DFO's Centre of Expertise for Aquatic Risk Assessment (CEARA) is tasked with identifying, assessing, and prioritizing the threats of current and potential aquatic non-indigenous species (NIS). Biological risk assessment protocols provide an appropriate approach to meet this need, as they generate science advice for informed decision making to prevent potential, or deal with ongoing, invasions by predicting the identity, range, and/or impact of potential invaders (Kolar 2004).

CEARA is developing a three-stage biological risk assessment process for aquatic NIS (Chapman et al. 2006, DFO 2009). The three stages include: (a) *rapid assessment process* (RAP) to assess a species within a few days using minimal information; (b) *screening-level risk assessment* (SLRA) to assess and prioritize a species in about a week using additional information that is readily available (Snyder et al. 2013); and, (c) *detailed-level risk assessment* (DLRA) to assess a species within several months using detailed information (Mandrak et al. 2012). Depending on the goal of the risk assessment, increasingly more detailed risk assessments can be undertaken, with the DLRA providing the strongest defensible advice with the least amount of uncertainty.

NIS are introduced into Canadian fresh waters through various vectors and pathways, some of which are associated with the live trade pathway. A large number of live fishes are imported into Canada every year through stocking, live fish markets, aquarium and baitfish trade, biological supply for research/aquaculture, and garden centres (Marson et al. 2009a,b, Drake 2011, Stephens et al. unpubl. data). This extensive live fish industry poses a potential risk of introducing into, and/or spreading non-indigenous fishes within, Canadian freshwater ecosystems through accidental or deliberate unauthorized release. The Canadian Food Inspection Agency (CFIA) and DFO regulate the import and export of aquatic animal species susceptible to reportable (i.e., diseases of significant importance to aquatic animal health or the Canadian economy) and immediately notifiable (i.e., diseases that do not exist in Canada) diseases through the National Aquatic Animal Health Program, consistent with the international standards set by the World Organisation for Animal Health (OIE). However, there is currently no national regulation of live fish species imported to Canada related to invasiveness. There are also no guidelines for assessment and prioritization as to which fish species in trade are of highest risk should they be accidentally or intentionally introduced into Canadian fresh waters. Using an appropriate SLRA protocol, fish species in live trade can be identified and ranked based on the biological risk they pose to Canada.

BACKGROUND

In 2010, DFO's Aquatic Invasive Species program was tasked by both the Office of the Auditor General and an internal evaluation to establish a protocol to provide a scientifically defensible and relatively quick way of screening and prioritizing aquatic NIS. The national ranking of aquatic NIS, based on the biological risk they pose to Canadian aquatic ecosystems, is necessary to screen species for inclusion in AIS regulatory proposals and to better prioritize national and regional NIS program activities and resource allocation. DFO's Legislative and Regulatory Affairs, also a client in this process, requested science advice to support the development of a national regulatory proposal for addressing aquatic NIS. Specifically, it had requested: (1) a protocol to prioritize aquatic NIS; and, (2) a list of high risk aquatic NIS including those NIS already present in some regions of Canada whose transport into other areas in Canada where not present should be limited. This protocol would allow the ranking of aquatic NIS for national priorities and would be used as a biological screening tool for aquatic NIS to determine (in a short time frame) if a detailed-level risk assessment or a risk management evaluation was required based on existing information.

Screening-level risk assessment was identified as the appropriate level to support the development of these regulations by the Department. A suitable SLRA protocol is applicable in a variety of risk assessment contexts and is a means to quickly assess species known to occur in Canada, as well as species proposed for, or currently found in, trade and other pathways that have intermediate or end points within Canada. Prioritization of aquatic NIS can also be determined using the estimated level of risk posed by the species and associated uncertainty, as quantified by the SLRA (Mandrak et al. 2012). Furthermore, with the establishment of appropriate threshold criteria or parameters, the SLRA can supply a risk-based biological screening of aquatic NIS, providing a priority species list for managers and decision makers that requires either a detailed-level risk assessment or a risk management evaluation (Locke et al. 2011). A SLRA protocol would provide DFO with a scientifically defensible and relatively quick means of screening and prioritizing aquatic NIS based on the biological risk they pose to Canadian aquatic ecosystems.

In 2011, a national Canadian Science Advisory Secretariat (CSAS) science advisory process was initiated to provide science advice on the SLRA protocol for aquatic NIS. This process was to consist of at least two peer-review meetings attended by experts from DFO Science, Legislative and Regulatory Affairs, and other sectors of the Department, as well as invited external participants (e.g., other governmental departments, provincial governments, and academics) who could meaningfully contribute to the science review. Part 1 was held in Montreal, Quebec on November 22-24, 2011 (DFO 2012). At that meeting, participants examined the criteria and methodology used to evaluate the various risk assessment protocols (Snyder et al. 2013) and developed a framework for a SLRA protocol for aquatic NIS. Based on this peer review, it was identified that different SLRA protocols may be required for different aquatic taxa and, hence, prioritization using a single protocol may not be possible. Part 2 was held in Burlington, Ontario on March 19-21, 2013. Participants evaluated the selection and application of the best-performing SLRA protocols for freshwater fishes, molluscs, and plants currently in trade within Canada. The process used to generate species lists for screening for each taxon was also assessed. DFO Legislative and Regulatory Affairs confirmed that screening species not yet in Canada was the priority; therefore, NIS already present in some regions of Canada were not included. Additional meetings, not yet scheduled, will be required in the future to evaluate SLRA protocols for marine NIS, to assess the ability to prioritize all NIS using the chosen SLRA protocols and to screen NIS already present in some regions of Canada.

PURPOSE

This research document evaluates and applies selected SLRA protocols for screening of freshwater fishes in live trade within Canada. Five SLRA protocols were evaluated based on a validation dataset of establishment and ecological impact of known freshwater fishes introduced to the Great Lakes Basin. The SLRA protocols that performed best were then used to screen a list of freshwater fishes in North American trade. This list of freshwater fishes was generated following family-level and species-level habitat and climate matching to Canada for fishes in live trade in Canada. By applying the optimal screening protocol(s) to this list, high risk freshwater fishes not yet in Canada can be identified and considered for inclusion in any regulatory proposals.

METHODS

SELECTION AND EVALUATION OF SLRA PROTOCOLS

Following a review of available screening and prioritization risk assessment protocols using standardized criteria for the determination of their conceptual, scientific, and pragmatic strengths and weaknesses (Snyder et al. 2013) and a scientific peer-review of this methodological review (DFO 2012), a pool of appropriate SLRA protocols for screening AIS was identified. Using criteria and methodology from this review process, five SLRA protocols were selected for evaluation and application for freshwater fishes in live trade within Canada. These included the following: (1) Freshwater Fish Invasiveness Scoring Kit Protocol (FISK, v1.19 Calibrated) (Vilizzi et al. 2007; Appendix 1); (2) modified Alberta Risk Assessment Tool (RAT) (Snyder et al. unpubl. data; Appendix 2); (3) Montreal RAT (DFO 2012; Appendix 3); (4) Great Lakes Nonindigenous Species Information System (GLANSIS) (Sturtevant and Rutherford 2010) risk assessment tool (unpubl. data; Appendix 4); and, (5) Notre Dame statistical RAT (Howeth et al. unpubl. data; Appendix 5). The first four protocols are questionnaire based, while the last protocol is statistically based.

These five protocols were tested using a validation dataset of known successful (n=37) and failed (n=28) NIS in the Great Lakes Basin based primarily on Mandrak and Cudmore (2010). The validation dataset contained information on establishment (i.e., successful/failed from Mandrak and Cudmore (2010)) and impact. Impact was determined using a fish ecological impact questionnaire disseminated to Great Lakes academics, scientists, and managers (Howeth et al. unpubl. data). For each established NIS in the region, the experts were asked to rank the ecological impact (in the categories Unknown, None-low, Moderate, High, Very High) and their confidence in the response (Low or High) (Table 1). Experts were also asked to provide additional information about species that had failed to establish in the region. Twenty-seven experts provided responses (Figure 1). Given that the screening-level risk assessment is to be applied at a national scale, a validation dataset for all of Canada would be preferable for evaluation of these SLRA protocols; however, such data at this scale are lacking.

Table 1. Ecological impact questions for established species in the Great Lakes, distributed as part of the
expert opinion questionnaire in the Great Lakes Basin (Howeth et al. unpubl. data).

Impact level	Description
1	Species has little to no discernible impact on
(none to low)	existing biota
2	Species causes discernible decline in the
(moderate)	abundance of existing biota in most locations
3	Species causes discernible decline in the
(high)	abundance of existing biota and becomes a
	dominant component of the food web
4	Species causes discernible decline in the
(very high)	abundance of existing biota with extirpation of
	species likely. Food webs are highly altered
	and ecosystem-level consequences apparent

Figure 1. Perceived ecological impact of Great Lakes fishes determined from questionnaire distributed to experts in the Great Lakes Basin (Howeth et al. unpubl. data).

To evaluate the performance of the five SLRA protocols, each of the 65 species was scored using each of the SLRA protocols. For each of the four questionnaire SLRA protocols, a Receiver Operating Characteristic (ROC) curve analysis (pROC package (Robin et al. 2011) in R Version 2.15.1 (R Development Core Team 2012)), and Area Under the Curve (AUC) (Fawcett 2006), which is independent of the proportion of established and not established species included (Caley and Kuhnert 2006), were calculated as metrics of performance. This accounts for the lack of knowledge about the base-rates (Smith et al. 1999) of the species; that is, the proportion of the test data set to the total population of NIS. An AUC score of 1.0 indicates that the model discriminates perfectly between established and not established

species (or low and high impact species if that is the measurement), while values near 0.5 indicate no discrimination.

The establishment analysis is straight forward as the categories being compared are established or not established (Table 2). The results of the perceived ecological impact surveys follow a gradient of high to low impact (Figure 1); however, any perceived impact or establishment may be cause for concern. Additionally, because we cannot predict whether species currently considered to be of low impact will become more invasive over time, we compared the AUC when these species were classified with not established species and established NIS species in various combinations (Table 2).

Analysis type	Definition
Establishment	Established or failed
Impact 1	Upper 1/3 of established vs all other species
Impact 2	Upper 2/3 of established species vs lower 1/3 + failed invaders
Impact 3	Upper 1/3 of established species vs lower 1/3 + failed invaders
Impact 4	Top + bottom 1/3 of established species only

Table 2	Establishment and	impact analyses	for the SI RA	protocol evaluation
TUDIC Z.		inipuot analysees		protocor evaluation.

Once SLRA protocols were decided upon, the next step was to determine the threshold score required for NIS establishment and impact. For chosen SLRA protocols, thresholds distinguishing either established from failed NIS or high impact from low impact species (as defined in Table 2) were identified by plotting the classification accuracy by score for each of the analysis types identified in Table 2. The optimal threshold would be at the intersection of the two classification accuracy lines (successful, failed) for each analysis type. For each SLRA protocol, this would provide a threshold for establishment and a range of thresholds for impact dependent upon the definition of impact.

FRESHWATER FISHES IN LIVE TRADE IN CANADA

The list of freshwater fishes in live trade in Canada to be screened was generated in the following manner (Figure 2): (1) develop a fish species in trade list; (2) include families considered to be freshwater or euryhaline for further assessment; (3) within these families, select species considered to be freshwater or euryhaline for further assessment; (4) of these fish families and species within that are a habitat match to Canada, select those families whose native range is a climate match to Canada for further assessment; (5) within these remaining families, include only those species whose native and established introduced range is a climate match to Canada; and, (6) screen the remaining species for invasiveness using the SLRA protocol(s) determined to perform the best.

Fish Species in Trade List

Vectors identified through which fish species may arrive in Canada include live food trade, aquarium trade, biological supply for research or aquaculture, and water garden centres. While data describing the import of freshwater fishes in to Canada is generally scarce, species in trade within these vectors were identified using results from a study of live fish import activities in 2004-2005 (Stephens et al. unpubl. data), a survey of species in trade in Toronto, Ontario conducted during 2008-2012 (DFO/OMNR, unpubl. data), the "Great Canadian Aquarium Survey" conducted in 2006 (Marson et al. 2009a), the "Great Canadian Water Garden Survey" conducted in 2006 (Marson et al. 2009b), and a review of data collected on fish by U.S. Fish and Wildlife Service's Law Enforcement Management Information System (LEMIS) for the period October 2004-November 2005 (Romagosa, unpubl. data). In a collaborative effort by

Canadian Border Services Agency (CBSA) and DFO to estimate the magnitude of the live fish trade in Canada, species and trade volume data were collected for live fishes imported to Canada for food (kg) and aquarium (number) purposes over a one-year period, 2004-2005 (Stephens et al. unpubl. data). Taxonomy (i.e., family, genus and species) of identified fish species in live trade was checked for accuracy, and corrected where necessary, using FishBase (Froese and Pauly 2013) and the *Catalog of Fishes* from the California Academy of Sciences (Eschmeyer 2012). It is possible; however, that some fish species in trade were misidentified by importers (Stephens et al. unpubl. data). Therefore, all misclassified taxa and reports with only common names were removed prior to habitat and climate matching analysis.

Habitat Matching

Fish species in live trade in Canada were included in further analyses if they were a freshwater or euryhaline species. To quickly rule out species in trade from strictly marine families, the habitat associated with each fish family in trade was assessed using FishBase (Froese and Pauly 2013), and *Fishes of the World* (Nelson 2006). Families were assigned to one of three categories: Freshwater, Marine, or Euryhaline. The Euryhaline category identified those families that had euryhaline species, and/or both freshwater and marine species. Species in strictly Freshwater families were considered potentially able to survive within Canadian fresh waters based on the habitat match and were included for further assessment. Species in Marine families were excluded from further analyses. Species belonging to a Euryhaline family were then individually assessed as freshwater, marine, or euryhaline. Freshwater and euryhaline family were species in Euryhaline families were included for further assessment.

Figure 2. A schematic diagram representing the process to generate the list of freshwater fishes in live trade in Canada to be screened.

Climate Matching

Comparisons of climate characteristics between regions can be used for predicting the potential establishment and spread of NIS in applications of risk assessments for live animal imports (Crombie et al. 2008). *Climatch*, a climate-matching algorithm interface, provides regional climatic scores from a global climate database consisting of information from over 9,000 weather stations around the world (Bureau of Rural Sciences 2008). Using a Euclidean measure, it determines the climatic similarity between a Source region (e.g., fish family or species distribution) and a Target region (e.g., Canada). The climate-match scores range from 10 for the highest level match to zero for the poorest match. Based on freshwater fish introductions in 10 countries, Bomford et al. (2010) determined that at least 20% of the *Climatch* scores were at level 6 or higher for established species; therefore, this was set as the minimum threshold required to include families and species for screening based on climate match.

Climatch Source region files were developed for the native distributions of 153 fish families with freshwater and/or euryhaline species based on Berra (2007). Three families with high species richness and broad distributions were divided into subsets and *Climatch* Source files were developed for each subset (Table 3). *Climatch* analyses were undertaken separately to determine the climatic similarity between each of the 150 fish family and 16 family subset distributions (i.e., Source region) and Canada (i.e., Target region; Figure 3). Families with at least 20% of the *Climatch* scores at level 6 or higher were included for further climate matching assessment.

Family	Subsets
Characidae	North America Central and South America
Cobitidae	Europe Middle East Siberia Central Asia East Asia Southeast Asia
Cyprinidae	North America Africa Europe Middle East Siberia Central Asia East Asia Southeast Asia

Table 3. Fish family distributions divided into subsets for the family-level climate match analysis.

Species with a family-level climate match to Canada were then subjected to species-level climate matching. Distribution maps for species within these families were developed using point occurrence data obtained from FishBase (Froese and Pauly 2013), Global Biodiversity Information Facility (GBIF 2013), FishNet2 (2012), and Ocean Biogeographic Information System (OBIS) (Intergovernmental Oceanographic Commission (IOC) of UNESCO 2012). Point occurrence data were supplemented with written species distribution descriptions from these databases and cross-checked with primary literature for outliers where possible. Species distributions were then drawn on to maps created using R 2.15.2.tar.gz (R Development Core Team 2012) and the package 'maps' (Brownrigg 2012). These maps were used to develop *Climatch* Source region files, which were subsequently used to determine the climate match

between each species and Canada. Species with at least 20% of the *Climatch* scores at level 6 or higher and not currently present in Canada were included for screening.

Figure 3. The Climatch Target region layer for Canada.

Screening Species Using SLRA Protocols

Species included following the habitat and climate matching exercises were then screened using the best performing SLRA protocols.

RESULTS AND DISCUSSION

EVALUATION OF SLRA PROTOCOLS

All five of the SLRA tools performed well in distinguishing either established from failed invaders or high impact from low impact species (Table 4). Alberta RAT, GLANSIS, and Montreal RAT performed best based on establishment. Montreal RAT and GLANSIS performed best based on the impact analyses and were selected as the optimal SLRA protocols.

For each of these two optimal SLRA protocols, thresholds distinguishing either established from failed NIS or high impact from low impact species (as defined in Table 2) were identified by plotting the classification accuracy by score for each of the analysis types identified in Table 2 (Figures 4 and 5). For the Montreal RAT, the threshold for establishment was a score of 22, and ranged 24-31 for impact (Table 5). For the GLANSIS protocol, the threshold for establishment was a score of 79, and ranged 88-99 for impact (Table 5).

Table 4. Area under the Curve (AUC) values for the SLRA protocols applied to the Great Lakes test database by analysis type. AUC Interpretation (Hosmer and Lemeshow 2000): 0.7 < AUC < 0.8 - acceptable; $0.8 \le AUC < 0.9 - excellent$; AUC > 0.9 - outstanding.

Analysis type	Definition	FISK	Montreal RAT	Alberta RAT	GLANSIS	ND Stats RAT
Establishment	Established or failed	0.8061	0.8601	0.8817	0.8873	0.774
Impact 1	Upper 1/3 of established vs all other species	0.799	0.9371	0.8374	0.9208	
Impact 2	Upper 2/3 of established species vs lower 1/3 + failed invaders	0.8173	0.9199	0.9049	0.8948	
Impact 3	Upper 1/3 of established species vs lower 1/3 + failed invaders	0.8451	0.969	0.9135	0.9583	
Impact 4	Top + bottom 1/3 of established species only	0.7847	0.9792	0.9236	0.941	0.875

Table 5. Thresholds for establishment and impact were identified by plotting the classification accuracy by score for each of the analysis types (see Figures 4 and 5 for plots).

Analysis type	Definition	Montreal RAT	GLANSIS
Establishment	Established or failed	22	79
Impact 1	Upper 1/3 of established vs all other species	31	99
Impact 2	Upper 2/3 of established species vs lower 1/3 + failed invaders	24, 25	88
Impact 3	Upper 1/3 of established species vs lower 1/3 + failed invaders	29, 30, 31	97
Impact 4	Top + bottom 1/3 of established species only	29, 30, 31	92-99

Figure 4. Classification accuracy of the GLANSIS protocol for: A) establishment; B) impact based on upper 1/3 of established vs all other species; C) impact based on upper 2/3 of established species vs lower 1/3 + failed invaders; D) impact based on upper 1/3 of established species vs lower 1/3 + failed invaders; and, E) impact based on top + bottom 1/3 of established species only. The black dashed curve represents the species that failed to establish, or the grouping of low impact and species that failed to established species or the grouping of high impact and established species, depending upon analysis type. The threshold that maximizes accuracy is the SLA score at the intersection of the two classification accuracy lines. These thresholds are represented by vertical lines.

Figure 5. Classification accuracy of the Montreal RAT protocol for: A) establishment; B) impact based on upper 1/3 of established vs all other species; C) impact based on upper 2/3 of established species vs lower 1/3 + failed invaders; D) impact based on upper 1/3 of established species vs lower 1/3 + failed invaders; and, E) impact based on top + bottom 1/3 of established species only. The black dashed curve represents the species that failed to establish, or the grouping of low impact and species that failed to established species or the grouping of high impact and established species, depending upon analysis type. The threshold that maximizes accuracy is the SLA score at the intersection of the two classification accuracy lines. These thresholds are represented by vertical lines.

FISH SPECIES IN TRADE LIST, HABITAT- AND CLIMATE-MATCH ANALYSIS

A total of 1648 species of fish in 185 families were identified as being part of the live fish trade involving vectors through which fish species may arrive in Canada (Appendix 6). Of these families, 106 were considered a habitat match (i.e., Freshwater or Euryhaline). A total of 825 species within these families were freshwater or euryhaline and were included for climate-match analysis. Of the families with a habitat match to Canada, 28 were identified to have a climate match to Canada. Due to an averaging effect, this family-level climate-match analysis may have excluded some species that would have a climate match to Canada at the species level (e.g., Northern Snakehead (*Channa argus*), family Channidae; Herborg et al. 2007). A total of 30 species were included following species-level climate matching, 18 of which are already established within Canada.

Following family- and species-level climate-match analysis, 12 species were identified for screening using the selected SLRA protocols.

SCREENING SPECIES USING SLRA PROTOCOLS

Based on the evaluation of the SLRA protocols, GLANSIS, Montreal RAT, and Notre Dame Statistical RAT were chosen to screen the list of 12 species for establishment and invasiveness and impact. Although the Notre Dame Statistical RAT did not perform as well as the other protocols, it is not subject to user bias as it is based on objective ecological traits, and requires less time to conduct compared to the questionnaire-based protocols. On average, a species assessment using GLANSIS or the Montreal RAT takes an experienced user approximately 8 hours to complete. The Notre Dame Statistical RAT takes substantially less time (~ 1 hour) to complete. Duration to complete a species assessment may be longer if a user is inexperienced, particularly for the GLANSIS and Montreal RAT protocols, which provide very limited user guidance, and the potential effect of user bias on the results has not been evaluated. This may result in variability in scores depending on the user that, in turn, may influence those species screened in or out. GLANSIS also requires a certain number of questions to be answered in order for assessment to occur, while the Montreal RAT has no such requirement. As such, 5 of 12 species identified for screening could not be assessed by GLANSIS but all 12 species were successfully assessed using the Montreal RAT and Notre Dame Statistical RAT (Table 6). Selection of which SLRA protocol to use may also be influenced by the scale at which the assessment is to be applied. While each protocol was evaluated using Great Lakes data (no similar Canada-wide validation data is available), the Notre Dame Statistical Tool may be less relevant for Canada-wide species assessments because this model was developed using a training dataset from the Great Lakes alone.

The threshold chosen to screen species with will also influence which species are screened in or out. For those species successfully assessed using GLANSIS and Montreal RAT, the outcome varied depending on the threshold for four species (Table 6). The range of possible thresholds represents the range of risk uncertainty. Identifying the tolerance specific threshold is a risk management decision; therefore, screening results are provided for a range of thresholds relating to establishment and impact. Risk managers will need to decide which threshold best represents their risk tolerance. Species screened in or out by more than one protocol and at more than one threshold should increase the confidence in the result.

Table 6. Results of species screened using GLANSIS, Montreal RAT, and Notre Dame (ND) Statistical RAT SLRA protocols. Thresholds for GLANSIS and Montreal RAT correspond to scores generated from plots of the point of intersection of the two classification accuracy curves for each analysis type described in Table 5. For GLANSIS and Montreal RAT threshold assessment: 0 – not invasive; 1 – invasive; 1/0 – meets one threshold but not the other; inc – incomplete due to inability to answer the required number of questions (GLANSIS only). For ND Statistical RAT, Establishment (Est): 0 – predicted not to established, Impact: 0 – predicted not to have an impact; 1 – predicted to have an impact. * indicates impact score for GLANSIS is unknown due to lack of information; therefore, final score is incomplete.

		GLANSIS						Montreal RAT						ND Statistical RAT	
		7	Thres	hold					Thre	shold					
	Score	79	99	88	97	92- 99	Score	22	31	24- 25	29- 31	29- 31	Est	Impact	
Carassius carassius	105	1	1	1	1	1	32	1	1	1	1	1	1	0	
Cobitis taenia	54*	inc	inc	inc	inc	inc	20	0	0	0	0	0	1	0	
Danio albolineatus	60*	inc	inc	inc	inc	inc	14	0	0	0	0	0	1	1	
lctalurus furcatus	66*	inc	inc	inc	inc	inc	30	1	0	1	1	1	1	1	
Leuciscus idus	87*	1	inc	inc	inc	inc	26	1	0	1	0	0	1	1	
Misgurnus fossilis	58*	inc	inc	inc	inc	inc	18	0	0	0	0	0	1	1	
Morone saxatilis x chrysops	93	1	0	1	0	1/0	24	1	0	1	0	0	1	1	
Silurus glanis	123	1	1	1	1	1	37	1	1	1	1	1	1	1	
Siniperca chuatsi	81	1	0	0	0	0	33	1	1	1	1	1	1	1	
Ctenopharyngodon idella (diploid)	121	1	1	1	1	1	35	1	1	1	1	1	1	1	
Ctenopharyngodon idella (triploid)	70	0	0	0	0	0	35	1	1	1	1	1	1	1	
Cyprinella lutrensis	98	1	0	1	1	1	31	1	1	1	1	1	1	1	
Misgurnus anguillicaudatus	97	1	0	1	1	1	29	1	0	1	1	1	1	1	

Note: Species highlighted in grey were used to train the ND Statistical RAT. However, based on the fish ecological impact questionnaire disseminated to Great Lakes academics, scientists, and managers (Table 1, Figure 1) these species were considered to be high impact and were independently included for environmental matching analysis.

CONCLUSIONS

- Modified Alberta RAT, GLANSIS, and Montreal RAT SLRA protocols performed best based on establishment.
- Montreal RAT and GLANSIS SLRA protocols performed best based on impact analyses.
- Following evaluation, GLANSIS, Montreal RAT, and the Notre Dame Statistical RAT were selected to screen fishes in live trade in Canada.
- 1648 species of fish in 185 families were identified as being part of the live fish trade in Canada. Of these families, 106 were considered a habitat match (i.e., Freshwater or Euryhaline).
- Following species-level habitat-match analysis, 825 of the 1648 species were freshwater or euryhaline and included for climate-match analysis.
- 12 species in 6 families were identified for screening following family- and species-level habitat- and climate-match analyses. A detailed-level risk assessment has been conducted for Grass Carp, *Ctenopharyngodon idella* (Mandrak and Cudmore 2004).
- Screening assessment for 5 of the 12 species was not possible using GLANSIS because this protocol requires a certain number of questions to be answered for assessment to occur and not enough data were available for these species.
- GLANSIS identified fewer species to be invasive than the Montreal RAT, regardless of threshold used.
- Notre Dame Statistical RAT predicted all 12 species to establish and 10 of these species to have an impact.
- Two species, *Silurus glanis* and *Ctenopharyngodon idella* (diploid), were assessed similarly regardless of threshold across SLRA protocols as being able to establish and have a high impact.

RECOMMENDATIONS

- 20% threshold for family-level climate-match analysis may be too high resulting in the premature exclusion of some species. A lower family-level threshold (e.g., 10-20% match) for *Climatch* analysis or regional climate matching should be investigated, particularly for southwestern British Columbia.
- Depending on the species and scale of risk assessment, regional species-level climatematch analysis may be preferable, particularly for regions with extreme climates such as southwestern British Columbia which may not be accurately assessed using a Canadawide *Climatch* analysis.
- Length of time required, potential for user bias, applicability to scale of assessment (e.g., regional or national), and lack of user guide for Montreal RAT and GLANSIS, should be considered when selecting which SLRA protocol to use.
- A detailed user guide for Montreal RAT and GLANSIS should be developed to reduce influence of user bias.

REFERENCES CITED

- Berra, T.M. 2007. Freshwater fish distribution. University of Chicago Press, Chicago, II. 615 p.
- Bomford, M., Barry, S.C., and Lawrence, E. 2010. Predicting establishment success for introduced freshwater fishes: a role for climate matching. Biol. Invasions 12: 2559-2571.
- Brownrigg, R. 2012. maps: Draw Geographical Maps. R package version 2.3-0.
- Bureau of Rural Sciences. 2008. CLIMATE software. Bureau of Rural Sciences, Department of Agriculture, Fisheries and Forestry, Canberra, Australia.
- Caley, P., Kuhnert, P.M. 2006. Application and evaluation of classification trees for screening unwanted plants. Austral Ecol. 31: 647–655. doi: 10.1111/j.1442-9993.2006.01617.x.
- Chapman, P.M., Cudmore, B. and Mandrak, N.E. 2006. Proceedings of the National Risk Assessment Methods Workshop; June 21-23, 2006. DFO Can. Sci. Advis. Sec. Proceed. Ser. 2006/049.
- Crombie, J., Brown, L., Lizzio, J., and Hood, G. 2008. Climatch User Manual. Australian Government, Bureau of Rural Science. 16 p.
- Dextrase, A.J., and Mandrak, N.E. 2006. Impacts of alien invasive species on freshwater fauna at risk in Canada. Biol. Invasions 8: 13-24.
- DFO. 2009. Proceedings of the Workshop to Finalize National Guidelines for Assessing the Biological Risk of Aquatic Invasive Species (AIS) to Canada; June 3-5, 2008. DFO Can. Sci. Advis. Sec. Proceed. Ser. 2009/006.
- DFO. 2012. Proceedings of the Meeting on Screening-Level Risk Assessment Prioritization Protocol for Aquatic Non-Indigenous Species; November 22-24, 2011. DFO Can. Sci. Advis. Sec. Proceed. Ser. 2011/068.
- Drake, D.A.R. 2011. Quantifying the likelihood of human-mediated movements of species and pathogens: the baitfish pathway in Ontario as a model system. Thesis (PhD), Department of Ecology and Evolutionary Biology, University of Toronto. 295 p.
- Eschmeyer, W.N. 2012. Catalog of Fishes, California Academy of Sciences. (accessed December 2013).
- Fawcett, T. 2006. An introduction to ROC analysis. Pattern Recogn. Lett. 27: 861-874.
- FishNet 2. 2012. Fish occurrence data. (accessed February 2013).
- Froese, R., and Pauly, D. (eds.). 2013. FishBase. World Wide Web electronic publication. (accessed February 2013).
- GBIF. 2013. Biodiversity occurrence data for fish species, version 1.2.6. (accessed February 2013).
- Herborg L. M., Mandrak, N.E., Cudmore, B.C., and MacIsaac, H. J. 2007. Comparative distribution and invasion risk of snakehead (Channidae) and Asian carp (Cyprinidae) species in North America. Can. J. Fish. Aquat. Sci. 64: 1723-1735.
- Hosmer, D.W., and Lemeshow, S. 2000. Applied Logistic Regression, 2nd Edition. John Wiley & Sons, New York. 375 p.
- Intergovernmental Oceanographic Commission (IOC) of UNESCO. 2012. The Ocean Biogeographic Information System. (accessed February 2013).
- Kolar, C.S. 2004. Risk assessment and screening for potentially invasive fishes. N. Z. J. Mar. Freshw. Res. 38: 391-397.
- Kolar, C.S., and Lodge, D.M. 2002. Ecological predictions and risk assessment for alien fishes in North America. Science 298: 1233-1236.

- Lederer, A.M., Janssen, J., Reed, T., and Wolf, A., 2008. Impacts of the introduced round goby (Apollonia melanostoma) on dreissenids (Dreissena polymorpha and Dreissena bugensis) and on macroinvertebrate community between 2003 and 2006 in the littoral zone of Green Bay, Lake Michigan. J. Gt. Lakes Res. 34: 690–697.
- Locke, A., Mandrak, N.E., and Therriault, T.W. 2011. A Canadian Rapid Response Framework for Aquatic Invasive Species. DFO Can. Sci. Advis. Sec. Res. Doc. 2010/114. vi + 30 p.
- Mandrak, N.E. 1989. Potential invasion of the Great Lakes by fish species associated with climatic warming. J. Gt. Lakes Res. 15: 306-316.
- Mandrak, N. E., and Cudmore, B. 2004. Risk Assessment for Asian Carps in Canada. DFO Can. Sci. Advis. Sec. Res. Doc. 2004/103. ii + 48 p.
- Mandrak, N. E., and Cudmore, B. 2010. The fall of native fishes and the rise of non-native fishes in the Great Lakes Basin. Aquat. Ecosyst. Health Manag. 13: 255-268.
- Mandrak, N.E., Cudmore, B., and Chapman, P.M. 2012. National Detailed-Level Risk Assessment Guidelines: Assessing the Biological Risk of Aquatic Invasive Species in Canada. DFO Can. Sci. Advis. Sec. Res. Doc. 2011/092. vi + 17 p.
- Marson, D., Cudmore, B., Drake, D.A.R., and Mandrak, N.E. 2009a. Summary of a survey of aquarium owners in Canada. Can. Manuscr. Rep. Fish. Aquat. Sci. 2905: iv + 20 p.
- Marson, D., Cudmore, B., Drake, D.A.R., and Mandrak, N.E. 2009b. Summary of a survey of water garden owners in Canada. Can. Manuscr. Rep. Fish. Aquat. Sci. 2906: v + 23 p.
- Nelson, J.S., 2006. Fishes of the World, 4th ed. John Wiley & Sons, New Jersey, USA. 601 p.
- Poos, M., Dextrase, A.J., Schwalb, A.N., Ackerman, J.D. 2010. Secondary invasion of the round goby into high diversity Great Lakes tributaries and species at risk hotspots: potential new concerns for endangered freshwater species. Biol. Invasions 12: 1269–1284.
- Rahel, F.J. 2002. Homogenization of freshwater faunas. Annu. Rev. Ecol. Syst. 33: 291-315.
- R Development Core Team. 2012. R: A language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
- Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.C., and Müller, M. 2011. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics, 12, p. 77. DOI: 10.1186/1471-2105-12-77
- Sala, O. E., Chapin, F.S., III, Armesto, J.J., Berlow, R., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., Jackson, R.B., Kinzig, A., Leemans, R., Lodge, D., Mooney, H.A., Oesterheld, M., Poff, N.L., Sykes, M.T., Walker, B.H., Walker, M., Wall, D.H. 2000.
 Global biodiversity scenarios for the year 2100. Science 287: 1770-1774.
- Smith, C.S., Lonsdale, W.M., and Fortune, J. 1999. When to ignore advice: invasion predictions and decision theory. Biol. Invasions 1: 89-96.
- Snyder, E., Mandrak, N.E., Niblock, H., and Cudmore, B. 2013. Developing a screening-level risk assessment prioritization protocol for aquatic non-indigenous species in Canada: review of existing protocols. DFO Can. Sci. Advis. Sec. Res. Doc. 2012/097. vii + 75 p.
- Sturtevant, R., and Rutherford, E. 2010. Great Lakes Aquatic Nonindigenous Species Information System.
- Vilizzi, L., Cooper, D., South, A., Tricarico, E., Gherardi, F., and Copp, G.H. 2007. Freshwater Invertebrate Invasiveness Scoring Kit (FI-ISK) Beta Test Version. Centre for Environment, Fisheries and Aquaculture Science, Department of Environment, Food and Rural Affairs, United Kingdom.

APPENDIX 1 – FISK RISK ASSESSMENT TOOL

Questionnaire risk assessment method using the Freshwater Fish Invasiveness Scoring Kit (FISK) Protocol (v1.19 Calibrated) (Vilizzi et al. 2007).

Species:					
Question number	Question	Answer	Score	Reference	Source data
1.01	Is the species highly domesticated or cultivated for commercial, angling or ornamental purposes?				
1.02	Has the species become naturalised where introduced?				
1.03	Does the species have invasive races/varieties/sub-species?				
2.01	Is species reproductive tolerance suited to climates in Great Britain (0-low, 1-intermed, 2-high)?				
2.02	Quality of climate match data (0-low; 1-intermediate; 2-high).				
2.03	Broad climate suitability (environmental versatility).				
2.04	Native or naturalised in regions with equable climates.				
2.05	Does the species have a history of introductions outside its natural range?				
3.01	Has the species naturalised (established viable populations) beyond its native range?				
3.02	In its naturalised range are there impacts to wild stocks of angling or commercial species?				
3.03	In its naturalised range are there impacts to aquacultural, aquarium or ornamental species?				

Question number	Question	Answer	Score	Reference	Source data
3.04	In its naturalised range are there impacts to rivers, lakes or amenity values?				
3.05	Does the species have invasive congeners?				
4.01	Is the species poisonous, or pose other risks to human health?				
4.02	Does the species out-compete with native species?				
4.03	Is the species parasitic of other species?				
4.04	Is the species unpalatable to, or lacking, natural predators?				
4.05	Does species prey on a native species (e.g., previously subjected to low (or no) predation)?				
4.06	Host and/or vector for recognised pests and pathogens, especially non-native?				
4.07	Does the species achieve a large ultimate body size (i.e., > 10 cm FL) (more likely to be abandoned)?				
4.08	Has a wide salinity tolerance or is euryhaline at some stage of its life cycle.				
4.09	Is desiccation tolerant at some stage of its life cycle.				
4.10	Is tolerant of a range of water velocity conditions (e.g., versatile in habitat use).				
4.11	Feeding or other behaviours reduce habitat quality for native species.				
4.12	Does the species require minimum population size to maintain a viable population?				

Question number	Question	Answer	Score	Reference	Source data
5.01	Piscivorous or voracious predator (e.g., of native species not adapted to a top predator).				
5.02	Omnivorous.				
5.03	Planktivorous.				
5.04	Benthivorous.				
6.01	Exhibits parental care of eggs and/or young and/or known to reduce age-at-maturity in response to environment.				
6.02	Produces viable gametes.				
6.03	Hybridizes naturally with native species (or uses males of native species to activate eggs).				
6.04	Hermaphroditic				
6.05	Dependent on presence of another species (or specific habitat features) to complete life cycle.				
6.06	Highly fecund (>10,000 eggs/kg), iteropatric or extended spawning season.				
6.07	Minimum generation time.				
7.01	Life stages likely to be dispersed unintentionally.				
7.02	Life stages likely to be dispersed intentionally by humans (and suitable habitats abundant nearby).				
7.03	Life stages likely to be dispersed as a contaminant of commodities.				

Question number	Question	Answer	Score	Reference	Source data
7.04	Natural dispersal occurs as a function of dispersal of eggs.				
7.05	Natural dispersal occurs as a function of dispersal of larvae (along linear and/or 'stepping stone' habitats).				
7.06	Juveniles or adults are known to migrate (spawning, smolting, feeding).				
7.07	Eggs dispersed by other animals (externally)?				
7.08	Density dependent dispersal.				
8.01	Any life stages likely to survive out of water transport?				
8.02	Tolerates a wide range of water quality conditions, in particular oxygen depletion and high temperature.				
8.03	Susceptible to piscicides.				
8.04	Tolerates or benefits from environmental disturbance.				
8.05	Effective natural enemies present in Great Britain.				
		total score	0		
		outcome	more info		

	section	# questions answered	satisfy minimum?	
	А	0	no	
	В	0	no	
	С	0	no	
	total	0	no	

APPENDIX 2 – MODIFIED ALBERTA RISK ASSESSMENT TOOL

Questionnaire risk assessment method using a modified version of the Alberta Risk Assessment Tool (RAT) (Snyder et al. unpubl. data). Existing risk assessment guidelines were reviewed (Snyder et al. 2013) and the Alberta RAT was identified to be the most relevant for DFO's needs. The Alberta RAT was subsequently modified and calibrated to better suit DFO's uses and existing framework for risk assessments.

SPECIES INFORMATION	ASSESSOR'S INFORMATION							
Scientific Name:			Assessor:					
Synonyms:			Assessor's Affilia	ation:	on:			
Common Names:			Mailing Address:	dress:				
Risk Assessment Area (RAA):			Telephone:					
			Email:					
			Date Evaluated (mm/dd/yyyy):					

QUESTIONS ON INVASION STAGES	<u>SCORE</u>	COMMENTS & CITATIONS	CONFIDENCE LEVEL	EXPLANATION OF CONFIDENCE
<u>1. ARRIVAL</u>				
1.1 Is the species known to occur in a natural or human- mediated pathway with intermediate or end points within the RAA, has it been proposed for import, or is it present in areas adjacent to the RAA?				
Score: 0 not in a pathway or adjacent areas				
Score: 1 not in a pathway; locally distributed or occurring at low population densities in adjacent areas				
Score: 2 not in a pathway; widely distributed and abundant in adjacent areas				
Score: 3 in a pathway with intermediate or end points within the assessment area or proposed for import				
1.2 Given natural dispersal characteristics and vectors, and existing barriers, how great is the potential of the species to arrive in the RAA by means of natural pathways?				
Score: 0 no known characteristics or vectors that could overcome barriers				
Score: 1 some characteristic or vector could likely overcome barriers or has done infrequently with low numbers of individuals				

QUESTIONS ON INVASION STAGES	SCORE	COMMENTS & CITATIONS	EXPLANATION OF CONFIDENCE
Score: 2 characteristics and vectors have resulted in frequent overcoming of barriers with low numbers of individuals, or infrequent with high numbers			
Score: 3 characteristics and vectors have resulted in frequent and ongoing arrivals with high numbers of individuals			
1.3 How great is the potential of the species to arrive in the RAA by means of human-mediated pathways with intermediate or end points within the RAA?			
Score: 0 no known pathways			
Score: 1 pathways likely exist, have resulted or (if species proposed for import) would likely result in infrequent arrivals with low numbers of individuals			
Score: 2 pathways result or (if species proposed for import) would likely result in frequent arrivals with low numbers of individuals or infrequent with high numbers			
Score: 3 pathways result or (if species recently proposed for import) would likely result in frequent and ongoing arrivals with high numbers of individuals			
1.4 How likely are individuals of the species to survive in transit?			

QUESTIONS ON INVASION STAGES	SCORE	COMMENTS & CITATIONS	CONFIDENCE LEVEL	EXPLANATION OF CONFIDENCE
Score: 0 unlikely to survive				
Score: 1 limited survival				
Score: 2 likely to survive but population size reduced				
Score: 3 likely to survive with no negative effect to population size				
2. ESCAPE OR RELEASE				
2.1 What is the probability of individuals of the species being released into the RAA?				
Score: 0 no known pathway ending in release				
Score: 1 few individuals released infrequently				
Score: 2 many individuals released infrequently, or few frequently				
Score: 3 many individuals released frequently				
2.2 What is the probability of detecting and preventing individuals of the species where they are most likely to escape into the environment of the RAA?				
Score: 0 readily detected and effective prevention mechanisms in place				

QUESTIONS ON INVASION STAGES	SCORE	COMMENTS & CITATIONS	CONFIDENCE	EXPLANATION OF CONFIDENCE
Score: 1 somewhat difficult to detect or prevention mechanisms not always effective				
Score: 2 difficult to detect or no specific mechanisms for prevention in place				
Score: 3 likely to be undetected or escape unpreventable				
2.3 If escaped, how many individuals of the species are likely to enter the RAA?				
Score: 0 no known pathway ending in escape				
Score: 1 few individuals escape infrequently				
Score: 2 many individuals escape infrequently, or few frequently				
Score: 3 many individuals escape frequently				
3. SURVIVAL	1			
3.1 Is the species known to have survived in the RAA?				
Score: 0 instances of entry without completion of the life cycle of the species				
Score: 1 instances of entry followed by survival of some life stages during some seasons				

QUESTIONS ON INVASION STAGES	SCORE	COMMENTS & CITATIONS	CONFIDENCE LEVEL	EXPLANATION OF CONFIDENCE
Score: 2 localized instances of entry followed by survival of all life stages over at least one year				
Score: 3 widespread instances of entry followed by survival of all life stages over at least one year				
3.2 Are the abiotic conditions for the species' survival satisfied by resources available in the RAA?				
Score: 0 no resources are available				
Score: 1 the availability of resources is minimal				
Score: 2 the availability of resources is restricted in some way				
Score: 3 resources are available in relative abundance				
3.3 Are the biotic conditions for the species' survival satisfied by resources available in the RAA?				
Score: 0 no resources are available				
Score: 1 the availability of resources is minimal				
Score: 2 the availability of resources is restricted in some way				
Score: 3 resources are available in relative abundance				

QUESTIONS ON INVASION STAGES	SCORE	COMMENTS & CITATIONS	CONFIDENCE	EXPLANATION OF CONFIDENCE
3.4 Is the likelihood of the species' survival affected by environmental stressors, i.e., decreasingly poor sediment or surface water conditions?				
Conner O not found in more on do we do he bitate				
Score: U not found in poor or degraded habitats				
Score: 1 prefers high quality conditions but is mildly tolerant of poor conditions				
Score: 2 can tolerate poor quality habitat but does not benefit from it				
Score: 3 is pollution tolerant and is highly successful in degraded conditions				
4.1 Is the species known to have established in the RAA?				
Score: 0 individuals of the species, capable of reproduction, have survived without establishment				
Score: 1 individuals have reproduced, but the succeeding generation has not				
Score: 2 localized reproducing populations occur				
Score: 3 widespread reproducing populations occur				

QUESTIONS ON INVASION STAGES		SCORE	COMMENTS & CITATIONS	CONFIDENCE LEVEL	EXPLANATION OF CONFIDENCE
4.2 If the species is not known to have established but is believed to be capable of survival, how many individuals of the species are likely to survive in the RAA?					
Score: 0 individuals of the species are not believed to be capable of survival long enough to establish					
Score: 1 given common points of entry, there is potential for few individuals to survive long enough to reproduce					
Score: 2 given common points of entry, there is potential for many individuals to survive long enough to reproduce locally					
Score: 3 given common points of entry, there is potential for many individuals to survive long enough to reproduce throughout the area					
4.3 How available are the species' requirements for reproduction?					
Score: 0 specific conditions not available					
Score: 1 specific requirements are locally available during the reproductive season					
Score: 2 specific requirements are widely available during part of the reproductive season					
Score: 3 species has no specific requirements, or all requirements are available					

QUESTIONS ON INVASION STAGES	<u>SCORE</u>	COMMENTS & CITATIONS	CONFIDENCE	EXPLANATION OF CONFIDENCE
4.4 Is asexual reproduction (e.g., vegetative reproduction or self-fertilization) an important aspect of this species' reproduction?				
Score: 0 no asexual reproduction				
Score: 1 asexual reproduction is used but is not the primary means of population increase				
Score: 2 asexual reproduction is the primary means of reproduction resulting in rapid population growth				
Score: 3 asexual reproduction occurs in conjunction with sexual reproduction resulting in a maximized increase in population size				
5. EXPANSION				
5.1 Is the species known to have expanded its distribution in the RAA?				
Score: 0 established populations have remained localized in the area of establishment				
Score: 1 established populations have expanded infrequently within an area bounded by barriers				
Score: 2 established populations have expanded regularly within an area bounded by barriers				

QUESTIONS ON INVASION STAGES	SCORE	COMMENTS & CITATIONS	CONFIDENCE	EXPLANATION OF CONFIDENCE
Score: 3 established populations have expanded widely over most of the RAA				
5.2 Based on biological characteristics that contribute to dispersal, and human-mediated pathways within the RAA, what is the potential of the species to spread within the RAA?				
Score: 0 no known characteristics or pathways that could overcome barriers				
Score: 1 some characteristic or pathway could likely overcome barriers or has done infrequently with low numbers of individuals				
Score: 2 characteristics and pathways could result or have resulted in frequent overcoming of barriers with low numbers of individuals, or infrequent with high numbers				
Score: 3 characteristics and pathways could result or have resulted in frequent and ongoing spread with high numbers of individuals				
5.3 What is the rate of population growth of the species?				
Score: 0 no growth				
Score: 1 slow rate of growth				
Score: 2 moderate rate of growth				
QUESTIONS ON INVASION STAGES	<u>SCORE</u>	COMMENTS & CITATIONS	CONFIDENCE	EXPLANATION OF CONFIDENCE
---	--------------	-------------------------	------------	------------------------------
Score: 3 rapid rate of growth				
5.4 What percentage of the risk assessment area has a climate suitable for the species' establishment?				
Score: 0 <1%				
Score: 1 1-10%				
Score: 2 11-25%				
Score: 3 >25%				
5.5 What percentage of the area of suitable climate has suitable abiotic conditions for the species' establishment?				
Score: 0 <1%				
Score: 1 1-10%				
Score: 2 11-25%				
Score: 3 >25%				
6. EXPLOSION				
6.1Frequency of reproduction?				

QUESTIONS ON INVASION STAGES	SCORE	E	COMMENTS & CITATIONS	CONFIDENCE	EXPLANATION OF CONFIDENCE
Score: 0 almost never					
Score: 1 less than once a year					
Score: 2 once per year					
Score: 3 more than once per year					
6.2 Is the production of offspring prolific and consistent?					
Score: 0 very few offspring produced					
Score: 1 few offspring produced					
Score: 2 moderate numbers of offspring produced					
Score: 3 many offspring produced					
6.3 Is there rapid growth to reproductive maturity?					
Score: 0 very slow growth - misses at least 5 reproductive seasons before being able to reproduce					
Score: 1 slow growth - misses 2-4 reproductive seasons before being able to reproduce					
Score: 2 moderate growth - misses 1 reproductive season before being able to reproduce					
Score: 3 rapid growth - is able to reproduce as soon as environmental conditions allow					

QUESTIONS ON INVASION STAGES	<u>sc</u>	<u>ORE</u>	COMMENTS & CITATIONS	<u>CONFIDENCE</u> LEVEL	EXPLANATION OF CONFIDENCE
6.4 Is there an opportunity to hybridize with native species in the RAA?					
Score: 0 no close relatives, little or no chance of hybridization					
Score: 1 few hybridization opportunities and likelihood of occurrence is low					
Score: 2 many hybridization opportunities exist but likelihood of occurrence is low					
Score: 3 many hybridization opportunities exist and likelihood of occurrence is high					
6.5 Are there known natural controls on the population of the species in the RAA, or could there be such controls?					
Score: 0 control agents' effects on population growth is significant, or likely so, throughout the area					
Score: 1 control agents' effects on population growth is significant, or likely so, in parts of the area					
Score: 2 control agents' effects on population growth is minimal, or likely so, throughout the area					
Score: 3 no known control agents present in the area					
QUESTIONS ON CONSEQUENCES OF INVASION					1

QUESTIONS ON INVASION STAGES		SCORE	COMMENTS & CITATIONS	CONFIDENCE LEVEL	EXPLANATION OF CONFIDENCE
7. ENVIRONMENTAL IMPACTS					
7.1 What impact does the species have, or is it likely to have, as a result of competition with (including parasitism of) native species?					
Score: 0 no impact					
Score: 1 low impact					
Score: 2 moderate impact					
Score: 3 severe impact					
7.2 What impact does the species have, or is it likely to have, as a result of predation upon native species?					
Score: 0 no impact					
Score: 1 low impact					
Score: 2 moderate impact					
Score: 3 severe impact					
7.3 What impact does the species have, or is it likely to have, as a result of being a host or vector for known diseases, parasites or pests?					
Score: 0 no impact					

QUESTIONS ON INVASION STAGES		<u>SCORE</u>	COMMENTS & CITATIONS	CONFIDENCE	EXPLANATION OF CONFIDENCE
Score: 1 low impact					
Score: 2 moderate impact					
Score: 3 severe impact					
7.4 What impact does the species have, or is it likely to have, as a result of hybridization with native species?					
Score: 0 no impact					
Score: 1 low impact					
Score: 2 moderate impact					
Score: 3 severe impact					
7.5 What impact does the species have, or is it likely to have, on ecosystem processes?					
Score: 0 no impact					
Score: 1 low impact					
Score: 2 moderate impact					
Score: 3 severe impact					
8. MANAGEMENT IMPACTS					

QUESTIONS ON INVASION STAGES	SCORE	COMMENTS & CITATIONS	CONFIDENCE LEVEL	EXPLANATION OF CONFIDENCE
8.1 What is the potential for control methods to negatively impact other species?				
Score: 0 no impact				
Score: 1 low impact				
Score: 2 moderate impact				
Score: 3 severe impact				
				<u> </u>

ESTIMATION OF RISK AND CERTAINTY				
9. ESTIMATION OF RISK				
9.1 What is the number of questions answered in section 1?	What it the sum of scores in section 1?	What is the average score for section 1?	What is the percent score for section 1?	
9.2 What is the number of questions answered in section 2?	What it the sum of scores in section 2?	What is the average score for section 2?	What is the percent score for section 2?	
9.3 What is the number of questions answered in section 3?	What it the sum of scores in section 3?	What is the average score for section 3?	What is the percent score for section 3?	
9.4 What is the number of questions answered in section 4?	What it the sum of scores in section 4?	What is the average score for section 4?	What is the percent score for section 4?	
9.5 What is the number of questions answered in section 5?	What it the sum of scores in section 5?	What is the average score for section 5?	What is the percent score for section 5?	
9.6 What is the number of questions answered in section 6?	What it the sum of scores in section 6?	What is the average score for section 6?	What is the percent score for section 6?	
9.7 What is the number of questions answered in section 7?	What it the sum of scores in section 7?	What is the average score for section 7?	What is the percent score for section 7?	
9.8 What is the number of questions answered in section 8?	What it the sum of scores in section 8?	What is the average score for section 8?	What is the percent score for section 8?	
9.9 What is the risk score for the species?				

10. ESTIMATION OF CERTAINTY			
10.1 What is the number of questions answered in section 1?	What it the sum of scores in section 1?	What is the average score for section 1?	What is the percent score for section 1?
10.2 What is the number of questions answered in section 2?	What it the sum of scores in section 2?	What is the average score for section 2?	What is the percent score for section 2?
10.3 What is the number of questions answered in section 3?	What it the sum of scores in section 3?	What is the average score for section 3?	What is the percent score for section 3?
10.4 What is the number of questions answered in section 4?	What it the sum of scores in section 4?	What is the average score for section 4?	What is the percent score for section 4?
10.5 What is the number of questions answered in section 5?	What it the sum of scores in section 5?	What is the average score for section 5?	What is the percent score for section 5?
10.6 What is the number of questions answered in section 6?	What it the sum of scores in section 6?	What is the average score for section 6?	What is the percent score for section 6?
10.7 What is the number of questions answered in section 7?	What it the sum of scores in section 7?	What is the average score for section 7?	What is the percent score for section 7?
10.8 What is the number of questions answered in section 8?	What it the sum of scores in section 8?	What is the average score for section 8?	What is the percent score for section 8?
10.9 What is the certainty score for the species?			

APPENDIX 3 – MONTREAL RISK ASSESSMENT TOOL

Questionnaire risk assessment method using the Montreal RAT (DFO 2012).

Definitions of 'Effect' levels: 0=No Effect (undetectable change in the structure or function of the ecosystem); 1=Mild (minimally detectable change in the structure of the ecosystem, but small enough that it would not change the functional relationships or survival of species; 2=Moderate (detectable change in the structure or function of the ecosystem); and, 3=Severe (significant changes to the structure or function of the ecosystem leading to changes in the abundance of native species and a new food web).

Uncertainty scoring: 1=Very low uncertainty (e.g., extensive, peer-reviewed information); 2=Low uncertainty (e.g., primarily peer reviewed information); 3=Moderate uncertainty (e.g., information and expert opinion); 4=High uncertainty (e.g., little information; largely expert opinion); and, 5=Very high uncertainty (e.g., no information; expert opinion).

Question Number	Score Value	Question:	Score	Source	Comments	Uncertainty	Confidence
1		What is the likelihood of arrival of the species into the assessment area?					
	1	infrequently with low number of individuals					
	2	frequently with low numbers or infrequently with high numbers					
	3	frequently with high numbers					
	4	Already present					
	U	Unknown					
2		What proportion of the assessment area has suitable climate for the species?					
	0	None					
	1	Less than half of the area					
	2	Majority of the area					
	3	Entire area					
	U	Unknown					

Risk Assessor Confidence in final score based on information available was recorded as: 1=High; 2=Medium; and 3=Low

Question Number	Score Value	Question:	Score	Source	Comments	Uncertainty	Confidence
3		What proportion of available habitat is suitable for the species within the assessment area?					
	0	None					
	1	Less than half of the area					
	2	Majority of the area					
	3	Entire area					
	U	Unknown					
4		Are the organism's specific requirements for reproduction available in the assessment area?					
	0	Specific requirements not available					
	1	Less than half of the requirements					
	2	Majority of the requirements					
	3	All requirements are available.					
	U	Unknown					
5		Does the organism's specific traits enhance establishment?					
	0	None					
	1	Low					
	2	Medium					
	3	High					
	U	Unknown					
6		Are there known natural control agents in the assessment area?					

Question Number	Score Value	Question:	Score	Source	Comments	Uncertainty	Confidence
	0	Control agents severely or completely restricts population growth					
	1	Control agents moderately restricts population growth					
	2	Control agents unlikely to affect population growth					
	3	No known control agents present					
	U	Unknown					
7		To what degree can the organism disperse naturally in the assessment area?					
	0	None					
	1	Less than half of the area					
	2	Majority of the area					
	3	Entire area					
	U	Unknown					
8		To what degree will anthropogenic mechanisms assist the dispersal of this species within the assessment area?					
	0	None					
	1	Less than half of the area					
	2	Majority of the area					
	3	Entire area					
	U	Unknown					
9		What effect could the species have on populations in the assessment area?					

Question Number	Score Value	Question:	Score	Source	Comments	Uncertainty	Confidence
	0	No effect					
	1	Mild effect					
	2	Moderate effect					
	3	Severe effect					
	U	Unknown					
10		What effect could the species have on communities in the assessment area?					
	0	No effect					
	1	Mild effect					
	2	Moderate effect					
	3	Severe effect					
	U	Unknown					
11		What could be the effect of diseases, parasites, or fellow travellers associated with the species on species in the assessment area?					
	0	No effect					
	1	Mild effect					
	2	Moderate effect					
	3	Severe effect					
	U	Unknown					
12		What could be the genetic effects to species currently in the assessment area?					
	0	No effect					
	1	Mild effect					

Question Number	Score Value	Question:	Score	Source	Comments	Uncertainty	Confidence
	2	Moderate effect					
	3	Severe effect					
	U	Unknown					
13		What could be the effects on habitat in the assessment area?					
	0	No effect					
	1	Mild effect					
	2	Moderate effect					
	3	Severe effect					
	U	Unknown					
14		What effect could the species have on ecosystems in the assessment area?					
	0	No effect					
	1	Mild effect					
	2	Moderate effect					
	3	Severe effect					
	U	Unknown					
15		What effect could the species have on "at-risk" species in the assessment area?					
	0	No effect					
	1	Mild effect					
	2	Moderate effect					
	3	Severe effect					
	U	Unknown					

Question Number	Score Value	Question:	Score	Source	Comments	Uncertainty	Confidence
16		Is the species invasive elsewhere?					
	0	No					
	1	Yes					
	U	Unknown					
17		Does the organism's specific traits enhance invasiveness?					
	0	None					
	1	Low					
	2	Medium					
	3	High					
	U	Unknown					
		Total:	0				

APPENDIX 4 – GLANSIS RISK ASSESSMENT TOOL

Questionnaire risk assessment method using the GLANSIS RAT developed by the Great Lakes Aquatic Nuisance Species Information System group at the National Oceanographic and Atmospheric Agency, Ann Arbor, MI. For an assessment to be successfully completed, this tool requires a minimum number of unknowns.

SPECIES INFORMATION

Scientific Name: Synonyms: Common Names: Risk Assessment Area (RAA): Date of assessment:

POTENTIAL INTRODUCTION VIA DISPERSAL

Does this species occur near waters (natural or artificial) connected to the Great Lakes basin* (e.g.,, streams, ponds, canals, or wetlands)? (*Great Lakes basin = below the ordinary high water mark, including connecting channels, wetlands, and waters ordinarily attached

1 to the Lakes)

Yes, this species occurs near waters connected to the Great Lakes basin and is mobile or able to be transported by wind or water.	100
No, this species does not occur near waters connected to the Great Lakes basin and/or is not mobile or able to be transported by wind or water.	0
Unknown	U
Score	
if unknown enter a 1 below the score	

2 What is the proximity of this species to the Great Lakes basin?

This species occurs in waters within 20 kilometers of the Great Lakes basin, and no barrier (e.g.,, electric barrier, dam) to dispersal is present.	Score x 1
This species occurs in waters within 20 kilometers of the Great Lakes basin, but dispersal to the basin is blocked; or, this species occurs in waters within 100 kilometers of the Great Lakes basin, and no barrier to dispersal is present.	Score x 0.75
This species occurs in waters within 100 kilometers of the Great Lakes basin, but dispersal to the basin is blocked.	Score x 0.5
This species occurs in waters >100 kilometers from the Great Lakes basin.	Score x 0.25
Unknown	U
Score	
if unknown enter a 1 below the score	

POTENTIAL INTRODUCTION VIA HITCHHIKING/FOULING

Is this species likely to attach to or be otherwise transported by, or along with, recreational gear, boats, trailers, fauna (e.g.,, waterfowl, fish, insects), flora (e.g.,, aquatic plants), or other objects (e.g.,, packing materials), including as parasites or pathogens, entering the

3 Great Lakes basin?

Yes, this species is known to be able to adhere to certain surfaces or to be transported by other organisms entering the Great Lakes basin.	100
No, this species is not known to be able to adhere to certain surfaces or to be transported by other organisms entering the Great Lakes basin.	0
Unknown	U
Score	
if unknown enter a 1 below the score	

4 What is the proximity of this species to the Great Lakes basin?

This species occurs in waters within 20 km of the Great Lakes basin.	Score x 1
This species occurs in waters within 100 km of the Great Lakes basin.	Score x 0.5
This species occurs in waters >100 km from the Great Lakes basin.	Score x 0.1
Unknown	U
Score	
if unknown enter a 1 below the score	

POTENTIAL INTRODUCTION VIA UNAUTHORIZED INTENTIONAL RELEASE

Is this species sold at aquarium/pet/garden stores ("brick & mortar" or online), catalogs, biological supply companies, or live markets (e.g.,, purchased for human consumption, bait, ornamental, ethical, educational, or cultural reasons) and as a result may be released into the Great Lakes basin?

5

Yes, this species is available for purchase.	100
No, this species this species is rarely/never sold.	0
Unknown	U
Score	
if unknown enter a 1 below the score	

How easily is this species obtained within the Great Lakes region (states/provinces)? 6

This species is widely popular, frequently sold, and/or easily obtained within the Great Lakes region.	Score x 1
This species is widely popular, and although trade, sale, and/or possession of this species is prohibited, it is frequently sold on the black market within the Great Lakes region.	Score x 0.5
This species is not very popular or is not easily obtained within the Great Lakes region.	Score x 0.1
Unknown	U
Score	
if unknown enter a 1 below the score	

POTENTIAL INTRODUCTION VIA STOCKING/PLANTING OR ESCAPE FROM RECREATIONAL CULTURE

Is this species being stocked/planted to natural waters or outdoor water gardens around

7 the Great Lakes region? Yes, this species is being stocked/planted and/or has ornamental, cultural, medicinal, environmental (e.g.,, biocontrol, erosion control), scientific, or recreational value in the 100 Great Lakes region. 100 No, this species cannot be stocked/planted or there is not enough interest to do so in the Great Lakes region. 0 Unknown U Score if unknown enter a 1 below the score

8 What is the nature and proximity of this activity to the Great Lakes basin?

This activity is authorized and/or is occurring directly in the Great Lakes.	Score x 1
This activity is occurring in Great Lakes tributaries or connecting waters, or within 20 km of the Great Lakes basin.	Score x 0.75
This activity is <u>likely</u> to occur within 20 km of the Great Lakes basin because of its popularity/value and there are no widespread regulations against stocking/planting.	Score x 0.5
This activity is occurring in waters >20 km from the Great Lakes basin, or despite federal or state regulations in more than half the basin (> 5 states/provinces), this activity <u>may</u> occur within 20 km of the basin because of the species' popularity/value.	Score x 0.25
Unknown	U
Score	
if unknown enter a 1 below the score	

POTENTIAL INTRODUCTION VIA ESCAPE FROM COMMERCIAL CULTURE

Is this species known to be commercially cultured in or transported through the Great Lakes

9 region?

Yes, this species is being commercially cultured in or transported through the Great Lakes region.	100
No, this species is not commercially cultured in or transported through the Great Lakes region.	0
Unknown	U
Score	
if unknown enter a 1 below the score	

10 What is the nature and proximity of this activity to the Great Lakes basin?

This activity is unregulated or minimally regulated and is occurring directly in the Great Lakes.	Score x 1
This activity is unregulated or minimally regulated and is occurring in Great Lakes tributaries or connecting waters, or within 20 km of the Great Lakes basin.	Score x 0.75
This activity is strictly regulated but occurs directly in the Great Lakes, and/or this activity involves transport of live organisms on/across the Great Lakes.	Score x 0.5

This activity is strictly regulated but occurs in Great Lakes tributaries, connecting waters, or within 20 km of the Great Lakes basin, and/or this activity involves transport of live organisms within 20 km of the Great Lakes basin.	Score x 0.25
This activity occurs >20 km from the Great Lakes basin and typically does not involve transport of live organisms closer to the basin.	Score x 0.1
Unknown	U
Score	

if unknown enter a 1 below the score

POTENTIAL INTRODUCTION VIA SHIPPING

Is this species likely to be taken up in ballast, and capable of surviving adverse environments (i.e., extreme temperatures, absence of light, low oxygen levels) and partial-to-complete ballast water exchange/flushing (e.g.,, is euryhaline, buries in sediment, produces resistant resting stages, has other attributes or behaviors facilitating survival under these conditions)?

11

Yes, this species is able to survive in ballast tank environments for weeks at a time and is not substantially impacted by current regulatory requirements (e.g.,, exchange, flushing).	100
Yes, this species is able to survive in ballast tank environments for weeks at a time, but survival is substantially impacted by current regulatory requirements.	80
No, but this species is capable of fouling transoceanic ship structures (e.g.,, hull, chains, chain locker) while in its active or resting stage.	40
No, this species is unlikely to be taken up in ballast, not able to survive adverse environments, does not foul transoceanic ship structures, or is unable to survive current ballast water regulations.	0
Unknown	U
Score	
if unknown enter a 1 below the score	

Does this species occur in waters from which shipping traffic to the Great Lakes originates? 12

Yes, and this species has been observed in ballast of or fouling ships entering the Great Lakes.	Score x 1
Yes, and this species has been observed in ports that have direct trade connections with the Great Lakes (e.g.,, Baltic Sea).	Score x 0. 5
Yes, but this species has neither been observed in ballast/fouling ships entering the Great Lakes nor in ports in direct trade with the Great Lakes.	Score x 0.1
No, this species does not occur in waters from which shipping traffic to the Great Lakes originates.	Score x 0
Unknown	U
Score	
if unknown enter a 1 below the score	

Vector Potential Scorecard					
Vector	Raw Sc	Points ored	Proximity Multiplier	Total Points Scored	Prob. of Introduction
Dispersal : Natural dispersal through waterbody connections or wind		0	0	0	Low
Hitchhiking/fouling: Transport via recreational gear, boats, trailers, mobile fauna, stocked/planted organisms, packing materials, host organisms, etc		0	0	0	Low
Release : Unauthorized intentional release of organisms in trade (e.g.,, aquaria, water gardens, live food)		0	0	0	Low
Stocking/planting/escape from recreational culture: Intentional authorized or unauthorized introduction to natural waters in the Great Lakes OR Accidental introduction to Great Lakes by escape from recreational culture (e.g.,, water gardens)		0	0	0	Low
Escape from commercial culture : Accidental introduction to Great Lakes by escape from commercial culture (e.g.,, aquaculture)	0		0	0	Low
Trans-oceanic shipping: Ballast (BOB) or no- ballast-on-board (NOBOB) water exchange/discharge, sediment discharge, hull fouling		0	0	0	Low
Total Unknowns (U)		0	Confidence Level	High	

Scoring	
Points (per vecto	or) Probability for for Introduction
80-100	High
40-79	Moderate
0-39	Low
# of Unknowns (ov	erall) Conf. Level
0	High
1 to 2	Moderate
3 to 5	Low
>5	Very low

INVASIVE BIOLOGICAL/ECOLOGICAL ATTRIBUTES

How would the physiological tolerance of this species (survival in varying temperature, 13 salinity, oxygen, and nutrient levels) be described?

This species has broad physiological tolerance. It has been reported to survive in wide ranges of temperature (0°C-30°C), salinity (0-16 parts per thousand), oxygen (0-saturated), AND nutrient (oligotrophic-eutrophic) levels.	9
This species has somewhat broad physiological tolerance. It has been reported to survive in a wide range of temperature, salinity, oxygen, OR nutrient levels. Tolerance to other factors is narrower, unknown, or unreported.	6
This species has narrow physiological tolerance. It has been reported to survive in limited ranges of temperature, salinity, oxygen, and nutrient levels.	3
Unknown	U
Score	
if unknown enter a 1 below the score	

How likely is it that any life stage of this species can overwinter in the Great Lakes (survive extremely low levels of oxygen, light, and temperature)?

14

Likely (This species is able to tolerate temperatures under 5°C and oxygen levels ≤0.5 mg/L)	9
Somewhat likely (This species is able to tolerate some of these conditions OR has adapted behaviorally to avoid them)	6
Somewhat unlikely (This species is able to tolerate conditions close to those specified, but it is not known as an overwintering species)	3
Unlikely	0
Unknown	U
Score	
if unknown enter a 1 below the score	

If this species is a heterotroph, how would the flexibility of its diet be described? 15

This species is a dietary generalist with a broad, assorted, AND flexible diet.			
This species is moderately a dietary generalist with a broad, assorted, OR flexible diet.	6		
This species is a dietary specialist with a limited and inflexible diet.	3		
This species is an autotroph.	0		
Unknown	U		
Score			
if unknown enter a 1 below the score			

16

How likely is this species to outcompete species in the Great Lakes for available re	sources?
--	----------

Likely (This species is known to have superior competitive abilities and has a history of		
outcompeting other species, AND/OR available literature predicts it might outcompete	9	
native species in the Great Lakes)		

Somewhat likely (This species is known to have superior competitive abilities, but there are few reported cases of this species outcompeting another and no predictions regarding species in the Great Lakes)	6
Somewhat unlikely (This species has average competitive abilities, and there are no reported cases of this species outcompeting another and no predictions regarding species in the Great Lakes)	3
Unlikely (This species is known as a poor competitor that thrives only in environments with low biodiversity, AND/OR available literature predicts it might be outcompeted by a species in the Great Lakes)	0
Unknown	U
Score	
if unknown enter a 1 below the score	

How would the fecundity of this species be described relative to other species in the same

17 taxonomic Class?

Very high	9
High	6
Moderate	3
Low	0
Unknown	U
Score	
if unknown enter a 1 below the score	

How likely are this species' reproductive strategy and habits to aid establishment in new environments, particularly the Great Lakes (e.g.,, parthenogenesis/self-crossing, self fertility,

18 vegetative fragmentation)?

Likely (The reproductive strategy or habits of this species are known to aid establishment in new environments, AND available literature predicts establishment in the Great Lakes based on these attributes)	9
Somewhat likely (The reproductive strategy or habits of this species are known to aid establishment in new environments, but there is no literature available regarding establishment in the Great Lakes based on these attributes)	6
Somewhat unlikely (The reproductive strategy or habits of this species could potentially aid establishment in new environments, but there is no literature available regarding establishment in the Great Lakes based on these attributes)	3
Unlikely (The reproductive strategy or habits of this species are not known to aid establishment in new environments)	0
Unknown	U
Score	
if unknown enter a 1 below the score	

ENVIRONMENTAL COMPATIBILITY

How similar are the climatic conditions (e.g.,, air temperature, precipitation, seasonality) in the native and introduced ranges of this species to those in the Great Lakes region?

19

Very similar (The climatic conditions are practically identical to those of the Great Lakes region)	9
Similar (Many of the climatic conditions are similar to those of the Great Lakes region)	6
Somewhat similar (Few of the climatic conditions are similar to those of the Great Lakes region)	3
Not similar	0
Unknown	U
Score	
if unknown enter a 1 below the score	

How similar are other abiotic factors (e.g.,, pollution, water temperature, salinity, pH, nutrient levels, currents) that are relevant to the establishment success of this species in the native and introduced ranges to those in the Great Lakes?

20

Very similar (These factors are practically identical to those of the Great Lakes region)	9
Similar (Many of these factors are similar to those of the Great Lakes region)	6
Somewhat similar (Few of these factors are similar to those of the Great Lakes region)	3
Not similar	0
Unknown	U
Score	
	1

if unknown enter a 1 below the score

How abundant are habitats suitable for the survival, development, and reproduction of this species in the Great Lakes area (e.g.,, those with adequate depth, substrate, light,

21 temperature, oxygen)?

Abundant (Suitable habitats can be easily found and readily available)	9
Somewhat abundant (Suitable habitats can be easily found but are in high demand by species already present)	6
Somewhat scarce (Suitable habitats can be found occasionally)	3
Scarce (Suitable habitats are rarely found)	0
Unknown	U
Score	
if unknown enter a 1 below the score	

How likely is this species to adapt to or to benefit from the predicted effects of climate change on the Great Lakes freshwater ecosystems (e.g.,, warmer water temperatures, shorter duration of ice cover, altered streamflow patterns, increased salinization)?

22

Likely (Most of the effects described above make the Great Lakes a better environme	nt for
establishment and spread of this species OR this species could easily adapt to these cl	nanges 9
due to its wide environmental tolerances)	

Somewhat likely (Several of the effects described above could make the Great Lakes a better environment for establishment and spread of this species)	6
Somewhat unlikely (Few of the effects described above would make the Great Lakes a better environment for establishment and spread of this species)	3
Unlikely (Most of the effects described above would have no effect on establishment and spread of this species or would make the environment of the Great Lakes unsuitable)	0
Unknown	U
Score	
if unknown enter a 1 below the score	

How likely is this species to find an appropriate food source (prey or vegetation in the case of predators and herbivores, or sufficient light or nutrients in the case of autotrophs)?

2	З
~	U

Likely (All possible nutritive food items—including species in the Great Lakes that may be considered potential food items—are highly abundant and/or easily found)	9
Somewhat likely (Some nutritive food items—including species in the Great Lakes that may be considered potential food items—are abundant and/or search time is low to moderate)	6
Somewhat unlikely (Few nutritive food items—including species in the Great Lakes that may be considered potential food items—are abundant and/or search time is moderate to high)	3
Unlikely (All possible nutritive food items—including species in the Great Lakes that may be considered potential food items—are relatively scarce and/or search time is high)	0
Unknown	U
Score	
if unknown enter a 1 below the score	

Does this species require another species for critical stages in its life cycle such as growth (e.g.,, root symbionts), reproduction (e.g.,, pollinators, egg incubators), spread (e.g.,, seed dispersers), or transmission (e.g.,, vectors)?

	Yes, and the critical species (or one that may provide a similar function) is common in the Great Lakes and can be easily found in environments suitable for the species being assessed; OR, No, there is no critical species required by the species being assessed	9
	Yes, and the critical species (or one that may provide a similar function) is moderately abundant and relatively easily found in particular parts of the Great Lakes	6
	Yes, and the critical species (or one that may provide a similar function) is relatively rare in the Great Lakes AND/OR can only be found occasionally in environments suitable for the species being assessed	3
	Yes, and the critical species (or one that may provide a similar function) is not present in the Great Lakes but is likely to be introduced	0
	Yes, but the critical species (or one that may provide a similar function) is not present in the Great Lakes and is not likely to be introduced	-80% total points (at end)

Unknown

Score

if unknown enter a 1 below the score

if score is -80% adjustment, then enter it on this line as 0.8

U

How likely is the establishment of this species to be aided by the establishment and spread of another species already in the Great Lakes?

Likely (A non-indigenous species to the Great Lakes that facilitates the development of this species—a major host, food item, pollinator—has already established and spread in the Great Lakes, AND available literature predicts this previous invader might promote the establishment of this species, AND/OR there have been cases reported of this species aiding the establishment of this species in other areas)	9
Somewhat likely (A non-indigenous species to the Great Lakes that facilitates the development of this species—a major host, food item, pollinator—has already established and spread in the Great Lakes)	6
Somewhat unlikely (A non-indigenous species to the Great Lakes that facilitates the development of this species—a major host, food item, pollinator—has already established in the Great Lakes BUT it is still confined to a small area of the Lakes and the likelihood of encounter with this species assessed is hard to predict)	3
Unlikely (A non-indigenous species to the Great Lakes that facilitates the development of this species has not been established in the Great Lakes)	0
Unknown	U
Score	

if unknown enter a 1 below the score

How likely is establishment of this species to be prevented by the herbivory, predation, or parasitism of a natural enemy this is already present in the Great Lakes and may preferentially target this species?

26

Likely (The ability of the natural enemy to prevent the establishment of this species in introduced ranges or limiting populations of this species in native ranges is well documented in the literature AND this natural enemy is abundant and widespread in the Great Lakes)	-80% total points (at end)
Somewhat likely (The ability of the natural enemy to prevent the establishment of this species in introduced ranges or limiting populations of this species in native ranges is suggested in the literature OR this natural enemy has limited distribution in the Great Lakes)	-60% total points (at end)
Somewhat unlikely (There are few cases reported of such a natural enemy preventing the establishment of this species in introduced ranges or limiting populations of this species in native ranges OR this natural enemy has low abundance in the Great Lakes)	-10% total points (at end)
Unlikely (Such a natural enemy is particularly rare or is not present in the Great Lakes)	0
Unknown	U
Score (enter as 0.8, 0.6 or 0.1).	
if unknown enter a 1 below the score	

PROPAGULE PRESSURE

On average, how large and frequent are inoculations (introduction events) from the potential vectors identified in Section A for this species? (What is the total number of

27 individuals introduced?)

· ····,	
Frequent, large inocula	9
Frequent, moderate inocula	6
Frequent, small inocula OR infrequent, large inocula	3
Infrequent, small or moderate inocula	0
Unknown	U
Score	
if unknown ontor a 1 holow the score	

if unknown enter a 1 below the score

HISTORY OF INVASION AND SPREAD

How extensively has this species established reproducing populations in areas outside its native range as a direct or indirect result of human activities?

28

Very extensively (many invasive populations of this species have been reported in areas widely distributed from the native range)	9
Extensively (some invasive populations of this species have been reported in areas widely distributed from the native range)	6
Somewhat extensively (few invasive populations of this species have been reported in areas widely distributed from the native range OR all invasive populations are in close proximity to each other)	3
Not extensively (no invasive populations of this species have been reported)	0
Unknown	U
Score	
if unknown enter a 1 below the score	

How rapidly has this species spread by natural means or by human activities once

28 introduced to other locations?

Rapidly (This species has a history of rapid spread in introduced ranges)	
Somewhat rapidly (This species has a history of moderately rapid spread in introduced ranges)	6
Somewhat slowly (This species has a history of moderately slow spread in its introduced ranges)	3
Slowly (This species has a history of slow to no spread in its introduced ranges)	0
Unknown	U
Score	
if unknown enter a 1 below the score	

Are there any existing control measures in the Great Lakes set to prevent the establishment

29 and/or spread of this species?

Yes, and they are likely to prevent establishment or spread of the species. (There are no	-90% total
reported cases of this species adapting or avoiding current measures. These measures are	points (at
highly effective in preventing the establishment and spread of this species)	end)

Yes, and they are moderately likely to prevent establishment or spread of the species. (There are few reported cases of this species adapting or avoiding current measures used to control its establishment and spread)	-50% total points (at end)
Yes, but they are unlikely to prevent establishment or spread of the species. (There are many reported cases of this species adapting or avoiding current measures used to control its establishment and spread)	-20% total points (at end)
No control methods have been set to prevent the establishment and/or spread of this species	0
Unknown	U
Score (enter as 0.9, 0.5, or 0.2)	
if unknown enter a 1 below the score	

Establishment Potential Scorecard				
Points	Probability for Establish.	Y A. Total Points (pre-adjustment)		0
		Adjustments		
>100	High	B. Critical species	A*(1- 0%)	0
51.00	Moderate	C. Natural enemy	B*(1- 0%)	0
21-39	Moderate	Control measures	C*(1- 0%)	0
0-50	Low	Potential for Establishment		Low
# of questions answered as "unable to determine"	Conf. Level			
0-1	High			0
two to five	Moderate	• Total # of questions unknown		0
six to nine	Low	Confidence Level		High

POTENTIAL ENVIRONMENTAL IMPACT

NOTE: In this section, a "Not significantly" response should be selected if the species has been studied but there have been no reports of a particular impact. An "Unknown" response is appropriate if the species is poorly studied.

Does the species pose some hazard or threat to the health of native species (e.g.,, it magnifies toxin levels; is poisonous; is a pathogen, parasite, or a vector of either)?

30

Yes, and it has impacted threatened/endangered species, resulted in the reduction or extinction of one or more native populations, affects multiple species, or is a reportable 6 disease

Yes, but negative consequences have been small (e.g.,, limited number of infected individuals, limited pathogen transmissibility, mild effects on populations and ecosystems)	1
Not significantly	0
Unknown	U V
Score	
if unknown enter a 1 below the score	

Does it out-compete native species for available resources (e.g.,, habitat, food, nutrients,

31 light)?

Yes, and it has resulted in significant adverse effects (e.g.,, impacted threatened/endangered species or caused critical reduction, extinction, behavioral changes including modified spawning behavior) on one or more native populations	6
Yes, and it has caused some noticeable stress to (e.g.,, decrease in growth, survival, fecundity) or decline of at least one native population	1
Not significantly	0
Unknown	U
Score	
if unknown enter a 1 below the score	

32 Does it alter predator-prey relationships?

Yes, and it has resulted in significant adverse effects (e.g.,, impacted threatened/endangered species, caused significant reduction or extinction of one or more native populations, creation of a dead end or any other significant alteration in the food web)	6
Yes, and it has resulted in some noticeable stress to (e.g.,, decrease in growth, survival, fecundity) or decline of at least one native population AND/OR Yes, and it has resulted in some alteration of the food web structure or processes, the effects of which have not been widespread or severe	1
Not significantly	0
Unknown	U
Score	
if unknown enter a 1 below the score	

Has it affected any native populations genetically (e.g.,, through hybridization, selective

33 pressure, introgression)?

Yes, and it has caused a loss or alteration of genes that may be irreversible or has led to the decline of one or more native species (or added pressure to threatened/endangered species)	6
Yes, some genetic effects have been observed, but consequences have been limited to the individual level	1
Not significantly	0
Unknown	U
Score	
if unknown enter a 1 below the score	

Does it negatively affect water quality (e.g.,, increased turbidity or clarity, altered nutrient, 34 oxygen, or other chemical levels/cycles)?

Yes, and it has had a widespread, long-term, or severe negative effect on water quality	6
AND/OK	O
res, and it has resulted in significant negative consequences for at least one native species	
Yes, it has affected water quality to some extent, but the alterations and resulting adverse effects have been limited or inconsistent (as compared with above statement)	1
Not significantly	0
Unknown	U
Score	
if unknown enter a 1 below the score	

Does it alter physical components of the ecosystem in some way (e.g.,, facilitated erosion/siltation, altered hydrology, altered macrophyte/phytoplankton communities, physical or chemical changes to substrate)?

35

 Yes, and it has had a widespread, long term, or severe negative effect on the physical ecosystem
 6

 AND/OR
 6

 Yes, and it has resulted in significant negative consequences for at least one native species
 1

 Yes, it has affected the physical ecosystem to some extent, but the alterations and resulting adverse effects have been mild
 0

 Not significantly
 0

 Unknown
 U

 Score
 if unknown enter a 1 below the score

Scoring		
Score	# U	Impact
>5	Any	High
2 to 5	Any	Moderate
0	0-1	Low
1	0	LOW
0	≥2	Unknown
1	≥1	Unknown

Environmental Impact Total Score	0
Total Unknowns (U)	0
Impact (based on score) - if the total number of unknowns is greater than one (1) when the score is 0-1 then please <i>manually</i> adjust the impact rating to unknown.	Low

APPENDIX 5 – NOTRE DAME STATISTICAL RISK ASSESSMENT TOOL

Based on the premise that invasive species have a specific set of ecological traits that make them successful, ecological trait-based models have been developed to predict potential AIS (e.g.,, Mandrak 1989; Kolar and Lodge 2002). To develop trait-based models to predict potential AIS to several regions in North America, including the Great Lakes, a group of experts attended a workshop at the University of Notre Dame in June 2011. At that workshop, 18 traits (ecological, life-history, phylogenetic) were identified as potentially important predictors of invasiveness in freshwater fishes (Table A1). Test datasets of establishment and impact were developed for each region. For the Great Lakes region, 37 established and 28 failed NIS were in the establishment test dataset (Mandrak and Cudmore 2010). Impact was determined using a fish ecological impact questionnaire disseminated to Great Lakes academics, scientists, and managers (Howeth et al. unpubl. data). For each established NIS in the region, the experts were asked to rank the ecological impact (in the categories Unknown, None-low, Moderate, High, Very High) and their confidence in the response (Low or High) (Table 1). Experts were also asked to provide additional information about species that had failed to establish in the region. Twenty-seven experts provided responses (Figure 1).

The trait and test datasets were used to develop trait-based classification trees using CART (Classification and Regression Tree) software (CART, California Statistical Software, Inc.) for establishment and impact. A preliminary CART tree indicates that climate match is the most important trait predicting establishment (Figure A1). An AUC of 0.8507 indicates that this model is good at distinguishing established and failed invaders with this trait (Table 4). AUC values of \geq 0.7 are considered acceptable (Hosmer and Lemeshow 2000). A preliminary CART tree indicates that trophic guild and fecundity are the best predictors of impact (Figure A2), with an AUC >0.7 indicating a good model fit (Table 4).

Life-history	Habitat preference	Phylogenetic
Body size	Macrohabitat preference	Phylogeny
Egg size	Salinity tolerance	Relatedness
Fecundity	Temperature tolerance	
Larval size		Trophic ecology
Longevity	Invasion risk	Diet breadth
Maturation size	Climate similarity	Trophic guild
Reproductive guild	Prior invasion success	
Spawning frequency		Native range
		Size of range

Table A1. Eighteen fish traits compared in the CART Establishment and Impact models.

Figure A1. Trait-based classification tree for Great Lakes non-indigenous fish: establishment.

Figure A2. Trait-based classification tree for Great Lakes non-indigenous fish: ecological impact.

APPENDIX 6 – MASTER LIST OF FISHES IN TRADE IN CANADA

Master list of fishes in live trade in Canada (see text for sources). Family and species habitat match: E – Euryhaline; F – Freshwater; M – Marine. Family and species climate match: 0 – no match with Canada; 1 – match with Canada (see text for criteria). Status of establishment in Canada: 0 – species not in Canada; 1 – species in Canada. * indicates species with import trade volumes of live specimens (Romagosa, unpubl. data) that are not assigned to either Aquarium or Live Food trade. List sorted hierarchically: (a) species in Canada (0-1); (b) species-level climate-match (1-0); (c) family name (A-Z); and (d) scientific name (A-Z). The first 12 species in the master list represent those selected for screening.

		Aquarium	Live Food	Family	Species	Family	Species	Species
F		Trade	Trade	Habitat	Habitat	Climate	Climate	in October
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Cobitidae	Cobitis taenia	156		F	F	1	1	0
Cobitidae	Misgurnus anguillicaudatus	10385		F	F	1	1	0
Cobitidae	Misgurnus fossilis	139		F	F	1	1	0
Cyprinidae	Carassius carassius		340*	F	F	1	1	0
Cyprinidae	Ctenopharyngodon idella		46347	F	F	1	1	0
Cyprinidae	Cyprinella lutrensis	120		F	F	1	1	0
Cyprinidae	Danio albolineatus	8878		F	F	1	1	0
Cyprinidae	Leuciscus idus	50		F	F	1	1	0
Ictaluridae	Ictalurus furcatus			F	F	1	1	0
Moronidae	Morone saxatilis x chrysops		78593	E	E	1	1	0
Percichthyidae	Siniperca chuatsi	18442*		F	F	1	1	0
Siluridae	Silurus glanis	20		F	F	1	1	0
Achiridae	Trinectes maculatus	1230		F	F	1	0	0
Ambassidae	Parambassis pulcinella	29		F	F	1	0	0
Ambassidae	Parambassis ranga	4935		F	F	1	0	0
Ambassidae	Parambassis siamensis	920		F	F	1	0	0
Ambassidae	Parambassis wolffii	18		F	F	1	0	0
Ambassidae	Pseudambassis baculis	300		F	F	1	0	0
Anguillidae	Anguilla australis	15	7510	F	F	1	0	0
Anguillidae	Anguilla bicolor			F	F	1	0	0

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Volume (#)	Volume (kg)	Habitat Match	Match	Match	Match	In Canada
Anguillidae	Anguilla japonica			F	F	1	0	0
Anostomidae	Abramites hypselonotus	220		F	F	1	0	0
Anostomidae	Anostomus anostomus	288		F	F	1	0	0
Anostomidae	Leporinus fasciatus	501		F	F	1	0	0
Anostomidae	Leporinus octofasciatus	296		F	F	1	0	0
Bagridae	Hemibagrus nemurus	240		F	F	1	0	0
Bagridae	Horabagrus brachysoma	28		F	F	1	0	0
Bagridae	Hyalobagrus ornatus	183		F	F	1	0	0
Bagridae	Mystus leucophasis	18		F	F	1	0	0
Bagridae	Mystus micracanthus	283		F	F	1	0	0
Bagridae	Pseudomystus siamensis	360		F	F	1	0	0
Balitoridae	Acanthocobitis botia	630		F	F	1	0	0
Balitoridae	Beaufortia kweichowensis	55		F	F	1	0	0
Balitoridae	Beaufortia leveretti	1049		F	F	1	0	0
Balitoridae	Gastromyzon borneensis	316		F	F	1	0	0
Balitoridae	Homaloptera ophiolepis	10		F	F	1	0	0
Balitoridae	Nemacheilus fasciatus	100		F	F	1	0	0
Balitoridae	Pseudogastromyzon fasciatus	65		F	F	1	0	0
Balitoridae	Pseudogastromyzon myersi	3082		F	F	1	0	0
Balitoridae	Schistura mahnerti	56		F	F	1	0	0
Balitoridae	Sewellia lineolata	70		F	F	1	0	0
Belonidae	Xenentodon cancila	201		E	F	1	0	0
Catostomidae	Myxocyprinus asiaticus	510		F	F	1	0	0
Cobitidae	Acantopsis choirorhynchos	1374		F	F	1	0	0
Cobitidae	Botia dario	269		F	F	1	0	0
Cobitidae	Botia histrionica	437		F	F	1	0	0
Cobitidae	Botia kubotai	386		F	F	1	0	0

		Aquarium Trado	Live Food	Family	Species Habitat	Family	Species	Species
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Cobitidae	Botia lohachata	1963		F	F	1	0	0
Cobitidae	Botia pulchripinnis	40		F	F	1	0	0
Cobitidae	Botia striata	839		F	F	1	0	0
Cobitidae	Chromobotia macracanthus	16336		F	F	1	0	0
Cobitidae	Lepidocephalichthys guntea	72		F	F	1	0	0
Cobitidae	Lepidocephalus thermalis	125		F	F	1	0	0
Cobitidae	Leptobotia guilinensis	70		F	F	1	0	0
Cobitidae	Pangio kuhlii	14358		F	F	1	0	0
Cobitidae	Pangio myersi	4660		F	F	1	0	0
Cobitidae	Pangio oblonga	951		F	F	1	0	0
Cobitidae	Pangio semicincta	976		F	F	1	0	0
Cobitidae	Pangio shelfordii	300		F	F	1	0	0
Cobitidae	Syncrossus hymenophysa	501		F	F	1	0	0
Cobitidae	Yasuhikotakia lecontei	160		F	F	1	0	0
Cobitidae	Yasuhikotakia modesta	546		F	F	1	0	0
Cobitidae	Yasuhikotakia morleti	1584		F	F	1	0	0
Cobitidae	Yasuhikotakia sidthimunki	140		F	F	1	0	0
Crenuchidae	Characidium fasciatum	220		F	F	1	0	0
Crenuchidae	Crenuchus spilurus	40		F	F	1	0	0
Cynoglossidae	Cynoglossus microlepis	40		F	F	1	0	0
Cyprinidae	Balantiocheilos melanopterus	20194		F	F	1	0	0
Cyprinidae	Barbonymus altus	145		F	F	1	0	0
Cyprinidae	Barbonymus schwanenfeldii	3854		F	F	1	0	0
Cyprinidae	Boraras maculatus	1200		F	F	1	0	0
Cyprinidae	Cirrhina molitorella			F	F	1	0	0
Cyprinidae	Crossocheilus latius	188		F	F	1	0	0
Cyprinidae	Crossocheilus siamensis	4907		F	F	1	0	0

Family name	Scientific name	Aquarium Trade Volume (#)	Live Food Trade Volume (kg)	Family Habitat Match	Species Habitat Match	Family Climate Match	Species Climate Match	Species in Canada
Cyprinidae	Cyclocheilichthys apogon	41		F	F	1	0	0
Cyprinidae	Danio choprai	388		F	F	1	0	0
Cyprinidae	Danio dangila	42		F	F	1	0	0
Cyprinidae	Danio kerri	600		F	F	1	0	0
Cyprinidae	Danio kyathit	290		F	F	1	0	0
Cyprinidae	Danio rerio	227772		F	F	1	0	0
Cyprinidae	Devario aequipinnatus	7908		F	F	1	0	0
Cyprinidae	Devario malabaricus	1998		F	F	1	0	0
Cyprinidae	Devario shanensis	130		F	F	1	0	0
Cyprinidae	Epalzeorhynchos bicolor	15710		F	F	1	0	0
Cyprinidae	Epalzeorhynchos frenatum	4243		F	F	1	0	0
Cyprinidae	Epalzeorhynchos kalopterus	2932		F	F	1	0	0
Cyprinidae	Epalzeorhynchos munense	10511		F	F	1	0	0
Cyprinidae	Garra bicornuta	30		F	F	1	0	0
Cyprinidae	Garra cambodgiensis	30		F	F	1	0	0
Cyprinidae	Garra ceylonensis	100		F	F	1	0	0
Cyprinidae	Hypophthalmichthys nobilis		326618	F	F	1	0	0
Cyprinidae	Hypsibarbus vernayi	80		F	F	1	0	0
Cyprinidae	Hypsibarbus wetmorei	412		F	F	1	0	0
Cyprinidae	Labeo chrysophekadion	1801		F	F	1	0	0
Cyprinidae	Labiobarbus festivus	75		F	F	1	0	0
Cyprinidae	Leptobarbus hoevenii	505		F	F	1	0	0
Cyprinidae	Luciosoma setigerum	374		F	F	1	0	0
Cyprinidae	Luciosoma spilopleura	15		F	F	1	0	0
Cyprinidae	Microrasbora erythromicron	696		F	F	1	0	0
Cyprinidae	Microrasbora kubotai	150		F	F	1	0	0
Cyprinidae	Oreichthys cosuatis	180		F	F	1	0	0

		Aquarium Trade	Live Food Trade	Family Habitat	Species Habitat	Family Climate	Species Climate	Species in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Cyprinidae	Paracheilognathus himantegus			F	F	1	0	0
Cyprinidae	Puntius arulius	387		F	F	1	0	0
Cyprinidae	Puntius asoka	102		F	F	1	0	0
Cyprinidae	Puntius chola	30		F	F	1	0	0
Cyprinidae	Puntius conchonius	24092		F	F	1	0	0
Cyprinidae	Puntius denisonii	947		F	F	1	0	0
Cyprinidae	Puntius everetti	1188		F	F	1	0	0
Cyprinidae	Puntius filamentosus	174		F	F	1	0	0
Cyprinidae	Puntius gelius	1387		F	F	1	0	0
Cyprinidae	Puntius hexazona	292		F	F	1	0	0
Cyprinidae	Puntius johorensis	10		F	F	1	0	0
Cyprinidae	Puntius lateristriga	1144		F	F	1	0	0
Cyprinidae	Puntius lineatus	284		F	F	1	0	0
Cyprinidae	Puntius melanampyx	620		F	F	1	0	0
Cyprinidae	Puntius nigrofasciatus	4385		F	F	1	0	0
Cyprinidae	Puntius oligolepis	4185		F	F	1	0	0
Cyprinidae	Puntius partipentazona	1390		F	F	1	0	0
Cyprinidae	Puntius pentazona	216		F	F	1	0	0
Cyprinidae	Puntius rhomboocellatus	339		F	F	1	0	0
Cyprinidae	Puntius sachsii	8341		F	F	1	0	0
Cyprinidae	Puntius semifasciolatus	60		F	F	1	0	0
Cyprinidae	Puntius tetrazona	101115		F	F	1	0	0
Cyprinidae	Puntius ticto	1125		F	F	1	0	0
Cyprinidae	Puntius titteya	32873		F	F	1	0	0
Cyprinidae	Puntius vittatus	75		F	F	1	0	0
Cyprinidae	Rasbora borapetensis	1172		F	F	1	0	0
Cyprinidae	Rasbora dorsiocellata	1424		F	F	1	0	0

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Cyprinidae	Rasbora einthovenii	4615		F	F	1	0	0
Cyprinidae	Rasbora elegans	185		F	F	1	0	0
Cyprinidae	Rasbora kalochroma	252		F	F	1	0	0
Cyprinidae	Rasbora meinkeni	110		F	F	1	0	0
Cyprinidae	Rasbora pauciperforata	6070		F	F	1	0	0
Cyprinidae	Rasbora trilineata	9363		F	F	1	0	0
Cyprinidae	Rasbora vaterifloris	150		F	F	1	0	0
Cyprinidae	Sawbwa resplendens	200		F	F	1	0	0
Cyprinidae	Sundadanio axelrodi	160		F	F	1	0	0
Cyprinidae	Tanichthys albonubes	104539		F	F	1	0	0
Cyprinidae	Trigonostigma espei	100		F	F	1	0	0
Cyprinidae	Trigonostigma hengeli	2005		F	F	1	0	0
Cyprinidae	Trigonostigma heteromorpha	38101		F	F	1	0	0
Cyprinodontidae	Jordanella floridae	1124		E	F	1	0	0
Elassomatidae	Elassoma evergladei	40		F	F	1	0	0
Eleotridae	Dormitator latifrons			E	E	1	0	0
Eleotridae	Kribia kribensis			E	F	1	0	0
Eleotridae	Mogurnda adspersa	18		E	F	1	0	0
Eleotridae	Mogurnda mogurnda	30		E	F	1	0	0
Eleotridae	Oxyeleotris marmorata		1212	E	F	1	0	0
Eleotridae	Tateurndina ocellicauda	104		E	F	1	0	0
Gobiidae	Amblyeleotris gymnocephala	4		E	E	1	0	0
Gobiidae	Awaous bustamantei	100		E	F	1	0	0
Gobiidae	Brachygobius doriae	3140		E	F	1	0	0
Gobiidae	Brachygobius xanthozonus	1253		E	F	1	0	0
Gobiidae	Gobiodon rivulatus	42		E	E	1	0	0
Gobiidae	Gobioides broussonnetii	713		E	E	1	0	0
		Aquarium Trade	Live Food Trade	Family Habitat	Species Habitat	Family Climate	Species Climate	Species in
-----------------	---------------------------	-------------------	--------------------	-------------------	--------------------	-------------------	--------------------	---------------
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Gobiidae	Odontamblyopus rubicundus	230		E	E	1	0	0
Gobiidae	Periophthalmus barbarus	62		E	E	1	0	0
Gobiidae	Stigmatogobius sadanundio	80		E	E	1	0	0
Gobiidae	Stiphodon ornatus	32		E	F	1	0	0
Hemiramphidae	Dermogenys pusilla	514		E	E	1	0	0
Hemiramphidae	Nomorhamphus liemi	68		E	F	1	0	0
Lepisosteidae	Atractosteus spatula	3		F	F	1	0	0
Lepisosteidae	Lepisosteus platyrhincus	25		F	F	1	0	0
Petromyzontidae	lcthyomyzon gagei	100		E	F	1	0	0
Poeciliidae	Aplocheilichthys myersi			F	F	1	0	0
Poeciliidae	Aplocheilichthys normani	1570		F	F	1	0	0
Poeciliidae	Gambusia affinis	3630		F	F	1	0	0
Poeciliidae	Gambusia holbrooki			F	F	1	0	0
Poeciliidae	Heterandria formosa			F	F	1	0	0
Poeciliidae	Poecilia latipinna	52033		F	F	1	0	0
Poeciliidae	Poecilia petenensis			F	F	1	0	0
Poeciliidae	Poecilia reticulata	197181		F	F	1	0	0
Poeciliidae	Poecilia sphenops	46543		F	F	1	0	0
Poeciliidae	Poecilia velifera	36080		F	F	1	0	0
Poeciliidae	Priapella intermedia	20		F	F	1	0	0
Poeciliidae	Procatopus aberrans	20		F	F	1	0	0
Poeciliidae	Xiphophorus birchmanni			F	F	1	0	0
Poeciliidae	Xiphophorus hellerii	140778		F	F	1	0	0
Poeciliidae	Xiphophorus maculatus	193979		F	F	1	0	0
Poeciliidae	Xiphophorus variatus	15256		F	F	1	0	0
Siluridae	Kryptopterus bicirrhis	5414		F	F	1	0	0
Siluridae	Kryptopterus cryptopterus	126		F	F	1	0	0

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Volume (#)	Volume (kg)	Habitat Match	Match	Match	Match	in Canada
Synbranchidae	Monopterus albus		632	F	F	1	0	0
Syngnathidae	Dorvichthys bogig	10		E	F	1	0	0
Siluridae	Kryptopterus macrocephalus	416		F	F	1	0	0
Siluridae	Kryptopterus minor	12		F	F	1	0	0
Anguillidae	Anguilla rostrata		86185	F	F	1	1	1
Catostomidae	Ictiobus cyprinellus	2	30533	F	F	1	1	1
Centrarchidae	Lepomis macrochirus	20		F	F	1	1	1
Centrarchidae	Lepomis megalotis	4		F	F	1	1	1
Centrarchidae	Micropterus salmoides	18	185973	F	F	1	1	1
Centrarchidae	Pomoxis nigromaculatus	24		F	F	1	1	1
Cyprinidae	Carassius auratus	4571600	297	F	F	1	1	1
Cyprinidae	Cyprinus carpio	27123	153908	F	F	1	1	1
Cyprinidae	Phoxinus neogaeus	5550		F	F	1	1	1
Cyprinidae	Pimephales promelas	248050		F	F	1	1	1
Ictaluridae	Ameiurus nebulosus			F	F	1	1	1
Ictaluridae	lctalurus punctatus	788	105331	F	F	1	1	1
Lepisosteidae	Lepisosteus oculatus	248		F	F	1	1	1
Lepisosteidae	Lepisosteus osseus	4		F	F	1	1	1
Moronidae	Morone saxatilis		117947	E	E	1	1	1
Salmonidae	Oncorhynchus keta			E	E	1	1	1
Salmonidae	Oncorhynchus mykiss		950000	E	F	1	1	1
Salmonidae	Salmo salar		565990	E	E	1	1	1
Acanthuridae	Acanthurus achilles	71		М	М			
Acanthuridae	Acanthurus bariene	1		М	М			
Acanthuridae	Acanthurus chirurgus	3		М	М			
Acanthuridae	Acanthurus coeruleus	112		М	М			
Acanthuridae	Acanthurus guttatus	8		М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Acanthuridae	Acanthurus japonicus	133		М	М			
Acanthuridae	Acanthurus leucopareius			М	М			
Acanthuridae	Acanthurus leucosternon	314		М	М			
Acanthuridae	Acanthurus lineatus	74		М	М			
Acanthuridae	Acanthurus maculiceps	1		М	М			
Acanthuridae	Acanthurus nigricans	45		М	М			
Acanthuridae	Acanthurus nigricauda	18		М	М			
Acanthuridae	Acanthurus nigrofuscus	7		М	М			
Acanthuridae	Acanthurus nigroris	2		М	М			
Acanthuridae	Acanthurus olivaceus	49		М	М			
Acanthuridae	Acanthurus pyroferus	56		М	М			
Acanthuridae	Acanthurus sohal	124		М	М			
Acanthuridae	Acanthurus tennentii	8		М	М			
Acanthuridae	Acanthurus triostegus	34		М	М			
Acanthuridae	Acanthurus xanthopterus	8		М	М			
Acanthuridae	Ctenochaetus binotatus	4		М	М			
Acanthuridae	Ctenochaetus hawaiiensis	35		М	М			
Acanthuridae	Ctenochaetus marginatus	52		М	М			
Acanthuridae	Ctenochaetus striatus	35		М	М			
Acanthuridae	Ctenochaetus strigosus	118		М	М			
Acanthuridae	Ctenochaetus tominiensis	1		М	М			
Acanthuridae	Naso brevirostris	13		М	М			
Acanthuridae	Naso elegans	10		М	М			
Acanthuridae	Naso hexacanthus	2		М	М			
Acanthuridae	Naso lituratus	434		М	М			
Acanthuridae	Naso lopezi	12		М	М			
Acanthuridae	Naso unicornis	7		М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Acanthuridae	Naso vlamingii	8		М	М			
Acanthuridae	Paracanthurus hepatus	1303		М	М			
Acanthuridae	Zebrasoma desjardinii	130		М	М			
Acanthuridae	Zebrasoma flavescens	1420		М	М			
Acanthuridae	Zebrasoma scopas	182		М	М			
Acanthuridae	Zebrasoma veliferum	224		М	М			
Acanthuridae	Zebrasoma xanthurum	374		М	М			
Acestrorhynchidae	Acestrorhynchus falcatus	118		F	F	0		
Acipenseridae	Acipenser baerii			М	М			
Acipenseridae	Acipenser gueldenstaedtii			М	М			
Acipenseridae	Acipenser naccarii			М	М			
Acipenseridae	Acipenser oxyrhynchus			М	М			
Acipenseridae	Acipenser ruthenus	37		М	М			
Acipenseridae	Acipenser sinensis			М	М			
Acipenseridae	Acipenser stellatus			М	М			
Acipenseridae	Acipenser transmontanus			М	М			
Acipenseridae	Huso huso			М	М			
Agonidae	Agonopsis vulsa			М	М			
Alestidae	Alestopetersius caudalis	277		F	F	0		
Alestidae	Alestopetersius smykalai			F	F	0		
Alestidae	Arnoldichthys spilopterus			F	F	0		
Alestidae	Brycinus longipinnis	18		F	F	0		
Alestidae	Ladigesia roloffi			F	F	0		
Alestidae	Lepidarchus adonis			F	F	0		
Alestidae	Phenacogrammus aurantiacus	170		F	F	0		
Alestidae	Phenacogrammus interruptus	3398		F	F	0		
Anabantidae	Anabas testudineus	80		F	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Anabantidae	Ctenopoma acutirostre	441		F	F	0		
Anarhichadidae	Anarhichthys ocellatus			М	М			
Anomalopidae	Anomalops katoptron	7		М	М			
Antennariidae	Antennarius avalonis	4		М	М			
Antennariidae	Antennarius biocellatus	14		М	М			
Antennariidae	Antennarius hispidus	11		М	М			
Antennariidae	Antennarius indicus	4		М	М			
Antennariidae	Antennarius maculatus	3		М	М			
Antennariidae	Antennarius nummifer	4		М	М			
Antennariidae	Antennarius striatus	9		М	М			
Antennariidae	Antennatus tuberosus	7		М	М			
Antennariidae	Histrio histrio	5		М	М			
Aplocheilidae	Aphyosemion australe	115		F	F	0		
Aplocheilidae	Aphyosemion filamentosum			F	F	0		
Aplocheilidae	Aphyosemion gabunense	30		F	F	0		
Aplocheilidae	Aphyosemion striatum	30		F	F	0		
Aplocheilidae	Aplocheilus dayi	25		F	F	0		
Aplocheilidae	Aplocheilus lineatus	964		F	F	0		
Aplocheilidae	Aplocheilus panchax	632		F	F	0		
Aplocheilidae	Epiplatys annulatus	80		F	F	0		
Aplocheilidae	Fundulopanchax filamentosus	40		F	F	0		
Aplocheilidae	Fundulopanchax gardneri	30		F	F	0		
Aplocheilidae	Fundulopanchax puerzli	30		F	F	0		
Aplocheilidae	Fundulopanchax sjostedti	25		F	F	0		
Aplocheilidae	Fundulopanchax walkeri	20		F	F	0		
Aplocheilidae	Nothobranchius guentheri	61		F	F	0		
Aplocheilidae	Nothobranchius rachovii	60		F	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Aplocheilidae	Nothobranchius rubripinnis	60		F	F	0		
Apogonidae	Apogon fasciatus	9		E	М			
Apogonidae	Apogon ishigakiensis	4		E	М			
Apogonidae	Apogon maculatus	27		E	М			
Apogonidae	Apogon pseudomaculatus	4		E	М			
Apogonidae	Ostorhinchus fasciatus	30		E	М			
Apogonidae	Ostorhinchus nigrofasciatus	10		E	М			
Apogonidae	Ostorhincus angustatus	16		E	М			
Apogonidae	Pterapogon kauderni	808		E	М			
Apogonidae	Sphaeramia nematoptera	311		E	М			
Apogonidae	Sphaeramia orbicularis	29		E	М			
Apogonidae	Zoramia leptacantha	2		E	М			
Apteronotidae	Apteronotus albifrons	2960		F	F	0		
Apteronotidae	Apteronotus leptorhynchus	525		F	F	0		
Ariidae	Arius seemanni	5065		М	М			
Aspredinidae	Bunocephalus coracoideus	701		F	F	0		
Aspredinidae	Bunocephalus knerii	40		F	F	0		
Atherinopsidae	Menidia menidia			E	М			
Auchenipteridae	Auchenipterichthys thoracatus	90		F	F	0		
Auchenipteridae	Centromochlus reticulatus	15		F	F	0		
Aulostomidae	Aulostomus chinensis	2		М	М			
Balistidae	Abalistes stellaris			М	М			
Balistidae	Abalistes stellatus	2		М	М			
Balistidae	Balistapus undulatus	16		М	М			
Balistidae	Balistes vetula	7		М	М			
Balistidae	Balistoides conspicillum	74		М	М			
Balistidae	Balistoides viridescens			М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Balistidae	Melichthys niger	4		М	М			
Balistidae	Melichthys vidua	14		Μ	М			
Balistidae	Odonus niger	165		М	М			
Balistidae	Pseudobalistes fuscus	11		М	М			
Balistidae	Rhinecanthus aculeatus	72		М	М			
Balistidae	Rhinecanthus assasi	8		М	М			
Balistidae	Rhinecanthus rectangulus	23		М	М			
Balistidae	Rhinecanthus verrucosus	15		М	М			
Balistidae	Sufflamen albicaudatum	1		М	М			
Balistidae	Sufflamen chrysopterum	1		М	М			
Balistidae	Xanthichthys auromarginatus	15		М	М			
Balistidae	Xanthichthys ringens	11		М	М			
Bathymasteridae	Ronquilus jordani			М	М			
Batrachoididae	Opsanus pardus	1		E	М			
Batrachoididae	Opsanus tau		406	E	М			
Batrachoididae	Porichthys notatus			E	М			
Bedotiidae	Bedotia gaeyi	746		F	F	0		
Blenniidae	Atrosalarias fuscus	5		E	М			
Blenniidae	Blenniella chrysospilos	26		E	М			
Blenniidae	Blenniella periophthalmus	20		E	М			
Blenniidae	Cirripectes castaneus	3		E	М			
Blenniidae	Cirripectes obscurus	6		E	М			
Blenniidae	Cirripectes stigmaticus	3		E	М			
Blenniidae	Cirripectes variolosus	12		E	М			
Blenniidae	Ecsenius aroni	20		E	М			
Blenniidae	Ecsenius bicolor	330		E	М			
Blenniidae	Ecsenius bimaculatus	18		E	М			

		Aquarium Trade	Live Food Trade	Family Habitat	Species Habitat	Family Climate	Species Climate	Species in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Blenniidae	Ecsenius frontalis	36		E	М			
Blenniidae	Ecsenius gravieri	21		E	М			
Blenniidae	Ecsenius lineatus	36		E	М			
Blenniidae	Ecsenius lividanalis	1		E	М			
Blenniidae	Ecsenius midas	102		E	М			
Blenniidae	Ecsenius namiyei	8		E	М			
Blenniidae	Ecsenius stigmatura	1		E	М			
Blenniidae	Exallias brevis	14		E	М			
Blenniidae	Hypsoblennius gentilis	2		E	М			
Blenniidae	Meiacanthus atrodorsalis	34		E	М			
Blenniidae	Meiacanthus bundoon	1		E	М			
Blenniidae	Meiacanthus grammistes	40		E	М			
Blenniidae	Meiacanthus mossambicus	1		E	М			
Blenniidae	Meiacanthus nigrolineatus	1		E	М			
Blenniidae	Meiacanthus oualanensis	55		E	М			
Blenniidae	Meiacanthus smithi	65		E	М			
Blenniidae	Ophioblennius atlanticus	58		E	М			
Blenniidae	Ophioblennius macclurei	13		E	М			
Blenniidae	Ophioblennius steindachneri	11		E	М			
Blenniidae	Parablennius marmoreus	16		E	М			
Blenniidae	Plagiotremus rhinorhynchos	3		E	М			
Blenniidae	Salarias fasciatus	421		E	М			
Blenniidae	Salarias segmentatus	1		E	М			
Bothidae	Bothus mancus	10		М	М			
Bothidae	Bothus ocellatus	12		М	М			
Bythitidae	Brotulina fusca	13		E	М	0		
Bythitidae	Dinematichthys riukiuensis	28		E	М	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Caesionidae	Caesio cuning	22		М	М			
Callichthyidae	Brochis britskii	100		F	F	0		
Callichthyidae	Brochis multiradiatus	17		F	F	0		
Callichthyidae	Brochis splendens	4749		F	F	0		
Callichthyidae	Callichthys callichthys			F	F	0		
Callichthyidae	Corydoras adolfoi	90		F	F	0		
Callichthyidae	Corydoras aeneus	20592		F	F	0		
Callichthyidae	Corydoras agassizii	1080		F	F	0		
Callichthyidae	Corydoras arcuatus	861		F	F	0		
Callichthyidae	Corydoras atropersonatus	70		F	F	0		
Callichthyidae	Corydoras axelrodi	260		F	F	0		
Callichthyidae	Corydoras blochi	100		F	F	0		
Callichthyidae	Corydoras concolor	120		F	F	0		
Callichthyidae	Corydoras delphax	100		F	F	0		
Callichthyidae	Corydoras duplicareus	10		F	F	0		
Callichthyidae	Corydoras elegans	885		F	F	0		
Callichthyidae	Corydoras eques	20		F	F	0		
Callichthyidae	Corydoras habrosus	700		F	F	0		
Callichthyidae	Corydoras hastatus	2950		F	F	0		
Callichthyidae	Corydoras julii	6268		F	F	0		
Callichthyidae	Corydoras melanistius	3630		F	F	0		
Callichthyidae	Corydoras melanotaenia	3800		F	F	0		
Callichthyidae	Corydoras melini	730		F	F	0		
Callichthyidae	Corydoras metae	1970		F	F	0		
Callichthyidae	Corydoras nattereri	600		F	F	0		
Callichthyidae	Corydoras ornatus	10		F	F	0		
Callichthyidae	Corydoras paleatus	15873		F	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Callichthyidae	Corydoras panda	4193		F	F	0		
Callichthyidae	Corydoras polystictus	150		F	F	0		
Callichthyidae	Corydoras punctatus	5477		F	F	0		
Callichthyidae	Corydoras pygmaeus	2980		F	F	0		
Callichthyidae	Corydoras rabauti	1161		F	F	0		
Callichthyidae	Corydoras reticulatus	500		F	F	0		
Callichthyidae	Corydoras schwartzi	1492		F	F	0		
Callichthyidae	Corydoras spilurus	75		F	F	0		
Callichthyidae	Corydoras sterbai	1068		F	F	0		
Callichthyidae	Corydoras trilineatus	2115		F	F	0		
Callichthyidae	Corydoras zygatus	20		F	F	0		
Callichthyidae	Dianema longibarbis	110		F	F	0		
Callichthyidae	Dianema urostriatum	225		F	F	0		
Callichthyidae	Hoplosternum littorale	160		F	F	0		
Callichthyidae	Hoplosternum thoracatum			F	F	0		
Callichthyidae	Megalechis thoracata	495		F	F	0		
Callichthyidae	Scleromystax barbatus	50		F	F	0		
Callionymidae	Callionymus beniteguri	20		E	М			
Callionymidae	Dactylopus dactylopus	8		E	М			
Callionymidae	Diplogrammus xenicus	17		E	М			
Callionymidae	Synchiropus ijimae	47		E	М			
Callionymidae	Synchiropus marmoratus	56		E	М			
Callionymidae	Synchiropus ocellatus	289		E	М			
Callionymidae	Synchiropus picturatus	231		E	М			
Callionymidae	Synchiropus splendidus	1017		E	М			
Caracanthidae	Caracanthus maculatus	6		М	М			
Carangidae	Gnathanodon speciosus	5		М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Trade	Trade	Habitat Match	Habitat Match	Climate Match	Climate Match	in Canada
Carangidae	Selene vomer	20	Volume (Kg)	M	M	Water	Water	canada
Carcharbinidae	Carcharbinus melanonterus	20		N/	N/			
Carcharhinidae	Calaocardo cuviori	2		N/	N/			
Carcharhinidae	Drionaco algues							
Carchanninuae								
Centriscidae			4520			0		
Centropomidae	Lates calcarijer		4530	E	E	0		
Ceratodontidae	Neoceratodus forsteri			F	F	0		
Chacidae	Chaca chaca	265		F	F	0		
Chaenopsidae	Acanthemblemaria crockeri	1		M	M			
Chaenopsidae	Acanthemblemaria macrospilus	4		Μ	М			
Chaenopsidae	Emblemaria pandionis	33		Μ	М			
Chaetodontidae	Chaetodon argentatus	4		М	М			
Chaetodontidae	Chaetodon auriga	174		М	М			
Chaetodontidae	Chaetodon austriacus	11		М	М			
Chaetodontidae	Chaetodon bennetti	7		М	М			
Chaetodontidae	Chaetodon capistratus	10		М	М			
Chaetodontidae	Chaetodon citrinellus	7		М	М			
Chaetodontidae	Chaetodon collare	46		М	М			
Chaetodontidae	Chaetodon decussatus	11		М	М			
Chaetodontidae	Chaetodon ephippium	44		М	М			
Chaetodontidae	Chaetodon falcula	8		М	М			
Chaetodontidae	Chaetodon fasciatus	53		М	М			
Chaetodontidae	Chaetodon guttatissimus	2		М	М			
Chaetodontidae	Chaetodon humeralis	6		М	М			
Chaetodontidae	Chaetodon kleinii	35		М	М			
Chaetodontidae	Chaetodon larvatus	7		М	М			
Chaetodontidae	Chaetodon lineolatus	1		М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Chaetodontidae	Chaetodon lunula	138		М	М			
Chaetodontidae	Chaetodon madagaskariensis	3		М	М			
Chaetodontidae	Chaetodon melannotus	1		М	М			
Chaetodontidae	Chaetodon mertensii	1		М	М			
Chaetodontidae	Chaetodon mesoleucos	3		М	М			
Chaetodontidae	Chaetodon meyeri	12		М	М			
Chaetodontidae	Chaetodon mitratus	1		М	М			
Chaetodontidae	Chaetodon multicinctus	1		М	М			
Chaetodontidae	Chaetodon ocellatus	4		М	М			
Chaetodontidae	Chaetodon octofasciatus	5		М	М			
Chaetodontidae	Chaetodon ornatissimus	16		М	М			
Chaetodontidae	Chaetodon paucifasciatus	26		М	М			
Chaetodontidae	Chaetodon plebeius	1		М	М			
Chaetodontidae	Chaetodon punctatofasciatus	37		М	М			
Chaetodontidae	Chaetodon quadrimaculatus	1		М	М			
Chaetodontidae	Chaetodon rafflesii	12		М	М			
Chaetodontidae	Chaetodon rainfordi	5		М	М			
Chaetodontidae	Chaetodon reticulatus	1		М	М			
Chaetodontidae	Chaetodon sedentarius	2		М	М			
Chaetodontidae	Chaetodon semilarvatus	145		М	М			
Chaetodontidae	Chaetodon speculum	9		М	М			
Chaetodontidae	Chaetodon striatus	10		М	М			
Chaetodontidae	Chaetodon trifasciatus	11		М	М			
Chaetodontidae	Chaetodon ulietensis	2		М	М			
Chaetodontidae	Chaetodon unimaculatus	32		М	М			
Chaetodontidae	Chaetodon vagabundus	55		М	М			
Chaetodontidae	Chaetodon wiebeli	1		М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Chaetodontidae	Chaetodon xanthocephalus	4		М	М			
Chaetodontidae	Chaetodon xanthurus	84		М	М			
Chaetodontidae	Chelmon rostratus	407		М	М			
Chaetodontidae	Forcipiger flavissimus	114		М	М			
Chaetodontidae	Forcipiger longirostris	29		М	М			
Chaetodontidae	Hemitaurichthys polylepis	2		М	М			
Chaetodontidae	Hemitaurichthys zoster	6		М	М			
Chaetodontidae	Heniochus acuminatus	231		М	М			
Chaetodontidae	Heniochus chrysostomus	9		М	М			
Chaetodontidae	Heniochus intermedius	15		М	М			
Chaetodontidae	Heniochus monoceros	49		М	М			
Chaetodontidae	Heniochus singularius	3		М	М			
Chaetodontidae	Heniochus varius	50		М	М			
Chaetodontidae	Johnrandallia nigrirostris	5		М	М			
Chaetodontidae	Prognathodes aculeatus	3		М	М			
Channidae	Channa asiatica		1355	F	F	0		
Channidae	Channa gachua			F	F	0		
Channidae	Channa lucius	120		F	F	0		
Channidae	Channa maculata		3816	F	F	0		
Channidae	Channa micropeltes	657	5	F	F	0		
Channidae	Channa punctata	80		F	F	0		
Channidae	Channa striata	150		F	F	0		
Characidae	Aphyocharax anisitsi	9969		F	F	0		
Characidae	Aphyocharax paraguayensis	845		F	F	0		
Characidae	Aphyocharax rathbuni	738		F	F	0		
Characidae	Astyanax fasciatus	374		F	F	0		
Characidae	Astyanax jordani	50		F	F	0		

		Aquarium Trade	Live Food Trade	Family Habitat	Species Habitat	Family Climate	Species Climate	Species in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Characidae	Astyanax mexicanus	1334		F	F	0		
Characidae	Boehikee fredcochui	14746		F	F	0		
Characidae	Chalceus macrolepidotus	250		F	F	0		
Characidae	Colossoma macropomum	255		F	F	0		
Characidae	Ctenobrycon hauxwellianus	12		F	F	0		
Characidae	Ctenobrycon spilurus	80		F	F	0		
Characidae	Exodon paradoxus	365		F	F	0		
Characidae	Gymnocorymbus ternetzi	42058		F	F	0		
Characidae	Hasemania nana	12726		F	F	0		
Characidae	Hemigrammus bleheri	11106		F	F	0		
Characidae	Hemigrammus erythrozonus	25517		F	F	0		
Characidae	Hemigrammus gracilis	2030		F	F	0		
Characidae	Hemigrammus hyanuary	670		F	F	0		
Characidae	Hemigrammus ocellifer	17265		F	F	0		
Characidae	Hemigrammus pulcher	4205		F	F	0		
Characidae	Hemigrammus rhodostomus	15075		F	F	0		
Characidae	Hemigrammus rodwayi	8810		F	F	0		
Characidae	Hemigrammus ulreyi	150		F	F	0		
Characidae	Hoplocharax goethei			F	F	0		
Characidae	Hyphessobrycon amandae	400		F	F	0		
Characidae	Hyphessobrycon anisitsi	5991		F	F	0		
Characidae	Hyphessobrycon axelrodi	60		F	F	0		
Characidae	Hyphessobrycon bentosi	3636		F	F	0		
Characidae	Hyphessobrycon columbianus	2305		F	F	0		
Characidae	Hyphessobrycon ecuadoriensis	936		F	F	0		
Characidae	Hyphessobrycon eos	250		F	F	0		
Characidae	Hyphessobrycon eques	43309		F	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Volume (#)	Volume (kg)	Habitat Match	Match	Match	Match	in Canada
Characidae	Hyphessobrycon erythrostigma	8783		F	F	0		
Characidae	Hyphessobrycon flammeus	12101		F	F	0		
Characidae	Hyphessobrycon herbertaxelrodi	28375		F	F	0		
Characidae	Hyphessobrycon loretoensis	950		F	F	0		
Characidae	Hyphessobrycon megalopterus	11591		F	F	0		
Characidae	Hyphessobrycon metae	580		F	F	0		
Characidae	Hyphessobrycon pulchripinnis	20981		F	F	0		
Characidae	Hyphessobrycon pyrrhonotus	200		F	F	0		
Characidae	Hyphessobrycon rosaceus	870		F	F	0		
Characidae	Hyphessobrycon roseus	740		F	F	0		
Characidae	Hyphessobrycon scholzei	150		F	F	0		
Characidae	Hyphessobrycon serpae	80		F	F	0		
Characidae	Hyphessobrycon socolofi	1550		F	F	0		
Characidae	Hyphessobrycon sweglesi	5468		F	F	0		
Characidae	Inpaichthys kerri	3229		F	F	0		
Characidae	Metynnis argenteus	1061		F	F	0		
Characidae	Metynnis hypsauchen	1909		F	F	0		
Characidae	Metynnis lippincottianus	20		F	F	0		
Characidae	Metynnis maculatus	100		F	F	0		
Characidae	Moenkhausia oligolepis	5869		F	F	0		
Characidae	Moenkhausia pittieri	4007		F	F	0		
Characidae	Moenkhausia sanctaefilomenae	11459		F	F	0		
Characidae	Moenkhausia	100		F	F	0		
Characidae	Myleus schomburgkii	110		F	F	0		
Characidae	Myloplus rubripinnis	188		F	F	0		
Characidae	Mylossoma aureum	1533		F	F	0		
Characidae	Nematobrycon lacortei	580		F	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Trade Volume (#)	Trade	Habitat Match	Habitat Match	Climate Match	Climate	in Canada
Characidae	Nematohrycon nalmeri	8862		F	F	0	Water	canada
Characidae	Paracheirodon avelrodi	//51/		F	F	0		
Characidae	Paracheirodon innesi	540990		F	F	0		
Characidae	Paracheirodon simulans	11345		F	F	0		
Characidae	Petitella aeoraiae	2879		F	F	0		
Characidae	Piaractus brachynomus	565		F	F	0		
Characidae	Prionobrama filiaera	2210		F	F	0		
Characidae	Pristella maxillaris	13738		F	F	0		
Characidae	Pristobrycon striolatus	330		F	F	0		
Characidae	Pygocentrus cariba	30		F	F	0		
Characidae	Pygocentrus nattereri	10293		F	F	0		
Characidae	Pygocentrus piraya			F	F	0		
Characidae	Serrasalmus brandti			F	F	0		
Characidae	Serrasalmus elongatus	1		F	F	0		
Characidae	Serrasalmus manueli	4		F	F	0		
Characidae	Serrasalmus niger			F	F	0		
Characidae	Serrasalmus rhombeus	4		F	F	0		
Characidae	Serrasalmus striolatus			F	F	0		
Characidae	Serrasalmus ternetzi			F	F	0		
Characidae	Thayeria boehlkei	9363		F	F	0		
Characidae	Thayeria obliqua	4573		F	F	0		
Characidae	Tyttocharax cochui	520		F	F	0		
Chilodontidae	Chilodus punctatus	261		F	F	0		
Chlamydoselachidae	Chlamydoselachus anguineus			М	М			
Cichlidae	Acarichthys heckelii	117		F	F	0		
Cichlidae	Aequidens latifrons	50		F	F	0		
Cichlidae	Aequidens pulcher	627		F	F	0		

Family name	Scientific name	Aquarium Trade Volume (#)	Live Food Trade Volume (kg)	Family Habitat Match	Species Habitat Match	Family Climate Match	Species Climate Match	Species in Canada
Cichlidae	Aequidens rivulatus	1353		F	F	0		
Cichlidae	Alcolapia alcalicus	35		F	F	0		
Cichlidae	Altolamprologus calvus	517		F	F	0		
Cichlidae	Altolamprologus compressiceps	720		F	F	0		
Cichlidae	Amatitlania nigrofasciata	1266		F	F	0		
Cichlidae	Amphilophus citrinellus	1689		F	F	0		
Cichlidae	Amphilophus labiatus	707	1387	F	F	0		
Cichlidae	Anomalochromis thomasi	84		F	F	0		
Cichlidae	Apistogramma agassizii	1239		F	F	0		
Cichlidae	Apistogramma atahualpa	50		F	F	0		
Cichlidae	Apistogramma bitaeniata	180		F	F	0		
Cichlidae	Apistogramma borellii	325		F	F	0		
Cichlidae	Apistogramma cacatuoides	1079		F	F	0		
Cichlidae	Apistogramma commbrae	20		F	F	0		
Cichlidae	Apistogramma cruzi	80		F	F	0		
Cichlidae	Apistogramma eunotus	80		F	F	0		
Cichlidae	Apistogramma gibbiceps	25		F	F	0		
Cichlidae	Apistogramma hongsloi	194		F	F	0		
Cichlidae	Apistogramma linkei	20		F	F	0		
Cichlidae	Apistogramma macmasteri	500		F	F	0		
Cichlidae	Apistogramma nijsseni	65		F	F	0		
Cichlidae	Apistogramma panduro	120		F	F	0		
Cichlidae	Apistogramma piauiensis	25		F	F	0		
Cichlidae	Apistogramma trifasciata	60		F	F	0		
Cichlidae	Apistogramma tucurui	8		F	F	0		
Cichlidae	Apistogramma viejita	138		F	F	0		
Cichlidae	Archocentrus myrnae	30		F	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Trade Volume (#)	Trade Volume (kg)	Habitat Match	Habitat Match	Climate Match	Climate Match	in Canada
Cichlidae	Archocentrus saiica	35		F	F	0		
Cichlidae	Aristochromis christvi	36		F	F	0		
Cichlidae	Astronotus ocellatus	13692		F	F	0		
Cichlidae	Aulonocara baenschi	235		F	F	0		
Cichlidae	Aulonocara hansbaenschi	10		F	F	0		
Cichlidae	Aulonocara jacobfreibergi	272		F	F	0		
Cichlidae	Aulonocara korneliae	20		F	F	0		
Cichlidae	Aulonocara maylandi	89		F	F	0		
Cichlidae	Aulonocara nyassae	1244		F	F	0		
Cichlidae	Aulonocara rostratum	80		F	F	0		
Cichlidae	Aulonocara steveni	136		F	F	0		
Cichlidae	Aulonocara stuartgranti	227		F	F	0		
Cichlidae	Benthochromis tricoti			F	F	0		
Cichlidae	Biotodoma cupido	250		F	F	0		
Cichlidae	Boulengerochromis microlepis			F	F	0		
Cichlidae	Buccochromis nototaenia	30		F	F	0		
Cichlidae	Buccochromis rhoadesii	50		F	F	0		
Cichlidae	Cheilochromis euchilus	60		F	F	0		
Cichlidae	Cichla ocellaris	195		F	F	0		
Cichlidae	Cichla temensis	125		F	F	0		
Cichlidae	Cichlasoma citrinellum			F	F	0		
Cichlidae	Cichlasoma festae	312		F	F	0		
Cichlidae	Cichlasoma grammodes	15		F	F	0		
Cichlidae	Cichlasoma octofasciatum	1564		F	F	0		
Cichlidae	Cichlasoma salvini	525		F	F	0		
Cichlidae	Cichlasoma trimaculatum	113		F	F	0		
Cichlidae	Cleithracara maronii	782		F	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Volume (#)	Volume (kg)	Habitat Match	Match	Match	Match	in Canada
Cichlidae	Copadichromis boadzulu	7		F	F	0		
Cichlidae	, Copadichromis borleyi	770		F	F	0		
Cichlidae	Copadichromis chrysonotus	864		F	F	0		
Cichlidae	Copadichromis jacksoni	30		F	F	0		
Cichlidae	Copadichromis mloto	6		F	F	0		
Cichlidae	Copadichromis virginalis	58		F	F	0		
Cichlidae	Crenicara punctulatum	130		F	F	0		
Cichlidae	Crenicichla compressiceps	65		F	F	0		
Cichlidae	Crenicichla lepidota	167		F	F	0		
Cichlidae	Crenicichla marmorata	17		F	F	0		
Cichlidae	Crenicichla saxatilis	33		F	F	0		
Cichlidae	Cunningtonia longiventralis	15		F	F	0		
Cichlidae	Cyathopharynx furcifer	89		F	F	0		
Cichlidae	Cynotilapia afra	857		F	F	0		
Cichlidae	Cyphotilapia frontosa	578		F	F	0		
Cichlidae	Cyprichromis leptosoma	226		F	F	0		
Cichlidae	Cyprichromis microlepidotus	36		F	F	0		
Cichlidae	Cyrtocara moorii	1395		F	F	0		
Cichlidae	Dicrossus maculatus	75		F	F	0		
Cichlidae	Dimidiochromis compressiceps	595		F	F	0		
Cichlidae	Dimidiochromis strigatus	95		F	F	0		
Cichlidae	Eclectochromis ornatus	24		F	F	0		
Cichlidae	Ectodus descampsii			F	F	0		
Cichlidae	Enantiopus melanogenys			F	F	0		
Cichlidae	Etroplus maculatus	198		F	F	0		
Cichlidae	Fossorochromis rostratus	83		F	F	0		
Cichlidae	Geophagus altifrons	16		F	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Trade Volume (#)	Trade Volume (kg)	Habitat Match	Habitat Match	Climate Match	Climate Match	ın Canada
Cichlidae	Geophagus brasiliensis	100		F	F	0		
Cichlidae	Geophagus steindachneri	35		F	F	0		
Cichlidae	Geophagus surinamensis	330		F	F	0		
Cichlidae	Gephyrochromis moorii	90		F	F	0		
Cichlidae	Gymnogeophagus australis	5		F	F	0		
Cichlidae	Gymnogeophagus balzanii	16		F	F	0		
Cichlidae	Haplochromis burtoni	20		F	F	0		
Cichlidae	Haplochromis latifasciatus	40		F	F	0		
Cichlidae	Haplochromis nubilus	68		F	F	0		
Cichlidae	Haplochromis obliquidens	309		F	F	0		
Cichlidae	Haplochromis phenochilus	44		F	F	0		
Cichlidae	Hemichromis bimaculatus	2308		F	F	0		
Cichlidae	Hemichromis lifalili	245		F	F	0		
Cichlidae	Herichthys carpintis	914		F	F	0		
Cichlidae	Herichthys cyanoguttatus	791		F	F	0		
Cichlidae	Herichthys pearsei	20		F	F	0		
Cichlidae	Heros severus	2526		F	F	0		
Cichlidae	Herotilapia multispinosa	128		F	F	0		
Cichlidae	Hypselecara temporalis	44		F	F	0		
Cichlidae	Hypsophrys nicaraguensis	12		F	F	0		
Cichlidae	lodotropheus sprengerae	435		F	F	0		
Cichlidae	Julidochromis dickfeldi	30		F	F	0		
Cichlidae	Julidochromis marlieri	66		F	F	0		
Cichlidae	Julidochromis ornatus	184		F	F	0		
Cichlidae	Julidochromis regani	50		F	F	0		
Cichlidae	Julidochromis transcriptus	115		F	F	0		
Cichlidae	Labeotropheus fuelleborni	147		F	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	In Canada
Cichlidae	Labeotropheus trewavasae	248		F	F	0		
Cichlidae	Labidochromis caeruleus	3141		F	F	0		
Cichlidae	Labidochromis chisumulae	40		F	F	0		
Cichlidae	Labidochromis freibergi	25		F	F	0		
Cichlidae	Labidochromis mbenjii	25		F	F	0		
Cichlidae	Labidochromis textilis	14		F	F	0		
Cichlidae	Labidochromis zebroides	95		F	F	0		
Cichlidae	Laetacara curviceps	623		F	F	0		
Cichlidae	Laetacara dorsigera	45		F	F	0		
Cichlidae	Lamprologus congoensis	17		F	F	0		
Cichlidae	Lamprologus ocellatus	103		F	F	0		
Cichlidae	Lamprologus werneri	8		F	F	0		
Cichlidae	Lepidiolamprologus attenuatus	19		F	F	0		
Cichlidae	Lepidiolamprologus kendalli	2		F	F	0		
Cichlidae	Lepidiolamprologus nkambae	26		F	F	0		
Cichlidae	Limnochromis auritus	22		F	F	0		
Cichlidae	Maylandia callainos	69		F	F	0		
Cichlidae	Maylandia greshakei	714		F	F	0		
Cichlidae	Maylandia hajomaylandi	40		F	F	0		
Cichlidae	Maylandia zebra	6093		F	F	0		
Cichlidae	Melanochromis auratus	3728		F	F	0		
Cichlidae	Melanochromis chipokae	373		F	F	0		
Cichlidae	Melanochromis cyaneorhabdos	271		F	F	0		
Cichlidae	Melanochromis joanjohnsonae	168		F	F	0		
Cichlidae	Melanochromis johannii	2243		F	F	0		
Cichlidae	Melanochromis labrosus	60		F	F	0		
Cichlidae	Melanochromis parallelus	50		F	F	0		

Family name	Scientific name	Aquarium Trade Volume (#)	Live Food Trade Volume (kg)	Family Habitat Match	Species Habitat Match	Family Climate Match	Species Climate Match	Species in Canada
Cichlidae	Melanochromis vermivorus	96		F	F	0		
Cichlidae	Mesonauta festivus	296		F	F	0		
Cichlidae	Mikrogeophagus altispinosus	859		F	F	0		
Cichlidae	Mikrogeophagus ramirezi	11424		F	F	0		
Cichlidae	Nandopsis haitiensis	30		F	F	0		1
Cichlidae	Nannacara anomala	80		F	F	0		
Cichlidae	Nannacara taenia	25		F	F	0		
Cichlidae	Nanochromis dimidiatus	16		F	F	0		
Cichlidae	Nanochromis nudiceps	50		F	F	0		
Cichlidae	Nanochromis parilus	10		F	F	0		
Cichlidae	Nanochromis transvestitus	67		F	F	0		
Cichlidae	Neolamprologus boulengeri	29		F	F	0		
Cichlidae	Neolamprologus brevis	76		F	F	0		
Cichlidae	Neolamprologus brichardi	1206		F	F	0		
Cichlidae	Neolamprologus buescheri	10		F	F	0		
Cichlidae	Neolamprologus christyi	15		F	F	0		
Cichlidae	Neolamprologus cylindricus	141		F	F	0		
Cichlidae	Neolamprologus falcicula	12		F	F	0		
Cichlidae	Neolamprologus gracilis	8		F	F	0		
Cichlidae	Neolamprologus helianthus	20		F	F	0		
Cichlidae	Neolamprologus leleupi	883		F	F	0		
Cichlidae	Neolamprologus longior	60		F	F	0		
Cichlidae	Neolamprologus modestus	12		F	F	0		
Cichlidae	Neolamprologus multifasciatus	40		F	F	0		
Cichlidae	Neolamprologus mustax	35		F	F	0		
Cichlidae	Neolamprologus olivaceous	10		F	F	0		
Cichlidae	Neolamprologus pulcher	27		F	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	In Canada
Cichlidae	Neolamprologus sexfasciatus	108		F	F	0		
Cichlidae	Neolamprologus similis	25		F	F	0		
Cichlidae	Neolamprologus tetracanthus	30		F	F	0		
Cichlidae	Neolamprologus tretocephalus	376		F	F	0		
Cichlidae	Nimbochromis fuscotaeniatus	179		F	F	0		
Cichlidae	Nimbochromis livingstonii	816		F	F	0		
Cichlidae	Nimbochromis polystigma	132		F	F	0		
Cichlidae	Nimbochromis venustus	3406		F	F	0		
Cichlidae	Nyassachromis purpurans	15		F	F	0		
Cichlidae	Ophthalmotilapia boops	2		F	F	0		
Cichlidae	Ophthalmotilapia nasuta	20		F	F	0		
Cichlidae	Ophthalmotilapia ventralis	16		F	F	0		
Cichlidae	Oreochromis niloticus		939229	F	F	0		
Cichlidae	Oreochromis niloticus × aureus		19151	F	F	0		
Cichlidae	Oreochromis niloticus × aureus ×		131846	F	F	0		
Cichlidae	Otopharynx lithobates	35		F	F	0		
Cichlidae	Otopharynx ovatus	298		F	F	0		
Cichlidae	Parachromis dovii	5		F	F	0		
Cichlidae	Parachromis friedrichsthalii	29		F	F	0		
Cichlidae	Parachromis managuensis	338		F	F	0		
Cichlidae	Paracyprichromis nigripinnis	94		F	F	0		
Cichlidae	Paratilapia polleni	232		F	F	0		
Cichlidae	Paretroplus maculatus	60		F	F	0		
Cichlidae	Pelvicachromis pulcher	3018		F	F	0		
Cichlidae	Pelvicachromis taeniatus	615		F	F	0		
Cichlidae	Petrotilapia tridentiger	62		F	F	0		
Cichlidae	Placidochromis electra	149		F	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Trade Volume (#)	Trade Volume (kg)	Habitat Match	Habitat Match	Climate Match	Climate Match	in Canada
Cichlidae	Placidochromis iohnstoni	40		F	F	0		
Cichlidae	Protomelas fenestratus	118		F	F	0		
Cichlidae	Protomelas insignis	50		F	F	0		
Cichlidae	Protomelas spilonotus	20		F	F	0		
Cichlidae	, Protomelas taeniolatus	24		F	F	0		
Cichlidae	Pseudocrenilabrus nicholsi	30		F	F	0		
Cichlidae	Pseudocrenilabrus sp. philander	40		F	F	0		
Cichlidae	Pseudotropheus aurora	206		F	F	0		
Cichlidae	Pseudotropheus crabro	430		F	F	0		
Cichlidae	Pseudotropheus demasoni	1653		F	F	0		
Cichlidae	Pseudotropheus elongatus	1045		F	F	0		
Cichlidae	Pseudotropheus flavus	95		F	F	0		
Cichlidae	Pseudotropheus lombardoi	3386		F	F	0		
Cichlidae	Pseudotropheus macrophthalmus	318		F	F	0		
Cichlidae	Pseudotropheus saulosi	654		F	F	0		
Cichlidae	Pseudotropheus socolofi	910		F	F	0		
Cichlidae	Pseudotropheus tropheops	34		F	F	0		
Cichlidae	Pseudotropheus zebra	25		F	F	0		
Cichlidae	Pterophyllum altum	209		F	F	0		
Cichlidae	Pterophyllum scalare	34929		F	F	0		
Cichlidae	Ptychochromis oligacanthus	12		F	F	0		
Cichlidae	Pundamilia nyererei	10		F	F	0		
Cichlidae	Sarotherodon galilaeus		164357	F	F	0		
Cichlidae	Satanoperca daemon	185		F	F	0		
Cichlidae	Satanoperca jurupari	824		F	F	0		
Cichlidae	Satanoperca leucosticta	116		F	F	0		
Cichlidae	Sciaenochromis ahli	1391		F	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Trade Volume (#)	Trade Volume (kg)	Habitat Match	Habitat Match	Climate Match	Climate Match	in Canada
Cichlidae	Sciaenochromis fryeri	11		F	F	0		
Cichlidae	Spathodus erythrodon	20		F	F	0		
Cichlidae	Steatocranus casuarius	271		F	F	0		
Cichlidae	Steatocranus tinanti	19		F	F	0		
Cichlidae	Symphysodon aequifasciatus	2716		F	F	0		
Cichlidae	Symphysodon discus	3122		F	F	0		
Cichlidae	Telmatochromis bifrenatus	10		F	F	0		
Cichlidae	Theraps irregularis	12		F	F	0		
Cichlidae	Thorichthys aureus	20		F	F	0		
Cichlidae	Thorichthys meeki	2020		F	F	0		
Cichlidae	Tilapia buttikoferi	502		F	F	0		
Cichlidae	Tilapia mariae	35		F	F	0		
Cichlidae	Tomocichla tuba	2		F	F	0		
Cichlidae	Triglachromis otostigma	12		F	F	0		
Cichlidae	Tropheus duboisi	613		F	F	0		
Cichlidae	Tropheus moorii	433		F	F	0		
Cichlidae	Tropheus polli	5		F	F	0		
Cichlidae	Uaru amphiacanthoides	52		F	F	0		
Cichlidae	Variabilichromis moorii	41		F	F	0		
Cichlidae	Vieja godmanni	40		F	F	0		
Cichlidae	Vieja maculicauda	6		F	F	0		
Cichlidae	Vieja synspila	255		F	F	0		
Cichlidae	Vieja zonata	20		F	F	0		
Cichlidae	Xenotilapia flavipinnis			F	F	0		
Cichlidae	Xenotilapia melanogenys	38		F	F	0		
Cichlidae	Xenotilapia papilio			F	F	0		
Cirrhitidae	Amblycirrhitus pinos	14		Μ	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Cirrhitidae	Cirrhitichthys aprinus	7		М	М			
Cirrhitidae	Cirrhitichthys aureus	4		М	М			
Cirrhitidae	Cirrhitichthys falco	10		М	М			
Cirrhitidae	Cirrhitichthys oxycephalus	25		М	М			
Cirrhitidae	Cirrhitops fasciatus	2		М	М			
Cirrhitidae	Cirrhitus pinnulatus	1		М	М			
Cirrhitidae	Cyprinocirrhites polyactis	3		М	М			
Cirrhitidae	Neocirrhites armatus	89		М	М			
Cirrhitidae	Oxycirrhites typus	168		М	М			
Cirrhitidae	Paracirrhites arcatus	2		М	М			
Cirrhitidae	Paracirrhites forsteri	27		М	М			
Clariidae	Clarias angolensis	135		F	F	0		
Clariidae	Clarias batrachus	1134	5	F	F	0		
Claroteidae	Clarotes laticeps	344		F	F	0		
Clupeidae	Clupea harengus			E	М	1		
Coiidae	Datnioides campbelli	4		F	F	0		
Coiidae	Datnioides polota	21		F	F	0		
Coiidae	Datnioides undecimradiatus	5		F	F	0		
Congridae	Conger conger			М	М			
Congridae	Conger myriaster		3520	M	М			
Congridae	Conger oceanicus		385	M	М			
Congridae	Heteroconger longissimus	5		М	М			
Cottidae	Enophrys bison			E	М	1		
Cottidae	Hemilepidotus hemilepidotus			E	М	1		
Cottidae	Jordania zonope			E	М	1		
Cottidae	Scorpaenichthys marmoratus		349	E	М	1		
Ctenoluciidae	Boulengerella maculata	164		F	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Trade Volume (#)	Trade Volume (kg)	Habitat Match	Habitat Match	Climate Match	Climate Match	in Canada
Ctenoluciidae	Ctenolucius huieta	486		F	F	0		
Cynodontidae	Hydrolycus scomberoides	23		F	F	0		
, Dactylopteridae	Dactyloptena orientalis	43		М	М			
Dactylopteridae	Dactylopterus volitans	10		М	М			
Dasyatidae	Dasyatis akajei	3		E	М			
Dasyatidae	Dasyatis sabina	12		E	М			
Dasyatidae	Himantura bleekeri			E	М			
Dasyatidae	Pastinachus sephen			E	М			
Dasyatidae	Taeniura lymma	21		E	М			
Diodontidae	Chilomycterus antennatus	1		М	М			
Diodontidae	Chilomycterus antillarum	3		М	М			
Diodontidae	Chilomycterus schoepfii	7		М	М			
Diodontidae	Diodon holocanthus	47		М	М			
Diodontidae	Diodon hystrix	84		М	М			
Diodontidae	Diodon liturosus	4		М	М			
Diodontidae	Diodon maculatus	1		М	М			
Distichodontidae	Distichodus affinis	60		F	F	0		
Distichodontidae	Distichodus lusosso			F	F	0		
Distichodontidae	Distichodus sexfasciatus	24		F	F	0		
Doradidae	Acanthodoras spinosissimus	135		F	F	0		
Doradidae	Agamyxis pectinifrons	407		F	F	0		
Doradidae	Platydoras costatus	911		F	F	0		
Echeneidae	Echeneis naucrates	1		М	М			
Embiotocidae	Brachyistius frenatus			М	М			
Embiotocidae	Cymatogaster aggregata			М	М			
Embiotocidae	Embiotoca lateralis			М	М			
Ephippidae	Platax orbicularis	107		М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
F		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	volume (#)	volume (kg)	Watch	watch	Watch	Watch	Canada
Ephippidae	Platax pinnatus	11		M	M			
Ephippidae	Platax teira	12		Μ	М			
Erethistidae	Hara jerdoni	80		F	F	0		
Gadidae	Gadus morhua		45	E	М	1		
Gasteropelecidae	Carnegiella marthae	1055		F	F	0		
Gasteropelecidae	Carnegiella myersi	530		F	F	0		
Gasteropelecidae	Carnegiella strigata	7473		F	F	0		
Gasteropelecidae	Gasteropelecus levis	275		F	F	0		
Gasteropelecidae	Gasteropelecus sternicla	1805		F	F	0		
Gasteropelecidae	Thoracocharax stellatus	5396		F	F	0		
Ginglymostomatidae	Ginglymostoma cirratum	3		М	М			
Gobiesocidae	Gobiesox punctulatus	1		E	М			
Gobiidae	Amblyeleotris aurora	7		E	М	1		
Gobiidae	Amblyeleotris diagonalis	17		E	М	1		
Gobiidae	Amblyeleotris fasciata	4		E	М	1		
Gobiidae	Amblyeleotris guttata	55		E	М	1		
Gobiidae	Amblyeleotris randalli	4		E	М	1		
Gobiidae	Amblyeleotris steinitzi	5		E	М	1		
Gobiidae	Amblyeleotris wheeleri	153		E	М	1		
Gobiidae	Amblygobius albimaculatus	2		E	М	1		
Gobiidae	Amblygobius bynoensis	28		E	М	1		
Gobiidae	Amblygobius decussatus	3		E	М	1		
Gobiidae	Amblygobius nocturnus	22		E	М	1		
Gobiidae	Amblygobius phalaena	53		E	М	1		
Gobiidae	Bathygobius fuscus	22		E	М	1		
Gobiidae	Bryaninops amplus	24		E	М	1		
Gobiidae	Coryphopterus glaucofraenum	5		E	М	1		

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Gobiidae	Coryphopterus personatus	1		E	М	1		
Gobiidae	Cryptocentrus cinctus	395		E	М	1		
Gobiidae	Cryptocentrus cryptocentrus	6		E	М	1		
Gobiidae	Cryptocentrus fasciatus	7		E	М	1		
Gobiidae	Cryptocentrus leptocephalus	64		E	М	1		
Gobiidae	Cryptocentrus lutheri	43		E	М	1		
Gobiidae	Cryptocentrus strigilliceps	10		E	М	1		
Gobiidae	Ctenogobiops tangaroai	2		E	М	1		
Gobiidae	Elacatinus atronasus	116		E	М	1		
Gobiidae	Elacatinus evelynae	64		E	М	1		
Gobiidae	Elacatinus horsti	19		E	М	1		
Gobiidae	Elacatinus illecebrosus	16		E	М	1		
Gobiidae	Elacatinus multifasciatus	8		E	М	1		
Gobiidae	Elacatinus oceanops	339		E	М	1		
Gobiidae	Elacatinus prochilos	4		E	М	1		
Gobiidae	Elacatinus puncticulatus	11		E	М	1		
Gobiidae	Eviota pellucida	9		E	М	1		
Gobiidae	Exyrias puntang	210		E	М	1		
Gobiidae	Gobiodon atrangulatus	249		E	М	1		
Gobiidae	Gobiodon citrinus	181		E	М	1		
Gobiidae	Gobiodon histrio	134		E	М	1		
Gobiidae	Gobiodon okinawae	272		E	М	1		
Gobiidae	Gobiodon quinquestrigatus	47		E	М	1		
Gobiidae	Gobius auratus	4		E	М	1		
Gobiidae	Koumansetta hectori	43		E	М	1		
Gobiidae	Koumansetta rainfordi	57		E	М	1		
Gobiidae	Lythrypnus dalli	27		E	Μ	1		

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Gobiidae	Paragobiodon lacunicolus	2		E	М	1		
Gobiidae	Signigobius biocellatus	40		E	М	1		
Gobiidae	Stonogobiops nematodes	5		E	М	1		
Gobiidae	Stonogobiops xanthorhinica	82		E	М	1		
Gobiidae	Trimma striata	2		E	М	1		
Gobiidae	Valenciennea helsdingenii	12		E	М	1		
Gobiidae	Valenciennea longipinnis	64		E	М	1		
Gobiidae	Valenciennea puellaris	427		E	М	1		
Gobiidae	Valenciennea sexguttata	55		E	М	1		
Gobiidae	Valenciennea strigata	471		E	М	1		
Gobiidae	Valenciennea wardii	87		E	М	1		
Grammatidae	Gramma loreto	915		М	М			
Grammatidae	Gramma melacara	58		М	М			
Gymnarchidae	Gymnarchus niloticus	40		F	F	0		
Gymnotidae	Electrophorus electricus			F	F	0		
Gyrinocheilidae	Gyrinocheilus aymonieri	33126		F	F	0		
Gyrinocheilidae	Gyrinocheilus pennocki	28		F	F	0		
Haemulidae	Anisotremus taeniatus	7		E	М			
Haemulidae	Anisotremus virginicus	32		E	М			
Haemulidae	Haemulon flavolineatum	14		E	М			
Haemulidae	Plectorhinchus albovittatus	11		E	М			
Haemulidae	Plectorhinchus chaetodonoides	46		E	М			
Haemulidae	Plectorhinchus diagrammus	3		E	М			
Haemulidae	Plectorhinchus gaterinus	2		E	М			
Haemulidae	Plectorhinchus lineatus	1		E	М			
Haemulidae	Plectorhinchus orientalis	7		E	М			
Haemulidae	Plectorhinchus picus	2		E	Μ			

		Aquarium Trado	Live Food	Family	Species Habitat	Family	Species	Species
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Haemulidae	Plectorhinchus polytaenia	2		E	М			
Helostomatidae	Helostoma temminkii	10979		F	F	0		
Hemiodontidae	Hemiodus gracilis	60		F	F	0		
Hemiodontidae	Hemiodus semitaeniatus	30		F	F	0		
Hemiscylliidae	Chiloscyllium indicum	5		М	М			
Hemiscylliidae	Chiloscyllium plagiosum	4		М	М			
Hemiscylliidae	Chiloscyllium punctatum	28		М	М			
Hemiscylliidae	Chiloscyllium punctatum	28		М	М			
Hemiscylliidae	Hemiscyllium ocellatum	1		М	М			
Hemitripteridae	Hemitripterus americanus		1959	М	М			
Hemitripteridae	Nautichthys oculofasciatus			М	М			
Heterodontidae	Heterodontus francisci	1		М	М			
Heterodontidae	Heterodontus japanicus			М	М			
Hexagrammidae	Hexagrammos decagrammus			М	М			
Hexagrammidae	Ophiodon elongatus			М	М			
Hexagrammidae	Oxylebius pictus			М	М			
Holocentridae	Myripristis jacobus	4		М	М			
Holocentridae	Neoniphon sammara	8		М	М			
Holocentridae	Sargocentron caudimaculatum	3		М	М			
Holocentridae	Sargocentron diadema	2		М	М			
Holocentridae	Sargocentron vexillarium	11		М	М			
Hypopomidae	Hypopygus lepturus	50		F	F	0		
Labridae	Anampses caeruleopunctatus	49		М	М			
Labridae	Anampses chrysocephalus	3		М	М			
Labridae	Anampses cuvier	1		М	М			
Labridae	Anampses lineatus	5		М	Μ			
Labridae	Anampses meleagrides	18		М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Labridae	Anampses twistii	1		М	М			
Labridae	Bodianus anthioides	6		М	М			
Labridae	Bodianus axillaris	5		М	М			
Labridae	Bodianus bimaculatus	4		М	М			
Labridae	Bodianus diana	18		М	М			
Labridae	Bodianus diplotaenia	2		М	М			
Labridae	Bodianus hirsutus	2		М	М			
Labridae	Bodianus mesothorax	9		М	М			
Labridae	Bodianus opercularis	4		М	М			
Labridae	Bodianus pulchellus	44		М	М			
Labridae	Bodianus rufus	31		М	М			
Labridae	Cheilinus fasciatus	5		М	М			
Labridae	Cheilinus trilobatus	1		М	М			
Labridae	Cheilinus undulatus			М	М			
Labridae	Choerodon fasciatus	22		М	М			
Labridae	Cirrhilabrus adornatus	5		М	М			
Labridae	Cirrhilabrus aurantidorsalis	43		М	М			
Labridae	Cirrhilabrus condei	1		М	М			
Labridae	Cirrhilabrus cyanopleura	18		М	М			
Labridae	Cirrhilabrus exquisitus	40		М	М			
Labridae	Cirrhilabrus filamentosus	7		М	М			
Labridae	Cirrhilabrus flavidorsalis	10		М	М			
Labridae	Cirrhilabrus jordani	1		М	М			
Labridae	Cirrhilabrus lineatus	1		М	М			
Labridae	Cirrhilabrus lubbocki	55		М	М			
Labridae	Cirrhilabrus luteovittatus	1		М	М			
Labridae	Cirrhilabrus punctatus	1		М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Volume (#)	Volume (kg)	Habitat Match	Match	Match	Match	in Canada
Labridae	Cirrhilabrus rubrimarainatus	2		М	М			
Labridae	Cirrhilabrus rubripinnis	2		М	М			
Labridae	Cirrhilabrus rubriventralis	90		М	М			
Labridae	Cirrhilabrus scottorum	26		М	М			
Labridae	Cirrhilabrus solorensis	71		М	М			
Labridae	Cirrhilabrus temminckii	1		М	М			
Labridae	Cirrhilabrus tonozukai	2		М	М			
Labridae	Coris aygula	3		М	М			
Labridae	Coris cuvieri	5		М	М			
Labridae	Coris flavovittata	3		М	М			
Labridae	Coris formosa	53		М	М			
Labridae	Coris gaimard	73		М	М			
Labridae	Epibulus insidiator	1		М	М			
Labridae	Gomphosus caeruleus	29		М	М			
Labridae	Gomphosus varius	16		М	М			
Labridae	Halichoeres chierchiae	3		М	М			
Labridae	Halichoeres chloropterus	25		М	М			
Labridae	Halichoeres chrysus	304		М	М			
Labridae	Halichoeres garnoti	8		М	М			
Labridae	Halichoeres hortulanus	49		М	М			
Labridae	Halichoeres iridis	4		М	М			
Labridae	Halichoeres marginatus	43		М	М			
Labridae	Halichoeres melanochir	1		М	М			
Labridae	Halichoeres melanurus	17		М	М			
Labridae	Halichoeres nebulosus	1		М	М			
Labridae	Halichoeres ornatissimus	28		М	М			
Labridae	Halichoeres timorensis	1		М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Labridae	Halichoeres trispilus	75		М	М			
Labridae	Hemigymnus fasciatus	1		М	М			
Labridae	Labroides bicolor	10		М	М			
Labridae	Labroides dimidiatus	923		М	М			
Labridae	Labroides pectoralis	3		М	М			
Labridae	Labroides phthirophagus	5		М	М			
Labridae	Larabicus quadrilineatus	20		М	М			
Labridae	Macropharyngodon choati	2		М	М			
Labridae	Macropharyngodon geoffroy	17		М	М			
Labridae	Macropharyngodon meleagris	48		М	М			
Labridae	Macropharyngodon ornatus	23		М	М			
Labridae	Notolabrus fucicola	1		М	М			
Labridae	Novaculichthys taeniourus	47		М	М			
Labridae	Oxycheilinus bimaculatus	1		М	М			
Labridae	Paracheilinus angulatus	22		М	М			
Labridae	Paracheilinus carpenteri	12		М	М			
Labridae	Paracheilinus cyaneus	20		М	М			
Labridae	Paracheilinus filamentosus	128		М	М			
Labridae	Paracheilinus lineopunctatus	3		М	М			
Labridae	Paracheilinus mccoskeri	7		М	М			
Labridae	Paracheilinus octotaenia	46		М	М			
Labridae	Pseudocheilinus evanidus	3		М	М			
Labridae	Pseudocheilinus hexataenia	488		М	М			
Labridae	Pseudocheilinus octotaenia	21		М	М			
Labridae	Pseudocheilinus tetrataenia	2		М	М			
Labridae	Pseudocoris yamashiroi	2		М	М			
Labridae	Pseudojuloides cerasinus	8		М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Labridae	Stethojulis balteata	5		Μ	М			
Labridae	Stethojulis trilineata	2		Μ	М			
Labridae	Tautoga onitis		17562	М	М			
Labridae	Thalassoma bifasciatum	83		Μ	М			
Labridae	Thalassoma hardwicke	12		Μ	М			
Labridae	Thalassoma lucasanum	20		Μ	М			
Labridae	Thalassoma lunare	46		Μ	М			
Labridae	Thalassoma lutescens	13		М	М			
Labridae	Thalassoma rueppellii	10		М	М			
Labridae	Thalassoma trilobatum	4		М	М			
Labridae	Wetmorella nigropinnata	2		М	М			
Labrisomidae	Labrisomus filamentosus	2		М	М			
Lamnidae	Isurus oxyrhinchus			Μ	М			
Lebiasinidae	Copella arnoldi	25		F	F	0		
Lebiasinidae	Nannostomus beckfordi	7586		F	F	0		
Lebiasinidae	Nannostomus eques	1640		F	F	0		
Lebiasinidae	Nannostomus harrisoni	150		F	F	0		
Lebiasinidae	Nannostomus unifasciatus	100		F	F	0		
Lebiasinidae	Poecilobrycon eques	200		F	F	0		
Loricariidae	Acanthicus adonis	16		F	F	0		
Loricariidae	Acanthicus hystrix	83		F	F	0		
Loricariidae	Ancistrus dolichopterus	4106		F	F	0		
Loricariidae	Ancistrus hoplogenys	5		F	F	0		
Loricariidae	Ancistrus ranunculus	123		F	F	0		
Loricariidae	Ancistrus tamboensis	302		F	F	0		
Loricariidae	Ancistrus temminckii	235		F	F	0		
Loricariidae	Chaetostoma greeni	100		F	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Volume (#)	Volume (kg)	Habitat Match	Match	Match	Match	in Canada
Loricariidae	Chaetostoma thomsoni	3176		F	F	0		
Loricariidae	Dasyloricaria filamentosa	30		F	F	0		
Loricariidae	Dekeyseria pulcher	89		F	F	0		
Loricariidae	Farlowella acus	2378		F	F	0		
Loricariidae	Glyptoperichthys gibbiceps	4413		F	F	0		
Loricariidae	<i>Glyptoperichthys joselimaianus</i>	150		F	F	0		
Loricariidae	Hypancistrus inspector	25		F	F	0		
Loricariidae	Hypancistrus zebra	1		F	F	0		
Loricariidae	Hypostomus plecostomus	76434		F	F	0		
Loricariidae	Hypostomus punctatus	2907		F	F	0		
Loricariidae	Leporacanthicus joselimai	21		F	F	0		
Loricariidae	Loricaria parnahybae	50		F	F	0		
Loricariidae	Otocinclus affinis	26458		F	F	0		
Loricariidae	Otocinclus flexilis	2550		F	F	0		
Loricariidae	Otocinclus mariae	3080		F	F	0		
Loricariidae	Otocinclus vestitus	442		F	F	0		
Loricariidae	Otocinclus vittatus	12775		F	F	0		
Loricariidae	Panaque nigrolineatus	562		F	F	0		
Loricariidae	Parancistrus aurantiacus	40		F	F	0		
Loricariidae	Pareiorhina rudolphi	100		F	F	0		
Loricariidae	Parotocinclus jumbo	700		F	F	0		
Loricariidae	Parotocinclus maculicauda	50		F	F	0		
Loricariidae	Peckoltia vermiculata	5		F	F	0		
Loricariidae	Peckoltia vittata	2001		F	F	0		
Loricariidae	Pseudacanthicus leopardus	5		F	F	0		
Loricariidae	Pterygoplichthys anisitsi	1953		F	F	0		
Loricariidae	Pterygoplichthys gibbiceps	100		F	F	0		
		Aquarium	Live Food	Family	Species	Family	Species	Species
-----------------	--------------------------------	------------	-------------	---------	---------	---------	---------	---------
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Loricariidae	Pterygoplichthys multiradiatus	25		F	F	0		
Loricariidae	Rineloricaria fallax	3		F	F	0		
Loricariidae	Rineloricaria hasemani	480		F	F	0		
Loricariidae	Rineloricaria parva	790		F	F	0		
Loricariidae	Scobinancistrus aureatus	30		F	F	0		
Loricariidae	Sturisoma aureum	21		F	F	0		
Lutjanidae	Lutjanus erythropterus	2		М	М			
Lutjanidae	Lutjanus kasmira	1		М	М			
Lutjanidae	Lutjanus sebae	5		М	М			
Lutjanidae	Macolor niger	4		М	М			
Lutjanidae	Symphorichthys spilurus	6		М	М			
Malacanthidae	Hoplolatilus fronticinctus	10		М	М			
Malacanthidae	Hoplolatilus luteus	3		М	М			
Malacanthidae	Hoplolatilus marcosi	10		М	М			
Malacanthidae	Hoplolatilus purpureus	22		М	М			
Malacanthidae	Hoplolatilus starcki	4		М	М			
Malacanthidae	Malacanthus latovittatus	6		М	М			
Malapteruridae	Malapterurus electricus	25		F	F	0		
Mastacembelidae	Macrognathus aral	91		F	F	0		
Mastacembelidae	Macrognathus circumcinctus	216		F	F	0		
Mastacembelidae	Macrognathus pancalus	30		F	F	0		
Mastacembelidae	Macrognathus siamensis	1099		F	F	0		
Mastacembelidae	Macrognathus zebrinus	30		F	F	0		
Mastacembelidae	Mastacembalus armatus	1366		F	F	0		
Mastacembelidae	Mastacembelus erythrotaenia	279		F	F	0		
Mastacembelidae	Mastacembelus favus	75		F	F	0		
Megalopidae	Megalops atlanticus			М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Melanotaeniidae	Chilatherina bleheri	13		F	F	0		
Melanotaeniidae	Glossolepis incisus	1801		F	F	0		
Melanotaeniidae	Iriatherina werneri	2213		F	F	0		
Melanotaeniidae	Melanotaenia affinis	500		F	F	0		
Melanotaeniidae	Melanotaenia australis	25		F	F	0		
Melanotaeniidae	Melanotaenia boesemani	2458		F	F	0		
Melanotaeniidae	Melanotaenia gracilis	40		F	F	0		
Melanotaeniidae	Melanotaenia herbertaxelrodi	357		F	F	0		
Melanotaeniidae	Melanotaenia lacustris	1173		F	F	0		
Melanotaeniidae	Melanotaenia maccullochi	476		F	F	0		
Melanotaeniidae	Melanotaenia nigrans	1600		F	F	0		
Melanotaeniidae	Melanotaenia parkinsoni	35		F	F	0		
Melanotaeniidae	Melanotaenia parva	20		F	F	0		
Melanotaeniidae	Melanotaenia praecox	4688		F	F	0		
Melanotaeniidae	Melanotaenia splendida	1938		F	F	0		
Melanotaeniidae	Melanotaenia trifasciata	232		F	F	0		
Microdesmidae	Gunnellichthys curiosus	6		E	М			
Microdesmidae	Nemateleotris decora	126		E	М			
Microdesmidae	Nemateleotris magnifica	683		E	М			
Microdesmidae	Ptereleotris evides	157		E	М			
Microdesmidae	Ptereleotris heteroptera	11		E	М			
Microdesmidae	Ptereleotris microlepis	18		E	М			
Microdesmidae	Ptereleotris zebra	105		E	М			
Mochokidae	Synodontis batensoda	250		F	F	0		
Mochokidae	Synodontis clarias	40		F	F	0		
Mochokidae	Synodontis decorus	15		F	F	0		
Mochokidae	Synodontis eupterus	526		F	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Trade Volume (#)	Trade Volume (kg)	Habitat Match	Habitat Match	Climate Match	Climate Match	in Canada
Mochokidae	Synodontis multipunctatus	204		F	F	0		
Mochokidae	Synodontis nigrita	10		F	F	0		
Mochokidae	Synodontis nigriventris	1894		F	F	0		
Mochokidae	Synodontis njassae	70		F	F	0		
Mochokidae	Synodontis ocellifer	10		F	F	0		
Mochokidae	Synodontis petricola	100		F	F	0		
Mochokidae	Synodontis schall	15		F	F	0		
Mochokidae	Synodontis schoutedeni	15		F	F	0		
Monacanthidae	Acreichthys tomentosus	4		М	М			
Monacanthidae	Cantherhines dumerilii	1		М	М			
Monacanthidae	Oxymonacanthus longirostris	22		М	М			
Monacanthidae	Paraluteres prionurus	4		М	М			
Monacanthidae	Pervagor janthinosoma	1		М	М			
Monacanthidae	Pervagor melanocephalus	28		М	М			
Monacanthidae	Stephanolepis hispidus	2		М	М			
Monodactylidae	Monodactylus argenteus	901		М	F			
Monodactylidae	Monodactylus sebae	490		М	М			
Mormyridae	Brienomyrus brachyistius	700		F	F	0		
Mormyridae	Gnathonemus petersii	1989		F	F	0		
Mormyridae	Marcusenius macrolepidotus	150		F	F	0		
Mormyridae	Pollimyrus castelnaui	40		F	F	0		
Moronidae	Lateolabrax japonicus			E	М	1		
Mullidae	Parupeneus barberinoides	14		М	М			
Mullidae	Parupeneus cyclostomus	4		М	М			
Mullidae	Parupeneus macronemus	5		М	М			
Mullidae	Pseudupeneus maculatus	1		М	М			
Mullidae	Upeneichthys lineatus	1		Μ	Μ			

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Muraenidae	Echidna catenata	2		М	М			
Muraenidae	Echidna nebulosa	49		М	М			
Muraenidae	Echidna polyzona	1		М	М			
Muraenidae	Gymnomuraena zebra	6		М	М			
Muraenidae	Gymnothorax favagineus	2		М	М			
Muraenidae	Gymnothorax fimbriatus	2		М	М			
Muraenidae	Gymnothorax miliaris	2		М	М			
Muraenidae	Gymnothorax tile	30		М	М			
Muraenidae	Gymnothorax undulatus	16		М	М			
Muraenidae	Muraena lentiginosa	1		М	М			
Muraenidae	Pseudechidna brummeri	2		М	М			
Muraenidae	Rhinomuraena quaesita	20		М	М			
Muraenidae	Uropterygius concolor	3		М	М			
Myliobatidae	Myliobatis californiacas			М	М			
Nandidae	Badis badis	1691		F	F	0		
Nandidae	Nandus nandus	15		F	F	0		
Nemipteridae	Scolopsis bilineata	8		М	М			
Notopteridae	Chitala blanci	16		F	F	0		
Notopteridae	Chitala borneensis	4		F	F	0		
Notopteridae	Chitala chitala	591		F	F	0		
Notopteridae	Chitala ornata	50		F	F	0		
Notopteridae	Notopterus notopterus	15		F	F	0		
Notopteridae	Papyrocranus afer			F	F	0		
Notopteridae	Xenomystus nigri	670		F	F	0		
Ophichthidae	Myrichthys colubrinus	5		М	М			
Ophichthidae	Pisodonophis boro	100		М	М			
Opistognathidae	Opistognathus aurifrons	296		М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Opistognathidae	Opistognathus gilberti	12		М	М			
Opistognathidae	Opistognathus lonchurus	1		М	М			
Opistognathidae	Opistognathus macrognathus	9		М	М			
Opistognathidae	Opistognathus whitehursti	11		М	М			
Oplegnathidae	Oplegnathus fasciatus	4		М	М			
Osmeridae	Osmerus eperlanus			E	М			
Osphronemidae	Belontia signata	40		F	F	0		
Osphronemidae	Betta coccina	88		F	F	0		
Osphronemidae	Betta imbellis	112		F	F	0		
Osphronemidae	Betta pugnax	32		F	F	0		
Osphronemidae	Betta splendens	49303		F	F	0		
Osphronemidae	Colisa chuna	484		F	F	0		
Osphronemidae	Colisa fasciata	817		F	F	0		
Osphronemidae	Colisa labiosus	1894		F	F	0		
Osphronemidae	Colisa lalia	32277		F	F	0		
Osphronemidae	Ctenops nobilis	16		F	F	0		
Osphronemidae	Macropodus opercularis	4880		F	F	0		
Osphronemidae	Macropodus spechti	153		F	F	0		
Osphronemidae	Osphronemus goramy	954		F	F	0		
Osphronemidae	Parasphaerichthys lineatus	120		F	F	0		
Osphronemidae	Parasphaerichthys ocellatus	6		F	F	0		
Osphronemidae	Parosphromenus deissneri	64		F	F	0		
Osphronemidae	Polyacanthus fasciatus	60		F	F	0		
Osphronemidae	Pseudosphromenus cupanus	149		F	F	0		
Osphronemidae	Pseudosphromenus dayi			F	F	0		
Osphronemidae	Sphaerichthys osphromenoides	955		F	F	0		
Osphronemidae	Trichogaster chuna	5444		F	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Trade Volume (#)	Trade Volume (kg)	Habitat Match	Habitat Match	Climate Match	Climate Match	in Canada
Osphronemidae	Trichogaster labiosus	245		F	F	0		
Osphronemidae	Trichogaster leerii	10229		F	F	0		
Osphronemidae	Trichogaster microlepis	2868		F	F	0		
Osphronemidae	Trichogaster pectoralis	1100		F	F	0		
Osphronemidae	Trichopodus trichopterus	26220		F	F	0		
Osphronemidae	Trichopsis pumila	1660		F	F	0		
Osphronemidae	Trichopsis vittata	449		F	F	0		
Osteoglossidae	Arapaima gigas			F	F	0		
Osteoglossidae	Osteoglossum bicirrhosum	1182		F	F	0		
Osteoglossidae	Osteoglossum ferreirai	20		F	F	0		
Osteoglossidae	Scleropages formosus	89		F	F	0		
Osteoglossidae	Scleropages jardinii	118		F	F	0		
Ostraciidae	Acanthostracion quadricornis	21		М	М			
Ostraciidae	Lactoria cornuta	133		М	М			
Ostraciidae	Ostracion cubicus	74		М	М			
Ostraciidae	Ostracion meleagris	19		М	М			
Ostraciidae	Tetrosomus gibbosus	4		М	М			
Pangasiidae	Pangasius bocourti	10		F	F	0		
Pangasiidae	(13370		F	F	0		
Pangasiidae	Pangasius sanitwongsei	355		F	F	0		
Pantodontidae	Pantodon buchholzi	2225		F	F	0		
Pegasidae	Pegasus volitans	3		М	М			
Pholidichthyidae	Pholidichthys leucotaenia	129		М	М			
Pimelodidae	Brachyrhamdia imitator	12		F	F	0		
Pimelodidae	Microglanis iheringi	6		F	F	0		
Pimelodidae	Microglanis poecilus	1335		F	F	0		
Pimelodidae	Phractocephalus hemioliopterus	185		F	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Pimelodidae	Pimelodus blochii	6		F	F	0		
Pimelodidae	Pimelodus pictus	4703		F	F	0		
Pimelodidae	Pseudoplatystoma fasciatum	243		F	F	0		
Pimelodidae	Sorubim lima	150		F	F	0		
Pimelodidae	Sorubimichthys planiceps	50		F	F	0		
Pimelodidae	Zungaro zungaro	35		F	F	0		
Pinguipedidae	Parapercis punctulata	6		М	М			
Pinguipedidae	Parapercis schauinslandii	3		М	М			
Pinguipedidae	Parapercis snyderi	9		М	М			
Pinguipedidae	Parapercis tetracantha	5		М	М			
Platycephalidae	Platycephalus indicus	8		М	М			
Plesiopidae	Assessor macneilli	1		М	М			
Plesiopidae	Calloplesiops altivelis	51		М	М			
Plesiopidae	Plesiops coeruleolineatus	6		М	М			
Plesiopidae	Plesiops corallicola	5		М	М			
Pleuronectidae	Hippoglossus hippoglossus			E	М			
Pleuronectidae	Hippoglossus stenolepis		99	E	М			
Pleuronectidae	Lepidopsetta bilineata			E	М			
Pleuronectidae	Parophrys vetulus			E	М			
Pleuronectidae	Psettichthys melanostictus	2		E	М			
Plotosidae	Plotosus lineatus	126		E	М	1		
Polycentridae	Monocirrhus polyacanthus	71		F	F	0		
Polycentridae	Polycentrus schomburgkii	20		F	F	0		
Polynemidae	Polynemus octonemus			E	М	0		
Polypteridae	Erpetoichthys calabaricus	1117		F	F	0		
Polypteridae	Polypterus ornatipinnis	20		F	F	0		
Polypteridae	Polypterus senegalus	584		F	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Pomacanthidae	Apolemichthys trimaculatus	96		М	М			
Pomacanthidae	Apolemichthys xanthopunctatus	8		М	М			
Pomacanthidae	Apolemichthys xanthurus	27		М	М			
Pomacanthidae	Centropyge acanthops	17		М	М			
Pomacanthidae	Centropyge argi	175		М	М			
Pomacanthidae	Centropyge aurantia	19		М	М			
Pomacanthidae	Centropyge aurantonotus	67		М	М			
Pomacanthidae	Centropyge bicolor	334		М	М			
Pomacanthidae	Centropyge bispinosa	646		М	М			
Pomacanthidae	Centropyge colini	1		М	М			
Pomacanthidae	Centropyge eibli	113		М	М			
Pomacanthidae	Centropyge ferrugata	114		М	М			
Pomacanthidae	Centropyge fisheri	16		М	М			
Pomacanthidae	Centropyge flavicauda	53		М	М			
Pomacanthidae	Centropyge flavipectoralis	11		М	М			
Pomacanthidae	Centropyge flavissima	122		М	М			
Pomacanthidae	Centropyge heraldi	132		М	М			
Pomacanthidae	Centropyge loricula	341		М	М			
Pomacanthidae	Centropyge multifasciata	7		М	М			
Pomacanthidae	Centropyge multispinis	24		М	М			
Pomacanthidae	Centropyge nox	41		М	М			
Pomacanthidae	Centropyge potteri	46		М	М			
Pomacanthidae	Centropyge tibicen	100		М	М			
Pomacanthidae	Centropyge venustus	3		М	М			
Pomacanthidae	Centropyge vrolikii	151		М	М			
Pomacanthidae	Chaetodontoplus caeruleopunctatus	11		М	М			
Pomacanthidae	Chaetodontoplus chrysocephalus	1		М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Pomacanthidae	Chaetodontoplus duboulayi	14		М	М			
Pomacanthidae	Chaetodontoplus melanosoma	23		М	М			
Pomacanthidae	Chaetodontoplus meredithi	15		М	М			
Pomacanthidae	Chaetodontoplus mesoleucus	61		М	М			
Pomacanthidae	Chaetodontoplus septentrionalis	12		М	М			
Pomacanthidae	Genicanthus bellus	12		М	М			
Pomacanthidae	Genicanthus caudovittatus	7		М	М			
Pomacanthidae	Genicanthus lamarck	45		М	М			
Pomacanthidae	Genicanthus melanospilos	56		М	М			
Pomacanthidae	Genicanthus semifasciatus	7		М	М			
Pomacanthidae	Genicanthus watanabei	7		М	М			
Pomacanthidae	Holacanthus bermudensis	42		М	М			
Pomacanthidae	Holacanthus ciliaris	101		М	М			
Pomacanthidae	Holacanthus passer	71		М	М			
Pomacanthidae	Holacanthus tricolor	86		М	М			
Pomacanthidae	Pomacanthus annularis	82		М	М			
Pomacanthidae	Pomacanthus arcuatus	48		М	М			
Pomacanthidae	Pomacanthus asfur	62		М	М			
Pomacanthidae	Pomacanthus chrysurus	6		М	М			
Pomacanthidae	Pomacanthus imperator	259		М	М			
Pomacanthidae	Pomacanthus maculosus	63		М	М			
Pomacanthidae	Pomacanthus navarchus	82		М	М			
Pomacanthidae	Pomacanthus paru	98		М	М			
Pomacanthidae	Pomacanthus semicirculatus	199		М	М			
Pomacanthidae	Pomacanthus sexstriatus	17		М	М			
Pomacanthidae	Pomacanthus xanthometopon	57		М	М			
Pomacanthidae	Pomacanthus zonipectus	25		М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	In Canada
Pomacanthidae	Pygoplites diacanthus	119		М	М			
Pomacentridae	Abudefduf saxatilis	62		М	М			
Pomacentridae	Amblyglyphidodon aureus	20		М	М			
Pomacentridae	Amblyglyphidodon flavilatus	12		М	М			
Pomacentridae	Amphiprion akallopisos	215		М	М			
Pomacentridae	Amphiprion akindynos	6		М	М			
Pomacentridae	Amphiprion bicinctus	48		М	М			
Pomacentridae	Amphiprion chrysopterus	68		М	М			
Pomacentridae	Amphiprion clarkii	664		М	М			
Pomacentridae	Amphiprion ephippium	84		М	М			
Pomacentridae	Amphiprion frenatus	956		М	М			
Pomacentridae	Amphiprion latezonatus	14		М	М			
Pomacentridae	Amphiprion melanopus	226		М	М			
Pomacentridae	Amphiprion nigripes	18		М	М			
Pomacentridae	Amphiprion ocellaris	3327		М	М			
Pomacentridae	Amphiprion percula	1238		М	М			
Pomacentridae	Amphiprion perideraion	125		М	М			
Pomacentridae	Amphiprion polymnus	149		М	М			
Pomacentridae	Amphiprion sandaracinos	104		М	М			
Pomacentridae	Amphiprion sebae	539		М	М			
Pomacentridae	Chromis analis	20		М	М			
Pomacentridae	Chromis atripectoralis	857		М	М			
Pomacentridae	Chromis caerulea	686		М	М			
Pomacentridae	Chromis cyanea	87		М	М			
Pomacentridae	Chromis dimidiata	20		М	М			
Pomacentridae	Chromis fumea	6		М	М			
Pomacentridae	Chromis insolata	20		М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Pomacentridae	Chromis iomelas	1		М	М			
Pomacentridae	Chromis margaritifer	4		М	М			
Pomacentridae	Chromis ovalis	5		М	М			
Pomacentridae	Chromis retrofasciata	29		М	М			
Pomacentridae	Chromis scotti	5		М	М			
Pomacentridae	Chromis vanderbilti	9		М	М			
Pomacentridae	Chromis viridis	1556		М	М			
Pomacentridae	Chromis xanthurus	33		М	М			
Pomacentridae	Chrysiptera brownriggii	4		М	М			
Pomacentridae	Chrysiptera cyanea	1604		М	М			
Pomacentridae	Chrysiptera hemicyanea	1155		М	М			
Pomacentridae	Chrysiptera parasema	723		М	М			
Pomacentridae	Chrysiptera rollandi	8		М	М			
Pomacentridae	Chrysiptera springeri	5		М	М			
Pomacentridae	Chrysiptera starcki	11		М	М			
Pomacentridae	Chrysiptera talboti	166		М	М			
Pomacentridae	Chrysiptera taupou	165		М	М			
Pomacentridae	Chrysiptera tricincta	12		М	М			
Pomacentridae	Dascyllus albisella	507		М	М			
Pomacentridae	Dascyllus aruanus	363		М	М			
Pomacentridae	Dascyllus carneus	54		М	М			
Pomacentridae	Dascyllus marginatus	97		М	М			
Pomacentridae	Dascyllus melanurus	844		М	М			
Pomacentridae	Dascyllus reticulatus	16		М	М			
Pomacentridae	Dascyllus trimaculatus	828		М	М			
Pomacentridae	Dischistodus fasciatus	2		М	М			
Pomacentridae	Hypsypops rubicundus	8		М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Pomacentridae	Microspathodon chrysurus	76		Μ	М			
Pomacentridae	Microspathodon dorsalis	12		М	М			
Pomacentridae	Neoglyphidodon melas	289		М	М			
Pomacentridae	Neoglyphidodon nigroris	16		М	М			
Pomacentridae	Neoglyphidodon oxyodon	46		М	М			
Pomacentridae	Neopomacentrus azysron	66		М	М			
Pomacentridae	Neopomacentrus filamentosus	100		М	М			
Pomacentridae	Neopomacentrus nemurus	120		М	М			
Pomacentridae	Parma bicolor	40		М	М			
Pomacentridae	Parma microlepis	12		М	М			
Pomacentridae	Plectroglyphidodon dickii	20		М	М			
Pomacentridae	Plectroglyphidodon lacrymatus	14		М	М			
Pomacentridae	Plectroglyphidodon leucozonus	20		М	М			
Pomacentridae	Pomacentrus alleni	45		М	М			
Pomacentridae	Pomacentrus amboinensis	21		М	М			
Pomacentridae	Pomacentrus auriventris	59		М	М			
Pomacentridae	Pomacentrus bankanensis	72		М	М			
Pomacentridae	Pomacentrus caeruleus	530		М	М			
Pomacentridae	Pomacentrus coelestis	192		М	М			
Pomacentridae	Pomacentrus melanochir	10		М	М			
Pomacentridae	Pomacentrus milleri	3		М	М			
Pomacentridae	Pomacentrus moluccensis	71		М	М			
Pomacentridae	Pomacentrus pikei	18		М	М			
Pomacentridae	Pomacentrus smithi	15		М	М			
Pomacentridae	Pomacentrus sulfureus	2		М	М			
Pomacentridae	Pomacentrus tripunctatus	32		М	М			
Pomacentridae	Premnas biaculeatus	939		М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Pomacentridae	Stegastes adustus	10		М	М			
Pomacentridae	Stegastes leucostictus	38		М	М			
Pomacentridae	Stegastes partitus	28		М	М			
Pomacentridae	Stegastes planifrons	10		М	М			
Potamotrygonidae	Potamotrygon hystrix	7		F	F	0		
Potamotrygonidae	Potamotrygon leopoldi	3		F	F	0		
Potamotrygonidae	Potamotrygon motoro	119		F	F	0		
Potamotrygonidae	Potamotrygon orbignyi	62		F	F	0		
Priacanthidae	Heteropriacanthus cruentatus	12		М	М			
Pristidae	Pristis pristis			М	М			
Prochilodontidae	Semaprochilodus insignis	50		F	F	0		
Prochilodontidae	Semaprochilodus taeniurus	35		F	F	0		
Protopteridae	Protopterus aethiopicus			F	F	0		
Pseudochromidae	Congrogadus subducens	5		М	М			
Pseudochromidae	Pseudochromis aldabraensis	85		М	М			
Pseudochromidae	Pseudochromis bitaeniatus	6		М	М			
Pseudochromidae	Pseudochromis cyanotaenia	15		М	М			
Pseudochromidae	Pseudochromis diadema	169		М	М			
Pseudochromidae	Pseudochromis dilectus	13		М	М			
Pseudochromidae	Pseudochromis flavivertex	95		М	М			
Pseudochromidae	Pseudochromis fridmani	184		М	М			
Pseudochromidae	Pseudochromis fuscus	33		М	М			
Pseudochromidae	Pseudochromis olivaceus	1		М	М			
Pseudochromidae	Pseudochromis paccagnellae	152		М	М			
Pseudochromidae	Pseudochromis polynemus	2		М	М			
Pseudochromidae	Pseudochromis porphyreus	220		М	М			
Pseudochromidae	Pseudochromis sankeyi	17		М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
F		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Pseudochromidae	Pseudochromis splendens	18		М	М			
Pseudochromidae	Pseudochromis springeri	19		М	М			
Pseudochromidae	Pseudochromis steenei	10		М	М			
Pseudochromidae	Pseudochromis tapeinosoma	5		М	М			
Pseudomugilidae	Pseudomugil furcatus	518		F	F	0		
Pseudomugilidae	Pseudomugil gertrudae	1100		F	F	0		
Pseudomugilidae	Pseudomugil paludicola	985		F	F	0		
Pseudomugilidae	Pseudomugil signifer	90		F	F	0		
Rhamphocottidae	Rhamphocottus richardsoni			М	М			
Rhincodontidae	Rhincodon typus			М	М			
Rhinobatidae	Rhinobatos typus	1		М	М			
Rhinobatidae	Rhynchobatus australiae			М	М			
Rivulidae	Austrolebias nigripinnis	30		F	F	0		
Scaridae	Cetoscarus bicolor	15		М	М			
Scaridae	Chlorurus bleekeri	1		М	М			
Scaridae	Chlorurus gibbus	7		М	М			
Scaridae	Scarus taeniopterus	7		М	М			
Scaridae	Sparisoma viride	2		М	М			
Scatophagidae	Scatophagus argus	229		М	М			
Scatophagidae	Scatophagus tetracanthus	60		М	М			
Scatophagidae	Selenotoca multifasciata	111		М	М			
Schilbeidae	Pareutropius debauwi	943		F	F	0		
Schilbeidae	Pseudeutropius moolenburghae	80		F	F	0		
Sciaenidae	Pareques acuminatus	13		E	М	1		
Scomberesocidae	Cololabis saira			М	М			
Scombridae	Scomber scombrus			М	М			
Scombridae	Thunnus alalunga			М	М			

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Scophthalmidae	Psetta maxima		4566	М	М			
Scophthalmidae	Scophthalmus maximus			М	М			
Scorpaenidae	Amblyapistus taenionotus	1		E	М			
Scorpaenidae	Dendrochirus barberi	1		E	М			
Scorpaenidae	Dendrochirus biocellatus	39		E	М			
Scorpaenidae	Dendrochirus brachypterus	62		E	М			
Scorpaenidae	Dendrochirus zebra	104		E	М			
Scorpaenidae	Pterois antennata	18		E	М			
Scorpaenidae	Pterois lunulata	2		E	М			
Scorpaenidae	Pterois miles	50		E	М			
Scorpaenidae	Pterois radiata	14		E	М			
Scorpaenidae	Pterois volitans	273		E	М			
Scorpaenidae	Rhinopias aphanes	3		E	М			
Scorpaenidae	Rhinopias eschmeyeri	1		E	М			
Scorpaenidae	Rhinopias frondosa	2		E	М			
Scorpaenidae	Scorpaenodes xyris	2		E	М			
Scorpaenidae	Scorpaenopsis venosa	2		E	М			
Scorpaenidae	Sebastapistes cyanostigma	7		E	М			
Scorpaenidae	Taenianotus triacanthus	5		E	М			
Scyliorhinidae	Atelomycterus macleayi	1		М	М			
Scyliorhinidae	Atelomycterus marmoratus	3		М	М			
Sebastidae	Sebastes caurinus		939	М	М			
Sebastidae	Sebastes maliger			М	М			
Sebastidae	Sebastes nebulosus			М	М			
Sebastidae	Sebastes nigrocinctus			М	М			
Sebastidae	Sebastes ruberrimus			М	М			
Serranidae	Centropristis striata		1135	E	М			

		Aquarium Trade	Live Food Trade	Family Habitat	Species Habitat	Family Climate	Species Climate	Species in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Serranidae	Cephalopholis boenak	1		E	М			
Serranidae	Cephalopholis miniata	20		E	М			
Serranidae	Cephalopholis panamensis	2		E	М			
Serranidae	Cromileptes altivelis	56		E	М			
Serranidae	Diploprion bifasciatum	1		E	М			
Serranidae	Epinephelus akaara		50	E	М			
Serranidae	Epinephelus fuscoguttatus			E	М			
Serranidae	Grammistes sexlineatus	1		E	М			
Serranidae	Hypoplectrus indigo	12		E	М			
Serranidae	Hypoplectrus unicolor	6		E	М			
Serranidae	Liopropoma rubre	13		E	М			
Serranidae	Paranthias colonus	5		E	М			
Serranidae	Plectranthias inermis	1		E	М			
Serranidae	Plectropomus laevis	4		E	М			
Serranidae	Plectropomus leopardus			E	М			
Serranidae	Pogonoperca punctata	1		E	М			
Serranidae	Pseudanthias bartlettorum	6		E	М			
Serranidae	Pseudanthias bicolor	2		E	М			
Serranidae	Pseudanthias dispar	218		E	М			
Serranidae	Pseudanthias engelhardi	4		E	М			
Serranidae	Pseudanthias evansi	50		E	М			
Serranidae	Pseudanthias huchtii	11		E	М			
Serranidae	Pseudanthias hypselosoma	3		E	М			
Serranidae	Pseudanthias kashiwae	30		E	М			
Serranidae	Pseudanthias Iori	14		E	М			
Serranidae	Pseudanthias parvirostris	2		E	М			
Serranidae	Pseudanthias pascalus	6		E	Μ			

		Aquarium Trade	Live Food Trade	Family Habitat	Species Habitat	Family Climate	Species Climate	Species in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Serranidae	Pseudanthias pictilis	43		E	М			
Serranidae	Pseudanthias pleurotaenia	189		E	М			
Serranidae	Pseudanthias randalli	11		E	М			
Serranidae	Pseudanthias rubrizonatus	5		E	М			
Serranidae	Pseudanthias smithvanizi	132		E	М			
Serranidae	Pseudanthias squamipinnis	568		E	М			
Serranidae	Pseudanthias thompsoni	1		E	М			
Serranidae	Pseudanthias truncatus	2		E	М			
Serranidae	Pseudanthias tuka	140		E	М			
Serranidae	Serranocirrhitus latus	10		E	М			
Serranidae	Serranus baldwini	16		E	М			
Serranidae	Serranus tabacarius	7		E	М			
Serranidae	Serranus tigrinus	22		E	М			
Serranidae	Serranus tortugarum	65		E	М			
Siganidae	Siganus corallinus	17		М	М			
Siganidae	Siganus magnificus	14		М	М			
Siganidae	Siganus puellus	3		М	М			
Siganidae	Siganus punctatus	2		М	М			
Siganidae	Siganus stellatus	12		М	М			
Siganidae	Siganus uspi	1		М	М			
Siganidae	Siganus virgatus	5		М	М			
Siganidae	Siganus vulpinus	177		М	М			
Sphyraenidae	Sphyraena barracuda	18		М	М			
Sphyrnidae	Sphyrna zygaena			М	М			
Squalidae	Squalus acanthias			М	М			
Stegostomatidae	Stegostoma fasciatum	2		М	М			
Sternopygidae	Eigenmannia virescens	1170		F	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
		Trade	Trade	Habitat	Habitat	Climate	Climate	in
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	Canada
Synanceiidae	Synanceia horrida			E	М			
Synanceiidae	Synanceia verrucosa		768	E	М			
Syngnathidae	Corythoichthys intestinalis	7		Е	М	1		
Syngnathidae	Doryrhamphus dactyliophorus	12		E	М	1		
Syngnathidae	Doryrhamphus excisus	3		E	М	1		
Syngnathidae	Doryrhamphus multiannulatus	2		E	М	1		
Syngnathidae	Hippocampus abdominalis			E	М	1		
Syngnathidae	Hippocampus angustus			E	М	1		
Syngnathidae	Hippocampus barbouri			E	М	1		
Syngnathidae	Hippocampus breviceps			E	М	1		
Syngnathidae	Hippocampus comes			E	М	1		
Syngnathidae	Hippocampus coronatus			E	М	1		
Syngnathidae	Hippocampus denise			E	М	1		
Syngnathidae	Hippocampus erectus			E	М	1		
Syngnathidae	Hippocampus fuscus			E	М	1		
Syngnathidae	Hippocampus hippocampus	3		E	М	1		
Syngnathidae	Hippocampus histrix			E	М	1		
Syngnathidae	Hippocampus ingens			E	М	1		
Syngnathidae	Hippocampus kelloggi			E	М	1		
Syngnathidae	Hippocampus kuda			E	М	1		
Syngnathidae	Hippocampus kuda subsp. multiannularis			E	М	1		
Syngnathidae	Hippocampus reidi			E	М	1		
Syngnathidae	Hippocampus spinosissimus			E	М	1		
Syngnathidae	Hippocampus trimaculatus			E	М	1		
Syngnathidae	Phycodurus eques			E	Μ	1		
Syngnathidae	Phyllopteryx taeniolatus			E	М	1		
Telmatherinidae	Marosatherina ladigesi	2350		E	F	0		

		Aquarium	Live Food	Family	Species	Family	Species	Species
Family name	Scientific name	Volume (#)	Volume (kg)	Match	Match	Match	Match	in Canada
Tetraodontidae	Arothron diadematus	12		E	М	0		
Tetraodontidae	Arothron hispidus	3		E	М	0		
Tetraodontidae	Arothron manilensis	4		E	М	0		
Tetraodontidae	Arothron mappa	7		E	М	0		
Tetraodontidae	Arothron meleagris	8		E	М	0		
Tetraodontidae	Arothron nigropunctatus	35		E	М	0		
Tetraodontidae	Arothron stellatus	3		E	М	0		
Tetraodontidae	Canthigaster amboinensis	5		E	М	0		
Tetraodontidae	Canthigaster bennetti	3		E	М	0		
Tetraodontidae	Canthigaster epilampra	1		E	М	0		
Tetraodontidae	Canthigaster jactator	7		E	М	0		
Tetraodontidae	Canthigaster janthinoptera	3		E	М	0		
Tetraodontidae	Canthigaster margaritata	16		E	М	0		
Tetraodontidae	Canthigaster rostrata	4		E	М	0		
Tetraodontidae	Canthigaster solandri	17		E	М	0		
Tetraodontidae	Canthigaster valentini	80		E	М	0		
Tetraodontidae	Carinotetraodon lorteti	40		E	F	0		
Tetraodontidae	Carinotetraodon travancoricus	5086		E	F	0		
Tetraodontidae	Chelonodon laticeps	2		E	М	0		
Tetraodontidae	Colomesus asellus	424		E	F	0		
Tetraodontidae	Tetraodon biocellatus	455		E	F	0		
Tetraodontidae	Tetraodon fluviatilis	3097		E	F	0		
Tetraodontidae	Tetraodon leiurus	15		E	F	0		
Tetraodontidae	Tetraodon lineatus	6		E	F	0		
Tetraodontidae	Tetraodon miurus			E	F	0		
Tetraodontidae	Tetraodon nigroviridis	411		E	F	0		
Tetraodontidae	Tetraodon palembangensis	1612		E	F	0		

Family name	Scientific name	Aquarium Trade Volume (#)	Live Food Trade Volume (kg)	Family Habitat Match	Species Habitat Match	Family Climate Match	Species Climate Match	Species in Canada
Tetraodontidae	Tetraodon suvattii	12		E	F	0		
Toxotidae	Toxotes jaculatrix	376		F	F	0		
Triakidae	Mustelus mustelus			М	М			
Trichonotidae	Trichonotus setiger	1		М	М			
Triglidae	Prionotus ophryas	3		М	М			
Urolophidae	Urobatis halleri	2		М	М			
Urolophidae	Urobatis jamaicensis	4		М	М			
Zanclidae	Zanclus cornutus	112		М	М			