Science

Secrétariat canadien de consultation scientifique (SCCS)

Document de recherche 2014/079 Région du Québec

Évaluation analytique du maquereau bleu (Scomber scombrus L.) des sousrégions 3-4 de l'OPANO en 2013

François Grégoire et Luc Beaudin

Pêches et Océans Canada Institut Maurice-Lamontagne 850, Route de la Mer Mont-Joli (Québec) G5H 3Z4

Avant-propos

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au Secrétariat.

Publié par :

Pêches et Océans Canada Secrétariat canadien de consultation scientifique 200, rue Kent Ottawa (Ontario) K1A 0E6

http://www.dfo-mpo.gc.ca/csas-sccs/csas-sccs@dfo-mpo.gc.ca

© Sa Majesté la Reine du chef du Canada, 2014 ISSN 2292-4272

La présente publication doit être citée comme suit :

Grégoire, F. et Beaudin, L. 2014. Évaluation analytique du maquereau bleu (*Scomber scombrus* L.) des sous-régions 3 et 4 de l'OPANO en 2013. Secr. can. de consult. sci. du MPO. Doc. de rech. 2014/079. v + 44 p.

TABLE DES MATIÈRES

RÉSUMÉ	iv
ABSTRACT	v
1. INTRODUCTION	1
2. MATÉRIEL ET MÉTHODES	1
2.1. SOURCE DES DONNÉES	
2.1.1. Capture à l'âge	1
2.1.2. Poids à l'âge	1
2.1.3. Maturité à l'âge	2
2.1.4. Mortalités naturelles	
2.1.5. Indice de la biomasse reproductrice	
2.2. FORMULATION DE L'ÉVALUATION ANALYTIQUE	
2.3. PATRON RÉTROSPECTIF	
2.4. PROJECTIONS À COURT TERME	
2.5. POINTS DE RÉFÉRENCE	
2.5.1. Approche analytique	
2.5.2. Approche aléatoire	3
2.5.3. Trajectoire du stock selon le niveau de mortalité par pêche et de biomasse reproductrice	4
3. RÉSULTATS	4
3.1. ÉVALUATION ANALYTIQUE	4
3.1.1. Diagnostics	4
3.1.2. Analyses rétrospectives	4
3.1.3. Abondance et recrutement	4
3.1.4. Recrutement partiel	
3.1.5. Mortalité par pêche	
3.1.6. Biomasse totale et reproductrice	
3.1.7. Taux de recrutement	
3.1.8. Relation entre les recrues, la mortalité par pêche et la biomasse reproductrice	
3.2. PROJECTIONS DES BIOMASSES REPRODUCTRICES ET DES CAPTURES ENTRE 2014 ET 2016	
3.3. POINTS DE RÉFÉRENCE	
3.4. TRAJECTOIRE DU STOCK	
4. DISCUSSION ET CONCLUSION	
5. REMERCIEMENTS	
6. RÉFÉRENCES	
TABLEAUX	
FIGURES	25
ANNEXE	43

RÉSUMÉ

Une analyse séquentielle de population (ASP) a été réalisée sur la composante canadienne de maquereau bleu (*Scomber scombrus* L.) qui se reproduit dans le sud du golfe du Saint-Laurent. Les principaux paramètres d'entrée à cette analyse étaient les captures, les poids et les maturités à l'âge de la période 1968–2013 et l'indice de la biomasse reproductrice du relevé des œufs réalisé depuis 1996. L'ASP n'a révélé aucun patron rétrospectif majeur. Malgré quelques CV élevés pour certains des paramètres estimés, aucun problème important d'ajustement n'a été détecté. Les résidus du modèle n'ont présenté aucun patron particulier. Cependant, pour le relevé, les résidus les plus élevés ont été observés en 2013 ce qui indique un écart plus important entre l'indice – qui présente une tendance à la hausse entre 2012 et 2013 – et les résultats de l'ASP qui présentent une tendance inverse. Cet écart pourrait s'expliquer par une capture à l'âge qui n'est pas représentative des débarquements réels.

Selon les résultats de l'ASP, les deux dernières classes d'âge de niveau de recrutement élevé ont été celles de 1999 et 2003 et les classes qui sont apparues au cours des dernières années étaient de niveaux moyen et faible. Suite à une période de stabilité (1968–1992), les mortalités par pêche ont été très élevées au cours des années 2000 et en particulier chez les poissons âgés avec des taux d'exploitation variant de 40 à 90 %. Les biomasses totales et reproductrices sont à la baisse depuis le milieu des années 2000 et les valeurs atteintes au cours des dernières années représentent les minimums historiques. La relation entre la biomasse reproductrice et la mortalité par pêche indique que le stock est dans une situation critique. De plus, la trajectoire du stock indique que ce dernier est surpêché depuis 2007. Selon le niveau d'exploitation soutenable moyen de la période 1968–1992 (F=0,087), les captures projetées pour 2014 et 2015 seraient respectivement de 662 t et 821 t.

Analytical assessment of the Atlantic mackerel (Scomber scombrus L.) in NAFO Subareas 3-4 in 2013

ABSTRACT

A sequential population analysis (SPA) was performed on the Canadian Atlantic Mackerel (*Scomber scombrus* L.) component that spawns in the southern Gulf of St. Lawrence. The main input parameters for this analysis were the catches, weights, and maturities at age from 1968 to 2013 and the spawning biomass index from the egg survey conducted since 1996. The SPA revealed no major retrospective pattern. Despite some high CV for certain of the estimated parameters, no important problem of adjustment was detected. Model residuals showed no particular pattern. However, for the survey, the highest residuals were observed in 2013 which indicates a more important difference between the index – which shows an upward trend between 2012 and 2013 – and the SPA which presents an opposite trend. This difference could be explained by a catch at age that is not representative of the actual landings.

According to the SPA results, the last two year-classes with high recruitment level were those of 1999 and 2003 and that the year-classes that occurred in recent years had medium and low recruitment levels. Following a period of stability (1968–1992), fishing mortalities reached very high values in the 2000s and in particular for older fish with exploitation rates varying between 40 and 90%. Total and spawning biomasses have been decreasing since the mid-2000s and values in recent years represent the historical lows. The relationship between spawning biomass and fishing mortality indicates that the stock is in a critical situation. In addition, the trajectory of the stock indicates that the latter is overfished since 2007. According to the average level of sustainable exploitation of the period 1968–1992 (F = 0.087), catches projected for 2014 and 2015 would be 662 t and 821 t, respectively.

1. INTRODUCTION

Le sud du golfe du Saint-Laurent (Division 4T de l'OPANO) est généralement reconnu comme étant la principale aire de ponte du maquereau bleu (*Scomber scombrus* L.) en eaux canadiennes (Sette 1943, Arnold 1970). Pour cette raison, un relevé des œufs y est réalisé annuellement afin d'estimer un indice relatif de la taille du stock reproducteur. Cet indice aurait été très élevé entre 1984 et 1994 avec des valeurs annuelles de plus de 500 000 t (Grégoire *et al.* 2013a, Grégoire *et al.* 2014a). Au cours de la même période, les débarquements annuels moyens se chiffraient à près de 24 500 t (Grégoire *et al.* 2013b, Grégoire *et al.* 2014b). Cet écart important entre l'indice d'abondance et les débarquements a toujours représenté un obstacle majeur à l'utilisation d'une analyse séquentielle de population (ASP) car la reconstruction précise des cohortes par ce type d'analyse n'est assurée que si le taux instantané de mortalité naturelle (M) est faible par rapport au taux instantané de mortalité par pêche (F) (Hilborn et Walters 1992, Mertz et Myers 1997).

L'indice de la biomasse reproductrice du maquereau a connu une diminution marquée à partir de 1996 par rapport à une augmentation significative des débarquements commerciaux (Grégoire *et al.* 2013b, Grégoire *et al.* 2014b). Il a été proposé lors de la dernière évaluation (2012) que ces nouvelles conditions pouvaient permettre l'utilisation d'une ASP en utilisant l'indice de la biomasse reproductrice mesuré depuis 1996. Selon les résultats de cette évaluation, les biomasses totales et reproductrices de maquereau seraient à la baisse depuis le milieu des années 2000 et les valeurs atteintes depuis 2009 seraient près du minimum historique de 1999 (Grégoire *et al.* 2014c).

L'objectif de la présente évaluation était de réaliser une nouvelle ASP suite aux relevés des œufs de 2012 et 2013. La formulation de cette ASP est similaire à celle de 2012 bien que la seule différence notable concerne les mortalités naturelles. Ces dernières ne sont plus fixées à 0,2 pour tous les groupes d'âge et toutes les années mais calculées indirectement selon l'approche de Gislason *et al.* (2010).

2. MATÉRIEL ET MÉTHODES

2.1. SOURCE DES DONNÉES

2.1.1. Capture à l'âge

Pour cette évaluation, la capture à l'âge canadienne a été mise à jour (Grégoire *et al.* 2014b) de sorte que la période couverte par l'ASP s'étend maintenant de 1968 à 2013 et inclut les âges 1 à 10⁺ (Tableaux 1 et 2). Les rejets en mer de la pêche commerciale à la ligne et les prises récréatives (pêche très intense à certains endroits) ne sont pas comptabilisés de même que certaines des captures utilisées en guise d'appât (ex : utilisation personnelle ou ventes directes en mer entre pêcheurs).

2.1.2. Poids à l'âge

Les poids (kg) à l'âge des captures commerciales (mi-année) (Tableau 3) ont été mis à jour et utilisés pour convertir la capture à l'âge, exprimée en nombre, en biomasse (t) de la capture à l'âge (Tableau 4). Cette dernière, c'est-à-dire la somme annuelle des âges, a été comparée aux débarquements commerciaux dans le but de détecter des erreurs possibles de groupement ou de pondération qui se seraient produits lors du calcul de la capture à l'âge. Les poids à l'âge ont été convertis en poids de début d'année (1^{er} janvier) (Tableau 5) à l'aide de la méthode Rivard, version 2.0.0 (NOAA Fisheries Toolbox 2008). Finalement, les biomasses à l'âge ont été

déterminées par le produit des poids à l'âge en début d'année par les nombres à l'âge (abondances) calculés par l'ASP.

2.1.3. Maturité à l'âge

Les maturités à l'âge, c'est-à-dire les proportions de poissons matures à l'âge (Tableau 6), ont été calculées à partir de l'analyse des échantillons commerciaux récoltés au moment de la ponte (juin et juillet) depuis 1974. Ces maturités ont été ajustées à l'aide de la procédure LOGISTIC de SAS (SAS Institute 2008). Comme la capture à l'âge débute en 1968, il a été convenu d'appliquer les maturités à l'âge de 1974 à la période 1968–1973. Les biomasses reproductrices à l'âge ont été déterminées par le produit des maturités à l'âge par les biomasses à l'âge correspondantes.

2.1.4. Mortalités naturelles

Lors de la dernière évaluation, les mortalités naturelles (M) pour tous les groupes d'âges et toutes les années avaient été fixées à 0,2 (Grégoire *et al.* 2014c). Pour la présente évaluation, des valeurs (préliminaires) de M ont été calculées selon la relation de Gislason *et al.* (2010) basée sur les paramètres L_{inf} et K du modèle de croissance de von Bertalanffy. Les paramètres de croissance et la méthodologie employée pour le calcul des mortalités naturelles sont présentés respectivement dans Grégoire et Girard (2014) et Grégoire et McQuinn (2014).

2.1.5. Indice de la biomasse reproductrice

Les valeurs annuelles de l'indice de la biomasse reproductrice des relevés des œufs réalisés depuis 1996 sont présentées au Tableau 7. Aucun relevé n'a été réalisé en 1997 et des relevés ne couvrant qu'une partie seulement de l'aire de ponte ont eu lieu en 1999 et 2001. Ces relevés ont été exclus de la présente évaluation tout comme celui de 2006 qui a été réalisé à la toute fin de la saison de ponte. L'indice a atteint une valeur minimale en 2012 suivie d'une augmentation de sorte que la valeur mesurée en 2013 est la plus élevée des quatre derniers relevés.

2.2. FORMULATION DE L'ÉVALUATION ANALYTIQUE

L'évaluation analytique a été réalisée à l'aide du logiciel ICA (Integrated Catch at Age), version 1.2 (Patterson et Melvin 1995) qui est couramment utilisé pour évaluer certains stocks de hareng (*Clupea harengus* L.) et le stock de maquereau bleu du Nord-Est de l'Atlantique. ICA permet l'utilisation d'un indice d'abondance non désagrégé à l'âge comme celui du relevé des œufs. La formulation retenue de la présente évaluation est présentée au Tableau 8. Cette formulation est similaire à celle utilisée lors de la dernière évaluation sauf en ce qui concerne les mortalités naturelles et le nombre d'années associé à la contrainte séparable qui est passée à 12 ans. Les paramètres estimés par l'ASP sont les mortalités annuelles par pêche de la période 2002–2013, la sélectivité aux âges 1 à 9 (fixée à 1 et 1,2 aux âges 3 et 9), l'abondance aux âges 1 à 9 en 2013 et l'abondance à l'âge 9 entre 2002 et 2012.

2.3. PATRON RÉTROSPECTIF

La présence d'un patron rétrospectif a été examinée pour la mortalité par pêche (moyenne des âges 3-5 pondérée par les abondances correspondantes), la population totale ('000) aux âges 1-10⁺, le recrutement ('000) (âge 1) et les biomasses totale (t) et reproductrice (t) pour la période 2007–2012. La statistique de Mohn (valeur moyenne) (Mohn 1999, Legault 2009) a été calculée pour chacun de ces paramètres afin de produire un facteur d'ajustement en présence d'un patron rétrospectif (Legault, C., NOAA, Woods Hole, comm. pers.).

2.4. PROJECTIONS À COURT TERME

Des projections de captures ont été réalisées pour les saisons 2014 et 2015 à partir des abondances à l'âge (1- 10^+) estimées au début de l'année 2014 par l'ASP. Les captures ($C_{t,a}$) ont été projetées en utilisant l'équation de Baranov (Haddon 2011) qui est définie de la façon suivante :

$$C_{t,a} = \left(\frac{F_{t,a}}{F_{t,a} + M_a}\right) N_{t,a} \left(1 - e^{-(M_a + F_{t,a})}\right)$$

où $F_{t,a}$ est le taux instantané de mortalité par pêche (moyenne des âges 3-5 pondérée par les abondances correspondantes) au temps t et à l'âge a, M_a les mortalités naturelles à l'âge (moyennes de 2010–2013) et $N_{t,a}$, les abondances à l'âge en début d'année. L'utilisation de l'équation de Baranov sous-entend que les taux instantanés de mortalité par pêche et naturelle sont constants au cours de l'année et que leur action sur la population est simultanée (pêche de type II; Ricker 1980). Les captures projetées ont été converties en tonnes en utilisant les poids moyens à l'âge (mi-année) de la période 2012–2013.

Les abondances $N_{t+1,a+1}$ au début de 2015 et 2016 ont été estimées à partir du modèle suivant :

$$N_{(t+1,a+1)} = N_{t,a} \left(e^{-(M_a + F_{t,a})} \right)$$

Ces abondances ont été converties en biomasses reproductrices (t) en utilisant les poids moyens à l'âge (au 1^{er} janvier) et les proportions moyennes de poissons matures à l'âge de la période 2012–2013. À noter que les abondances à l'âge 1 au début de 2015 et 2016 correspondent à l'abondance moyenne des recrues (âge 1) de la période 2012–2013. Les projections ont été réalisées en utilisant différents niveaux de la mortalité par pêche dont la valeur moyenne de la période de stabilité 1968–1992.

2.5. POINTS DE RÉFÉRENCE

Des points de références (exploratoires) associés à la mortalité par pêche ont été calculés à l'aide d'une analyse de rendement par recrue et de la procédure YPR, version 3.3.0 (NOAA Fisheries Toolbox 2013a). Les paramètres d'entrée à cette analyse étaient la sélectivité, les poids et les proportions de poissons matures à l'âge de même que les valeurs de mortalité naturelle. La sélectivité à l'âge a été déterminée à partir des mortalités par pêche (moyenne des âges 3-5 pondérée par les abondances correspondantes) produites par l'ASP entre 2010 et 2013. Les mortalités naturelles, les poids et les proportions de poissons matures à l'âge correspondent aux moyennes annuelles de la période 2010–2013.

Les points de référence retenus étaient : $F_{0,1}$, F_{max} , et $F_{40\%}$ qui, selon Clark (1993) et Mace (1994), est un indice représentatif de F_{rms} . De plus, la biomasse reproductrice associée au rendement maximal soutenu (BSR_{rms}) et le rendement maximal soutenu (rms) ont été déterminés analytiquement et à l'aide d'une approche aléatoire.

2.5.1. Approche analytique

Selon l'approche analytique, BSR_{rms} est défini comme étant le produit des recrues à 1 an (moyenne des classes d'âge de 1967 à 2013) par la biomasse du stock reproducteur par recrue (BSR/R) obtenue à $F_{40\%}$. Selon cette même approche, rms correspond au produit des recrues par le rendement par recrue (YPR) à $F_{40\%}$.

2.5.2. Approche aléatoire

BSR_{rms} et rms de même que la biomasse totale (à titre indicateur) ont été déterminés aléatoirement à partir de projections réalisées à l'aide de la procédure AGEPRO, version 4.2.2 (NOAA Fisheries Toolbox 2013b). Ces projections se sont étalées sur une période de 100 ans

en utilisant $F_{40\%}$ et F moyen de la période de stabilité 1968–1992 comme stratégies annuelles d'exploitation. Les projections ont aussi été réalisées avec et sans un facteur d'ajustement à la présence d'un patron rétrospectif des abondances à l'âge. Après quelques années, les projections se sont stabilisées de sorte que BSR_{rms} et rms ont été définis comme étant les moyennes respectives de la période 2025–2113. Lors des projections, les recrues ont été déterminées à l'aide d'une fonction empirique cumulative (AGEPRO, modèle 14) plutôt qu'à partir d'un modèle stock-recrutement dont la relation est prédéterminée (ex : Beverton-Holt et Ricker). La fonction empirique cumulative génère des recrues en assumant que leur distribution est stationnaire et indépendante de la taille du stock.

2.5.3. Trajectoire du stock selon le niveau de mortalité par pêche et de biomasse reproductrice

La trajectoire du stock (2007–2012) calculée à partir des analyses rétrospectives a été décrite en suivant les rapports annuels entre la mortalité par pêche et $F_{40\%}$ de même qu'entre la biomasse reproductrice et BSR_{rms} . La trajectoire a été projetée sur une figure divisée en quatre zones, soit: (1) "en surpêche et surpêché", (2) "en surpêche et non surpêché", (3) "pas en surpêche et non surpêché", et (4) "pas en surpêche et surpêché". Cette approche est similaire à celle utilisée par le NOAA (National Oceanic and Atmospheric Administration) pour certains stocks de la côte est américaine (ex : Northeast Fisheries Science Center 2013).

3. RÉSULTATS

3.1. ÉVALUATION ANALYTIQUE

3.1.1. Diagnostics

Les diagnostics des paramètres estimés par l'ASP sont présentés au Tableau 9. Des coefficients de variation (CV) élevés – de 64 % et plus – sont présents pour les abondances aux âges 1 et 2 en 2013 et à l'âge 9 en 2002, 2003 et 2012. Pour tous les autres paramètres, la moyenne des CV est de 37 %. Les résidus des logarithmes des coefficients de capturabilité de la période séparable (2002-2013) de l'ASP ne présentent pas de patron particulier (Figure 1A). Les résidus les plus élevés ont été obtenus en 2011 (Figure 1B), à l'âge 7 (Figure 1C) et pour le relevé des œufs de 2013 (Figure 1D).

3.1.2. Analyses rétrospectives

Les mortalités par pêche aux âges 3-5 (Figure 2A), les biomasses totales (Figure 2B) et les biomasses reproductrices (Figure 2C) ne présentent qu'un léger patron rétrospectif. Un patron un peu plus important est observé pour les abondances aux âges 1-10⁺ (Figure 2D) et les recrues à l'âge 1 (Figure 2E). Pour ces paramètres, les rhos moyens ont été estimés à 1,427 et 5,576 et les paramètres d'ajustement correspondants à 0,412 et 0,152. De telles valeurs indiquent que les abondances des dernières années ont été surestimées par l'ASP.

3.1.3. Abondance et recrutement

Jusque vers le milieu des années 1990, le patron des abondances à l'âge était caractérisé par la présence périodique de très fortes classes d'âge qui se maintenaient dans la population pendant plusieurs années (Tableau 10; Figure 3A). Depuis le début des années 2000, le patron des abondances est plutôt caractérisé par des classes d'âge qui sont présentes pendant quelques années seulement. L'abondance totale est à la baisse depuis le milieu des années 2000 et les poissons âgées de 4 ans et plus sont très peu nombreux (Figure 3B).

Par ordre décroissant, les classes d'âge les plus importantes à l'âge 1 ont été celles de 1974, 1999, 1982, 1967, 1981, 1972, 2003 et 1969 (Figure 4A). L'abondance de ces classes d'âge

était supérieure au niveau de recrutement élevé. À l'exception des classes d'âge de 1977 et 1979, toutes celles qui sont apparues entre 1968 et 1983 (classes d'âge de 1967 à 1982) étaient caractérisées par des abondances supérieures aux niveaux de recrutement moyen. Depuis 1984, seules les classes d'âge de 1987, 1988, 1999, 2003, 2004 et 2005 se sont avérées supérieures à ce niveau d'abondance. La classe d'âge de 2008 était de niveau moyen et la dernière, celle de 2013, était légèrement supérieure au niveau faible. À l'âge 2, les plus fortes classes d'âge ont été celles de 1974, 1982, 1999 et 1967 (Figure 4B).

3.1.4. Recrutement partiel

Le recrutement partiel a peu changé depuis le début des années 2000 avec des valeurs maximales qui se sont maintenues à partir de 4 ans (Figure 5A). Cependant, une baisse du recrutement partiel pour les poissons plus âgés caractérisait les années 1970 et 1980.

3.1.5. Mortalité par pêche

La mortalité par pêche a peu changé au cours de la période 1968–1992 avec une valeur moyenne de 0,0872 (Tableau 11; Figure 5B). Par la suite, elle a graduellement augmenté et des valeurs de plus de 1,0 ont été atteintes dans les années 2000 et en particulier chez les poissons âgés (4⁺). Les valeurs maximales ont été atteintes en 2011 et une baisse est mesurée depuis. Lors de la période 1968–1992, les taux d'exploitation étaient inférieurs à 15 % (Figure 5C). Ils ont augmenté jusqu'à 40 % en 1998 et ils ont varié de 40 % à 90 % entre 2000 et 2011. Depuis, les taux d'exploitation sont à la baisse tout en demeurant à des niveaux élevés.

3.1.6. Biomasse totale et reproductrice

Entre 1968 et 1985, les biomasses totales (Tableau 12) et reproductrices (Tableau 13) se sont maintenues entre 300 000 t et 600 000 t (Figure 5D). Les biomasses ont par la suite diminué jusqu'en 1999 et au cours de la période 2000–2006, elles ont augmenté pour atteindre des valeurs se situant entre 150 000 t et 272 000 t. Par la suite, elles ont à nouveau chuté et les valeurs mesurées depuis 2010, qui varient entre 58 913 t et 13 435 t, sont les plus faibles de la série.

3.1.7. Taux de recrutement

Le taux de recrutement à l'âge 1 le plus élevé a été produit par la classe d'âge de 1999 (Figure 6A). Cette classe d'âge est apparue lorsque la biomasse reproductrice était à un niveau très bas. La classe d'âge de 1999 est suivie de celles de 2013, 2003, 1974 et 1982.

3.1.8. Relation entre les recrues, la mortalité par pêche et la biomasse reproductrice

La relation entre les recrues à l'âge 1 et la biomasse reproductrice ne présente pas de patron suggérant la présence d'un modèle particulier (Figure 6B). Les fortes classes d'âge de 1974 et 1982 ont été produites lorsque les biomasses reproductrices se situaient à des niveaux d'abondance moyens tandis que celle de 1999 est apparue lorsque le stock était à des niveaux très faibles. Très peu de recrues ont été produites pour les niveaux d'abondance élevés.

Jusqu'en 1992, les mortalités par pêche étaient de moins de 0,135 pour des biomasses reproductrices correspondantes variant entre 240 000 t et 600 000 t (Figure 6C). Les biomasses reproductrices ont chuté rapidement jusqu'en 1995 sans changement majeur des mortalités par pêche. Cependant, ces dernières ont augmenté rapidement jusqu'en 1999. Suite à l'arrivée de la classe d'âge de 1999, une légère baisse des mortalités par pêche a été accompagnée d'une hausse des biomasses reproductrices qui sont à la baisse depuis 2006 par rapport à une hausse des mortalités par pêche. Même si des points de référence n'ont pas encore été définis officiellement, les valeurs de biomasses reproductrices et de mortalités par pêche atteintes au cours des dernières années indiquent que le stock se situerait dans la zone critique.

3.2. PROJECTIONS DES BIOMASSES REPRODUCTRICES ET DES CAPTURES ENTRE 2014 ET 2016

Les projections des biomasses reproductrices en début de 2015 et 2016 et des captures en 2014 et 2015 sont présentées à la Figure 7A pour différents niveaux de mortalité par pêche. Au niveau moyen de la mortalité par pêche de la période de stabilité 1968–1992 (F=0,087), les biomasses reproductrices en début de 2015 et 2016 seraient respectivement de 18 075 t et 20 543 t (Tableau 14; Figures 7A et 8A). Pour la même mortalité par pêche, les captures en 2014 et 2015 seraient de 1 607 t et 1 888 t (Tableau 14; Figures 7A et 8B). La biomasse reproductrice de 2016 serait inférieure à celle de 2014 pour des mortalités par pêche de plus de 0,480 (Figure 7B). En 2015 et 2016, les deux plus importantes classes d'âge seraient celles de 2013 et 2010 (Figures 9A et 9B). À un niveau d'exploitation égal au rendement maximal soutenu (F_{rms}=0,238), les biomasses reproductrices de 2015 et 2016 seraient de 15 565 t et 15 333 t par rapport à des captures en 2014 et 2015 de 4 089 t et 4 156 t (Figure 7A).

La Figure 10A présente les projections de biomasses reproductrices et de captures lorsqu'un facteur d'ajustement au patron rétrospectif est appliqué aux abondances mesurées par l'ASP en début de 2014. Pour une valeur de F de 0,087, les biomasses reproductrices en début de 2015 et 2016 seraient de 7 532 t et 9 045 t (Tableau 15; Figures 10A et 11A) pour des captures en 2014 et 2015 de 662 t et 821 t (Tableau 15; Figures 10A et 11B). La biomasse reproductrice de 2016 serait inférieure à celle de 2014 pour des mortalités par pêche de plus de 0,540 (Figure 10B). En 2015 et 2016, les deux plus importantes classes d'âge seraient celles de 2013 et 2010 (Figures 12A et 12B). À un niveau d'exploitation égal au rendement maximal soutenu, les biomasses reproductrices de 2015 et 2016 seraient de 6 498 t et 6 829 t pour des captures en 2014 et 2015 de 1 685 t et 1 822 t (Figure 10A).

3.3. POINTS DE RÉFÉRENCE

Les paramètres d'entrée à l'analyse de rendement par recrue (YPR) (Figure 13) sont présentés au Tableau 16. Les points de référence $F_{0,1}$, F_{max} , et $F_{40\%}$ ont été estimés respectivement à 0,306, 1,108 et 0,238 (Tableau 17). À $F_{40\%}$, le rendement par recrue et les biomasses reproductrices par recrue seraient de 0,158 et 0,674 (Tableau 17). À un niveau de recrutement moyen (269 938 x 10^3) et à $F_{40\%}$, rms et BSR_{rms} seraient de 42 637 t et 182 009 t (Tableau 18) selon l'approche analytique et de 41 163 t et 175 708 t (Tableau 18; Figures 14A et 14B) selon l'approche aléatoire. Selon cette même approche, la biomasse totale à $F_{40\%}$ serait de 254 002 t (Figure 14C). En tenant compte de l'ajustement au patron rétrospectif appliqué sur les abondances de 2014, ces trois derniers paramètres passeraient à 41 160 t, 175 697 t et 253 989 t (Figures 15A, 15B et 15C).

L'ajustement ou non au patron rétrospectif n'a pas d'influence sur les projections à long terme calculées selon l'approche aléatoire. Cependant, une diminution de l'exploitation, par exemple de F_{40%} au F moyen de la période 1968–1992, entrainerait une diminution du *rms* (Figure 16A) mais une augmentation des biomasses reproductrices (Figure 16B) et totales (Figure 16C).

3.4. TRAJECTOIRE DU STOCK

Le rapport entre la mortalité par pêche mesurée en 2013 et $F_{40\%}$ a été établi à 1,937 et celui entre la biomasse reproductrice de 2013 et BSR_{rms} à 0,069 et 0,071 selon les approches analytique et aléatoire (Tableau 18). De 2007 à 2009, la trajectoire du stock s'est déplacée à l'intérieur de la zone "en surpêche et non surpêché". Elle s'est maintenue par la suite dans la zone "en surpêche et surpêché".

4. DISCUSSION ET CONCLUSION

La présente évaluation n'a produit aucun patron rétrospectif majeur. Des patrons légers, obtenus pour les abondances et les recrues, ont été corrigés à l'aide d'un facteur d'ajustement lors des projections des captures et des biomasses. Les résidus n'indiquent pas de problèmes importants d'ajustement et quelques paramètres seulement ont des CV élevés. Par rapport à l'évaluation de 2012 (Grégoire et al. 2014c), le principal changement apporté à la présente formulation concerne les mortalités naturelles qui ont été estimées pour tous les groupes d'âge. Cette modification à la formulation de 2012 n'a apporté qu'un changement de perception de l'état passé du stock (avant 1990), c'est-à-dire des mortalités par pêche légèrement plus faibles (Annexe 1A) et des abondances (Annexe 1B) et des biomasses reproductrices (Annexe 1C) légèrement plus élevées. De plus, l'utilisation de ces mortalités dans les projections à long terme résulte en des captures (rms) (Annexe 1D) et des biomasses reproductrices (BSR_{ms}) (Annexe 1E) plus élevées. Ces mortalités naturelles ont été calculées à partir d'une relation empirique présentée par Gislason et al. (2010). Cependant, depuis la réalisation de ces calculs, cette relation a été critiquée par Charnov et al. (2013). Pour la prochaine évaluation, il est donc recommandé d'utiliser les résultats de cette dernière relation ou une combinaison de relations à l'aide par exemple d'une fonction de lissage.

Selon l'ASP, l'arrivée des classes d'âge abondantes a résulté en une augmentation ou un maintien de la biomasse du stock. Les deux plus importantes baisses de biomasse se sont produites au cours des périodes 1990–1999 et 2005–2013, c'est-à-dire à des moments où les fortes classes d'âge de 1982 et 1999 étaient en déclin. Il semble donc que les niveaux de biomasse sont non seulement reliés à la force des classes d'âge mais aussi à leur fréquence. La dernière classe d'âge abondante est celle de 2003 et les classes d'âge des dernières années sont de recrutement moyen ou faible.

Les points de référence calculés selon les approches analytique et aléatoire fournissent des résultats similaires ce qui donne confiance dans la validité de leurs valeurs. Cependant, ces estimations ont été réalisées à titre informatif seulement. Tout comme pour le suivi de la trajectoire du stock, ils n'ont pas fait l'objet d'une revue par les pairs dédiée à l'élaboration d'une approche de précaution. Ils représentent un point de départ à l'élaboration d'une telle approche. Cependant, dans un contexte d'approche de précaution et compte tenu des résultats de la présente évaluation, la situation du stock serait qualifiée de critique.

La piètre qualité des données de débarquement est responsable des très faibles valeurs d'abondance et de biomasse estimées par l'ASP. Entre 2008 et 2012, les biomasses reproductrices calculées par l'ASP et celles provenant du relevé des œufs étaient presque identiques. Cependant, l'augmentation de l'indice des œufs entre 2012 et 2013 ne s'est pas traduit par une augmentation correspondante de la biomasse reproductrice de l'ASP mais plutôt par le contraire comme le démontre les résidus du relevé de 2103. C'est écart pourrait s'expliquer par le fait que les données officielles de pêche ne sont pas représentatives des captures réelles. Ce problème des captures non comptabilisées a été soulevé depuis de nombreuses années. L'évaluation de ce stock de même que les projections de captures et de biomasses ne pourront être améliorées tant qu'un meilleur contrôle de la cueillette des données de pêche ne sera établi.

5. REMERCIEMENTS

Les auteurs aimeraient remercier très sincèrement Martin Castonguay et Claude Brassard pour la révision du document. De très sincères remerciements vont aussi au Dr. Chris Legault du NOAA, Woods Hole, pour avoir pris le temps de répondre, au cours des ans, à toutes les questions du premier auteur concernant les méthodes analytiques en évaluation de stocks.

Finalement, des remerciements du fond du cœur sont exprimés à l'égard de M. Jean-Jacques Maguire pour, il y a maintenant près de 32 ans, avoir cru en moi (F.G.).

6. RÉFÉRENCES

- Arnold, P. W. 1970. Spawning and aspects of the early life history of the Atlantic mackerel (*Scomber scombrus* L.) in the Gulf of St. Lawrence. B. Sc. Thesis. Acadia University, Wolfville, Nova Scotia. 73 pp.
- Charnov, E. L., Gislason, H. et Pope, J. G. 2013. Evolutionary assembly rules for fish life histories. Fish and Fisheries 14: 213–224.
- Clark, W. 1993. The effect of recruitment variability on the choice of a target level of spawning biomass per recruit. University of Alaska Sea Grant College Program, Report Number 93-02: 233–246.
- Gislason, H., Daan, N., Rice, J. C. et Pope, J. G. 2010. Size, growth, temperature and the natural mortality of marine fish. Fish and Fisheries. 11: 149–158.
- Grégoire, F. et Girard, L. 2014. Modélisation de la croissance en longueur du maquereau bleu (*Scomber scombrus* L.) par une approche statistique bayésienne. Secr. can. de consult. sci. du MPO. Doc. de rech. 2014/076. v + 41 p.
- Grégoire, F. et McQuinn, I. 2014. Estimation empirique du taux instantané de mortalité naturelle (M) du maquereau bleu (*Scomber scombrus* L.) des sous-régions 3 et 4 de l'OPANO. Secr. can. de consult. sci. du MPO. Doc. de rech. 2014/078. v + 25 p.
- Grégoire, F., Gendron, M.-H., Beaulieu, J.-L. et Lévesque, I. 2013a. Résultats des relevés des oeufs de maquereau bleu (*Scomber scombrus* L.) réalisés dans le sud du golfe du Saint-Laurent de 2008 à 2011. Secr. can. de consult. sci. du MPO. Doc. de rech. 2013/035. v + 57 p.
- Grégoire, F., Beaulieu, J.-L., Gendron, M.-H. et Lévesque, I. 2013b. <u>Le maquereau bleu</u> (<u>Scomber scombrus L.</u>) <u>des sous-régions 3 et 4 de l'OPANO en 2011</u>. Secr. can. de consult. sci. du MPO. Doc. de rech. 2013/049. vi + 130 p.
- Grégoire, F., Girard, L. et Boudreau, M. 2014a. Résultats des relevés du programme de monitorage zonal atlantique (PMZA)-maquereau bleu (*Scomber scombrus* L.) réalisés dans le sud du golfe du Saint-Laurent en 2012 et 2013. Secr. can. de consult. sci. du MPO. Doc. de rech. 2014/075. v + 82 p.
- Grégoire, F., Girard, L. et Boudreau, M. 2014b. La pêche au maquereau bleu (*Scomber scombrus* L.) dans les sous-régions 3 et 4 de l'OPANO en 2013. Secr. can. de consult. sci. du MPO. Doc. de rech. 2014/077. vi + 119 p.
- Grégoire, F., Girard, L. et Beaulieu, J.-L. 2014c. <u>Évaluation analytique du maquereau bleu (Scomber scombrus L.) des sous-régions 3 et 4 de l'OPANO en 2011</u>. Secr. can. de consult. sci. du MPO. Doc. de rech. 2013/137. v + 31 p.

- Haddon, M. 2011. Modelling and quantitative methods in fisheries. 2nd ed. Chapman & Hall / CRC Taylor & Francis Group, NW. FL. 449 pp.
- Hilborn, R. et Walters, C. J. 1992. Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Chapman & Hall, New York. 592 pp.
- Legault, C. 2009. Report of the Retrospective Working Group, January 14-16, 2008, Woods Hole, Massachusetts. US Dept. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 09-01; 30 pp.
- Mace, P. M. 1994. Relationships between common biological reference points used as thresholds and targets of fisheries management strategies. Can. J. Fish. Aquat. Sci. 51:110–122.
- Mertz, G. et Myers, R. A. 1997. Influence of errors in natural mortality estimates in cohort analysis. Can. J. Fish. Sci. 54: 1608–1612.
- Mohn, R. 1999. The retrospective problem in Sequential Population Analysis: An investigation using cod fishery and simulated data. ICES J. Mar. Sci. 56: 473–488.
- NOAA Fisheries Toolbox. 2008. <u>Rivard Weights Calculation (Rivard)</u>, Version 2.0.0 (accédé le: 2014-02-07).
- NOAA Fisheries Toolbox. 2013a. <u>Yield Per Recruit (YPR)</u>, Version 3.3.0 (accédé le: 2014-02-07).
- NOAA Fisheries Toolbox. 2013b. <u>Age Structured Projection Model (AGEPRO)</u>, Version 4.2.2. (accédé le: 2014-02-07).
- Northeast Fisheries Science Center. 2013. 55th Northeast Regional Stock Assessment Workshop (55th SAW). Assessment Summary Report. US Dept. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 13-01; 41 pp.
- Patterson, K. R. et Melvin, G. 1995. Integrated catch at age analysis, Version 1.2. Scottish Fish. Res. Rep. 58. 60 pp.
- Ricker, W. E. 1980. Calcul et interprétation des statistiques biologiques des populations de poissons. Bull. Fish. Res. Board Can. 191F. 409 pp.
- SAS Institute Inc. 2008. SAS/STAT® 9.2 User's Guide. Cary, NC: SAS Institute Inc.
- Sette, O. E. 1943. Biology of the Atlantic mackerel (*Scomber scombrus* L.) of North America. Part 1. Early history. U.S. Fish. Wildlife Service. Fish. Bull. 38(50):149–237.

TABLEAUX

Tableau 1. Capture à l'âge ('000) du maquereau bleu des sous-régions 3 et 4 de l'OPANO, de 1968 à 2013 (les nombres en gras et soulignés représentent des classes d'âge abondantes).

ANNÉE					Â	GE				
	1	2	3	4	5	6	7	8	9	10 ⁺
1968	43 062	7 157	10 343	7 393	2 819	1 349	721	1 658	10 425	97
1969	5 692	<u>26 359</u>	18 057	2 027	929	855	1 099	440	462	9 656
1970	20 277	3 654	33 584	8 047	2 496	451	425	1 578	1 645	4 335
1971	7 156	7 389	1 702	<u>35 931</u>	7 620	1 753	2 203	1 526	1 879	5 517
1972	1	136	4 401	5 541	<u>24 826</u>	4 975	5 248	77	546	6 833
1973	9 176	20 624	9 649	9 333	13 972	22 293	8 317	2 771	837	1 603
1974	8 618	24 340	26 703	14 602	12 594	12 417	<u>15 377</u>	4 053	1 714	1 749
1975	<u>14 206</u>	24 905	13 049	11 636	7 052	7 526	5 456	<u>3 917</u>	825	581
1976	1 686	<u>21 171</u>	27 110	10 982	7 740	3 868	4 922	3 977	<u>3 123</u>	1 165
1977	740	7 136	22 566	11 319	3 683	2 570	809	1 443	897	<u>1 72</u> 1
1978	2	182	3 831	<u>14 733</u>	11 575	6 358	3 157	1 649	1 402	2 497
1979	204	480	1 189	6 615	<u>17 202</u>	12 321	5 590	2 282	1 702	2 457
1980	6	1 455	2 156	1 463	5 087	9 833	6 148	2 692	1 604	1 998
1981	6 145	2 836	5 143	1 183	1 656	4 669	7 743	3 309	1 595	1 892
1982	2 145	5 899	1 609	5 004	715	1 609	2 623	4 828	1 549	2 504
1983	<u>244</u>	1 622	2 459	915	4 012	478	946	3 119	<u>7 770</u>	3 601
1984	<u>211</u> 60	19 774	14 060	1 413	781	1 551	339	479	2 022	5 640
1985	357	511	23 790	12 844	1 252	656	2 197	289	551	7 60!
1986	363	4 282	3 259	40 844	11 522	933	485	635	117	1 91!
1987	1 291	3 118	3 358	2 288	<u>27 133</u>	5 692	232	183	83	716
1988	117	703	1 028	1 932	2 481		4 493	227	131	572
				937		<u>24 769</u>				
1989	2 399	8 862	1 276		1 541	575	<u>20 957</u>	2 693	369	781
1990	390	6 222	9 737	1 457	888	966	639	<u>16 765</u>	923	277
1991	646	6 106	<u>17 808</u>	9 560	1 212	762	1 052	849	<u>10 964</u>	557
1992	628	2 627	3 014	<u>14 148</u>	8 630	1 411	733	1 048	884	<u>11 14</u>
1993	117	4 900	8 493	4 497	<u>13 011</u>	7 686	1 660	651	699	6 882
1994	672	231	3 896	5 905	2 856	<u>13 672</u>	5 977	929	244	2 92
1995	10 603	14 206	698	4 674	4 093	1 768	<u>5 757</u>	2 281	203	590
1996	2 505	8 050	7 052	1 013	5 380	6 519	1 622	<u>7 094</u>	1 806	893
1997	<u>5 083</u>	11 823	10 923	4 604	638	3 709	3 081	545	<u>4 212</u>	785
1998	1 927	<u>18 525</u>	9 977	9 560	4 291	505	2 432	2 024	412	<u>1 47:</u>
1999	1 348	4 463	<u>14 625</u>	7 509	4 698	2 049	478	681	663	354
2000	<u>28 460</u>	2 689	1 800	<u>5 465</u>	2 869	2 941	458	65	195	371
2001	8 215	<u>60 111</u>	11 234	2 482	<u>4 184</u>	842	870	144	33	371
2002	6 088	3 832	<u>70 334</u>	6 047	2 275	<u>2 136</u>	538	407	48	73
2003	3 763	4 381	5 832	<u>73 840</u>	8 480	1 123	<u>1 199</u>	32	5	0
2004	<u>27 524</u>	24 574	6 017	4 753	<u>56 010</u>	2 457	1 322	<u>606</u>	9	0
2005	17 391	<u>42 971</u>	24 381	4 007	3 807	<u>40 391</u>	1 680	746	<u>81</u>	45
2006	<u>31 651</u>	14 756	<u>41 630</u>	21 769	3 765	1 917	<u>17 117</u>	448	36	<u>0</u>
2007	2 968	<u>31 233</u>	22 784	<u>43 885</u>	11 105	2 471	1 328	<u>4 819</u>	39	7
2008	23 622	8 120	<u>25 964</u>	8 655	<u>12 703</u>	1 631	633	218	<u>1 033</u>	9
2009	<u>38 026</u>	24 443	6 613	<u>28 416</u>	6 363	9 425	358	127	5	482
2010	5 402	<u>31 923</u>	28 384	3 829	<u>13 988</u>	2 033	<u>3 286</u>	83	1	132
2011	2 288	1 230	<u>11 611</u>	6 091	639	<u>3 100</u>	336	474	25	40
2012	193	10 775	1 969	3 142	332	34	<u>113</u>	7	<u>1</u>	0
2013	346	3 651	<u>11 601</u>	735	<u>1 549</u>	97	0	<u>0</u>	0	<u>0</u>

Tableau 2. Capture à l'âge (%) du maquereau bleu des sous-régions 3 et 4 de l'OPANO, de 1968 à 2013 (les nombres en gras et soulignés représentent des classes d'âge abondantes).

ANNÉE					Â	GE				
	1	2	3	4	5	6	7	8	9	10 ⁺
1968	<u>50.65</u>	8.42	12.16	8.69	3.32	1.59	0.85	1.95	<u>12.26</u>	0.11
1969	8.68	<u>40.20</u>	27.54	3.09	1.42	1.30	1.68	0.67	0.71	<u>14.72</u>
1970	26.51	4.78	<u>43.91</u>	10.52	3.26	0.59	0.56	2.06	2.15	5.67
1971	9.85	10.17	2.34	<u>49.44</u>	10.48	2.41	3.03	2.10	2.59	7.59
1972	0.00	0.26	8.37	10.54	<u>47.21</u>	9.46	9.98	0.15	1.04	12.99
1973	9.31	20.92	9.79	9.47	14.17	<u>22.61</u>	8.44	2.81	0.85	1.63
1974	7.05	19.92	21.86	11.95	10.31	10.16	<u>12.59</u>	3.32	1.40	1.43
1975	<u>15.93</u>	27.93	14.64	13.05	7.91	8.44	6.12	<u>4.39</u>	0.92	0.65
1976	1.97	24.69	31.62	12.81	9.03	4.51	5.74	4.64	3.64	1.36
1977	1.40	13.49	<u>42.67</u>	21.40	6.96	4.86	1.53	2.73	1.70	<u>3.26</u>
1978	0.00	0.40	8.44	32.46	25.50	14.01	6.96	3.63	3.09	5.50
1979	0.41	0.96	2.38	13.22	34.38	24.62	11.17	4.56	3.40	4.91
1980	0.02	4.48	6.65	4.51	15.68	<u>30.31</u>	18.95	8.30	4.94	6.16
1981	16.99	7.84	14.22	3.27	4.58	12.91	21.41	9.15	4.41	5.23
1982	7.53	20.71	5.65	17.57	2.51	5.65	9.21	<u>16.95</u>	5.44	8.79
1983	0.97	6.45	9.77	3.64	15.94	1.90	3.76	12.39	30.87	14.31
1984	0.13	42.88	30.49	3.06	1.69	3.36	0.74	1.04	4.38	12.23
1985	0.71	1.02	47.53	25.66	2.50	1.31	4.39	0.58	1.10	15.19
1986	0.56	6.65	5.06	63.47	17.90	1.45	0.75	0.99	0.18	2.98
1987	2.93	7.07	7.62	5.19	<u>61.54</u>	12.91	0.53	0.42	0.19	1.62
1988	0.32	1.93	2.82	5.30	6.81	<u>67.94</u>	12.32	0.62	0.36	1.57
1989	<u>5.94</u>	21.94	3.16	2.32	3.81	1.42	<u>51.89</u>	6.67	0.91	1.93
1990	1.02	<u>16.26</u>	25.45	3.81	2.32	2.52	1.67	43.81	2.41	0.72
1991	1.30	12.33	<u>35.96</u>	19.31	2.45	1.54	2.12	1.71	<u>22.14</u>	1.12
1992	1.42	5.93	6.81	<u>31.96</u>	19.50	3.19	1.66	2.37	2.00	<u>25.17</u>
1993	0.24	10.08	17.48	9.25	<u> 26.77</u>	15.82	3.42	1.34	1.44	14.16
1994	1.80	0.62	10.44	15.83	7.66	<u>36.65</u>	16.02	2.49	0.65	7.84
1995	23.63	31.66	1.56	10.42	9.12	3.94	12.83	5.08	0.45	1.31
1996	5.97	19.20	16.82	2.42	12.83	15.55	3.87	<u>16.92</u>	4.31	2.13
1997	<u>11.20</u>	26.04	24.06	10.14	1.41	8.17	6.79	1.20	9.28	1.73
1998	3.77	36.23	19.51	18.70	8.39	0.99	4.76	3.96	0.81	2.88
1999	3.66	12.11	39.67	20.37	12.74	5.56	1.30	1.85	1.80	0.96
2000	62.81	5.93	3.97	12.06	6.33	6.49	1.01	0.14	0.43	0.82
2001	9.28	<u>67.93</u>	12.70	2.80	4.73	0.95	0.98	0.16	0.04	0.42
2002	6.63	4.18	<u>76.63</u>	6.59	2.48	2.33	0.59	0.44	0.05	0.08
2003	3.81	4.44	5.91	74.85	8.60	1.14	<u>1.21</u>	0.03	0.01	0.00
2004	22.33	19.93	4.88	3.86	<u>45.44</u>	1.99	1.07	0.49	0.01	0.00
2005	12.83	<u>31.71</u>	17.99	2.96	2.81	<u>29.81</u>	1.24	0.55	0.06	0.03
2006	23.78	11.09	31.28	16.36	2.83	1.44	12.86	0.34	0.03	0.00
2007	2.46	<u>25.89</u>	18.89	36.38	9.21	2.05	1.10	3.99	0.03	0.01
2007	28.60	9.83	31.44	10.48	15.38	1.97	0.77	0.26	1.25	0.01
2009	33.28	21.39	5.79	24.87	<u>13.36</u> 5.57	8.25	0.77	0.20	0.00	0.42
2019	<u>33.26</u> 6.07	35.84	31.87	4.30	5.57 <u>15.71</u>	<u>6.23</u> 2.28	3.69	0.11	0.00	0.42 0.15
2010	8.86	<u>33.64</u> 4.76	31.07 <u>44.94</u>	23.58	2.47		3.69 1.30		0.00	0.15
2011	<u>8.86</u> 1.15		<u>44.94</u> 11.69			<u>12.00</u>		<u>1.83</u> 0.04		0.00
		<u>64.00</u>		<u>20.27</u>	1.97	0.20	<u>0.67</u>		<u>0.01</u>	
2013	1.92	20.31	<u>64.53</u>	4.09	<u>8.62</u>	0.54	0.00	<u>0.00</u>	0.00	0.00

Tableau 3. Poids (kg) à l'âge du maquereau bleu des sous-régions 3 et 4 de l'OPANO, de 1968 à 2013 (les nombres en gras et soulignés représentent des classes d'âge abondantes).

ANNÉE					Â	GE				
	1	2	3	4	5	6	7	8	9	10 ⁺
1968	0.148	0.241	0.335	0.425	0.506	0.576	0.634	0.683	0.722	0.753
1969	0.131	0.214	0.300	0.382	0.456	0.520	0.574	0.618	0.654	0.683
1970	0.107	0.179	0.253	0.324	0.389	0.444	0.491	0.530	0.562	0.587
1971	0.110	0.181	0.256	0.327	0.391	0.446	0.494	0.532	0.564	0.589
1972	0.123	0.210	0.300	0.386	0.464	0.533	0.590	0.638	0.677	0.733
1973	0.113	0.189	0.269	0.345	0.414	0.473	0.524	0.565	0.600	0.628
1974	0.111	0.190	0.273	0.352	0.425	0.487	0.541	0.585	0.621	0.649
1975	<u>0.104</u>	0.176	0.252	0.326	0.393	0.451	0.500	0.540	0.573	0.600
1976	0.097	<u>0.168</u>	0.244	0.316	0.382	0.440	0.489	0.530	0.563	0.590
1977	0.114	0.198	0.288	0.375	0.454	0.524	0.582	0.631	0.671	0.703
1978	0.192	0.285	0.425	0.463	0.509	0.582	0.625	0.659	0.673	0.697
1979	0.190	0.272	0.531	0.567	0.579	0.603	0.652	0.714	0.752	0.769
1980	0.146	0.376	0.548	0.609	0.617	0.635	0.672	0.705	0.781	0.743
1981	0.114	0.315	0.523	0.577	0.643	0.660	<u>0.674</u>	0.707	0.723	0.756
1982	0.152	0.340	0.541	0.606	0.666	0.743	0.737	<u>0.722</u>	0.719	0.740
1983	0.098	0.257	0.479	0.593	0.628	0.659	0.712	0.709	<u>0.705</u>	0.727
1984	0.098	<u>0.162</u>	0.338	0.525	0.625	0.657	0.696	0.715	0.705	0.709
1985	0.203	0.393	0.399	0.505	0.601	0.742	0.767	0.779	0.840	0.866
1986	0.163	0.306	0.435	<u>0.436</u>	0.520	0.671	0.784	0.800	0.856	0.844
1987	0.214	0.309	0.405	0.483	<u>0.506</u>	0.599	0.701	0.785	0.888	0.892
1988	0.203	0.398	0.467	0.502	0.549	0.579	0.670	0.732	0.795	0.876
1989	0.169	0.329	0.450	0.545	0.619	0.618	0.660	0.753	0.810	0.884
1990	0.280	<u>0.331</u>	0.416	0.534	0.620	0.628	0.676	0.678	0.724	0.863
1991	0.251	0.336	0.435	0.478	0.564	0.627	0.644	0.724	0.712	0.816
1992	0.184	0.297	0.408	0.449	0.508	0.552	0.616	0.672	0.678	0.694
1993	0.180	0.280	0.361	0.446	0.489	0.547	0.607	0.664	0.699	0.724
1994	0.232	0.371	0.384	0.461	0.554	0.549	0.594	0.643	0.714	0.714
1995	0.197	0.300	0.435	0.488	0.532	0.607	0.616	0.661	0.738	0.799
1996	0.224	0.333	0.433	0.535	0.543	0.595	0.647	0.684	0.729	0.845
1997	0.240	0.375	0.448	0.524	0.594	0.601	0.635	0.757	0.700	0.751
1998	0.157	0.273	0.412	0.517	0.577	0.603	0.665	0.666	0.721	<u>0.716</u>
1999	0.186	0.298	0.439	0.509	0.569	0.649	0.703	0.719	0.730	0.769
2000	0.208	0.328	0.409	0.488	0.564	0.610	0.658	0.674	0.697	0.704
2001	0.139	0.280	0.401	0.475	0.562	0.625	0.668	0.693	0.758	0.775
2002	0.161	0.294	0.389	0.464	0.498	0.607	0.637	0.666	0.671	0.696
2003	0.207	0.314	0.387	0.490	0.554	0.667	0.726	0.828	0.839	0.680
2004	0.212	0.281	0.394	0.480	0.554	0.593	0.661	0.754	0.682	0.680
2005	0.110	0.306	0.385	0.466	0.520	0.618	0.654	0.698	0.708	0.665
2006	0.204	0.316	0.429	0.482	0.544	0.569	0.655	0.679	0.667	0.679
2007	0.206	0.308	0.427	0.503	0.582	0.629	0.665	<u>0.711</u>	0.767	0.692
2008	0.175	0.293	0.416	0.497	0.536	0.612	0.644	0.587	0.724	0.733
2009	0.208	0.316	0.416	0.495	0.580	0.605	0.675	0.612	0.707	0.775
2010	0.148	0.348	0.431	0.527	0.575	0.661	0.652	0.602	0.716	0.667
2011	0.188	0.293	0.428	0.491	0.565	0.574	0.704	0.649	0.650	0.710
2012	0.169	0.339	0.414	0.503	0.563	0.680	0.713	0.696	0.645	0.689
2013	0.175	0.305	0.444	0.469	0.589	0.592	0.709	0.657	0.648	0.689

Tableau 4. Biomasse (t) de la capture à l'âge du maquereau bleu des sous-régions 3 et 4 de l'OPANO, de 1968 à 2013 (les nombres en gras et soulignés représentent des classes d'âge abondantes).

ANNÉE					Â	.GE					TOTAL
	1	2	3	4	5	6	7	8	9	10+	:
1968	<u>6 373</u>	1 725	3 465	3 142	1 426	777	457	1 132	<u>7 527</u>	73	26 097
1969	746	<u>5 641</u>	5 417	774	424	444	631	272	302	<u>6 595</u>	21 247
1970	2 170	654	<u>8 497</u>	2 607	971	200	209	836	924	2 545	19 613
1971	787	1 337	436	<u>11 749</u>	2 979	782	1 088	812	1 060	3 249	24 280
1972	0	29	1 320	2 139	<u>11 519</u>	2 651	3 097	49	370	5 009	26 183
1973	1 037	3 898	2 596	3 220	5 785	<u>10 545</u>	4 358	1 566	502	1 007	34 513
1974	957	4 625	7 290	5 140	5 352	6 047	<u>8 319</u>	2 371	1 064	1 135	42 300
1975	<u>1 477</u>	4 383	3 288	3 793	2 771	3 394	2 728	<u>2 115</u>	473	349	24 773
1976	164	<u>3 557</u>	6 615	3 470	2 957	1 702	2 407	2 108	<u>1 758</u>	688	25 425
1977	84	1 413	<u>6 499</u>	4 244	1 672	1 346	471	910	602	<u>1 210</u>	18 453
1978	0	52	1 628	<u>6 821</u>	5 892	3 700	1 973	1 087	944	1 740	23 838
1979	39	131	631	3 751	9 960	7 430	3 645	1 629	1 280	1 889	30 384
1980	1	547	1 181	891	3 139	<u>6 244</u>	4 131	1 898	1 253	1 485	20 770
1981	701	893	2 690	683	1 065	3 082	<u>5 219</u>	2 339	1 153	1 430	19 254
1982	326	2 006	870	3 032	476	1 195	1 933	<u>3 486</u>	1 114	1 853	16 292
1983	<u>24</u>	417	1 178	543	2 520	315	674	2 211	<u>5 478</u>	2 618	15 976
1984	6	3 203	4 752	742	488	1 019	236	342	1 426	3 999	16 213
1985	72	201	9 492	6 486	752	487	1 685	225	463	6 583	26 447
1986	59	1 310	1 418	17 808	5 992	626	381	508	100	1 617	29 818
1987	276	963	1 360	1 105	13 729	3 409	162	144	74	639	21 862
1988	24	280	480	970	1 362	<u>14 341</u>	3 010	166	104	501	21 239
1989	<u>405</u>	2 916	574	511	954	356	<u>13 832</u>	2 028	299	690	22 563
1990	109	2 059	4 051	778	551	607	432	<u>11 367</u>	668	239	20 861
1991	162	2 052	7 746	4 570	684	478	677	615	7 806	454	25 244
1992	116	780	1 230	6 352	4 384	779	452	704	599	<u>7 734</u>	23 130
1993	21	1 372	3 066	2 006	6 362	4 204	1 008	432	489	4 986	23 946
1994	156	86	1 496	2 722	1 582	7 506	3 550	597	174	2 090	19 960
1995	2 089	4 262	304	2 281	2 177	1 073	3 546	1 508	150	471	17 861
1996	561	2 681	3 054	542	2 921	3 879	<u>3 340</u> 1 049	4 852	1 317	755	21 610
1997		4 434	4 894		379		1 956	413		590	21 475
1997	<u>1 220</u> 303		4 894 4 111	2 412	379 2 476	2 229 305		1 348	<u>2 948</u> 297		21 475
		5 057		4 943			1 617			1 054	
1999	251	1 330	<u>6 420</u>	3 822	2 673	1 330	336	490	484	272	17 408
2000	<u>5 920</u>	882	736	<u>2 667</u>	1 618	1 794	301	44	136	261	14 359
2001	1 142	<u>16 831</u>	4 505	1 179	<u>2 352</u>	526	581	100	25	287	27 528
2002	980	1 127	27 360	2 806	1 133	<u>1 296</u>	343	271	32	51	35 399
2003	779	1 376	2 257	<u>36 182</u>	4 698	749	<u>870</u>	27	4	0	46 941
2004	<u>5 835</u>	6 905	2 371	2 282	<u>31 029</u>	1 457	874	<u>457</u>	6	0	51 216
2005	1 913	<u>13 149</u>	9 387	1 867	1 980	<u>24 961</u>	1 099	521	<u>57</u>	30	54 964
2006	<u>6 457</u>	4 663	<u>17 859</u>	10 493	2 048	1 091	<u>11 212</u>	304	24	<u>0</u>	54 150
2007	611	<u>9 620</u>	9 729	<u>22 074</u>	6 463	1 554	883	<u>3 426</u>	30	5	54 396
2008	4 134	2 379	<u>10 801</u>	4 302	<u>6 809</u>	998	408	128	<u>748</u>	7	30 713
2009	<u>7 909</u>	7 724	2 751	<u>14 066</u>	3 691	<u>5 702</u>	242	78	4	<u>374</u>	42 539
2010	799	<u>11 109</u>	12 234	2 018	<u>8 043</u>	1 344	<u>2 142</u>	50	0	88	37 827
2011	<u>430</u>	360	<u>4 969</u>	2 991	361	<u>1 779</u>	237	<u>307</u>	16	28	11 480
2012	33	<u>3 653</u>	815	<u>1 716</u>	187	23	<u>81</u>	5	<u>1</u>	0	6 513
2013	60	1 114	<u>5 151</u>	345	<u>912</u>	57	0	<u>0</u>	0	<u>0</u>	7 639

Tableau 5. Poids (kg) à l'âge au 1^{er} janvier du maquereau bleu des sous-régions 3 et 4 de l'OPANO, de 1968 à 2013 (les nombres en gras et soulignés représentent des classes d'âge abondantes).

ANNÉE					Â	GE					
-	1	2	3	4	5	6	7	8	9	10 ⁺	
1968	0.123	0.216	0.314	0.410	0.499	0.577	0.642	0.698	0.702	0.753	
1969	0.112	<u>0.178</u>	0.269	0.358	0.440	0.513	0.575	0.626	0.668	0.683	
1970	0.082	0.153	0.233	0.312	0.386	0.450	0.505	0.552	0.589	0.587	
1971	0.080	0.139	0.214	0.288	0.356	0.417	0.468	0.511	0.547	0.589	
1972	0.099	0.152	0.233	0.314	0.390	0.457	0.513	0.561	0.600	0.733	
1973	0.087	0.153	0.238	0.322	0.400	0.469	0.529	0.577	0.619	0.628	
1974	0.088	0.147	0.227	0.308	0.383	0.449	<u>0.506</u>	0.554	0.592	0.649	
1975	0.082	0.140	0.219	0.298	0.372	0.438	0.494	<u>0.541</u>	0.579	0.600	
1976	0.068	0.132	0.207	0.282	0.353	0.416	0.470	0.515	0.551	0.590	
1977	0.072	0.139	0.220	0.303	0.379	0.447	0.506	0.556	0.596	0.703	
1978	0.161	0.180	0.290	0.365	0.437	0.514	0.572	0.619	0.652	0.697	
1979	0.135	0.229	0.389	0.491	0.518	0.554	0.616	0.668	0.704	0.769	
1980	0.099	0.267	0.386	0.569	0.592	0.606	0.637	0.678	0.747	0.743	
1981	0.066	0.215	0.444	0.562	0.626	0.638	0.654	0.689	0.714	0.756	
1982	0.117	0.197	0.413	0.563	0.620	0.691	0.697	0.698	0.713	0.740	
1983	0.076	0.198	0.404	0.566	0.617	0.663	0.727	0.723	<u>0.713</u>	0.727	
1984	0.049	<u>0.126</u>	0.295	0.502	0.609	0.642	0.677	0.714	0.707	0.709	
1985	0.165	0.196	0.254	0.413	0.562	0.681	0.710	0.736	0.775	0.866	
1986	0.118	0.249	0.414	0.417	0.512	0.635	0.763	0.783	0.817	0.844	
1987	0.157	0.224	0.352	0.458	0.470	0.558	0.686	0.785	0.843	0.892	
1988	0.160	0.292	0.380	0.451	0.515	0.541	0.634	0.716	0.790	0.876	
1989	<u>0.121</u>	0.258	0.423	0.505	0.557	0.583	0.618	0.710	0.770	0.884	
1990	0.256	0.237	0.370	0.490	0.581	0.624	0.646	0.669	0.738	0.863	
1991	0.231	0.307	0.380	0.446	0.549	0.624	0.636	0.700	0.695	0.816	
1992	0.149	0.273	0.370	0.442	0.493	0.558	0.622	0.658	0.701	0.694	
1993	0.125	0.227	0.327	0.427	0.469	0.527	0.579	0.640	0.685	0.724	
1994	0.204	0.258	0.328	0.408	0.497	0.518	0.570	0.625	0.689	0.714	
1995	0.152	0.264	0.402	0.433	0.495	0.580	0.582	0.627	0.689	0.799	
1996	0.173	0.256	0.360	0.482	0.515	0.563	0.627	0.649	0.694	0.845	
1997	0.225	0.290	0.386	0.476	0.564	0.571	0.615	0.700	0.692	0.751	
1998	0.114	0.256	0.393	0.481	0.550	0.599	0.632	0.650	0.739	0.716	
1999	0.140	0.216	0.346	0.458	0.542	0.612	0.651	0.692	0.697	0.769	
2000	0.179	0.247	0.349	0.463	0.536	0.589	0.654	0.688	0.708	0.704	
2001	0.096	0.241	0.363	0.441	0.524	0.594	0.638	0.675	0.715	0.775	
2002	0.115	0.202	0.330	0.431	0.486	0.584	0.631	0.667	0.682	0.696	
2003	0.178	0.225	0.337	0.437	0.507	0.576	0.664	0.726	0.748	0.680	
2004	<u>0.177</u>	0.241	0.352	0.431	0.521	0.573	0.664	0.740	0.752	0.680	
2005	0.065	0.255	0.329	0.429	0.500	0.585	0.623	0.679	0.731	0.665	
2006	0.166	0.186	0.362	0.431	0.504	0.544	0.636	0.666	0.682	0.679	
2007	0.173	0.251	0.367	0.465	0.530	0.585	0.615	0.682	0.722	0.692	
2008	0.130	0.246	0.358	0.461	0.519	0.597	0.637	0.625	0.718	0.733	
2009	<u>0.161</u>	0.235	0.349	0.454	0.537	0.570	0.643	0.628	0.644	<u>0.775</u>	
2010	0.105	0.269	0.369	0.468	0.534	0.619	0.628	0.638	0.662	0.667	
2011	0.140	0.208	0.386	0.460	0.546	0.575	0.682	<u>0.651</u>	0.626	0.710	
2012	0.126	0.253	0.348	0.464	0.526	0.620	0.640	0.700	0.647	0.689	
2013	0.135	0.227	0.388	0.441	0.544	0.577	0.694	0.684	0.672	0.689	

Tableau 6. Proportion des poissons matures à l'âge (récoltés lors de la ponte en juin et juillet) du maquereau bleu des sous-régions 3 et 4 de l'OPANO, de 1968 à 2013 (les nombres en gras et soulignés représentent des classes d'âge abondantes).

ANNÉE						GE				
40/0	1	2	3	4	5	6	7	8	9	10+
1968	0.288	0.495	0.705	0.853	0.934	0.972	0.988	0.995	0.998	0.999
1969	0.288	<u>0.495</u>	0.705	0.853	0.934	0.972	0.988	0.995	0.998	<u>0.999</u>
1970	0.288	0.495	<u>0.705</u>	0.853	0.934	0.972	0.988	0.995	0.998	0.999
1971	0.288	0.495	0.705	<u>0.853</u>	0.934	0.972	0.988	0.995	0.998	0.999
1972	0.288	0.495	0.705	0.853	<u>0.934</u>	0.972	0.988	0.995	0.998	0.999
1973	0.288	0.495	0.705	0.853	0.934	<u>0.972</u>	0.988	0.995	0.998	0.999
1974	0.288	0.495	0.705	0.853	0.934	0.972	0.988	0.995	0.998	0.999
1975	<u>0.163</u>	0.857	0.995	1.000	1.000	1.000	1.000	<u>1.000</u>	1.000	1.000
1976	0.204	<u>0.785</u>	0.981	0.999	1.000	1.000	1.000	1.000	<u>1.000</u>	1.000
1977	0.049	0.841	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1978	0.429	0.907	0.992	0.999	1.000	1.000	1.000	1.000	1.000	1.000
1979	0.368	0.593	0.785	0.902	0.958	0.983	0.993	0.997	0.999	1.000
1980	0.231	0.972	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1981	0.123	0.984	1.000	1.000	1.000	1.000	<u>1.000</u>	1.000	1.000	1.000
1982	0.015	0.995	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1983	0.378	0.654	0.854	0.948	0.983	0.994	0.998	0.999	1.000	1.000
1984	0.010	0.503	0.990	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1985	0.402	0.879	0.988	0.999	1.000	1.000	1.000	1.000	1.000	1.000
1986	0.422	0.847	0.974	0.996	0.999	1.000	1.000	1.000	1.000	1.000
1987	0.442	0.815	0.961	0.993	0.999	1.000	1.000	1.000	1.000	1.000
1988	0.395	0.904	0.980	0.996	0.999	1.000	1.000	1.000	1.000	1.000
1989	0.349	0.992	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1990	0.283	0.937	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1991	0.216	0.881	0.995	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1992	0.229	0.807	0.977	0.997	1.000	1.000	1.000	1.000	1.000	1.000
1993	0.227	0.807	0.977	0.997	1.000	1.000	1.000	1.000	1.000	1.000
1994	0.229	0.807	0.977	0.997	1.000	1.000	1.000	1.000	1.000	1.000
1994	0.229	0.733	0.977	0.997	0.999	1.000 1.000	1.000	1.000	1.000	1.000
1996	0.195	0.736	0.970	0.997	1.000	1.000	1.000	1.000	1.000	1.000
1997	0.132	0.830	0.985	0.999	1.000	1.000	1.000	1.000	<u>1.000</u>	1.000
1998	0.068	<u>0.925</u>	1.000	1.000	1.000	1.000	1.000	1.000	1.000	<u>1.000</u>
1999	0.117	0.766	<u>0.988</u>	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2000	<u>0.459</u>	0.908	0.991	<u>0.999</u>	1.000	1.000	1.000	1.000	1.000	1.000
2001	0.430	0.929	0.996	1.000	<u>1.000</u>	1.000	1.000	1.000	1.000	1.000
2002	0.306	0.949	0.999	1.000	1.000	<u>1.000</u>	1.000	1.000	1.000	1.000
2003	0.241	0.953	0.999	<u>1.000</u>	1.000	1.000	<u>1.000</u>	1.000	1.000	1.000
2004	<u>0.138</u>	0.855	0.995	1.000	<u>1.000</u>	1.000	1.000	<u>1.000</u>	1.000	1.000
2005	0.088	0.624	0.966	0.998	1.000	<u>1.000</u>	1.000	1.000	<u>1.000</u>	1.000
2006	0.253	0.847	0.989	0.999	1.000	1.000	<u>1.000</u>	1.000	1.000	1.000
2007	0.081	0.922	0.999	<u>1.000</u>	1.000	1.000	1.000	<u>1.000</u>	1.000	1.000
2008	0.210	0.793	0.982	0.999	<u>1.000</u>	1.000	1.000	1.000	1.000	1.000
2009	0.029	0.854	0.999	<u>1.000</u>	1.000	<u>1.000</u>	1.000	1.000	1.000	1.000
2010	0.025	0.615	0.990	1.000	1.000	1.000	<u>1.000</u>	1.000	1.000	1.000
2011	0.255	0.860	0.991	0.999	1.000	1.000	1.000	1.000	1.000	1.000
2012	0.210	0.873	0.994	<u>1.000</u>	1.000	1.000	1.000	1.000	1.000	1.000
2013	0.165	0.886	0.997	1.000	1.000	1.000	1.000	1.000	1.000	1.000

Tableau 7. Indice de la biomasse reproductrice (t) du maquereau bleu calculé à partir des relevés des oeufs PMZA (Programme de Monitorage de la Zone Atlantique)-maquereau bleu réalisés dans le sud du golfe du Saint-Laurent depuis 1996. Aucun relevé n'a été conduit en 1997 et des relevés partiels ont été réalisés en 1999 et 2001; le relevé de 2006 a débuté à la toute fin de la saison de ponte de sorte que les résultats correspondants ne sont pas considérés dans la présente évaluation.

ANNÉE	INDICE DE BIOMASSE (t)
1996	123 464
1998	105 801
2000	161 573
2002	389 007
2003	307 091
2004	162 802
2005	87 959
2007	76 532
2008	99 631
2009	73 743
2010	25 960
2011	35 714
2012	14 568
2013	68 547

Tableau 8. Paramètres d'entrée et formulation finale utilisés pour l'évaluation analytique ICA (Integrated Catch at Age) du maquereau bleu des sous-régions 3 et 4 de l'OPANO, de 1968 à 2013.

FORMULATION DE L	L'ÉVALUATION
Paramètres d'entrée	
Première année	1968
Dernière année	2013
Nombre d'années pour la contrainte séparable	12
Patron constant de sélectivité	S1(2002–2013)
S à être fixée sur le dernier âge	1.20
Étendue des âges	1-10 ⁺
Mortalité naturelle	Version préliminaire, selon la relation de Gislason <i>et al.</i> (2010)
Proportion de M et de F avant la ponte	0.5
Âge de référence pour la contrainte séparable	3
Premier âge pour le calcul du F de référence	4
Dernier âge pour le calcul du F de référennce	10
Compresser la population finale	Non
Indice de calibrage	
Relevé des œufs PMZA-maquereau bleu Année Relation avec l'indice d'abondance	1996–2013 Linéaire
Pondération du modèle	
Poids relatifs dans la capture à l'âge Pondération des indices à l'âge du relevé	1 1
Modéliser une relation stock-recrutement	Non
Paramètres à être estimés	40
Nombre d'observations	122

Tableau 9. Diagnostics de la formulation finale de l'évaluation analytique ICA (Integrated Catch at Age) du maquereau bleu des sous-régions 3 et 4 de l'OPANO, de 1968 à 2013.

ANNÉE	MORTALITÉ PAR PÊCHE	CV (%)	INTERVALLE DE	E CONFIANCE À 95%	- ES	+ ES
			Lim. inf.	Lim. sup.		
2002	0.324	32	0.171	0.614	0.234	0.449
2003	0.191	33	0.098	0.372	0.136	0.268
2004	0.279	31	0.149	0.520	0.203	0.383
2005	0.346	30	0.190	0.627	0.255	0.468
2006	0.364	30	0.202	0.657	0.269	0.492
2007	0.476	28	0.273	0.830	0.359	0.632
2008	0.545	27	0.317	0.939	0.413	0.720
2009	0.568	27	0.333	0.971	0.433	0.747
2010	0.627	27	0.368	1.067	0.478	0.822
2011	1.299	21	0.845	1.998	1.043	1.618
2012	0.540	25	0.328	0.888	0.419	0.696
2013	0.384	52	0.138	1.073	0.228	0.649
ÂGE	SÉLECTIVITÉ PAR ÂGE	CV (%)	INTERVALLE DE	E CONFIANCE À 95%	- ES	+ ES
			Lim. inf.	Lim. sup.		
1	0.239	33	0.123	0.465	0.170	0.336
2	0.655	31	0.354	1.211	0.478	0.896
3	1			de référence fixé		
4	1.748	28	0.993	3.077	1.310	2.333
5	2.290	26	1.374	3.815	1.765	2.971
6	2.595	24	1.603	4.199	2.030	3.317
7	2.578	23	1.614	4.117	2.030	3.273
8	3.493	20	2.359	5.173	2.859	4.268
9	1.2			ier âge vrai fixé		
ÂGE	POPULATION EN 2013	CV (%)		E CONFIANCE À 95 %	- ES	+ ES
	('000)	(, ,)	Lim. inf.	Lim. sup.		
1	4 688	98	677	32 436	1 747	12 577
2	5 018	65	1 380	18 244	2 597	9 695
3	19 330	45	7 934	47 091	12 272	30 446
4	1 627	46	656	4 034	1 024	2 586
5	2 704	43	1 160	6 302	1 756	4 164
6	266	48	102	689	163	432
7	7	56	2	23	4	13
8	11	49	4	30	7	18
9	0	0	0	0	0	0
ÂGE	POPULATION ÂGE 9	CV (%)	INTERVALLE DE	E CONFIANCE À 95%	- ES	+ ES
	('000)		Lim. inf.	Lim. sup.		
2002	159	83	31	824	69	369
2003	66	64	18	235	35	126
2004	52	53	18	150	30	90
2005	317	48	122	821	195	515
2006	163	46	65	409	102	261
2007	151	45	62	369	96	238
2008	1 223	45	500	2 993	775	1 931
2009	26	48	10	67	16	42
2010	9	51	3	26	5	15
2011	16	53	5	47	9	28
2012	1	116	0	9	0	3

Tableau 10. Abondance à l'âge ('000) au 1^{er} janvier du maquereau bleu des sous-régions 3 et 4 de l'OPANO, de 1968 à 2014 (les nombres en gras et soulignés représentent des classes d'âge abondantes).

ANNÉE					ÂG	E				
	1	2	3	4	5	6	7	8	9	10 ⁺
1968	<u>964 800</u>	190 500	112 000	45 200	42 500	81 400	70 400	14 000	<u>181 600</u>	1 700
1969	418 200	<u>591 300</u>	135 100	77 800	29 500	31 900	65 400	57 300	10 100	<u>211 80</u>
1970	564 100	266 600	<u>415 900</u>	89 100	60 200	23 000	25 300	52 900	47 200	124 30
1971	463 700	349 600	194 600	<u>293 300</u>	63 800	46 500	18 500	20 500	42 500	124 70
1972	465 100	295 000	253 000	149 500	<u>201 800</u>	44 900	36 500	13 200	15 600	195 10
1973	655 900	301 600	218 600	192 400	114 200	<u>141 200</u>	32 200	25 300	10 900	20 900
1974	306 600	340 400	206 000	161 200	145 000	80 000	<u>95 500</u>	19 000	18 500	18 900
1975	<u>1 123 800</u>	230 400	219 500	136 500	115 400	106 200	54 300	<u>64 700</u>	12 100	8 500
1976	386 600	<u>815 700</u>	165 600	149 200	98 400	87 200	80 100	39 800	<u>50 200</u>	18 70
1977	197 600	272 100	<u>624 400</u>	114 400	105 400	72 800	67 900	61 500	29 400	56 40
1978	65 200	105 300	198 100	<u>487 600</u>	87 100	78 800	57 200	55 200	49 800	88 60
1979	200 500	32 400	69 300	153 300	390 600	64 300	55 600	44 300	44 300	63 90
1980	78 000	98 400	20 600	48 400	117 800	311 700	44 400	38 100	34 700	43 20
1981	198 100	43 400	59 700	12 600	34 100	91 900	<u>254 900</u>	33 000	27 400	31 90
1982	767 900	101 100	28 100	35 700	8 300	24 400	72 200	211 300	26 000	44 40
1983	1 011 400	390 000	65 000	19 200	20 500	5 700	17 500	58 100	<u>177 800</u>	81 40
1984	116 600	760 500	263 600	44 300	13 500	11 100	3 900	12 800	46 200	127 50
1985	115 300	76 000	<u>586 100</u>	172 200	31 100	9 500	6 600	2 700	9 600	128 20
1986	69 500	71 100	57 900	455 000	112 200	21 900	6 700	2 900	1 900	30 30
1987	85 800	41 200	46 200	42 500	339 300	71 200	15 600	4 800	1 600	13 20
1988	320 500	49 900	25 300	31 000	31 500	258 900	47 600	11 700	3 500	15 80
1989	390 900	208 700	32 700	17 200	21 700	22 900	<u>196 300</u>	31 800	8 700	18 30
1990	42 400	<u>269 000</u>	139 900	21 800	11 900	15 400	18 100	147 700	21 600	6 400
1991	84 900	34 300	198 800	95 400	14 400	8 200	11 200	14 200	111 200	6 000
1992	78 300	66 300	23 300	141 000	64 200	9 500	5 600	7 900	11 000	135 20
1993	12 300	55 300	51 400	17 100	100 100	41 700	5 700	3 600	5 300	51 10
1994	69 400	8 500	38 000	34 900	10 500	68 900	25 400	2 800	2 200	26 00
1995	116 800	51 100	6 300	26 700	24 100	6 500	43 800	14 600	1 300	3 700
1996	87 400	70 800	27 300	4 300	17 400	16 800	4 100	30 700	9 400	4 800
1997	<u>117 500</u>	56 300	45 000	15 600	2 600	9 500	8 400	2 100	<u>19 000</u>	3 600
1998	47 600	<u>78 500</u>	30 900	24 900	8 600	1 500	4 500	4 500	1 300	4 900
1999	128 700	31 800	43 100	14 800	11 200	3 300	800	1 600	2 000	1 100
2000	1 048 300	79 800	19 800	20 800	4 900	4 800	900	200	700	1 600
2001	65 800	728 900	53 200	13 800	<u>11 700</u>	1 400	1 300	300	100	1 400
2002	72 100	40 000	503 600	29 200	8 700	5 800	400	300	200	200
2002	115 800	43 900	24 400	286 500	12 300	3 400	2 000	100	100	200
2003	622 900	86 100	27 800	15 800	164 700	6 000	1 700	1 000	100	200
2004	344 200	382 600	58 100	15 700	7 800	71 100	2 200	700 700	<u>300</u>	100
2006	252 900	180 200	214 200	34 100	6 500	2 800	23 900	700	200	300
2007	25 000	161 400	93 900	111 500	15 200	2 200	900	7 700	200	<u>300</u> 0
										0
2008	91 100	16 400	<u>87 900</u>	40 500	<u>37 200</u>	4 400	500	200	<u>1 200</u>	
2009	<u>132 200</u>	60 900	8 900	<u>39 400</u>	11 200	8 300 3 300	900	100	0	1 100
2010	16 700	<u>88 100</u>	33 200	4 000	<u>11 500</u>	2 200	<u>1 500</u>	200	0	300
2011	59 200	10 600	43 900	14 000	1 100	<u>2 200</u>	300	<u>200</u>	0	100
2012	7 700	33 600	3 500	9 000	1 100	0	<u>100</u>	0	<u>0</u>	0
2013	4700	5000	19300	1600	<u>2700</u>	300	0	<u>0</u>	0	<u>0</u>
2014	77100	3100	3100	10900	700	<u>900</u>	100	0	<u>0</u>	0

Tableau 11. Mortalité par pêche à l'âge du maquereau bleu des sous-régions 3 et 4 de l'OPANO, de 1968 à 2013 (les nombres en gras et soulignés représentent des classes d'âge abondantes).

ANNÉE					Â	GE				
	1	2	3	4	5	6	7	8	9	10+
1968	0.056	0.044	0.110	0.201	0.076	0.018	0.011	0.139	0.065	0.065
1969	0.017	0.053	0.163	0.030	0.036	0.030	0.019	0.009	0.051	0.051
1970	0.045	0.016	0.096	0.106	0.047	0.022	0.019	0.033	0.039	0.039
1971	0.019	0.025	0.010	<u>0.147</u>	0.142	0.042	0.141	0.085	0.050	0.050
1972	0.000	0.001	0.020	0.042	<u>0.146</u>	0.130	0.172	0.006	0.039	0.039
1973	0.019	0.082	0.051	0.056	0.145	<u>0.191</u>	0.332	0.128	0.088	0.088
1974	0.032	0.088	0.158	0.107	0.101	0.187	0.194	0.264	0.107	0.107
1975	<u>0.015</u>	0.127	0.072	0.100	0.070	0.081	0.117	0.069	0.077	0.077
1976	0.005	0.030	0.196	0.087	0.091	0.050	0.070	0.116	0.070	0.070
1977	0.005	0.031	0.041	0.113	0.040	0.040	0.013	0.026	0.034	0.034
1978	0.000	0.002	0.022	0.034	0.154	0.096	0.063	0.033	0.031	0.031
1979	0.001	0.018	0.020	0.049	<u>0.049</u>	0.229	0.121	0.058	0.043	0.043
1980	0.000	0.019	0.133	0.036	0.049	<u>0.035</u>	0.160	0.083	0.052	0.052
1981	0.043	0.081	0.110	0.115	0.057	0.057	0.033	0.113	0.067	0.067
1982	0.004	0.072	0.069	0.182	0.104	0.077	0.040	<u>0.025</u>	0.065	0.065
1983	0.000	0.005	0.046	0.057	0.262	0.101	0.063	0.060	0.048	0.048
1984	0.001	0.030	0.066	0.038	0.068	0.179	0.103	0.043	0.049	0.049
1985	0.004	0.008	<u>0.046</u>	0.092	0.048	0.082	0.486	0.128	0.066	0.066
1986	0.007	0.074	0.065	<u>0.104</u>	0.128	0.050	0.085	0.291	0.074	0.074
1987	0.020	0.096	0.088	0.062	<u>0.091</u>	0.097	0.017	0.045	0.063	0.063
1988	0.000	0.017	0.049	0.074	0.092	<u>0.110</u>	0.115	0.022	0.043	0.043
1989	0.007	0.052	0.048	0.065	0.084	0.028	0.123	0.102	0.049	0.049
1990	0.010	0.027	0.084	0.082	0.089	0.073	0.040	<u>0.130</u>	0.050	0.050
1991	0.009	0.215	<u>0.106</u>	0.121	0.103	0.112	0.112	0.068	<u>0.112</u>	0.112
1992	0.010	0.045	0.151	<u>0.119</u>	0.166	0.190	0.162	0.162	0.093	0.093
1993	0.011	0.106	0.199	0.332	<u>0.156</u>	0.234	0.407	0.230	0.160	0.160
1994	0.011	0.032	0.122	0.202	0.341	0.247	0.307	0.478	0.135	0.135
1995	0.115	0.374	0.133	0.215	0.202	0.339	<u>0.156</u>	0.194	0.199	0.199
1996	0.035	0.141	0.337	0.301	0.413	0.537	0.545	0.291	0.241	0.241
1997 1998	<u>0.053</u> 0.049	0.279	0.321 0.456	0.391 0.557	0.320 0.775	0.556 0.455	0.494	0.324	<u>0.276</u> 0.394	0.276
1999	0.049	<u>0.314</u> 0.176	0.456 0.479	0.557	0.773	1.109	0.873 1.064	0.658 0.627	0.394	<u>0.394</u> 0.432
2000		0.176	0.479	0.837 0.346	1.023	1.109	0.788	0.827	0.432	0.432
2001	<u>0.032</u> 0.159	0.041	0.104	0.224	0.500	1.083	1.375	0.575	0.264	0.204
2002	0.137	0.212	0.201 0.324	0.566	<u>0.300</u> 0.742	0.841	0.835	1.132	0.389	0.389
2003	0.077	0.212	0.324 0.191	0.334	0.742	0.496	0.493	0.668	0.229	0.229
2004	0.040 0.067	0.123	0.171	0.487	0.438 0.638	0.723	0.718	0.973	0.334	0.334
2005	0.083	0.226	0.346	0.604	0.791	0.723	0.891	<u>0.773</u> 1.207	0.415	0.415
2006	0.087	0.238	0.364	0.636	0.833	0.945	0.938	1.272	0.437	0.437
2007	0.114	0.312	0.476	0.832	1.090	1.235	<u>0.730</u> 1.227	1.663	0.571	0.571
2008	0.130	0.357	<u>0.545</u>	0.953	1.249	1.415	1.406	1.905	0.654	0.654
2009	0.136	0.377	0.568	0.994	1.301	1.415 1.475	1.465	1.986	0.682	0.682
2010	0.150 0.150	0.372 0.410	0.627	1.095	1.435	1.626	1.615	2.189	0.752	0.752
2011	0.130	0.850	1.299	2.270	2.974	3.370	3.348	4.537	1.559	1.559
2012	0.310	0.353	0.540	0.944	1.236	<u>3.370</u> 1.401	1.391	1.886	0.648	0.648
2013	0.092	0.353	0.384	0.672	0.880	0.997	0.991	1.342	0.461	0.461
2013	0.072	0.232	0.504	0.072	0.000	0.771	0.771	1.372	0.401	<u>0.701</u>

Tableau 12. Biomasse totale (t) à l'âge du maquereau bleu des sous-régions 3 et 4 de l'OPANO, de 1968 à 2013 (les nombres en gras et soulignés représentent des classes d'âge abondantes).

ANNÉE					Â	GE		TOTAL			
	1	2	3	4	5	6	7	8	9	10 ⁺	-
1968	142 790	45 911	37 520	19 210	21 505	46 886	44 634	9 562	<u>131 115</u>	1 280	500 413
1969	54 784	<u>126 538</u>	40 530	29 720	13 452	16 588	37 540	35 411	6 605	<u>144 659</u>	505 828
1970	60 359	47 721	<u>105 223</u>	28 868	23 418	10 212	12 422	28 037	26 526	72 964	415 751
1971	51 007	63 278	49 818	<u>95 909</u>	24 946	20 739	9 139	10 906	23 970	73 448	423 159
1972	57 207	61 950	75 900	57 707	<u>93 635</u>	23 932	21 535	8 422	10 561	143 008	553 857
1973	74 117	57 002	58 803	66 378	47 279	<u>66 788</u>	16 873	14 295	6 540	13 125	421 199
1974	34 033	64 676	56 238	56 742	61 625	38 960	<u>51 666</u>	11 115	11 489	12 266	398 809
1975	<u>116 875</u>	40 550	55 314	44 499	45 352	47 896	27 150	<u>34 938</u>	6 933	5 100	424 608
1976	37 500	<u>137 038</u>	40 406	47 147	37 589	38 368	39 169	21 094	<u>28 263</u>	11 033	437 607
1977	22 526	53 876	<u>179 827</u>	42 900	47 852	38 147	39 518	38 807	19 727	<u>39 649</u>	522 829
1978	12 518	30 011	84 193	225 759	44 334	45 862	35 750	36 377	33 515	61 754	610 072
1979	38 095	8 813	36 798	86 921	<u>226 157</u>	38 773	36 251	31 630	33 314	49 139	585 892
1980	11 388	36 998	11 289	29 476	72 683	<u>197 930</u>	29 837	26 861	27 101	32 098	475 659
1981	22 583	13 671	31 223	7 270	21 926	60 654	<u>171 803</u>	23 331	19 810	24 116	396 388
1982	116 721	34 374	15 202	21 634	5 528	18 129	53 211	<u>152 559</u>	18 694	32 856	468 908
1983	<u>99 117</u>	100 230	31 135	11 386	12 874	3 756	12 460	41 193	125 349	59 178	496 678
1984	11 427	123 201	89 097	23 258	8 438	7 293	2 714	9 152	32 571	90 398	397 547
1985	23 406	29 868	233 854	86 961	18 691	7 049	5 062	2 103	8 064	110 979	526 038
1986	11 329	21 757	25 187	<u>198 380</u>	58 344	14 695	5 253	2 320	1 626	25 585	364 475
1987	18 361	12 731	18 711	20 528	<u>171 686</u>	42 649	10 936	3 768	1 421	11 780	312 569
1988	65 062	19 860	11 815	15 562	17 294	149 903	31 892	8 564	2 783	13 842	336 577
1989	66 062	68 662	14 715	9 374	13 432	14 152	129 558	23 945	7 047	16 172	363 120
1990	11 872	<u>89 039</u>	58 198	11 641	7 378	9 671	12 236	<u>100 141</u>	15 638	5 526	321 340
1991	21 310	11 525	<u>86 478</u>	45 601	8 122	5 141	7 213	10 281	<u>79 174</u>	4 895	279 740
1992	14 407	19 691	9 506	63 309	32 614	5 244	3 450	5 309	7 458	93 845	254 832
1993	2 214	15 484	18 555	7 627	48 949	22 810	3 460	2 390	3 705	37 021	162 215
1994	16 101	3 154	14 592	16 089	5 817	<u>37 826</u>	15 088	1 800	1 571	18 577	130 614
1995	23 010	15 330	2 741	13 030	12 821	3 946	<u>26 981</u>	9 651	959	2 955	111 422
1996	19 578	23 576	11 821	2 301	9 448	9 996	2 653	20 999	6 853	4 057	111 281
1997	28 200	21 113	20 160	8 174	1 544	5 710	5 334	1 590	13 300	2 705	107 829
1998	7 473	21 431	12 731	12 873	4 962	905	2 993	2 997	937	<u>3 507</u>	70 808
1999	23 938	9 476	<u>18 921</u>	7 533	6 373	2 142	562	1 150	1 460	846	72 402
2000	<u>218 046</u>	26 174	8 098	10 150	2 764	2 928	592	135	488	1 127	270 503
2001	9 146	204 092	21 333	6 555	6 575	875	868	208	76	1 084	250 813
2002	11 608	11 760	<u>195 900</u>	13 549	4 333	3 521	255	200	134	139	241 398
2003	23 971	13 785	9 443	140 385	6 814	2 268	<u>1 452</u>	83	84	136	198 420
2004	132 055	24 194	10 953	7 584	91 244	3 558	1 124	<u>754</u>	68	136	271 670
2005	37 862	<u>117 076</u>	22 369	7 316	4 056	43 940	1 439	489	<u>212</u>	67	234 824
2006	51 592	56 943	91 892	16 436	3 536	1 593	<u>15 655</u>	475	133	<u>204</u>	238 459
2007	5 150	49 711	40 095	<u>56 085</u>	8 846	1 384	599	5 475	153	0	167 498
2008	15 943	4 805	<u>36 566</u>	20 129	19 939	2 693	322	3 473 117	<u>869</u>	0	101 383
2009	27 498	19 244	3 702	19 503	6 496	5 022	608	61	0	<u>853</u>	82 986
2010	2 472	30 659	14 309	2 108	6 613	1 454	978	120	0	200	58 913
2010	11 130	3 106	14 309 18 789	6 874	622	1 263	976 211	130	0	71	42 195
2011	1 301	11 390	1 449	4 527	619	<u>1 203</u> 0	71	0		0	19 358
2012	823			750					<u>0</u>		
2013	023	1 525	8 569	700	<u>1 590</u>	178	0	<u>0</u>	0	<u>0</u>	13 435

Tableau 13. Biomasse reproductrice (t) à l'âge du maquereau bleu des sous-régions 3 et 4 de l'OPANO, de 1968 à 2013 (les nombres en gras et soulignés représentent des classes d'âge abondantes).

ANNÉE	ÂGE										TOTAL
	1	2	3	4	5	6	7	8	9	10÷	-
1968	<u>41 124</u>	22 726	26 452	16 386	20 086	45 574	44 098	9 514	130 853	1 279	358 090
1969	15 778	<u>62 636</u>	28 574	25 351	12 564	16 124	37 089	35 234	6 592	<u>144 515</u>	384 457
1970	17 383	23 622	<u>74 182</u>	24 625	21 872	9 926	12 273	27 897	26 473	72 891	311 145
1971	14 690	31 322	35 121	<u>81 810</u>	23 299	20 158	9 029	10 851	23 922	73 375	323 580
1972	16 476	30 665	53 510	49 224	<u>87 455</u>	23 262	21 277	8 379	10 540	142 865	443 653
1973	21 346	28 216	41 456	56 620	44 158	64 918	16 670	14 223	6 527	13 112	307 247
1974	9 801	32 015	39 648	48 401	57 558	37 869	<u>51 046</u>	11 059	11 466	12 254	311 116
1975	<u>19 051</u>	34 752	55 037	44 499	45 352	47 896	27 150	34 938	6 933	5 100	320 708
1976	7 650	<u>107 575</u>	39 639	47 100	37 589	38 368	39 169	21 094	28 263	11 033	377 479
1977	1 104	45 310	<u>179 468</u>	42 900	47 852	38 147	39 518	38 807	19 727	39 649	492 481
1978	5 370	27 220	83 519	225 533	44 334	45 862	35 750	36 377	33 515	61 754	599 234
1979	14 019	5 226	28 887	78 403	<u>216 659</u>	38 114	35 997	31 535	33 280	49 139	531 259
1980	2 631	35 962	11 289	29 476	72 683	<u>197 930</u>	29 837	26 861	27 101	32 098	465 865
1981	2 778	13 452	31 223	7 270	21 926	60 654	<u>171 803</u>	23 331	19 810	24 116	376 364
1982	1 751	34 202	15 202	21 634	5 528	18 129	53 211	<u>152 559</u>	18 694	32 856	353 766
1983	<u>37 466</u>	65 550	26 589	10 794	12 655	3 734	12 435	41 152	125 349	59 178	394 902
1984	114	61 970	88 206	23 258	8 438	7 293	2 714	9 152	32 571	90 398	324 113
1985	9 409	26 254	<u>231 048</u>	86 874	18 691	7 049	5 062	2 103	8 064	110 979	505 534
1986	4 781	18 428	24 532	<u>197 586</u>	58 286	14 695	5 253	2 320	1 626	25 585	353 092
1987	8 116	10 376	17 981	20 384	<u>171 514</u>	42 649	10 936	3 768	1 421	11 780	298 924
1988	25 699	17 954	11 579	15 500	17 276	149 903	31 892	8 564	2 783	13 842	294 992
1989	23 056	68 113	14 715	9 374	13 432	14 152	129 558	23 945	7 047	16 172	319 564
1990	3 360	<u>83 430</u>	58 082	11 641	7 378	9 671	12 236	100 141	15 638	5 526	307 102
1991	4 603	10 153	86 046	45 601	8 122	5 141	7 213	10 281	79 174	4 895	261 229
1992	3 299	15 891	9 288	63 119	32 614	5 244	3 450	5 309	7 458	93 845	239 515
1993	507	12 496	18 129	7 604	48 949	22 810	3 460	2 390	3 705	37 021	157 070
1994	3 687	2 545	14 256	16 041	5 817	37 826	15 088	1 800	1 571	18 577	117 208
1995	5 568	11 237	2 628	12 964	12 808	3 946	<u>26 981</u>	9 651	959	2 955	89 697
1996	3 818	17 352	11 466	2 294	9 448	9 996	2 653		6 853	4 057	88 935
1996			19 858		1 544	5 710		20 999 1 500		2 705	79 452
	<u>3 722</u>	17 523		8 166			5 334	1 590	<u>13 300</u>		
1998	508	<u>19 823</u>	12 731	12 873	4 962	905	2 993	2 997	937	<u>3 507</u>	62 236
1999	2 801	7 259	<u>18 694</u>	7 533	6 373	2 142	562	1 150	1 460	846	48 820
2000	100 181	23 776	8 029	<u>10 143</u>	2 763	2 928	592	135	488	1 127	150 163
2001	3 932	<u>189 673</u>	21 241	6 553	<u>6 575</u>	875	868	208	76	1 084	231 085
2002	3 554	11 164	<u>195 656</u>	13 548	4 333	<u>3 521</u>	255	200	134	139	232 503
2003	5 777	13 134	9 435	140 384	6 814	2 268	<u>1 452</u>	83	84	136	179 567
2004	<u>18 177</u>	20 697	10 903	7 583	91 244	3 558	1 124	<u>754</u>	68	136	154 244
2005	3 349	<u>73 000</u>	21 604	7 301	4 056	43 939	1 439	489	<u>212</u>	67	155 456
2006	<u>13 072</u>	48 204	<u>90 878</u>	16 425	3 536	1 593	<u>15 655</u>	475	133	<u>204</u>	190 175
2007	419	<u>45 817</u>	40 070	<u>56 085</u>	8 846	1 384	599	<u>5 475</u>	153	0	158 847
2008	3 344	3 809	<u>35 914</u>	20 103	<u>19 937</u>	2 693	322	117	<u>869</u>	0	87 108
2009	<u>790</u>	16 441	3 699	<u>19 503</u>	6 496	<u>5 022</u>	608	61	0	<u>853</u>	53 472
2010	63	<u>18 846</u>	14 165	2 108	<u>6 613</u>	1 454	<u>978</u>	120	0	200	44 546
2011	2 838	2 671	<u>18 620</u>	6 870	621	<u>1 263</u>	211	<u>130</u>	0	71	33 296
2012	273	9945	1440	<u>4527</u>	619	0	<u>71</u>	0	<u>0</u>	0	16 876
2013	136	1351	8541	750	<u>1590</u>	178	0	<u>0</u>	0	<u>0</u>	12 547

Tableau 14. Paramètres d'entrée (sans correction pour le patron rétrospectif) et résultats des prédictions des biomasses reproductrices et des captures de maquereau bleu des sous-régions 3 et 4 de l'OPANO pour les saisons 2014 à 2016.

PARAMÈTRES ET RÉSULTATS	ÂGE										TOTAL
	1	2	3	4	5	6	7	8	9	10	-
Abondance début 2014 ('000) Capture en 2014 ('000)	77 100 5 584	3 100 231	3 100 231	10 900 813	700 52	900 67	100 7	0	0 0	0 0	
Mortalité naturelle en 2014 ('000)	18 977	634	628	2 189	135	180	19	0	0	0	
Abondance début 2015 ('000) Capture en 2015 ('000)	5 870 ¹ 425	52 539 3 908	2 235 166	2 241 167	7 898 592	512 38	653 49	73 6	0 0	0	
Mortalité naturelle en 2015 ('000)	1 445	10 748	453	450	1 525	102	127	12	0	0	
Abondance début 2016 ('000)	5 870 ¹	4 000	37 883	1 616	1 624	5 781	372	477	55	0	
Poids de la capture à l'âge (mi- année) 1	0.172	0.322	0.429	0.486	0.576	0.636	0.711	0.677	0.646	0.689	
Poids de la population à l'âge (Janvier) 1	0.130	0.240	0.368	0.452	0.535	0.599	0.667	0.692	0.659	0.689	
Maturité à l'âge 1	0.188	0.880	0.995	1	1	1	1	1	1	1	
Taux instantané de mortalité par pêche (F) ²	0.087	0.087	0.087	0.087	0.087	0.087	0.087	0.087	0.087	0.087	
Biomasse reproductrice à l'âge (t) : Début 2014	1 886	654	1 136	4 930	375	539	67	0	0	0	9 586
Début 2015	144	11 080	819	1 014	4 226	307	436	51	0	0	18 075
Début 2016	144	844	13 881	731	869	3 460	248	330	36	0	20 543
Captures (t):											
2014	960	74	99	395	30	43	5	0	0	0	1 607
2015	73	1 258	71	81	341	24	35	4	0	0	1 888

 $^{^{\}rm 1}$ Moyenne 2012–2013; $^{\rm 2}$ Moyenne 1968–1992 des Fs aux âges 3-5 pondérées par les abondances correspondantes

Tableau 15. Paramètres d'entrée (avec correction pour le patron rétrospectif) et résultats des prédictions des biomasses reproductrices et des captures de maquereau bleu des sous-régions 3 et 4 de l'OPANO pour les saisons 2014 à 2016.

PARAMÈTRES ET RÉSULTATS	ÂGE										
	1	2	3	4	5	6	7	8	9	10	•
Abondance début 2014 ('000)	31 766	1 277	1 277	4 491	288	371	41	0	0	0	
Capture en 2014 ('000)	2 301	95	95	335	22	28	3	0	0	0	
Mortalité naturelle en 2014 ('000)	7 819	261	259	902	56	74	8	0	0	0	
Abondance début 2015 ('000) Capture en 2015 ('000)	5 870 ¹ 425	21 647 1 610	921 69	924 69	3 254 244	211 16	269 20	30 2	0 0	0 0	
Mortalité naturelle en 2015 ('000)	1 445	4 428	186	185	628	42	52	5	0	0	
Abondance début 2016 ('000)	5 870 ¹	4 000	15 608	666	669	2 382	153	197	22	0	
Poids de la capture à l'âge (mi- année) 1	0.172	0.322	0.429	0.486	0.576	0.636	0.711	0.677	0.646	0.689	
Poids de la population à l'âge (Janvier) ¹	0.130	0.240	0.368	0.452	0.535	0.599	0.667	0.692	0.659	0.689	
Maturité à l'âge 1	0.188	0.880	0.995	1	1	1	1	1	1	1	
Taux instantané de mortalité par pêche (F) ²	0.087	0.087	0.087	0.087	0.087	0.087	0.087	0.087	0.087	0.087	
Biomasse reproductrice à l'âge (t) : Début 2014	777	269	468	2 031	154	222	27	0	0	0	3 949
Début 2015	144	4 565	337	418	1 741	126	180	21	0	0	7 532
Début 2016	144	844	5 719	301	358	1 426	102	136	15	0	9 045
Captures (t):											
2014	396	31	41	163	12	18	2	0	0	0	662
2015	73	518	29	33	140	10	14	2	0	0	821

¹ Moyenne 2012–2013;

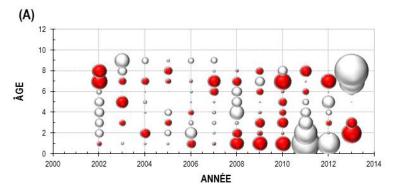
² Moyenne 1968–1992 des Fs aux âges 3–5 pondérées par les abondances correspondantes

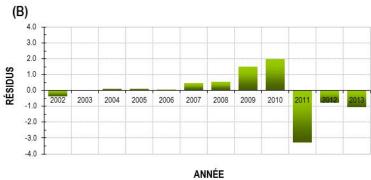
Tableau 16. Paramètres d'entrée à l'analyse de rendement par recrue (YPR). Les données de sélectivité (recrutement partiel) ont été calculées à partir des mortalités par pêche provenant de l'évaluation analytique (ICA).

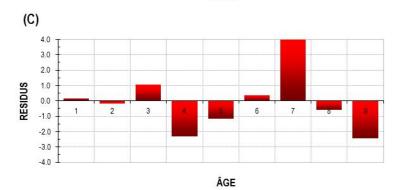
ÂGE	SÉLECTIVITÉ 1	POIDS (kg) DE LA POPULATION ²	POIDS (kg) DE LA CAPTURE ²	POIDS (kg) DE LA POPULATION REPRODUCTRICE ²	FRACTION MATURE ³
1	0.181	0.126	0.170	0.126	0.164
2	0.495	0.239	0.321	0.239	0.808
3	0.756	0.373	0.429	0.373	0.993
4	1.000	0.458	0.498	0.458	1.000
5	1.000	0.537	0.573	0.537	1.000
6	1.000	0.598	0.627	0.598	1.000
7	1.000	0.661	0.694	0.661	1.000
8	1.000	0.668	0.651	0.668	1.000
9	0.907	0.652	0.665	0.652	1.000
10	0.907	0.689	0.689	0.689	1.000

¹ Calculée à partir des Fs (3-5) pondérées par les abondances correspondantes, moyenne 2010–2013 ² Moyenne 2010–2013

Tableau 17. Résultats de l'analyse de rendement par recrue (YPR) (F à 40 % est considéré comme un indice représentatif de F_{rms}).


	PARAMÈTRES								
	F	Rendement par recrue	BSR par recrue	Biomasse totale par recrue	Age moyen				
F-0	0	0	1.685	2.015	5.426				
F-0.1	0.306	0.172	0.570	0.864	2.692				
F-Max	1.108	0.203	0.187	0.437	1.790				
F à 40%	0.238	0.158	0.674	0.975	2.935				


Tableau 18. Points de référence biologiques (exploratoires) : RMS et BSR_{rms} ont été déterminés analytiquement par une analyse de rendement par recrue (YPR) et à l'aide de projections aléatoires de type "bootstrap" (AGEPRO). Les recrues et les données de sélectivité (recrutement partiel) utilisées dans YPR et AGEPRO proviennent des résultats de l'évaluation analytique.


RECRUES ('000) (moyenne 1967-2013)	ANAL	ANALYTIQUE		ATOIRE	F (3-5) ₂₀₁₃ ÷ F _{rms}	BSR ₂₀₁₃ ÷ BSR _{rms}	
	RMS (t)	BSR _{rms} (t)	RMS (t)	BSR _{rms} (t)	Analytique	Analytique	Aléatoire
269 938	42 637	182 009	41 163	175 708	1.937	0.069	0.071

³ Données canadiennes (juin et juillet), moyenne 2010–2013

FIGURES

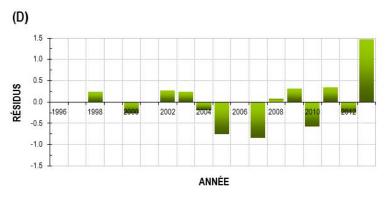


Figure 1. Diagnostics de l'évaluation analytique (ICA) du maquereau bleu des sous-régions 3-4 de l'OPANO en 2013: (A) Résidus des logarithmes des capturabilités à l'âge (les valeurs négatives sont en blanc) pour la partie séparable de l'évaluation, (B) résidus totaux annuels, (C) résidus totaux à l'âge, et (D) résidus de l'indice d'abondance des oeufs.

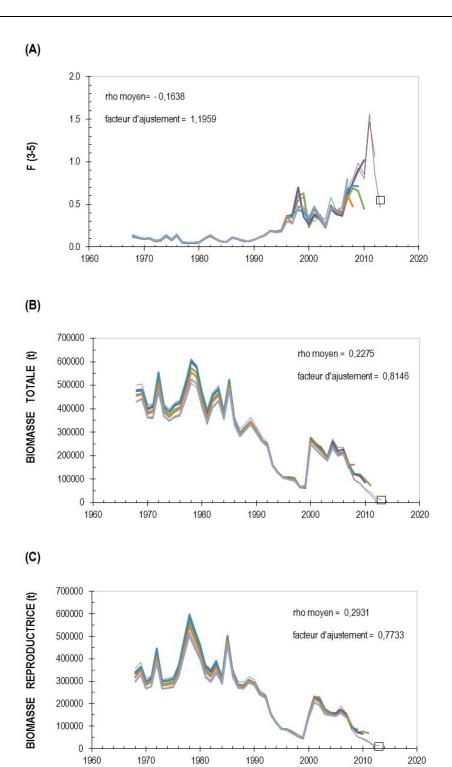
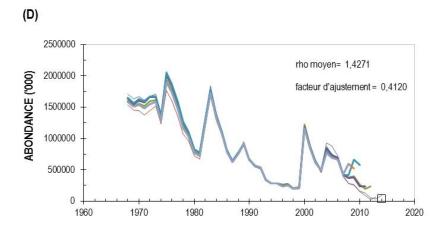



Figure 2. Analyses rétrospectives de l'évaluation analytique (ICA) du maquereau bleu des sous-régions 3-4 de l'OPANO en 2013: (A) mortalité par pêche (aux âges 3-5 pondérée par les abondances correspondantes), (B) biomasse totale (t), (C) biomasse reproductrice (t), (D) abondance aux âges 1-10⁺ ('000), et (E) abondance des recrues à l'âge 1 ('000). Les rhos moyens et les facteurs d'ajustement aux patrons rétrospectifs sont indiqués. Le symbole carré représente les valeurs ajustées.

ANNÉE

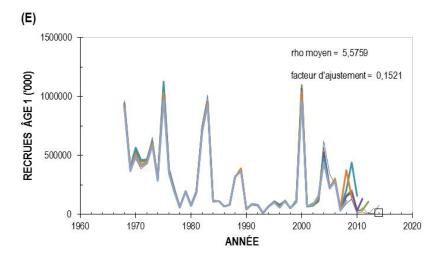
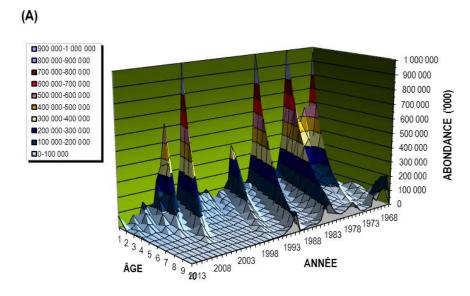



Figure 2. (Suite).

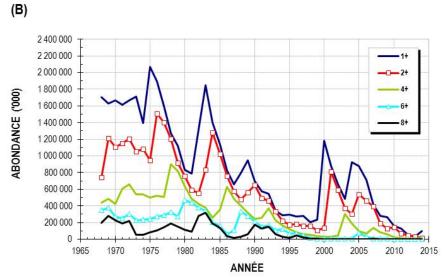
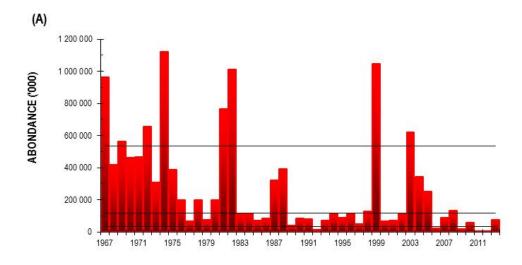



Figure 3. Évaluation analytique (ICA) du maquereau bleu des sous-régions 3-4 de l'OPANO en 2013: (A) abondance ('000) annuelle à l'âge et (B) abondance ('000) annuelle pour différents groupes d'âge plus.

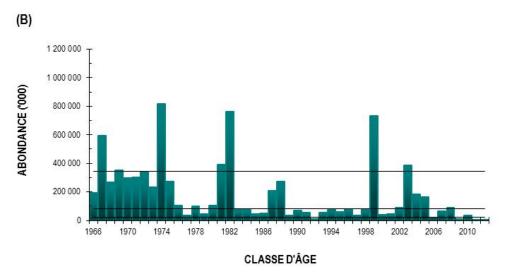


Figure 4. Évaluation analytique (ICA) du maquereau bleu des sous-régions 3-4 de l'OPANO en 2013: (A) abondance des recrues à l'âge 1 ('000) et (B) abondance des recrues à l'âge 2 ('000). Les lignes horizontales représentent trois niveaux de recrutement, soit : faible, moyen et élevé.

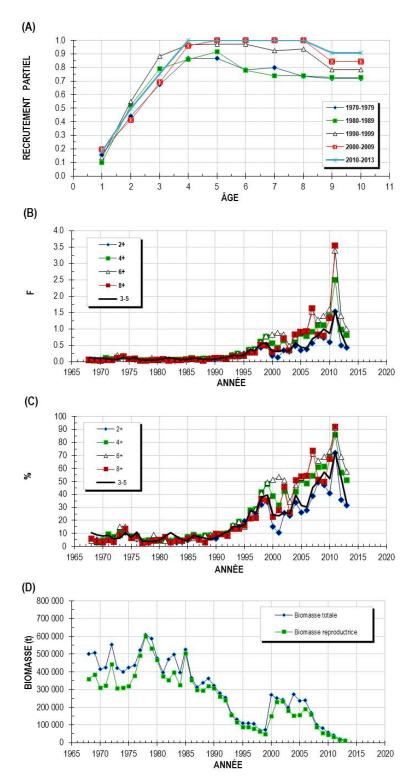
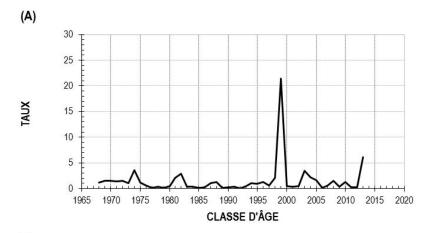
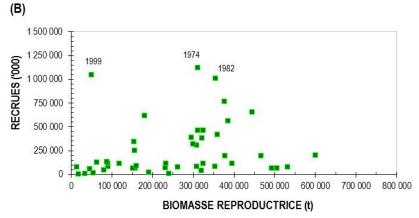




Figure 5. Évaluation analytique (ICA) du maquereau bleu des sous-régions 3-4 de l'OPANO en 2013: (A) recrutement partiel par période d'années, (B) mortalité par pêche pour des groupes d'âge plus et pour la moyenne des âges 3-5, (C) exploitation (%) par la pêche pour des groupes d'âge plus et pour la moyenne des âges 3-5, et (D) biomasse (t) totale et biomasse (t) reproductrice.

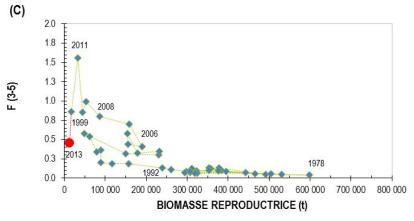
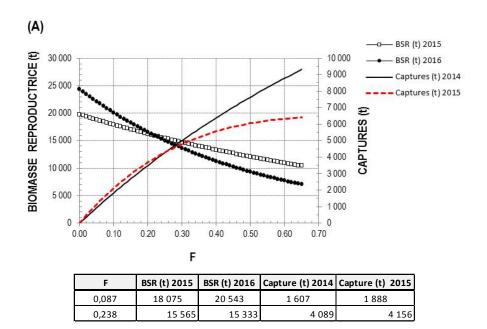



Figure 6. Évaluation analytique (ICA) du maquereau bleu des sous-régions 3-4 de l'OPANO en 2013: (A) taux de recrutement à l'âge 1, (B) relation entre l'abondance des recrues ('000) et la biomasse reproductrice (t) (certaines classes d'âge sont indiquées), et (C) relation entre la mortalité par pêche aux âges 3-5 (pondérée par les abondances correspondantes) et la biomasse reproductrice (t) (certaines années sont indiquées).

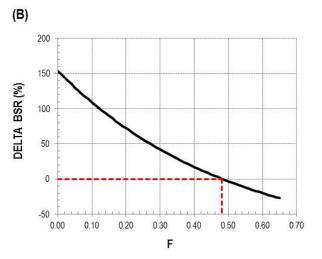
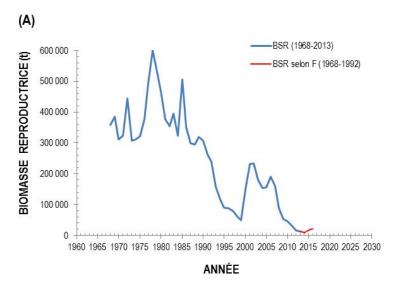



Figure 7. Projections à court terme : (A) biomasse reproductrice (t) (BSR) et capture (t) entre janvier 2014 et janvier 2016 et (B) changement (%) de la biomasse reproductrice (t) (BSR) entre janvier 2014 et janvier 2016 selon différentes valeurs de la mortalité par pêche (note : F 1968–1992 = 0.087 et F_{rms} = 0.238). La biomasse reproductrice de 2016 serait inférieure à celle de 2014 pour des mortalités par pêche de plus de 0.480.

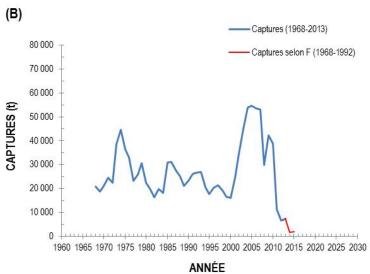


Figure 8. Projections à court terme : (A) biomasse reproductrice (t) de janvier 2014 à janvier 2016 et (B) des captures (t) en 2014 et 2015 en appliquant comme stratégie d'exploitation la mortalité par pêche moyenne de la période de stabilité 1968–1992 (F=0.087).

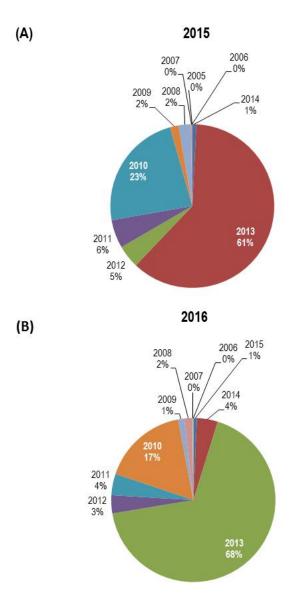
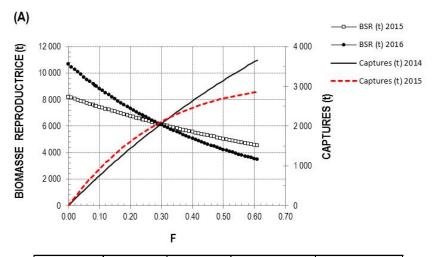



Figure 9. Projections à court terme : (A) composition (%) en classes d'âge de la population de maquereau bleu en janvier 2015 et (B) janvier 2016 suite à une mortalité par pêche de 0.087 (moyenne de la période de stabilité 1968–1992) appliquée en 2014 et 2015.

F	BSR (t) 2015	BSR (t) 2016	Capture (t) 2014	Capture (t) 2015
0,087	7 532	9 045	662	821
0,238	6 498	6 829	1 685	1 822

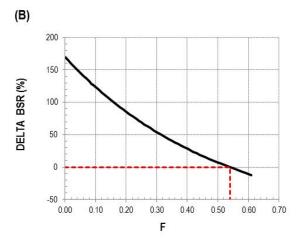
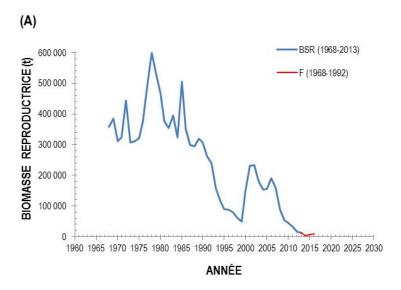



Figure 10. Projections à court terme : (A) biomasse reproductrice (t) (BSR) et capture (t) entre janvier 2014 et janvier 2016 et (B) changement (%) de la biomasse reproductrice (t) (BSR) entre janvier 2014 et janvier 2016 selon différentes valeurs de la mortalité par pêche (note : F 1968–1992 = 0.087 et F_{rms} = 0.238). La biomasse reproductrice de 2016 serait inférieure à celle de 2014 pour des mortalités par pêche de plus de 0.540. Pour tenir compte du patron rétrospectif, les projections ont été réalisées en appliquant un facteur d'ajustement aux abondances à l'âge mesurées en 2014.

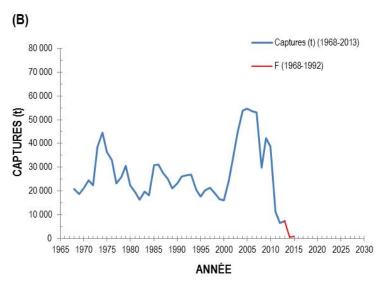


Figure 11. Projections à court terme : (A) biomasse reproductrice (t) de janvier 2014 à janvier 2016 et (B) des captures (t) en 2014 et 2015 en appliquant comme stratégie d'exploitation la mortalité par pêche moyenne de la période de stabilité 1968–1992 (F=0.087). Pour tenir compte du patron rétrospectif, les projections ont été réalisées en appliquant un facteur d'ajustement aux abondances à l'âge mesurées en 2014.

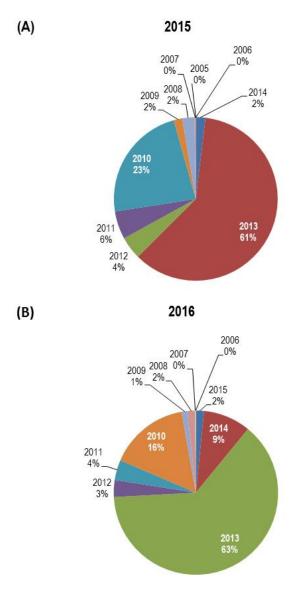


Figure 12. Projections à court terme : (A) composition (%) en classes d'âge de la population de maquereau bleu en janvier 2015 et (B) janvier 2016 suite à une mortalité par pêche de 0.087 (moyenne de la période de stabilité 1968–1992) appliquée en 2014 et 2015. Pour tenir compte du patron rétrospectif, les projections ont été réalisées en appliquant un facteur d'ajustement aux abondances à l'âge mesurées en 2014.

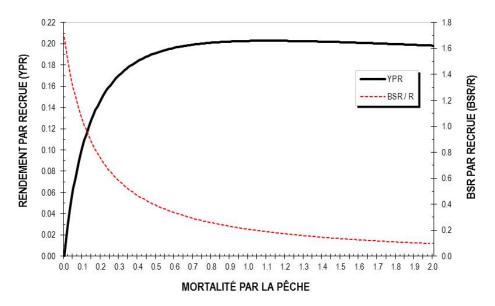
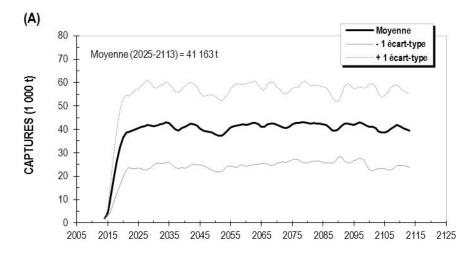
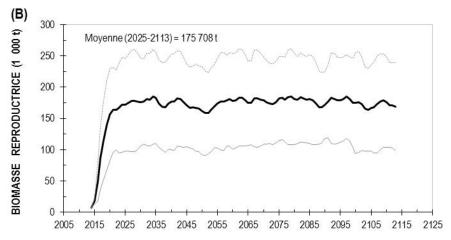




Figure 13 Analyse de rendement et de la biomasse reproductrice par recrue pour le maquereau bleu des sous-régions 3-4 de l'OPANO ($F_{0.1}=0.306$, $F_{\max}=1.108$ et F à 40 % = 0.238).

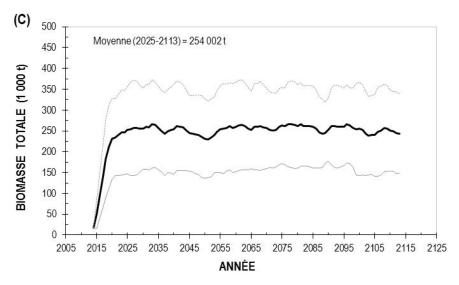
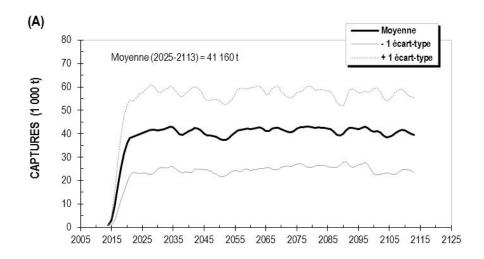
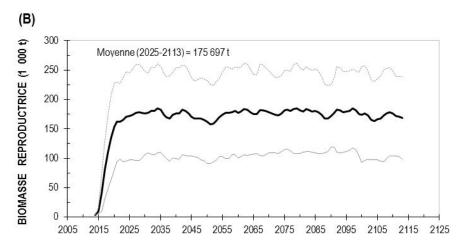




Figure 14. Projections aléatoires de type "bootstrap" (AGEPRO) de : (A) capture (rms) ('000 t), (B) biomasse reproductrice (BSR $_{rms}$) ('000 t), et (C) biomasse totale ('000 t) selon la valeur de F_{rms} (F à 40 %) comme stratégie d'exploitation. RMS et BSR $_{rms}$ en (A) et (B) correspondent à la moyenne des valeurs projetées de la période 2025–2113.

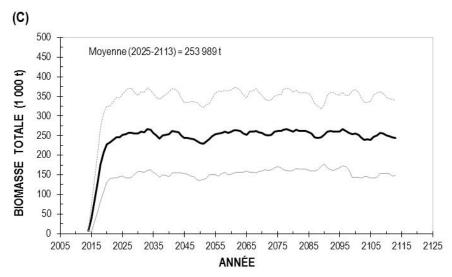
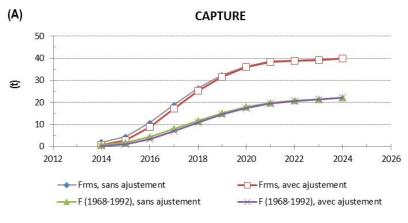
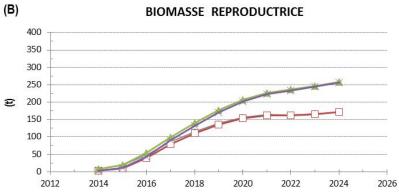




Figure 15. Projections aléatoires de type "bootstrap" (AGEPRO) de : (A) capture (rms) ('000 t), (B) biomasse reproductrice (BSR_{rms}) ('000 t), et (C) biomasse totale ('000 t) selon la valeur de F_{rms} (F à 40 %) comme stratégie d'exploitation. RMS et BSR_{rms} en (A) et (B) correspondent à la moyenne des valeurs projetées de la période 2025–2113. Pour tenir compte du patron rétrospectif, les projections ont été réalisées en appliquant un facteur d'ajustement aux abondances à l'âge mesurées en 2014.

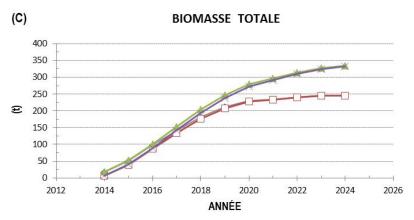
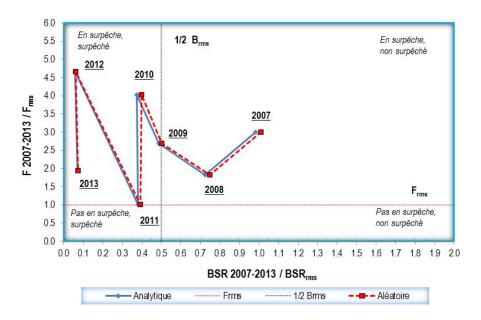
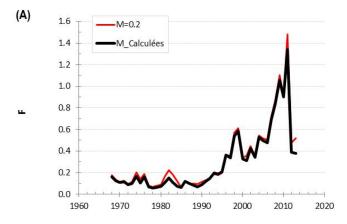
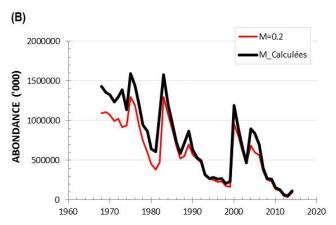
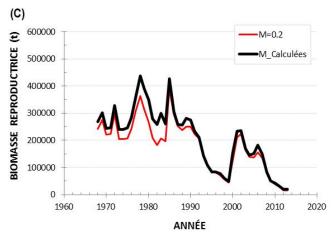
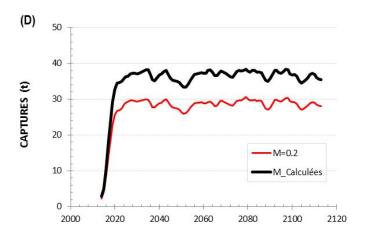


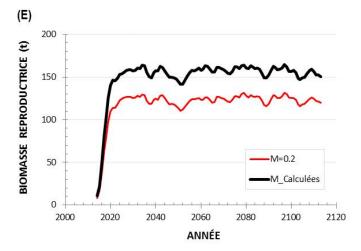
Figure 16. Début des projections aléatoires de type "bootstrap" (AGEPRO) de : (A) capture (rms) ('000 t), (B) biomasse reproductrice (BSR $_{rms}$) ('000 t), et (C) biomasse totale ('000 t) selon deux stratégies d'exploitation (F_{rms} ou F à 40 % et F moyen de la période de stabilité 1968–1992) et avec ou sans un facteur d'ajustement au patron rétrospectif.


Figure 17. Status de la mortalité par pêche (F) et de la biomasse reproductrice (BSR) (t) du maquereau bleu des sous-régions 3-4 de l'OPANO en 2013 et trajectoire estimée depuis 2007.

ANNEXE


Annexe 1. Modifications apportées par un changement de M aux estimations de certains paramètres mesurés par l'ASP: (A) mortalité par pêche, (B) abondance ('000), (C) biomasse reproductrice (t), (D) projections à long terme des captures (rms) (t), et (E) des biomasses reproductrices (B_{rms}) (t).



Annexe 1. (Suite).

