Science

Secrétariat canadien de consultation scientifique (SCCS)

Document de recherche 2014/106 Région du Québec

Analyse exploratoire du modèle ADAPT NFT pour les stocks de hareng (Clupea harengus harengus L.) de la côte ouest de Terre-Neuve, 2000-2013

François Grégoire, Linda Girard, Jean-Louis Beaulieu et Benoit Légaré

Pêches et Océans Canada Institut Maurice-Lamontagne 850, Route de la Mer Mont-Joli (Québec) G5H 3Z4

Avant-propos

La présente série documente les fondements scientifiques des évaluations des ressources et des écosystèmes aquatiques du Canada. Elle traite des problèmes courants selon les échéanciers dictés. Les documents qu'elle contient ne doivent pas être considérés comme des énoncés définitifs sur les sujets traités, mais plutôt comme des rapports d'étape sur les études en cours.

Les documents de recherche sont publiés dans la langue officielle utilisée dans le manuscrit envoyé au Secrétariat.

Publié par :

Pêches et Océans Canada Secrétariat canadien de consultation scientifique 200, rue Kent Ottawa (Ontario) K1A 0E6

http://www.dfo-mpo.gc.ca/csas-sccs/csas-sccs@dfo-mpo.gc.ca

© Sa Majesté la Reine du chef du Canada, 2015 ISSN 2292-4272

La présente publication doit être citée comme suit :

Grégoire, F., Girard, L., Beaulieu, J.-L., et Légaré, B. 2015. Analyse exploratoire du modèle ADAPT NFT pour les stocks de hareng (*Clupea harengus harengus* L.) de la côte ouest de Terre-Neuve, 2000–2013. Secr. can. de consult. sci. du MPO. Doc. de rech. 2014/106. v + 63 p.

TABLE DES MATIÈRES

RÉ	SUMÉ	.IV
AB:	STRACT	V
1.	INTRODUCTION	1
2.	MATÉRIEL ET MÉTHODES	1
2	2.1. SOURCE DES DONNÉES	
	2.1.1 Pêche commerciale	1
	2.1.2 Relevé acoustique	2
2	2.2. FORMULATION DU MODÈLE d'ASP (ADAPT NFT)	2
	2.2.1 Paramètres de la dynamique des stocks	2
	2.2.2 Structure imposée	2
	2.2.3 Données d'entrée	2
	2.2.4 Fonction à minimiser	
2	2.3. ANALYSE DES PATRONS RÉTROSPECTIFS	3
3.	RÉSULTATS	3
;	3.1. REPRODUCTEURS DE PRINTEMPS	3
	3.1.1 Pêche commerciale	3
	3.1.2 Relevé acoustique	4
	3.1.3 Diagnostics de l'ASP	4
	3.1.4 Patrons rétrospectifs	
;	3.2. REPRODUCTEURS D'AUTOMNE	
	3.2.1 Pêche commerciale	
	3.2.2 Relevé acoustique	
	3.2.3 Diagnostics de l'ASP	
	3.2.4 Patrons rétrospectifs	5
4.	CONCLUSION ET DISCUSSION	
	4.1. LIMITATION	
4	4.2. PROCHAINES ÉTAPES	6
5.	REMERCIEMENTS	6
6.	RÉFÉRENCES	6
TAI	BLEAUX	8
	GURES	34

RÉSUMÉ

Dans cette étude, des modèles exploratoires d'Analyse Séquentielle de Population (ASP) ont été appliqués sur les deux stocks de hareng (*Clupea harengus harengus* L.) de la côte ouest de Terre-Neuve (Division 4R de l'OPANO). Le calibrage des modèles a été réalisé à l'aide d'un indice d'abondance provenant de quatre relevés acoustiques réalisés entre 2009 et 2013. Plusieurs des abondances à l'âge prédites par les ASP se sont avérées similaires aux abondances mesurées par les relevés. Cependant, des différences importantes ont été observées pour certains groupes d'âge. Les résidus des modèles d'ASP ont présenté des patrons annuels et une absence de convergence chez les jeunes groupes d'âge en raison du faible nombre de relevés. Le faible nombre de relevés est aussi responsable des patrons rétrospectifs qui ont été observés chez tous les paramètres estimés par les ASP. Compte tenu de ces résultats, il a été convenu de rejeter les ASP. Cependant, il est recommandé de poursuivre la série de relevés acoustiques afin de réaliser le plus rapidement possible des évaluations analytiques complètes et rigoureuses et de mettre à jour les points de référence limites établis au début des années 2000.

Exploratory analysis of the NFT ADAPT SPA model for the west coast of Newfoundland herring stocks, 2000-2013

ABSTRACT

In this study, exploratory Sequential Population Analysis (SPA) models were applied on the two Atlantic herring (*Clupea harengus harengus* L.) stocks of the west coast of Newfoundland (NAFO Division 4R). Calibration of these models was performed using an abundance index from four acoustic surveys conducted between 2009 and 2013. Several of the abundances at age predicted by the SPA were similar to the abundances estimated by the surveys. However, significant differences were observed for certain age groups. Residuals of the SPA models presented annual patterns and no convergence for younger ages due to the low number of surveys. The low number of surveys is also responsible for the retrospective patterns that were observed for all of the parameters estimated by the SPA. In light of these results, it was agreed to reject the SPA. However, it is recommended to continue the series of acoustic surveys in order to achieve as soon as possible full and rigorous analytical assessments and to update the limit reference points established in the early 2000s.

1. INTRODUCTION

Deux stocks (printemps et automne) de hareng (*Clupea harengus harengus* L.) fréquentent les eaux de la côte ouest de Terre-Neuve (Division 4R de l'OPANO). Leur exploitation est gérée à l'aide d'un Plan de Gestion Intégrée de la Pêche (PGIP) (MPO 2011) dont les principaux objectifs sont la conservation de la ressource et le rendement à long terme de la pêche. Cette pêche au hareng sur la côte ouest de Terre-Neuve se pratique à l'aide de petites et de grandes sennes, de sennes "tuck", de filets maillants et de trappes (Grégoire *et al.* 2012).

L'abondance des deux stocks de hareng de la côte ouest de Terre-Neuve a déjà été évaluée à l'aide d'un modèle analytique de type ASP (Analyse Séquentielle de Population) (McQuinn *et al.* 1999; Grégoire et Lefebvre 2002; Grégoire *et al.* 2004a, 2004b). Pour chacun de ces stocks, l'ajustement du modèle correspondant d'ASP était réalisé à l'aide d'un indice d'abondance provenant d'une série de relevés acoustiques réalisés entre 1991 et 2002 (McQuinn et Lefebvre 1995, 1996, 1999). Pour les reproducteurs de printemps, les prises par unité d'effort d'une pêche scientifique (programme pêcheur-repère) étaient utilisées comme deuxième indice d'abondance.

Suite aux recommandations du Conseil pour la conservation des ressources halieutiques (CCRH 2009), une deuxième série de relevés acoustiques a été amorcée à l'automne 2009 (Beaulieu *et al.* 2010; Grégoire *et al.* 2012). Différents modèles d'ASP ont été explorés après la réalisation du troisième relevé (Grégoire et Beaulieu 2012). Tous ces modèles présentaient certains problèmes d'ajustement en raison du faible nombre de relevés et des erreurs possibles de lecture d'âge chez les plus vieux harengs. Aucun relevé n'a été réalisé en 2012 mais un quatrième relevé a eu lieu à l'automne 2013. La présente étude avait pour objectif de réaliser à nouveau une ASP avec les données provenant de ces quatre relevés acoustiques.

2. MATÉRIEL ET MÉTHODES

2.1. SOURCE DES DONNÉES

2.1.1 Pêche commerciale

Les captures ('000) (Tableaux 1, 2, 8 et 9) et les poids (kg) à l'âge (Tableaux 3 et 10) commerciaux des deux stocks reproducteurs de hareng de la période 1965–2011 ont été tirés de Grégoire et Beaulieu (2012) et complétés pour les saisons de pêche 2012 et 2013. Les poids à l'âge ont été calculés à partir des échantillons commerciaux recueillis dans les principaux ports de débarquement. Ces poids ont été utilisés pour convertir les captures à l'âge, exprimées en nombres, en biomasse de la capture à l'âge (Tableaux 4 et 11). Les poids à l'âge ont aussi été convertis en poids à l'âge de la population (1er janvier) (Tableaux 5 et 12) à l'aide de la méthode Rivard (NOAA Fisheries Toolbox 2008). Ces poids sont utilisés pour convertir les abondances à l'âge, provenant de l'ASP, en biomasse de la population à l'âge.

Depuis 2003, les proportions (%) de poissons matures à l'âge des reproducteurs de printemps sont calculées, comme pour les reproducteurs d'automne, à partir des données biologiques recueillies au quatrième trimestre. Auparavant, les échantillons recueillis au deuxième trimestre étaient utilisés pour ce calcul. Ce changement de période a été occasionné par un transfert de l'effort de la pêche, et par conséquent de la collecte des échantillons, du printemps vers l'automne. Les proportions de poissons matures à l'âge des saisons 2012 et 2013 ont été calculées à l'aide des procédures "Logistic" et "Probit" de SAS/Stat version 9.3 (SAS Institute Inc. 2011) (Tableaux 6 et 13). Ces proportions sont utilisées pour convertir les biomasses de la population à l'âge en biomasses reproductrices à l'âge.

2.1.2 Relevé acoustique

Les indices d'abondance utilisés pour l'ajustement des modèles d'ASP proviennent des relevés acoustiques réalisés depuis 2009 (Légaré *et al.* 2014). Ces indices, associés aux deux stocks reproducteurs, sont exprimés en nombres ('000) de harengs pour les groupes d'âges 2 à 11⁺ (Tableaux 7 et 14).

2.2. FORMULATION DU MODÈLE D'ASP (ADAPT NFT)

L'ajustement des d'ASP a été réalisé à l'aide du modèle ADAPT NFT, version 3.4.5 (NOAA Fisheries Toolbox 2014). Par rapport au modèle ADAPT de Gavaris (1999) qui a été utilisé avec la première série de relevés acoustiques, le modèle NFT comporte plusieurs avantages. Par exemple, l'interface en plus d'être plus conviviale offre la possibilité d'explorer et d'examiner rapidement les résultats provenant de plusieurs modèles. Le fichier des données d'entrée peut être lu par d'autres modèles du "NOAA Fisheries Toolbox" ("age structured assessment program, management strategy evaluation, population simulator et statistical catch-at-age model") et les résultats peuvent être exportés afin d'être analysés en langage R. Contrairement au modèle de Gavaris, l'analyse rétrospective et le calcul de la statistique rho de Mohn (Mohn 1999; Legault 2009) sont réalisés automatiquement par le modèle NFT. De plus, l'analyse rétrospective peut être combinée à une analyse de permutations (bootstrap). Finalement, le modèle NFT est toujours supporté (ce qui n'est plus le cas du modèle de Gavaris) et fait l'objet de mises à jour régulières. Les modèles d'ASP retenus pour les deux stocks reproducteurs de hareng de la côte ouest de Terre-Neuve ont les caractéristiques suivantes :

2.2.1 Paramètres de la dynamique des stocks

- Population en nombre en 2014 : *N_{i,t}* (*i*=âges 3,...11⁺ ; *t*=2014)

Coefficients de capturabilité : q_i (i=2,...11⁺)

Nombre de paramètres : 9

- Nombre de résidus : 33

2.2.2 Structure imposée

- Mortalité naturelle (M): Fixée à 0,2 pour tous les âges et toutes les années
- Recrutement à l'âge 2 en 2014 : Moyenne géométrique des abondances à l'âge 2 de la période 2009–2013
- Mortalité par la pêche ("full-F") pour l'année terminale : Méthode modifiée de Heincke (NOAA Fisheries Toolbox 2014)
- Mortalité par la pêche (F) pour l'année terminale et pour le plus vieux groupe d'âge : Le produit de F par le recrutement partiel
- Mortalité par la pêche (F) au dernier groupe d'âge : Méthode Heincke appliquée aux âges 9 et 10
- Calcul du groupe d'âge plus (11⁺) : *Projections vers l'arrière ("backward")*
- Rapport entre F du groupe d'âge plus et F du dernier vrai groupe d'âge (10): 1

2.2.3 Données d'entrée

- Capture à l'âge : $C_{i,t}$ ($i=2,...11^+$; t=2000-2013)
- Indice d'abondance à l'âge : *I_{i,t}* (*i*=2,...11⁺ ; *t*=2009, 2010, 2011, 2013)

2.2.4 Fonction à minimiser

La fonction objective à minimiser mesure la différence entre les valeurs observées ($I_{i,t}$) et prédites ($I_{i,t}^*$) des indices d'abondance. Cette fonction s'exprime comme suit :

$$\sum_{t}\sum_{i\in I_{t}}\varphi_{i,t}^{2}\left(ln(I_{i,t})-ln(I_{i,t}^{*})\right)^{2}$$

Où $\phi^2_{i,t}$ représente les facteurs de pondération attribués aux âges et aux relevés (années) (fixés à 1 dans la présente évaluation).

Les coefficients de capturabilité sont déterminés par la différence moyenne entre les valeurs log-transformées des indices d'abondance $(ln(I_{i,t}))$ et les valeurs prédites $(ln(N^*_{i,t}))$:

$$Qt = \exp\left[\frac{\sum_{i \in I_t} \left(\ln(I_{i,t}) - \ln(N_{i,t}^*)\right)}{n_t}\right]$$

et les résidus par :

$$R_{i,t} = \varphi_{i,t} \left(\ln \left(I_{i,t} \right) - \ln \left(I_{i,t}^* \right) \right)$$

Dans la présente évaluation, les résidus n'ont pas été affectés par les valeurs attribuées aux facteurs de pondération puisque ces derniers ont tous été fixés à 1.

2.3. ANALYSE DES PATRONS RÉTROSPECTIFS

La présence d'un patron rétrospectif a été examinée pour la mortalité par la pêche (moyenne des âges 3-5), la biomasse reproductrice (t), l'abondance totale ('000), l'abondance ('000) à l'âge pour les groupes d'âges 2-11⁺ et les coefficients de capturabilité à l'âge. La statistique de Mohn (valeur moyenne) (Mohn 1999; Legault 2009) a été calculée pour chacun de ces paramètres afin de produire un facteur d'ajustement au patron rétrospectif correspondant (Legault, C., NOAA, Woods Hole, comm. pers.).

3. RÉSULTATS

3.1. REPRODUCTEURS DE PRINTEMPS

3.1.1 Pêche commerciale

La capture à l'âge des reproducteurs de printemps de la saison de pêche 2013 a été caractérisée par la dominance des groupes d'âge 9 et 10, c'est-à-dire des classes d'âge de 2004 et 2003 (Figure 1A). À elles seules, ces deux classes d'âge ont compté pour 51 % de toutes les captures (en nombre) réalisées en 2013. Au cours des ans, les autres classes d'âge dominantes de ce stock ont été celles de 1959, 1968, 1974, 1980, 1982, 1987, 1990, 1994, 1996, 1999 et 2002 (Figure 1B).

La biomasse (t) de la capture commerciale a grandement fluctué au cours des ans (Figure 2A). Elle a présenté une tendance nette à la hausse entre 1965 et 1991 suivie d'une baisse jusqu'en 2011 et d'une légère hausse en 2012 et 2013. L'âge moyen des captures a aussi fluctué au cours des ans (Figure 2B). Il a augmenté dans les années 1970, au milieu des années 1980 et depuis le début des années 2000 en raison principalement, dans ce dernier cas, du vieillissement de la classe d'âge dominante de 2002 (Figure 1B). Des baisses de l'âge moyen ont aussi été mesurées à la fin des années 1970 et au cours des années 1990.

C'est dans les années 1960 et 1980 que les poids (kg) à l'âge des captures ont été les plus élevés (Figure 3A). Les plus faibles poids, aux âges 5 à 9 ans, ont été observés entre 2010 et 2013 (Figure 3A). Les poids à l'âge 2 ont peu varié au cours des ans (Figure 3B).

Plus de 80 % des harengs de printemps âgés de 5 ans sont matures et ce nombre s'élève à 95 % et plus chez les 6⁺ (Figure 3C). Les plus faibles proportions de poissons matures à l'âge ont été observées aux âges 4 et 5 entre 2010 et 2013.

3.1.2 Relevé acoustique

L'indice d'abondance des reproducteurs de printemps a connu une chute importante entre 1991 et 1995 pour les 2⁺ et entre 1991 et 1999 pour les 4⁺ (Figure 4A). Cette chute a été occasionnée par le déclin des classes d'âges dominantes de 1982 et 1987 (Figure 4B). Une autre chute d'abondance s'est produite quelque part entre 2002 et 2009, mais une légère hausse a été mesurée entre 2009 et 2011. Finalement, une dernière chute a été mesurée en 2013. Des variations similaires sont observées chez les biomasses totales (Figure 4C) et reproductrices (Figure 4D).

3.1.3 Diagnostics de l'ASP

Plusieurs des abondances à l'âge prédites par le modèle d'ASP se sont avérées similaires aux abondances observées ce qui dénote en général un ajustement raisonnable du modèle (Figure 5). Cependant, des différences notables ont été mesurées aux âges 3 en 2011, 6 en 2009, 7 en 2010, 10 en 2010, 2011 et 2013 et 11⁺ en 2009 et 2011. Les résidus standardisés indiquent les âges et les années pour lesquels le modèle est moins bien ajusté (Figure 6). Les résidus standardisés présentent aussi un patron annuel avec la présence de valeurs principalement négatives en 2009 et 2013 et positives en 2010 et 2011 (Figure 7). Ce patron s'explique par le faible nombre de relevés utilisé dans le modèle d'ASP.

3.1.4 Patrons rétrospectifs

Les mortalités par pêche (moyenne des âges 3-5) ne présentent pas de convergence entre les séries 2000-2011, 2000-2012 et 2000-2013 (Figure 8A). Cette absence de convergence est encore plus marquée chez les biomasses reproductrices (t) (Figure 8B) et les abondances totales ('000) (Figure 8C). Les statistiques de rho indiquent une surestimation de la mortalité par pêche et une sous-estimation de la biomasse reproductrice.

Les abondances ('000) aux âges 2, 3 et 4 ne présentent pas de convergence (Figure 9). Par contre, une convergence est observée en 2000 pour l'âge 5. Pour chacun des âges suivants, la période de convergence augmente graduellement de 1 an de sorte que cette période s'étale de 2000 à 2006 pour le groupe d'âge 11⁺.

Les coefficients de capturabilité augmentent avec l'âge (Figure 10). Cependant, une tendance à la surestimation est observée chez les harengs âgés de 7 ans et plus. Aucune tendance n'est présente pour les autres groupes d'âge.

En raison de l'absence de convergence chez certains groupes d'âge et de la présence de patrons rétrospectifs, il a été convenu de rejeter les résultats de cette ASP.

3.2. REPRODUCTEURS D'AUTOMNE

3.2.1 Pêche commerciale

Par ordre décroissant d'importance, la capture à l'âge des reproducteurs d'automne était caractérisée en 2013 par la dominance des groupes d'âge 10, 5, 8 et 9 ans associés aux classes d'âge 2003, 2008, 2005 et 2004 (Figure 11A). À elles seules, ces quatre classes d'âge ont compté pour 63 % de toutes les captures de 2013. Les autres classes d'âge dominantes qui

ont été observées au cours des ans sont celles de 1962, 1973, 1979, 1988, 1990, 1995, 2000 et 2001 (Figure 11B). Au cours de la période 1965-1980, la capture à l'âge des reproducteurs d'automne était aussi caractérisée par une accumulation de vieux poissons (11⁺). Une telle accumulation de poissons âgés n'a jamais été observée par la suite.

La biomasse (t) de la capture commerciale a grandement fluctué au cours des ans (Figure 12A). Après une hausse importante entre 1971 et 1973 et une baisse de même ampleur en 1974, une tendance nette à la hausse est observée avec l'atteinte depuis 2008 des valeurs les plus élevées de la série (> 14 000 t). L'âge moyen a présenté des tendances à la baisse à deux reprises, soit entre 1977 et 1985 et entre 1990 et 2003 (Figure 12B). Des hausses ont aussi été observées à deux reprises, la première entre 1985 et 1990 et la seconde entre 2005 et 2011. Ces hausses de l'âge moyen sont reliées au vieillissement des classes d'âge dominantes de 1979, 2000 et 2001 (Figure 11B).

Les poids (kg) moyens à l'âge les plus élevés ont été mesurés dans les années 1980 et les plus faibles, entre 2010 et 2013 (Figure 13A). Les poids à l'âge 2 ont peu varié au cours des ans (Figure 13B).

Plus de 90 % des harengs de 6 ans sont matures comparativement à 100 % pour les âges 7⁺ (Figure 13C). À l'âge 4, la plus faible proportion de poissons matures a été observée pour les années 1960 comparativement aux années 2010 pour l'âge 5.

3.2.2 Relevé acoustique

L'indice d'abondance du relevé acoustique a été relativement stable entre 1991 et 1997 (Figure 14A). Cet indice a légèrement augmenté en 1999 et il s'est maintenu en 2002 et en 2009 lors de la reprise du relevé. Une hausse marquée de l'indice a été mesurée en 2010 suivie de valeurs relativement stables en 2011 et 2013. La hausse mesurée en 2012 est attribuable à la présence en grand nombre des poissons des classes d'âge de 2001 et 2002 (Figure 14B). Des variations annuelles similaires ont été mesurées pour les biomasses totales (Figure 14C) et reproductrices (Figure 14D). À noter que des écarts-types importants sont associés aux biomasses totales estimées en 2002, 2009 et 2013.

3.2.3 Diagnostics de l'ASP

Des différences notables ont été mesurées entre les abondances à l'âge prédites par le modèle d'ASP et les abondances observées (Figure 15) pour les groupes d'âge 6, 7, 8 et 9 en 2009, 8 et 9 en 2013, 9 en 2010 et 11⁺ en 2011 et 2013. Pour la plupart des groupes d'âge, les résidus ont présenté des valeurs négatives en 2009 et positives en 2013 (Figure 16). Les résidus annuels présentent le même profil (Figure 17).

3.2.4 Patrons rétrospectifs

Les mortalités par pêche (moyenne des âges 3-5) ne présentent pas de convergence entre les diverses séries (Figure 18A). Cette absence de convergence est encore plus marquée pour les biomasses reproductrices (t) (Figure 18B) et les abondances totales ('000) (Figure 18C) avec la présence d'une divergence marquée à partir respectivement de 2004 et 2002. La statistique de rho indique une surestimation de la mortalité par pêche accompagnée d'une sous-estimation de la biomasse reproductrice et de l'abondance.

Les abondances à l'âge présentent une convergence graduelle suite au vieillissement des classes d'âge abondantes de 2000, 2001 et 2002 (Figure 19). Ces dernières ont largement été sous-estimées (Figure 19).

Les coefficients de capturabilité augmentent avec l'âge (Figure 20). De plus, ceux estimés en 2011 et 2012 pour les 4⁺ ont été surestimés par rapport aux coefficients mesurés en 2013. Aucune tendance n'est observée pour les groupes d'âge 2 et 3.

En raison de l'absence de convergence et de la présence de patrons rétrospectifs, il a été convenu de rejeter ce modèle d'ASP.

4. CONCLUSION ET DISCUSSION

4.1. LIMITATION

Les modèles d'ASP des reproducteurs de printemps et d'automne ont été réalisés à titre exploratoire seulement. À cet effet et en raison des diagnostics, les résultats (abondances, biomasses, mortalités par pêche) n'ont pas été présentés sous forme de tableaux et de figures. Les modèles ont montré un ajustement raisonnable entre les abondances observées et prédites pour certains groupes d'âges et certaines années. Cependant, ils ont aussi présenté des problèmes importants chez d'autres groupes d'âge. Le nombre de relevé est toujours insuffisant comme le démontrent les patrons annuels des résidus. Ce faible nombre de relevés se traduit aussi par la présence de patrons rétrospectifs chez les deux groupes reproducteurs. Chez les reproducteurs de printemps, la convergence n'a été atteinte que pour les classes d'âge qui ont été suivies par tous les relevés. Chez les reproducteurs d'automne, les deux premiers relevés ont largement sous-estimé l'abondance des classes d'âge abondantes.

4.2. PROCHAINES ÉTAPES

Les prochaines étapes consistent à poursuivre la série de relevés acoustiques afin de produire des évaluations analytiques complètes et rigoureuses et à mettre à jour les points de référence limites qui ont été établis au début des années 2000. Les deux dernières tentatives d'ASP ont été réalisées en excluant les données de pêche antérieures à 2000 de même que la première série de relevés acoustiques. L'utilisation de ces données dans les modèles d'ASP produisait des résultats aberrants, dont des biomasses de plusieurs milliers de tonnes (Grégoire et Beaulieu 2012). Des travaux devraient donc être entrepris pour tenter d'ajuster les deux séries de relevés de façon à utiliser toutes les données de pêche (1965–2013). En fait, le patron d'échantillonnage de la deuxième série est différent de la première. Depuis 2009, les relevés débutent par la Basse-Côte-Nord du Québec et la portion nord de la côte ouest de Terre-Neuve de façon à couvrir davantage de territoire que lors de la première série dont les relevés débutaient plus au sud et ne couvraient pas toujours la portion nord (où de fortes concentrations de harengs ont été observées en 2010, 2011 et 2013) en raison des mauvaises conditions climatiques.

5. REMERCIEMENTS

De très sincères remerciements sont exprimés à l'égard d'Hugo Bourdages et Claude Brassard pour la révision de ce document.

6. RÉFÉRENCES

- Beaulieu, J.-L., McQuinn, I. H., et Grégoire, F. 2010. <u>Atlantic herring (*Clupea harengus harengus* L.) on the west coast of Newfoundland (NAFO Division 4R) in 2009</u>. DFO Can. Sci. Advis. Sec. Res. Doc. 2010/049. vi + 42 p.
- CCRH. 2009. L'avenir de la pêche: Le hareng dans l'est du Canada. Rapport pour la Ministre des Pêches et des Océans. Ottawa. 37 pp.
- Gavaris, S. 1999. ADAPT (ADAPTive Framework) User's Guide. DFO. St. Andrews Biological Station, St. Andrews, N.B., Canada. 25 pp.

- Grégoire, F. et Beaulieu, J.-L. 2012. <u>Analyse exploratoire du modèle ADAPT ASP NFT pour les stocks de hareng de la côte ouest de Terre-Neuve, 2000-2011</u>. Secr. can. de consult. sci. du MPO, Doc. de rech. 2012/120. iii + 67 p.
- Grégoire, F. et Lefebvre, L. 2002. Évaluation analytique et analyses de risque du stock de hareng (*Clupea harengus harengus* L.) de printemps de la côte ouest de Terre- Neuve (Division 4R de l'OPANO) en 2001. Secr. can. de consult. sci. du MPO, Doc. de rech. 2002/059. 59 p.
- Grégoire, F., Lefebvre, L., et Lavers, J. 2004a. <u>Évaluation analytique et analyses de risque pour les stocks de hareng (*Clupea harengus harengus* L.) de la côte ouest de Terre-Neuve (<u>Division 4R de l'OPANO) en 2002</u>. Secr. can. de consult. sci. du MPO, Doc. de rech. 2004/060. 89 p.</u>
- Grégoire, F., Lefebvre, L., et Lavers, J. 2004b. <u>Évaluation analytique et analyses de risque pour le stock des harengs (Clupea harengus harengus L.) de printemps de la côte ouest de Terre-Neuve (Division 4R de l'OPANO) en 2003</u>. Secr. can. de consult. sci. du MPO, Doc. de rech. 2004/090. 66 p.
- Grégoire, F., Beaulieu, J.-L., et McQuinn, I. H. 2012. <u>Les stocks de hareng (Clupea harengus harengus L.) de la côte ouest de Terre-Neuve (Division 4R de l'OPANO) en 2011</u>. Secr. can. de consult. sci. du MPO, Doc. de rech. 2012/121. iv + 70 p.
- Légaré, B., Beaulieu, J.-L., Girard, L. et Grégoire, F. 2014. Les stocks de hareng (*Clupea harengus harengus* L.) de la côte ouest de Terre-Neuve (Division 4R de l'OPANO) en 2013. Secr. can. de consult. sci. du MPO. Doc. de rech. 2014/091. v + 74 p.
- Legault, C. 2009. Report of the retrospective working group, January 14-16, 2008, Woods Hole, Massachusetts. US Dept. Commer., Northeast Fish. Sci. Cent. Ref. Doc. 09-01; 30 pp.
- McQuinn, I. H., et Lefebvre, L. 1995. <u>Acoustic backscatter of herring along the west coast of Newfoundland (NAFO Division 4R) in November from 1989 to 1993</u>. DFO Atl. Fish. Res. Doc. 1995/058. 34 pp.
- McQuinn, I. H., et Lefebvre, L. 1996. An evaluation of the acoustic backscatter of western Newfoundland herring with a comparison of classical statistics and geostatistics for estimation of variance. DFO Atl. Fish. Res. Doc. 1996/058. 25 pp.
- McQuinn, I. H., et Lefebvre, L. 1999. An evaluation of the western Newfoundland herring acoustic abundance index from 1989-1997. CSAC Res. Doc. 99/120. 20 pp.
- McQuinn, I. H., Hammill, M., et Lefebvre, L. 1999. An assessment and risk projections of the west coast of Newfoundland (NAFO Division 4R) herring stocks (1965–2000). CSAC Res. Doc. 99/119. 94 pp.
- Mohn, R. 1999. The retrospective problem in sequential population analysis: An investigation using cod fishery and simulated data. ICES J. Mar. Sci. 56: 473–488.
- MPO. 2011. Integrated Fisheries Management Plan: Herring (*Clupea harengus*) Newfoundland and Labrador Region 4R. Department of Fisheries and Oceans. St. John's. Newfoundland and Labrador. 44 pp.
- NOAA Fisheries Toolbox. 2008. <u>Rivard Weights Calculator (Rivard)</u>, Version 2.0.0 (accédé le: 2014-05-05).
- NOAA Fisheries Toolbox. 2014. <u>Virtual Population Analysis</u>, Version 3.4.5 (accédé le: 2014-05-05).
- SAS Institute Inc. 2011. SAS/Stat® 9.3 User's Guide. Cary, NC: SAS Institute Inc. 8621 pp.

TABLEAUX

Tableau 1. Capture commerciale à l'âge (000's) des harengs reproducteurs de printemps de la Division 4R de l'OPANO, 1965–2013¹.

ANNÉE	GROUPE D'ÂGE													
	2	3	4	5	6	7	8	9	10	11⁺	2+			
1965	630	73	13	693	1602	1293	651	461	305	509	6230			
1966	115	283	276	520	1822	<u>4176</u>	2090	1652	382	638	11953			
1967	0	18	459	139	318	3403	<u>2745</u>	1265	742	847	9936			
1968	84	163	302	549	203	569	1120	<u>2049</u>	420	358	5818			
1969	366	1730	2778	1026	500	264	703	1259	<u>1185</u>	117	9928			
1970	<u>1067</u>	570	297	435	182	75	116	565	1615	61	4983			
1971	0	<u>2527</u>	303	841	720	651	340	350	2412	255	8400			
1972	284	220	<u>8189</u>	1308	1461	1245	1115	1377	1034	2013	1824			
1973	1833	435	1063	<u>27872</u>	2570	3222	3232	2598	4789	5696	5331			
1974	141	261	130	371	<u>9445</u>	318	851	774	490	2175	1495			
1975	57	996	420	100	1063	<u>8431</u>	317	336	244	665	1262			
1976	<u>484</u>	680	846	201	350	2802	<u>15567</u>	759	3136	3588	2841			
1977	10	<u>534</u>	541	409	304	348	4362	<u>15959</u>	1694	6003	3016			
1978	0	47	<u>1987</u>	207	679	241	2162	8208	<u>15260</u>	5062	3385			
1979	167	25	214	<u>10828</u>	617	1075	547	2772	7404	14032	3768			
1980	300	854	106	355	13872	407	1344	247	1427	20574	3948			
1981	40	417	2114	129	354	<u>8872</u>	188	515	283	13181	2609			
1982	<u>594</u>	2374	693	2452	421	2153	<u>6488</u>	704	950	12863	2969			
1983	34	<u>2965</u>	3562	1131	1091	293	713	<u>2990</u>	798	7975	2155			
1984	<u>198</u>	433	<u>7773</u>	3809	595	814	209	672	<u>755</u>	4226	1948			
1985	362	<u>4587</u>	787	<u>21642</u>	3993	445	381	255	380	1764	3459			
1986	323	2348	<u>13762</u>	3349	<u>28781</u>	5241	465	167	260	1661	5635			
1987	455	329	2781	<u>15257</u>	3507	<u>12952</u>	1736	182	37	806	3804			
1988	702	539	402	2461	<u>15064</u>	3677	<u>13616</u>	2527	423	2060	4147			
1989	<u>305</u>	574	763	461	3036	<u>18704</u>	3072	<u>10910</u>	779	1380	3998			
1990	114	<u>2136</u>	670	405	997	5010	<u>16296</u>	3773	<u>6432</u>	2187	3801			
1991	577	2233	<u>9849</u>	1285	768	3018	6955	<u>21327</u>	2366	6579	5495			
1992	<u>90</u>	1243	1707	<u>8538</u>	998	998	2781	2168	<u>11879</u>	3902	3430			
1993	79	<u>1592</u>	3802	3409	<u>6784</u>	1509	2102	2727	2800	8804	3360			
1994	14	332	<u>2597</u>	3183	3762	<u>3434</u>	1642	1589	1757	1945	2025			
1995	12	247	1219	<u>5750</u>	5807	2152	<u>7126</u>	185	3083	4577	3015			
1996	<u>1347</u>	248	1156	4056	<u>7712</u>	4211	551	<u>3291</u>	419	1597	2458			
1997	36	<u>1006</u>	131	259	1303	<u>6598</u>	1684	580	<u>2554</u>	1588	1574			
1998	<u>80</u>	859	<u>7836</u>	393	579	2143	<u>7683</u>	1146	994	3174	2488			
1999	152	<u>1815</u>	3501	<u>4583</u>	202	156	749	<u>1532</u>	378	943	1401			
2000	0	3106	<u>7182</u>	2207	<u>3971</u>	108	248	765	<u>857</u>	773	1921			
2001	<u>189</u>	184	3627	<u>6440</u>	4045	<u>3794</u>	146	338	766	1651	2118			
2002	0	<u>6545</u>	515	6643	<u>8770</u>	3672	<u>3525</u>	179	411	869	3112			
2003	0	1016	<u>5576</u>	1367	5085	<u>6021</u>	1924	<u>931</u>	204	569	2269			
2004	<u>1048</u>	722	2224	<u>4829</u>	2307	8375	<u>5591</u>	1113	<u>320</u>	841	2736			
2005	149	<u>2935</u>	2504	653	<u>3439</u>	809	4282	<u>5182</u>	1984	2155	24092			
2006	63	391	<u>4973</u>	4891	1402	<u>1643</u>	1529	2011	<u>919</u>	575	1839			

Tableau 1. (Suite).

ANNÉE		GROUPE D'ÂGE											
	2	3	4	5	6	7	8	9	10	11+	2+		
2007	0	45	332	<u>3055</u>	1492	527	<u>385</u>	381	574	1060	7850		
2008	57	62	141	857	<u>5078</u>	740	635	<u>361</u>	345	475	8751		
2009	67	341	287	148	1202	<u>6978</u>	2011	891	<u>1495</u>	2608	16027		
2010	0	40	220	96	493	1427	<u>2949</u>	1074	478	1171	7946		
2011	0	90	66	86	71	338	1322	<u>1321</u>	361	614	4268		
2012	38	0	65	460	769	626	477	2607	<u>2835</u>	438	8316		
2013 ²	0	42	474	864	221	1007	1425	2833	1943	569	9377		

¹ Les nombres en foncés et soulignés représentent des classes d'âge dominantes ² Préliminaire

Tableau 2. Capture commerciale à l'âge (%) des harengs reproducteurs de printemps de la Division 4R de l'OPANO, 1965–2013¹.

ANNÉE	GROUPE D'ÂGE										
	2	3	4	5	6	7	8	9	10	11+	
1965	10.11	1.17	0.21	11.13	<u>25.71</u>	20.75	10.44	7.41	4.90	8.17	
1966	0.96	2.36	2.31	4.35	15.24	34.93	17.49	13.82	3.20	5.34	
1967	0.00	0.18	4.62	1.40	3.20	34.25	27.62	12.73	7.47	8.52	
1968	1.45	2.81	5.19	9.43	3.49	9.78	19.25	35.23	7.22	6.15	
1969	3.68	17.42	27.98	10.33	5.04	2.66	7.08	12.68	<u>11.94</u>	1.18	
1970	<u>21.42</u>	11.44	5.96	8.72	3.66	1.50	2.32	11.34	32.42	1.23	
1971	0.00	30.09	3.61	10.02	8.58	7.75	4.05	4.16	28.71	3.03	
1972	1.56	1.21	44.88	7.17	8.01	6.82	6.11	7.55	5.67	11.03	
1973	3.44	0.82	1.99	<u>52.28</u>	4.82	6.04	6.06	4.87	8.98	10.68	
1974	0.94	1.74	0.87	2.48	<u>63.16</u>	2.13	5.69	5.17	3.28	14.54	
1975	0.45	7.89	3.33	0.79	8.42	<u>66.76</u>	2.51	2.66	1.93	5.26	
1976	<u>1.70</u>	2.39	2.98	0.71	1.23	9.86	54.79	2.67	11.04	12.63	
1977	0.03	<u>1.77</u>	1.80	1.36	1.01	1.15	14.46	<u>52.91</u>	5.62	19.90	
1978	0.00	0.14	<u>5.87</u>	0.61	2.00	0.71	6.39	24.25	<u>45.08</u>	14.95	
1979	0.44	0.07	0.57	<u>28.74</u>	1.64	2.85	1.45	7.36	19.65	37.24	
1980	0.76	2.16	0.27	0.90	<u>35.13</u>	1.03	3.40	0.63	3.61	52.10	
1981	0.15	1.60	8.10	0.49	1.36	34.00	0.72	1.97	1.08	50.52	
1982	2.00	8.00	2.33	8.26	1.42	7.25	21.85	2.37	3.20	43.32	
1983	0.16	<u>13.76</u>	16.53	5.25	5.06	1.36	3.31	13.87	3.70	37.01	
1984	1.02	2.22	<u>39.90</u>	19.55	3.05	4.18	1.07	3.45	3.87	21.69	
1985	1.05	<u>13.26</u>	2.28	<u>62.56</u>	11.54	1.29	1.10	0.74	1.10	5.10	
1986	0.57	4.17	24.42	5.94	<u>51.07</u>	9.30	0.83	0.30	0.46	2.95	
1987	1.19	0.86	7.31	<u>40.11</u>	9.22	<u>34.05</u>	4.56	0.48	0.10	2.12	
1988	1.69	1.30	0.97	5.94	36.32	8.87	32.83	6.09	1.02	4.97	
1989	<u>0.76</u>	1.44	1.91	1.15	7.59	<u>46.78</u>	7.68	27.29	1.95	3.45	
1990	0.30	<u>5.62</u>	1.76	1.06	2.62	13.18	42.86	9.92	<u>16.92</u>	5.75	
1991	1.05	4.06	<u>17.92</u>	2.34	1.40	5.49	12.66	38.81	4.31	11.97	
1992	0.26	3.62	4.98	24.89	2.91	2.91	8.11	6.32	34.63	11.38	
1993	0.24	<u>4.74</u>	11.31	10.14	20.19	4.49	6.25	8.11	8.33	26.20	
1994	0.07	1.64	12.82	15.72	18.57	<u>16.95</u>	8.11	7.85	8.68	9.60	
1995	0.04	0.82	4.04	<u>19.07</u>	19.26	7.14	23.63	0.61	10.22	15.18	
1996	<u>5.48</u>	1.01	4.70	16.50	31.37	17.13	2.24	13.38	1.70	6.49	
1997	0.23	6.39	0.83	1.65	8.28	<u>41.92</u>	10.70	3.69	16.23	10.09	
1998	0.32	3.45	<u>31.49</u>	1.58	2.33	8.61	30.87	4.61	4.00	12.75	
1999	1.08	<u>12.95</u>	24.99	32.71	1.44	1.11	5.35	10.93	2.70	6.73	
2000	0.00	16.16	<u>37.37</u>	11.48	20.66	0.56	1.29	3.98	4.46	4.02	
2001	0.89	0.87	17.12	30.41	19.10	<u>17.91</u>	0.69	1.60	3.62	7.80	
2002	0.00	21.03	1.65	21.34	<u>28.17</u>	11.80	<u>11.32</u>	0.58	1.32	2.79	
2003	0.00	4.48	<u>24.57</u>	6.02	22.41	<u>26.53</u>	8.48	<u>4.10</u>	0.90	2.51	
2004	3.83	2.64	8.12	<u>17.64</u>	8.43	30.60	20.43	4.07	<u>1.17</u>	3.07	
2005	0.62	<u>12.18</u>	10.39	2.71	<u>14.27</u>	3.36	17.77	<u>21.51</u>	8.24	8.94	
2006	0.34	2.12	<u>27.03</u>	26.59	7.62	<u>8.93</u>	8.31	10.93	<u>4.99</u>	3.13	

Tableau 2. (Suite).

ANNÉE	GROUPE D'ÂGE												
	2	3	4	5	6	7	8	9	10	11+			
2007	0.00	0.57	4.23	<u>38.91</u>	19.00	6.71	<u>4.91</u>	4.85	7.31	13.50			
2008	0.65	0.71	1.61	9.80	<u>58.02</u>	8.45	7.26	<u>4.13</u>	3.94	5.43			
2009	0.42	2.13	1.79	0.92	7.50	<u>43.54</u>	12.55	5.56	<u>9.33</u>	16.27			
2010	0.00	0.50	2.77	1.21	6.20	17.95	<u>37.11</u>	13.51	6.02	14.73			
2011	0.00	2.12	1.54	2.01	1.66	7.93	30.97	<u>30.94</u>	8.46	14.38			
2012	0.46	0.00	0.78	5.53	9.25	7.53	5.74	31.35	34.09	5.27			
2013 ²	0.00	0.44	5.06	9.21	2.36	10.74	15.20	30.21	20.72	6.07			

¹ Les nombres en foncés et soulignés représentent des classes d'âge dominantes ² Préliminaire

Tableau 3. Poids (kg) commerciaux à l'âge des harengs reproducteurs de printemps de la Division 4R de l'OPANO, 1965–2013¹.

ANNÉE					GROUP	E D'ÂGE				
	2	3	4	5	6	7	8	9	10	11+
1965	0.128	0.166	0.266	0.312	0.327	0.348	0.361	0.387	0.425	0.425
1966	0.128	0.166	0.266	0.312	0.327	0.348	0.361	0.387	0.425	0.425
1967	0.128	0.166	0.266	0.312	0.327	0.348	0.361	0.387	0.425	0.425
1968	0.128	0.169	0.244	0.288	0.304	0.328	0.338	0.357	0.381	0.370
1969	0.145	0.191	0.233	0.259	0.287	0.309	0.323	0.357	<u>0.371</u>	0.370
1970	<u>0.106</u>	0.189	0.259	0.280	0.296	0.353	0.375	0.380	0.377	0.370
1971	0.102	<u>0.159</u>	0.229	0.257	0.271	0.289	0.308	0.332	0.339	0.376
1972	0.098	0.139	<u>0.178</u>	0.203	0.250	0.279	0.305	0.310	0.313	0.372
1973	0.101	0.158	0.224	0.222	0.268	0.303	0.322	0.333	0.350	0.367
1974	0.129	0.172	0.223	0.236	0.262	0.300	0.324	0.351	0.335	0.384
1975	0.077	0.156	0.197	0.242	0.243	0.279	0.301	0.335	0.350	0.382
1976	0.069	0.122	0.193	0.241	0.252	0.269	0.299	0.315	0.334	0.382
1977	0.064	<u>0.156</u>	0.208	0.247	0.278	0.262	0.290	0.313	0.332	0.353
1978	0.103	0.184	0.228	0.275	0.305	0.313	0.318	0.340	0.362	0.393
1979	0.115	0.121	0.234	0.268	0.319	0.343	0.357	0.366	0.373	0.409
1980	0.117	0.201	0.247	0.298	0.321	0.354	0.380	0.398	0.389	0.430
1981	0.085	0.196	0.262	0.327	0.344	0.385	0.415	0.430	0.429	0.472
1982	0.095	0.216	0.263	0.290	0.357	0.386	0.395	0.423	0.434	0.454
1983	0.142	<u>0.190</u>	0.263	0.305	0.337	0.385	0.424	0.434	0.492	0.475
1984	0.134	0.206	0.239	0.297	0.348	0.379	0.406	0.431	0.437	0.485
1985	0.109	0.168	0.247	0.283	0.329	0.373	0.404	0.434	0.425	0.477
1986	0.142	0.171	0.230	0.268	<u>0.315</u>	0.338	0.413	0.415	0.449	0.459
1987	0.165	0.235	0.250	0.289	0.349	0.370	0.390	0.428	0.422	0.515
1988	0.153	0.192	0.223	0.261	0.302	0.338	0.371	0.385	0.457	0.490
1989	0.149	0.193	0.233	0.301	0.307	0.350	0.384	0.399	0.408	0.488
1990	0.120	<u>0.180</u>	0.257	0.270	0.301	0.343	0.373	0.409	0.417	0.461
1991	0.154	0.159	0.203	0.276	0.318	0.332	0.374	0.401	0.408	0.440
1992	0.103	0.115	0.214	0.246	0.276	0.366	0.368	0.399	<u>0.411</u>	0.422
1993	0.115	<u>0.149</u>	0.194	0.251	0.277	0.323	0.383	0.401	0.420	0.434
1994	0.112	0.158	0.192	0.223	0.273	0.320	0.354	0.380	0.390	0.412
1995	0.106	0.174	0.179	<u>0.216</u>	0.258	0.272	0.326	0.336	0.377	0.406
1996	<u>0.107</u>	0.149	0.217	0.244	0.284	0.326	0.335	0.389	0.413	0.469
1997	0.107	<u>0.173</u>	0.153	0.233	0.277	0.296	0.329	0.347	<u>0.370</u>	0.428
1998	0.082	0.141	<u>0.171</u>	0.222	0.275	0.283	<u>0.315</u>	0.363	0.376	0.412
1999	0.094	<u>0.158</u>	0.195	<u>0.216</u>	0.266	0.298	0.333	0.357	0.415	0.428
2000	0.109	0.183	0.200	0.239	0.267	0.328	0.324	0.385	0.362	0.443
2001	<u>0.121</u>	0.213	0.226	0.240	0.278	<u>0.295</u>	0.350	0.356	0.382	0.418
2002	0.098	0.184	0.211	0.251	0.282	0.318	0.329	0.375	0.419	0.453
2003	0.101	0.166	<u>0.210</u>	0.234	0.277	<u>0.301</u>	0.333	0.394	0.409	0.435
2004	0.102	0.148	0.252	0.269	0.309	0.324	0.360	0.379	0.384	0.406
2005	0.109	<u>0.148</u>	0.178	0.253	0.273	0.286	0.330	0.335	0.337	0.398
2006	0.131	0.153	<u>0.171</u>	0.215	0.250	<u>0.287</u>	0.318	0.315	0.337	0.388

Tableau 3. (Suite).

ANNÉE		GROUPE D'ÂGE											
	2	3	4	5	6	7	8	9	10	11+			
2007	0.138	0.128	0.167	0.195	0.211	0.286	0.302	0.318	0.317	0.339			
2008	0.145	0.139	0.238	0.242	0.259	0.281	0.303	0.321	0.350	0.378			
2009	0.098	0.144	0.224	0.192	0.253	0.268	0.268	0.300	0.334	0.361			
2010	0.110	0.161	0.213	0.223	0.261	0.284	0.306	0.352	0.398	0.404			
2011	0.122	0.138	0.222	0.193	0.232	0.283	0.282	0.303	0.322	0.352			
2012	0.104	0.104	0.209	0.165	0.176	0.285	0.311	0.353	0.332	0.338			
2013 ²	0.116	0.145	0.197	0.192	0.244	0.280	0.296	0.335	0.361	0.360			

¹ Les nombres en foncés et soulignés représentent des classes d'âge dominantes ² Préliminaire

Tableau 4.Biomasse (t) de la capture à l'âge des harengs reproducteurs de printemps de la Division 4R de l'OPANO, 1965–2013¹.

ANNÉE	GROUPE D'ÂGE									
	2	3	4	5	6	7	8	9	10	11 ⁺
1965	80	12	4	216	<u>523</u>	450	235	178	130	216
1966	15	47	74	162	595	<u>1 454</u>	755	639	162	271
1967	0	3	122	43	104	1 185	<u>991</u>	489	315	360
1968	11	28	74	158	62	187	379	<u>731</u>	160	132
1969	53	331	648	266	143	82	227	450	<u>440</u>	43
1970	<u>113</u>	108	77	122	54	26	43	215	609	23
1971	0	<u>402</u>	69	216	195	188	105	116	817	96
1972	28	31	<u>1 454</u>	265	366	347	340	427	323	750
1973	185	69	238	<u>6 188</u>	689	976	1 041	865	1 676	2 090
1974	18	45	29	88	<u>2 475</u>	95	276	272	164	835
1975	4	155	83	24	258	2 352	95	112	85	254
1976	<u>33</u>	83	163	48	88	754	<u>4 655</u>	239	1 047	1 371
1977	1	<u>83</u>	113	101	85	91	1 265	<u>4 995</u>	563	2 119
1978	0	9	<u>453</u>	57	207	75	687	2 791	<u>5 524</u>	1 989
1979	19	3	50	<u>2 902</u>	197	369	195	1 014	2 762	5 739
1980	35	172	26	106	4 453	144	511	98	555	8 847
1981	3	82	554	42	122	<u>3 416</u>	78	221	121	6 222
1982	<u>56</u>	513	182	711	150	831	<u>2 563</u>	298	412	5 840
1983	5	<u>563</u>	937	345	368	113	302	1 298	393	3 788
1984	<u>27</u>	89	<u>1 858</u>	1 131	207	309	85	290	<u>330</u>	2 050
1985	40	<u>771</u>	194	<u>6 125</u>	1 314	166	154	111	162	841
1986	46	401	<u>3 165</u>	897	9 066	1 771	192	69	117	763
1987	75	77	695	4 409	1 224	4 792	677	78	15	415
1988	107	104	90	642	4 549	1 243	<u>5 052</u>	973	193	1 010
1989	<u>45</u>	111	178	139	932	<u>6 547</u>	1 180	4 353	318	673
1990	14	<u>384</u>	172	109	300	1 719	<u>6 078</u>	1 543	<u>2 682</u>	1 008
1991	89	355	<u>1 999</u>	355	244	1 002	2 601	<u>8 552</u>	965	2 895
1992	<u>9</u>	143	365	<u>2 100</u>	275	365	1 024	865	4 882	1 647
1993	9	<u>237</u>	737	855	<u>1 876</u>	487	805	1 095	1 177	3 821
1994	2	53	<u>498</u>	709	1 028	1 097	581	603	686	802
1995	1	43	219	<u>1 244</u>	1 500	586	2 321	62	1 162	1 860
1996	<u>144</u>	37	251	989	2 191	1 374	185	1 279	173	748
1997	4	<u>174</u>	20	61	361	<u>1 950</u>	555	201	<u>945</u>	680
1998	<u>6</u>	121	1 343	87	159	606	2 418	417	374	1 308
1999	14	<u>288</u>	683	<u>990</u>	54	46	249	<u>547</u>	157	404
2000	0	568	1 436	527	<u>1 060</u>	35	80	295	<u>310</u>	342
2001	<u>23</u>	39	820	<u>1 546</u>	1 125	<u>1 119</u>	51	120	293	690
2002	0	<u>1 204</u>	109	1 667	2 473	1 168	<u>1 160</u>	67	172	394
2003	0	169	<u>1 171</u>	320	1 409	<u>1 812</u>	641	<u>367</u>	84	248
2004	<u>106</u>	107	560	<u>1 298</u>	712	2 715	<u>2 015</u>	422	<u>123</u>	341
2005	16	<u>435</u>	447	165	<u>939</u>	231	1 414	<u>1 736</u>	669	858
2006	8	60	<u>850</u>	1 052	351	<u>471</u>	486	632	<u>309</u>	223

Tableau 4. (Suite).

ANNÉE	GROUPE D'ÂGE												
	2	3	4	5	6	7	8	9	10	11+			
2007	0	6	55	<u>594</u>	314	151	<u>116</u>	121	182	360			
2008	8	9	34	207	<u>1 315</u>	208	192	<u>116</u>	121	179			
2009	7	49	64	28	304	<u>1 869</u>	539	268	<u>499</u>	943			
2010	0	6	47	21	129	406	<u>903</u>	378	190	<u>473</u>			
2011	0	12	15	17	16	96	373	<u>400</u>	116	216			
2012	4	0	14	76	135	179	148	920	<u>940</u>	148			
2013 ²	0	6	93	166	54	282	422	948	702	205			

¹ Les nombres en foncés et soulignés représentent des classes d'âge dominantes ² Préliminaire

Tableau 5. Poids (kg) du stock à l'âge (1^{er} janvier)¹ des harengs reproducteurs de printemps de la Division 4R de l'OPANO, 1965–2013².

ANNÉE					GROUP	E D'ÂGE				
	2	3	4	5	6	7	8	9	10	11 ⁺
1965	0.112	0.131	0.246	0.305	0.317	0.342	0.349	0.369	0.406	0.425
1966	0.112	0.146	0.210	0.288	0.319	0.337	0.354	0.374	0.406	0.425
1967	0.111	0.146	0.210	0.288	0.319	0.337	0.354	0.374	0.406	0.425
1968	0.105	0.147	0.201	0.277	0.308	0.328	0.343	0.359	0.384	0.370
1969	0.127	0.156	0.198	0.251	0.288	0.307	0.326	0.347	0.364	0.370
1970	0.087	0.166	0.222	0.255	0.277	0.318	0.340	0.350	0.367	0.370
1971	0.087	<u>0.130</u>	0.208	0.258	0.276	0.293	0.330	0.353	0.359	0.376
1972	0.077	0.119	<u>0.168</u>	0.216	0.254	0.275	0.297	0.309	0.322	0.372
1973	0.077	0.124	0.177	<u>0.199</u>	0.233	0.275	0.300	0.319	0.329	0.367
1974	0.117	0.132	0.188	0.230	<u>0.241</u>	0.284	0.313	0.336	0.334	0.384
1975	0.061	0.142	0.184	0.232	0.240	0.270	0.301	0.330	0.351	0.382
1976	0.046	0.097	0.174	0.218	0.247	0.256	0.289	0.308	0.335	0.382
1977	0.038	<u>0.104</u>	0.159	0.218	0.259	0.257	0.279	0.306	0.323	0.353
1978	0.095	0.109	<u>0.189</u>	0.239	0.275	0.295	0.289	0.314	0.337	0.393
1979	0.087	0.112	0.208	0.247	0.296	0.323	0.334	0.341	0.356	0.409
1980	0.090	0.152	0.173	0.264	0.293	0.336	0.361	0.377	0.377	0.430
1981	0.053	0.151	0.230	0.284	0.320	0.352	0.383	0.404	0.413	0.472
1982	0.067	0.136	0.227	0.276	0.342	0.364	0.390	0.419	0.432	0.454
1983	0.118	0.134	0.238	0.283	0.313	0.371	0.405	0.414	0.456	0.475
1984	<u>0.120</u>	0.171	0.213	0.280	0.326	0.357	0.395	0.428	0.436	0.485
1985	0.087	<u>0.150</u>	0.226	0.260	0.313	0.360	0.391	0.420	0.428	0.477
1986	0.110	0.137	<u>0.197</u>	0.257	0.299	0.334	0.393	0.410	0.441	0.459
1987	0.153	0.183	0.207	0.258	0.306	0.341	0.363	0.420	0.419	0.515
1988	0.136	0.178	0.229	0.255	0.295	0.344	0.371	0.388	0.442	0.490
1989	0.136	0.172	0.212	0.259	0.283	0.325	0.360	0.385	0.396	0.488
1990	0.104	<u>0.164</u>	0.223	0.251	0.301	0.325	0.361	0.396	0.408	0.461
1991	0.178	0.138	<u>0.191</u>	0.266	0.293	0.316	0.358	0.387	0.409	0.440
1992	0.086	0.133	0.185	0.224	0.276	0.341	0.350	0.386	<u>0.406</u>	0.422
1993	0.098	0.124	0.149	0.232	<u>0.261</u>	0.299	0.374	0.384	0.409	0.434
1994	0.090	0.135	<u>0.169</u>	0.208	0.262	0.298	0.338	0.382	0.396	0.412
1995	0.089	0.140	0.168	0.204	0.240	0.273	0.323	0.345	0.379	0.406
1996	0.084	0.126	0.194	0.209	0.248	0.290	0.302	<u>0.356</u>	0.373	0.469
1997	0.093	<u>0.136</u>	0.151	0.225	0.260	0.290	0.328	0.341	0.379	0.428
1998	0.059	0.123	0.172	0.184	0.253	0.280	0.305	0.346	0.361	0.412
1999	0.067	<u>0.114</u>	0.166	<u>0.192</u>	0.243	0.286	0.307	0.335	0.388	0.428
2000	0.078	0.131	<u>0.178</u>	0.216	0.240	0.295	0.311	0.358	0.360	0.443
2001	0.098	0.152	0.203	<u>0.219</u>	0.258	<u>0.281</u>	0.339	0.340	0.384	0.418
2002	0.075	0.149	0.212	0.238	0.260	0.297	0.312	0.362	0.386	0.453
2003	0.083	0.128	<u>0.197</u>	0.222	0.264	0.291	0.325	0.360	0.392	0.435
2004	0.085	0.122	0.205	0.238	0.269	0.300	0.329	0.355	0.389	0.406
2005	0.092	<u>0.123</u>	0.162	0.253	<u>0.271</u>	0.297	0.327	0.347	0.357	0.398
2006	0.133	0.129	<u>0.159</u>	0.196	0.252	<u>0.280</u>	0.302	0.322	0.336	0.388

Tableau 5. (Suite).

ANNÉE		GROUPE D'ÂGE											
	2	3	4	5	6	7	8	9	10	11+			
2007	0.137	0.130	0.160	0.183	0.213	0.267	0.294	0.318	0.316	0.339			
2008	0.146	0.138	0.175	0.201	0.225	0.244	0.294	0.311	0.334	0.378			
2009	0.077	0.145	0.177	0.214	0.247	0.264	0.274	0.302	0.327	0.361			
2010	0.098	0.126	0.175	0.224	0.224	0.268	0.286	0.307	0.346	0.404			
2011	0.132	0.123	0.189	0.203	0.228	0.272	0.283	<u>0.305</u>	0.337	0.352			
2012	0.088	0.113	0.170	0.191	0.184	0.257	0.297	0.316	0.317	0.338			
2013 ³	0.110	0.123	0.143	0.200	0.201	0.222	0.290	0.323	0.357	0.360			

¹ Méthode Rivard, NOAA Fisheries Toolbox (2008) ² Les nombres en foncés et soulignés représentent des classes d'âge dominantes ³ Préliminaire

Tableau 6. Proportion annuelle de poissons matures à l'âge des harengs reproducteurs de printemps de la Division 4R de l'OPANO, 1965–2013.

ANNÉE										
	2	3	4	5	6	7	8	9	10	11 ⁺
1965	0.000	0.174	0.764	0.976	1.000	1.000	1.000	1.000	1.000	1.000
1966	0.000	0.174	0.764	0.976	1.000	1.000	1.000	1.000	1.000	1.000
1967	0.000	0.174	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1968	0.000	0.174	0.764	0.976	1.000	1.000	1.000	1.000	1.000	1.000
1969	0.000	0.174	0.714	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1970	0.000	0.500	0.778	0.936	1.000	1.000	1.000	1.000	1.000	1.000
1971	0.000	0.174	0.764	0.976	1.000	1.000	1.000	1.000	1.000	1.000
1972	0.000	0.016	0.808	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1973	0.000	0.143	0.667	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1974	0.000	0.143	0.900	0.938	1.000	1.000	1.000	1.000	1.000	1.000
1975	0.000	0.350	0.571	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1976	0.000	0.278	0.727	0.917	1.000	1.000	1.000	1.000	1.000	1.000
1977	0.000	0.114	0.913	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1978	0.000	0.436	0.706	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1979	0.000	0.436	0.891	0.986	1.000	1.000	1.000	1.000	1.000	1.000
1980	0.000	0.837	0.909	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1981	0.053	0.898	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1982	0.000	0.625	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1983	0.000	0.130	0.940	0.968	1.000	1.000	1.000	1.000	1.000	1.000
1984	0.000	0.167	0.706	0.961	1.000	1.000	1.000	1.000	1.000	1.000
1985	0.000	0.052	0.875	0.996	1.000	1.000	1.000	1.000	1.000	1.000
1986	0.000	0.500	0.918	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1987	0.000	0.286	0.813	0.991	1.000	1.000	1.000	1.000	1.000	1.000
1988	0.000	0.429	0.857	0.962	1.000	1.000	1.000	1.000	1.000	1.000
1989	0.000	0.436	0.891	0.986	1.000	1.000	1.000	1.000	1.000	1.000
1990	0.000	0.667	0.818	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1991	0.000	0.429	0.844	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1992	0.000	0.300	0.583	0.818	1.000	1.000	1.000	1.000	1.000	1.000
1993	0.000	0.438	0.938	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1994	0.000	0.652	0.929	0.991	1.000	1.000	1.000	1.000	1.000	1.000
1995	0.000	0.714	0.905	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1996	0.000	0.533	0.836	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1997	0.000	0.546	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1998	0.000	0.667	0.911	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1999	0.185	0.587	0.944	0.990	1.000	1.000	1.000	1.000	1.000	1.000
2000	0.000	0.774	0.976	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2001	0.000	0.643	1.000	0.991	1.000	1.000	1.000	1.000	1.000	1.000
2002	0.000	0.961	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2003	0.000	0.500	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2004	0.000	0.533	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2005	0.095	0.309	0.657	0.891	0.927	0.993	0.998	1.000	1.000	1.000
2006	0.049	0.177	0.516	0.888	0.959	0.996	0.999	1.000	1.000	1.000

Tableau 6. (Suite).

ANNÉE					GROUP	E D'ÂGE				
	2	3	4	5	6	7	8	9	10	11+
2007	0.004	0.045	0.374	0.884	0.990	0.999	1.000	1.000	1.000	1.000
2008	0.001	0.016	0.278	0.899	0.995	1.000	1.000	1.000	1.000	1.000
2009	0.018	0.079	0.389	0.890	0.981	0.998	1.000	1.000	1.000	1.000
2010	0.018	0.079	0.389	0.890	0.981	0.998	1.000	1.000	1.000	1.000
2011	0.042	0.144	0.445	0.840	0.958	0.990	0.997	0.999	1.000	1.000
2012	0.042	0.144	0.445	0.840	0.958	0.990	0.997	0.999	1.000	1.000
2013 ¹	0.066	0.210	0.500	0.790	0.934	0.982	0.995	0.999	1.000	1.000

¹ Préliminaire

Tableau 7. Abondance totale à l'âge (000's) des harengs reproducteurs de printemps selon les relevés acoustiques réalisés dans la Division 4R de l'OPANO depuis 1991.

ANNÉE					GRO	OUPE D'ÂO	GE				
	2	3	4	5	6	7	8	9	10	11 ⁺	2+
1991	5252	14241	78462	216	13484	43972	26318	48683	8773	44080	283480
1993	15591	36865	32008	26686	41341	1567	6965	6965	5398	12879	186265
1995	1000	4627	5587	32838	12184	6786	18560	5301	12356	14334	113573
1997	128	18951	2380	4341	17636	29299	12529	343	27038	5618	118262
1999	4597	44622	24176	29285	725	0	988	8243	1786	8323	122745
2002	1217	8112	909	16287	33965	23812	19822	238	4709	1190	110259
2009	0	1097	222	758	4696	7482	2977	2617	1377	3708	24934
2010	2306	2423	2306	1058	2178	11858	10030	3481	3597	879	40116
2011	0	9219	1691	1845	3382	309	6154	3526	9198	5381	40704
2013	0	0	51	1366	0	0	0	102	148	0	1668

Tableau 8. Capture commerciale à l'âge (000's) des harengs reproducteurs d'automne de la Division 4R de l'OPANO, 1965–2013¹.

ANNÉE					GF	OUPE D'Â	ÌGE				
	2	3	4	5	6	7	8	9	10	11⁺	2+
1965	17	<u>655</u>	476	235	271	303	1010	653	355	722	4697
1966	44	76	<u>682</u>	318	348	232	1181	931	845	2517	7174
1967	0	112	181	<u>790</u>	369	124	433	934	1011	3108	7061
1968	0	170	108	209	<u>935</u>	223	174	284	998	1913	5013
1969	34	299	711	364	876	<u>736</u>	200	142	214	1859	5436
1970	0	466	187	33	51	251	<u>90</u>	71	89	1688	2925
1971	40	0	112	440	638	2150	3485	<u>2071</u>	1073	14138	24147
1972	10	96	115	1310	1345	2852	2165	3577	<u>2173</u>	28342	41985
1973	0	1798	1180	1114	2626	1527	2631	3830	8265	17653	40624
1974	0	20	393	530	325	592	258	308	313	5610	8349
1975	<u>0</u>	19	40	865	925	107	157	147	218	3371	5849
1976	0	<u>48</u>	272	290	422	561	325	253	88	4818	7077
1977	0	3	<u>169</u>	134	404	721	405	342	293	6646	9117
1978	0	10	27	<u>545</u>	393	1108	1689	503	341	6051	10667
1979	0	7	116	345	<u>2689</u>	520	1287	1847	468	6286	13565
1980	15	181	136	86	176	<u>1729</u>	250	675	308	5243	8799
1981	<u>0</u>	33	524	245	90	295	<u>1234</u>	153	124	3369	6067
1982	101	<u>567</u>	1824	956	509	140	377	<u>972</u>	315	2609	8370
1983	15	83	<u>2330</u>	1356	1309	506	159	467	<u>618</u>	2824	9667
1984	0	55	668	<u>6259</u>	1147	908	220	146	268	3091	12762
1985	15	235	1340	1907	<u>9678</u>	902	622	115	36	468	15318
1986	35	426	1431	2671	2292	<u>8421</u>	794	384	66	227	16747
1987	0	156	487	1354	2009	1728	<u>5927</u>	474	163	196	12494
1988	484	207	511	481	1240	1740	1667	<u>4165</u>	705	777	11977
1989	43	599	539	923	807	749	828	961	<u>2873</u>	983	9305
1990	<u>27</u>	530	1568	424	306	429	384	839	481	4718	9705
1991	73	832	1278	5763	674	1501	919	649	2144	7124	20955
1992	<u>0</u>	337	<u>1446</u>	1448	1236	775	543	779	390	3928	10883
1993	21	<u>210</u>	672	<u>1957</u>	1015	1661	558	911	877	4608	12491
1994	0	61	994	2777	<u>4032</u>	3104	2435	1630	1179	3999	20211
1995	65	91	1419	<u>6159</u>	3512	<u>3905</u>	1211	3189	411	4246	24208
1996	0	1969	1358	2531	<u>8573</u>	2304	<u>3927</u>	828	1968	3130	26588
1997	<u>0</u>	593	1726	877	1086	<u>7649</u>	2193	<u>4949</u>	562	4200	23834
1998	0	<u>597</u>	4802	8820	2995	2029	<u>13268</u>	1251	<u>4289</u>	4493	42543
1999	0	989	<u>10785</u>	4245	4103	1178	858	<u>4238</u>	1096	2222	29714
2000	572	359	3154	<u>10673</u>	3175	2854	998	352	<u>5329</u>	3807	31272
2001	83	2503	589	4829	<u>9608</u>	3647	2607	532	546	2265	27209
2002	<u>0</u>	216	6476	831	2147	<u>3660</u>	958	502	110	1305	16204
2003	<u>227</u>	<u>8782</u>	3910	4227	2130	6168	<u>4305</u>	1212	441	2674	34076
2004	51	<u>776</u>	<u>7653</u>	2889	2368	2252	6841	<u>1859</u>	318	2510	27516
2005	181	734	<u>2668</u>	<u>21815</u>	4036	2825	1113	2252	<u>2577</u>	2610	40810
2006	0	440	1318	<u>9622</u>	<u>30865</u>	5447	3620	2673	2925	3509	60417

Tableau 8. (Suite).

ANNÉE					GF	ROUPE D'Â	IGE				
	2	3	4	5	6	7	8	9	10	11⁺	2+
2007	34	871	3007	4355	13677	30979	3083	1928	577	2594	61104
2008	76	1666	2503	1978	5327	<u>17332</u>	<u>31643</u>	5561	1535	4184	71806
2009	119	364	5806	2750	2451	4219	<u>11732</u>	<u>25638</u>	2777	3416	59270
2010	0	96	624	4329	3272	3724	9361	<u>23828</u>	<u>10898</u>	3108	59239
2011	0	864	916	1785	3987	4158	5127	15921	<u>23736</u>	9874	66367
2012	0	205	4136	2697	3199	6303	5507	8959	17194	14547	62747
2013 ²	31	493	2289	9471	4523	4120	7993	7686	12899	11118	60623

¹ Les nombres en foncés et soulignés représentent des classes d'âge dominantes ² Préliminaire

Tableau 9. Capture commerciale à l'âge (%) des harengs reproducteurs d'automne de la Division 4R de l'OPANO, 1965–2013¹.

ANNÉE					GROUP	E D'ÂGE				
	2	3	4	5	6	7	8	9	10	11 ⁺
1965	0.36	<u>13.95</u>	10.13	5.00	5.78	6.45	21.50	13.90	7.55	15.38
1966	0.61	1.06	<u>9.51</u>	4.43	4.85	3.24	16.46	12.98	11.78	35.09
1967	0.00	1.58	2.57	<u>11.19</u>	5.22	1.75	6.13	13.22	14.32	44.01
1968	0.00	3.39	2.16	4.16	<u>18.65</u>	4.45	3.46	5.66	19.92	38.16
1969	0.62	5.51	13.09	6.70	16.11	<u>13.54</u>	3.67	2.62	3.94	34.20
1970	0.00	15.92	6.41	1.13	1.75	8.57	3.07	2.42	3.03	57.70
1971	0.16	0.00	0.47	1.82	2.64	8.90	14.43	<u>8.58</u>	4.44	58.55
1972	0.02	0.23	0.27	3.12	3.20	6.79	5.16	8.52	<u>5.18</u>	67.51
1973	0.00	4.43	2.90	2.74	6.46	3.76	6.48	9.43	20.35	43.45
1974	0.00	0.24	4.71	6.35	3.89	7.09	3.09	3.69	3.75	67.19
1975	0.00	0.32	0.68	14.79	15.81	1.83	2.68	2.51	3.73	57.63
1976	0.00	0.68	3.84	4.10	5.96	7.93	4.59	3.57	1.24	68.08
1977	0.00	0.03	<u>1.85</u>	1.47	4.43	7.91	4.44	3.75	3.21	72.90
1978	0.00	0.09	0.25	<u>5.11</u>	3.68	10.39	15.83	4.72	3.20	56.73
1979	0.00	0.05	0.86	2.54	<u>19.82</u>	3.83	9.49	13.62	3.45	46.34
1980	0.17	2.06	1.55	0.98	2.00	<u>19.65</u>	2.84	7.67	3.50	59.59
1981	0.00	0.54	8.64	4.04	1.48	4.86	20.34	2.52	2.04	55.53
1982	1.21	<u>6.77</u>	21.79	11.42	6.08	1.67	4.50	<u>11.61</u>	3.76	31.17
1983	0.16	0.86	<u>24.10</u>	14.03	13.54	5.23	1.64	4.83	6.39	29.21
1984	0.00	0.43	5.23	49.04	8.99	7.11	1.72	1.14	2.10	24.22
1985	0.10	1.53	8.75	12.45	<u>63.18</u>	5.89	4.06	0.75	0.24	3.06
1986	0.21	2.54	8.54	15.95	13.69	50.28	4.74	2.29	0.39	1.36
1987	0.00	1.25	3.90	10.84	16.08	13.83	<u>47.44</u>	3.79	1.30	1.57
1988	4.04	1.73	4.27	4.02	10.35	14.53	13.92	<u>34.77</u>	5.89	6.49
1989	0.46	6.44	5.79	9.92	8.67	8.05	8.90	10.33	30.88	10.56
1990	0.28	5.46	16.15	4.36	3.15	4.42	3.96	8.65	4.95	48.61
1991	0.35	<u>3.97</u>	6.10	27.50	3.21	7.16	4.38	3.10	10.23	34.00
1992	0.00	3.10	<u>13.29</u>	13.30	11.36	7.12	4.99	7.16	3.58	36.09
1993	0.17	<u>1.68</u>	5.38	<u>15.67</u>	8.12	13.30	4.47	7.30	7.02	36.89
1994	0.00	0.30	<u>4.92</u>	13.74	<u>19.95</u>	15.36	12.05	8.06	5.83	19.79
1995	0.27	0.37	5.86	<u>25.44</u>	14.51	<u>16.13</u>	5.00	13.17	1.70	17.54
1996	0.00	7.40	5.11	9.52	32.24	8.67	<u>14.77</u>	3.11	7.40	11.77
1997	0.00	2.49	7.24	3.68	4.56	32.09	9.20	<u>20.76</u>	2.36	17.62
1998	0.00	<u>1.40</u>	11.29	20.73	7.04	4.77	<u>31.19</u>	2.94	<u>10.08</u>	10.56
1999	0.00	3.33	<u>36.29</u>	14.29	13.81	3.96	2.89	<u>14.26</u>	3.69	7.48
2000	1.83	1.15	10.08	<u>34.13</u>	10.15	9.13	3.19	1.13	<u>17.04</u>	12.17
2001	0.30	9.20	2.17	17.75	<u>35.31</u>	13.41	9.58	1.96	2.01	8.32
2002	0.00	1.33	39.96	5.13	13.25	22.58	5.91	3.10	0.68	8.06
2003	<u>0.67</u>	<u>25.77</u>	11.47	12.41	6.25	18.10	<u>12.63</u>	3.56	1.29	7.85
2004	0.18	<u>2.82</u>	<u>27.81</u>	10.50	8.61	8.19	24.86	<u>6.75</u>	1.15	9.12
2005	0.44	1.80	<u>6.54</u>	<u>53.45</u>	9.89	6.92	2.73	5.52	<u>6.31</u>	6.39
2006	0.00	0.73	2.18	<u>15.93</u>	<u>51.09</u>	9.02	5.99	4.42	4.84	5.81

Tableau 9. (Suite).

ANNÉE					GROUP	E D'ÂGE				
	2	3	4	5	6	7	8	9	10	11+
2007	0.06	1.43	4.92	7.13	22.38	50.70	5.04	3.15	0.94	4.25
2008	0.11	2.32	3.49	2.76	7.42	<u>24.14</u>	44.07	7.74	2.14	5.83
2009	0.20	0.61	9.80	4.64	4.14	7.12	<u>19.79</u>	43.26	4.68	5.76
2010	0.00	0.16	1.05	7.31	5.52	6.29	15.80	<u>40.22</u>	<u>18.40</u>	5.25
2011	0.00	1.30	1.38	2.69	6.01	6.26	7.73	23.99	<u>35.76</u>	14.88
2012	0.00	0.33	6.59	4.30	5.10	10.05	8.78	14.28	27.40	23.18
2013 ²	0.05	0.81	3.78	15.62	7.46	6.80	13.19	12.68	21.28	18.34

¹ Les nombres en foncés et soulignés représentent des classes d'âge dominantes ² Préliminaire

Tableau 10. Poids (kg) commerciaux à l'âge des harengs reproducteurs d'automne de la Division 4R de l'OPANO, 1965–2013¹.

ANNÉE					GROUP	E D'ÂGE				
	2	3	4	5	6	7	8	9	10	11+
1965	0.124	<u>0.179</u>	0.223	0.260	0.258	0.264	0.281	0.318	0.293	0.364
1966	0.115	0.167	0.223	0.260	0.258	0.264	0.281	0.318	0.293	0.364
1967	0.124	0.160	0.190	0.265	0.268	0.268	0.321	0.324	0.337	0.379
1968	0.124	0.179	0.227	0.256	0.280	0.297	0.295	0.319	0.350	0.371
1969	0.124	0.170	0.198	0.223	0.254	0.278	0.301	0.301	0.312	0.346
1970	0.109	0.173	0.198	0.233	0.283	0.293	0.339	0.347	0.306	0.399
1971	0.095	0.176	0.187	0.210	0.230	0.262	0.275	0.286	0.308	0.336
1972	0.112	0.178	0.200	0.187	0.249	0.279	0.295	0.303	0.325	0.359
1973	0.100	0.105	0.156	0.231	0.274	0.297	0.329	0.334	0.346	0.382
1974	0.122	0.171	0.218	0.259	0.265	0.284	0.307	0.355	0.378	0.422
1975	0.122	0.120	0.188	0.266	0.297	0.352	0.323	0.370	0.391	0.465
1976	0.122	0.107	0.155	0.282	0.271	0.287	0.277	0.308	0.426	0.454
1977	0.122	0.250	0.229	0.250	0.255	0.301	0.321	0.308	0.330	0.421
1978	0.122	0.161	0.238	0.282	0.316	0.345	0.367	0.366	0.390	0.471
1979	0.122	0.218	0.216	0.281	0.308	0.355	0.381	0.405	0.408	0.458
1980	0.122	0.222	0.242	0.360	0.341	0.404	0.419	0.461	0.468	0.534
1981	0.144	0.204	0.280	0.328	0.358	0.406	0.436	0.485	0.498	0.515
1982	0.166	<u>0.150</u>	0.252	0.306	0.328	0.449	0.441	0.444	0.485	0.507
1983	0.105	0.205	0.218	0.268	0.309	0.338	0.374	0.430	0.462	0.503
1984	0.078	0.164	0.209	0.249	0.293	0.343	0.359	0.429	0.450	0.494
1985	0.050	0.155	0.202	0.258	0.292	0.326	0.347	0.374	0.444	0.432
1986	0.105	0.157	0.214	0.240	0.280	0.317	0.340	0.356	0.363	0.465
1987	0.110	0.187	0.235	0.272	0.319	0.334	0.363	0.364	0.392	0.513
1988	0.115	0.139	0.216	0.259	0.281	0.310	0.354	0.377	0.398	0.428
1989	0.115	0.139	0.216	0.259	0.281	0.310	0.354	0.377	0.398	0.428
1990	0.088	0.161	0.200	0.231	0.282	0.313	0.356	0.377	0.400	0.432
1991	0.068	<u>0.104</u>	0.220	0.204	0.299	0.322	0.363	0.381	0.415	0.426
1992	<u>0.070</u>	0.158	<u>0.189</u>	0.227	0.276	0.295	0.346	0.384	0.420	0.442
1993	0.072	<u>0.121</u>	0.188	<u>0.197</u>	0.252	0.296	0.324	0.369	0.410	0.433
1994	0.080	0.124	0.174	0.210	0.254	0.305	0.349	0.385	0.402	0.438
1995	0.089	0.127	0.197	0.207	0.242	0.303	0.331	0.355	0.397	0.439
1996	0.089	0.116	0.164	0.221	0.253	0.289	0.320	0.377	0.377	0.456
1997	0.089	0.143	0.193	0.217	0.269	0.303	0.318	0.374	0.430	0.450
1998	0.089	<u>0.131</u>	0.176	0.195	0.227	0.251	0.302	0.302	0.340	0.426
1999	0.089	0.134	0.173	0.222	0.244	0.295	0.314	0.360	0.358	0.415
2000	0.076	0.125	0.174	0.207	0.262	0.276	0.301	0.360	0.346	0.416
2001	0.086	0.143	0.187	0.225	0.262	0.302	0.320	0.353	0.392	0.422
2002	0.085	0.151	0.200	0.238	0.268	0.290	0.339	0.341	0.416	0.446
2003	0.085	<u>0.151</u>	0.200	0.238	0.268	0.290	0.339	0.341	0.416	0.446
2004	0.067	0.129	0.179	0.209	0.254	0.281	0.304	0.331	0.329	0.406
2005	0.073	0.110	<u>0.157</u>	<u>0.196</u>	0.214	0.251	0.266	0.291	0.318	0.323
2006	0.071	0.129	0.154	<u>0.185</u>	0.214	0.237	0.263	0.294	0.308	0.349

Tableau 10. (Suite).

ANNÉE					GROUP	E D'ÂGE				
	2	3	4	5	6	7	8	9	10	11+
2007	0.0685	0.121	0.162	0.177	0.201	0.227	0.248	0.262	0.296	0.316
2008	0.069	0.140	0.162	0.192	0.215	0.235	0.256	0.280	0.303	0.317
2009	0.070	0.115	0.155	0.188	0.218	0.229	0.250	0.272	0.285	0.333
2010	0.070	0.107	0.164	0.206	0.225	0.249	0.267	0.283	0.297	0.345
2011	0.070	0.093	0.139	0.180	0.212	0.238	0.263	0.278	0.298	0.329
2012	0.070	0.119	0.130	0.163	0.182	0.214	0.246	0.266	0.277	0.297
2013 ²	0.058	0.119	0.150	0.170	0.199	0.228	0.252	0.277	0.298	0.314

¹ Les nombres en foncés et soulignés représentent des classes d'âge dominantes ² Préliminaire

Tableau 11. Biomasse (t) de la capture à l'âge des harengs reproducteurs d'automne de la Division 4R de l'OPANO, 1965–2013¹.

ANNÉE					GROUP	E D'ÂGE				
•	2	3	4	5	6	7	8	9	10	11+
1965	2	<u>117</u>	106	61	70	80	283	208	104	263
1966	5	13	<u>152</u>	83	90	61	331	296	248	916
1967	0	18	35	<u>210</u>	99	33	139	303	341	1179
1968	0	30	25	54	<u> 262</u>	66	51	90	349	710
1969	4	51	141	81	222	<u>205</u>	60	43	67	643
1970	0	81	37	8	15	73	<u>30</u>	25	27	673
1971	4	0	21	93	147	563	959	<u>592</u>	330	4746
1972	1	17	23	246	336	796	639	1083	<u>706</u>	10173
1973	0	189	184	257	720	454	866	1279	2860	6743
1974	0	3	86	137	86	168	79	109	118	2367
1975	<u>0</u>	2	8	230	275	38	51	54	85	1568
1976	0	<u>5</u>	42	82	114	161	90	78	37	2187
1977	0	1	<u>39</u>	34	103	217	130	105	97	2798
1978	0	2	6	<u>154</u>	124	382	620	184	133	2850
1979	0	2	25	97	<u>828</u>	185	490	748	191	2879
1980	2	40	33	31	60	<u>699</u>	105	311	144	2800
1981	<u>0</u>	7	147	80	32	120	<u>538</u>	74	62	1735
1982	17	<u>85</u>	460	293	167	63	166	<u>432</u>	153	1323
1983	2	17	<u>508</u>	363	404	171	59	201	<u>286</u>	1420
1984	0	9	140	<u>1558</u>	336	311	79	63	121	1527
1985	1	36	271	492	<u>2826</u>	294	216	43	16	202
1986	4	67	306	641	642	<u>2669</u>	270	137	24	106
1987	0	29	114	368	641	577	<u>2152</u>	173	64	101
1988	56	29	110	125	348	539	590	<u>1570</u>	281	333
1989	5	83	116	239	227	232	293	362	<u>1143</u>	421
1990	<u>2</u>	85	314	98	86	134	137	317	192	2040
1991	5	<u>87</u>	281	1177	202	483	333	247	890	3036
1992	<u>0</u>	53	<u>274</u>	329	341	229	188	300	164	1735
1993	2	<u>25</u>	127	<u>385</u>	256	492	181	337	359	1994
1994	0	8	<u>173</u>	583	<u>1025</u>	945	849	627	474	1753
1995	6	12	279	<u>1275</u>	849	<u>1181</u>	401	1132	163	1862
1996	0	228	223	560	<u>2170</u>	667	<u>1257</u>	313	743	1428
1997	<u>0</u>	85	333	190	292	<u>2317</u>	697	<u>1852</u>	242	1891
1998	0	<u>78</u>	845	1722	680	509	<u>4003</u>	378	<u>1456</u>	1914
1999	0	132	<u>1866</u>	942	1001	347	270	<u>1526</u>	393	922
2000	43	45	549	<u>2209</u>	832	788	300	127	<u>1844</u>	1584
2001	7	358	110	1087	<u>2517</u>	1102	834	188	214	956
2002	<u>0</u>	33	1295	198	575	<u>1061</u>	325	171	46	582
2003	<u>19</u>	<u>1326</u>	782	1006	571	1789	<u>1459</u>	413	183	1193
2004	3	<u>100</u>	<u>1366</u>	604	601	633	2080	<u>614</u>	104	1018
2005	13	81	<u>418</u>	<u>4282</u>	862	708	296	655	<u>820</u>	844
2006	0	57	203	<u>1779</u>	<u>6611</u>	1288	953	785	901	1223

Tableau 11. (Suite).

ANNÉE					GROUP	E D'ÂGE				
- -	2	3	4	5	6	7	8	9	10	11+
2007	2	105	488	769	2742	<u>7017</u>	763	504	171	819
2008	5	234	406	380	1145	<u>4077</u>	<u>8107</u>	1558	465	1324
2009	8	42	902	518	533	964	<u> 2929</u>	<u>6984</u>	792	1137
2010	0	10	102	894	736	929	2503	<u>6736</u>	<u>3234</u>	1073
2011	0	80	127	321	846	991	1349	4426	<u>7071</u>	3247
2012	0	24	538	440	582	1350	1355	2382	4758	4313
2013 ²	2	59	342	1613	899	938	2012	2129	3845	3494

¹ Les nombres en foncés et soulignés représentent des classes d'âge dominantes ² Préliminaire

Tableau 12. Poids (kg) du stock à l'âge (1^{er} janvier)¹ des harengs reproducteurs d'automne de la Division 4R de l'OPANO, 1965–2013².

ANNÉE					GROUP	E D'ÂGE				
	2	3	4	5	6	7	8	9	10	11 ⁺
1965	0.107	<u>0.160</u>	0.207	0.261	0.255	0.256	0.264	0.331	0.305	0.364
1966	0.098	0.144	0.200	0.241	0.259	0.261	0.272	0.299	0.305	0.364
1967	0.103	0.136	0.178	0.243	0.264	0.263	0.291	0.302	0.327	0.379
1968	0.106	0.149	0.191	0.221	0.272	0.282	0.281	0.320	0.337	0.371
1969	0.105	0.145	0.188	0.225	0.255	0.279	0.299	0.298	0.316	0.346
1970	0.086	0.147	0.184	0.215	0.251	0.273	0.307	0.323	0.304	0.399
1971	0.069	0.139	0.180	0.204	0.232	0.272	0.284	0.311	0.327	0.336
1972	0.116	0.130	0.188	0.187	0.229	0.253	0.278	0.289	0.305	0.359
1973	0.077	0.108	0.167	0.215	0.226	0.272	0.303	0.314	0.324	0.382
1974	0.123	0.131	0.151	0.201	0.247	0.279	0.302	0.342	0.355	0.422
1975	0.130	0.121	0.179	0.241	0.277	0.305	0.303	0.337	0.373	0.465
1976	0.085	0.114	0.136	0.230	0.269	0.292	0.312	0.315	0.397	0.454
1977	0.106	0.175	<u>0.157</u>	0.197	0.268	0.286	0.304	0.292	0.319	0.421
1978	0.091	0.140	0.244	0.254	0.281	0.297	0.332	0.343	0.347	0.471
1979	0.090	0.163	0.187	0.259	0.295	0.335	0.363	0.386	0.386	0.458
1980	0.094	0.165	0.230	0.279	0.310	0.353	0.386	0.419	0.435	0.534
1981	0.141	0.158	0.249	0.282	0.359	0.372	0.420	0.451	0.479	0.515
1982	0.149	0.147	0.227	0.293	0.328	0.401	0.423	0.440	0.485	0.507
1983	0.084	0.185	<u>0.181</u>	0.260	0.308	0.333	0.410	0.436	0.453	0.503
1984	0.055	0.131	0.207	0.233	0.280	0.326	0.348	0.401	0.440	0.494
1985	0.028	0.110	0.182	0.232	0.270	0.309	0.345	0.366	0.436	0.432
1986	0.079	0.089	0.182	0.220	0.269	0.304	0.333	0.352	0.369	0.465
1987	0.098	0.140	0.192	0.241	0.277	0.306	0.339	0.352	0.374	0.513
1988	0.105	0.124	0.201	0.247	0.277	0.315	0.344	0.370	0.381	0.428
1989	0.097	0.126	0.173	0.237	0.270	0.295	0.331	0.365	0.387	0.428
1990	0.081	0.136	0.167	0.223	0.270	0.297	0.332	0.365	0.388	0.432
1991	0.045	0.096	0.188	0.202	0.263	0.301	0.337	0.368	0.396	0.426
1992	0.053	0.104	<u>0.140</u>	0.224	0.237	0.297	0.334	0.373	0.400	0.442
1993	0.055	0.092	0.172	<u>0.193</u>	0.239	0.286	0.309	0.357	0.397	0.433
1994	0.064	0.095	<u>0.145</u>	0.199	0.224	0.277	0.321	0.353	0.385	0.438
1995	0.078	0.101	0.156	<u>0.190</u>	0.225	0.277	0.318	0.352	0.391	0.439
1996	0.070	0.102	0.144	0.209	0.229	0.265	0.311	0.353	0.366	0.456
1997	0.073	0.113	0.150	0.189	0.244	0.277	0.303	0.346	0.403	0.450
1998	0.073	0.108	0.159	0.194	0.222	0.260	0.303	0.310	0.357	0.426
1999	0.075	0.109	<u>0.151</u>	0.198	0.218	0.259	0.281	0.330	0.329	0.415
2000	0.055	0.106	0.153	0.189	0.241	0.260	0.298	0.336	0.353	0.416
2001	0.065	0.104	0.153	0.198	0.233	0.281	0.297	0.326	0.376	0.422
2002	0.064	0.114	0.169	0.211	0.246	0.276	0.320	0.330	0.383	0.446
2003	0.069	0.113	0.174	0.218	0.253	0.279	0.314	0.340	0.377	0.446
2004	0.052	0.105	0.164	0.205	0.246	0.274	0.297	0.335	0.335	0.406
2005	0.055	0.086	0.142	<u>0.187</u>	0.212	0.253	0.273	0.297	0.324	0.323
2006	0.054	0.097	0.130	<u>0.170</u>	<u>0.205</u>	0.225	0.257	0.280	0.299	0.349

Tableau 12. (Suite).

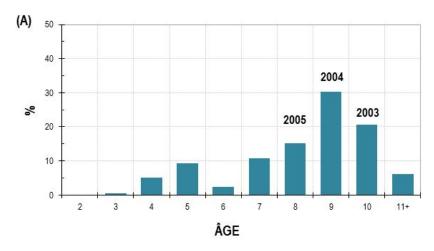
ANNÉE					GROUP	E D'ÂGE				
	2	3	4	5	6	7	8	9	10	11+
2007	0.0479	0.093	0.145	0.165	0.193	0.220	0.242	0.263	0.295	0.316
2008	0.053	0.098	0.140	0.176	0.195	0.217	0.241	0.264	0.282	0.317
2009	0.057	0.089	0.147	0.175	0.205	0.222	0.242	0.264	0.283	0.333
2010	0.061	0.087	0.137	0.179	0.206	0.233	0.247	0.266	0.284	0.345
2011	0.054	0.081	0.122	0.172	0.209	0.231	0.256	0.272	0.290	0.329
2012	0.054	0.091	0.110	0.151	0.181	0.213	0.242	0.265	0.278	0.297
2013 ³	0.037	0.091	0.134	0.149	0.180	0.204	0.232	0.261	0.282	0.314

Méthode Rivard, NOAA Fisheries Toolbox (2008)
Les nombres en foncés et soulignés représentent des classes d'âge dominantes
Préliminaire

Tableau 13. Proportion annuelle de poissons matures à l'âge des harengs reproducteurs d'automne de la Division 4R de l'OPANO, 1965–2013.

ANNÉE	GROUPE D'ÂGE									
	2	3	4	5	6	7	8	9	10	11 ⁺
1965	0.000	0.000	0.222	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1966	0.000	0.000	0.429	0.857	1.000	1.000	1.000	1.000	1.000	1.000
1967	0.000	0.000	0.278	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1968	0.000	0.000	0.278	0.875	1.000	1.000	1.000	1.000	1.000	1.000
1969	0.000	0.000	0.182	0.769	0.857	1.000	1.000	1.000	1.000	1.000
1970	0.000	0.091	0.143	0.800	1.000	1.000	1.000	1.000	1.000	1.000
1971	0.000	0.000	0.143	0.800	1.000	1.000	1.000	1.000	1.000	1.000
1972	0.000	0.000	0.105	0.889	1.000	1.000	1.000	1.000	1.000	1.000
1973	0.000	0.000	0.308	0.850	1.000	1.000	1.000	1.000	1.000	1.000
1974	0.000	0.000	0.500	0.882	1.000	1.000	1.000	1.000	1.000	1.000
1975	0.000	0.000	0.714	0.932	1.000	1.000	1.000	1.000	1.000	1.000
1976	0.000	0.000	0.893	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1977	0.000	0.000	0.914	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1978	0.000	0.000	0.914	0.973	1.000	1.000	1.000	1.000	1.000	1.000
1979	0.000	0.000	0.914	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1980	0.000	0.108	0.871	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1981	0.000	0.400	0.972	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1982	0.000	0.400	0.969	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1983	0.000	0.048	0.867	0.990	1.000	1.000	1.000	1.000	1.000	1.000
1984	0.000	0.154	0.732	0.979	1.000	1.000	1.000	1.000	1.000	1.000
1985	0.000	0.000	0.543	0.990	1.000	1.000	1.000	1.000	1.000	1.000
1986	0.000	0.000	0.649	0.985	1.000	1.000	1.000	1.000	1.000	1.000
1987	0.000	0.143	0.867	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1988	0.000	0.000	0.563	0.938	1.000	1.000	1.000	1.000	1.000	1.000
1989	0.000	0.047	0.682	0.857	0.974	1.000	1.000	1.000	1.000	1.000
1990	0.000	0.048	0.727	0.667	1.000	1.000	1.000	1.000	1.000	1.000
1991	0.000	0.069	0.880	0.944	0.941	1.000	1.000	1.000	1.000	1.000
1992	0.000	0.325	0.824	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1993	0.000	0.077	0.947	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1994	0.000	0.500	0.694	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1995	0.000	0.500	0.884	0.959	1.000	1.000	1.000	1.000	1.000	1.000
1996	0.000	0.208	0.810	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1997	0.000	0.273	0.778	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1998	0.000	0.025	0.878	0.953	1.000	1.000	1.000	1.000	1.000	1.000
1999	0.000	0.086	0.639	0.958	1.000	1.000	1.000	1.000	1.000	1.000
2000	0.000	0.400	0.667	0.980	1.000	1.000	1.000	1.000	1.000	1.000
2001	0.000	0.000	0.750	0.985	1.000	1.000	1.000	1.000	1.000	1.000
2002	0.017	0.216	0.810	0.985	0.999	1.000	1.000	1.000	1.000	1.000
2003	0.002	0.081	0.796	0.994	1.000	1.000	1.000	1.000	1.000	1.000
2004	0.006	0.143	0.832	0.993	1.000	1.000	1.000	1.000	1.000	1.000
2005	0.001	0.037	0.537	0.972	0.999	1.000	1.000	1.000	1.000	1.000
2006	0.010	0.082	0.442	0.875	0.984	0.998	1.000	1.000	1.000	1.000

Tableau 13. (Suite).


ANNÉE	GROUPE D'ÂGE									
	2	3	4	5	6	7	8	9	10	11+
2007	0.020	0.085	0.296	0.656	0.897	0.975	0.994	0.999	1.000	1.000
2008	0.012	0.073	0.341	0.773	0.957	0.993	0.999	1.000	1.000	1.000
2009	0.000	0.007	0.266	0.949	0.999	1.000	1.000	1.000	1.000	1.000
2010	0.028	0.122	0.399	0.761	0.938	0.986	0.997	0.999	1.000	1.000
2011	0.009	0.055	0.262	0.685	0.930	0.988	0.998	1.000	1.000	1.000
2012	0.066	0.282	0.686	0.924	0.985	0.997	1.000	1.000	1.000	1.000
2013 ¹	0.058	0.191	0.473	0.774	0.929	0.980	0.995	0.999	1.000	1.000

¹ Préliminaire

Tableau 14. Abondance totale à l'âge (000's) des harengs reproducteurs d'automne selon les relevés acoustiques réalisés dans la Division 4R de l'OPANO depuis 1991.

ANNÉE	GROUPE D'ÂGE										
	2	3	4	5	6	7	8	9	10	11 ⁺	2+
1991	0	8841	37546	29664	12515	4207	12515	16616	4101	106938	232942
1993	3054	42610	25955	33590	14213	36785	9533	5601	8996	31228	211566
1995	0	7365	15411	59905	12296	20719	8609	16702	5713	36515	183236
1997	119	3334	29209	12209	13805	69256	7892	17097	1849	36207	190978
1999	838	19431	83377	42889	44183	10165	4585	52314	7335	26596	291712
2002	1422	4451	66684	4943	24607	85516	32926	20979	3156	17721	262405
2009	4634	1574	25769	13034	12931	36457	115315	95797	5678	23941	335129
2010	0	14262	15119	73196	44262	31026	67034	123062	61093	32640	461691
2011	0	56493	28441	21786	40731	25420	32982	89041	146666	43063	484622
2013	0	0	4299	44996	31846	35254	56321	62921	55635	120908	412181

FIGURES

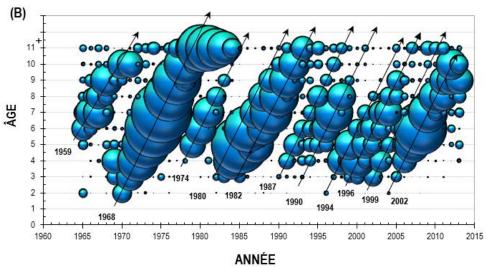


Figure 1. Capture commerciale à l'âge (%) de 2013 (A) et classes d'âge dominantes (B) des harengs reproducteurs de printemps de la Division 4R de l'OPANO depuis 1965.

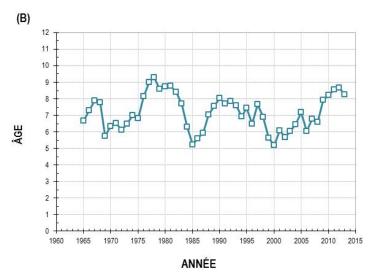


Figure 2. Biomasse (t) de la capture commerciale (A) et âge moyen (B) des harengs reproducteurs de printemps de la Division 4R de l'OPANO depuis 1965.

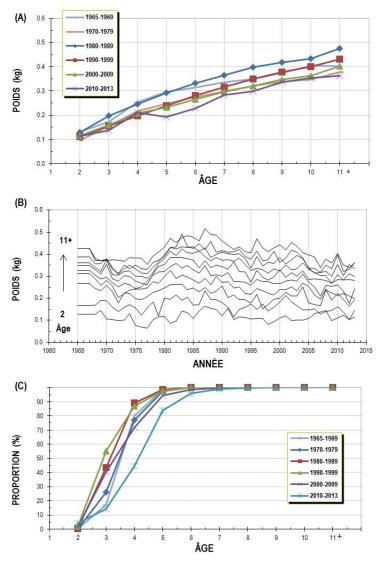
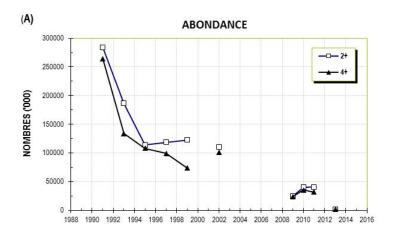
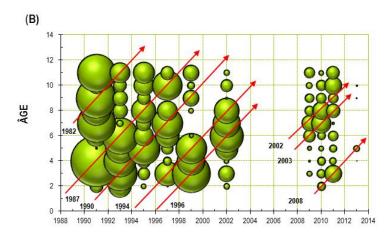




Figure 3. Poids (kg) moyens à l'âge par période d'années (A), poids (kg) moyens annuels à l'âge (B), et proportion (%) de poissons matures à l'âge (C) des harengs reproducteurs de printemps de la Division 4R de l'OPANO depuis 1965.

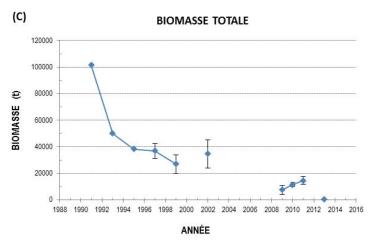


Figure 4. Résultats du relevé acoustique : (A) abondance (000') totale, (B) abondance (000') à l'âge (les classes d'âge dominantes sont indiquées), (C) biomasse totale (t) avec écarts-types, et (D) biomasse reproductrice (t) des harengs reproducteurs de printemps de la Division 4R de l'OPANO (seuls les abondances à l'âge des quatre derniers relevés ont été utilisées dans la présente évaluation).

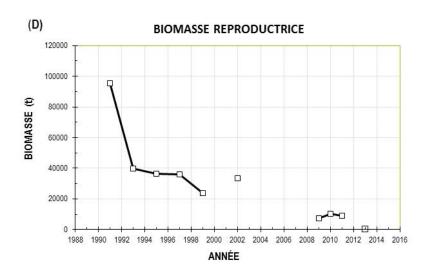


Figure 4. (Suite).

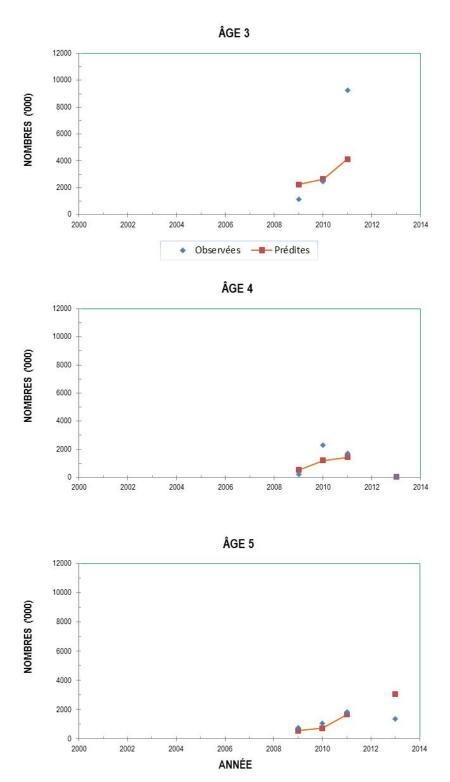
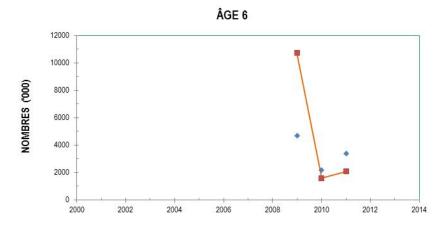
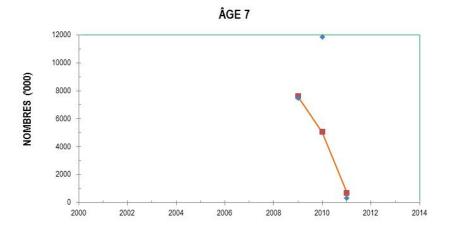




Figure 5. Relations à l'âge entre les abondances ('000) mesurées par les relevés acoustiques et prédites par le modèle exploratoire d'ASP pour les harengs reproducteurs de printemps de la Division 4R de l'OPANO.

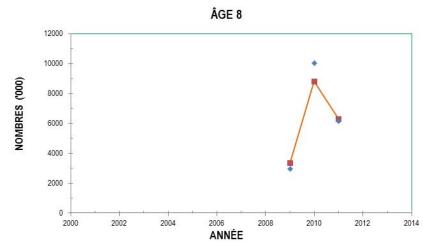
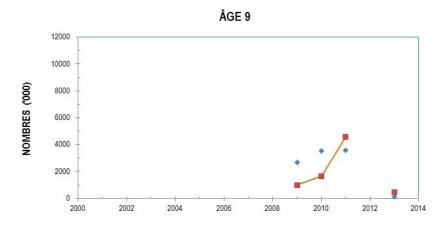
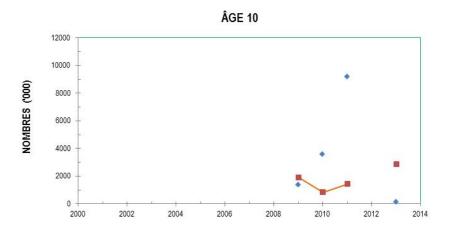




Figure 5. (Suite).

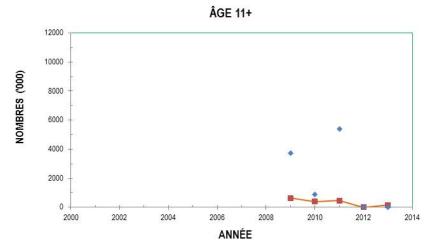


Figure 5. (Suite).

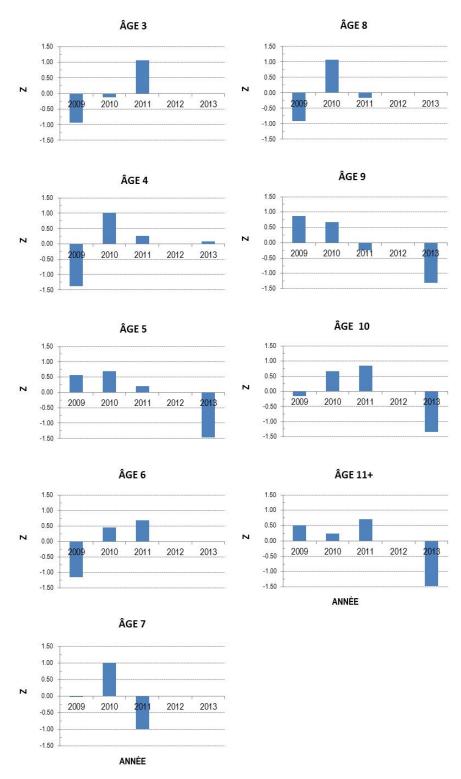


Figure 6. Résidus standardisés (z "scores") des abondances à l'âge du modèle exploratoire d'ASP des harengs reproducteurs de printemps de la Division 4R de l'OPANO.

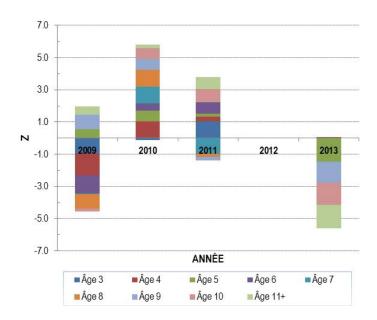
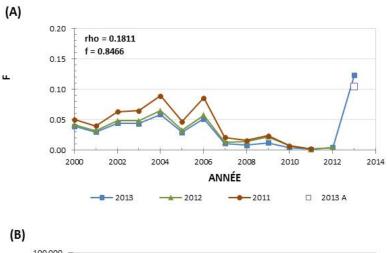
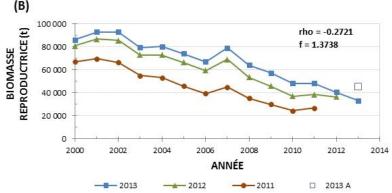




Figure 7. Résidus standardisés (z "scores") annuels des abondances à l'âge du modèle exploratoire d'ASP des harengs reproducteurs de printemps de la Division 4R de l'OPANO.

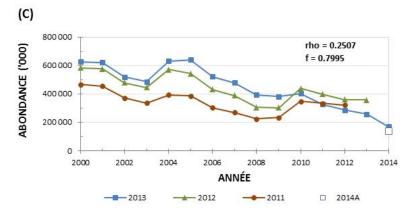


Figure 8. Patrons rétrospectifs : (A) Mortalité par pêche (F) (âge 3-5), (B) biomasse reproductrice (t), et (C) abondance ('000) totale des harengs reproducteurs de printemps de la Division 4R de l'OPANO. La statistique rho de Mohn, le facteur de correction (f) ainsi que les valeurs ajustées (2013A ou 2014A) sont indiqués.

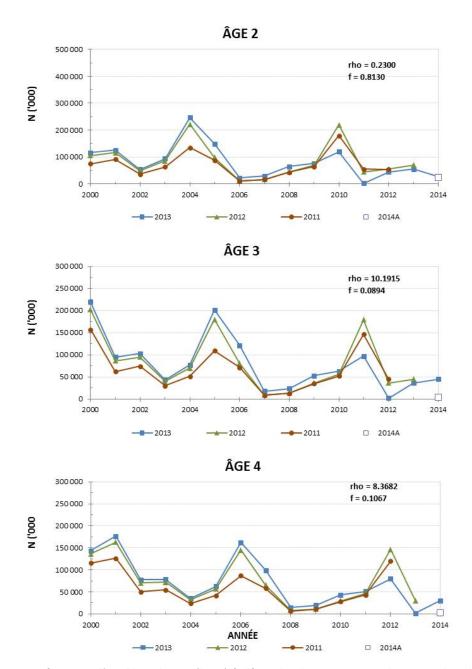


Figure 9. Patrons rétrospectifs : Abondance ('000) à l'âge des harengs reproducteurs de printemps de la Division 4R de l'OPANO. La statistique rho de Mohn, le facteur de correction (f) ainsi que les valeurs ajustées (2014A) sont indiqués.

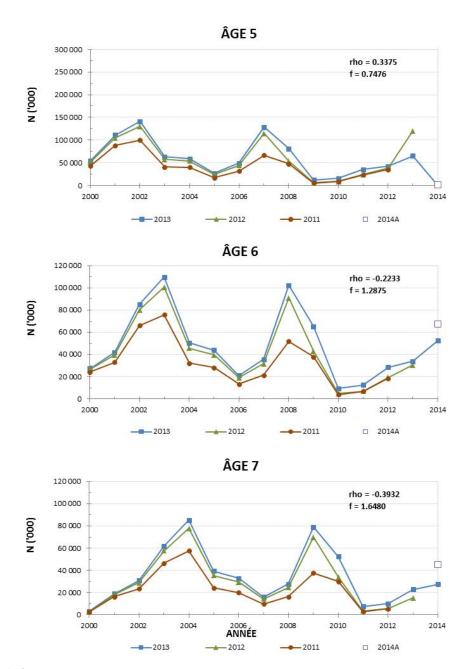


Figure 9. (Suite).

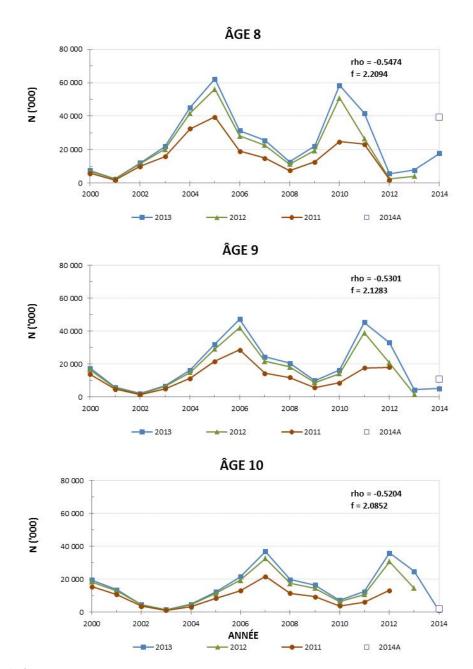


Figure 9. (Suite).

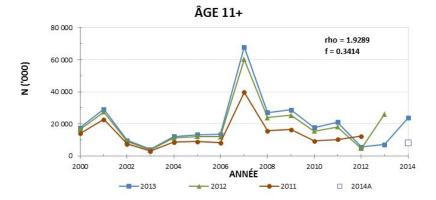


Figure 9. (Suite).

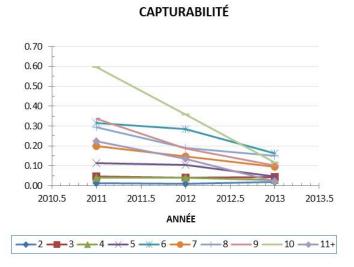


Figure 10. Patrons rétrospectifs : Coefficients de capturabilité à l'âge des harengs reproducteurs de printemps de la Division 4R de l'OPANO.

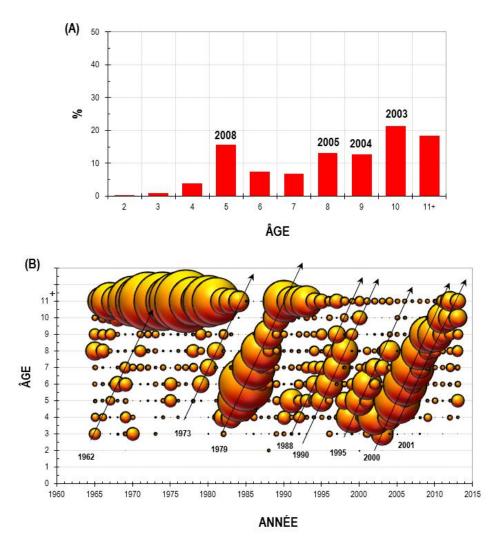
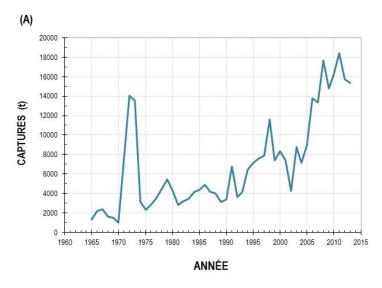



Figure 11. Capture commerciale à l'âge (%) de 2013 (A) et classes d'âge dominantes (B) des harengs reproducteurs d'automne de la Division 4R de l'OPANO depuis 1965.

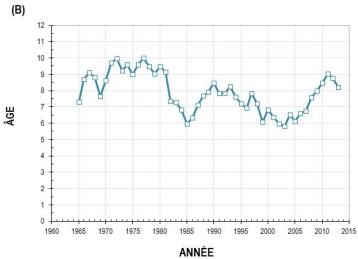


Figure 12. Biomasse (t) de la capture commerciale (A) et âge moyen (B) des harengs reproducteurs d'automne de la Division 4R de l'OPANO depuis 1965.

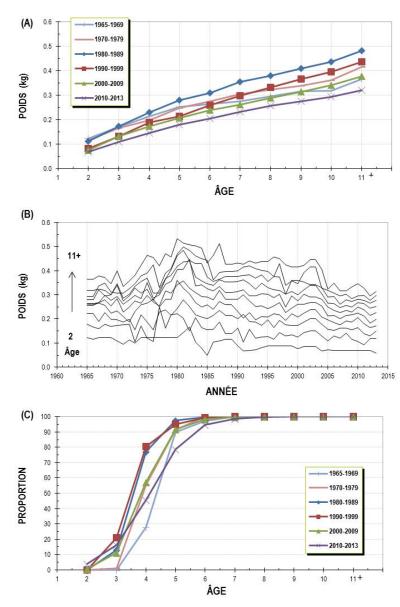
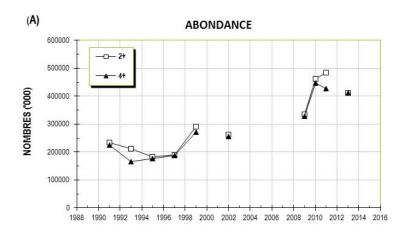
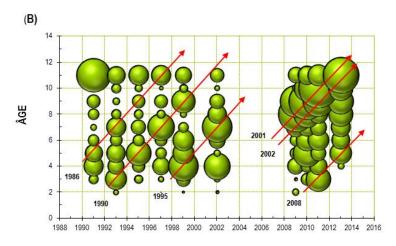




Figure 13. Poids (kg) moyens à l'âge par période d'années (A), poids (kg) moyens annuels à l'âge (B), et proportion (%) de poissons matures à l'âge (C) des harengs reproducteurs d'automne de la Division 4R de l'OPANO depuis 1965.

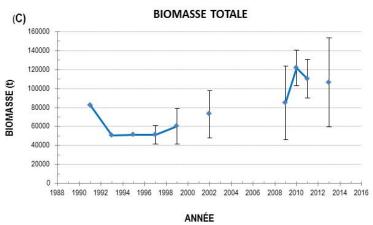


Figure 14. Résultats du relevé acoustique : (A) abondance (000') totale, (B) abondance (000') à l'âge (les classes d'âge dominantes sont indiquées), (C) biomasse totale (t) avec écarts-types, et (D) biomasse reproductrice (t) des harengs reproducteurs d'automne de la Division 4R de l'OPANO (seuls les abondances à l'âge des quatre derniers relevés ont été utilisées dans la présente évaluation).

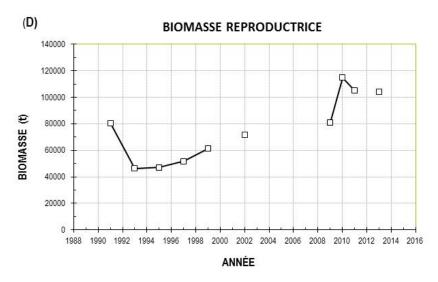


Figure 14. (Suite).

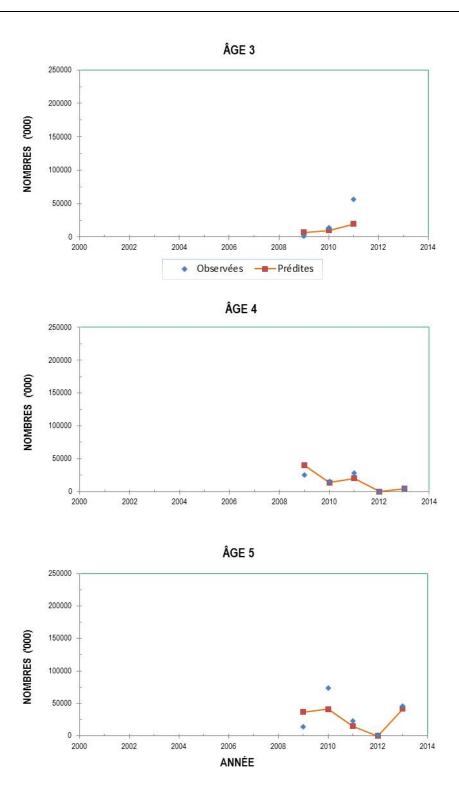
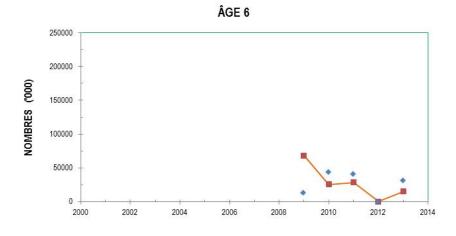
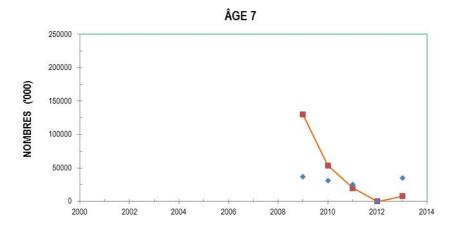




Figure 15. Relations à l'âge entre les abondances ('000) mesurées par les relevés acoustiques et prédites par le modèle exploratoire d'ASP pour les harengs reproducteurs d'automne de la Division 4R de l'OPANO.

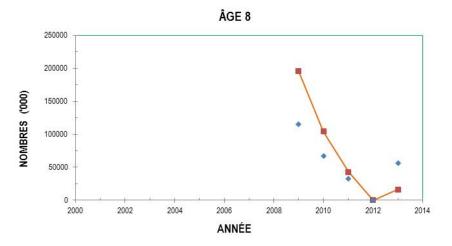
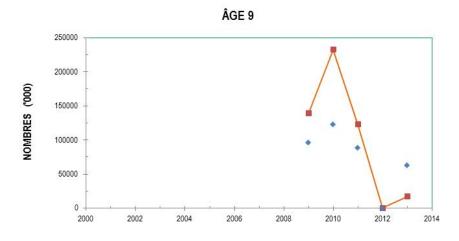
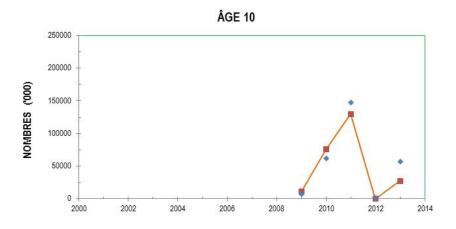




Figure 15. (Suite).

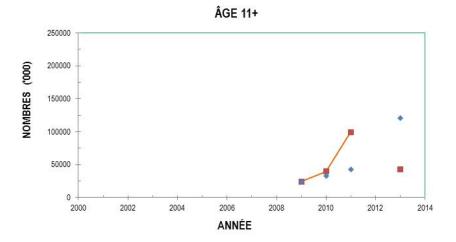


Figure 15. (Suite).

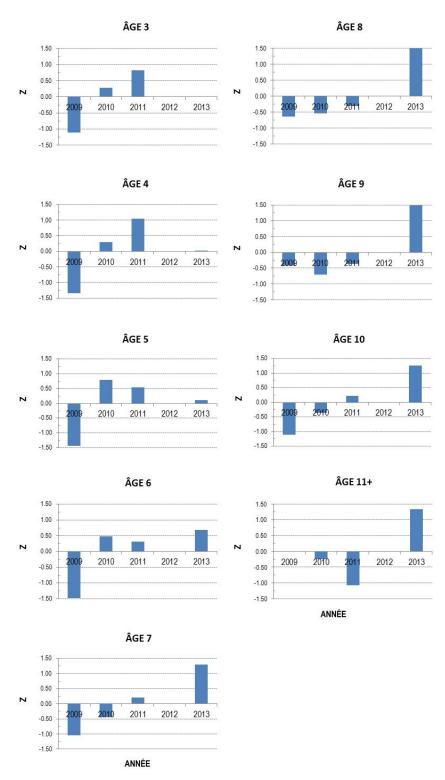


Figure 16. Résidus standardisés (z "scores") des abondances à l'âge du modèle exploratoire d'ASP des harengs reproducteurs d'automne de la Division 4R de l'OPANO.

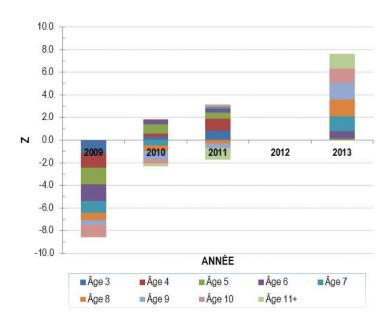


Figure 17. Résidus standardisés (z "scores") annuels des abondances à l'âge du modèle exploratoire d'ASP des harengs reproducteurs d'automne de la Division 4R de l'OPANO.

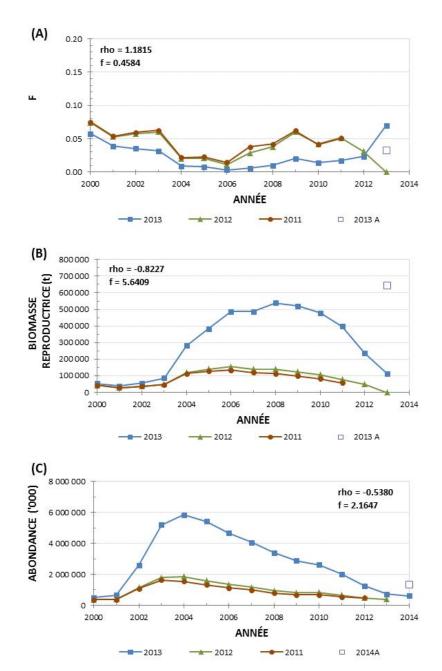


Figure 18. Patrons rétrospectifs : (A) Mortalité par pêche (F) (âge 3-5), (B) biomasse reproductrice (t), et (C) abondance ('000) totale des harengs reproducteurs d'automne de la Division 4R de l'OPANO. La statistique rho de Mohn, le facteur de correction (f) ainsi que les valeurs ajustées (2013A ou 2014A) sont indiqués.

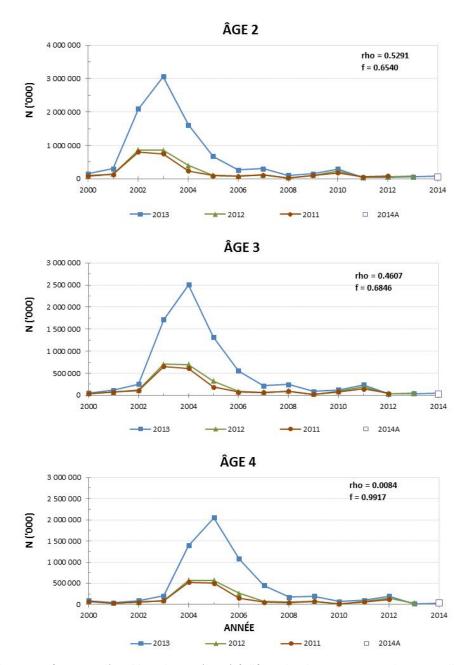


Figure 19. Patrons rétrospectifs : Abondance ('000) à l'âge des harengs reproducteurs d'automne de la Division 4R de l'OPANO. La statistique rho de Mohn, le facteur de correction (f) ainsi que les valeurs ajustées (2014A) sont indiqués.

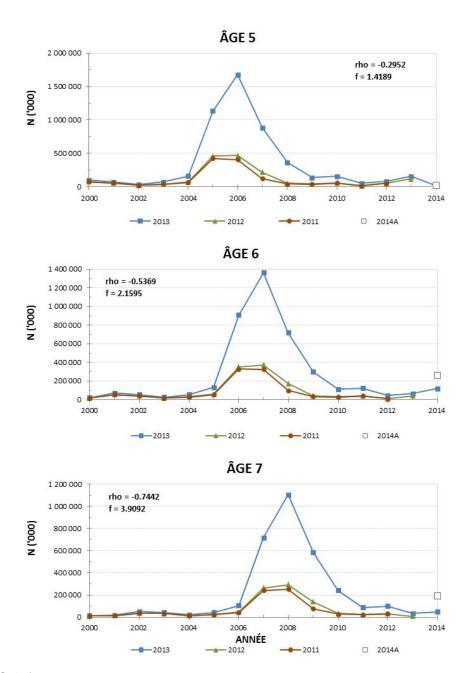


Figure 19. (Suite).

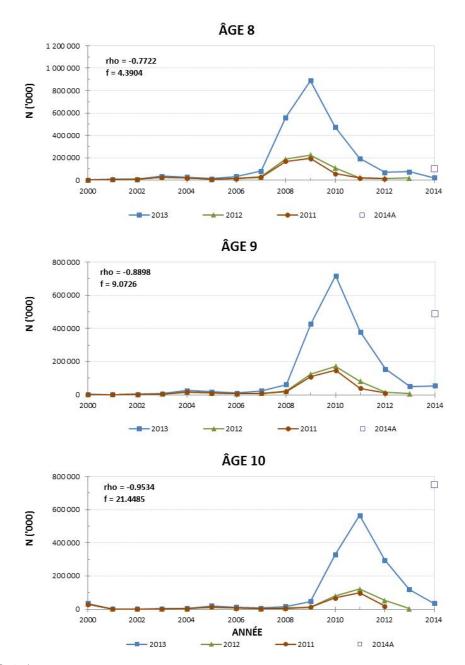


Figure 19. (Suite).

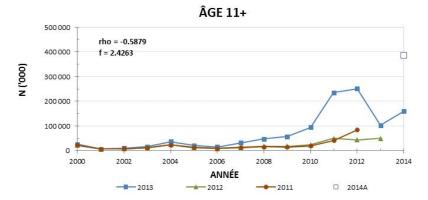


Figure 19. (Suite).

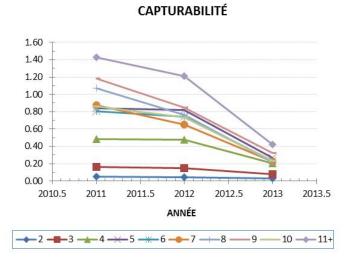


Figure 20. Patrons rétrospectifs : Coefficients de capturabilité à l'âge des harengs reproducteurs d'automne de la Division 4R de l'OPANO.